
Application of bus emulation techniques to the design of a
PCI/MC68000 bridge

J.M. Rodrı́guez Corrala, A. Civit Balcellsb, G. Jiménez Morenob, A. Morgado Estéveza,
A. Linares Barrancob

a

Escuela Superior de Ingenierı́a, Universidad de Cádiz, C/Chile 1, 11003 Cádiz, Spain

b

Escuela Técnica Superior de Ingenierı́a Informática, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

Abstract

Bridges easy the interconnection and communication of devices that operate using different buses. In fact, we can see a computer as a
hierarchy of buses to which devices are connected. In this paper we design a PCI/MC68000 bridge in order to improve communications

between a Personal Computer and a MC68000 based system. The previous interface between both devices was based on the old 16-bit ISA

bus, which represented a bottleneck in their communication. However, the methodology described here is generic and can be applied to the

design of PCI bridges to other buses. We finish this work with an analysis of the bridge performance improvement which can also be easily

adapted to other situations. As an example our interface is used in an interesting situation, i.e., updating the obsolete control unit of a highly

valuable system (an industrial robot).

Keywords: Bridge; Bus emulation; Direct memory access; Embedded system; PCI

1. Introduction

In a previous work, using bus emulation techniques [1,2],

we designed an ISA bus interface to control a Hitachi

A4010S scara robot, whose control unit was based in a

MC68000 processor. In that case, we were able to write new

trajectory generation programs and control algorithms

running in a 486 PC. Now, we want to update our interface

to use it in a PCI bus [3,4] based computer thus increasing

the communication bandwidth between the PC and the

MC68000 system. Furthermore, as the i486 processor,

Pentium II [5] and latter processors are also suitable to

emulate the MC68000 bus and substitute this processor in

industrial applications [6].

Bus emulation [1,2], as is considered in this paper, can

defined as the set of techniques that allows the communi-

cation of two systems with different buses. Using these

techniques, a machine (substitute system) with a native bus

also implements a bus that is characteristic of another

system (target system). In our original implementation [2]

an ISA interface implements the MC68000 bus using a state

machine (one of the bus emulation techniques), which

emulates the control bus signals of the target system and is

considered as a peripheral by the substitute system. In fact,

the bus emulator device is seen by the substitute system as a

set of I/O registers which must be programmed with the

access address and the data to transfer to the target system

(for a write access). Finally, the user must write the access

direction (read or write) bit into the control register thus

starting the emulation of the target system bus cycle. In a

read access, after the emulation of the bus cycle the

substitute system must read the data from the interface data

register. An interrupt register also exists which allows to

mask the interrupt requests from the target system and

indicates the current interrupt priority level. This is used to

select the corresponding service routine as, in our example,

the target system devices request MC68000 autovectored

interrupts [7].

2. Bus emulation by input/output modules with direct

memory access

In the present paper we want to improve our previous

approach by applying direct memory access (DMA)

controller design techniques [8], in order to design emulator

interfaces as I/O modules which are able to transfer data

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/286563574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/micpro


blocks between the substitute and the target system. Thus,

we will release the processor from the responsibility of

programming the interface on every access to the target

system. In this way we will limit its task to programming the

interface only at the start of the transfer of the whole data

block (i.e. it can be dedicated to execute other tasks instead

of wasting time when a new word of data must be

transferred). When the data block transfer finishes the

interface will request an interrupt to the substitute system

processor.

Interfaces designed in this way consist of a data unit

and a control unit (Fig. 1). The control unit consists of

three state machines. The first one (A machine)

performs burst transfers between the substitute system

and the interface data buffer. The second state machine

(B machine) performs bus emulation cycles to transfer

data between the target system and the interface.

Finally, a third state machine (C machine) coordinates

operation of the previous ones. In our PCI/MC68000

bridge design we have integrated A and C into a single

state machine in order to avoid delays due to

synchronization problems between them. State machine

B is just the one designed in Refs. [1,2] for emulating

the MC68000 control bus and thus, we are reusing an

important part of the old ISA-MC68000 interface

design. This is a clear advantage of our modular design

approach.

The data unit mainly consists of the user register set,

which is used by the substitute system to program the

interface. These registers are accessed by a decoder

circuit whose design depends directly on the substitute

system bus characteristics. The data unit incorporates a

data buffer, which replaces the data register in the old

ISA-MC68000 interface [1,2] and temporally stores the

data block during its transfer between substitute and

target system. The data buffer word size must match the

substitute system data bus width in order to accelerate

the block transfer rate between this system and the

bridge.

3. PCI and MC68000 buses

In this section we will examine the PCI and the

MC68000 buses by considering only those signals that are

usually required to implement processor substitution in

embedded controllers. The most common case in industrial

MC68000 systems are boards with reduced address spaces

(usually 64 Kb or less) and selfvectored interrupts. The PCI

(Peripheral Component Interconnect) bus Version 1.0 was

designed by Intel Corporation, but later versions have been

defined by a consortium known as PCI Special Interest

Group (PCI SIG). PCI bus [3,4] can operate at a maximum

frequency of 66 MHz. and has a 64 bit bus extension. It uses

burst mode for reads and writes reaching a 132 Mb/s peak

transfer rate at 33 MHz. with a 32-bit bus width.

Devices that require a fast access or fast transfer rates to

the system memory can be connected to the PCI bus. Burst

lengths are negotiated between master and slave devices and

they are not limited a priori. The main features of the PCI

bus are processor independence, support for a maximum of

256 PCI functional devices on the same bus, concurrent bus

operation, master support, hidden bus arbitration, trans-

action integrity checking and autoconfiguration. In our

design, from all PCI bus signals, we will use only those that

are necessary for our bridge. These are:

1. Address/Data bus (AD0-AD31), Command bus

(C/#BE0–C/#BE3) and PAR signal.

2. Interface Control signals: #FRAME, #TRDY, #IRDY,

#STOP, #DEVSEL and IDSEL.

