
AER and dynamic systems co-simulation over
Simulink with Xilinx System Generator

A. Jiménez-Fernández, A. Linares-Barranco, R. Paz-Vicente,C.D. Luján-Martínez, G. Jiménez, A. Civit.
Arquitectura y Tecnología de Computadores.

Universidad de Sevilla.
Av. Reina Mercedes s/n, 41012-Sevilla, SPAIN

ajimenez@atc.us.es

Abstract— Address-Event Representation (AER) is a
neuromorphic communication protocol for transferring
information of spiking neurons implemented into VLSI chips.
These neuro-inspired implementations have been used to design
sensor chips (retina, cochleas), processing chips (convolutions,
filters) and learning chips, what makes possible the
development of complex, multilayer, multichip neuromorphic
systems. In biology one of the last steps of the processing is to
move a muscle, to apply the results of these complex
neuromorphic processing to the real world. One interesting
question is to be able to transform, or translate, the AER
information into robot movements, like for example, moving a
DC motor. This paper presents several ways to translate AER
spikes into DC motor power, and to control a DC motor speed,
based on Pulse Frequency Modulation. These methods have
been simulated into Simulink with Xilinx System Generator,
and tested into the AER-Robot platform.

I. INTRODUCTION

The Address-Event Representation (AER) was proposed
by the Mead lab in 1991 [1] for communicating between
neuromorphic chips with spikes (Fig. 1). Each time a cell on a
sender device generates a spike, it communicates with the
array periphery and a digital word representing a code or
address for that pixel is placed on the external inter-chip
digital bus (the AER bus). Additional handshaking lines
(Acknowledge and Request) are used for completing the
asynchronous communication. In the receiver chip the spikes
are directed to the pixels whose code or address was on the
bus. In this way, cells with the same address in the emitter
and receiver chips are virtually connected by streams of
spikes. These spikes can be used to communicate analog
information using a rate code, but this is not a requirement.
Cells that are more active access the bus more frequently than
those less active. Arbitration circuits usually ensure that cells
do not simultaneously access the bus. Usually these AER
circuits are built using self-timed asynchronous logic by e.g.
Boahen [2].

Transmitting the cell addresses allows performing extra
operations on the events while they travel from one chip to
another. For example the output of a silicon retina can be
easily translated, scaled, or rotated by simple mapping

operations on the emitted addresses. These mapping can
either be lookup-based (using, e.g. an EEPROM) or
algorithmic. Furthermore, the events transmitted by one chip
can be received by many receiver chips in parallel, by
properly handling the asynchronous communication protocol.
There is a growing community of AER protocol users for bio-
inspired applications in vision, audition systems and robot
control, as demonstrated by the success in the last years of the
AER group at the Neuromorphic Engineering Workshop
series [3]. The goal of this community is to build large multi-
chip and multi-layer hierarchically structured systems capable
of performing massively-parallel data-driven processing in
real time [7].

Fig. 1 Rate-coded AER inter-chip communication scheme.

The neuromorphic approach of AER can be also applied
to actuators, like the muscles in the biology. In this paper we
study and compare two possible transformations of the AER
information to DC motor motion, the Pulse Width
Modulation (PWM) and the Pulse Frequency Modulation
(PFM). We present a Simulink scenario using VHDL blocks
to simulate a DC motor speed closed-loop control. We carried
out an experiment for controlling a DC motor speed, using
VHDL blocks over the Xilinx Spartan3 400 FPGA in the
AER-Robot interface, which includes power stages for
connecting the FPGA to up to 24 volts and 4 Amps DC
motors.

II. AER MODULATIONS FOR MOTOR CONTROL

There are many actuation techniques over DC motors,
being two of the most popular: Pulse Width Modulation
(PWM) and Pulse Frequency Modulation (PFM). Now, we

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/286563706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

propose two ways to translate AER information to these
modulation schemes.
A. AER to PWM translation

A typical PWM signal has a fixed period (Tpwm) with a
variable duty-cycle, or high time (Th). Signal information
resides in the duty-cycle. The power applied to a DC motor
is proportional to the duty-cycle of the PWM signal.

One possible way to translate AER spikes to a PWM
signal, is to fix Tpwm and modify Th according to an AER
input spikes rate. We have implemented this with a spikes
integrator and a typical PWM modulator. The integrator will
integrate the incoming spikes, using a simple counter, along
Tpwm. When Tpwm is reached the PWM modulator is reset,
using the integrated value for the new Th duty-cycle. The
PWM modulator generates a signal with a fixed period and a
high time equivalent to the number of spikes counted in the
last Tpwm cycle as shown in the Fig. 2.

