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23 Abstract

24 Microcystin-LR (MC-LR) and Cylindrospermopsin (CYN) are produced by 

25 cyanobacteria. Although being considered as a hepatotoxin and a cytotoxin, 

26 respectively, different studies have revealed neurotoxic properties for both of them. The 

27 aim of the present work was to study their cytotoxic effects, alone and in combination, 

28 in the SH-SY5Y cell line. In addition, toxicity mechanisms such as oxidative stress and 

29 acetylcholinesterase (AChE) activity, and morphological studies were carried out. 

30 Results showed a cytotoxic response of the cells after their exposure to 0-100 µg/mL of 

31 MC-LR or 0-10 µg/mL CYN in both differentiated and undifferentiated cells. Thus, 

32 CYN resulted to be more toxic than MC-LR. Respect to their combination, a higher 

33 cytotoxic effect than the toxins alone in the case of undifferentiated cells, and almost a 

34 similar response to the presented by MC-LR in differentiated cells were observed. 

35 However, after analyzing this data with the isobolograms method, an antagonistic effect 

36 was mainly obtained. The oxidative stress study only showed an affectation of 

37 glutathione levels at the highest concentrations assayed of MC-LR and the combination 

38 in the undifferentiated cells. A significant increase in the AChE activity was observed 

39 after exposure to MC-LR in undifferentiated cells, and after exposure to the 

40 combination of both cyanotoxins on differentiated cells. However, CYN decreased the 

41 AChE activity only on differentiated cultures. Finally, the morphological study revealed 

42 different signs of cellular affectation, with apoptotic processes at all the concentrations 

43 assayed. Therefore, both cyanotoxins isolated and in combination, have demonstrated to 

44 cause neurotoxic effects in the SH-SY5Y cell line.

45

46

47 Keywords: MC-LR, CYN, MC-LR+CYN combination, SH-SY5Y cells, neurotoxicity
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48 1.  Introduction

49 Cyanobacteria are present in a variety of aquatic and terrestrial ecosystems due 

50 to their adaptive ability, even in extreme conditions (Svircev et al., 2014). Under 

51 favorable conditions of light, pH, nutrients (nitrogen and phosphorus) and interaction 

52 with other organisms, they present the capability of forming blooms and producing 

53 secondary metabolites called cyanotoxins, whose occurrence is increasing due to long 

54 term climate change (Buratti et al., 2017). According to their target organ, these toxins 

55 can be classified as hepatotoxins (e.g. microcystins, nodularins), dermatotoxins (e.g. 

56 lungbyatoxin), neurotoxins (e.g. anatoxin-a, homoanatoxin, saxitoxins), irritant toxins 

57 (e.g. lipopolysaccharides) and cytotoxins (e.g. cylindrospermopsin) (Testai et al., 2016). 

58 The exposure to these metabolites can occur by different paths such as the oral route, 

59 dermal contact or inhalation, although the oral route is the most significant one, since 

60 intoxication may take place by the intake of contaminated water, food or dietary 

61 supplements based on algae (Buratti et al., 2017). Among all cyanotoxins, microcystins 

62 (MCs) and cylindrospermopsin (CYN) have focused great interest, since they have been 

63 involved in the death of different animal species and humans (Azevedo et al., 2002; 

64 Bourke et al., 1983; Carmichael et al., 2001; Malbrouck and Kestemont, 2006). 

65 Microcystins are cyclic heptapeptides synthetized by several cyanobacterial 

66 species such as Mycrocistis aeruginosa, Oscillatoria agardhii, Plankthotrix agardii, and 

67 Planktothris rubescens, etc. (Sivonen and Jones, 1999). Up to date, more than 246 

68 congeners of MCs are known, being MC-LR the most potent congener and frequently 

69 identified (Spoof and Catherine, 2017). Mainly considered as a hepatotoxin, MC-LR 

70 can also affect other organs such as kidneys, heart or brain (Li et al., 2011; Qiu et al., 

71 2009; Zeng et al., 2014, 2018). One of the main MC-LR-mechanisms of action is the 

72 inhibition of protein serine/threonine phosphatases, causing a cascade of effects such as 
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73 the deregulation of phosphoproteins, which lead to tumor promotion and apoptosis 