3. Arbitration signals: #REQ and #GNT.

4. System signals: CLK and #RST.

5. Interrupt Request signal: #INTA.

A PCI transaction starts with a one clock address phase,

where the initiator device addresses the target device (using

the address/data bus) and indicates the transaction type

(using the command bus). Then one or several data phases

occur. In each data phase #BE0–#BE3 enable signals

indicate the number of bytes to transfer between the initiator

Fig. 1. Bus emulator interface diagram.



and the target device. In our design the substitute system

uses single data phase configuration read and write

transactions to configure the PCI/MC68000 bridge and

single data phase I/O read and write transactions to access

its user registers. The bridge performs multiple data phase

memory read and write transactions in order to transfer data

blocks between its data buffer and the substitute system

memory.

As already mentioned for the MC68000 bus [7], only

those aspects usually found in embedded controllers will be

emulated. These are:

1. Asynchronous bus cycle: used to access memory,

MC68000 peripherals and fast custom I/O devices.

2. Synchronous bus cycle: used by M68XX peripherals and

some synchronous custom I/O.

3. Self-vectored interrupts: used by M68XX and custom

I/O.

Provided that the target system address space size is

limited to 64 Kb, only the address lines A1–A15 must be

considered (A0 line exists only for software for M68000

based systems). The data bus size will be 16 bits (D0–D15)

in order to allow 16 bit transfers.

4. PCI/MC68000 bridge design

We have chosen the most popular PCI configuration. The

bus operates at 33 MHz. frequency and with a 32 bit-

address/data width. The analysis we undertake is still valid,

and the performance can be further improved if we were to

design using a 66 MHz. and 64-bit address/data PCI bus.

Anyhow the improvement would clearly be limited by the

slow nature of the proposed target.

Next, we will present the PCI/MC68000 bridge I/O map,

in which positions correspond to the different user registers.

As in our original design this map also includes a register for

interrupt control. ‘R’ denotes a read accessible register and

‘W’ denotes a write accessible register.

P0 ADDRESS MEMORY (EVEN) A[0–7] (W)

P1 ADDRESS MEMORY (EVEN) A[8–15] (W)

P2 ADDRESS MEMORY (ODD) A[0–7] (W)

P3 ADDRESS MEMORY (ODD) A[8–15] (W)

P4 ADDRESS COUNTER AD[0–7] (W)

P5 ADDRESS COUNTER AD[8–15] (W)

P6 PAGE REGISTER AD[16–23] (W)

P7 CLEARS PCI/MC68000 BRIDGE IRQ (R)

ENABLES RESET SIGNAL (W)

P8 ACCESS COUNTER (W)

P9 ACCESS COUNTER (W)

P10 PCI/MC68000 BRIDGE IRQ STATUS (R)

CONTROL REGISTER (W)

P11 INTERRUPT CONTROL REGISTER (R,W)

Fig. 2 shows a block diagram of the bridge, which

provides a general view of its design. For an easy

understanding of these diagram we have simplified it and

shown only those connections we consider most important.

As stated in Section 2, the bridge control unit is subdivided

into a main module (control unit state machine), which

coordinates the bridge general operation and controls data

block transfers between the substitute system and the bridge

intermediate data memory (the functions of the original C

and A machines), and a secondary module (B machine or

MC68000 state machine), which emulates MC68000 bus

Fig. 2. PCI/MC68000 bridge block diagram.



cycles in order to transfer each 16-bit word between the

target system and the bridge data buffer.

4.1. Decoder circuit

The decoder circuit allows read and write access to the

bridge configuration and user registers. In our example

the control software uses the former to program the

PCI/MC68000 bridge, and PCI configuration startup firm-

ware uses the latter to set up the bridge for its operation.

Table 1 shows the meaning of the decoder and the control

unit state machine signals. Table 2 describes the correspon-

dence between the C/#BE bus signals provided by an

initiator during the address phase of a transaction and its

type.

The state machine that controls the access to the bridge

registers is shown in Fig. 3. Its complexity is due to the fact

that it must control both configuration and I/O accesses. In

the initial state (state A), the bridge data unit captures the

value in the AD and C/#BE buses on every transaction

address phase. In a configuration space access, the physical

PCI device is selected by its corresponding IDSEL signal

during the transaction address phase. However, the

configuration access must be type zero and act over device

function zero [3]. Finally, only if the transaction is a

configuration read (#CNFR) or a configuration write

(#CNFW) (Table 2) then an access to the corresponding

configuration register will occur. If the access is to the I/O

address space (which is 16 bytes long), then the data unit

address comparer enables #BADDR (base address) when

the 28 most significant registered address bits match the 28

most significant bits of the zero base address configuration

register (Fig. 7). Finally, only if the transaction is an I/O

read (#IOR) or an I/O write (#IOW) (Table 2), an access to

the corresponding user register will occur.

Configuration and I/O read accesses takes longer due to

the turnaround cycle, which is translated into an additional

state (state B). In order to simplify the decoder design, it

only allows single data phase transactions and thus, it

finishes all multiple data phase transactions initiated by the

Host/PCI bridge issuing a disconnect C (state C) in the

second data phase (Table 3). Anyway, many PCI I/O targets

are not designed to support multiple data phase transactions

and, on the other hand, almost all configuration transactions

have a single data phase [3], although the PCI bus

specification allows multiple data phase configuration

transactions [4].

Logical expressions for signals that control I/O and

configuration registers are described concisely by Eqs. (1)–

(4), where f and g are combinatory functions that will have

specific values when referring to an individual configuration

or user register. QAi stands for AD bus i-order bit value

registered in the current transaction address phase and #BEi

is C/#BE bus i-order bit value in the current transaction data

phase. Finally, as a read access is a non-destructive

operation, configuration and user register reads always

provide a full 32-bit datum regardless of the C/#BE bus

value in current transaction data phase.

