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Abstract' 

A bio-inspired model for an analog parallel array pro- 
cessor (APAP), based on studies on the vertebrate retina, 
permits the realization of complex spatio-temporal dynam- 
ics in VLSI. This model mimics the way in which images 
are processed in the natural visual pathway what renders a 
feasible alternative for the implementation of early vision 
tasks in standard technologies. A prototype chip has been 
designed and fabricated in 0.5pm CMOS. Design chal- 
lenges, trade-offs and the building blocks of such a high- 
complexity system (0.5 x 10 transistors, most of them 
operating in analog mode) are presented in this paper. 
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1. Bio-inspired APAP model 

1. 1. Sketch of the biological retina 
The vertebrate retina has the structure displayed in 

Fig. 1. A first layer of photodetectors at the top, the cone 
cells, captures light and converts it to activation signals 
[I]. Bipolar cells carry them across the layers to the gan- 
glion cells that interface the retina with the optical nerve, 
in a trip of severa1:micrometers. The ganglion cells convert 
the continuous activation signals, proper of the retina, to 
pulse-like action potential signals that can be transmitted 
over longer distances by the nervous system. In the way to 
the ganglion cells, the information carried by bipolar cells 
is affected by the operation of horizontal and amacrine 

Fig. 1. Conceptual diagram of the retina. 
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cells. They form layers in which signals are weighted and 
promediated to bias photodetectors and to inhibit the verti- 
cal pathway. Patterns of activity are formed dynamically 
by the presence or absence of visual stimuli. Inhibition is 
transmitted laterally through these layers of cells. 

There are, in this description, some interesting aspects 
of each retinal layer that markedly resemble the character- 
istics of the Cellular Neural Networks (CNNs) [2]: 2D 
aggregations of continuous signals, local connectivity 
between elementary nonlinear processors, analog 
weighted interactions between them. 

1.2. CNN-based analogy 
Based on measurements of the response of the inner 

and outter plexiform layers of the retina, a complex-cell 
CNN-based chip has been proposed [3]. This 2nd-order 3- 
layer CNN cell consists of 2 CNN layers coupled by some 
inter-layer weights and an additional layer incorporating 
analog arithmetics to combine the outputs of the dynami- 
cally linked layers (Fig. 2). The cells in the two first layers 
have a first order core, while the third layer, that can be 
also modeled in this way, has much faster dynamics 
( T~ (( T!, T~ ). Complex dynamics can be programmed via 
the adjustment of the intra- and inter-layer coupling 
strengths. The evolution law of each layer node in the cell, 
C( i ,  j ) ,  is given by two coupled differential equations: 
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where the nonlinear losses term and the output function in 
each layer are those of the FSR CNN model [4]: 
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Fig. 2. Diagram of the 2nd-order CNN. 

2. APAP architecture 

2.1. Prototype chip floorplan 
The proposed chip consists in a APAP of 32 X 32 

identical cells (as can be seen in the microphotograph of 
Fig. 6). It is surrounded boundary conditions circuits for 
the CNN dynamics. There is also an I/O interface, a 
timing and control unit and a program memory. The U0 
interface consists in a serializing-deserializing analog 
multiplexor. The program memory is composed of 24 
blocks of SRAM of 64 bytes of capacity, 1 kB dedicated 
to the analog program, and 0.5kB to the logic program. 
In addition, the analog instructions and reference signals 
need to be transmitted to every cell in the network in the 
form of analog voltages. Thus, a bank of D/A convert- 
ers interfaces the analog program memory with the pro- 
cessing array. Distributing analog references across 
large distances within a chip is not a trivial task. Apart 
from the problems derived from electromagnetic inter- 
ference, voltage drops in long metal lines carrying cur- 
rents can be quite noticeable. Thus, signal buffering and 
low-resistance paths must be provided to avoid this. 
Finally, the timing unit is composed by an internal 
clocWcounter and a set of FSMs that generate the inter- 
nal signals that enable the processes of images up/down- 
loading and program memory accesses. 

