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ABSTRACT. In this paper we identify the structure of complex finite-dimensional Leibniz algebras
with associated Lie algebras sl% &3} slg @---®sl3® R, where R is a solvable radical. The classifications
of such Leibniz algebras in the cases dimR = 2,3 and dimlI # 3 have been obtained. Moreover, we
classify Leibniz algebras with L/I 2 sl @ sl2 and some conditions on ideal I = id < [z,z] |z € L > .
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1. INTRODUCTION.

The notion of Leibniz algebra was first introduced by Loday in [7], [8] as a non-antisymmetric
generalization of Lie algebra. During the last 20 years the theory of Leibniz algebras has been actively
studied and many results of the theory of Lie algebras have been extended to Leibniz algebras. A lot
of papers have been devoted to the description of finite-dimensional nilpotent Leibniz algebras [1], [2]
so far. However, just a few works are related to the semisimple part of Leibniz algebras [5], [4], [10].

We know that an arbitrary Lie algebra can be decomposed into a semidirect sum of the solvable
radical and its semisimple subalgebra (Levi’s Theorem [6]). According to the Cartan-Killing theory,
a semisimple Lie algebra can be represented as a direct sum of simple ideals, which are completely
classified [6].

In a recent study, Barnes has proved an analogue of Levi’s Theorem for the case of Leibniz algebras
[4]. Namely, a Leibniz algebra is decomposed into a semidirect sum of its solvable radical and a
semisimple Lie algebra.

The inherent properties of non-Lie Leibniz algebras imply that the subspace spanned by squares
of elements of the algebra is a non-trivial ideal (denoted by I). Moreover, the ideal I is abelian and
hence, it is contained in the solvable radical. Thanks to result of Barnes in order to describe Leibniz
algebras it is enough to investigate the relationship between products of a semisimple Lie algebra and
the radical (see [5], [9] and [10]).

The present work devoted to describing the structure of Leibniz algebras with the associated Lie
algebras isomorphic to sl3 @ sl2 @ - - - @ sl5 @ R with I an irreducible right sl§-module for some k. Since
the description of such Leibniz algebras is very complicated, we have focused on Leibniz algebras with
semisimple part sl @ sl3 under some conditions on the ideal I.

In order to achieve our goal we organize the paper as follows. In Section 2, we give some necessary
notions and preliminary results about Leibniz algebras with associated Lie algebra slo+R. Section 3
is devoted to the study of the structure of Leibniz algebras, whose semisimple part is a direct sum
of copies of sly algebras and with some conditions on the ideal I. In Section 4, we classify Leibniz
algebras whose semisimple part is a direct sum sl3 @ sl3 and I is decomposed into a direct sum of two
irreducible modules I 1, I 2 over sl% such that diml; 1 = diml; 2. The description of the structure of
Leibniz algebras with associated Lie algebra sl,, and dimI = 1,2 is obtained in Section 5.

Throughout the work, vector spaces and algebras are finite-dimensional over the field of complex
numbers. Moreover, in the table of multiplication of an algebra the omitted products are assumed to
be zero. We shall use the following symbols: +, & and + for notations of the direct sum of the vector
spaces, the direct and semidirect sums of algebras, respectively.

2. PRELIMINARIES

In this section we give some necessary definitions and preliminary results.

This work has been funded by Mathematics Institute and V Research Plan of Sevilla University by IMU/CDC-
program.
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Definition 2.1. [7] An algebra (L, [-,-]) over a field F' is called a Leibniz algebra if for any z,y,z € L
the so-called Leibniz identity

[Ia [ya Z]] = [[xvy]v Z] - [[Ia Z]vy]
holds.

Let L be a Leibniz algebra and let I = ideal < [r,z] | © € L > be an ideal of L generated by
all squares. The natural epimorphism ¢ : L — L/I determines the associated Lie algebra L/I of the
Leibniz algebra L. It is clear that ideal I is the minimal ideal with respect to the property that the
quotient algebra by this ideal is a Lie algebra.

It is noted that in [4] the ideal I coincides with the space spanned by squares of elements of an
algebra.