74 (MacKintosh et al., 1990). In addition, many studies have also demonstrated its in vitro 

75 cytotoxic potential in different cell lines from fish, mammals and humans (Ding et al., 

76 2017; Feurstein et al., 2009; Gutiérrez-Praena et al., 2012; Meng et al., 2011, 2013; 

77 Pichardo et al., 2007; Rozman et al., 2017). Moreover, several authors have also 

78 described that this toxin induces oxidative stress by increasing reactive oxygen species 

79 (ROS) and reducing glutathione (GSH) levels, leading to cell apoptosis (Li et al., 2015; 

80 Liu et al., 2016; Puerto et al., 2011; Qian et al., 2018), although these effects have not 

81 been studied using human neuronal cell lines yet.

82 Cylindrospermopsin is an alkaloid consisting in a tricyclic guanidine combined 

83 to a hydroxylmethyl uracil group. This toxin presents a highly water-soluble structure, 

84 being commonly found out of the cells (Falconer and Humpage, 2006). Several 

85 cyanobaterial species are able to produce this toxin, such as Cylindrospermopsis 

86 raciborskii, Umezakia natans, Chrysosporum ovalisporum, Anabaena bergii, etc. 

87 (Banker et al., 1997; Harada et al., 1994; Schembri et al., 2001; Shaw et al., 1999). The 

88 main target of this cytotoxin is the liver, although kidneys, lungs, thymus, marrow bone, 

89 adrenal gland, gastrointestinal tract, immune, heart and nervous system have been also 

90 described as potential targets (Falconer et al., 1999; Guzmán-Guillén et al., 2015; 

91 Hawkins et al., 1985; Humpage et al., 2000; Terao et al., 1994). The most well-known 

92 mechanism of action of CYN is the inhibition of protein and GSH synthesis (Froscio et 

93 al., 2003; Runnegar et al., 1995; Terao et al., 1994). This cyanotoxin also enhances ROS 

94 production, which could lead to apoptosis or DNA damage (Gutiérrez-Praena et al., 

95 2011, 2012; Guzmán-Guillén et al., 2013; Puerto et al., 2011). In addition, some studies 

96 have indicated the pro-genotoxic properties of CYN, being essential its previous 
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97 metabolic activation by the enzymatic cytochrome P-450 complex (CYP450) (Humpage 

98 et al., 2005; Puerto et al., 2018; Žegura et al., 2011).

99 Both cyanotoxins have evidenced to induce neurotoxic effects in different 

100 experimental models (Florzyck et al., 2014). Thus, MCs have shown to cause neuronal 

101 damage in vitro in different rodent cell lines such as primary murine cerebellar granule 

102 neurons (CGNs) and primary rat astrocytes (Feurstein et al., 2011; Rozman et al., 2017). 

103 Furthermore, many in vivo studies have manifested a clear neurotoxic potential, mostly 

104 of MC-LR, in different animal species such as rodents, fish and nematodes, affecting to 

105 their behavior, enhancing ROS levels, and modifying proteins related to 

106 neurodegenerative diseases (Baganz et al., 2004; Wang et al., 2013; Wu et al., 2017). In 

107 fact, MC-LR has produced pathological damage in hippocampus, neuronal degenerative 

108 changes, inflammation in memory-related brain regions and apoptosis in rats, 

109 suggesting that this toxin can be related to Alzheimer´s disease in humans (Li et al., 

110 2012a; 2012b; 2014). Actually, some studies confirm its transport through the blood-

111 brain-barrier using OATP1A2, a variant of the organic anion transport system (OATP), 

112 because of its relatively large hydrophilic structure (Feurstein et al., 2009; Fischer et al., 

113 2005; Menezes et al., 2013). On the contrary, neurotoxic effects of CYN are still not 

114 well elucidated. In this sense, there is only one report studying its effects in different in 

115 vitro murine cell lines (Takser et al., 2016). Meanwhile, some in vivo reports have 

116 showed in vivo neurotoxic effects in snails, tadpoles and fish, such as behavioral 

117 alterations or histopathological changes (da Silva et al., 2018; Guzmán-Guillén et al., 

118 2015; Kinnear et al., 2007; Kiss et al., 2002; White et al., 2007).

