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Resumen

La tecnología aplicada a la generación de energía renovable ha experimentado un gran

avance en las últimas décadas, propiciando un mayor interés en la literatura. Plantas

conocidas como Planta Solar de Torre Central (SPT, del inglés Solar Power Tower) son

un tipo de tecnología termosolar de concentración (CSP, del inglés Concentrated Solar

Power) que continúan en pleno desarrollo por todo el mundo, y consisten en subsistemas

que están abiertos a su optimización.

Esta Tesis se enmarca en el desarrollo de nuevos métodos y resultados para la opti-

mización de plantas SPT, con un interés particular en la optimización de las operaciones.

El Capítulo 1 ofrece información relevante sobre el sector energético actual y con-

tinúa con la descripción del diseño y la modelización de una planta SPT. En este capítulo

también se describe la teoría óptica que determina la transferencia de radiación incidente

en el sistema, y se presentan sus ecuaciones más relevantes.

En el Capítulo 2, las operaciones de limpieza del campo de heliostatos están op-

timizadas por un horario de duración �ja, usando programación lineal entera binaria

(BILP, del inglés Binary Integer Linear Programming). El problema dimensional se

aborda con un algoritmo de agrupamiento, antes de encontrar una solución inicial para

el problema de asignación. Por último, se presenta una búsqueda local novedosa medi-

ante técnicas heurísticas que mide el �atractivo� de una ruta a través del uso de un pro-

cedimiento de optimización secuencial por pares que minimiza una medida ponderada

de bene�cio, mientras penaliza la pérdida de energía total.

En los Capítulos 3-5 se investiga la estrategia de enfoque adoptada para el campo de

heliostatos cuando consideramos un per�l de la distribución del �ujo deseado, además

de incluir restricciones operacionales. En el Capítulo 3, se desarrolla un modelo BILP,

donde se seleccionan unos puntos de enfoque predeterminados en el receptor. La función

objetiva es lineal y se restringe por equivalencias lineales que se relacionan por una

distribución suavizada (para proteger los componentes del receptor de cargas de �ujo

anormales) a través del uso de una penalización. En el Capítulo 4, se extiende este

modelo considerando las variables continuas en el receptor en vez de �jadas en puntos

de enfoque predeterminados. El resultado es un problema de optimización con una

función objetiva no-lineal, no-convexa y con restricciones no-lineales. En este caso,
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un algoritmo de ascenso de tipo gradiente es desarrollado utilizando una técnica de

selección de paso no estándar. En el Capítulo 5, se amplía el modelo de optimización de

la estrategia de enfoque al considerar un escenario dinámico. En este caso, la estrategia

de enfoque durante un período de tiempo puede ser optimizada, teniendo en cuenta

las limitaciones tecnológicas de las plantas SPT. Se han considerado dos algoritmos,

Penalización y Lagrangiano Aumentado, y se presentan condiciones de optimalidad.

Por último, en el Capítulo 6, se incluyen efectos de inclemencias climáticas en el

modelo de optimización presentado en el Capítulo 3. En este capítulo, se incorporan

procesos estocásticos para determinar la estrategia óptima de enfoque en un instante

temporal �jo cuando los datos climatológicos pudieran ser inciertos.

Toda la investigación presentada en esta Tesis Doctoral está ilustrada usando datos

reales de una planta SPT, y conclusiones y recomendaciones para futuras investigaciones

son presentados.



Abstract

Renewable energy technology has seen great advances in recent decades, combined with

an ever increasing interest in the literature. Solar Power Tower (SPT) plants are a form

of Concentrating Solar Power (CSP) technology which continue to be developed around

the world, and are formed of subsystems that are open to optimisation.

This thesis is concerned with the development of new methods and results in the

optimisation of SPT plants, with particular focus on operational optimisation.

Chapter 1 provides background information on the energy sector, before describing

the design and modelling of an SPT plant. Here, the optical theory behind the transfer

of incident radiation in the system is developed and the relevant equations presented.

In Chapter 2, the cleaning operations of the heliostat �eld are optimised for a �xed

schedule length using Binary Integer Linear Programming (BILP). Problem dimension-

ality is addressed by a clustering algorithm, before an initial solution is found for the

allocation problem. Finally, a novel local search heuristic is presented that treats the

so-called route �attractiveness� through the use of a sequential pair-wise optimisation

procedure that minimises a weighted attractiveness measure whilst penalising for overall

energy loss.

Chapters 3-6 investigate the aiming strategy utilised by the heliostat �eld when

considering a desired �ux distribution pro�le and operational constraints. In Chap-

ter 3, a BILP model was developed, where a pre-de�ned set of aiming points on the

receiver surface was chosen. The linear objective function was constrained with linear

equalities that related to distribution smoothing (to protect receiver components from

abnormal �ux loads) via the use of penalisation. Chapter 4 extended this model by

instead considering continuous variables with no �xed grid of aiming points. This led

to an optimisation problem with a non-linear, non-convex objective function, with non-

linear constraints. In this case, a gradient ascent algorithm was developed, utilising

a non-standard step-size selection technique. Chapter 5 further extended the aiming

point optimisation topic to consider the dynamic case. In this sense, the aiming strategy

across a period of time could be optimised, taking into account SPT plant technological

limitations. Two algorithms were considered, Penalisation and Augmented Lagrangian,

where theoretical properties for optimality and solution existence were presented. Fi-
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nally Chapter 6 considered the e�ects of inclement weather on the optimisation model

presented in Chapter 3. Stochastic processes were investigated to determine optimal

aiming strategies at a �xed point in time when weather data could not be known for

certain.

All research presented in this thesis is illustrated using real-world data for an SPT

plant, and conclusions and recommendations for future work are presented.
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Introduction

1.1 Energy Sources

Energy demand across the globe continues to rise with population growth [Jones and

Warner, 2016], and in tandem with our ever-increasing dependence on technology [Sor-

rell, 2015].

To meet this demand, various natural resources are exploited, including:

� Crude Oil

� Coal

� Natural Gas

� Nuclear

� Biomass

� Solar

� Wind

� Hydroelectric

The current dominant resources used in the production of electricity are fossil fuels

(Crude oil, coal, natural gas) [Martins et al., 2018]. In 2016, the authors in Jones and

Warner [2016] noted that 91% of worldwide electricity was produced by non-renewable

energy sources (NRES) and that 87% was from fossil fuel.

Research suggests that whilst there is a signi�cant amount of crude oil remaining,

more than two-thirds of production may need to be replaced by 2030 [Sorrell et al.,

2010]. There is much discussion on the theoretical date when the world will reach Peak

Oil [Chapman, 2014], that is when the crude oil easiest to extract has been depleted

and costs begin to rise, and these uncertainties indicate the need to progress alternative

resource adoption. However, the improvement of alternative fossil fuel extraction tech-

niques (for example shale gas extraction [Soeder, 2018]) promises to extend potential

supply for many years to come [Helm, 2016].

The environmental cost of fossil fuel use, for example land degradation and emissions

(e.g. carbon dioxide and sulphur dioxide), has come to the forefront in the public domain

in recent years and cast a negative light on their continued use. Speci�cally, the gradual

warming of our planet and its consequent e�ects on the environment has become a global

issue, where it is projected that surface warming increases nearly linearly with carbon

emissions [Williams et al., 2017].
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To reduce the negative environmental e�ects associated with continued fossil fuel use,

governments across the globe are pushing renewable energy strategies [Mowery et al.,

2010; Nejat et al., 2015] and in 2015 the UN rati�ed the Paris Climate Agreement

[Christo�, 2016]. Although such e�orts have seen the global use of renewable energy

sources increase, the UN target of < 2◦C temperature increase by 2100 is becoming

unachievable [Warner and Jones, 2017].

The change to renewable energy resources is progressing slowly, in part due to ge-

ographical and technical aspects required, as investigated by the authors in Moriarty

and Honnery [2016]. The same authors discuss the transient nature of renewable en-

ergy sources, where a guaranteed and steady supply is not possible, and as such are not

compatible with the current electricity network infrastructure. Limitations on locations

of new renewable energy based power plants are imposed as they must be located in ar-

eas where the source is abundant, whereas non-renewable energy plants can be located

worldwide, with necessary materials transported from the source. Another negative is-

sue that may be slowing adoption can be seen in the comparatively low e�ciency ratings

in solar energy plants, as discussed in Kabir et al. [2018], and problems with renewable

energy storage [Trainer, 2017].

It is clear that further research and development of renewable energy technologies

is necessary in order to improve e�ciencies and accelerate adoption. This has been

demonstrated by governmental schemes that intend to promote the use of renewable

energy resources by the public [Viardot, 2013], covering technologies such as solar panels

or biomass heaters. An important factor for new technological advances comes from

public opinion, where research has shown that new technology uptake may be a�ected

by occupant age [Willis et al., 2011] and that certain barriers exist in the adoption of

the technology [Viardot, 2013], for example cost, reliability, and lack of information.

Therefore, if renewable energy use is to increase and global temperature targets

reached, it is imperative that investigation into the technology is continued and im-

provements made, as noted by the authors in [Jones and Warner, 2016].

1.2 Renewable Energy

The main types of renewable energy sources are wind, solar, hydroelectric and geother-

mal, whose development has seen rapid growth during recent decades [Jacobsson and

Johnson, 2000; Kaldellis and Za�rakis, 2011]. However, primitive forms of these tech-

nologies have been in use for thousands of years, from treadmills, sailboats and windmills

to waterwheels and concentrated solar �re starters [Sørensen, 1991].

In 2017, an estimated 23.7% of energy generated was from renewable energy sources,

an increase from an estimated 20% in 2014 [Zar� et al., 2014]. Of this, 16.6% was

attributed to hydro, 1.2% to solar and 3.7% to wind [Hussain et al., 2017].
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Wind energy is sourced through the use of wind turbines, which has seen a rapid

growth in implementation and can currently provide between kilowatts to megawatts

[Kumar et al., 2016]. Hydroelectricity relies on the movement of water to drive turbines

(hydropower), normally within a dam. In 2014, the authors Zar� et al. [2014] predicted

that the global capacity of hydroelectricity was to increase by 74% to 1,700GW, due in

part to the continued construction of hydroelectric dams.

Of the renewable energy sources, solar energy has proven to be of particular interest

in recent decades, where the authors of the work Kabir et al. [2018] remark that nearly

four million exajoules (1EJ = 1018J) of solar radiation reaches the earth annually,

which is theoretically su�cient to ful�l the entire planet's energy needs. The same

authors also report that with an energy conversion e�ciency of as low as 8%, and the

placement of key solar power plants, the primary energy demand of the planet could be

ful�lled.

Due to the immense interest in the literature and potential for improvement, this

Thesis focuses on the development of mathematical models to describe solar energy

technology.

1.3 Solar Energy

The two main types of solar energy technology are Photovoltaic (PV) and Concentrated

Solar Power (CSP), where a plant can typically comprise elements of one of these, or a

combination of both.

PV plants use a direct conversion of energy from incident solar radiation into the

electricity grid. These systems are scaleable, that is a PV system can easily be adapted

for the space in which it is to be placed, thus lending them to use in large power plants

and also personal homes [Parida et al., 2011]. The low-cost and scalability of this

technology has led to it becoming one of the most adopted solar energy technologies,

with research such as Breyer et al. [2018] indicating that PV will be a prime renewable

energy source in the near future.

CSP plants use mirrors to concentrate the incident solar radiation onto a receiver,

where the resultant thermal load is used to generate electricity. There are four main

types of CSP plants; parabolic trough, fresnel, dish sterling and Solar Power Tower

(SPT).

Parabolic trough plants consist of parabolic plate mirrors that re�ect incident solar

radiation onto a tube �lled with a Heat Transfer Fluid (HTF). The receiver tube is

�xed in place, whilst the parabolic mirror is able to rotate, in order to concentrate the

incident radiation onto the receiver at all times of the day.

Fresnel re�ectors utilise the same principles as parabolic trough plants, but with

�at plate mirrors instead of parabolic. This form is much cheaper to produce, and
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therefore reduces overall plant cost. Recent research into this technology includes novel

optical optimisation models [Cheng et al., 2018] and experimental investigations into

the e�ciency of a linear fresnel system over a long period [Bellos et al., 2018].

SPT plants are one of the most researched and implemented types of solar energy

technology, with over 100 articles published each year on a variety of topics [Islam et al.,

2018]. The continued interest in the literature on SPT plants demonstrates that further

advancements in this technology are of interest to the wider scienti�c community, and

are the focus of this Thesis.

1.4 Description and operation of SPT plants

SPT plants are formed by a �eld of mirrors (known as heliostats) that concentrate

incident solar radiation onto a centrally located receiver, which is mounted atop a

tower. Typically, the resultant thermal energy on the receiver surface is transported to

a traditional steam generator via a HTF.

The HTF used is dependent on the type of receiver, with examples ranging from

molten salt in tube receivers [Turchi et al., 2018; Bonk et al., 2018] to sand in falling

particle receivers [Calderón et al., 2018]. The transient property of solar energy as a

resource brings concerns for inclusion in the network of these plants, and for this reason

the ability to store the thermal energy generated is imperative. Thermal Energy Storage

(TES) allows the energy captured in the HTF to be stored [El-Leathy et al., 2019], and

converted into electricity for the grid at a later time, in such a way that the solar

energy harvesting can be decoupled from the actual electricity production [Polimeni

et al., 2018].

The two main types of SPT plant receivers are cavity and external, where external

receivers are usually employed with a 360 degree heliostat �eld con�guration, whereas

cavity receivers may be limited to a directional �eld. Regardless of type, the transport

of HTF through the receiver is critical for e�ciency, where research has been conducted

to improve current designs, such as Rodríguez-Sánchez et al. [2018] where the authors

consider variable velocity in the HTF and improve upon plant e�ciency.

The initial collection of incident solar radiation is a direct result of heliostat place-

ment in the �eld, where the design and construction accounts for roughly 50% of the

cost and 40% of energy loss in the system [Leonardi et al., 2019; Cruz et al., 2018a].

Part of this cost is associated to the rotating base that each heliostat is mounted on,

allowing them to track the movement of the sun and maintain focus on the receiver

surface.

SPT plant daily operation is driven by the principle objective of maximising pro�t for

the operator, which requires monitoring not only the electrical output of the plant, but

also the market value of electricity. This user demand de�ned quantity will in�uence
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decisions for the plant operator, for example on whether to store energy or increase

production at certain times.

It is therefore apparent, that both the design and operation of an SPT plant are

crucial in determining the eventual e�ciency and subsequent pro�ts that it is able

to produce. It has been demonstrated in the literature [Chesney et al., 2017] that

Operations Research techniques can be employed in both of these regards in order to

maximise the objective of higher e�ciency/pro�ts.

1.5 Design and optimisation of SPT plants

An SPT plant can be modelled using a mathematical description of the various sub-

systems in both the design and operation phase. Utilising known information on the

radiation input from the sun, an optical model can be used to calculate the transfer of

radiation through the system, and how this a�ects the production of electricity. With

such a model, an SPT plant designer or operator is able to make decisions based upon

predictable mathematical concepts that allow the optimisation of the e�ciency in the

system.

Optimisation techniques have been thoroughly studied in the literature, and have

found immense popularity due to their applicability in real-life scenarios. In the case of

solar energy technologies, there are many aspects of an SPT plant that may be optimised

to improve performance, including:

� Number of heliostats

� Heliostat placement

� Heliostat cleaning

� Tower design

� Receiver design

� HTF

� Heliostat aiming strategy

� TES

The design and optimisation of an SPT plant has been investigated in the literature,

with examples such as Carrizosa et al. [2015a], where the authors simultaneously opti-

mise the heliostat �eld and tower properties utilising a greedy-based heuristic method,

and Conroy et al. [2018], where the authors model the performance of various HTFs in

a CSP system.

Multiple analysis and simulation tools have been developed to assist in the design

and optimisation of heliostat �elds for SPT plants, such as Wagner and Wendelin [2018]

and Richter et al. [2018]. In these articles, the authors develop tools to simulate the

performance of an SPT plant heliostat �eld using weather data and allow the user

to recon�gure the heliostat locations. Simulation tools have also been developed for

operational aspects of SPT plants that are already built, such as a model to evaluate
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glare and avian-�ux hazards [Sims et al., 2018].

A key mechanism in the SPT plant system is the transfer of thermal energy gathered

from the concentrated solar radiation to the HTF via the receiver surface. The design

and materials used in the receiver are important, as they must ensure e�cient thermal

transfer to the HTF whilst withstanding extreme heat �ux over a prolonged period of

time. Due to cost, the operational reliability of receiver components is an important

factor in the design phase, and research has been conducted into the ageing of mate-

rials used in SPT plants under thermal loads [Reoyo-Prats et al., 2019; Lalau et al.,

2019]. Such research permits designers the knowledge on how best to design receiver

components in order to improve their performance.

For this reason, research into the materials used in receivers is abundant and ongoing,

such as López-Herraiz et al. [2017], where the authors numerically investigate the impact

of various receiver coatings on e�ciency, and Larrouturou et al. [2016], where the authors

study spectral selectivity and its e�ect on absorption of solar �ux.

The thermal transfer of radiation on the receiver surface to the HTF is directly

a�ected by the distribution of radiation re�ected by the heliostats. This distribution is

determined not only by the quantity of incident solar radiation reaching the �eld, but

also by the choice of the points on the receiver at which the heliostats aim, known as

the aiming strategy. It has been shown in the literature that this topic is important

in both the design and operation phase of an SPT plant [Besarati et al., 2014; Binotti

et al., 2016], and continues to be of interest.

As with all renewable energy sources, solar power can be negatively a�ected by local

weather conditions, which can be unpredictable and severe. Usually, in regions of high

solar irradiance, the input to the system can be predicted with good accuracy due to

large amounts of historical data. However, cloud cover can not only reduce the quantity

of solar energy reaching the receiver (as investigated by Crespi et al. [2018]), it can also

provoke rapid thermal changes and cause permanent damage to receiver components

[Salomé et al., 2013].

Regions with high solar irradiance are normally arid, and can su�er from dust par-

ticulates being deposited onto the heliostat surfaces. This reduces their e�ciency [Roth

and Pettit, 1980] and necessitates regular cleaning to be employed, where, coupled with

water shortages in arid regions and potentially high labour costs, careful planning is

required. A study of cleaning methods given by the authors in Fernández-García et al.

[2013] identi�es the e�ectiveness of various cleaning solutions through experimentation.

The problem of cleaning is compounded when the heliostat �eld size is large. For

example, the heliostat �eld for PS10 and PS20 SPT plants in Seville, Spain [Abengoa,

2019] contain 624 and 1255 heliostats respectively, and cleaning operations are likely

dictated by the concentric roads that separate rows of heliostats. The size of these

�elds is moderate, and careful planning may be su�cient to decide a cleaning strategy.
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However, �elds of larger size or a more chaotic placement scheme will bene�t from

an optimised approach to cleaning. The Ivanpah plant [BrightSource Energy, 2019]

in the United States has almost 175,000 heliostats in its �eld, and their placement

does not follow such a rigid concentric pattern as that of PS10. In such a case, the

cleaning schedule utilised should be optimised using mathematical techniques to ensure

maximum e�ciency of the heliostats.