According to [6] there exists a unique (up to isomorphism) 3-dimensional simple Lie algebra with
the following table of multiplication:

sly [evh]:_[hve]:2€v [haf]:_[fvh]:Zfa [e,f]:—[f,e]:h,

The basis {e, f, h} is called the canonical basis.
In [9], Leibniz algebras whose quotient Lie algebra is isomorphic to sly are described. Let us present a
Leibniz algebra L with the table of multiplication in a basis {e, f, h, 7}, ... ,x}l, x3, ... ,:cfz, co Tl

zy } and the quotient algebra L/I is sly:

)

[ev‘h] = —[h,e] = 263 (h, fl==[f,h] =2f, e, f]=—[f.e] =h,
[$i,h]=(tj—2k)$i, nggtj,

[:Ei,f]zxiﬂ, 0<k<t;—1,

[x),e] = —k(t; +1—k)z,_,, 1<k<t,.

where L=slo+I1 + Io+---+ I, and I; = (x{,...,a:{j), 1<j<p.

The last three types of products of the above table of multiplication are characterized as an irre-
ducible sly-module with the canonical basis of sly [G].

Now we give the notion of semisimplicity for Leibniz algebras.

Definition 2.2. [B] A Leibniz algebra is called semisimple if its mazimal solvable ideal is equal to I.

Since in the Lie algebras case the ideal I is equal to zero, this definition also agrees with the definition
of semisimple Lie algebra.

Although Levi’s Theorem is proved for the left Leibniz algebras [4], it is also true for right Leibniz
algebras (here we consider the right Leibniz algebras).

Theorem 2.3. [4] (Levi’s Theorem). Let L be a finite dimensional Leibniz algebra over a field of
characteristic zero and R be its solvable radical. Then there exists a semisimple subalgebra S of L,

such that L = S+R.

An algebra L is called simple if it only ideals are {0}, I, L and L? # I. From the proof of Theorem
23 it is not difficult to see that S is a semisimple Lie algebra. Therefore, we have that a simple
Leibniz algebra is a semidirect sum of simple Lie algebra S and the irreducible right module I over
S, ie. L = S4I. Hence, we get the description of the simple Leibniz algebras in terms of simple Lie
algebras and ideal I.

Definition 2.4. [6] A non-zero module M over a Lie algebra whose only submodules are the module
itself and zero module is called irreducible module. A non-zero module M which admits decomposition
into a direct sum of irreducible modules is said to be completely reducible.

Further, we shall use the following Weyl’s semisimplicity theorem.

Theorem 2.5. [6] Let G be a semisimple Lie algebra over a field of characteristic zero. Then every
finite dimensional module over G is completely reducible.

Now we present results on classification of Leibniz algebras with the conditions L/I 2 sly @
R, dimR = 2,3, where I is an irreducible right module over sly (dimlI # 3).

Theorem 2.6. [3] Let L be a Leibniz algebra whose quotient L/T = sl @ R, where R is a two-
dimensional solvable ideal and I is a right irreducible module over sly (dimI # 3). Then there exists a
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basis {e, h, f,xo, 1, ...,
following form:

le.h] = ~[h,¢] = 2, i,
[y1,92] = —[y2, y1] = y1, [Tk
[.’L‘k, h] ( — 2k)$k 0
[Tk, f] = Try1, 0
[xk,e] = —k(m+1—k)xp—1, 1

T, Y1, Y2} of the algebra L such that the table of multiplication in L has the

[eaf]:_[fve]:
0<k<m, acC,

[fvh]:2fa

= arlk,

I/\IAI/\Q”
3 3 3
|

The following theorem extends Theorem 2.6 for dimR = 3.

