
Efficient DMA transfers management on embedded Linux
PSoC for Deep-Learning gestures recognition�

Using Dynamic Vision Sensor and NullHop one-layer CNN accelerator to play RoShamBo

Antonio Rios-
Navarro†

Architecture and Tech
of Computers
Department

University of Seville
Sevilla, Spain
arios@atc.us.es

Ricardo Tapiador-
Morales

Architecture and Tech
of Computers
Department

University of Seville
Sevilla, Spain

ricardo@atc.us.es

Gabriel Jimenez-
Moreno

Architecture and Tech
of Computers
Department

University of Seville
Sevilla, Spain
gaji@atc.us.es

Alejandro Linares-
Barranco

Architecture and Tech
of Computers
Department

University of Seville
Sevilla, Spain

alinares@atc.us.es

1 Scenario

Figure 1 shows a block diagram of the scenario used for this
demonstration. A DVS sensor [1] is used for visual stimuli
collection. This stimulus consists on the collection of a stream of
events produced by the sensor through the cAER [2]. For this
demo the system is programmed to collect 2k events and integrate
them in a histogram. This histogram represents the input to the
CNN that is being executed in the FPGA part of the system using
the NullHop CNN accelerator [ref]. The Processing System (PS)
is running a C++ application under Linux.
This application is in in charge of (1) taking the histogram

from cAER that represents the input to the first layer, (2)
configuring the accelerator with the kernels of the corresponding
layer, (3) sending the input of the next convolutional layer to be
computed, and (4) taking back its output. After the 5 iterations to
complete the whole CNN a (5) fully-connected-layer is executed
in software to obtain the final classification output.

A laptop is connected through ETH interface and SSH for
Linux interaction to the application. Once the app is started, the
console output can be watched on the laptop screen to check the
execution latency per frame and the winner class of the CNN:
paper, rock or scissor.

The PS can be connected to the FPGA part (programmable
logic – PL) of the chip through several possible interfaces: AXI-
Lite, AXI4 or AXI-Stream. This last one supports direct-memory-

ABSTRACT
This demonstration shows a Dynamic Vision Sensor able
to capture visual motion at a speed equivalent to a high-
speed
camera (20k fps). The collected visual information is presented as
normalized histogram to a CNN accelerator hardware, called
NullHop, that is able to process a pre-trained CNN to
play Roshambo against a human. The CNN designed for this
purpose consist of 5 convolutional layers and a fully connected
layer. The
latency for processing one histogram is 8ms. NullHop is deployed
on the FPGA fabric of a PSoC from Xilinx, the Zynq 7100, which
is based on a dual-core ARM computer and a Kintex-7 with 444K
logic cells, integrated in the same chip. ARM computer is running
Linux and a specific C++ controller is running the whole
demo. This controller runs at user space in order to extract the
maximum throughput thanks to an efficient use of the AXIStream,
based of
DMA transfers. This short delay needed to process one
visual histogram, allows us to average several consecutive
classification
outputs. Therefore, it provides the best estimation of the symbol
that the user presents to the visual sensor. This output is then
mapped to present the winner symbol within the 60ms latency
that the brain considers acceptable before thinking that there is a
trick.

KEYWORDS
Deep-Learning, CNN, hardware accelerator, FPGA, Linux, DMA

 This work has been supported by Samsung Electronics Corporation through the
NPP project, and by the excellence project from the Spanish government grant
(with support from the EuropeanRegional Development Fund) COFNET
(TEC2016-77785-P).
† The work of R. Tapiador has been supported by a"Formación de Personal
Investigador" Scholarship from the University of Seville.

access (DMA), which extracts the maximum performance and it
doesn’t require a continuous intervention of the computer.

Figure 1: Block diagram of the system based on a PSoC with
DMA interface.

Figure 2: Picture of the system composed of a DVS retina and
a SoC-Dock platform with a MMP module from AvNet (Zynq
7100).

Figure 2 shows the hardware used for this demonstration.
There are two PCB connected. The one in the bottom is called
SoC-Dock. It provides all the needed power supplies for the MMP
commercial platform (based on Zynq 7100) on top and the USB-
based JTAG interface.

2 AXI-DMA transfers management
First version of this co-design platform barely could process

30 histograms per second. Thanks to the use of optimized DMA
interfaces (hardware FIFOs and state-machines) and software
controllers with support of interruptions, simple/double buffered
techniques and configurable transfer lengths, up to 120 fps can be
processed in the current version when running the demo.

Figure 3 shows the data flow from the DDR connected to the
PS, to the accelerator. Data managed by user app is stored in the
virtual-space. This data needs to be moved to the physical space to

be accessible by the DMA controller. These movements are done
by the software API. Then the kernel driver is in charge of
sequencing, configuring, starting and managing the interruptions
for DMA transfers.

Figure 3: Picture of the system composed of a DVS retina and
a SoC-Dock platform with a MMP module from AvNet (Zynq
7100).

Table 1: TX/RX transfers latencies and frame computation
times for Roshambo CNN for different tested techniques

Table 1 shows results over best configuration for three tests
that have been performed using 5KB blocks. The testing scenario
to obtain these latencies consists in a simple logic where any data
coming from the processor through the AXI is sent back to the
DDR through the same channel. The technique uses: (1) single-
buffer, which establishes only one channel for data transfers
between virtual and physical memory; (2) unique-mode sends all
the data at once to the buffer, without any kind of partitioning.
Two user-level versions have been compared: one completely
based on polling, and a second one, closer to the kernel-level,
where a scheduler is managing the different DMA requests, to
avoid dead-lock waits. User-level polling obtains the best results.

ACKNOWLEDGMENTS
We thank the INI NPP team, coordinated by Tobi Delbruck, from
UZH for the NullHop development and the collaboration and hard
work done together in the success of this demonstration. This NPP
project has been supported by Samsung Electronics Corporation.

REFERENCES
[1] P. Lichtsteiner, C. Posch, and T. Delbrück, “A 128 x 128 120 dB 15 usLatency

Asynchronous Temporal Contrast Vision Sensor,” IEEE Journalof Solid-State
Circuits, vol. 43, pp. 566–576, feb 2008.

[2] Event-based processing framework for Neuromorphic devices, written in
C/C++, targeting embedded and desktop systems.
https://github.com/inivation/caer (accessed on 15-april-2019)

[3] A. Aimar, H. Mostafa, E. Calabrese, A. Riós-Navarro, R. Tapiador-
Morales, I.-A. Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco, S.-C.Liu,
and T. Delbrück, “Nullhop: a flexible convolutional neural
networkaccelerator based on sparse representations of feature maps,”
CoRR,vol. abs/1706.0, 2017.