A variety of technologies exist for the cleaning of an SPT plant, each of which is

tailored to speci�c plant designs or concentrator types. The authors in Pfahl et al. [2017]

investigate various aspects of heliostat development, including cleaning technology. The

authors identify methods that utilise robotics as a potential for the future [Hardt et al.,

2011], and indicate that the most prevalant technology utilised now is a vehicle which

drives past a heliostat and uses a brush and water to clean.

The technological and operational aspects of an SPT plant discussed in this section

have direct impacts on e�ciency, and are open to optimisation in both the design and

operational phases. The work presented in this Thesis pertains to the mathematical

description of radiation transfer in an SPT plant, and the development of new methods

and results in the optimisation of the topics discussed above: heliostat aiming strategies

and heliostat cleaning scheduling.

1.6 Contributions of this Thesis

The following sections present a summary of the contributions given in this Thesis.

1.6.1 Heliostat �eld cleaning scheduling for Solar Power Tower plants:

A heuristic approach

Chapter 2 presents the work published in the article Ashley et al. [2019a], where op-

timisation techniques are utilised to �nd the optimal heliostat �eld cleaning strategy

across a time period.

Cleaning operations typically depend on the structure of the heliostat �eld and

available resources, which decide to some degree the route that a cleaning vehicle will

take. In this work we consider heliostat location and potential radiation input to form

an optimisation problem, where we look to maximise e�ciency of the heliostats across

a length of time.

The potential radiation input to the receiver is a measure of how important a par-

ticular heliostat is to the SPT plant, and has been calculated as the average re�ected

radiation for that heliostat across one day. This factor will in�uence the regularity of

cleaning across the heliostat �eld: larger values indicate higher importance for cleaning

over heliostats with smaller values.
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The cleanliness of a heliostat decreases over time due to particulate deposition, and

can be measured from historical data for a particular region and used to create an

expected degradation function. In this work we assume a linear degradation function

δ = δ(t), but note that any other function can also be implemented into the model.

The optimisation model applied in this work considered a 3 stage heuristic approach

to maximise the e�ciency of heliostats across a �xed-length schedule: �rst, a clustering

optimisation to reduce problem dimensionality is performed; then, the optimisation

of the cleaning schedule to produce an initial solution; �nally, this initial solution is

improved upon through the use of a pair-wise local search heuristic, which takes into

account route �attractiveness�.

Heliostat clustering

This can be modelled as a p-median problem, where heliostats can be viewed as clients

and p potential plants have to be selected, the primary heliostats, which are the cen-

tral heliostats of the groups. The formulation corresponds to a binary integer linear

programming (BILP) problem in which the overall dissimilarity between each heliostat

and its associated primary heliostat is to be minimised.

The dissimilarity between two heliostats h and h′ is measured as the di�erence of the

generated potential energies Eh and Eh′ , combined with the physical distanceDist(h, h′)

between heliostats h and h′ in a weighted objective function λhh′ = αDist(h, h′)+β|Eh−
Eh′ | where α, β > 0. In this way, a user can de�ne relative importance in the clustering

phase between energy generation similarity, or proximity of heliostats in clusters.

Once the optimal clustering of heliostats has been found, the next stage of the

algorithm looks to optimise the cleaning schedule.

Schedule optimisation

The scheduling optimisation problem is considered with a BILP technique, where the

objective is the maximisation of total e�ciency of the heliostat �eld across the schedule.

The objective function comprises a summation of integer variables for the alloca-

tion of clusters to periods, multiplied by the energy re�ected by each cluster in the

corresponding period, where the degradation function is taken into account. In or-

der to consider the cumulative degradation of e�ciency across periods, binary linear

constraints are included, and are explained in detail in Chapter 2.

In addition, linear constraints impose limits on the number of clusters that may be

cleaned per day, as well as assuring that each heliostat is cleaned at least once across

the schedule.

The resulting optimal cleaning schedule for the heliostat �eld considers the radiation

potential of each heliostat, its degradation of e�ciency over time and its grouping. With
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this information, the cleaning vehicle operator has a daily schedule of heliostats to clean,

where the speci�c route taken between selected groups must also be considered.

Local Search

When applied to large heliostat �elds, the presented approach may result in optimal

cleaning schedules where physically distant groups are allocated to the same day, which

may be unappealing to the SPT plant operator. Therefore, a route improvement heuris-

tic is provided, whereby the optimal schedule found in the initial solution is altered

whilst considering route attractiveness [Rossit et al., 2016].

The algorithm developed for this heuristic is a rolling optimisation procedure with

a penalised integer linear objective function.

The objective function minimises the physical distance between the groups in a single

period, by permitting swaps from adjacent periods, with a penalty function applied that

minimises the loss of e�ciency caused by swapping groups from the optimal schedule

previously found. The solution is the optimal allocation of groups between the two

adjacent periods considered, where the weighted energy/distance objective function has

been minimised.

The optimisation procedure is then repeated over subsequent pairs of periods, until

no overall increase in the objective function is found. This local search heuristic looks to

improve the schedule in terms of route attractiveness, but does so at a cost to the overall

e�ciency of the cleaning schedule. Such optimisation is scalable to any heliostat �eld

shape and size, and can be tailored according to speci�c local constraints (for example

impassible terrain) set by the operator.

As a �nal step, a greedy algorithm is implemented to �nd the shortest path for the

route taken by the cleaning vehicle for each period of the schedule.

The proposed optimisation algorithm is demonstrated on the SPT plant described

in Section 1.6.6, producing a cleaning schedule for a 16 day period and highlighting

model functionality.

1.6.2 A �rst approach to the optimisation of aiming strategies

In Chapter 3, the work based on Ashley et al. [2017] is presented, which considers the

optimisation of aiming strategies for the heliostat �elds in SPT plants. The aiming

strategy utilised is known to be important in SPT plant operation [Relloso and García,

2015], and has been a topic of interest in the literature. In Berenguel et al. [2018], the

authors approach heliostat aiming with a two-layered optimisation procedure, utilising

a genetic algorithm. Further examples can be seen in Besarati et al. [2014] and Astol�

et al. [2017a].

Such methods often lack a full mathematical description of the problem, and utilise
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heuristics for simpli�cation. We look to thoroughly model the SPT plant system as an

optimisation problem which can be extended to any size and shape plant, and �nd the

optimal aiming strategy under local weather conditions.

Optimisation formulation

In this work, a BILP model is presented to optimise the aiming strategy of heliostats in

the �eld to a set of �xed aiming points on the receiver surface. The objective function

is formed from the optical model given in Section 1.7.4 that describes the re�ection of

incident solar radiation by the heliostats onto the receiver surface, and calculates the

total energy depending upon the aiming strategy chosen. Accurate optical models are

essential for simulation of SPT plants and have been analysed extensively, for example

Igel and Hughes [1979]; Collado et al. [1986].

The overall objective of an SPT plant operator is to maximise output (and therefore

pro�t), where considerations on storage and current market value of electricity are taken

into consideration. Therefore, the aiming point for heliostat h must be chosen so that

it maximises radiation reaching the receiver, calculated by the aforementioned optical

model.

The summation of these individual radiation contributions for all h gives the total

radiation reaching the receiver for the given aiming strategy.

However, maximisation of the thermal energy reaching the receiver surface does not

directly correlate to maximising e�ciency. Depending on the type of receiver used,

higher e�ciencies are obtained when a certain distribution of energy is held across the

receiver [Yu et al., 2014]. This distribution is dynamic, in that it changes with time

and conditions of the receiver, and therefore must be taken into consideration within

an optimisation procedure.

Hence, a set of linear constraints are added to the optimisation model that ho-

mogenise the distribution of energy across the receiver surface, whilst the objective

seeks the maximal amount of energy.

A binary integer linear program is developed with a penalised objective function

that assigns heliostats to aiming points at a speci�c time point, and the Gurobi solver

package [Gurobi Optimization Solver, 2019] is used to �nd the optimal solution.

Finally, an illustrative example is presented for multiple time points across a day

utilising the SPT plant data presented in Section 1.6.6, where behaviour of results in

relation to solar angles is discussed.

1.6.3 Continuous aiming strategies (I): the stationary case

Chapter 4, based upon the article Ashley et al. [2018], concerns the reformulation of

the work presented in Chapter 3 to consider the aiming points as continuous variables
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across the feasible region Ω.

In this work, the objective again considers both the maximisation of energy reach-

ing the receiver, and the minimisation of deviation from a speci�c target distribution,

where the variables are now continuous across the receiver surface Ω. No pre-de�ned

set of aiming points is used. Instead, each heliostats' aiming point is represented as an

individual continuous variable in Ω. In this way, the solution found is more represen-

tative of the real-world case, but comes at the cost of higher problem complexity and

dimensionality.

Optimisation model

Due to the use of continuous variables, a BILP technique can no longer be applied,

and instead continuous optimisation techniques must be considered. In the case of

optimisation of aiming strategies, our objective function is large dimensional, non-linear,

non-convex and is subject to convex constraints on the aiming points ph ∈ Ω for all h

in the set H of heliostats in the �eld.

The objective function, given in Equation (1.6.1) and explained in Chapter 4, is

di�erentiable across Ω, which permits the use of gradient based optimisation techniques.

A
∑
h∈H

f(h, ph)− (1−A)

∫ [∑
h∈H

Fu,v(h, ph)− Etaru,v

]2

dΩ. (1.6.1)

The relative weighting parameter A is added to both parts of the objective function,

so that an analysis into the relative importance of each may be conducted and the

Pareto Front approximated.

To solve the optimisation problem, a gradient ascent algorithm is developed that

maximises the objective function by computing its gradient. To accomplish this, rapid

numerical calculations of the partial derivatives of a non-linear and non-convex function

must be performed, for each heliostat in the �eld.

Considering the aiming points ph to be continuous across Ω introduces integrals

across the domain, which for numerical purposes are replaced by �nite dimensional

approximations in space.

Computational time is tackled in the algorithm by the development of a non-

standard step size selection routine, where each variable of the optimisation problem

(aiming point) receives independent treatment.

The algorithm is written in Python and rapidly calculates the gradient for all he-

liostats in the �eld, and subsequently optimises the objective function. Due to the

multi-modal nature of the considered function, it is necessary to incorporate techniques

ensuring that the global solution is found, rather than a local maximum. In this work, a

multi-start procedure from randomised starting positions is applied. The analysis shows
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that, for this function, with a relatively low number of multi-starts, a suitable solution

is found. To demonstrate the functionality of this algorithm, a numerical illustration

is given with realistic SPT plant data de�ned in Section 1.6.6, where the weighting

parameter is varied across multiple runs to generate an approximation to the Pareto

Front. Finally, conclusions are drawn and further work is discussed.

1.6.4 Continuous aiming strategies (II): the dynamic case

In Chapter 5, the work in Chapter 4 is further extended to a dynamic formulation,

where the optimal aiming strategy for a SPT plant is calculated across a time period.

In dynamic optimisation, the objective function must be integrated over continuous

time, where the unknown is a time-dependent function that indicates the points in Ω

aimed at by the heliostats and a discretisation must be implemented to split the problem

into manageable subsections of discrete time.

The work presented in this chapter, based upon the paper Ashley et al. [2019b], con-

siders a theoretical investigation into various aspects of this dynamic problem. Speci�-

cally, the existence of a solution is proven, and the optimality conditions of the problem

are presented. When applied to the SPT plant framework, the existence of a solution

and optimality conditions are again con�rmed.

In the case of SPT plants, the change to a dynamic problem allows the user to

better simulate the physical behaviour of the system. One of the main concerns is the

ever-changing meteorological conditions over the heliostat �eld, where incident radiation

changes due to solar angle shift cause the optimal aiming strategy to change. If local

weather conditions are known, and the future radiation �gures for the �eld can be

estimated (from forecasting or historical data analysis), then an optimisation procedure

can be applied to optimise future aiming strategies.

Physical limitations on the rotational speed of the heliostats restrict the possible

movement speed of aiming points that can be allowed. Without limitation, large oscil-

lations could be found in aiming point position over time, which would negatively a�ect

the simulation. Therefore, a constraint is added to the optimisation problem that limits

the movement speed of aiming points to a prescribed constant.

On the other hand, thermal �uctuations across the receiver surface can provoke per-

manent damage if left unchecked [Relloso and García, 2015]. The optimisation problem

looks to minimise the di�erence from a desired target distribution over time, where

rapid changes may be encountered due to local weather conditions and radiation input.

Therefore, it is necessary to include a constraint on the change in radiation on the re-

ceiver surface. This is achieved by the discretisation of the receiver into a large quantity

of test points, where the change in radiation over time at any point may not be above

a certain constant.

In this work, two algorithms are presented; in the �rst one, we incorporate the



16 Chapter 1. Introduction

dynamic constraints on the speed of rotation of the aim points and thermal �uctuations

as penalty terms in the objective function; in the second one, we apply an Augmented

Lagrangian technique.

In the penalisation algorithm, a similar approach to that applied in Chapter 4 is

utilised. The partial derivatives of the penalised objective function are computed an-

alytically over a time period, and a gradient ascent algorithm is applied to �nd the

optimal solution. Once the optimal solution to the initial time step is found, it is used

as an initial guess for the second time step and the constraints are updated with the

new radiation information.

As in Chapter 4, the objective function considered here is non-linear, non-convex

and formed of continuous variables across the feasible domain Ω. The extension to the

dynamic case expands the problem dimensionality, and a second numerical approxima-

tion in the time variable is performed.

In the Augmented Lagrangian algorithm, the constraints are considered together

with the objective function in a duality-penalty method. As before, a gradient ascent

approach is used, where the gradient is calculated analytically. Again, a discretised

time period is considered, and a recurring optimisation procedure is implemented to

calculate the global optima across all time steps.

Both algorithms are implemented in Python and are demonstrated with an illus-

trative example utilising realistic SPT plant data from Section 1.6.6, with radiation

information for the duration of a day. Finally, conclusions on the algorithms presented

are drawn, and intentions of future work are discussed.

1.6.5 Inclement weather e�ects on optimal aiming strategies

Chapter 6 investigates in more depth the aiming point strategy of a heliostat �eld,

considering the e�ects of inclement weather. Transient clouds not only have a profound

impact on the e�ciency of an SPT plant, but also pose a threat to the integrity of

the receiver components, as rapid thermal �uctuations can cause permanent damage

[Martínez-Chico et al., 2011].

A cloud may be modelled according to the location of its shadow on the heliostat

�eld, with information on its approximate shape and size. The loss of e�ciency associ-

ated with cloud cover on a heliostat is proportional to the density of the cloud, and is

dependent on weather conditions.

When considering the aiming strategy of an SPT plant across a day, the varying

solar radiation input is taken into account, and the strategy adjusted accordingly. If

information on local cloud cover is available (see [Lopez-Martinez and Rubio, 2002;

Martínez-Chico et al., 2011] for related research), from observation or forecasting, then

the optimisation of aiming strategies can be updated to include e�ciency losses due to

cloud cover.
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In this work, a BILP problem was developed that optimised the aiming strategy for

a heliostat �eld at a given time point, when cloud information was known. With this

model, the aiming strategy was optimised in order to approach a target distribution

of energy on the receiver, whilst also preventing large thermal gradients between test

points.

Due to the uncertainty of cloud cover, a stochastic linear integer programming tech-

nique was applied, where the cloud characteristics (location, size and density) were

considered to be stochastic in nature. A variability percentage was allowed for these

characteristics over a set of scenarios, and the optimisation problem updated to ac-

count for the uncertainty. The resulting optimal aiming strategy then describes the

best solution when considering cloud characteristic uncertainty.

This methodology is illustrated with an example utilising realistic SPT plant data

from Section 1.6.6, and assumed cloud characteristic parameters.

1.6.6 An illustrative example

The work presented in Chapters 2-6 of this Thesis develops optimisation models for

various aspects related to SPT plant operation and design. In each chapter, the func-

tionality and performance of the designed algorithms are presented using an illustrative

example, where realistic data for a particular SPT plant is used.

In this section we summarise the SPT plant chosen (PS10 in Seville, Spain [Abengoa,

2019]) and the imposed assumptions. This was the �rst operational commercial SPT

plant and therefore has an abundance of data available, and is frequently used in the

literature.

The general speci�cations for the PS10 SPT plant are given in Table 1.1, and the

layout of the 624 heliostats in the �eld is shown in Figure 1.1.

In Figure 1.2 the re�ected radiation reaching the receiver for each heliostat, averaged

across the design point day, is given. This averaged value is utilised in Chapter 2 in the

optimisation of cleaning schedules, where the contribution across time of a heliostat must

be considered. This averaged assumption is a sensible simpli�cation for the purposes of

optimisation model design, but would bene�t from further investigation at a later date.

The incident radiation on the heliostat �eld is assumed equal for all heliostats, which

is a common assumption in the literature due to almost negligible changes across short

distances. The radiation pro�le for the design point day, noted in Table 1.1, is given in

Figure 1.3.

It is worth noting that Figure 1.2 shows a distinct di�erence in the contribution to

the system across heliostats, which demonstrates the need for optimisation of heliostat

management.

The receiver of the PS10 SPT has been modelled as a circular �at plate in this

Thesis, as a convenient simpli�cation for the model. However, it should be noted that
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all models developed in this work are directly applicable to any other receiver shape or

size.

Attribute Value Note
General
Cost e35m
Capacity 11MW
Solar hours per day 9− 15 320 days per year
Location 37◦26′32′′N

06◦15′15′′W
Latitude/Longitude

Design point day 21st
March

To calculate inci-
dent radiation

Direct normal irradi-
ance (DNI)

823.9W/m2 Approximated at
midday

Tower/Receiver
Tower Height 115m
Receiver Height 6m Approximated
Receiver Width 6m Approximated
Receiver Type Cavity
Receiver Inclination 12.5◦C Approximated
HTF Water
Storage Yes 1 hour
Heliostat
Number of Heliostats 624
Heliostat size 120m2

Table 1.1: PS10 data

Figure 1.1: PS10 Heliostat Locations

Figure 1.2: Average re�ected radiation
per heliostat
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Figure 1.3: Design point radiation pro�le

1.7 Technical Background

In this section, we present a technological background of SPT plant subsystems and

relevant radiation modelling information.

As introduced previously, an SPT plant is formed of a �eld of re�ective surfaces,

known as heliostats, which concentrate incident solar radiation onto a centrally located

receiver, mounted atop a tower. The thermal energy generated by this process is trans-

ported by a HTF to a generator, whereby electricity is produced.

As demonstrated in Section 1.5, there are various subsystems of an SPT plant design

that can be improved upon by mathematical optimisation, and what follows is a brief

summary of the properties and equations that are important in an optimisation model

of these subsystems.

1.7.1 Tower

In an SPT plant, the tower is usually the central focus of the plant, which supports the

receiver at a designated height Th. The gathered heat from the receiver is transported

by the HTF via a system of tubes in the tower to the next stage of the cycle (either

directly to the generator or to storage).

The height of the tower, Th, in�uences the angle to which the heliostats must ori-

entate themselves in order to maintain solar focus on the receiver, and also in�uences

the optimal design of the heliostat �eld.
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Tower design has been researched in terms of optimisation [Carrizosa et al., 2015a],

but for the purposes of this Thesis, has been assumed prescribed.

1.7.2 Receiver

The receiver constitutes one of the most important elements of an SPT plant, and its

design in�uences the type of heliostat �eld that will be employed. For the purposes of

the work in this Thesis, a �at-plate circular receiver has been assumed. However, as

previously mentioned, it should be noted that this was chosen for convenience, and the

work presented is directly extendible to other receiver shapes and sizes.