Theorem 2.7. [10] Let L be a Leibniz algebra whose quotient L/I
dimensional solvable ideal and I is an irreducible right module over sly (dimI # 3).
Ty Y1, Y2, Y3} of the algebra L such that the table of multiplication in L has

a basis {e,h, f,xo,x1,...,
one of the following two forms:

le,h] = —[h,e] = 2e,
1, y2] = —[y2, 1] = w1,
[:Ek, h] ( — 2k):Ek,
Li(a,a): [Tk, f] = Tk+1,
[2k, €] = —k(m + 1 — k)zg-1,
["Ezu y2] = ax;,
[e, h] = —[h, e] = 2e,
Wi, y2] = —[y2, y1] = v1 + y3,
' [xk, ] = (m — 2k)xy,
La(a): [Tk, f] = Trt1,
[tg,e] = —k(m+ 1 —k)xg_1,
[Iia yQ] = ATy,

For a semisimple Lie algebra S we consider a semisimple Leibniz algebra L such that L

We put I = [I, slg].

>~ sly & R, where R is a three-
Then there exists

[h, f]=—=[f.h] = 2f, e, f1=—[f,e] = h,
[Y3, y2] = —[y2, y3] = ays,

0<k<m,

0<k<m-1,

1 <k<m,

0<s<m.

[h, f]==[f.h] =2f, e, f]=—[f.e] = h,
[Y3, y2] = —[y2, y3] = ¥3,

0<Fk<m,

0<k<m-1,

1<k<m,

0<i<m.

= (SZQ@S)—I—I

Let I; be a reducible over sls. Then by Theorem we have a decomposition:

L=5L1®L2® -

69117107

where [ ; are irreducible modules over sly for every j, 1 < j < p.

Theorem 2.8. [5] Let dimly ;, = dimly j, = -
A5 441 of dimension s of the module Iy =

submodules I 1,15 2, . .

Iy +Ioo+---

=diml ;. =t+1,1 <5 <p. Then there exist t +1
[1,S] such that

+ 12,t+1 = Il n IQ.

3. ON LEIBNIZ ALGEBRAS WHOSE ASSOCIATED LIE ALGEBRA IS ISOMORPHIC TO

sl% ® sl% o

@ sly® R.

In this section, we will consider a Leibniz algebra satisfying the following conditions:

(i) the quotient algebra L/I is isomorphic to the direct sum sl @ sl3

n-dimensional solvable Lie algebra;

3@ @sls® R, where R is

(ii) the ideal I is a right irreducible sl5-module for some k € {1,...,s}.

By reordering direct sums and changing indexes in the condition (ii) we can assume k = 1.
We denote by < e;, fi, h; >, 1 < i < s the basis elements of L which are preimage of standard basis

of sl} in the homomorphism L — L/I and we put

I =<xg,...,

Tm >,

R:<y15"'7yn>
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Then due to [6] we have

le1, ha] = —[h1, e1] = 2e, [h1, f1] = =[fi, ] = 2f1, er, fil = =[f1,e1] = ha,
[, h1] = (m — 24)xy, 0<i<m,

[z, [1] = Tiy1, 0<i<m-—1,

[xi,el] = —i(m +1-— i)l‘i_l, 1 < 7 <m.

The correctness of the next lemma follows from Lemma 3.3 in [5].

Lemma 3.1. Let L be a Leibniz algebra satisfying the conditions (i)-(ii). Then [I,sl3] = 0 for any
jed{2,...,s}.

The following lemma trivially follows from Theorem

Lemma 3.2. Let L be a Leibniz algebra satisfying the conditions (i)-(ii). Then [slb, sly] = sl for
1<t<sand[sly,sl3] =0 for 1 <i,j<s, i+#j].

The next lemma establish that the solvable ideal R is contained in two sided annihilator of each
slé, 2<i<s.

Lemma 3.3. Let L be a Leibniz algebra satisfying the conditions (i)-(ii). Then
[R,sls] = [sl4,R] =0, 2<i<s.

Proof. Applying Leibniz identity for the following triples

(y87elaa/)7 (ysaflua)a (a7y5761)7 (auysufl)

lead [ys,a] =0, [a,ys] =0, 1 <s < n for an arbitrary element a € sl}, 2 <i < s. O

Summarizing the results of Lemmas B.1l3.3] we obtain the following theorem.

Theorem 3.4. Let L be a finite-dimensional Lebniz algebra satisfying conditions:

(i) L/T = sl @sl3@--- @ sly @ R, where R is an n-dimensional solvable Lie algebra;

(ii) the ideal I is a right irreducible module over sl3.