#IORxp ¼ #IOR þ #BDEVSELo þ f ðQA½2; 3�Þ ð1Þ

#IOWx ¼ #IOW þ #BTRDYo þ f ðQA½2; 3�Þ

þ gð#BE½0…3�Þ ð2Þ

#CNFRxp ¼ #CNFR þ #BDEVSELo þ f ðQA½2…7�Þ ð3Þ

Table 1

State machine signals

Signal Meaning

#ITAC Turn-around cycle (initiator)

#ISTS S/T/S signal disable cycle (initiator)

#TSTS S/T/S signal disable cycle (target)

#IADDRPH Address phase (initiator)

#IDATAPH Data phase (initiator)

#TDATAPH Data phase (target)

#IOR I/O address space read

#IOW I/O address space write

#CNFR Configuration address space read

#CNFW Configuration address space write

#BADDR PCI/MC68000 bridge base address

#T0 Zero type configuration access

#F0 Configuration access over device 0 function

#RSTFIFO Resets address and data FIFO memories

#LDCONT Loads access counter

#ZCONT Access counter reaches zero

IOW4S Starts a MC68000 cycle

#AS MC68000 address strobe

AD0 MC68000 cycle finished

#ADDEN MC68000 address enable

#LDLTCONT Loads PCI latency counter

#DLTCONT Decrements PCI latency counter

#ZLTCONT PCI latency counter reaches zero

#ULTRANSF Last PCI 32-bit data phase

READ 0 ; PC ! MC68000 system

1 ; PC ˆ MC68000 system

Table 2

Transaction types

Type #C/BE3 #C/BE2 #C/BE1 #C/BE0

#IOR 0 0 1 0

#IOW 0 0 1 1

#CNFR 1 0 1 0

#CNFW 1 0 1 1

Table 3

Transaction termination types

Termination type #TRDY #STOP #DEVSEL

Normal 0 1 0

Disconnect A or B 0 0 0

Disconnect C 1 0 0

Retry 1 0 0

Target Abort 1 0 1



#CNFWx ¼ #CNFW þ #BTRDYo þ f ðQA½2…7�Þ

þ gð#BE½0…3�Þ ð4Þ

4.2. Data unit

Compared to our original ISA-MC68000 interface, user

registers experiment important modifications (Fig. 2): First,

the address register is substituted by an address buffer,

which stores a set of target system address and, in this way,

allows accessing the target system positions in any order.

We must also include an access counter in which the

substitute system stores the number of read or write accesses

to the target system and is decremented on every access. We

also need an address counter to store the initial address of

the accesses to the substitute system memory. This counter

will be incremented every time a double word of the data

block has been transferred between this system and the

interface data buffer.

The PCI bus #RST signal resets the address and data

FIFO memories during the system initialisation. The

substitute system stores in the first FIFO the set of

MC68000 system access addresses by writing two of them

in each 32bit access, as our example system (Hitachi

A4010S) address space is limited to 64 K (like many other

MC68000 based embedded systems) and, thus, the 8 most

significant bits (MSB) of a MC68000 24-bit address are

always zero [1,2]. The data memory replaces the data

register and is used by the bridge to temporally store the data

block during its transfer between the PC and the MC68000

system. Although the MC68000 state machine performs 16-

bit accesses to the target system, the substitute system

makes 32-bit accesses to the bridge data buffer in order to

use the whole PCI bus bandwidth.

The address counter register stores the 16 least

significant bits (LSB) of a PC RAM address. Page register

stores address bits 16–23, that will be also sent to the

corresponding PCI address bus lines during the transaction

address phase. Finally, the 8 highest address bus lines are

always low, as we locate the data block zone in the PC low

RAM area (the first 16 Mb). The #RESET signal from the

reset register initialises control and interrupt registers as

well as the MC68000 state machine and all the target system

devices. The reset register output goes low (active) after a

PC power-on or reset.

The MC68000 system access counter is initialized by the

Fig. 3. Decoder circuit state machine.



substitute system with the number of 16-bit words to

transfer between the substitute and the target system. In

every read access to the target system, the MC68000 state

machine decrements the access counter value by one.

However the bridge control unit decrements these counter

value by two when it performs 32-bit data transfers between

the PC memory and the bridge data buffer. After completing

the last transfer, the control unit decrements the countdown

value to zero. In any moment, the access counter can be

reset by the control unit to the value loaded at the start of the

bridge programming sequence.

The parity generator circuit calculates the parity bit of

AD and C/#BE buses during the address phases of

transactions initiated by the PCI/MC68000 bridge, data

phases of memory write transactions initiated by the bridge

and data phases of configuration read and I/O read

transactions initiated by the Host/PCI bridge when the

target device is the PCI/MC68000 bridge. The control unit

initialises the latency counter with the value of the

PCI/MC68000 bridge latency timer configuration register

(Fig. 7). It also decrements the latency counter value by one

unit in every PCI clock cycle. This decrement will continue

until countdown value reaches zero, a premature transaction

termination occurs or the last data phase of the transaction is

being performed.

In the bridge programming sequence, the substitute

system writes into the control register a bit (READ) that

indicates the direction of the data transfers. Finally, the

interrupt control register is very similar to that in the ISA-

MC68000 interface designed in Ref. [1] with a single

Fig. 4. Control unit state machine (I).



Fig. 5. Control unit state machine (II).



difference, the connection of two additional signals (IRQA

and IRQB ) to its tri-state buffers. The first signal indicates

that the interrupt request comes from a MC68000 device,

whereas the second one informs that the interrupt request

has been generated by the control unit at the end of the data

block transfer (Fig. 4). Thus, when one of these two signals

becomes active (or both ones), the corresponding buffer

output leaves the high-impedance state and supplies a zero

to the PCI #INTA interrupt pin.

When the PCI/MC68000 bridge interrupt service routine

(ISR) starts, it reads the content of the interrupt register (P10

and P11 bridge I/O positions) to determine the IRQ source.

If it is the bridge control unit, then the interrupt treatment

consists of setting the flag that indicates the end of current

data block transfer to the control program. After this, the

ISR must read I/O P7 to clear the interrupt request. If there is

also a pending IRQ from one or several MC68000 devices

then the ISR will have to serve the requesting device/s.

Unlike ISA interrupts, PCI interrupts are shareable [3,4].

Thus, when the current IRQ is not due to a MC68000 device

or to the bridge control unit, our ISR will jump to the

previous interrupt vector value since the IRQ will be related

to the interrupt routine pointed by the old vector value.