For a �at plate receiver (and by extension any shape or size receiver) important prop-

erties include its dimensions, which directly in�uence the amount of radiation captured

and spillage incurred.

The feasible region for the optimisation problems developed in this Thesis, Ω, is

de�ned as the continuous region contained within the circle r2 = u2 + v2 centered at

the origin of the (u, v) plane on the receiver surface. Here, r is the given value of the

radius of the circular receiver, where r = 1
2RecW and RecW is the receiver width.

The inclination of the receiver, ξ, a�ects the distribution of radiation on the re-

ceiver surface. This is assumed constant in this work, however it is noted that in a

coupled optimisation of aiming strategies and receiver design, this parameter will be of

importance.

The materials and internal design of the receiver in�uence the transport of thermal

energy from the surface to the HTF in the interior. Aside from maximising durabil-

ity of the receiver (high thermal �ux causes rapid deterioration [Relloso and García,

2015; Sánchez-González et al., 2015]), this also has implications on the required optimal

radiation distribution.

1.7.3 Heliostat Field

The shape of the heliostat �eld largely depends upon the local topography, and the type

of receiver employed. However, in almost all cases in existing SPT plants, a pattern-

based approach has been used to form the layout of the heliostats. Examples of this

approach include radially staggered, sun�ower and spiral [Mutuberria et al., 2015].

Pattern-based �elds are the easiest to develop and construct, but are not optimal in

the sense of maximising e�ciency. Non-pattern-based heliostat �elds have been shown

to improve overall e�ciency of an SPT plant [Carrizosa et al., 2015a], and on a case-

by-case basis could be used in the design of future plants.

For the purposes of this Thesis, we assume the concentric circle pattern utilised in

the PS10 SPT plant, as described in Section 1.6.6.

In a South facing �eld (with a North facing receiver) the heliostats are de�ned with
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cartesian coordinates (x, y, z), where the x-axis represents the West-East direction, the

y-axis the North-South and z represents the height of each heliostat. In this work we

consider z = z0 to be constant across the �eld, or in other words that the heliostat �eld

does not vary in height, therefore the heliostat coordinates are of the form (x, y, z0),

where (x, y) ∈ D and D ⊂ R2.

Heliostat design has a direct impact on various e�ciency factors within an SPT

plant, and multiple types have been proposed (see [Domínguez-Bravo et al., 2016; Car-

rizosa et al., 2017] for information). In this Thesis we assume standard rectangular

faceted heliostats, as shown in Figure 1.4.

Figure 1.4: Standard heliostat design [Abengoa, 2019]

The rectangular faceted design leads to small gaps between adjacent panels in the

heliostat surface, which must be taken into account in e�ciency calculations. The

e�ective area of a heliostat is the proportion of the surface which re�ects radiation, and

is calculated as follows:

Ae(h) = ce(h) ·A(h), (1.7.1)

where ce(h) is a constant which accounts for the gaps between facets, and A(h) is the

physical area, for heliostat h. In this work, all heliostats are assumed to have the same

e�ective area and Ae(h) is therefore constant for all h ∈ H.
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1.7.4 Radiation Modelling

Determined by the design of all elements of an SPT plant, as well as the time of day and

year, the distribution of radiation on the receiver ultimately drives potential output.

For this reason, accurate modelling of changes in this distribution due to varying inputs

is key in the optimisation of SPT plants. The following sections de�ne the inputs to

the radiation distribution model used in this Thesis.

Incident Solar Radiation

The incident solar radiation input to the model is time dependent, and directly propor-

tional to the quantity of radiation that reaches the receiver. The values used in this

work consider clear skies for simplicity and are approximately symmetrical between the

central solar hour of a day (See Figure 1.3), as well as months of the year.

The solar vector ~v is calculated using Spencer's formula (see the discussion in

[Blanco-Muriel et al., 2001] for more information and other methods), where the in-

puts are the solar angles αsun and βsun. For a particular time point t, the solar vector

~v(t) is given by:

~v(t) = (− cosβsun(t) cosαsun(t), cosβsun(t) sinβsun(t), sinβsun(t)). (1.7.2)

Each heliostat in the �eld re�ects incident solar radiation towards a selected aiming

point on the receiver along the vector ~w, as shown in Figure 1.5.

An aiming point can be de�ned in the heliostat �eld (x, y, z) coordinate system by

(Rx, uy, Th+vz), where (uy, vz) are the receiver coordinates and the center is the origin.

Here, Rx is a �xed o�set from the x-axis of the angled receiver surface. This value will

vary slightly when changing aiming point, depending on the angle of the receiver, but

for simplicity has been assumed constant in this work.

Therefore, the heliostat-receiver vector ~w for heliostat h can be given by:

~w = (Rx − x, uy − y, Th + vz − z0) (1.7.3)

The normal vector to the receiver is given by:

~p = (− cos ξ, 0, sin ξ) (1.7.4)

The solar vector ~v is assumed constant across the heliostat �eld.
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Figure 1.5: Directional Vectors

Cosine e�ciency

The shape of the radiation distribution reaching the receiver is highly sensitive to the

angle formed by the solar vector ~v and the heliostat-receiver vector ~w. The cosine

e�ciency is the cosine of this angle, and is a measure of the e�ective re�ective area of

the heliostat.

The cosine e�ciency can be calculated as:

fcos =

√
1

2
+

~w · ~v
2||~w||

. (1.7.5)

A depiction of the cosine e�ciency of two heliostats is given in Figure 1.6, where

the maximal value fcos = 1 is achieved when ~v and ~w are parallel.

Figure 1.6: Cosine angles

Atmospheric attenuation

Transmission of radiation through air incurs losses which are directly proportional to

the distance travelled. Therefore the length of the vector ~wh, or the distance between
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heliostat h and the receiver, causes losses to the radiation received.

The atmospheric attenuation for a heliostat h is given by:

fatm = α1 − α2||~wh||+ α3||~wh||2, (1.7.6)

where || · || denotes the Euclidean norm in R3 and αi for i = 1, 2, 3 are �xed coe�cients

whose values are calculated empirically, where more information can be found in [Biggs

and Vittitoe, 1979; Collado and Turégano, 1989; Collado and Guallar, 2012].

Heliostat re�ectivity

Heliostat re�ectivity is a measure of the ability ability to re�ect incident radiation, and

is determined by physical properties and temporal e�ects (dirt accumulation), giving an

e�ciency value between 0 and 1. Heliostat re�ectivity, fref , is calculated as the product

of re�ectance and e�ective area.

The re�ectance of the heliostat surface, cr, concerns the e�ciency of the re�ective

surface used in the heliostat, whilst the e�ective area ce is a measure of heliostat size.

The heliostat re�ectivity is therefore given by:

fref = cr · ce. (1.7.7)

Cleanliness of a heliostat can be included in the re�ectance coe�cient cr ∈ (0, 1),

where a value of fref = 1 represents a clean heliostat. A degradation of e�ciency can

be applied in order to model loss of re�ectivity with accumulation of detritus. This

degradation function is time dependent (and a�ected by local weather conditions), and

for the purposes of this study a linear degradation function is assumed, as shown in

Figure 1.7.

Shadowing and blocking

Heliostat placement in an SPT plant �eld has been a topic of interest in optimisation

for many years [Barberena et al., 2016]. Close proximity of heliostats to one another

causes e�ciency losses known as shadowing and blocking, which are time dependent

and involve interactions between large groups of neighbouring heliostats.

Shadowing is caused when the incident solar radiation on the vector ~v does not

reach a heliostat surface, because another heliostat has intercepted it. Blocking occurs

when re�ected radiation from a heliostat on vector ~w strikes the rear of a neighbouring

heliostat, and therefore does not reach the receiver.

However, it should be noted that these losses reduce the total proportion of radi-

ation re�ected to the receiver and should be recalculated for each time instant in an

optimisation problem, due to changing solar angle. Shadowing and blocking will also
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Figure 1.7: Linear degradation function

be a�ected by any change of aiming point which alters the ~w heliostat-receiver vector,

and therefore should be included in future research for a more representative SPT plant

model.

Radiation distribution

The radiation re�ected by heliostats onto the receiver surface is modelled using a Gaus-

sian distribution, where the heliostat coordinates are de�ned in the (x, y) plane and the

receiver surface heliostat aiming coordinates in the (u, v) plane.

The formulation of the distribution equations given below assumes an aiming point

in the (u, v) plane equal to (0, 0). The extension to a non-centrally focused aiming point

is given in Chapter 3.

The distribution is given by:

f1(x, y) exp
(−f2(u, v, x, y)

2f2
3 (t, x, y)

)
, (1.7.8)

where the fi with i = 1, 2, 3 are as follows:

f1(x, y) =
f4

2πf2
3 (t, x, y) ||~w||2

, (1.7.9)

f2(u, v, x, y) =
u2 + v2

2 ||~w||2
[
(1 + f2

4 ) +
|u|√
u2 + v2

(1− f2
4 )
]
, (1.7.10)
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f3(t, x, y) =
[
µ2

1 +
(µ2(1− fcos)

4 ||~w||

)2]1/2
(1.7.11)

and, �nally,

f4(x, y) =

0 if cosβ ≤ 0,

~w·~p
||~w|| otherwise,

(1.7.12)

where f4 is equal to cosβ, and β is the angle between ~w and the vector normal to the

receiver.

Spillage e�ciency

The spillage e�ciency of a heliostat is a time dependent function, which describes the

amount of re�ected radiation which falls onto the receiver surface (that is, the proportion

that does not miss the receiver). This value, between 0 and 1, is calculated as the

integration of the distribution given in Equation (1.7.8) across the receiver domain Ω.

fsp(x, y) = f1(x, y)

∫∫
Ω
exp
(−f2(u, v, x, y)

2f2
3 (x, y)

)
du dv. (1.7.13)

Converting this to polar coordinates with u = ρ cosφ and v = ρ sinφ, gives:

fsp(x, y) = f1(x, y)

∫ 2π

0

∫ r

0
exp
(−f̃2(ρ, φ, x, y)

2f2
3 (x, y)

)
ρ dρ dφ , (1.7.14)

where r is the radius of the circular receiver and f̃2(ρ, φ, x, y) ≡ f2(ρ cosφ, ρ sinφ, x, y).

The spillage e�ciency, fsp(x, y), is thus found by means of an exact integral over ρ

and then a numerical approximation over φ where φi = (i− 1
2)π/10:

fsp(t, x, y) ≈ 2π

10
f1(t, x, y)f2

3 (t, x, y)
10∑
i=1

1

f5(φi, x, y)

(
1− exp

(
− r2f5(φi, x, y)

2f2
3 (t, x, y)

))
,

(1.7.15)
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where

f5(φi, x, y) =
(1 + f2

4 (x, y)) + cosφi(1− f2
4 (x, y))

2 ||~w||2
. (1.7.16)

see [Collado et al., 1986; Collado, 2008] for more information.

The total radiation captured by the receiver for heliostat h ∈ H at a speci�c time

can then be calculated by the product of e�ciency losses and radiation distribution:

f(h) = Rad · fsp(h) · fatm(h) · fref (h) · fsb(h) · fcos(h), (1.7.17)

where Rad is the level of incident solar radiation on the heliostat �eld.
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2.1 Introduction

Accessibility is a driving factor in the use of standard structured heliostat �eld designs,

such as the radially staggered pattern [Sánchez and Romero, 2006]. Structured designs

allow easy access to all heliostats for maintenance, and also partially pre-determine the

way in which the heliostat �eld will be cleaned by their structure of rows of heliostats.

On the other hand, utilising a pattern-free �eld design is shown to increase the e�ciency

of the heliostat �eld [Carrizosa et al., 2015a; Cruz et al., 2018b], but complicates the

accessibility of heliostats within the �eld for both maintenance and cleaning.

Heliostats are required to be cleaned regularly, as accumulation of dust and foreign

debris will lower the re�ectivity of the mirror and therefore lower the e�ciency of the

solar plant [Roth and Pettit, 1980; Sarver et al., 2013].

Various strategies have been developed for cleaning heliostat �elds [Fernández-

García et al., 2013]. However, the most widely implemented method is the use of a

vehicle with a cleaning arm, which cleans heliostats with a mixture of water and brush-

ing. Cleaning all heliostats daily is impractical due to the number within the �eld and

water scarcity is common in regions with high solar radiation. The frequency of cleaning

for each heliostat is partially determined by its physical location within the �eld, as the

energy generated by the heliostat is strongly dependent on its location, see Figure 1 in

Carrizosa et al. [2017], and heliostats that provide more energy are of more importance

to be kept clean. Moreover, the proximity between heliostats and to structures will

cause shielding from wind, which can a�ect dust deposition [Singh et al., 2015].

The vehicle used for the cleaning activities in a CSP plant has a limited water car-

rying capacity, and will need to return to the water depot once empty. This limited

water capacity, and length of time taken to clean each individual heliostat, will deter-

mine a maximum number of heliostats able to be cleaned in a certain cleaning period.

30
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Therefore in order to clean an entire �eld of heliostats, a cleaning schedule is desired,

where the objective is to maximise the overall amount of incident energy re�ected onto

the receiver, under constraints on the number of heliostats cleaned per time period.

The goal of this chapter is to optimise the cleaning schedule for CSP plants with

any size and shape heliostat �eld. To do this, we will consider the optical e�ciency of

the heliostats in the �eld, and also the subsequent routing problems for each period in

the schedule.

Whilst this study is applicable to heliostat �elds in any general solar power plant,

the case of most interest is in an SPT plant. In this type of solar plant, the heliostat

�eld layout generally has a more complex geometry and larger size, causing the optimal

scheduling of cleaning activities to be complicated.

The global cleaning strategy combines an allocation problem, whereby heliostats are

allocated to particular cleaning periods, with a routing problem for each period. These

problems are not independent, as the route taken by a cleaning vehicle in a particular

period will a�ect the heliostats allocated across the cleaning schedule.

The main innovative contribution of this work, summarised in the pseudocode in

Figure 2.1, is precisely the way this complex scheduling-routing problem is addressed:

we �rst perform a clustering analysis to divide the �eld into homogeneous groups, then

we determine the optimal cleaning schedule, and �nally a local search is performed to

improve this sequential solution.

Figure 2.1: Clustering Pseudocode

The structure of this chapter is as follows. In Section 2.2, degradation in optical
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e�ciency due to soiling is investigated; a grouping optimisation problem is presented,

followed by an optimisation procedure to �nd the cleaning schedule. A subsequent local

search heuristic is then applied to improve the obtained solution. Section 2.3 illustrates

the presented approach with real SPT data given in Section 1.6.6. Finally, conclusions

are given in Section 2.4.

2.2 Modelling

In this section, the e�ect of heliostat soiling on e�ciency of energy transfer is detailed

and the optimisation problem described. The incident solar radiation re�ected by each

heliostat h at any given time instant t, labelled f(h, t), is calculated and stored in a

preprocessing step. The method used to model the movement of incident radiation

within the system is detailed in Section 1.7.

2.2.1 E�ciency Degradation

If heliostat soiling is not considered, the energy re�ected by heliostat h at time t is

f(h, t) and thus the energy generated in a period of length T , [0, T ] is
∫ T

0 f(h, t)dt. In

order to consider heliostat soiling, a degradation function ζh(t) for heliostat h at time

t must be de�ned, where the optical e�ciency and therefore the energy generated by

a heliostat will be reduced over time, unless cleaning operations are performed. The

degradation function chosen directly models the e�ect of soiling on the optical e�ciency

of a given heliostat and is dependent on local weather conditions. In this study, the

degradation function is assumed to be linear in time.

Due to both routing and environmental costs, not all heliostats should be cleaned

every day. If the analysis is performed for a single heliostat within the �eld, which is to

be cleaned r times during a cleaning schedule, one can determine the optimal periods

to perform cleaning operations in order to maximise optical e�ciency of the heliostat.

Ignoring routing issues, the solution is simple: the cleaning operations should be done

periodically. Indeed, if we denote the e�ciency of a �xed heliostat by κ
(
s
)
, where s is

the allocated cleaning period, we can de�ne the total e�ciency across time as:

K
(
s
)

:=

∫ s

0
κ
(
t
)
dt, (2.2.1)

where K ′ ≡ κ
(
x
)
is decreasing and K is therefore a concave function.

We can �nd the total e�ciency of a heliostat, across a cleaning schedule with multiple

cleaning instants, by calculating:

K̃
(
s1, ..., sr

)
=

∫ s1

0
κ
(
t
)
dt+

∫ s2

0
κ
(
t
)
dt+ ...+

∫ sr

0
κ
(
t
)
dt, (2.2.2)
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Our aim is to maximise the e�ciency of the heliostats across the cleaning schedule:

Maximise K̃
(
s1, ..., sr

)
, (2.2.3)

subject to:

s1, ..., sr ≥ 0, (2.2.4)

r∑
i=1

si = T. (2.2.5)

Since E is a concave function 1
r K̃
(
s1, ..., sr

)
= 1

r

∑r
i=1K(si) ≤ K(Tr ) which implies

K̃
(
s1, ..., sr

)
≤ rK(Tr ) = K̃

(
T
r ,

T
r , ...,

T
r

)
. Therefore, the best strategy is to perform

periodic cleaning operations.

While the previous analysis shows that the optimal cleaning strategy for one single

heliostat is given by a periodic schedule, the problem to be addressed involves many

heliostats.

In the next section, we formulate the clustering procedure as an optimisation pro-

blem for the allocation of heliostats to groups.

2.2.2 Clustering heliostats

Addressing the scheduling problem and subsequent routing problems may be unman-

ageable, since the considered heliostat �eld may contain thousands of units. For this

reason it is worthwhile applying a clustering strategy [Grotschel and Wakabayashi, 1989;

Hansen and Jaumard, 1997] before the optimisation of a cleaning schedule, reducing

problem size and complexity.

We look to cluster the heliostats in the �eld into distinct groups. Groups should not

be geographically disperse, since this would increase routing costs. Moreover, since the

cleaning schedule will be identical for heliostats in the same group, such heliostats should

generate a similar amount of energy. For this analysis, the energy f(h, t) generated by

a heliostat h is averaged along one day and labelled Eh, as shown in Figure 2.2 for the

PS10 SPT plant in Sanlúcar la Mayor, Seville [Abengoa, 2019].

A dissimilarity function is then introduced: for any pair of heliostats, h, h′, let λhh′

denote the dissimilarity between h and h′, given by λhh′ = αcluDist(h, h
′) + βclu|Eh −

Eh′ |, where αclu, βclu > 0 are given constants and Dist(h, h′) is the physical distance

between the heliostats h and h′.

The choice of constants αclu and βclu determines the importance of distance and

energy in the clustering optimisation. These values are chosen according to the plant

being modelled and the interest of the user in maximising energy or minimising distance.
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Figure 2.2: Average re�ected radiation per heliostat

This clustering can be expressed as a p-median problem, as in Avella et al. [2007];

Daskin and Maass [2015]; Mladenovi¢ et al. [2007]. Heliostats can be viewed as clients

and p potential plants have to be selected, the primary heliostats, which are the central

heliostats of the groups. This is modelled as a binary linear problem in which the

overall dissimilarity between each heliostat and its associated primary heliostat is to be

minimised. More precisely, let us denote by H the set of heliostats in the SPT �eld.