Then, L= ((sly & R)+ 1)@ sl3 & - @ sls.
As a result of Theorems and 4] we have the following corollaries.

Corollary 3.5. Let L/I = sl ®sl3®- - -®sl3® R with dimR = 2 and dimI # 3. Then L is isomorphic
to the following algebra:

lej, hjl = —[hj, ;] = 2¢;, (hj, 3] = =[fj hil = 2f;,
lej, f3] = —[fj. €] = hy, 1<j<s,

Y1, y2] = —[y2, 1] = 1,

[k, h1] = (m — 2k)x, 0<k<m,

[Tk, f1] = k41, 0<k<m-—1,

[zr,e1] = —k(m+1—K)zk—1, 1<k<m,

[k, y2] = axy, 0<k<m, aeC.
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Corollary 3.6. Let L/I = sli@sl2®---@sls® R, with dimR = 3 and dimI # 3. Then L is isomorphic
to the following non-isomorphic algebras:

lej, bl = —[hj, €] = 2¢;, [hj, fi] = =1fs hy] = 215,

lej, fi] = —[fi e5] = hy, 1<j<s,

Y1, y2] = —[y2, 1] = 1, [Y3, y2] = —[y2, y3] = ays,
Li(a,a): [T, h1] = (m — 2k)zy, 0<k<m,

[Tk, [1] = k41, 0<k<m-—1,

[Tk, e1] = —k(m+1—K)zp_1, 1<k<m,

[, y2] = ax;, 0<i<m,

lej, hy] = —[hj, €] = 2e;, [hgs £3] = =[fi hil = 23,

lej, fi] = —[fi e5] = hy, 1<j<s,

Y1, y2] = —[y2, y1] = y1 + v3, (Y3, y2] = —[y2,y3] = 3,
La(a) : [k, hi] = (m — 2k)xy, 0<k<m,

[Tk, f1] = Ty, 0<k<m-—1,

[Zk,e1] = —k(m+1—K)zp_1, 1<k<m,

[, y2] = axi, 0<i<m.

4. ON LEIBNIZ ALGEBRAS WITH SEMISIMPLE PART sl} & sl3.

Let the quotient Lie algebra L/I for a Leibniz algebra L be isomorphic to a direct sum of two copies
of the sla, i.e., L/I = slo @ sls. In this section we shall investigate the case when the ideal I is reducible
over each copy of sly. In order to distinguish copies of sl we shall denote them by sl and si3. One
can assume that I is reducible over sl3. Due to Theorem 25 we have the following decomposition:

I=0L106L2®...® 11 511,

where I j, 1 < j < s+ 1 are irreducible sl3-modules.
We shall focus our study on the case when diml; 1 = dimly 2 = --- = dimly s41 =m+ 1.
Let us introduce notations as follows:

Il,j:<xf),x{,-.., o> 1<j<s+1.

In the proof of Theorem 3.7 of the paper [5] it was proved that

s+1 s+1 s+1
_ k .k
Zaz] 17 Zv.f? szj 7,5 7h2]_zci)jxia
k=1

where 0 < i < m, 1§j§5—|—1.
Without loss of generality, one can assume that the products [I1 ;,sl3], 1 < j < s+ 1 are expressed
as follows:

[xzvel] = _Z(m+1_l)IJ 1, 1<i<m,
[wfl] xli, . 0<i<m-—1,
[z}, 1] = (m — 2i)a], 0<i<m.

Proposition 4.1. Let L/ be isomorphic to sl% @515, where I =1 1 ® 11 2@ ...0 11 41 with diml; j =
m+1 and I ; are irreducible sl% -modules for 1 < j < s+ 1. Then

. s+1 . s+1 . s+1
[x57€2] = Z U“?xégv [xzva] = Z bé'gxécv [:Cg,hg] = Z C?"Ei'cv
k=1 k=1 k=1
where 0 <i<m, 1 <75 <s+ 1.
Proof. Applying Leibniz identity for the following triples of elements:
(¢],e1,e0), 1<j<s+1

we derive the restrictions:
a]f)j:ag)j, 1<k<s+1.