Fig. 2 AER to PWM translation

B. AER to PFM adaption
The PFM scheme is opposed to the PWM one. Now Th

is fixed, and the time between pulses (Tpfm) is variable. The
information is contained in the pulse frequency, just like the
AER information. Therefore, we propose to apply AER
spikes almost directly on a DC motor. AER spikes are so
shorts in time (about 20ns) that it is not enough to be able to
commute the power stage. These spikes may be increased in
time (Th) before applying them to a DC motor. Th must have
a value according to the DC motor model and power stages
features. In the Fig. 3 we show the static speed characteristic
of a DC motor model for different Th. Th has been started in
200ns and increased by 200ns until 2us. Simulation shows
that the static speed gain can be changed with Th. It also
shows that speed saturates with less spike rate when Th is
increased, because this entity receives a new spike when it is
still increasing the last one.
C. PWM translation vs PFM adaption

The advantage of using this PWM scheme is that we can
introduce a Z-transfer function (e.g.: proportional-integral-
derivative controller) between the spikes integrator and the
PWM modulator, because AER information is integrated to a
discrete value, and the sample time is known, Tpwm. In the
other hand, the PWM translation introduces a time delay
equivalent to Tpwm.

With a PFM scheme, the spikes are directly applied to
the motor, without delay. But, pulse-based controls are not
extended. PFM eliminates the current drain associated with
constant-frequency PWM controllers, caused by switching
the power stage unnecessarily.

They not only have opposed schemes, have just opposed
advantages.

Fig. 3 Static speed charasteristic of a DC motor using a PFM scheme

III. AER CLOSED-LOOP ENTITIES

To implement an AER closed-loop control, there is
needed an element that subtracts two spike signals. This
means that this element may have two inputs ports, and one
output port. The output port must generate a spike-based
signal, whose spike rate is equivalent to the inputs spike rate
subtraction.

Like in a classical motor speed closed-loop control, in
the positive port we apply a reference spike signal (U) and in
the negative one, the real motor speed codified by spikes
(Y). The DC motor speed is sensed by a quadrature encoder,
because these devices modulate the rotation speed following
a PFM scheme, just like AER spikes.

Thinking about doing an AER subtraction several
mechanisms can be done, for example: a) one way is to
modify the inter-spike-interval in the output spikes; b) other
way is to generate positive and negative spikes; and finally,
c) the last way is to combine both techniques. We propose
two different strategies to make this: 1) AER Hold&Fire
(focused in mechanism c) and 2) Integrate&Generate
(focused in the mechanism a). To test both methods, we have
simulated them according with the Fig. 4 model. Simulations
have been made with a Maxon motor (whose parameters are
shown in Table I).
A. AER Hold&Fire

Fig. 6-1 shows this model. It is divided in three parts.
The first ones generate spikes [8] from an input signal (U
and Y), the next one implements the subtraction method, and
the last one increase the Th time of the output spikes of the
method before sending them to the motor.

Regarding to this subtraction method, once a spike is
received, it is increased by a fixed time (U delay or Y delay
depending on the input kind: reference or encoders
respectively), waiting for the inputs evolution, and holding
(waiting the U or Y time before firing the output spike),
killing (no output spike will be produced) or firing spikes
(without any wait). For example, if we receive a signed (U)
spike, instead of propagate it; we hold it for a fixed time (U
delay). If no other spike is received along this time (neither
U nor Y), this spike is fired. But, if a same sign spike (U) is
received, the first spike is fired and the incoming one hold.

TABLE I. MOTOR MODEL

Motor Parameter
Parameters Value
Value Units

Nominal Voltage 12 V
Terminal Resistance 2.06 Ohm

Terminal Inductance 0.238e-3 H

Torque Constant 23.5 Nm/A

Speed Constant 0.0235 V/(rad/s)

Rotor Inertia 10.7e-7 Kgm2

Friction Coefficient 7.5e-5 Nm/(rad/s)

Fig. 4 Motor simulation model

 And if a sing event is received (Y), both are killed mutually,
and no spike is fired. The fired spike is increased in time
until the Th by the next block of the model, before delivering
it to the DC motor.

If hold time is too large, the latency grows, but the
ripple error decreases before being stable the motor speed. In
contrast, if hold time is too short, the spike rates that manage
the motor signal increase the ripple, and could be unstable,
but the latency decreases. So it’s very important to fix these
times into a dynamic system like a DC motor.
B. Integrate&Generate

This method implements an incoming spikes integrator
and then generates a new spike stream based on the
integrated value. The integrator is an accumulator and the
generator follows the exhaustive spikes generator [8]. The
integrator has positive (U) and negative (Y) spikes input,
increasing by one or decreasing by one respectively. The
spikes are generated according to the integrated value. Fig.
6-2 shows this simulation model.

One disadvantage is that the DC motor speed is
increased very slowly, so the integrator uses to go to the
maximum positive value. Later, when the spike rate is
greater than the reference spike rate, the integrator goes to
the minimum negative value. It causes a severe motor
oscillation. It would be corrected with forgotten techniques.
However, it has an important advantage: we can introduce a
PID control between the integrator and the spikes generator.

IV. SIMULATION. VHDL OVER SIMULINK

Simulink, in addition with Xilinx System Generator,
became a very useful tool for VHDL and dynamic model
system co-simulation. The two methods explained in the
previous section have been modeled as shown in Fig. 6.
Results are shown in Fig. 5. There are many speed motor
responses for the different methods with different
parameters. The simulation parameters are contained in the
table II.