4.3. Control unit

The state machine that implements the control unit (Figs.

4 and 5), named PCI-MC68000 machine, leaves its initial

state once the data transfer direction has been written into

the control register. This is the last operation in the PCI/

MC68000 bridge programming sequence. If the READ bit

has been set then the state machine that emulates

asynchronous and synchronous MC68000 bus cycles [1,2],

named MC68000 state machine (Fig. 6), must transfer a data

block from the target system to the bridge data buffer (states

C and D).

When MC68000 cycles have finished and, thus, a data

block is in the bridge data buffer, the PCI/MC68000 bridge

requests the PCI bus and resets the access and latency

counters (states F and G). Once the PCI bus has been

granted and is idle [3,4], the PCI-MC68000 machine

enables the signals corresponding to the transaction address

phase (state H), which is a memory write since the READ

bit in the control register is set and so there is no turnaround

cycle. Afterwards, data phases (state L) are performed in

order to transfer the data block from the bridge data buffer to

the PC system memory.

The PCI-MC68000 machine design (Fig. 5) considers the

causes that originate a premature transaction termination

(states K and M) by a slave device (Table 3), which in our

context is the PC main memory, accessed by the PCI/

MC68000 bridge through the Host/PCI bridge. The only

transaction termination not considered here is target abort,

since it is not frequent that the PC main memory or the Host/

PCI bridge fails and thus the control unit design is

simplified.

When the access counter value reaches one or two units,

it indicates to the PCI-MC68000 machine that the next

transfer to perform between the PCI/MC68000 bridge and

the PC is the last one. During the data phase corresponding

to this transfer (state J) the #FRAME signal is high and the

latency counter value is no longer used until the next

transaction since the control unit is about to surrender the

PCI bus. Once the whole data block has been transferred

from the PCI/MC68000 bridge data buffer to the substitute

system, the PCI-MC68000 machine resets the address and

data FIFO memories (state E) and also generates an

interrupt request to the PC (Fig. 4), that will be cleared by

the corresponding ISR by reading the bridge I/O P7. Then

the PCI-MC68000 machine will go back to the initial state

(state A).

Once the PCI/MC68000 bridge timeslice for the current

transaction has finished (data unit latency counter reaches

zero), its #GNT input remains low if no higher priority

device has requested the bus. In this case, the bridge may

keep on transferring data (state O) until the #GNT input

becomes high. Then, the control unit will be allowed to

make an additional transfer (state P) and next it will have to

yield the bus for the requesting master. If the #GNT input is

high for the bridge (because the arbiter has granted PCI bus

ownership to other master during current transaction) when

the latency counter reaches zero, the control unit will be

allowed to make an additional transfer (state P) and then it

will have to yield the bus [3,4].

If during the bridge programming sequence the PC has

written a zero into the control register then its READ bit will

be reset and, thus, the data block transfer will occur from the

PC memory to the MC68000 system. The control unit

operation is analogous to previous case (the transfer of a

data block from the target system to the substitute system)

though access order is now interchanged. First, the control

unit must access the PC main memory zone where the data

block resides for transferring it to the bridge data buffer

(states H, I and L). As it is a memory read transaction, after

the address phase a turn-around cycle (state I) must occur

before the first data phase.

Once the whole data block is in the bridge data buffer, the

MC68000 state machine (Fig. 6) will emulate the corre-

sponding write cycles (states C and D). However, as they are

now write access, the MC68000 state machine will activate

the #WR68 signal in every cycle for the MC68000 selected

Fig. 6. MC68000 state machine external diagram.



device to capture the data [1], that will be placed on the

lines M68D[0–15] by the bridge data buffer. When all

cycles have been emulated, the PCI-MC68000 machine

will reset bridge address and data FIFO memories (state

E) and will request an interrupt to the PC (IRQB),

which will be cleared by the corresponding ISR as in

previous case. Then the PCI-MC68000 machine will go

back to the initial state (state A).

4.4. Configuration space

In order to complete the PCI/MC68000 bridge design

we must implement the necessary registers into PCI

configuration address space. The contents of these

registers are shown in Fig. 7. The logical expressions

for signals that allow reads and writes to these registers

(#CNFRx and #CNFWx) were concisely described in

Section 4.1. The control program running in the PC can

access the configuration registers using PCI BIOS [9].

Finally, a read access to configuration space always

places a 32-bit datum on AD bus in order to preserve

the PCI green bus nature [3].

A functional PCI device (or PCI function) has an

individual configuration address space of 64 double

words, numbered from 0 to 63. The 16 first double words

are the configuration header region and the rest is used to

store the information about user-defined PCI function

specific features. PCI bus 2.1 specification [4] defines two

formats for the header region: type zero for all devices

except for PCI to PCI bridges and type one for these bridges

[10]. Configuration registers shown in Fig. 7 belong to the

header region. The registers marked in grey are mandatory.

For every double word the low order byte corresponds to the

right side.

As it is an experimental design, for command and status

registers we will only consider those bits that are essential

and will omit others that should be considered in a definitive

design as, for example, those related to parity errors. Thus,

implemented registers are: Vendor ID, Device ID, Com-

mand, Status, Revision ID, Class Code, Latency Timer,

Fig. 7. Configuration registers.



Header Type, Base Address 0, Interrupt Line, Interrupt Pin,

Min_Gnt and Max_Lat.

5. Implementation

VHDL (VHSIC Hardware Description Language) [11]

has been used for describing the bridge hardware. VHDL is

frequently used in hardware synthesis and descriptions are

easily portable to ASICs or FPGAs, as in this case.

The modular description of the bridge allows the

implementation complexity to be reduced. This modularity

requires no changes with respect to the bridge design,

described in Section 4. A Virtex E FPGA [12] has been used

since it allows to implement FIFOs in its internal RAM bits

and, there is enough ‘free space’ in order to increase the size

of FIFOs, for example, and make tests with different

lengths. Figs. 8 and 9 show the decoder circuit and the

control unit descriptions respectively.