119 Moreover, it is worthy to point out that the majority of studies concerning 

120 cyanotoxins toxicity are focused on single purified toxins, setting apart the fact that 

121 organisms are exposed simultaneously to a wide variety of cyanotoxins when they are 
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122 present in aquatic systems. In fact, several studies have described the concomitant 

123 occurrence of MCs- and CYN-producing cyanobacteria, as well as the presence of both 

124 cyanotoxins at the same time (Bittencourt-Oliveira et al., 2014; Bogialli et al., 2006; 

125 Oehrle et al., 2010; Vasas et al., 2004). In the case of neurotoxicity, only a study 

126 conducted by Takser et al. (2016) showed the effects of a combination of MCs and 

127 CYN, although they also included the neurotoxin anatoxin-a in the combination (1:1:1).

128 The SH-SY5Y cell line is a commonly used neuronal model due to its 

129 biochemical and functional properties, being very appropriate for neurotoxicity studies. 

130 Moreover, the differentiation of this cell line provides functional, biochemical and 

131 morphologically mature neurons, which are more similar to those present in the human 

132 brain (Xie et al., 2010). For this reason, both types of SH-SY5Y cells are a very 

133 interesting experimental model to assess the possible damage induced by MC-LR and 

134 CYN in human neural cells.

135 Thus, considering all this, the aim of the present study was to assess the 

136 neurotoxic potential of MC-LR, CYN and their combination in vitro using the human 

137 neuroblastoma SH-SY5Y cell line, by exploring the cell viability, oxidative stress (ROS 

138 and GSH levels), acetylcholinesterase (AChE) activity and morphological changes after 

139 the exposure to these cyanotoxins.

140 2. Materials & Methods

141 2.1. Supplies and chemicals

142 MC-LR and CYN (both purity > 95% by HPLC) were purchased from Enzo Life 

143 Sciences. Minimum essential medium (MEM), cell culture reagents, and fetal bovine 

144 serum (FBS) were obtained from Gibco (Biomol, Sevilla, Spain). Nutrient Mixture F-12 
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145 Ham, retinoic acid (RA), and brain-derived neurotrophic factor human (BDNF) were 

146 purchased in Sigma-Aldrich (Madrid, Spain).

147 The MTS (3-(4,5- dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- 

148 sulphophenyl)-2H-tetrazolium salt) Cell Titer 96® AQueous One Solution Cell 

149 Proliferation Assay was purchased in Promega (Biotech Iberica, Madrid, Spain). The 

150 Bradford Reagent and the neutral red (NR) were purchased from Sigma-Aldrich 

151 (Madrid, Spain). 

152 2.2. Model system

153 SH-SY5Y cells derived from a human neuroblastoma were obtained from ATCC 

154 (CRL-2266). They were maintained at 37˚C in an atmosphere containing 5% CO2 at 

155 95% relative humidity (CO2 incubator, NuAire®, Spain) in a medium consisting in 

156 MEM and F-12 (1:1) supplemented with 10% FBS, 1% non-essential amino acids, 1% 

157 sodium piruvate, 1% L-glutamine 200 mM, and 1% penicillin/streptomycin solution. 

158 Cells were grown near confluence in 75-cm2 plastic flasks and harvested weekly with 

159 0.25% trypsin-EDTA (1X). Cells were quantified in a Neubauer chamber. SH-SY5Y 

160 cells were plated at density of 2·105 cells/mL to perform all the experiments.

161 2.3. Cell differentiation

162 SH-SY5Y cells were differentiated using the protocol provided by Encinas et al. 

163 (2000) with some modifications. Cells were plated at density of 5·102 cells/mL in plates 

164 of 48 wells, changing the medium every 48 hours with 1% of FBS, 10 µM RA and 50 

165 ng/mL BDNF, for a week. The differentiation process was evaluated by morphological 

166 analysis.

167 2.4. Toxin test solutions



ACCEPTED MANUSCRIPT

8

168 Stock solutions of 4 mg/mL MC-LR and 1 mg/mL CYN were prepared in 

169 absolute ethanol and sterilized milliQ water, respectively. Both solutions were 

170 maintained at -20˚C until their use.