6 L.M. CAMACHO, S. GOMEZ-VIDAL, B.A. OMIROV AND I.A. KARIMJANOV

Consequently, we obtain

s+1 s+1
ko ok :
[z}, 5] = E %39507 [27,eq] = E ag v, 1<j<s+1.
k=1

By induction, we shall prove the equality

s+1

(4.1) [27,eq] = Zal&jxf, 0<i<m.
k=1

Using the assumption of correctness of Equality 1] for ¢ in the following chain of equalities:

0= [2]1,[er, e2]] = [[v]14, 1], e2] = [[#] 1, €], ea] = —[(i + 1) (m — i)2], e2] -
sl i _ e = _ .
= 2 g [z711,e1] = —(i + 1)(m — 1) kE_Il ag,;T; + kE_I aitq ;(0+1)(m —i)z7,

. s+1
we conclude that af, ; ; = af ; for 1 <k <s+1, that is, [z}, ,, 5] = Z ag jo¥,, and Equality Bl is
proved.
. s+1
Putting a¥ = ag ;, we have [}, 5] = Z akaf, 1<j<s+1,0<i<m.
Applying Leibniz identity for the trlples of elements:
(Ilaelva)a 1§]§5+15

we get
k k
by ;=05 1<k <s+1
Therefore, we obtain
s+1 s+1

xo,fg Zbog%a Il,fg Zboﬂjla 1<j<s+1.
Applying induction and the followmg chain of equahtles

0= [xz+17 [617f2]] = [[$g+1uel]uf2] - [[$g+17f2]7€1] = —[(Z+ 1)(m - i)l’g,fg]—
= 5 W lefen] = =G D =) 5 0t + 5 b Dl - ik

we derive the equality

s+1
(2], fa] = b jak, 0<i<m, 1<j<s+1.
k=1
Setting b = b ., we obtain [z, fo] = Zb]1,0<z<m 1<j<s+1.
s+1
Analogously, one can prove the equality [azi, ho]l = > cf:z:f with 1 <j <s+1. O
k=1

Now we shall describe Leibniz algebras such that L/I = sld @ sl3 and I = I, 1 & I 2, where I1 1,1 2
are irreducible sli-modules. Without loss of generality we can suppose

2], ha] = (m — 2i)a], 0<i<m,
!'E‘],l:x] s Oglgm_l,
7, 1+1 .

[2),e1) = —i(m+1—d)x_,, 1<i<m.

for j =1,2.
According to Proposition £l one can assume that

1 ol 2 2 o 2

[x],ea] = a12] + asx;, [x7,es] = azx] + aqgxy,
1 _go 1 2 2 g1 2

(i, fo] = bix; +boxy, 27, fo] = bsx; + baz,
1 o 2 2 o 2

[z}, ho] = crw] + coxy, |27, ho] = cax] + cax?,

where 0 < i < m.
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From the following chains of the equalities obtained applying Leibniz identity

2(a1x{ + agzd) = 2[xd, e2] =[x}, [ea, ha]] = (azes — c2a3)xh + (arca + azeq — craz — coay)zd,
2(azxd + asxd) = 2[x3, 2] = [23, [ea, ha]] = (azc1 + ascs — czar — caaz)wh + (azea — ages)zd,
—2(byag + boxd) = —2[x, f2] = [4, [f2, ha]] = (bacs — c2bs)xh 4 (brca + bacy — c1by — cabs)ag,
—2(bsz§ + bawd) = 2[x3, ea] = [23, [f2, h2]] = (bsc1 + bacs — c3by — cabz)zd + (bsca — bacs)zd,
—c1w} — cox? = —[21, ha] = [z}, [fo, €2]] = (azba — azb3)xi + 2(azby — a1bs)2?,
—c3xl — eyt = —[23, ho] = [23, [f2, €2]] = 2(a1bs — azbi)zi + (a2bs — asbs)x?.
we derive:
2a1 = azc3 — azca,
2a2 = a1c2 + azcy — cra2 — Coay,
2a3 = azcy + aqc3 — c3a1 — €403,
2a4 = agca — azcs,
—2b1 = bacg — cobs,
(4.2) —2by = b1co + bacy — c1by — by,
—2bs = bzcy + bycs — c3by — cqbs,
—2by = bzca — bacs,
c1 = azbs — agba,
co = 2(a1by — agby),
cs = 2(asby — aibs),
¢4 = agby — asbs.
It is easy to see that ay = —ay,by = —by and ¢4 = —cy.
Thus, we obtain the following products:
[z}, ea] = arxj + azay, [z}, fo] = bz} + baxf,
(4.3) 27, e2] = asz} — ara?, (27, f2] = bswj — bia,
[}, ho] = (agbs — azba)x} + 2(a1be — agby)z?,
27