For any heliostat h ∈ H, let us set

yh =

1, if h is a primary heliostat

0, otherwise.
(2.2.6)

For heliostats h and h′ ∈ H, let us set

ahh′ =

1, if h
′
is allocated to group with primary heliostat h

0, otherwise.
(2.2.7)

We then constrain the optimisation problem by requiring that each heliostat h may only

be allocated to one group, with primary heliostat h:

∑
h∈H

ahh′ = 1 ∀h′ ∈ H. (2.2.8)

We also limit the number of clusters to a constant value P :

∑
h∈H

yh = P. (2.2.9)

Finally, we set a limit, S, on the number of heliostats allocated to each group.
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∑
h′∈H

ahh′ ≤ Syh ∀h ∈ H. (2.2.10)

Finally, the objective function can be written in the form

∑
h′∈H

∑
h∈H

λhh′ahh′ , (2.2.11)

which is to be minimised.

2.2.3 Schedule Optimisation

Once heliostats have been clustered into groups, as detailed in Section 2.2.2, we allocate

those groups to cleaning periods in order to optimise the overall cleaning schedule. The

objective of the optimisation procedure is to maximise the total energy generated over

the schedule duration, whilst considering the allocation of heliostat groups to cleaning

periods and the subsequent degradation of e�ciency of each heliostat.

Using the re�ected energy from each heliostat in the �eld (which is calculated in

a preprocessing step) and the assumed degradation function, we maximise the total

energy re�ected by all heliostats across the cleaning period. In what follows we show

how to address the scheduling problem by using Mathematical Optimisation.

We denote by C the set of periods and H̄ the set of primary heliostats, obtained

by solving the p-median problem described in Section 2.2.2. Moreover, we de�ne the

binary variable xhc, where:

xhc =

1, if group with primary heliostat h is cleaned in period c

0, otherwise.
(2.2.12)

for any h ∈ H̄ and c = 1, ..., C.

In order to determine the loss of e�ciency for a speci�c period, it is necessary to

also de�ne the binary variable zhcr, which accounts for whether a heliostat group has

been cleaned in the previous periods with relation to the current period. Thus, for any

h ∈ H̄, c ∈ C and r = 0, ..., c, we set:

zhcr =

1, if group with primary heliostat h was cleaned r periods before period c

0, otherwise.
(2.2.13)

For instance, if we are considering whether or not to clean heliostat group 3 during

a schedule of length 2, we would include the variables z310, z311, z320, z321 and z322.
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By considering the energy generated by a heliostat with full optical e�ciency, sub-

tracting the amount of energy lost per period it is not cleaned, Ehcr, and summing for

all heliostats over all periods, one can calculate the overall energy generated by the �eld.

Using the binary variables zhcr, our objective is then

∑
h∈H̄

∑
c∈C

∑
r

Ehcrzhcr, (2.2.14)

to be maximised.

We constrain this objective function by requiring that each heliostat group must be

cleaned at least once across all periods:

∑
c∈C

xhc ≥ 1 ∀ h ∈ H̄. (2.2.15)

This constraint is applied, as it is assumed that all groups of heliostats in the �eld

provide signi�cant energy to the system, and must all be maintained in the long term.

In the case where a heliostat �eld has not been optimised, it may be of interest to not

enforce this constraint, and investigate whether or not some heliostats are never cleaned

and therefore may not be of signi�cant value to the overall system.

We also assume that each cleaning route may clean at most τ heliostats:

∑
h∈H̄

Sh · xhc ≤ τ ∀ c ∈ C, (2.2.16)

where Sh denotes the cardinality of the group with primary heliostat h.

This constraint models the water carrying capacity of the cleaning vehicle, as well

as the time taken to complete a cleaning period, and it may be changed according to

each particular SPT plant speci�cation.

We also introduce the following constraints:

zhcc ≤ 1− xhi ∀i = 1, ..., c, ∀c = 1, ..., C, ∀h ∈ H̄, (2.2.17)

where zhcc will be zero if heliostat group with primary heliostat h is cleaned in any

period;

zhcr ≤ xh(c−r) ∀r = 0, ..., c− 1, ∀c = 1, ..., C, ∀h ∈ H̄, (2.2.18)

where zhcr will be zero if heliostat group with primary heliostat h is not cleaned r

periods before period c;

zhcr ≤ 1− xh(c−r+1) ∀r = 1, ..., c− 1, ∀c = 1, ..., C, ∀h ∈ H̄, (2.2.19)

where zhcr will be zero if heliostat group with primary heliostat h is cleaned in the
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period r, before period c.

Finally, we include a constraint to remove the degradation penalty for a heliostat

group cleaned in a particular period:

xhc +
c∑

r=1

zhcr = 1 ∀c ∈ C, ∀h ∈ H̄. (2.2.20)

With the objective function (2.2.14) and the constraints (2.2.15) - (2.2.20), we now

have a constrained binary integer linear program for the variables xhc ∈ {0, 1}, zhcr ∈
{0, 1}, with h ∈ H̄, c ∈ C and r = 1, ..., c.

2.2.4 Cluster Scheduling. Local Search

The cleaning schedule found using the method discussed in Section 2.2.3 produces a

set of subsequent routing problems, where the groups assigned to each period form the

clients within the local routing problem, as in Barreto et al. [2007]; Vidal et al. [2015].

When considering each routing problem, the objective is to minimise the route length

whilst visiting all groups, however the operational ease of use for the cleaning vehicle

should be seen as a factor of importance, as in Rossit et al. [2016]. In order to reduce

operational costs, it may be of bene�t to use heuristics to alter the cleaning schedule

found, at a cost of total schedule energy.

We consider local search heuristics to produce routing re�nement options, which

may be used to improve the routes across the schedule, at a cost to the overall energy

produced. The initial schedule designed in Section 2.2.3 can be re�ned by means of a

2-opt local search technique, by considering the optimisation of two routing problems at

once, for two adjacent periods in the schedule, where groups can be swapped between the

periods. This technique is then iterated across each pair of periods, and the sequence

repeated until no further improvement to the solution is found. Observe that each

iteration of the 2-opt local search amounts to solving an optimisation problem. Such an

optimisation problem is much smaller in size than an overall optimisation procedure,

since only the clusters in two consecutive periods are considered for reallocation. The

formulation developed in this section is an adaptation of the Vehicle Routing Problem

(VRP), see Hoogeboom et al. [2016]; Prodhon and Prins [2014], where we minimise the

route of the cleaning vehicle for each period, whilst considering energy loss as a penalty

factor.

Let us denote by P the number of groups and set

xijp =

1, if group i is allocated to period j in route position p

0, otherwise,
(2.2.21)
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for any i = 1, ..., P , any j = 1, 2 and any p = 1, ..., P − 1.

Let lhh′ be the distance between primary heliostats h and h
′
, and let Di be the

energy di�erence caused if group i swaps periods. Using the binary variables xijp and

the distances between groups lhh′ , we minimise the overall route length for the two

periods considered, whilst adding an energy based penalty Di if a group has swapped

period.

We therefore look to address the optimisation problem

Minimise
∑
i 6=i′

P−1∑
p=1

xi,j,pxi′ ,j,p+1 · αlsli,i′ + βlsDi ∀j (2.2.22)

We constrain this problem by permitting each group to be allocated to one day and

in only one position:

2∑
j=1

P−1∑
p=1

xi,j,p = 1 ∀i = 1, ..., P. (2.2.23)

We also ensure that each position in the route on each day may only have one group

in total:

P∑
i=1

xi,j,p = 1 ∀j = 1, 2, ∀p = 1, ..., P − 1. (2.2.24)

And, �nally,

P∑
i=1

xi,j,p ∈ {0, 1} ∀j = 1, 2, ∀p = 1, ..., P − 1. (2.2.25)

The objective function contains the product of two binary variables, and can be

linearised using a Fortet scheme as follows.

Let us set

yj
ii′p

= xi,j,pxi′ ,j,p+1. (2.2.26)

The objective function then becomes:

∑
i 6=i′

P−1∑
p=1

yj
ii′p
· αlsli,i′ + βlsDi ∀j (2.2.27)

to be minimised.

In the next section, we illustrate the developed optimisation procedure by producing

a cleaning strategy for a sample SPT plant and solve the subsequent routing problems.
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2.3 Results

2.3.1 Problem Description

The optimisation problem developed in this chapter is applied to the PS10 plant in San-

lúcar la Mayor, Seville [Abengoa, 2019], as described in Section 1.6.6. The parameters

used are given in Table 2.1 and the heliostat �eld layout in Figure 2.3.

First, heliostats are clustered as described in Section 2.2.2, considering 52 groups

of 12 heliostats (P = 52, S = 12) and the optimisation procedure developed in Sec-

tion 2.2.3.

For the purposes of this study, where we are considering discrete time instants, we

will assume a linear degradation function. This implies that, for each period that the

heliostat is not cleaned, the e�ciency decreases by a constant quantity ζ. This quantity

will vary with the SPT plant location and heliostat construction, and will be assumed

to be between 5% loss per period.

The initial cleanliness of the heliostat �eld is variable, and will have a distinct e�ect

on the result of the optimisation procedure. For the purposes of this study, we will

assume an initial random e�ciency loss between 0 and 10% for each heliostat in the

�eld.

The program was written using the Python programming language and utilised the

Gurobi optimisation package [Gurobi Optimization Solver, 2019] on a computer with

speci�cations: Intel®Core� i7-7700HQ CPU @ 2.80 GHz. In the clustering analysis,

as detailed in Section 2.2.2, the αclu and βclu weighting constants were chosen as 0.4

and 0.6 respectively, causing the di�erence in energy generation between heliostats to

be slightly more important than the distance between them.

For simplicity, the incident radiation on the heliostat �eld is assumed to be identi-

cal for each period considered, and the maximum possible re�ected radiation for each

heliostat, shown in Figure 2.4, is averaged over one period. The data point chosen was

midday with clear skies from the data point given in Section 1.6.6.

Figure 2.3: PS10 Heliostat �eld layout Figure 2.4: Average re�ected radiation
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Parameter Value Summary
P 52 Number of groups in clustering optimisation.
S 12 Number of heliostats in each group for clustering

optimisation.
H 624 Number of heliostats in �eld.
αclu 0.4 Importance of distance in clustering optimisa-

tion.
βclu 0.6 Importance of energy in clustering optimisation.
αls 0.6 Importance of distance in local search heuristic.
βls 0.4 Importance of energy in local search heuristic.
τ 50 Maximum number of heliostats in a route.
ζ 5% E�ciency degradation per period.
ζ0 0-10% Initial heliostat degradation.

Table 2.1: Cleaning optimisation parameter values

2.3.2 Schedule Optimisation

We �rst optimise the clustering of heliostats in the �eld, using the method described

in Section 2.2.2. Figure 2.5 shows four of the optimised groups, which can be seen as

black shaded heliostats. From this image, it can be seen that the groups are relatively

compact, and there are few isolated heliostats in the same group. Considering the energy

pro�le from Figure 2.4, it can be seen that the groups have also been clustered using

similar energy pro�les, which is an obvious consequence due to the choice of αclu and

βclu in the objective function for the p-median problem used in building the clusters.

We then look to optimise the cleaning schedule problem, using the grouping already

obtained, considering a schedule of 16 days. Figure 2.6 shows the computed cleaning

schedule, where at each period, the cleaned heliostats are marked with white points.

Figure 2.7 shows the resultant energy production of each heliostat in the �eld. From

these �gures, we can see the evolution of energy production over the schedule due to

cluster allocation, and check that, as expected, the heliostats in the centre of the �eld

are kept cleaner than the rest, due to their higher energy e�ciency.

From these results, it can be seen that whilst a sub-optimal cleaning schedule with

grouping has been found in terms of energy re�ected onto the receiver, in certain periods

disjoint subtours can be found (for example Period 4 in Figure 2.6), which are not desired

by SPT plant operators and should therefore be removed in a local search phase.

2.3.3 Local Search Heuristic

The cleaning schedule shown in Figure 2.6 is taken as the initial solution in the swapping

algorithm described in Section 2.2.4. We then obtain the results depicted in Figure 2.8.

This solution was obtained within two iterations through the pairwise rolling optimisa-
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Figure 2.5: Optimised Heliostat Grouping (groups 1-4)

Figure 2.6: Optimal Cleaning Schedule Allocation
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Figure 2.7: Optimal Cleaning Schedule Energy Pro�le

tion procedure, where an iteration is comprised of N − 1 pairwise swaps. Comparing

Figures 2.6 and 2.8, it can be seen that groups have swapped between periods where the

loss in energy was outweighed by the bene�t in having less disperse heliostat clusters in

the same time periods.

With the cleaning schedule obtained in Figure 2.8, a standard Travelling Salesman

Problem (TSP) is then solved for each period in the schedule. For example, Figure 2.9

shows the optimal route for the allocation of period 2 that can be seen in Figure 2.8.

This route has been found using a Greedy Algorithm implemented in Python.

The local search heuristic alters the initial solution, yielding better routes for the

�nal solution at the cost of overall collected energy. In this example, the value of total

energy collected over the schedule reduces by 2.7% due to the application of the local

search heuristic.

2.4 Conclusions

In this chapter a procedure has been developed to optimise the cleaning schedule for a

SPT plant. This includes a novel heuristic approach to re�ne the solution, to account

for route attractiveness. The procedure has been illustrated in a real SPT plant using
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Figure 2.8: Optimised Cleaning Schedule

Figure 2.9: Calculated Route Period 2
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typical cleaning technology and assumptions on the e�ciency degradation of heliostats

due to soiling mechanisms. The presented method provides an increase of nearly 5%

in total energy of the schedule, when compared to an assumed cleaning schedule which

followed the rows of the heliostats in the plant. Whilst an increase in total energy was

found, the real bene�t for the method would be found in the design phase of an SPT

plant, where the location of heliostats and their access roads could take into account

the optimal cleaning schedule.

A p-median type linear integer program was developed to perform a clustering anal-

ysis, reducing large problem spaces by �nding the optimal grouping strategy of the

heliostats, considering a weighted objective function of physical distance and energy

pro�le between heliostats in the �eld. The heliostat grouping is then used to obtain

an initial cleaning schedule of the heliostat groups over a period of time, in order to

maximise the energy reaching the receiver. In our numerical illustration, this program

was presented for a schedule of 16 periods, with a route limit of 52 heliostats per period,

where the results show an optimal energy pro�le, but a sub-optimal routing solution for

each period.

The initial solution is then re�ned with a local search heuristic, which pairwise swaps

groups of heliostats between consecutive days in the schedule. Each move amounts to

solving a linear integer problem, where operational costs are reduced in the routing

problems, at a cost of total energy gained during the schedule.

The optimisation procedure developed in this work can be utilised by current SPT

plant operators in order to optimise their cleaning routes. It can also be utilised in

the planning phase of a new SPT plant, where pattern-free heliostat �elds will require

more complex cleaning routes, which need to be optimised to ensure maximum energy

generation.

The application of Operations Research techniques to SPT plant design and op-

eration has many possibilities, where this work could be extended to include; time

dependency if cleaning operations are conducted during the day, routing problems with

depots due to water carrying capacity of cleaning vehicles, stochastic processes for

weather events which have varying e�ects on the soiling of heliostats, and large scale

problems with multiple towers and vehicles.

The length of the schedule optimised in Section 2.3 was 16 periods, which was chosen

in order to present a study of an interesting length. This choice will a�ect the result

of the optimisation procedure, due to variable local weather conditions, and further

research of interest is to optimise the schedule length chosen, as well as the schedule

itself.

The example route shown in Figure 2.9 does not follow the rows formed during

the construction of the SPT plant, and assumes that the cleaning vehicle can navigate

between heliostats. In the case of the PS10 SPT plant, the application of this route
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is possible due to spacing between heliostats and the ground topology. However, some

SPT plants have obstructions, both natural and man-made, within their �elds. These

obstructions will limit the paths that the cleaning vehicle can take, and must be taken

into account when optimising the cleaning schedule. This can be implemented in the

method developed in this study with additional constraints on the feasible region.

This investigation could be used to in�uence future design of SPT plants, in order

to maximise their energy generation and reduce overall costs, by aiding in the design

of cleaning schedules whilst adapting the layout of the heliostat �eld using techniques

as in Carrizosa et al. [2015a]. The results presented use a novel swapping approach for

pairs of periods in the schedule. However this is directly extendible for any number of

periods at a time.

Another extension to this work could be the investigation into the e�ects of optimal

cleaning schedules, where we look to maximise optical e�ciency of the heliostats, against

optimal aiming strategies as developed in Ashley et al. [2017].

In the presented work, the resulting cleaning schedule consists of a set of heliostats

to be cleaned during each period. The routing problem for each period has been solved

utilising a greedy algorithm, however an improvement to this study could consider a

di�erent approach.

The degradation of heliostat e�ciency over time with respect to soiling can have

large impacts on overall SPT plant performance [Sarver et al., 2013]. Many factors

in�uence the exact degradation curve, including geographical location of the SPT plant

and proximity of heliostats to one another. The e�ect of realistic degradation informa-

tion on heliostat e�ciency when combined with an optimisation procedure would allow

plant operators to make the best decisions when approaching cleaning operations. For

the purposes of this study, a linear degradation curve has been assumed, although a

stochastic case with weather events was also investigated and should be implemented

in future work.

Finally, as technology advances, more potential cleaning techniques become avail-

able, such as robots. Autonomous robots are being developed to clean heliostat �elds,

and the optimisation of their operations could further extend the model considered in

this work.
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3.1 Introduction

The aiming strategy commonly used in research into the optimisation of SPTs assumes

that all heliostats in the �eld aim at the centre of the receiver, see for example Carrizosa

et al. [2015a], and a summary of various recent SPT optimisation techniques by Barber-

ena et al. [2016]. This assumption allows for easier computation of the �ux distribution

across the receiver surface and reduces complexity of the adjustment of the heliostats.

Using a central aim point for all heliostats leads to a large heat �ux at the centre of

the receiver and large �ux gradients towards the edge of the receiver, which can cause

strong heat loads and potentially lead to damage over time and costly repairs [Lopez-

Martinez and Rubio, 2002; Relloso and García, 2015; Salomé et al., 2013; Sánchez-

González et al., 2015; Yu et al., 2014].

An uneven �ux distribution across the receiver surface also lowers the e�ciency of

the energy transfer to the thermal �uid within the receiver [Fend et al., 2004; Yu et al.,

2014]. Therefore, maintaining an even distribution will increase the e�ciency and allow

for greater energy production.

Some research has been conducted where more complex aiming strategies are con-

sidered for di�erent receiver types [Astol� et al., 2016; Belhomme et al., 2013], as well

as closed-loop feedback mechanisms to provoke changes in aiming strategy [Berenguel

et al., 2004; Kribus et al., 2004]. Applications of alternate optimisation algorithms

for the aiming strategy have also been exhibited [Salomé et al., 2013; Sánchez-González

et al., 2015; Yu et al., 2014; Cruz et al., 2016] and a summary of optimisation techniques

collected [Baños et al., 2011].