171 2.5 Cytotoxicity assays

172 Undifferentiated SH-SY5Y cells were seeded in 96-well tissue-culture plates for 

173 basal cytotoxicity tests and incubated at 37˚C for 24 h prior to exposure. Differentiated 

174 cells were exposed after a week from the start of the differentiation process in the same 

175 48-well plates where the differentiation process took place. From the stock solution of 

176 MC-LR, serial dilutions in medium without serum were prepared (20, 40, 60, 80, 100 

177 µg/mL MC-LR). From the stock solution of CYN, serial dilutions in medium without 

178 serum were prepared (0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1, 2.5, 5, 10 µg/mL CYN). Vehicle 

179 control (ethanol) for MC-LR and a negative control (non-treated cells) were also 

180 included. After replacing the medium, exposure solutions were added to the plates, and 

181 incubated at 37°C for 24 and 48 h. The basal cytotoxicity endpoints assayed were 

182 protein content (PC), supravital dye neutral red cellular uptake (NR), and tetrazolium 

183 salt reduction (MTS). All the assays in the present paper were performed by triplicate.

184 Total protein content (PC) was quantified in situ, according to the procedure 

185 given by Bradford (1976), with modifications (Pichardo et al., 2007), in the same plates 

186 where exposure originally took place. The culture medium was replaced by 200 μL 

187 NaOH to dissolve the proteins and after 2 h of incubation at 37°C, 180 μL were 

188 replaced by the same volume of Bradford reagent. After 30-min incubation at room 

189 temperature, absorbance was read at 620 nm.

190 Neutral red uptake was performed according to Borenfreund and Puerner (1984) 

191 in the undifferentiated cells. The culture medium was replaced by 100 μL modified 

https://www.sciencedirect.com/science/article/pii/S0045653512008077?via%3Dihub#b0040
https://www.sciencedirect.com/science/article/pii/S0045653512008077?via%3Dihub#b0210
https://www.sciencedirect.com/science/article/pii/S0045653512008077?via%3Dihub#b0035
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192 medium without serum containing 10 mg/mL NR. The plate with the NR-containing 

193 medium was returned to the incubator for another 3 h to allow the uptake of NR into the 

194 lysosomes of viable cells. Thereafter, medium was removed, and cells were fixed for 

195 2 min with a formaldehyde–CaCl2 solution. By adding 200 µL of acetic acid–ethanol 

196 solution to the wells, NR absorbed by cells was extracted, solubilized, and quantified at 

197 540 nm.

198 The MTS reduction was measured according to Baltrop et al. (1991) in both 

199 undifferentiated and differentiated cells. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

200 carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt) tetrazolium compound 

201 was added to the medium and, by bioreduction of cells, produces a colored formazan 

202 product soluble in culture medium, which is immediately measured at 490 nm after 3 h 

203 of incubation in the dark.

204 2.6. Assessment of the effect of cyanotoxins combination by the isobolograms method 

205 Concentrations used to evaluate the toxic potential of the combination MC-LR - 

206 CYN were selected based on the cytotoxicity results of the single cyanotoxins 

207 previously obtained in both types of SH-SY5Y cells. The mean effective concentration 

208 (EC50) values obtained for the most sensitive endpoint at 24 h were chosen as the 

209 highest exposure concentrations for the combination studies, along with the fractions 

210 EC50/2 and EC50/4. Thus, SH-SY5Y cells were exposed for 24 and 48h to binary pure 

211 cyanotoxins combinations: EC50 MC-LR + EC50 CYN, EC50/2 MC-LR + EC50/2 CYN 

212 and EC50/4 MC-LR + EC50/4 CYN, and the MTS reduction assay was performed. 

213 Moreover, each concentration used in the combinations was evaluated for each 

214 individual cyanotoxin, also using the MTS assay. 

https://www.sciencedirect.com/science/article/pii/S0045653512008077?via%3Dihub#b0010
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215 The isobologram method was used to determine the type of interaction that 

216 occurs when MC-LR and CYN are in combination in undifferentiated and differentiated 

217 SH-SY5Y cells. This method was carried out according to Tatay et al. (2014). The 

218 isobologram analysis involves plotting the concentration-effect curves for each 

219 compound and its combinations in multiple diluted concentrations by using the median-

220 effect equation, as described by Chou and Talalay (1984) and Chou (2006). These 

221 authors introduced the term of combination index (CI) for the quantification of 

222 synergism, additivity or antagonism of two compounds. When the CI < 1, indicates 

223 synergism, when CI is =1, indicates additivity, and when CI is >1, indicates antagonism. 