6. Performance analysis

In this section we compare the PCI/MC68000 bridge

with a bus emulator interface which performs single 16-

bit data transfers between a Pentium II PC with PCI bus

and our example MC68000 system (the Hitachi A4010S

robot control unit). We want to obtain two results: the

relationship between the time taken by a word transfer

performed by the simple interface and by the bridge,

and the number of words to transfer for which bridge

performance is better than interface performance. Before

obtaining these results, we must set some initial

assumptions that will help us in our study:

† The substitute system is a Pentium II PC with a

Host/PCI bridge, an IDE adapter and the

PCI/MC68000 bridge. PCI bus operates at 33 MHz

and the 64-bit extension is not used. We will assume

that the IDE adapter operates in one of the possible

Fig. 8. Decoder circuit VHDL description.



DMA modes [13] and so, it becomes bus master for

transferring data between the peripheral and the PC

main memory.

† The PCI arbiter uses a rotational priority scheme [3].

Furthermore, PCI/MC68000 bridge and the IDE

adapter are continuously requesting PCI bus since

both devices need to perform a high number of

operations.

† The substitute system main memory is fast enough

[14] to allow a double word per PCI clock transfer

Fig. 9. Control unit VHDL description.



rate through the PCI bus. We will assume that the

PC main memory does not need to insert wait states

in any of the transaction data phases initiated by the

PCI/MC68000 bridge.

† The asynchronous MC68000 cycle will be used to

transfer data between the target system and the

PCI/MC68000 bridge data buffer since we only

access asynchronous devices in order to control our

example system (i.e. the Hitachi A4010S robot),

mainly the encoders and PWM registers of its four

axes [15]. Furthermore, we may assume that no wait

states are generated during MC68000 cycles as the

mentioned devices are fast enough.

† All data will be transferred from the target system to

the substitute system.

First, we must know the total time taken by a bus cycle

emulation performed by the simple PCI/MC68000 inter-

face, which performs single 16-bit data transfers between

the substitute and the target systems. The interface design is

similar to the one designed in Refs. [1,2], though the

decoder circuit has been modified since the substitute

system bus is now the PCI instead of the ISA bus.

Furthermore, the user register set must include the necessary

logic to support the aspects related to the IRQ that the

interface must generate once the MC68000 bus cycle

emulation has finished. In the I/O map, initial ‘R’ denotes a

read access and initial ‘W’ denotes a write access.

P0 ADDRESS REGISTER A[0–7] (W)

P1 ADDRESS REGISTER A[8–15] (W)

P2 DATA REGISTER D[0–7] (R,W)

P3 DATA REGISTER D[8–15] (R,W)

P4 PCI-MC68000 INTERFACE IRQ

STATUS

(R)

CONTROL REGISTER (W)

P5 INTERRUPT CONTROL REGISTER (R,W)

P6 CLEAR PCI-MC68000 INTERFACE

IRQ

(R)

#RESET SIGNAL ACTIVATION (W)

Thus, to transfer a word from the MC68000 system to the

PC, we must perform a series of access to the user register

set. Furthermore, the MC68000 bus cycle time and interrupt

latency in substitute system must be considered. So, the total

time of the transfer, measured in PCI clock cycles, is due to

following actions:

† MC68000 system access address is written into the

address registers (address and data phase: 2 cycles).

† Transfer direction (read) is written into the control

register (address and data phase: 2 cycles).

† MC68000 bus cycle emulation (4.5 ISA clock cycles in

worst case [1], which are equivalent to 18.75 PCI clocks

assumed that ISA bus operates at 8 MHz.).

† Latency of the interrupt generated by the PCI/MC68000

interface. We will use the result obtained in Ref. [15] as a

valid approximation (11 ISA clocks which are equivalent

to 46 PCI clocks). We may discard the propagation delay

due to the PCI/ISA bridge programmable interrupt

router, which connects PCI interrupt pins (#INTA,

#INTB, #INTC and #INTD) to IRQ lines in the PC

chipset..

† Data available flag is set by the ISR for robot control

program running in the PC. We may discard the flag

setting time since the PC system memory access time is

small compared with the duration of a PCI clock [14].

† Data registers are read by the control program in order to

get the 16-bit data coming from MC68000 system

(address phase, turn-around cycle and data phase: 3

cycles).

† MC68000 data is written into the PC system memory

by control program. Again, we may discard this time

as it is an access to PC system memory [14].

Adding all the terms, the read of a MC68000 system

position (i.e. the sum of all previous times), including all the

necessary read and write accesses to the user register set and

the handling of the interrupt generated at the end of the bus

cycle emulation, is equal to 72 PCI clock cycles using a

simple PCI MC68000 interface.

Next, we will consider the PCI/MC68000 bridge control

unit design (Figs. 4 and 5), in order to know the duration of a

data block transfer TR(x ) between the MC68000 system and

the Pentium II based PC As the substitute system bus is PCI,

we must consider the causes that originate a premature

transaction termination since bus acquisition penalizes the

total duration of data block transfer seriously. First, if a data

block has a size of x words as the PCI bus is 32-bit wide, dx/

2e double words must be transferred between PCI/MC68000

bridge data buffer and PC main memory. The next items we

will describe the actions that originate the different terms of

TR(x ), which are given by Eqs. (5)–(12) and are expressed

in PCI clock cycles.

† PCI/MC68000 bridge programming task. It writes the x

MC68000 addresses to the bridge address memory (P0, P1,

P2 and P3 I/O positions), writes the PC memory zone base

address 16 LSB to the bridge address counter (P4 and P5

positions) and the next 8 bits to page register (P6 position)

and, finally, writes the transfer direction bit to the control

register (P10 position). As a PCI I/O write cycle consists of

an address and a data phase, the total time is calculated in

Eq. (5).

† MC68000 bus cycle emulation. First, #IOW10

transition from low to high is detected with a delay of one

PCI clock due to the co-ordination between decoder circuit

state machine (Fig. 3) and the PCIMC68000 machine (Figs.