] = 2(&31)1 — albg)IE — (CLng — agbg)

where the structure constants aq, as, ag and by, bo, b3 satlsfy the relations (E.2]).
We present the classification of Leibniz algebras satisfying the following conditions:
(a) L/T= sl} & si3;
(b) I = 1171 D 1172 such that 1111, 1172 are irreducible sl%—modules and dimILl = dimILQ;
(¢) I=I1 ®Io® ... ® Iy i1 such that I are irreducible sl3-modules with 1 < k < m + 1.

Theorem 4.2. An arbitrary Leibniz algebra satisfying the conditions (a)-(c) is isomorphic to the
following algebra:

[euhl] [hiaei] = 2e;,

[ezafz] [ iaei] = hi7

[hzvfz] [fiahi] = 2fz,

[, ] = (m —2k)z, 0<k<m,
[:E}anfl] ]g+17 ) OSkSm—l,
[zt e1] = —k(m+1—Fk)z, |, 1<k<m,
[wji,ez] [z 32 ho] = a3,

[‘Tj7h2] [ jaf?] = _‘Tja

with1 <i<2and0< 5 <m.

Proof. We set diml; 1 = diml; 2 = m+ 1. Then, according to Theorem [2Z.8] we obtain dimls j = 2 for
1<kE<m+1.

Let {x§, 21, ..., 2}, {x§,27,...,22,} and {y} ;.47 ,} be bases of I 1, I1 2 and Ir;41, 0 < i < m,
respectively. We set

(4.4) Yiv1 = i +ajad, yig = Brap + Blal, 0<i<m.
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Taking into account the products [3)) for 0 < i < m we consider the equalities
0= [yi1. 2] = [Bla] + B7ai, fo] = B (brx] + boz?)+
+87 (bsz} — b1a7) = (B1b1 + B7bs)x} + (Bib2 — B7b1)a?.

Therefore,

1 21
(4.5) { Bibl +ﬁib3—oa

B/le2_ﬁz2b1 :07

with 0 <@ < m.

If b2 +baobg # 0, then the system of equations ([f5)) has only trivial solution, which is a contradiction.
Hence, b% + babs = 0.

Similarly, from

0= [yip1,e2] = (@jar + afaz)z; + (ajaz — afar)a}

we derive a? + agaz = 0.

Thus, we have a1 = £i\/aza3 and b1 = £iy/bab3.

Let us summarize the obtained products:

[z}, ea] = a1z} + aga?, [z}, fo] = biz} + boa?,
(4.6) [22,e5] = azz} — ay2?, [42, fo] = bgw} — bya?,

[.Izl, hQ] == (CLng - a,ng).I% + 2(0,1()2 - CLle).I?,

[.I?, hQ] == 2(0,3()1 - albg).le - (CLng - CLng).I?,

with 0 <7 < m and the relations a% + asasz = b% + babs = 0.
Taking the following basis transformation:

al' = Azl + Ba?, 2? = (Aay + Bas)z! + (Aay — Bap)a?, 0<i<m

2

we can assume that the products (5:6) have the following form:

[le7€2] = xzzv [‘T12=€2] =0,
[‘rzlan] = bl‘rzl +b%I125 [I?an] = _Ill _b1$127
[}, ho] = —x} — 20122, [22,ho] = 22.