224 The CI50, CI75 and CI90 are the concentrations required to inhibit proliferation at 50%, 

225 75% and 90%, respectively. The CalcuSyn software (version 2.1) calculated these CI 

226 values automatically (Biosoft, Cambridge, UK, 1996–2007). The type of interaction 

227 produced by MC-LR and CYN combinations was assessed by an isobologram analysis 

228 using the same software. The parameters Dm, m, and r of the combinations, are the 

229 antilog of x-intercept, the slope and the linear correlation coefficient of the median-

230 effect plot, respectively, and they give information about the shape of the 

231 concentration–effect curve.

232 2.7. Oxidative stress assays

233 2.7.1. Reactive Oxygen Species (ROS) generation

234 The production of ROS was assessed in 96-well plates using the 

235 dichlorofluorescein (DCF) assay (Puerto et al., 2010) in undifferentiated cells. Cells 

236 were incubated with 200 µL 40 µM DCF in the culture medium at 37˚C for 30 min. 

237 Then, cells were washed with PBS and exposed to the different concentrations of the 

238 toxins, according to the cytotoxicity results previously obtained (0-37 µg/mL MC-LR 
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239 and 0-1 µg/mL CYN). A solution of 200 µM MnCl2·4H2O was used as a positive 

240 control. The plates were incubated for 4, 8, 12 and 24 h. Fluorescence was measured at 

241 535 nm (emission) and 485 nm (excitation).

242 2.7.2. Glutathione (GSH) content

243 Glutathione (GSH) content was evaluated by reaction with the fluorescent probe 

244 monochlorobimane (mBCL) (Jos et al., 2009) in undifferentiated cells. Cells were 

245 exposed to the toxins (0-37 µg/mL MC-LR and 0-1 µg/mL CYN), according to the 

246 previous results obtained in the cytotoxicity assays and incubated for 4, 8, 12 or 24 h. A 

247 solution of 1 µM buthionine sulfoximine (BSO), a GSH synthesis inhibitor, was used as 

248 positive control. After the exposure time, medium was discarded and cells were 

249 incubated for 20 min at 37˚C in the presence of 40 µM mBCL. After that, cells were 

250 washed with PBS and the fluorescence was measured 460 nm (emission) and 380 nm 

251 (excitation).  

252 2.8. Acetylcholinesterase (AChE) activity determination

253 Acetylcholinesterase activity was measured according to the method described 

254 by Ellman et al. (1961) with modifications of Santillo et al (2015) in both 

255 undifferentiated and differentiated cells. Viable SH-SY5Y cells were exposed to the 

256 toxins, according to the previous results provided by the cytotoxicity assays (0-37 

257 µg/mL MC-LR and 0-1 µg/mL CYN in undifferentiated cells; 0-45 µg/mL MC-LR and 

258 0-0.3 µg/mL in differentiated cells) and incubated for 24 h at 37˚C. A solution of 50 nM 

259 parathion was used as positive control. Afterwards, 200 µL of a reaction mixture 

260 containing 0.5 mM 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) and 100 µM 

261 acetyltiocholine (ATCh) were added to each well. The resulting product of the reaction, 

262 5-thio-2-nitrobenzoate (TNB), was measured at 410 nm every 90 s up to 60 min.
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263 2.9. Morphology

264 The concentrations used for the morphological assay were the previously 

265 calculated EC50 (24h) values. These values were chosen as the highest exposure 

266 concentration along with the fractions EC50/2 and EC50/4. Undifferentiated and 

267 differentiated SH-SY5Y cells were exposed for 24 h. Afterwards, cells were directly 

268 fixed with a 1.6% glutaraldehyde in 0.1 M cacodylate buffer solution (pH 7.2) for 60 

269 min at 4ºC. Later, they all were postfixed in 1% osmium tetroxide during the same time 

270 and temperature. Time elapsed, samples were dehydrated in ethanol at progressively 

271 higher concentrations and embedded in epoxy embedding medium (Epon). Toluidine 

272 blue-stained semi-thin sections (0.5 mm thick) used as controls were viewed in a Leit 

273 (Aristoplan) light microscope. Thin sections (60-80 nm thick) were cut on a Reichert-

274 Jung Ultracut E ultramicrotome, stained with uranyl acetate and lead citrate, and 

275 examined in a Philips CM-10 transmission electron microscope. Cell growth and 

276 development of morphology damage was observed using a Leica DMIL inverted 

277 microscope by phase contrast.