4 and 5). The design of the last machine allows chaining the

end of a MC68000 cycle with the beginning of another one,

so each cycle lasts only 4 ISA clocks (and not 4.5 ISA

clocks as in PCI-MC68000 interface). Finally, the control

unit spends another PCI clock on initializing bridge access



counter and activating #REQ signal in order to request PCI

bus. The total time is calculated in Eq. (6).

† PCI Bus use latency (the meaning of the LAT_REQ

variable will be explained immediately after describing all

TR(x ) terms), transaction address phase (one PCI clock) and

dx/2e data phases of one PCI clock each corresponding to the

dx/2e double words to be transferred from the bridge data

buffer to main memory. The total time is calculated in Eq.

(7).

† Penalty for bus ownership time (timeslice) expiration.

In the PCI/MC68000 bridge the Min_Gnt configuration

register (Fig. 7) is stored with the highest possible value.

Thus, if the transaction does not finish prematurely, we will

assume that the bridge may perform 255 one clock data

transfers without releasing the bus (the Latency Timer 8-bit

configuration register maximum value and the value of

TIME_SLICE variable) since although the address phase

lasts a PCI clock, PCI bus specifications allows the initiator

to make an additional transfer once it has exhausted its

timeslice (Latency Timer reaches zero) before releasing the

bus. This penalty is calculated in Eq. (8). Its first clock is due

to #REQ signal activation, that will be detected on the rising

edge (the end) of that clock. The last cycle of the penalty

corresponds to the transaction address phase.

† Penalty for the last double word transfer within current

cache line. The number of transfers that finish due to a

disconnect A or B and cause the associated penalty may be

calculated as ðdx=2e2 1Þ p PDISC_AB: Although dx/2e is the

total number of PCI data transfers, a different penalty is

associated with the last transfer, as we will explain in a latter

paragraph. Disconnect penalty in Eq. (9) consists of

following terms: a first clock used to hold #IRDY signal

active, a second clock in which #REQ signal is activated for

requesting PCI bus, the bus use latency ðLAT_REQÞ and a

last clock due to the new transaction address phase (see Fig.

5).

† Penalty for a snoop hit on a modified line. The number

of transfers that finish due to a retry and cause the associated

penalty may be calculated as dx=2e p PRETRY : Finally, the

retry penalty in Eq. (10) consists of the following terms: a

first clock due to the failed data transfer, which does not

appear in the previous penalty because in that case the data

transfer did occur, a second clock used to hold #IRDY

signal active, a third clock in which #REQ signal is

activated for requesting PCI bus, the bus use latency

ðLAT_REQÞ and a last clock due to the new transaction

address phase (see Fig. 5).

† Time take by the last data transfer. If the last data

transfer terminates normally then the PCI/MC68000 bridge

control unit must wait only a PCI clock, during which

#IRDY S/T/S signal is held high by the #ISTS signal (see

Fig. 5) before being tristated. The probability of this event is

calculated in the first term of Eq. (11) as a single PCI clock

cycle in which premature transaction termination (discon-

nect and retry) does not occur. However, when the PCI/

MC68000 bridge transaction data phase finishes due to a

disconnect A or B from the Host/PCI bridge, the control unit

must wait two PCI clocks (the second term of same

equation). During the first one, the control unit must hold

#IRDY signal active, and the second one corresponds to a

normally terminated transfer as described at the beginning

of this paragraph. Though it was a premature transaction

termination, the data transfer has been completed and as it

was the last double word from the data block, the control

unit does not need to request the PCI bus again.

† PCI/MC68000 bridge IRQ to the substitute system and

control program end-of-transfer flag setting by the ISR. This

final time is mainly due to the interrupt latency of the bridge

IRQ once the data block transfer has finished. As we did at

the beginning of current section when determining the

duration of a 16-bit transfer from the MC68000 system to

the PC performed by the PCI-MC68000 interface, we will

use again the result obtained in Ref. [15] as a valid

approximation (11 ISA clocks which are equivalent to 46

PCI clocks). Furthermore, the substitute system spends two

PCI clocks reading PCI/MC68000 bridge I/O P7 position in

order to clear the IRQ generated by the last device. Finally,

the corresponding ISR sets the flag which indicates to the

control program running in the PC the end of current block

data transfer. Total time is calculated in Eq. (12).

TR1 ¼ 2 p dx=2eþ 2 þ 2 ð5Þ

TR2 ¼ 1 þ x p TACC_MC68000 þ 1 ð6Þ

TR3 ¼ LAT_REQ þ 1 þ dx=2e ð7Þ

TR4 ¼ bdx=2e=TIME_SLICEc p ð1 þ LAT_REQ þ 1Þ ð8Þ

TR5 ¼ ðdx=2e2 1Þ p PDISC_AB p ð2 þ LAT_REQ þ 1Þ ð9Þ

TR6 ¼ dx=2e p PRETRY p ð3 þ LAT_REQ þ 1Þ ð10Þ

TR7 ¼ ð1 2 PDISC_AB 2 PRETRY Þ þ 2 p PDISC_AB ð11Þ

TR8 ¼ LAT_IRQB þ 2 ð12Þ

In order to acquire PCI bus ownership, the PCI/MC68000

bridge must hold its #REQ signal active and wait for a PCI

clock rising edge in which its #GNT input is low and the PCI

bus has been released by both the Host/PCI bridge and the

IDE adapter, which we suppose are the other bus masters in

the substitute system, so the bus is in idle state (#FRAME

and #IRDY signals are high) [3,4]. Then the bridge may

activate #FRAME signal and start the transaction. The Host/

PCI bridge and the IDE adapter access the PCI bus during a

time that can be calculated as the sum of the following

terms:

† Bus ownership time, controlled by TIME_SLICE vari-

able, whose allowed values are from 0 to 255. We will

suppose an average case where both the Host/PCI bridge

and the IDE adapter are assigned the variable mean value

in excess (TIME_SLICE p , which is equal to 128 PCI

clocks.

† Time taken by one additional transfer, which is supposed

to last generally one PCI clock.



† A PCI clock during which the bus is in idle state, that is

necessary for next master to be able to access to PCI bus.