The distribution of re�ected energy from the heliostats onto the receiver is assumed

to be a Gaussian, as detailed in Section 1.7. The distribution can be written in the

form:

f1(x, y)exp
(−f2(u, v, x, y)

2f2
3 (x, y)

)
, (3.1.1)

48



3.2. Changing Aim Point 49

In order to reduce damage to receiver components and to optimise the energy reach-

ing the receiver, multiple aim points across the receiver surface in a grid can be con-

sidered, as depicted in Figure 3.1: a set of possible points within the receiver is given,

and the solver must choose, for each heliostat and time instant, the most appropriate

aiming point.
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Figure 3.1: Aim Point Grid

The �eld of heliostats would then be split, so that a proportion of them aim at each

point. The result of this would be to smooth the �ux gradient across the receiver surface

and to reduce the peak heat �ux at the centre.

Another e�ect of this strategy would be to increase the amount of energy that is

being lost due to spillage, where aiming towards the edge of the receiver causes some of

the energy to miss completely.

The goal of the study in this chapter is to design an aiming strategy that minimises

the �ux gradient across the surface of the receiver, whilst minimising the spillage and

maintaining a minimum amount of energy.

3.2 Changing Aim Point

The spillage e�ciency fsp for a particular heliostat is calculated as the integral of the

distribution given in (3.2.1) across the receiver surface, as detailed in Section 1.7.4.

fsp(x, y) = f1(x, y)

∫ 2π

0

∫ r

0
exp
(−f̃2(ρ, φ, x, y)

2f2
3 (x, y)

)
ρ dρ dφ , (3.2.1)

where r is the radius of the circular receiver and f̃2(ρ, φ, x, y) ≡ f2(ρ cosφ, ρ sinφ, x, y).

In order to model the distribution of energy across the receiver surface when we

consider an aiming point o�set from the centre, the bounds of integration in (3.1.1)
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need to be altered, as shown below.

Consider the Gaussian distribution of the re�ected energy as centered at the origin,

and that the receiver is o�set by the aim point o�set.

fsp(t, x, y) = f1(t, x, y)

∫ 2π

0

∫ r̂(φ)

0
exp

(−f̃2(ρ, φ, x, y)

2f2
3 (t, x, y)

)
ρ dρ dφ , (3.2.2)

where r̂(φ) is given by the solution of the equation R2 = r̂2 + r2
0 − 2r̂r0cos(θ − φ)

We shall assume that the heliostat is always pointing within the receiver boundaries,

if it is to be included in calculations (i.e. unless it is turned away for safety or other

reasons and is then not producing output).

The spillage e�ciency in (3.2.2) then becomes:

fsp(t, x, y) ≈ 2π

10
f1(t, x, y)f2

3 (t, x, y)
10∑
i=1

1

f5(φi, x, y)

(
1− exp

(
− r̂(φi)

2f5(φi, x, y)

2f2
3 (t, x, y)

))
,

(3.2.3)

where,

f5(φi, x, y) =
(1 + f2

4 (x, y)) + cosφ(1− f2
4 (x, y))

2 ||~w||2
. (3.2.4)

Multiplying the spillage e�ciency, fsp(t, x, y), by the solar radiation at a speci�c

time point and by other losses inherent in the system (as detailed in Section 1.7) gives

us the total energy that reaches the receiver at time t. This value is for one heliostat,

aiming at a speci�c aimpoint.

3.3 Optimisation

In this section our goal is to develop an optimisation model for the selection of aiming

points for the heliostats in a �xed �eld, in order to maximise the energy produced under

some homogeneity constraints on radiation.

There are various optimisation techniques that could be applied to solve this pro-

blem, including heuristic methods such as Ant Colony or Genetic Algorithm techniques,

however the BILP technique was implemented in this case. BILP techniques lead to the

optimal solution within a �nite time period, whereas this is not guaranteed with purely

heuristic methods and is therefore not the best choice for this problem. Applying the

BILP technique with a heuristic time limit allows a solution to be obtained quickly,

whilst the gap between the obtained solution and the optimal solution will be between

a de�ned upper bound.

Changing the aim point of a heliostat from the centre of the receiver to another

point a�ects the amount of energy reaching the receiver by changing the slant range
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(that is, the modulus of ~w), the spillage e�ciency, the cosine e�ciency and the light

distribution across the surface.

Let Ap be the set of aiming points on the receiver surface, where Ap ∈ R2 and let

H be the set of heliostats aiming at the points in Ap. Let us de�ne an optimisation

procedure for any �xed time instant, t.

For h ∈ H, a ∈ Ap, set zha to the boolean variable de�ned as:

zha =

1, if heliostat h is allocated to aiming point a

0, otherwise.
(3.3.1)

The re�ected radiation pattern Fb(h, a) is the radiation point value at aiming point

b received from heliostat h aiming at aiming point a. The total integrated radiation,

f(h, a), is the total radiation received across the receiver from heliostat h aiming at

aiming point a.

We therefore look to maximise the total incident energy on the receiver:

Maximise
∑
a,h

f(h, a)zha. (3.3.2)

We constrain this objective function by requiring that no heliostat may be looking

at more than one aiming point on the receiver, but may be stowed in case of high winds

or potential damage to the receiver or mirror.

This gives the constraint:

∑
h∈H

zha ≤ 1 ∀a ∈ Ap. (3.3.3)

We also constrain the received energy at the aiming points:

C∗ ≤
∑
h∈H
a∈Ap

Fb(h, a)zha ≤ C∗ ∀b ∈ Ap, (3.3.4)

where C∗ is a �xed maximum energy and C∗ is a �xed minimum energy. These con-

straints prevent the receiver being subject to excessive temperatures (which could cause

permanent damage) and also ensure that a minimum amount of energy is being collected

at each aiming point.

In order to approximate a uniform distribution of energy across the receiver, we will

look to also constrain the range of energy received between any two aiming points by

imposing

max
a

(
∑
h,a

Fi(h, a)zha)−min
a

(
∑
h,a

Fj(h, a)zha) ≤ τ , (3.3.5)



52 Chapter 3. A �rst approach to the optimisation of aiming strategies

where τ is a given constant.

This can also be written in the form

max
a

(
∑
h∈H
a∈Ap

Fi(h, a)zha) ≤ τ + min
a

(
∑
h∈H
a∈Ap

Fj(h, a)zha) , (3.3.6)

which is equivalent to the following set of linear constraints:

∑
h∈H
a∈Ap

Fi(h, a)zha ≤ τ +
∑
h∈H
a∈Ap

Fj(h, a)zha ∀i, j ∈ Ap, with i 6= j (3.3.7)

The optimisation problem to be solved at each time instant t can then be summarised

as follows:

Maximise
∑
h∈H
a∈Ap

f(h, a)zha

Subject to:

∑
h

zha ≤ 1 ∀a ∈ Ap,

C∗ ≤
∑
h∈H
a∈Ap

Fi(h, a)zha ≤ C∗ ∀i ∈ Ap,

∑
h∈H
a∈Ap

Fi(h, a)zha ≤ τ +
∑
h∈H
a∈Ap

Fj(h, a)zha ∀i, j ∈ Ap with i 6= j

zha ∈ {0, 1} ∀h ∈ H, ∀a ∈ Ap

The optimal aiming strategy for an SPT plant is dependent on the time of day, as

well as the day of the year. For an optimal aiming strategy to be achieved, it must be

optimised at a rate that will capture the changing radiation pattern over time.

In terms of the optimisation problem, both the objective function and the constraints

will change as functions of time, caused by the variable incident radiation and physical

constraints on the SPT plant. A rapid change in incident radiation at one point on the

receiver surface, for instance caused by passing clouds, could potentially cause damage,

indicating that frequent updates to the aiming strategy are needed.

As there is no guarantee that the optimal aiming pattern will remain optimal, or

even feasible, over time, the optimisation procedure must be repeated frequently, using

knowledge of local weather to constrain the problem in real-time.
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The next part of this chapter applies this optimisation method to an SPT plant and

demonstrates its e�ciency with near real-time updates to the optimal aiming strategy

during operation of the plant.

3.4 Results

For comparison against other research, we apply the aforementioned optimisation pro-

cedure with a grid of 25 aiming points to the PS10 plant in Sanlúcar la Mayor, Seville

[Abengoa, 2019], as described in Section 1.6.6. Observe that in this �eld all heliostats

are identical and arranged in a pattern, but the presented approach works for pattern-

free �elds and with heliostats of di�erent sizes, such as the pattern-free �elds considered

in Carrizosa et al. [2017].

The aiming points allocated to the heliostats are colour coded according to the

colours shown in Figure 3.3 and the location of the heliostats within the SPT �eld are

shown in Figure 3.2, where the x-axis goes from East to West.

Figure 3.2: PS10 Layout Figure 3.3: Aiming Points

The optimisation procedure is coded in Python, using the Gurobi optimisation pack-

age [Gurobi Optimization Solver, 2019]. The optimisation problems to be solved are

di�cult in short time scales, due to the large number of boolean variables. However,

running an integer programming solver with a short time limit of 30 seconds was found

to approximate the optimal solution closely and leads to near real-time satisfactory

updates to the aiming strategy.

The values for the maximum, minimum and range constraints used in the analysis

for this model were calculated in order to re�ect working values that an SPT plant would

de�ne, based upon physical limits of the components. For this purpose, the problem is

solved to optimality, without considering any constraints, to �nd the maximum energy

across all aiming points. The problem is then constrained to 25% of this maximum and

optimised in 30s, with the resulting range then constrained to 15% of its value and used
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to �nd the constrained result.

The results in Figures 3.4 to 3.9 show the computed optimal aiming strategy and

energy distribution, for three di�erent times across a day. During the �rst solar hour of

the day, shown in Figure 3.4, the heliostats located on the West side of the �eld have

the smallest cosine angle, and are therefore aiming at the receiver edges. The heliostats

on the East side have a larger cosine angle, and are therefore aimed at the centre of the

receiver.

This result concurs with the distribution detailed in Section 1.7, where having a

smaller cosine e�ciency causes the distribution of energy on the receiver surface to be

larger. The heliostats aiming at the center have the worst e�ciency, and are aiming

there to not lose as much energy to spillage. The heliostats with better e�ciencies are

therefore aiming elsewhere, as they dont lose as much energy by looking towards the

edges.

To demonstrate the use of near real-time updates, we can look at the evolution of the

aiming strategy over smaller timesteps. This will utilise SPT plant operators knowledge

of local weather conditions and predictive technology to recalculate the optimal solution

and react to changing weather conditions.

Passing clouds over a large heliostat �eld cause groups of heliostats to become less

e�cient, which will therefore change the optimal aiming strategy. The e�ect of clouds

on CSP technology is of importance in the e�ciency of an SPT plant, and has prompted

the development of technology to predict the quantity and location of clouds, see Alonso

et al. [2014]; Lopez-Martinez and Rubio [2002]; Alonso-Montesinos and Batlles [2015].

Standard procedure in order to prevent thermal shock to the receiver when a cloud

passes by, is to aim heliostats away [Lopez-Martinez and Rubio, 2002], which will reduce

overall energy collected.

Using the location and size of a cloud in the optimisation procedure outlined in this

chapter allows an SPT plant to further optimise aiming strategies in near real-time, by

re-optimising the strategy whilst taking into account constraints such as cloud passage.

The size, shape, and location of a cloud may be changed within the code, where the

heliostats that are covered are assumed to su�er a 70% drop in e�ciency. An example

of cloud implementation is furnished in Figure 3.10. Figures 3.11 and 3.12 show a

comparison of the optimal results for 12pm, with and without a cloud, where it can be

seen that the presence of a cloud alters the optimal aiming strategy.

The presented approach consists of solving an Integer Linear Programming problem,

which makes no assumption on the heliostat �eld layout. Therefore, it is also applicable

to irregularly distributed heliostats, such as those generated with the Greedy Algorithm

developed in Carrizosa et al. [2015a]. This is demonstrated in Figures 3.13 and 3.14 for

the irregular �eld presented in Carrizosa et al. [2015a].
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Figure 3.4: 6am Allocation Figure 3.5: 6am Distribution

Figure 3.6: 12pm Allocation Figure 3.7: 12pm Distribution

Figure 3.8: 6pm Allocation Figure 3.9: 6pm Distribution
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Figure 3.10: Cloud example

Figure 3.11: 12pm Allocation Figure 3.12: 12pm Allocation with cloud

Figure 3.13: 12pm Allocation
(Greedy �eld)

Figure 3.14: 12pm Distribution
(Greedy �eld)
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3.5 Conclusions

An aiming strategy has been developed to optimise the energy collected by an SPT

plant at a near real-time scale, considering multiple constraints based upon physical

requirements. This procedure has been demonstrated at multiple time points across a

day and considered cloud e�ects and changing the shape of the heliostat �eld, showing

that the procedure may be applied to any plant design and can be used to react to

inclement weather whilst maintaining optimal energy production.

A linear integer problem with a short time limit was solved using an integer pro-

gramming solver, without the use of additional preprocessing. It is expected that better

results may be obtained if the solver is given a reasonably good starting solution, ob-

tained by an ad hoc procedure which exploits the problem structure.

The energy distribution and aiming strategies presented are a theoretical repre-

sentation of SPT performance, and should be validated against practical results from

experiments with an SPT plant. This validation should be completed with the coop-

eration of an SPT plant operator and investigate the e�ects of implementing di�erent

aiming strategies and compare them with theoretical results.

The e�ect of inclement weather on the optimal aiming strategy employed has been

demonstrated here to show capability of the model developed, and further research is

given in Chapter 6.

Changing the location and quantity of aiming points on the receiver surface will

a�ect the optimal solution. Increasing the number of aiming points may lead to a

solution which provides a smoother distribution and higher energy generation, but it will

increase the computational time considerably. Further research into the optimisation of

aiming strategy and �xed aiming point locations at the same time should be considered,

where a variety of optimisation techniques could be compared.

An interesting extension of the present work is the case in which there are multiple

receivers [Carrizosa et al., 2015b; Schmitz et al., 2006], where the aiming strategy must

be optimised using aiming points distributed across multiple locations. If the plant

design is already given, the model considered in this chapter extends in a straightforward

manner to this problem. If, on the contrary, the plant is to be designed, an alternating

approach can be considered to optimise both the aiming strategy and the heliostat

locations within the �eld.



Chapter 4

Continuous aiming strategies (I):

the stationary case

58





Continuous aiming strategies (I):

the stationary case

4.1 Introduction

In this chapter, as in Chapter 3, we develop an optimisation model for the aiming

strategy of an SPT plant. In Chapter 3, a discrete approximation of the receiver surface

Ω into a set of potential aiming points is used, thereby reducing problem dimensionality

and allowing a BILP technique to be applied.

A more accurate approach is to allow the aiming point variables to take any value

and be continuously di�erentiable across the receiver surface. This is equivalent to

de�ning a separate aiming point for each heliostat in the �eld, within the set created

by the boundaries of the receiver dimensions. This allows the simulation of SPT plant

operations to better re�ect real-life conditions, where aiming points for heliostats will not

be limited to pre-set locations. This will be the viewpoint (and the main contribution)

in this chapter.

Whilst the �rst objective is the maximisation of total radiation reaching the receiver

surface, operational limitations of the SPT plant must be taken into consideration. As

previously noted, these include inhomogeneous heating of the receiver surface, where

large thermal �uxes can cause non-optimal energy generation, or even permanent dam-

age to the receiver components. Hence, the objective in this chapter is to maximise the

radiation captured by the SPT plant receiver, whilst taking into account the deviance

from a desired radiation distribution across the receiver using continuous optimisation

models. The two objectives will be combined into one single non-convex, non-linear

criterion via additive weighting. By varying the weights, an approximation to the cor-

responding Pareto Front will be obtained. Some related heuristic methods can be found

in Wagner and Wendelin [2018].

The structure of this chapter is as follows: Section 4.2 details the problem formu-

lation; Section 4.3 describes how to numerically formulate the problem; Section 4.4

provides an illustrative example of the construction of the Pareto frontier of the bi-

objective problem, and Section 4.5 presents concluding remarks.
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4.2 Model

The �rst component of the criterion in our aiming strategy optimisation model is the

radiation generated by the heliostats on the receiver surface.

As in Ashley et al. [2017], the radiation passing through the system is modelled

using a Gaussian distribution on the receiver, a non-empty bounded open convex set

Ω ⊂ R2. We will denote by |Ω| (resp. Ω̄) the measure (resp. the closure) of Ω. In this

work, any heliostat h ∈ H will be required to aim at point ph ∈ Ω̄. The value of this

distribution evaluated at a cartesian point (u, v) ∈ Ω is denoted by Fu,v(h, p), where

the total radiation at any point (u, v) is the sum of contributions from all heliostats.

The total radiation captured over the whole receiver surface associated to heliostat

h aiming at point ph ∈ Ω̄ can be written as f(h, ph) =
∫
Fu,v(h, ph)dΩ. Therefore the

total radiation corresponding to all heliostats in H can be expressed in the form:

∑
h∈H

f(h, ph). (4.2.1)

The second criterion in this problem considers the di�erence between the radiation

reaching the receiver and a desired target distribution Etaru,v . This distribution will in

practise be decided by the SPT plant operators, depending on weather conditions and

the thermal status of the receiver. This second objective can be expressed as the integral

of the square of the calculated radiation Fu,v(h, ph) minus the target distribution Etaru,v :

∫ [∑
h∈H

Fu,v(h, ph)− Etaru,v

]2

dΩ. (4.2.2)

Other criteria, such as the overall radiation excess with respect to a target distri-

bution, may be considered instead. The reason to choose (4.2.2) in this formulation is

that, as seen below, it leads to a continuously di�erentiable objective function, which

allows us to consider gradient based algorithms for the problem resolution.

Combining (4.2.1) and (4.2.2), we arrive at a suitable objective function, where we

consider a parameter A ∈ (0, 1) that controls the relative importance between maximis-

ing energy and minimising deviation from the target distribution:

A
∑
h∈H

f(h, ph)− (1−A)

∫ [∑
h∈H

Fu,v(h, ph)− Etaru,v

]2

dΩ. (4.2.3)

which is to be maximised.

Optimising the objective function in (4.2.3) over a range of values of A produces

an approximation to the Pareto frontier of the bi-objective problem of simultaneous

optimisation of energy generated and deviation with respect to the target distribution.

The following section devises a numerical method for the solution of the continuous



62 Chapter 4. Continuous aiming strategies (I): the stationary case

optimisation model proposed.

4.3 Numerical Methods

The continuous optimisation model proposed in Section 4.2 involves calculating integrals

over the receiver surface Ω. For numerical purposes, these integrals must be replaced by

summations over a �nite set of equally spaced test points (ui, vi) ∈ Ω with i = 1, ..., I.

The size of I directly a�ects the precision to which the problem in Equation (4.2.3) is

approximated and, also, a�ects the numerical complexity of the problem solution. The

deviation from the desired �ux distribution Etaru,v is then calculated and furnished only

for the test points (ui, vi). It is important to note that we `discretise' the receiver Ω

only at the numerical integration level (remember that ph can take any value in Ω).

The resulting objective function is the following:

g(P) := A
∑
h∈H

fsp(h, ph)− (1−A)
|Ω|
I

I∑
i=1

[∑
h∈H

Fui,vi(h, ph)− Etarui,vi

]2

, (4.3.1)

where P = (ph) h ∈ H, |Ω| denotes the measure of Ω and |I| is the cardinality of I.

The coe�cient |Ω|I stems from the numerical approximation of the integral in (4.2.3).

Thus, we want to solve a non-linear non-convex optimisation problem with contin-

uous variables of large dimension (twice the number of heliostats in the �eld), subject

to the convex constraints ph ∈ Ω̄.