278 2.10. Calculations and statistical analysis

279 Data for the cytotoxicity assays and oxidative stress biomarkers were presented 

280 as mean ± standard deviation (SD) in relation to control. Statistical analysis was carried 

281 out using analysis of variance (ANOVA), followed by Dunnett’s multiple comparison 

282 tests using GraphPad InStat software (GraphPad Software Inc., La Jolla, USA). 

283 Differences were considered significant from P<0.05. EC50 values were derived by 

284 linear regression in the concentration-response curves.

285 3. Results

286 3.1. Cytotoxicity assays
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287 A concentration dependent decrease of both undifferentiated and differentiated 

288 SH-SY5Y cells viability was observed after their exposure to 1-100 µg/mL MC-LR at 

289 24 and 48 h (Fig. 1). The EC50 values obtained in all the cytotoxicity assays performed 

290 are shown in Table 1. In the case of both differentiated and undifferentiated cells, MTS 

291 assay demonstrated to be the most sensitive biomarker, providing lower EC50 values in 

292 undifferentiated cells after the exposure times considered, compared to the 

293 differentiated cultures (Table 1). 

294 Regarding to CYN, a concentration dependent decrease of viability was 

295 observed as well (Fig. 2). Using the MTS assay as a reference for its sensitivity, a 

296 higher cytotoxic response could be appreciated after 24 hours of exposure in 

297 differentiated cells compared to the undifferentiated, that response is contrary to that 

298 obtained after 48 hours of exposure (Table 1). 

299 The concentration-response curves of the two cyanotoxins combination after the 

300 MTS assay, which demonstrated to be the most sensitive biomarker for both toxins in 

301 both types of cells, are shown in figure 3. The toxin combination proved to be more 

302 cytotoxic at the highest concentration tested on undifferentiated cells compared to the 

303 individual cyanotoxins after both exposure periods. On the contrary, on differentiated 

304 cells the response of the toxins combination was similar to the observed for MC-LR.

305 3.2. Assessment of the effect of cyanotoxins combination by the isobolograms method

306 In the experiment performed with undifferentiated cells, the cyanotoxin 

307 combination presented a CI > 1, which confirmed an antagonistic mode of action 

308 between these two toxins on SH-SY5Y cells (Table 2 and Fig. 4A, B). Data in Table 2 

309 demonstrate that CI values were from antagonism (CI = 1.60-1.10) to moderate (CI = 

310 1.45-1.08) effect over a wide range of EC50-EC90 concentrations of MC-LR and CYN in 
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311 combination. The strongest antagonistic effect was observed after 48 h. Moreover, this 

312 effect was more pronounced at lower concentrations.

313 In the experiment performed with the differentiated cells, the cyanotoxin 

314 combination presented a CI > 1, confirming again an antagonistic mode of action 

315 between these two toxins on differentiated SH-SY5Y cells (Table 3 and Fig. 4C, D). 

316 Data in Table 3 demonstrate that CI values were equivalent to an antagonistic effect (CI 

317 = 2.08-1.65) over the range of EC50-EC90 concentrations of MC-LR and CYN in 

318 combination. The strongest antagonistic effect was observed after 24 h.

319 3.3. Oxidative stress assays

320 The exposure to 9.25, 18.5 or 37 µg/mL MC-LR leaded to no significant 

321 changes in the ROS assay in SH-SY5Y cells after 4, 8, 12 or 24 h of exposure. 

322 However, it showed significant differences after 24 h of exposure to all the 

323 concentrations tested in the GSH assay, and after 12 h of exposure to the highest 

324 concentration (Fig. 5). 