Applying the change of basis as follows

I | 2 2
r; =x; +bhxy, x;

_ 2
i =L

79

0<i<m,
we complete the proof of the theorem. O

The following theorem establishes that condition (c) can be omitted because if conditions (a)-(b)
are true, then condition (¢) is always executable.

Theorem 4.3. Let L be a Leibniz algebra satisfying the conditions (a)-(b). Then either L satisfies the
condition (c) or L = (sl + 1) & sl3.

Proof. Let L be a Leibniz algebra satisfing conditions (a) and (b), but not (¢). In order to prove the
assertion of theorem we have to establish that all modules I;, 1 < i <m 4 1 are reducible over sl%.
Indeed, according to Theorem 25 we conclude that I ; are completely reducible modules over sl3. In
denotation of (@A) we have I; =<y} > @ < y? >, where < y} >, < y? > are one-dimensional trivial
sl3-modules, that is,

[yilaeQ] - [yi2762] = [yzlva] = [y125f2] - [yzlahQ] = [yzzahQ] =0.

We shall prove by contrary method, that is, we shall assume that not all modules I ; are reducible
over sl%. Then we can assume that there exist some s, 1 <s<m+1landt, 1 <t<m+1, t# ssuch
that I s is irreducible, but I, is reducible si3-modules. By renumerating of indexes, without loss of
generality, we can suppose s = 2 and ¢ = 1.

From the products in the proof of Theorem we have

[‘TLe?] = [‘T%h?]:x%v [‘T%vhﬂ]: ["E%f?] :_‘T%ﬂ [*%%762]: [,’E%,fg]zo.
Consider the chain of equalities

0= [y1, le2, ]l = [[yn, el fi] = [[n, ] 2] = =l il e2] =

—lloomo + 0gxj, 1], €2] = —[agur + agai, e2] = —agat,
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0= [y%a [anfl]] = [[y%afé]afl] - [[y%afl]an] = _[[y%afl]afé] -

11, 22 Al 2.2 ey 201
—lleagzo + agzp, f1], €2] = —[apy + agat, fo = agay.
Therefore, af = a3 = 0, which means y; = 0. Thus, we get a contradiction. O

5. SOME REMARKS ON LEIBNIZ ALGEBRAS WITH SEMISIMPLE PART Sl,.

In this section we present the structure of Leibniz algebras with associated Lie algebra si,, and with
dimension of ideal I equal to 1 and 2.

Proposition 5.1. Let L/I be isomorphic to G where G =< eq, ea, ..., ey, > is a semisimple Lie algebra
and diml = 1. Then L =G @ I.

Proof. We put I =< z > and [z, e;] = a;z. For the semisimple Lie algebra G we have [G, G] = G, that
is, for any e;, 1 <i < m there exist e, and e, such that e; = > B, qlep, €q]-
P.q
The proof of proposition completes the following chain of equalities:

[z, e = (2, Bpalepeqll = Y Bpal lepseqll = D Bpa([lz enl, eq] — [[7. €q], €p)) =

Z Bp,a(aplz, eq] — aglz, €p]) = Z Bp.q(opagr — agopr) = 0.
P.q P.q

O

Let G be a simple Lie algebra with a basis {e1, ea, ... e, } which satisfies the condition that for any
e; there exist p, ¢ such that e; = [ep, e4].
We consider the case of L/I 2 G and dimI = 2. We set {x,y} the basis elements of I and

[, 6] = air + Biy, [y,ei] =vix + by, 1<i<n.
Consider
[z, e:] = [z, [ep, eq]] = [[7, 5], €q] — [, €q]s €p] = (Bpyg — Byvp)® + (pBy + Bpdg — aqBp — Bydp)y-

On the other hand, [z,e;] = oz + Biy.
Comparing the coefficients we derive

Q; = Bp'yq - ﬁq’y;m
5.1
(5-1) { Bi = apBq + Bpdg — atqBp — Bep,

where 1 <4 <n.
Similarly, if we consider [y, e;], we deduce

(5.2) Vi = VpQq + OpYg — VqQp — O Vp,
0; = ’Vpﬁq - 'Yqﬁpa

where 1 < i <n.
From systems (5. and (52) we obtain

(5.3) [r,ei] = iz + Biy, [y,ei] =vir — iy, 1<i<n.