Function g in Equation (4.3.1) can then be maximised using a gradient ascent algo-

rithm with projection, see Le Floch et al. [2015]; Ranganathan et al. [2011]. We start

with an initial solution P0 and then, at each iteration of the algorithm, update the

components of P in the direction of steepest ascent of the objective function g by step

size γ. The �nal step in each iteration of the algorithm utilises a projection method to

correct any values of P to ensure heliostats aim at Ω.

The selection of the stepsize γ taken at each update to the gradient ascent algorithm

is an important factor in the convergence and much research has focused on this choice,

for example Liu and Liu [2018]. If the stepsize is too large, the algorithm may diverge,

and if it is too small, it will take too long to converge. A method to �nd the optimal

stepsize at each iteration can be found using Armijo's Rule [McCormick, 1977], where a

constant value ε ∈ (0, 1) is used to iteratively reduce the stepsize until an improvement

on the objective function is no longer given.

This is tested at the k-th iteration of the algorithm against the (k − 1)-th iteration

as follows:

g(Pk) > g(Pk−1) (4.3.2)
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Traditionally, the value of γ is �xed for all elements of the system. However, in this

work the algorithm is adapted to allow di�erent γ for each heliostat h:

γk,h = γk−1,h · ε. (4.3.3)

This permits heliostats to take the greatest stepsize independently of each other,

thereby potentially increasing the speed of the algorithm. However, it is also important

to note that this procedure may in fact increase running times, so careful selection of ε

is required.

Therefore, the gradient ascent algorithm reads:

P̃k+1 = Pk + γk,h∇g(Pk), Pk+1 = P(P̃k+1), (4.3.4)

where, for each P, P(P) denotes the component-wise projection of P onto Ω.

The considered objective function and its gradient are complex. It is therefore

important to customise related e�ective numerical techniques leading to reasonable

computational e�ort.

The function being modelled in this chapter is highly multi-modal and, consequently,

convergence to the global optimum is signi�cantly dependent on the starting P0 given

to the algorithm. We therefore apply a multistart procedure where the algorithm is

run multiple times, utilising a di�erent random allocation of starting heliostat aiming

points. Applying this method for each value of A, it is possible to approximate the

Pareto Front of the model.

It will be accepted that the aforementioned algorithm converges to a local optimum

when the Euclidean norm of the gradient of the energy function is below a selected

precision value c. The selection of this value determines how close to the local optimum

the algorithm must �nish, whilst also heavily in�uencing the computation time required.

Summarising, the convergence test used in the algorithm can be written in the form

‖ ∇g(P) ‖≤ c,

where

∇g(P) = A
∑
h∈H
∇fsp(h, ph)

−2(1−A)|Ω|
I

I∑
i=1

[
(
∑
h∈H

Fui,vi(h, ph)− Etarui,vi)
∑
h∈H
∇Fui,vi(h, ph)

]
.

(4.3.5)

Note that this approach can serve to consider many prescribed �ux distributions

Fu,v (not necessarily Gaussian).
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In the following section we apply the numerical discretisation of the continuous

optimisation model developed in this chapter to a real SPT plant and we present an

illustrative example.

4.4 Illustrative Example

The developed optimisation procedure is illustrated using the PS10 SPT plant in San-

lúcar la Mayor, Seville [Abengoa, 2019], as detailed in Section 1.6.6. This SPT plant

has a �eld of 624 heliostats in a South facing �eld, arranged as shown in Figure 4.1.

The receiver Ω is a disk and the grid points (ui, vi) have been �xed equally spaced

and of equal number in both dimensions.

Figure 4.1: PS10 Heliostat Locations

The algorithm developed in Section 4.3 is implemented in Python on a standard

speci�cation desktop computer, for a chosen time point of midday.

The Armijo's Rule parameter ε is set to a value of 0.8, as the suggested value in

McCormick [1977], and the initial value for γ is set to 0.01. A lower limit of γ equal to

10−8 is set, in order to prevent unnecessary computations occurring in the algorithm.

As mentioned in Section 4.3, since the problem is highly multi-modal, a multistart

procedure has been implemented, where the best solution across 30 runs is selected for

each variation of the parameter A.

Figure 4.2 shows the peak of the objective function for one value of A across 100

multistart runs, where the multi-modality of the problem can be clearly seen. The

variance in solutions found over the 100 multistart runs is also a�ected by the stop

criterion and step size used in each application of the algorithm, meaning that whilst

only a few solutions may be found, the level of convergence may not be the same.

This can be seen in Figure 4.2 by the number of peaks and troughs at similar, but
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slightly di�erent, values. These possibly represent the same solution, reached at di�erent

levels of convergence. Therefore, when utilising an adequate selection of step size and

convergence test, it is found that a multistart operation with 30 runs su�ces in practise

to �nd a solution. The convergence of the gradient to zero and the objective function

to the solution can be seen in Figures 4.3-4.4 for one particular simulation.

Figure 4.2: Multistart analysis

Figure 4.3: Gradient convergence Figure 4.4: Objective function convergence

The parameter A in the objective function in Equation (4.3.1) has been tested

between 0 and 1 in steps of 0.01. A value of 0 indicates that the deviation from the

target distribution objective is the most important contribution. Contrarily, a value of 1

indicates that the total radiation objective is the most relevant. The target distribution

has been assumed constant across the receiver surface. It is important to note that the

chosen target distribution must be tailored to the SPT plants current conditions, and

a constant distribution has been implemented here as an example.

The values of both objectives for each value of A are shown in Figure 4.5, where
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the Pareto Front has also been marked. The set of Pareto equilibria identi�es those

solutions which cannot be improved in terms of both objectives, and therefore give the

best optima in terms of minimising target distribution deviation and maximising total

radiation capture.

Figure 4.5: Objective values with Pareto Front

The results shown in Figure 4.5 indicate that the choice of A can produce highly

di�ering results in the objective function, and this can generate quite di�erent aiming

strategies trading o� energy maximisation and minimisation of deviation from the target

radiation distribution. This is illustrated in Figures 4.6a-4.7b.

Figure 4.6a shows the resultant aiming strategy when the value of A is set to 0.9,

causing the captured radiation to be signi�cantly more important than adhering to

the target distribution. The aiming strategy will capture more radiation, as shown in

Figure 4.6b, but will fail to yield a homogeneous �ux distribution, due to the centrally

focused heliostats.

Figure 4.7a shows the resultant aiming strategy when A is set to 0.3, which creates

a much more homogeneous �ux distribution, as shown in Figure 4.7b. These Figures

demonstrate the importance of the value of making a judicious choice of A, since im-

provement in both objectives is highly dependent on its choice.

The results illustrated in this section are for one particular time point, and two

examples of the weighting variable A. Each run of this simulation takes less than 10

seconds, which is then multiplied by the number of multistarts performed. With advance

knowledge of local weather conditions, the optimal aiming strategy can be calculated

without conditions on time. However, to account for rapid changes in weather, it may

be useful to re-calculate the optimal aiming strategy in short time scales. Therefore, the

rapid computation of this algorithm is advantageous, and also lends itself to applications

in SPT plants with larger heliostat �eld sizes.
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(a) Optimised aiming strategy (b) Optimised �ux distribution
with maximum �ux 2.8e6

Figure 4.6: Optimised result with A = 0.9

(a) Optimised aiming strategy (b) Optimised �ux distribution
with maximum �ux 2e6

Figure 4.7: Optimised result with A = 0.3

The next section draws conclusions from the method and numerical illustration

developed in this work, and also discusses possible extensions and current research.

4.5 Conclusions

In this work, a bi-objective optimisation model has been implemented to �nd the optimal

aiming strategy for an SPT plant of any size or shape, and a numerical illustration for

a real SPT plant is presented.

For the PS10 SPT plant with a �eld of 624 heliostats, the optimal aiming strategy

has been found using the objective function given in (4.3.1), that must be viewed as
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a numerical approximation to (4.2.3). In this illustrative example, we have solved the

optimisation problem with a multistart procedure for multiple values of the parameter

A in (0, 1).

Utilising the optimisation model and numerical method developed in this work, it

is possible for the operators of an SPT plant to identify the optimal aiming strategy,

considering current weather and plant requirements. Depending on the choice of the

weighting parameter A in the objective function, it is possible to seek a desired balance

between maximising overall radiation captured and minimising deviation from a desired

distribution across the receiver.

The method developed in this work signi�cantly improves upon the method pre-

sented in Chapter 3, as here the problem space is not constrained by pre-set aiming

points, and allows for realistic representation of SPT plant operations, where it is pos-

sible to monitor relative performance of each objective.

The numerical method developed for this work made use of Armijo's rule to iterate

the step-size in the algorithm, with independent step-sizes for all components in the

set space. This modi�cation can cause longer run times for the simulation. However, a

careful application of the algorithm in this case allows it to improve performance and

converge to the optimal solution. This performance increase over other methods is of

critical importance when simulations in an SPT plant will be re-run during the course

of a day for changing local weather conditions.

For the PS10 SPT plant, the optimal aiming strategy can be easily found using the

method outlined in this work. For larger SPT plants with more heliostats in the �eld,

the same arguments and techniques can be applied. However, if the number of heliostats

is large, and the associated computational cost becomes untenable, an amendment can

be made to reduce the problem dimensionality. A possible modi�cation could be the

use of a clustering algorithm, such as in Ashley et al. [2017]; Carrizosa et al. [2013]. In

such research, the heliostats in the �eld are clustered using an optimisation procedure

which takes into account potential radiation generation as well as physical location and,

then, the same aiming strategy is chosen for all heliostats within the same cluster.

Another extension to this work that could assist in reducing computational cost

is the application of stochastic techniques [Fonseca et al., 2017; Schmidt et al., 2013;

Wang, 2017] where, at each step, the gradient is calculated for just a random sample

of heliostats and then used to update the general population. Such methods reduce

the calculation time required for each iteration of the algorithm at the cost of utilising

several (or many) potentially erroneous components of the gradients.
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5.1 Introduction

The mathematical complexity of constrained optimisation problems is enlarged when the

system being considered is dynamic in nature, that is to say, when the decision variables

are functions of time. For example in Schmid [2012], the authors utilise approximate

dynamic programming to optimise problems within ambulance management and present

a numerical illustration utilising real-world data; in Pillac et al. [2013], the authors

present a review of dynamic optimisation vehicle routing problems and discuss various

solution methods. Such problems more closely model many realistic situations and

posses interesting theoretical formulations.

Chapters 3 and 4 considered a stationary constrained optimisation problem applied

to an SPT plant. The purpose of that work was to determine aiming strategies that

maximise the radiation energy reaching the target (receiver), considering physical con-

straints on the system.

The work presented in this chapter looks to extend the optimisation model consid-

ered in Chapter 4 to the dynamic case, where additional time-dependent constraints are

considered.

The theoretical properties of the dynamic case are developed below, where, as usual,

for any Euclidean space S, we denote by | · | (and sometimes || · ||) the corresponding

Euclidean norm. On the other hand, H1(0, T ;S) stands for the Sobolev space of

continuous functions p : [0, T ] 7→ S such that ṗ(t) exists a.e. and∫ T

0
|ṗ(t)|2 dt < +∞.

Also, 〈· , ·〉 will stand for the duality product usually associated to the Hilbert space

H1(0, T ;S) and the symbol C will denote a generic positive constant.

In this work, we consider the general dynamic optimisation problem:

72



5.1. Introduction 73

Maximise J(p) =
∫ T

0 G(t,p(t)) dt

Subject to p ∈ Pad

(5.1.1)

where Pad is a subset of a Hilbert space P of functions p = p(t) that take values in an

Euclidean space F and we assume that
G : [0, T ]× F 7→ R is a continuous function,

G is di�erentiable with respect to p at any (t,p) and

∂G

∂p
: [0, T ]× F 7→ R is continuous.

(5.1.2)

More precisely, in this work P and Pad will be given by

P = H1(0, T ;F), (5.1.3)

Pad = {p ∈ P : p(t) ∈ Ω ∀t ∈ [0, T ], M(p) ≤ σ}, (5.1.4)

where

Ω is a nonempty convex compact set in F (5.1.5)

and

M : H1(0, T ;F) 7→ E is a C1 mapping. (5.1.6)

Here, E is another Euclidean space and σ ∈ E. In (5.1.4) and henceforth, the

inequality M(p) ≤ σ must be understood component-wise.

We will also consider the set P0 = {p ∈ P : p(t) ∈ Ω ∀t ∈ [0, T ]}. It will be

assumed that

M is sequentially weakly lower semicontinuous in H1(0, T ;F), (5.1.7)

in the sense that pn → p weakly in H1(0, T ;F) implies lim infn→+∞M(pn) ≥ M(p)

and

M is coercive in P0, (5.1.8)

in the sense that the set of functions p ∈ P0 satisfying M(p) ≤ σ is bounded in

H1(0, T ;F).

The previous �general� problem can be used to model the optimisation of an aiming

strategy for an SPT plant if we assume that

� p = p(t) de�nes the set of points aimed by the heliostats on the receiver at times

t ∈ [0, T ],

� Ω is the receiver surface,
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� G = A ·G1 + (1−A) ·G2 is a balanced combination of the objective functions G1

and G2 (radiation and deviation from a target aiming strategy),

� J(p) is, accordingly, a quanti�cation of the payo� produced by the aiming strategy

determined by p and

� M(p) is a measure of the change over time of the aiming strategy, corresponding

to p and the associated energy reaching the receiver.

This chapter is devoted to solving the previous optimisation problem (5.1.1), paying

special attention to the SPT plant application, where more details will be given in

Sections 5.4 and 5.5.

The plan of this chapter is the following. In Section 5.2, we �rst prove the existence

of a solution to (5.1.1) and subsequently characterise the solutions by an appropriate

optimality system. We then formulate two iterative algorithms in Section 5.3, the �rst

one relying on a penalty method and the second one using Augmented Lagrangian tech-

niques. Section 5.4 is devoted to particularise (5.1.1) in the context of an SPT plant;

there, the existence and characterisation of optimal aiming strategies are established.

The algorithms are illustrated with numerical experiments for a real SPT plant in Sec-

tion 5.5. Finally, Section 5.6 contains some conclusions and the description of future

work.

5.2 Theoretical Properties: Existence and Optimality Re-

sults

This section deals with the theoretical analysis of (5.1.1). Our �rst result is the follow-

ing:

Theorem 1. Assume that the assumptions (5.1.2)-(5.1.8) are satis�ed and the set Pad,

given by (5.1.4), is non-empty. Then there exists at least one solution to (5.1.1).

Proof: The proof is standard if we take into account the well known properties of the

spaces involved in the formulation of the problem, see for instance Ekeland and Temam

[1976].

Let {pn} be a maximising sequence for (5.1.1), that is, a sequence in Pad such that

J(pn)→ sup
p∈Pad

J(p) as n→ +∞.

Then the pn are uniformly bounded inH1(0, T ;F), since they all belong toPad and (5.1.8)

holds. Consequently, at least for a subsequence (again indexed by n), one has

pn → p̂ weakly in H1(0, T ;F) and strongly in C0([0, T ];F).
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The set Pad is closed in P, thanks to (5.1.5) and (5.1.7). Hence, p̂ ∈ Pad. On the

other hand, p 7→ J(p) is continuous in C0([0, T ];F), thanks to (5.1.2). Therefore, one

has

J(p̂) = max
p∈Pad

J(p).

This ends the proof. �

Remark 1. In view of the possible non-convexity of J and M , uniqueness is out of

scope in general. �

Recall that P0 is a non-empty closed convex set of H1(0, T ;F). In our second

result, we present suitable necessary optimality conditions that must be satis�ed by the

solutions to (5.1.1). For simplicity, we will assume from now on that E = R2 and we

will denote by M1 and M2 (resp. σ1 and σ2) the components of M (resp. σ).

Theorem 2. Let p̂ be a solution to (5.1.1). Assume that the constraints associated

to M are quali�ed at p̂, that is:

� ∃q1,q2 ∈ H1(0, T ;F) such that 〈M ′i(p̂),qi〉 < 0 for i = 1, 2

Then, there exist λ1, λ2 ≥ 0 such that the triplet (p̂, λ1, λ2) satis�es〈J ′(p̂),p− p̂〉 − λ1〈M ′1(p̂),p− p̂〉 − λ2〈M ′2(p̂),p− p̂〉 ≤ 0 ∀p ∈ P0,

λi(Mi(p̂)− σi) = 0, i = 1, 2.
(5.2.1)

For the proof, it su�ces to apply directly the Karush-Kuhn-Tucker principle; see for

instance Theorem 9-2.3 in Nocedal et al. [1999].

5.3 Some Iterative Algorithms

5.3.1 Penalisation

In this section, we introduce an iterative method for the solution of the dynamic op-

timisation problem (5.1.1) based on penalisation techniques. The advantage of this

approach is that it reduces the task to the solution of another optimisation problem

whose constraints are very easy to handle. The drawback is that a (small) parameter

must be introduced and this can have a signi�cant (undesired) in�uence in the results.

Thus, let us �x µ > 0 and let us set

Jµ(p) := J(p)− 1

2µ
|(M(p)− σ)+|2, (5.3.1)

Here, z+ = (M(p) − σ)+ stands for the positive part of z (understood in the

component-wise sense) and, as before, | · | denotes the Euclidean norm in E.
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Then, the aforementioned approximation of (5.1.1) is the following:Maximise Jµ(p)

Subject to p ∈ P0.
(5.3.2)

It is reasonable to expect that, for small µ > 0, any solution to the penalized

problem (5.3.2) solves approximately (5.1.1).

In the remainder of this section, we will be concerned with the numerical solution

of (5.3.2). To this purpose, we will �rst introduce a time discretisation and then an

iterative algorithm of the gradient ascent kind.

Thus, let us begin by replacing H1(0, T ;F) by a �nite dimensional subspace.

The easiest and most natural way is to introduce a large integer N , set τ := T/N ,

consider a uniform partition {t0 = 0 < t1 < t2 < ... < tN = T} with tn = nτ for all

n and then work in the corresponding space of functions pN : [0, T ] 7→ F which are

continuous and piecewise linear.

This space will be denoted by XN . We will also consider the closed convex set

P0,N := XN ∩ P0 and the orthogonal projector P0,N : XN 7→ P0,N . Observe that

P0,N (pN )(t) is, for each t, the projection of each component of pN (t) onto Ω. The N -th

approximated problem is thenMaximise Jµ(pN )

Subject to pN ∈ P0,N .
(5.3.3)

In order to solve this problem, we can apply a gradient ascent algorithm with variable

step size and projection. Accordingly, in the n-th iterate we compute the function pn+1
N ,

with

pn+1
N = P0,N (p̃n+1

N ), p̃n+1
N = pnN + γn∇Jµ(pnN ). (5.3.4)

Here, γn is a conveniently chosen positive number and ∇Jµ(pnN ) denotes the gradient

of the objective function in (5.3.3), that is,

∇Jµ(pN ) = ∇J(pN )− 1

µ
(M(pN )− σ)+ · ∇M(pN ). (5.3.5)

Therefore, the gradient ascent algorithm requires, at each step, the calculation of

the derivative of the objective function and a projection of each component of pN (t) for

each nodal time t = tj . Obviously, the complexity of this computation depends on the

properties of the particular function G = G(t,p) and the mappingM : H1(0, T ;F) 7→ E

and the sizes of dimF and N .