2.2. Basic cell scheme 
The elementary processor of the CNN-based APAP 

includes two coupled continuous-time CNN cores 
(Fig. 3) belonging to each of the two different layers of 
the network. The synaptic connections between process- 
ing elements of the same or different layer are repre- 
sented by arrows in the diagram. The basic processor 
contains also a programmable local logic unit (LLU) 
and local analog and logic memories (LAMS and LLMs) 
to store intermediate results. All the blocks in the cell 
communicate via an intra-cell data bus, which is multi- 
plexed to the array U 0  interface. Control bits and 
switch configuration are passed to the cell directly from 
the global programming unit. 

The internal structure of each CNN core is depicted 
in the diagram of Fig. 4. They receive contributions 
from the rest of the processing nodes in the neighbour- 
hood which are summed and integrated in the state 
capacitor. The two layers differ in that the first layer has 
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Fig. 3. Conceptual diagram of the basic cell 

a scalable time constant, controlled by the appropriate 
binary code, while the second layer has a fixed time con- 
stant. The evolution of the state variable is also driven by 
self-feedback and by the feedforward action of the 
stored input and bias patterns. There is a voltage limiter 
for implementing the FSR CNN model. The state vari- 
able is transmitted in voltage form to the synaptic 
blocks, in the periphery of the cell, where weighted con- 
tributions to the neighbours’ are generated. There is also 
a current memory that will be employed for cancellation 
of the offset of the synaptic blocks. Initialization of the 
state, input and/or bias voltages is done through a mesh 
of multiplexing analog switches that connect to the cell’s 
intemal data bus. 

3. Analog building blocks for the basic cell 

3. 1. Single-transistor synapse 
The synapse is a four-quadrant analog multiplier. 

Their inputs will be the cell state or input and the weight 
voltages, while the output will be the cell’s current.con- 
tribution to a neighbouring cell. It can be achieved by a 
single transistor biased in the ohmic region [ 5 ] .  For a 
PMOS with gate voltage V ,  = V ,  + V,, and the p- 
diffusion terminals at Vw = V +OF‘, and V,, the 
drain-to-source current is: WO 

I ,  = - p v v -  
P W X  

Fig. 4. Internal structure of each Ch 
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which is a four-quadrant multiplier with an offset term 
that is time-invariant -at least during the evolution of 
the network- and not depending on the cell state. This 
offset that can be eliminated by a calibration step, with 
the help of a current memory. 

3.2. Current conveyor and level shifting 
For the synapse to operate properly, the input node of 

the CNN core must be kept at a constant voltage, inde- 
pendently of what current is entered. This is achieved by 
a current conveyor (Fig. 5). Any difference between the 
voltage at node 0 and the reference Vw0 is amplified 
and the negative feedback corrects the deviation. Notice 
that a voltage offset in the amplifier results in an error of 
the same order. Using the offset cancellation mechanism 
in Fig. 5 the current injected into the load is offset-free: 

I ,  = Io+I,,,-Ib = gmVd (5) 

3.3. s31 current memory 
As it has been referred, the offset term of the synapse 

current must be removed for its output current to repre- 
sent the result of a four-quadrant multiplication. For this 
purpose all the synapses are reset to V, = V, . Then 
the resulting current, which is the sum of the offset cur- 
rents of all the synapses concurrently connected to the 
same node, is memorized. This value will be substracted 
on-line from the input current when the CNN loop is 
closed, resulting in a one-step cancellation of the errors 
of all the synapses. The validity of this method relies in 
the accuracy of the current memory. For instance, in this 
chip, the sum of all the contributions will range, for the 
applications for which it has been designed, from 18pA 
to 46kA.  On the other side, the maximum signal to be 
handled is 1 p A  . If a signal resolution of 8b is pre- 
tended, then OSLSB = 2nA.  Thus, our current mem- 
ory must be able to distinguish 2nA out of 46pA.  This 
represents an equivalent resolution of 14.5b. In order to 