Let L/I be isomorphic to sl,. From [6] we have the standard basis of sl, < hi,e;; > with
1<k<n-1,1<i4,57<nandi# j. We recall the table of multiplication of si,

leij, €jk) = €k, 1<ijk<ni#j, j#k k#i,
(ks €in] = €iny Ik, €ni] = —eni, 1<i,k<n-1, k#i,

(hiseij] = eij,  [hj,ei] = —eij,  leij,ej] =hi —hj, 1<i,j<n-—1,

[hi, ein] = 2€in7 [hl, em-] = —267”', [ein, em-] = hi, 1 S 7 S n—1.

Theorem 5.2. Let L/I be isomorphic to sl, (n > 3), where dimI = 2. Then L = sl, & I.
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Proof. From (&3] we have
[, hi] =iz + By, 1 <i<n—1, [y,h]=vzx—ay, 1<i<n-—1,
[z, ei5] = aijr + Bijy, [y, ei] = vijr — iy, 1<i,5<n, i#j
Applying Leibniz identity for the following triples of elements
(xvhiaeij)a (yahiveij)v (Iahivein)v (y,hi,ein), (xvhiaeni)v (yvhiveni)'

we deduce
aij +viBij — Bivij = 0,

(54) 2ﬂiaij =+ (1 — 20@)[3@' =0,
—2via; + (14 204)7i5 = 0,

2 + YiBin — Bivin = 0,
(5.5) Bicin + (1 — ai)ﬁin =0,
—vittin + (1 + i)yin =0,

—2ani + Yibni — Bitni = 0,
(5.6) Bioni — (o +1)Bni =0,
—Yini + (0 — 1)y = 0.
Determinants of systems (5.4]) - (6] have the following values:

1 Vi —Bi
Det 28, 1-—2q 0 =1- 4((1% + ﬁi'}’i)a
2 Vi —Bi
Det Bi 1— oy 0 =2 2((1% + Bi’yi),
—Yi 0 1+ o
—2 Vi —Bi
Det| fpi —-1—-oy 0 = —2+2(a? + Bivi)-

—Yi 0 oy — 1

It is easy to see that these determinants do not equal to zero simultaneously. Therefore, we conclude
that either
or

Oéw Zﬁijz’yijzo, 1§2,]§n—1
Case 1. Let o = Bin = Yin = Qni = Bni = Yni = 0 be where 1 < ¢ < n — 1. Then the non-zero
products characterized [I, sl,,] are the following
[, hi] = cix + Biy, [y, ] =~z —azy, 1<i<n-—1,

[z, €] = ijz + Bijy, [y, el =vijr — iy, 1<i,j<n-1, i#j.
From the equalities

[z, hi] = [z, [€in, eni]] = [[2, €in], eni] — [[2, €nil, €in] = 0,
[y, hi] = [y, [ein, enil] = [[y; €in], €ni] — [y, €nil, €in] =0,
[z, ei5] = [, [€in, enj]] = [z, €in], ens] — [z, €nj], €ni] = 0,
[, €i] = [y, [€in, enjsl] = [y, €in), €ns] = [[y; enjl, €nil =0,

we obtain that [, sl,] = 0.
Case 2. Let a;; = ;5 = vij = 0 be where 1 <4,j <n — 1. Then we have

[, hi] = cyx + Biy, [y, hi] = vix — @y, 1<i<n-1,
[T, ein] = @in® + Biny, [U,€in] = Yin® — ainy, 1<i<n—1,
[T, eni] = ni® + Bnilys  [U) €nil = it — amiy, 1 <i<n—1,
[z,ei;] = [y, €] =0, 1<i,j7<n-—1, i#j.
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Using Leibniz identity for the following triples

(xueijaeji)7 (yaeij7eji)7 (xahjaein)a (yuhjuein)u
(Iahjveni)v (yvh’jveni)v (xveinaeni)a (yaeinveni)v
we obtain

[:Eu hl] = [yu hl] = [:Euein] = [yaein] = [.’Ii,eni] = [yueni] = 07 1<i<n-1
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