Once both masters have finished using the bus, the

PCI/MC68000 bridge may access it. Assuming the initial

considerations stated before (rotational priority scheme and

continuous PCI bus requests by the Host/PCI bridge and the

IDE adapter), the time in PCI clocks that the PCI/MC68000

bridge must wait from the instant when the PCI arbiter

samples the bridge #REQ signal active (on a clock rising

edge) until the bridge may start a transaction (LAT_REQ ) is

calculated in Eq. (13).

LAT_REQ ¼ TIME_SLICE pþ1 þ 1 þ TIME_SLICE

pþ1 þ 1 ð13Þ

As we have assumed continuous bus request by the other

bus masters, when the PCI/MC68000 bridge finishes its bus

ownership time (or timeslice) it will not be allowed to

perform more transfers, but it will have to yield the bus

since PCI arbiter will previously have granted it to one of

the other masters (hidden bus arbitration [4]). Thus, the

probability that #GNT signal remains low for the PCI/

MC68000 bridge once its timeslice has expired ðPGNT Þ will

be zero under our assumptions.

In order to complete the calculation of TR(x ), we must

consider those aspects related to premature transaction

termination, in particular to target-initiated termination [3].

† Disconnect: From all the possible causes by which

make a PCI target device finish by issuing a disconnect A or

B (Table 3), the only one to consider is the transfer of last

double word within the current cache line. As the PCI/

MC68000 bridge accesses the PC main memory sequen-

tially, the probability PDISC_AB of accessing the last double

word within the current main memory line (which

corresponds to a cache line in a cache hit) is calculated in

Eq. (14), where the LINE_SIZE variable is the cache line

size expressed in double words. In the Pentium II processor

[5], the size of L1 data cache and L2 unified cache line is 8

double words (32 bytes) for both caches and so, in this case,

PDISC_AB is equal to 1/8.

PDISC_AB ¼ 1=LINE_SIZE ð14Þ

† Retry: From all the possible causes by which a PCI

target device finishes by issuing a retry (Table 3), the only

one to consider is a snoop hit on a modified cache line. As

the PCI/MC68000 bridge accesses the PC main memory

sequentially, it accesses a different main memory line of

LINE_SIZE double words with a frequency of

1=LINE_SIZE; this is the probability of accessing a new

memory line in current access. On the other hand, we must

know the probabilities for this line to exist in the cache

ðPCACHE_HIT Þ and to be modified ðPMODIF_LINEÞ: These two

probabilities are difficult to calculate as current content of

PC caches (L1 and L2) will depend on the characteristics of

previous memory access performed by the control program

running in the PC. Furthermore, the processor is also

executing the operating system and other tasks and so, the

execution of all these programs also affects the content of

caches. We will assume, as an initial approximation, that the

product of both probabilities, due to the conjunction of

‘cache hit’ and ‘modified cache line’ events, is equal to 0.5.

Using Eq. (15), the probability of a snoop hit on a modified

cache line when PCI/MC68000 bridge is accessing to the PC

main memory zone is equal to 1/16.

PRETRY ¼ ð1=LINE_SIZEÞ p PCACHE_HIT

p PMODIF_LINE ð15Þ

Target Abort: A PCI target device must signal target

abort when it detects a fatal error or it will never be able

to respond to a new transaction. In normal conditions it

is very difficult that PC main memory (the transaction

target device) fails or that a parity error is generated in a

Fig. 10. Evolution of T2 with Host/PCI bridge and IDE adapter timeslice.

Fig. 11. Evolution of T2 with cache line size.

Fig. 12. Evolution of T2 with probability of cache hit on a modified line.



PCI/MC68000 bridge transaction address phase. In our

context, these two events are the possible causes by

which the slave device would respond to a transaction by

signalling target abort [3]. Thus, the probability that this

situation occurs ðPABORT Þ may be discarded.

Once TRðxÞ has been calculated as the sum of terms from

Eqs. (5)–(12), we must divide it between the data block size

in words (x ) in order to obtain TCðxÞ: Next, we will let the

data block size tend to infinity in order to calculate T2(16),

which represents the ideal case in which the number of

words to transfer is so high that the amount of PCI clocks in

TRðxÞ; caused by mandatory operations that must be

performed only once (i.e. PCI/MC68000 bridge program-

ming, bridge interrupt handling, etc.), may be discarded.

Thus, the time the bridge takes to transfer one word in this

case is equal to 43 PCI clocks.

T2 ¼ Limðx !1Þ½TRðxÞ=x�

¼ 1 þ TACC_MC68000 þ 1=ð2 p TIME_SLICEÞ

p ð1 þ LAT_REQ þ 1Þ þ PDISC_AB p ð2 þ LAT_REQ þ 1Þ=2

þPRETRY p ð3 þ LAT_REQ þ 1Þ=2

ð16Þ

Figs. 10–12 show three graphs which describe the

evolution of T2 depending on a range of possible values

for variables LAT_REQ (which depends on TIME_-

SLICE ), LINE_SIZE and PRETRY respectively. These

graphs have been developed using ‘Mathematica’ [16].

The first graph shows T2 as a function of the value of

TIME_SLICE for the Host/PCI bridge and IDE adapter,

using values between 0 and 255. As LAT_REQ depends

on TIME_SLICE (see Eq. (13)), penalties due to bus

ownership time expiration and premature transaction

termination increase with it and so does T2, whose

initial and final values are 18.9 and 67.7 respectively.

Thus, a high timeslice for the Host/PCI bridge and the

IDE adapter has a negative influence on PCI/MC68000

bridge performance, which is obvious.

The second graph (Fig. 11) describes the evolution of

T2 as a function which depends on PC cache line size.

The range for LINE_SIZE variable is between 1 and 16

double words. LAT_REQ and ‘cache hit on a modified

line’ probability remain constant, so the TIME_SLICE

variable will be equal to the mean value

ðTIME_SLICEpÞ and the mentioned probability equal

to 0.5. The current graph consists of a set of points

from an hyperbola where T2 has as initial and final

values 216.2 and 31 respectively. It is obvious that PC

cache line size has a notable influence on bridge

performance since PRETRY and PDISC_AB, to which

important penalties are associated (see Eqs. (14)–

(16)), depend on this variable.