TABLE II. SIMULATION PARAMETERS

Sim.
number

Simulation Parameters

Spike Freq AER Method Pulse
Width U delay Y delay

1 2.28MHz Holder&Fire 2uS 1.3ms 20ns

2 2.28MHz Holder&Fire 2us 1.3ms 4ms

3 2.28MHz Holder&Fire 0.1us 1.3ms 20ns

4 1.14MHz Holder&Fire 2uS 1.3ms 20ns

5 1.14MHz Integrate&G
enerate 2uS N.A. N.A.

Fig. 5 Motor simulation responses

Fig. 5 shows the different DC motor speed responses,
controlled by the different methods and parameters, listed in
the Table II. There can be seen the high oscillation of the
Integrate&Generate method. Responses 1 and 2 only differs
in the Y delay time, where response 2 has a high Y delay
time; again we can see an oscillation caused by this delay. If
we compare response 1 and 3, with different pulse width, we
can see how the pulse width affects to the static gain, and
consequently affects to the oscillation. It occurs because a
high static gain reduces the phase margin, causing this
oscillation. Finally, comparing 1 and 4 responses, whose
spikes frequency differs in a half, the 4 responses reach to
the half of speed than response 1, showing a linear behavior
at same conditions.

Fig. 6 VHDL blocks for simulation

V. HARDWARE IMPLEMENTATION. THE AER ROBOT
PLATFORM

This section describes the hardware implementation of these
DC motor modulations based on AER spikes. These
modulations have been implemented into VHDL and tested on
an AER platform (AER-Robot) (shown in Fig. 7). This
platform has been designed and developed under the Spanish
grant SAMANTA II to control an anthropomorphic AER hand
[6]. The platform is designed around a Spartan3 400 FPGA,
with 4 parallel AER connectors (2 input and 2 output), 4
power stages to manage 4 DC motors with two encoder
channels, and 4 hall effect current sensor to measure the
power consumption of the motors. The interface also has 12
analog sensor inputs and 36 general purpose digital ports.
With this FPGA, the interface is able to receive high AER
rates, process them together with the input form the robot
sensors and encoders, and control the motors of the robot. The
platform was developed as an interface between AER systems
and robots using two AER buses: one for incoming events and
another for outgoing information (AER events) about the state
of the motors and the sensors. The input AER bus can be
replicated into an output AER bus, called AER IN pt, to
conveniently allow a chain of several boards connected by the
AER buses. The board has also a Cygnal 80C51F320
microcontroller for the analog to digital conversion
(200Ksamples/second and 10-bits) of the sensor
measurements and a USB port for the PC connectivity.

Fig. 7 shows a photograph of the AER-Robot Interface
PCB. The digital part of the PCB is in the middle.

VI. CONCLUSIONS

Neuromorphic engineers can use Simulink, with the
addition of Xinlinx System Generator, to study the behavior of
the VHDL AER components applied to dynamic systems. We
showed two different techniques to implement a spike-based
closed-loop control system. Present work is focused in
integrate an AER retina, with a real time AER-based object
detection system, in a robotic platform controlled by the
exposed control techniques.

Fig. 7 AER-Robot board photograph

ACKNOWLEDGMENTS
This work has been supported in part by the Andalucía

Council with the BrainSystem project (P06-TIC-01417), and
by the Spanish project SAMANTA II (TEC2006-11730-C03-
02).

REFERENCES
[1] M. Sivilotti, Wiring Considerations in analog VLSI Systems with

Application to Field-Programmable Networks, Ph.D. Thesis,
California Institute of Technology, Pasadena CA, 1991.

[2] Kwabena A. Boahen. “Communicating Neuronal Ensembles between
Neuromorphic Chips”. Neuromorphic Systems. Kluwer Academic
Publishers, Boston 1998.

[3] A. Cohen et al., Report to the National Science Foundation:
Workshop on Neuromorphic Engineering, Telluride, Colorado, USA,
June-July 2004. [www.ini.unizh.ch/telluride]

[4] Misha Mahowald. VLSI Analogs of Neuronal Visual Processing: A
Synthesis of Form and Function. PhD. Thesis, California Institute of
Technology Pasadena, California, 1992.

[5] P. Lichtsteiner, et al., "A 128×128 120dB 30mW Asynchronous
Vision Sensor that Responds to Relative Intensity Change," ISSCC
Dig. of Tech. Papers, San Francisco, 2006, pp. 508-509 (27.9).

[6] A. Linares-Barranco et al.. “AER Neuro-Inspired interface to
Anthropomorphic Robotic Hand”. IEEE World Conference on
Computational Intelligence. IJCNN. Vancouver, July-2006.

[7] R. Serrano-Gotarredona et al. AER Building Blocks for Multi-Layer
Multi-Chip Neuromorphic Vision Systems. NIPS 2005.

[8] F. Gomez-Rodriguez, et al. “Two Hardware Implementation of the
Exhaustive Synthetic Aer Generation Method”. LNCS. Vol. 3512.
2005. Pag. 534-540

