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1 Scenario 

Figure 1 shows a block diagram of the scenario used for this 
demonstration. A DVS sensor [1] is used for visual stimuli 
collection. This stimulus consists on the collection of a stream of 
events produced by the sensor through the cAER [2]. For this 
demo the system is programmed to collect 2k events and integrate 
them in a histogram. This histogram represents the input to the 
CNN that is being executed in the FPGA part of the system using 
the NullHop CNN accelerator [ref]. The Processing System (PS) 
is running a C++ application under Linux.  
This application is in in charge of (1) taking the histogram 

from cAER that represents the input to the first layer, (2) 
configuring the accelerator with the kernels of the corresponding 
layer, (3) sending the input of the next convolutional layer to be 
computed, and (4) taking back its output. After the 5 iterations to 
complete the whole CNN a (5) fully-connected-layer is executed 
in software to obtain the final classification output. 

A laptop is connected through ETH interface and SSH for 
Linux interaction to the application. Once the app is started, the 
console output can be watched on the laptop screen to check the 
execution latency per frame and the winner class of the CNN: 
paper, rock or scissor. 

The PS can be connected to the FPGA part (programmable 
logic – PL) of the chip through several possible interfaces: AXI-
Lite, AXI4 or AXI-Stream. This last one supports direct-memory-
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access (DMA), which extracts the maximum performance and it 
doesn’t require a continuous intervention of the computer. 

Figure 1: Block diagram of the system based on a PSoC with 
DMA interface. 

Figure 2: Picture of the system composed of a DVS retina and 
a SoC-Dock platform with a MMP module from AvNet (Zynq 
7100). 

Figure 2 shows the hardware used for this demonstration. 
There are two PCB connected. The one in the bottom is called 
SoC-Dock. It provides all the needed power supplies for the MMP 
commercial platform (based on Zynq 7100) on top and the USB-
based JTAG interface. 

2 AXI-DMA transfers management 
First version of this co-design platform barely could process 

30 histograms per second. Thanks to the use of optimized DMA 
interfaces (hardware FIFOs and state-machines) and software 
controllers with support of interruptions, simple/double buffered 
techniques and configurable transfer lengths, up to 120 fps can be 
processed in the current version when running the demo. 

Figure 3 shows the data flow from the DDR connected to the 
PS, to the accelerator. Data managed by user app is stored in the 
virtual-space. This data needs to be moved to the physical space to 

be accessible by the DMA controller. These movements are done 
by the software API. Then the kernel driver is in charge of 
sequencing, configuring, starting and managing the interruptions 
for DMA transfers. 

Figure 3: Picture of the system composed of a DVS retina and 
a SoC-Dock platform with a MMP module from AvNet (Zynq 
7100). 

Table 1: TX/RX transfers latencies and frame computation 
times for Roshambo CNN for different tested techniques  

Table 1 shows results over best configuration for three tests 
that have been performed using 5KB blocks. The testing scenario 
to obtain these latencies consists in a simple logic where any data 
coming from the processor through the AXI is sent back to the 
DDR through the same channel. The technique uses: (1) single-
buffer, which establishes only one channel for data transfers 
between virtual and physical memory; (2) unique-mode sends all 
the data at once to the buffer, without any kind of partitioning. 
Two user-level versions have been compared: one completely 
based on polling, and a second one, closer to the kernel-level, 
where a scheduler is managing the different DMA requests, to 
avoid dead-lock waits. User-level polling obtains the best results. 
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