The described penalisation algorithm, denoted Algorithm 1 in this chapter, is out-

lined in the pseudocode shown below.
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Algorithm 1 Penalisation

µ← Set penalisation parameter (small) �oat

γ0 ← Set initial step size �oat

Tol← Simulation tolerance �oat

p0 ← Initial variable set �oat

for N = 1 to T do

while ObjDi� > Tol do

while StepDi� ≤ 0 do

J(p)← Calculate objective function �oat

M(p)← Calculate constraint set �oat

∇Jµ(pN ) = ∇J(pN )− 1
µ (M(pN )− σ)+ · ∇M(pN ).

p̃n+1
N = pnN + γn∇Jµ(pnN ).

pn+1
N = P0,N (p̃n+1

N )

J(p̃n+1
N )← Calculate updated objective function �oat

StepDi� = |Jµ(pn+1
N )− Jµ(pnN )|

γn+1 = γn · ε
Next;

end while

ObjDi� = |Jµ(pn+1
N )− Jµ(pn+1

N−1)|
Next;

end while

end for

end;

5.3.2 Augmented Lagrangian

The optimisation problem (5.1.1) can also be solved using the information furnished

by Theorem 2. This is indicated in this section, again after time discretisation, through

the so called Augmented Lagrangian techniques. Recall that E = R2 and M1 and M2

denote the components of M .

Thus, let us �rst introduce the so called Augmented Lagrangian Lµ : H1(0, T ;F)×
E 7→ R, with

Lµ(p;λ) := J(p)−
2∑
i=1

ψ(Mi(p)− σi, λi;µ), (5.3.6)

where we have introduced

ψ(z, β;µ) :=


z · β +

1

2µ
|z|2 if z + µβ ≥ 0

−µ
2
|β|2 otherwise,

(5.3.7)
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and, again, µ > 0.

Then, it can be proved that the optimisation problem (5.1.1) is equivalent to the

following 
Minimise sup

p∈P0

Lµ(p;λ)

Subject to: λ ∈ E, λ ≥ 0.

(5.3.8)

An explanation of this equivalence can be given arguing as follows. The inequality

constraintM(p) ≤ σ is equivalent to the equalityM(p)+s = σ, with the so called slack

variable s belonging to E and s ≥ 0. In view of the Karush-Kuhn-Tucker optimality

condition (5.2.1), it makes sense to consider the �Modi�ed Lagrangian�

L̂(p, s;λ) := J(p)− λ · (M(p) + s− σ) (5.3.9)

and its penalised version

L̂µ(p, s;λ) := J(p)− λ · (M(p) + s− σ)− 1

2µ
|M(p) + s− σ|2. (5.3.10)

Then, recalling (5.3.6)-(5.3.7), it is easy to check that

sup
s∈E, s≥0

L̂µ(p, s;λ) = Lµ(p;λ),

whence we see that (5.3.8) is an appropriate reformulation of (5.1.1).

As in the previous section, in practice, in order to solve (5.3.8) we must provide a

�nite dimensional approximation. With the notation used in Section 5.3.1, a suitable

choice is the following: 
Minimise sup

P0,N

Lµ(pN ;λ)

Subject to: λ ∈ E, λ ≥ 0.

(5.3.11)

This problem can be solved with a duality-penalty algorithm that, at the n-th step,

furnishes the multiplier λn+1 according to the following:

� Compute a solution pnN to the problemMaximise Lµ(pN ;λn)

Subject to pN ∈ P0,N

(5.3.12)

� Then, take

λn+1 = (λn +
1

µ
(Mi(p

n
N )− σ))+. (5.3.12′)

This will be denoted Algorithm 2 in this work, and is given in the pseudocode given
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below.

As in Section 5.3.1, the solution of (5.3.12) can be obtained through a variable step

gradient ascent method with projection. Thus, at the k-th step, we compute pn,k+1
N ,

with

pn,k+1
N = P0,N (p̃n,k+1

N ), p̃n,k+1
N = pn,kN + γk∇Lµ(pn,kN ;λn). (5.3.13)

Algorithm 2 Augmented Lagrangian

λ← Lagrangian multiplier �oat
σ ← Constraint constant�oat
µ← Penalty constant�oat
Tol← Simulation tolerance �oat
p← Variable set �oat
J← Objective function �oat

M← Constraint set �oat
for t = 1 to T do

while ObjDi� > Tol do

while StepDi� ≤ 0 do
J(p)← Calculate objective function �oat

M(p)← Calculate constraint set �oat
∇Jµ(pN ) = ∇J(pN )− 1

µ (M(pN )− σ)+ · ∇M(pN ).

Maximise L̂µ(p, s;λ)
Fix s
Maximise Lµ(pN ;λn)

p̃n,k+1
N = pn,kN + γk∇Lµ(pn,kN ;λn)

pn,k+1
N = P0,N (p̃n,k+1

N )
Jµ(p̃n+1

N )← Calculate updated objective function �oat

StepDi� = |Jµ(pn+1
N )− Jµ(pnN )|

γk+1 = γk · ε
Next;

end while

ObjDi� = |L̂µ(pn,k+1
N ;λn)− L̂µ(pn,kN ;λn)|

λn+1 = (λn + 1
µ(Mi(p

n
N )− σ))+

Next;
end while

end for

end;

In the following section, we detail the model for an SPT plant and verify that all

assumptions made in the formulation of the general problem in Section 5.1 remain valid.
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5.4 The Model for an SPT Plant

As considered in Chapters 3-4, the aiming point of each heliostat in the �eld on the

receiver surface directly a�ects the energy generation. In particular, it has been shown

that, although maximising incident radiation is important, it is also bene�cial to main-

tain a desired �ux distribution to aid thermal transfer [Relloso and García, 2015; Yu

et al., 2014].

In this chapter we extend the models previously discussed to the dynamic case,

considering time dependent variables and constraints. These constraints, as introduced

in Sections 5.1-5.2, concern physical aspects of the SPT. One of them must be viewed

as a limitation on the rotational speed of the heliostat and is obviously justi�ed by

operational reasons. On the other hand, the radiation at any point of the receiver

surface should not vary drastically over short time periods, in order to prevent �ash

heating and this is considered in the second constraint.

The radiation passing through the system is modelled using a Gaussian distribution,

as presented in Section 1.7.

We assume that there are H heliostats in the �eld and we denote by ph(t) the point

aimed at by the h-th heliostat at time t. We have ph(t) ∈ Ω̄R for all h and t; ΩR ⊂ R2

is bounded, open and convex with 0 ∈ ΩR and we take Ω = Ω̄R. Accordingly, the

Euclidean space F will have dimension 2H:

F = R2H . (5.4.1)

The usual Euclidean norm in F will be denoted by ‖ · ‖.
At time t, the radiation measured at a point (u, v) ∈ Ω and furnished by the h-th

heliostat is given by Fu,v(h, ph(t), t). For each h, the real-valued function (u, v, ph, t) 7→
Fu,v(h, ph, t) is smooth. The associated total radiation captured over the receiver sur-

face Ω for a given heliostat h is thus given by

F0(h, ph(t), t) :=

∫∫
Ω
Fu,v(h, ph(t), t) du dv.

Therefore, the total radiation supplied by all heliostats at time t can be written in the

form

f(p(t), t) :=

H∑
h=1

F0(h, ph(t), t) =

∫∫
Ω

( H∑
h=1

Fu,v(h, ph(t), t)
)
du dv, (5.4.2)

where we have used the notation p := (p1, . . . , pH).

In order to limit the motion of heliostats, so that they do not move faster than their

velocity limits, we introduce the velocity ṗh = ṗh(t) of each heliostat h, the velocity

vector ṗ = ṗ(t) and a target velocity vector Vp ∈ F with Vp ≥ 0 and we impose the
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collective velocities to be approximately below Vp in the sense that∫ T

0
‖(ṗ(t)−Vp)+‖2 dt ≤ σ1

for some σ1 ≥ 0.

The change in time in radiation at each point of the receiver must also be limited

and kept below a �xed value σ2. This will be witten in the form

∫ T

0

(∫∫
Ω

∣∣∣ H∑
h=1

d

dt
Fu,v(h, ph(t), t)

∣∣∣2 du dv) dt ≤ σ2.

Our objective is to maximise the radiation captured by the receiver, whilst main-

taining a target energy pro�le which maximises absorption. Thus, we deal with the

constrained optimisation problem (5.1.1), where
G(t,p) := A

∫∫
Ω

( H∑
h=1

Fu,v(h, ph, t)
)
du dv

− (1−A)

∫∫
Ω

∣∣∣ H∑
h=1

Fu,v(h, ph, t)− Etaru,v (t)
∣∣∣2 du dv (5.4.3)

(A ∈ [0, 1] is a weighting parameter),

M1(p) :=

∫ T

0
‖(ṗ(t)−Vp)+‖2 dt, (5.4.4)

M2(p) :=

∫ T

0

(∫∫
Ω

∣∣∣ H∑
h=1

d

dt
Fu,v(h, ph(t), t)

∣∣∣2 du dv) dt, (5.4.5)

the σi are prescribed non-negative constants and Etaru,v = Etaru,v (t) is the desired target

distribution at time t.

For convenience, we will assume that

σ2 > M2(0) =

∫ T

0

(∫∫
Ω

∣∣∣ H∑
h=1

d

dt
Fu,v(h, 0, t)

∣∣∣2 du dv) dt. (5.4.6)

This is su�cient to guarantee that the zero function in H1(0, T ;F) belongs to Pad and,

consequently, Pad is non-empty.

In the following sections, we will check that the theoretical analysis in Section 5.2

and the proposed iterative algorithms in Section 5.3 are valid in this framework. In

particular, we consider the existence of optimal aiming strategies, their characterisation

through optimality conditions and �nite dimensional approximations and penalty and

duality-penalty solution methods are described.
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5.4.1 Existence and Optimality

The following result holds:

Proposition 1. Let F, G and M be given by (5.4.1) and (5.4.3)�(5.4.5) and let P

and Pad be given by (5.1.3)�(5.1.4). Then, the assumptions (5.1.2) and (5.1.5)�(5.1.8)

are satis�ed.

Proof: It is clear that (5.1.2), (5.1.5) and (5.1.6) are satis�ed. For convenience, let us

introduce ah(t, ph;u, v) := ∂
∂ph

Fu,v(h, ph, t), bh(t,p;u, v) :=
∑H

h=1 Fu,v(h, ph, t)−Etaru,v (t)

and c(t,p,q;u, v) :=
∑H

h=1
d
dt

∂
∂ph

Fu,v(h, ph, t)qh.

Then one has

∂G

∂ph
(t,p) = A

∫∫
Ω
ah(t, ph;u, v) du dv − 2(1−A)

∫∫
Ω
bh(t,p;u, v)ah(t, ph;u, v) du dv,

for all h and (t,p) and

〈M ′1(p),q〉 = 2

∫ T

0
(ṗ(t)−Vp)+ · q̇(t) dt (5.4.7)

and

〈M ′2(p),q〉 = 2

∫ T

0

[ ∫∫
Ω

( H∑
h=1

d

dt
Fu,v(h, ph(t), t)

)
c(t,p(t),q(t);u, v) du dv

]
dt (5.4.8)

for all p,q ∈ H1(0, T ;F).

Let us now check that (5.1.7) holds. Assume that pn → p weakly in H1(0, T ;F).

Since this implies the uniform convergence of the pn in [0, T ], we have

lim
n→+∞

M2(pn) = M2(p) (5.4.9)

On the other hand, since the function p 7→M1(p) is convex and continuous inH1(0, T ;F),

we also have

lim inf
n→+∞

M2(pn) ≥M2(p). (5.4.10)

From (5.4.9) and (5.4.10), we get (5.1.7).

Finally, it is clear that (5.1.8) is satis�ed. Indeed, if p ∈ P0 andM(p) ≤ σ, we have
in particular that

‖p(t)‖ ≤ C ∀t ∈ [0, T ] (5.4.11)



5.4. The Model for an SPT Plant 83

and ∫ T

0
||ṗ(t)||2 dt ≤ 2

∫ T

0
||(ṗ(t)2 −Vp)+||2 dt+ C ≤ C, (5.4.12)

whence p belongs to a bounded set in H1(0, T ;F).

This ends the proof.

�

From Proposition 1, we get the following consequences:

� Theorem 1 can be applied and there exists at least one optimal aiming strategy

for the modelled SPT plant.

� Theorem 2 can also be applied and, assuming that at an optimal p̂ the constraints

associated to theMi are quali�ed, we get the necessary conditions (5.2.1) for some

multipliers λ1, λ2 ≥ 0.

5.4.2 Finite Dimensional Approximation and Iterative Algorithms

In practice, as in Sections 5.3.1 and 5.3.2, we must approximate the in�nite dimensional

problem (5.1.1) corresponding to (5.4.3)-(5.4.5) and replace H1(0, T ;F) by XN and P0

by P0,N . The resulting tasks are thus to solve (5.3.3) and/or (5.3.11).

Note that, in both cases, the computations of ∇J(pN ), ∇M1(pN ) and ∇M2(pN )

are needed and this requires integrals on Ω, with respect to (u, v) of several functions.

For this reason, it is convenient to �x a set of test points (ui, vi), 1 ≤ i ≤ I and replace

these integrals by appropriate �nite sums.

The total radiation reaching the receiver at time t is therefore approximated by:

∫ T

0

∫∫
Ω

( H∑
h=1

Fu,v(h, ph(t), t)
)
du dv dt ≈

N∑
n=1

I∑
i=1

H∑
h=1

Fui,vi(h, ph(tn), tn) (5.4.13)

Similarly, the deviation from the target distribution is approximated by:

∫ T

0

∫∫
Ω
b(t,p(t);u, v)2 du dv dt ≈

N∑
n=1

I∑
i=1

b(tn,p(tn);ui, vi)2. (5.4.14)

Finally, the constraint mappings M1 and M2 given by (5.4.4)-(5.4.5) are approxi-

mated as follows:

M1(p)=

∫ T

0
‖(ṗ(t)−Vp)+‖2 dt ≈ MN

1 (pN ) :=
N∑
n=1

(
1

2
|p(tn)−p(tn−1)|−Vp)2

+, (5.4.15)
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M2(p)=

∫ T

0

(∫∫
Ω

( H∑
h=1

d

dt
Fu,v(h, p

n
h(t), t)

)2
du dv

)
dt

≈MN
2 (pN ) :=

N∑
n=1

I∑
i=1

∣∣∣ H∑
h=1

Fui,vi(h, ph(tn), tn)− Fui,vi(h, ph(tn−1), tn−1)
∣∣∣2. (5.4.16)

Penalisation Algorithm

After these approximations, we see that, in the case of the SPT model, the objective

function in (5.3.3) is given by:

JNµ (pN ) = A
N∑
n=1

I∑
i=1

H∑
h=1

Fui,vi(h, ph(tn), tn)− (1−A)
N∑
n=1

I∑
i=1

b(tn,p(tn);ui, vi)2

− 1

2µ

[( N∑
n=1

(
1

2
|p(tn)− p(tn−1)| − Vp)2

+ − σ1

)2

+

+
( N∑
n=1

I∑
i=1

∣∣∣ H∑
h=1

Fui,vi(h, ph(tn), tn)− Fui,vi(h, ph(tn−1), tn−1)
∣∣∣2 − σ2

)2

+

]
,

(5.4.17)

It is not di�cult to compute from this identity the partial derivatives of JNµ and,

accordingly, its gradient ∇Jµ. This makes it possible to apply the gradient ascent

algorithm in the present context.

The choice of step size parameters γk used for the gradient ascent algorithm have

a large impact on the speed of convergence. In the SPT plant context, the objective

function is non-linear, non-convex and of large dimensions, indicating that step size

choice will also factor heavily into likelihood of convergence of the algorithm.

As in Chapter 4, we apply a variant to the Armijo's Rule, whereby the parameter

γk is di�erent for each component, that is, for each heliostat h ∈ H. Consequently, the

γkh are computed according to the rules

γkh = γk−1
h · εh, h = 1, . . . ,H. (5.4.18)

The gradient ascent method with projection is then:

pn+1
N = P0,N (p̃n+1

N ), p̃n+1
N = pnN + Γk∇Jµ(pnN ), (5.4.19)

where Γk = diag(γk1 , . . . , γ
k
N ).

The gradient ascent method applied to the penalisation algorithm, as described in

the pseudocode given in Algorithm 1, is applied at each step of the discretised time

period. The computed optimal result at a given time is then used as the initial guess
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for the next time step. In this way, the overall optimal schedule can be found by

considering each discretised time point individually.

Augmented Lagrangian Algorithm

Following the �nite dimensional reduction method outlined in Section 5.4.2, the Aug-

mented Lagrangian given in equation (5.3.6) can be approximated as follows:

Lµ(pN , λ) ' LNµ (pN , λ) := A
N∑
n=1

I∑
i=1

H∑
h=1

Fui,vi(h, ph(tn), tn)

−(1−A)

N∑
n=1

I∑
i=1

H∑
h=1

b(tn,p(tn);ui, vi)2 −
2∑
i=1

ψ(MN
i (pN )− σi, λi;µ),

(5.4.20)

where ψ is de�ned in (5.3.7) and MN
1 and MN

2 are respectively given in (5.4.15)

and (5.4.16).

The gradient of this function can be calculated as before and the gradient ascent

method can be applied to the intermediate problems (5.3.12).

The Augmented Lagrangian algorithm, as summarised in the pseudocode in Algo-

rithm 2, follows a similar procedure to that of the penalisation algorithm, with extra

stages to update the Lagrangian multipliers. Recall that, after the computation of the

solution to (5.3.12), the Lagrange multipliers must be updated, according to the formula

(5.3.12′). Then, a new optimisation problem must be solved using the last computed

solution as an initial iterate and so on.

In the following section, we present an illustrative example that demonstrates, in the

framework of the optimisation of SPT plants, the usefulness of the formulation (5.1.1),

the theoretical results in Section 5.2 and the functionality of the presented algorithms.

5.5 A Numerical Experiment

The behavior of the previous algorithms is illustrated for the PS10 SPT plant, whose

details are found in Section 1.6.6. The �eld of this SPT plant has 624 heliostats arranged

in a radial pattern around a centrally located tower. The layout of the heliostats can

be seen in Figure 5.1, where the receiver is mounted atop a North facing tower.

In Figure 5.2, the re�ected solar radiation at midday is shown, where the heliostats

are colour coded according to the energy they would provide to the system if they aimed

at the centre of the receiver. From this �gure, it can be clearly seen that an adequate

aiming strategy is important, as there are large di�erences in the energy contributions

provided by the heliostats in the �eld. It is completely natural to �x a dynamic aiming

strategy, as the incident radiation on the heliostat �eld changes over time.
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Utilising the algorithms developed in Section 5.3 and the SPT plant model described

in Section 5.4, we present a numerical illustration that �nds the optimal aiming strategy

for the PS10 SPT plant across a single day.

We consider 10 equally spaced time points, where input to the model includes inci-

dent solar radiation on the �eld and solar angle.

We look to optimise the general dynamic optimisation problem (5.1.1), by con-

sidering the two forms given by the algorithms: penalisation (5.3.3) and Augmented

Lagrangian (5.3.12). As already mentioned, the objective is to maximise radiation

reaching the receiver surface across the day, whilst restricting the movement speed of

heliostat aim points and also limiting the change in radiation over time at any point on

the receiver.