The third graph (Fig. 12) shows the evolution of T2 as a

function of the probability of a cache hit on a modified line

ðPCACHE_HIT p PMODIF_LINEÞ: This probability varies from 0

to 1 and is one of the factors of PRETRY. The other two

variables remain constant. The result is a linear segment

where T2 varies between 35.1 and 51.6. As it was

predictable, the increase of PCACHE_HIT and PMODIF_LINE

has a negative influence on the PCI/MC68000 bridge

performance because of the associated penalty in T2 (see Eq.

(16)). This influence is smaller than in the two previous

cases.

Once we have obtained T2 (43 PCI clocks), the

relationship between T1 (72 PCI clocks) and that one

determines the performance improvement ideal factor,

which is approximately equal to 1.7. This means that

the PCI/MC68000 bridge ideally takes a little more than

half the time that the simple non DMA based PCI-

MC68000 interface to transfer a word of the data. This

performance improvement is not very high mainly due

to two reasons. First, we have assumed that the other

bus masters in the substitute system (Host/PCI bridge

and IDE adapter) are continuously requesting the PCI

bus which, in fact, is a very extreme case. Furthermore,

the slow MC68000 bus emulation cycle time

ðTACC_MC68000Þ prevents higher bridge performance

improvements. In fact, if we eliminate this time from

T1 (4.5 ISA clocks) and T2 (4 ISA clocks), the

improvement factor rises above 2.

Finally, in order to calculate the minimum data block

length from which the PCI/MC68000 bridge takes less time

to transfer a data block than the simple PCI-MC68000

interface and, thus, performance of the first is better than

that of the second, we only must solve Eq. (17). As x is equal

to 10, we may conclude that the minimum data block length

ðXMINÞ for which the bridge is faster is equal to 10 words (or

20 bytes).

TRðxÞ # x p T1ðxÞ ð17Þ

7. Conclusions

† We have applied bus emulation and direct memory

access techniques in order to design and implement a bus

emulator interface as an I/O module with DMA

(PCI/MC68000 bridge), which can transfer data blocks

between a substitute system (Pentium II PC) and a target

system (using a Hitachi A4010S scara robot as an

example).

† We have also quantified the PCI/MC68000 bridge

performance improvement respect to a PCI interface

which emulates MC68000 bus cycles but does not use

DMA techniques for transferring data bursts between

itself and the substitute system main memory. The results

obtained from the mathematical model (5)–(16) devel-

oped to measure the bridge performance improvement

are conclusive and satisfactory (see Figs. 10–12).

† The methodology described in this work to design the



PCI/MC68000 bridge (based on bus emulation and DMA

techniques) is general (Fig. 1) and thus, it can be applied

to the design of bridges that communicate any bus (not

only the PCI bus) with any other bus (a system bus, an

I/O bus or another kind of bus).

† Our modular design methodology has made possible to

reuse an important part (one of the three main state

machines) of our original design [1,2].

References

[1] J.M. Rodrı́guez Corral, Diseño y Evaluación de una Unidad de

Control para Robot Industrial Basada en i486 (in Spanish). Research

Report, Universidad de Sevilla, Spain, June 1995.

[2] J.M. Rodrı́guez Corral, A. Civit Balcells, G. Jiménez Moreno, J.L.

Sevillano Ramos, F. Dı́az del Rı́o, A Study of Bus Emulation.

Application to M68000 Based Systems, Microprocessors and

Microsystems 21 (5) (1998) 319–327.

[3] T. Shanley, D. Anderson, PCI System Architecture. Mindshare, Inc.,

third ed., Addison-Wesley, USA, 1995.

[4] PCI Special Interest Group, PCI Local Bus Specification. Revision

2.1, USA, 1995.

[5] T. Shanley, Pentium Pro and Pentium II Processor System

Architecture. Mindshare, Inc., second ed., Addison-Wesley, USA,

1998.

[6] S. Casell, E. Faldella, F. Zanichelli, Performance Evaluation of

Processor Architectures for Robotics, Proceedings of IEEE COM-

PEURO’91: Advanced Computer Technology, Reliable Systems and

Applications, May, IEEE Society, Bologna, Italy, 1991.

[7] Motorola Semiconductor Products Inc., MC68000 16-bit Micropro-

cessor, Scotland, 1984.

[8] W. Stallings, Computer Organization and Architecture, fourth ed.,

Prentice-Hall, Inc, UK, 1995.

[9] PCI Special Interest Group, PCI BIOS Specification. Revision 2.1,

USA, 1994.

[10] PCI Special Interest Group, PCI-to-PCI Bridge Architecture Speci-

fication. Revision 1.0, USA, 1994.

[11] IEEE Standard VHDL Language Reference Manual. IEEE Std. 1076,

2000 Edition.

[12] VIRTEXTM-E 1.8 V Field Programmable Gate Array. Xilinx,

November 2000. http://www.xilinx.com/partinfo/ds022.pdf.

[13] F. Schmidt, The SCSI Bus and IDE Interface, Protocols, Applications

and Programming, second ed., Addison-Wesley, England, 1997.

[14] Y. Katayama, Trends in semiconductor memories, IEEE Micro 17 (6)

(1997) 10–17.

[15] M.W.S. Macauley, Interrupt Latency in Systems Based on Intel

80 £ 86 Processors, Microprocessors and Microsystems 22 (2) (1988)

121–126.

[16] Wolfram Research, Inc., Mathematica: A System for Doing

Mathematics by Computer. Version 3.0 for Windows. User’s Manual,

1996.

http://www.xilinx.com/partinfo/ds022.pdf

	Application of bus emulation techniques to the design of a PCI/MC68000 bridge
	Introduction
	Bus emulation by input/output modules with direct memory access
	PCI and MC68000 buses
	PCI/MC68000 bridge design
	Decoder circuit
	Data unit
	Control unit
	Configuration space

	Implementation
	Performance analysis
	Conclusions
	References