'bias 

3 achieve such accuracy level, a S I current memory is 
used. It is composed by three stages (Fig. 5) ,  each one 
consisting in a switch, a capacitor and a transistor. I, is 
the current to be memorized. After memorization the 
only error left corresponds to the last stage. The former 
stages do not contribute to the error in the memorized 
current. If the S I block is designed so as to store the 
most significant bits in the first capacitor, and the less 
significant bits in the last one, the error can be made 
quite small. 

3.4. Time-constant scaling 
The differential equation that governs the evolution 

of the network (1) can be written as a sum of current 
contributions injected to the state capacitor. Scaling up/ 
down this sum of currents is equivalent to scaling the 
capacitor and, thus, speeding upldown the network 
dynamics. Therefore, scaling the input current with the 
help of a current mirror, for instance, will have the effect 
of scaling the time-constant. A circuit for continuously 
adjusting the current gain of a mirror can be designed 
based on a regulated-Cascode current mirror in the 
ohmic region. But the strong dependence of the ohmic- 
region biased transistors on the power rail voltage 
causes mismatches in z between cells in the same layer. 
An alternative to this is a binary programmable current 
mirror. It trades resolution in z for robustness, hence, 
the mismatch between the time constants of the different 
cells is now fairly attenuated. 

A new problem arises, though, because of current 
scaling. I f  the input current can be reshaped to a 16- 
times smaller waveform, then the current memory has 
operate over larger and the smaller signals. But, if 
designed to operate on large currents, the current mem- 
ory will not work for the tiny currents of the scaled ver- 
sion of the input. If it is designed to run on small input 
currents, long transistors will be needed, and the opera- 
tion will be unreliable for the larger currents. One way 
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Fig. 5. Input block with current scaling, S31 memory and offset-corrected OTA schematic. 
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3 of avoiding this situation is to make the S I memory to 
work on the original unscaled version of the input cur- 
rent. Therefore, the adjustable-time-constant CNN core 
will be a current conveyor, followed by the S I current 
memory and then the binary weighted current mirror. 
The problem now is that the offsets introduced by the 
scaling block add up to the signal and the required accu- 
racy levels can be lost. Our proposal is depicted in 
Fig. 5 .  It consists in placing the scaling block (program- 
mable mirror) between the current conveyor and the cur- 
rent memory. In this way, any offset error will be 
cancelled at the auto-zeroing phase. In the picture, the 
voltage reference generated with the current conveyor, 

3 the regulated-Cascode current mirrors and the S I 
memory can be easily identified. The inverter, A , ,  driv- 
ing the gates of the transistors of the current memory is 
required for stability. 
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4. Experimental results 

A prototype chip has been designed and fabricated in 
a 0.5pm single-poly triple-metal CMOS technology. Its 
dimensions are 9.27 x 8.45 sq. mm. (Fig. 6). The cell 
density achieved is 29.24celWmm . The time constant 
of the layers is around lOOns (unscaled). The program- 
mable dynamics of the chip permit the observation of 
different phenomena of the type of propagation of 
waves, pattern generation, etc. By controlling the net- 
work dynamics and combining the results with the help 
of the built-in local logic and arithmetic operators, rather 
involved image processing tasks can be programmed 
[3]. Fig. 6 depicts the propagation of a travelling wave 
obtained from the first functional tests of the prototype. 
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5. Conclusions 

The proposed approach supposes a promising alter- 
native to conventional digital image processing for 
applications related with early-vision and low-level 
focal-plane image processing. Based on a simple but 
precise model of part of the real biological system, a fea- 

1 st laver fslow\ 

Fig. 6. Microphotograph of the prototype chip. 

sible efficient implementation of an artificial vision 
device has been designed. 
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