Figure 5.1: Heliostat Layout Figure 5.2: Re�ected radiation for midday

5.5.1 Penalisation Algorithm

The penalisation algorithm is applied to the 10 point optimisation problem, with the

parameter values given in Table 5.1. We set a uniform target distribution and �x

limits on the aiming point velocities and global change in radiation along the receiver.

Considering the constraints derived in Section 5.3.1, we then look to maximise the

objective function at each time point utilising the gradient ascent method.

To start the algorithm, we de�ne an initial set of aiming points on the receiver,

randomly spread, as shown in Figure 5.3. This choice is ideal for early morning, as it

allows for a slow warm-up of the entire receiver surface.
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Parameter Value Summary
T 10 Number of time points
σ1 0 M1 constraint threshold
σ2 1e4 M2 constraint threshold
H 624 Number of heliostats in �eld.
µ 1e5 Penalisation constant
Vp 0.5 Velocity constraint constant
Etar 2.2e6 Target uniform distribution value (Wm2)
A 0.7 Weighting parameter
γ0 0.01 Initial step size

Table 5.1: Penalisation algorithm parameter values

Figure 5.3: Initial aiming point distribution

The resultant set of aiming points and the radiation distribution on the receiver are

then used as the initial solution to the �rst time problem. Each subsequent time point

is then considered, utilising the computed optimal solution from the previous one as its

initial solution. The aiming strategies for all time points are given in Figures 5.4�5.13.

Figure 5.4: t=1 aiming distribution Figure 5.5: t=2 aiming distribution
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Figure 5.6: t=3 aiming distribution Figure 5.7: t=4 aiming distribution

Figure 5.8: t=5 aiming distribution Figure 5.9: t=6 aiming distribution

Figure 5.10: t=7 aiming distribution Figure 5.11: t=8 aiming distribution
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Figure 5.12: t=9 aiming distribution Figure 5.13: t=10 aiming distribution

From Figures 5.4�5.13, the evolution of the aiming strategy across the day can

be seen. The e�ect of the dynamic constraints on aiming point velocity and change

in radiation can be seen in the slow movement of aim points towards the center in

Figures 5.4�5.8. During these early hours of low incident solar radiation, the maximum

is captured when a heliostat aims at the center.

The change in aiming strategy from Figure 5.8 to 5.9 identi�es a shift in behaviour,

caused by the incident radiation on the heliostat �eld and the target distribution im-

posed in the constraints.

Figure 5.14 gives the level of incident radiation on the heliostat �eld for the consid-

ered time period, and Figure 5.15 gives the maximum radiation value detected on the

receiver with the indicated aiming strategy. It can be seen that, as the level of incident

radiation on the �eld increases (towards midday), the same happens to the maximum

level of radiation on a particular point on the receiver. This is due to the centrally

focused aiming strategy shown in Figure 5.7.

Once the level of radiation reaches the target distribution limit given in Table 5.1, at

time t = 5, the aiming strategy must adjust in order to maintain a uniform distribution,

as seen in Figure 5.9.

The computation time of the penalisation algorithm is dependent on the prescribed

model parameters, such as step size, constraint limits, convergence tolerance, etc. How-

ever, with an adequate selection of these parameters, the previous numerical illustration

can be achieved in 2.5 minutes utilising a computer with speci�cations: Intel®Core�

i7-7700HQ CPU @ 2.80 GHz.
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Figure 5.14: Incident radiation on SPT
plant �eld

Figure 5.15: Maximum �ux on receiver over
time

5.5.2 Augmented Lagrangian Algorithm

The Augmented Lagrangian algorithm is also applied to the 10 point optimisation pro-

blem, with the parameter values given in Table 5.2. We set a uniform target distribution

and �x limits on the aiming point velocities and change in radiation along the receiver.

Considering the constraints in Section 5.3.2, we then look to maximise the objective

function across each time point utilising the gradient ascent method.

Parameter Value Summary
T 10 Number of time points
σ1 0 M1 constraint threshold
σ2 1e4 M2 constraint threshold
H 624 Number of heliostats in �eld.
µ 2e-5 Penalisation constant
λ0 1e6 Initial Lagrange multiplier
Vp 0.5 Velocity constraint constant
Etar 2.2e6 Target uniform distribution value (Wm2)
A 0.7 Weighting parameter
γ0 0.01 Initial step size

Table 5.2: Augmented Lagrangian algorithm parameter values

To start the algorithm, we de�ne an initial set of aiming points on the receiver as

in the case of the penalisation algorithm, shown in Figure 5.16.

For each time point considered, the algorithm takes the initial solution from the

previous time step, and optimises using the gradient ascent method described in Sec-

tion 5.3.2. Once a solution has been found for a particular time point, the Lagrangian

multipliers are updated, and the solution is used to re-optimise the same time point.
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This is repeated until no improvement on the solution can be found. The resultant

solution is then used as the initial solution to the next time point.

The computed aiming strategies using the augmented lagrangian algorithm are then

given in Figures 5.17-5.41.

Figure 5.16: t=0 aiming distribution

Figure 5.17: t=1, λ0 aiming distribution Figure 5.18: t=1, λ1 aiming distribution

Figure 5.19: t=1, λ2 aiming distribution Figure 5.20: t=1, λ3 aiming distribution
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Figure 5.21: t=2, λ0 aiming distribution Figure 5.22: t=2, λ1 aiming distribution

Figure 5.23: t=2, λ2 aiming distribution

Figure 5.24: t=3, λ0 aiming distribution Figure 5.25: t=3, λ1 aiming distribution
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Figure 5.26: t=3, λ2 aiming distribution

Figure 5.27: t=4, λ0 aiming distribution Figure 5.28: t=4, λ1 aiming distribution

Figure 5.29: t=5, λ0 aiming distribution Figure 5.30: t=5, λ1 aiming distribution
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Figure 5.31: t=5, λ2 aiming distribution

Figure 5.32: t=6, λ0 aiming distribution Figure 5.33: t=6, λ1 aiming distribution

Figure 5.34: t=7, λ0 aiming distribution Figure 5.35: t=7, λ1 aiming distribution
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Figure 5.36: t=8, λ0 aiming distribution Figure 5.37: t=8, λ1 aiming distribution

Figure 5.38: t=9, λ0 aiming distribution Figure 5.39: t=9, λ1 aiming distribution

Figure 5.40: t=10, λ0 aiming distribution Figure 5.41: t=10, λ1 aiming distribution

The maximum �ux on the receiver surface and the incident radiation level on the

heliostat �eld are given in Figure 5.42.
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Figure 5.42: Maximum �ux on receiver (black) and incident solar radiation (red)

The results furnished by the Augmented Lagrangian algorithm agree with those

provided by the penalisation algorithm.

5.5.3 Numerical Considerations

The PS10 plant �eld contains 624 heliostats, however there exist other larger SPT plants

(with potentially thousands of heliostats) which greatly increases the dimensionality of

the problem. The aiming points are described on the receiver surface in polar coordi-

nates, necessitating 2H variables for the gradient ascent technique. Within each step

of the algorithm, the gradients must be calculated, and aiming points updated, before

the radiation calculations are performed. For larger values of H, the application of the

algorithms presented in this chapter may become infeasible, due to computation times.

For the numerical approximations presented in this work, the heliostat �eld size will

have an e�ect on performance.

5.6 Conclusions

In this chapter, a general dynamic optimisation problem has been investigated. Theo-

retical properties of the problem have been discussed, including the demonstration of

solution existence and optimality. Furthermore, a real-world example for an SPT plant

has been considered, where a mathematical model that describes transfer of energy

within the system is developed. The theoretical properties of the general optimisa-

tion problem are shown applicable to the real world problem, and dynamic constraints

that describe SPT plant limitations are given. The goal of this work was the dynamic

optimisation of aiming strategies in an SPT plant, where the objective function was

non-linear, non-convex and of large dimension. Two algorithms have been considered

to �nd the optimal solution, and a numerical illustration is given using real data.
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The numerical illustration �nds the optimal aiming strategy for an SPT plant over

the period of one day, considering the change in incident radiation from the Sun as input.

The physical limitations of the plant have been introduced as dynamic constraints, in

terms of heliostat rotation speed and �ux homogeneity on the receiver surface over time.

The two algorithms presented (Penalisation and Augmented Lagrangian) provide

similar results in the numerical experiment, in similar computational times. The Aug-

mented Lagrangian algorithm is a modi�cation of a penalty technique, which should

provide better numerical stability in some cases. With larger size problems, and ade-

quately chosen parameters, this model could increase the reliability of the algorithm.

The dynamic optimisation problem considered in this work must be viewed as an

improvement of other research concerning the optimisation of aiming strategies in SPT

plants, for example Astol� et al. [2017b]; Wang [2017], due to the inclusion of dynamic

constraints. Instead of optimising the aiming strategy at certain �xed times, the method

presented in this work looks to optimise across a time period. This approach can arrive

to a solution that more closely re�ects the true optimum when considering problems in

dynamic systems.

The methods presented in this chapter can be adapted to all types of SPT plants,

and even other forms of concentrating solar power technology. The inclusion of more

heliostats, or multiple receivers, has been carried out in several real-world plants and

the work presented here can be directly extended to consider these cases.

The use of a modi�ed Armijos' Rule for the step size in the gradient ascent method

can lead to faster convergence. However, with a poor parameter selection, this may

actually reduce the convergence speed. Further adaptation to the algorithms presented

here should consider carefully the e�ects of such techniques, in conjunction with a highly

multi-modal objective function.

Considering the problem dimensionality when increasing the number of variables,

speci�cally the number of heliostats in our example, one method that could be used

to extend the presented approach could be to use a clustering algorithm. Thus, the

heliostats could be clustered into groups, considering a weighted objective of di�erence

in location and energy, as detailed in Chapter 2.

As remarked in Section 5.5.3, as the dimensionality of the problem increases, the

performance of the proposed algorithms deteriorates. An extension to this work could

consider a stochastic gradient method, which would reduce the required calculations

at each step of the algorithm, thereby allowing larger problems to be tackled with the

proposed method.

Finally, the integration of dynamic aiming strategy optimisation with a three di-

mensional thermal transfer model of the receiver is considered as the next step in this

work. Thermal transfer from the incident radiation on the receiver surface, through to

the HTF in the interior, is a three dimensional dynamic process that is highly depen-
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dent on both solar input and current temperature distribution in the receiver materials.

Varying factors such as the aiming strategy and the �ow rate of the HTF will a�ect this

process, and should be included in the dynamic coupled model.





Chapter 6

Inclement Weather E�ects on

Optimal Aiming Strategies in Solar

Power Tower plants

100





Inclement weather e�ects on

optimal aiming strategies

6.1 Introduction

Optimisation strategies for SPT plants are typically performed using normal weather

conditions, however inclement weather has been shown to have an e�ect on the produc-

tivity of an SPT plant, as well as on the lifespan of the receiver components, due to

thermal �uctuations [Martínez-Chico et al., 2011]. Research into weather and its a�ects

on SPTs [Breitkreuz et al., 2007; Dürr, 2004; Augsburger and Favrat, 2013] has also

been conducted, with a review of articles given in Tapakis and Charalambides [2013].

In this chapter we will utilise the optical model methodology from Section 1.7 to

model the passage of clouds across an SPT, and optimise the aiming strategy imple-

mented in order to protect the receiver from damage and to maximise energy produced.

The e�ect of a cloud on the production of an SPT plant can be described in terms

of e�ciency curves for the heliostats within the �eld. The e�ciency of a heliostat

�eld changes across time due to solar conditions, and the introduction of a cloud will

produce a localised e�ect of e�ciency loss. The characteristics of a cloud, such as size,

location and density, determine the scale of e�ciency loss and are naturally uncertain

across time. Therefore we apply the methodology from Chapter 3, whilst considering

uncertain cloud characteristics, represented by the e�ciency curves of the heliostats

within the �eld.

6.2 Optimisation

A linear integer programming technique is applied in order to optimise the aiming

strategy of the heliostat �eld.

Let Ap be the set of aiming points on the receiver surface and let H be the set of

heliostats aiming at the points in Ap. Let us de�ne an optimisation procedure for any

�xed time instant, t.

For h ∈ H, a ∈ Ap, set zha to the boolean variable de�ned as:

102



6.2. Optimisation 103

zha =

1, if heliostat h is allocated to aiming point a

0, otherwise.
(6.2.1)

The re�ected radiation pattern rbha is the radiation point value at aiming point b

received from heliostat h aiming at aiming point a. The total integrated radiation, Rha,

is the total radiation received across the receiver from heliostat h aiming at aiming point

a.

We therefore look to maximise the total incident energy on the receiver:

Maximise
∑
a,h

Rhazha. (6.2.2)

We constrain this objective function by requiring that no heliostat may be looking

at more than one aiming point on the receiver, but may be stowed in case of high winds

or potential damage to the receiver or mirror.

This gives the constraint:

∑
h∈H

zha ≤ 1 ∀a ∈ Ap. (6.2.3)

We also constrain the received energy at the aiming points:

C∗ ≤
∑
h∈H
a∈Ap

rbhazha ≤ C∗ ∀b ∈ Ap, (6.2.4)

where C∗ is a �xed maximum energy and C∗ is a �xed minimum energy. These con-

straints prevent the receiver being subject to excessive temperatures (which could cause

permanent damage) and also ensure that a minimum amount of energy is being collected

at each aiming point.

In order to approximate a uniform distribution of energy across the receiver, we will

look to also constrain the range of energy received between any two aiming points by

imposing

max
a

(
∑
h,a

rihazha)−min
a

(
∑
h,a

rjhazha) ≤ τ , (6.2.5)

where τ is a given constant.

This can also be written in the form

max
a

(
∑
h∈H
a∈Ap

rihazha) ≤ τ + min
a

(
∑
h∈H
a∈Ap

rjhazha) , (6.2.6)

which is equivalent to the following set of linear constraints:
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∑
h∈H
a∈Ap

rihazha ≤ τ +
∑
h∈H
a∈Ap

rjhazha ∀i, j ∈ Ap, with i 6= j (6.2.7)

The optimisation problem to be solved at each time instant t can then be summarised

as follows:

Maximise
∑
h∈H
a∈Ap

Rhazha

Subject to:

∑
h

zha ≤ 1 ∀a ∈ Ap,

C∗ ≤
∑
h∈H
a∈Ap

rihazha ≤ C∗ ∀i ∈ Ap,

∑
h∈H
a∈Ap

rihazha ≤ τ +
∑
h∈H
a∈Ap

rjhazha ∀i, j ∈ Ap with i 6= j

zha ∈ {0, 1} ∀h ∈ H, ∀a ∈ Ap

The uncertainty of the cloud location in the heliostat �eld can be considered as a

stochastic programming problem, where we will assume a set of possible scenarios Sc,

where each scenario represents a possible set of characteristics for the cloud.

This method implies that we have knowledge of the clouds characteristics in terms

of a probability distribution. The probability for each scenario could be generated

from historical data for the geographical location of the SPT or from weather tracking

technology, but for demonstration purposes a uniform distribution will be applied here.

The optimisation problem can then be considered as:

Max
∑
s∈Sc

p(s)
∑
h∈H
a∈Ap

RshaZha (6.2.8)

where p(s) is the probability distribution of each scenario.

The constraints then become:

∑
h

zha ≤ 1 ∀a ∈ Ap,

C∗ ≤
∑
h∈H
a∈p

p(s)rishazha ≤ C∗ ∀i ∈ Ap, ∀s ∈ Sc,
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∑
h∈H
a∈p

p(s)rishazha ≤ τ +
∑
h∈H
a∈Ap

p(s)rjshazha ∀i, j ∈ Ap,∀s ∈ Sc with i 6= j

zha ∈ {0, 1} ∀h ∈ H, ∀a ∈ Ap

Optimising this problem then gives us the aiming strategy that is best when con-

sidering the uncertainty of cloud characteristics.

6.3 Results

The presented optimisation problem is applied to the PS10 SPT whose technical details

are given in Section 1.6.6, where a grid of aim points on the receiver surface is de�ned,

as shown in Figure 6.1, and the locations of the heliostats within the �eld are shown in

Figure 6.2.

Figure 6.1: Aiming point layout
on receiver

Figure 6.2: PS10 Heliostat �eld layout

A cloud is modelled, as shown in Figure 6.3, over a portion of the heliostat �eld. The

location, size and density of the cloud is uncertain, and this uncertainty is considered

as a uniform distribution, where each variable can di�er by 10% of a known value,

which would be taken from current weather condition knowledge in practise but is

demonstrated here with set values.

Figure 6.4 shows the optimal aiming strategy and Figure 6.5 the energy distribution

on the receiver surface for the �rst solar hour of a day, with clear skies. The heliostats

are colour coded depending on their aiming point allocation, in accordance with Figure

6.1.
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Figure 6.3: Example of cloud implementation

Figure 6.4: Optimal aiming strategy
Figure 6.5: Energy distribution

on receiver surface

Figure 6.6 shows the optimal aiming strategy and Figure 6.7 the energy distribution

on the receiver surface for the same time point, with uncertain cloud characteristics

based upon the cloud shown in Figure 6.3.

Figure 6.6: Optimal aiming strategy
with cloud uncertainty

Figure 6.7: Energy distribution
on receiver surface with cloud uncertainty
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The optimal aiming strategy for the heliostat �eld changes with a cloud imple-

mented, but does not exhibit a speci�c pattern based upon the cloud location. This is

expected, as the allocation of aiming points is primarily a�ected by the cosine angle of

the incident radiation, and less by the magnitude of radiation. Therefore the results

show that to maintain the constraints of homogeneity on the receiver surface, the overall

aiming strategy must change, not only the heliostats covered by the cloud.

6.4 Conclusions

The e�ect of uncertainty in cloud location, size and density on the optimal aiming

strategy for an SPT plant heliostat �eld has been investigated. The method has been

demonstrated for a time point at the PS10 SPT plant and shows how the e�ciency of

the plant can be maximised when there is local inclement weather.

A stochastic linear integer programming technique has been applied with short time

limits, which provide near-optimal solutions in near real-time. It is expected that in-

creasing computational power and providing the solver with an initial heuristic solution

could further increase the speed of the program.

The uncertainty of the cloud parameters has been modelled in this chapter using

a uniform distribution, considering 5 possible scenarios. This method is directly ex-

tendible to include more scenario possibilities and a di�erent probability distribution

for their occurrence. These factors can be determined by considering historical weather

data for the region of interest, as well as the inclusion of weather predicting technology

such as satellite data and cloud detecting cameras.

The optimisation method used in this research intends to �nd a near-optimal so-

lution, that is solved within short timescales. It was found that solutions su�ciently

close to the optimal solution can be found with a simulation time of 30s, allowing this

method to be implemented in real time with local weather predictions for an SPT plant.

Depending on the location of the SPT plant, other types of inclement weather may

be typical, such as rain, snow and sand storms. The method implemented in this article

may be extended to account for such weather conditions, and demonstrate their e�ect

on the e�ciency of an SPT plant.

The next step in this work is the inclusion of stochastic inclement weather in the

dynamic aiming strategy optimisation presented in Chapter 5. In this case, not only

will the objective of maximising energy (or reaching a target distribution) be reached

when considering inclement weather, but additional dynamic constraints can be added

to prevent �ash heating on the receiver due to cloud passage over the heliostat �eld.
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