325 After exposure to 0.25, 0.5 or 1 µg/mL CYN, no significant differences were 

326 observed in any of the exposure times assayed in either of the oxidative stress 

327 biomarkers evaluated (Fig. 6) compared to the control group. 

328 Similarly to the cell behavior after toxins exposure individually, SH-SY5Y did 

329 not produced any significant difference in the ROS assay after the exposure to MC-LR+ 

330 CYN combination, but it did after 4 h of exposure to the highest concentration, and after 

331 8 h in the other two concentrations in the GSH assay (Fig. 7).

332 3.4. Acetylcholinesterase (AChE) activity
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333 A significant increase of AChE activity on undifferentiated SH-SY5Y cells was 

334 observed only after the highest concentration of MC-LR assayed (37 µg/mL). However, 

335 neither CYN nor its combination with MC-LR induced significant changes in this 

336 enzymatic activity (Fig. 8A).

337 In the case of the differentiated cells, a significant decrease of AChE activity 

338 was shown after exposure to all CYN-concentrations assayed (0.075-0.3 µg/mL). 

339 Nevertheless, although MC-LR did not produce significant changes, exposure to the 

340 mixture at the highest concentrations (45 and 0.3 µg/mL of MC-LR and CYN, 

341 respectively) led to an increase in this enzymatic activity (Fig. 8B).

342 3.5. Morphology study

343 Unexposed undifferentiated SH-SY5Y cells observed under phase-contrast 

344 microscope showed scarce cytoplasmic projections, frequently two of them placed in 

345 opposite directions. These projections usually present connections with nearby cells 

346 (Fig. 9A). The light microscope revealed mitotic cells with big nuclei and nucleoli (Fig. 

347 9B). Under electronic microscope, cells present irregular nuclei with heterochromatin 

348 condensation and big nucleoli. In the cytoplasm stand out a big number of free 

349 ribosomes, mitochondria were scarce and presented dense matrix (Fig. 9C). In the non-

350 treated differentiated cells, a high number of cytoplasmic projections was observed 

351 under the phase-contrast microscope (Fig. 10A). Under light microscopy, cells 

352 presented a fusiform shape with endoplasmic reticulum dilatations and lipidic vacuoles 

353 (Fig. 10B). The electron microscope revealed a cell cytoplasm with a higher number of 

354 microtubules and intermediate filaments than the undifferentiated cells (Fig. 10C).

355 3.5.1. Microscope observations of cells exposed to pure MC-LR
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356 Undifferentiated cells exposed to 37 µg/mL MC-LR presented, under phase-

357 contrast, light and electronic microcopies, cell death signs, with a reduction of their size, 

358 chromatin condensation, and numerous vacuoles in the cytoplasm in fragmentation 

359 process. Moreover, apoptotic nuclei with chromatin and nucleolar segregation were 

360 observed (Fig. 11A-D). At the lowest concentrations (18.5 and 9.25 µg/mL MC-LR), 

361 the most characteristic observations under phase-contrast microscope were the 

362 cytoplasmic projections by way of lamellipodium (Fig. 11E).  The light microscope 

363 revealed cellular cycle arrest in the mitosis phase and nuclei with irregular shape and 

364 big nucleoli (Fig. 11F).  Under the TEM, cells presented chromatin condensation in the 

365 nuclear membrane, segregated nucleoli and formation of autophagosomes (Figs. 11G 

366 and H).

367 Differentiated SH-SY5Y cells exposed to 45 µg/mL MC-LR showed an elevated 

368 refringence under the phase-contrast microscope caused by numerous dead cells and 

369 apoptotic bodies, as it could also be observed by light microscopy (Fig. 12A-B). Under 

370 electron microscopy, the presence of a large quantity of confluent heterophagosomes, 

371 nucleolar segregation, and numerous lipidic vacuoles were observed (Fig. 12C-D). At 

372 the lowest concentrations assayed (22.5 and 11.25 µg/mL MC-LR), cells observed 

373 under phase-contrast, light and electronic microcopies presented protein granules, 

374 possibly caused by alterations in the protein folding, lipidic vacuoles and chromatin 

375 condensation. Mitotic processes were also observed, although this phenomenon could 

376 be stopped due to the adverse situation induced by MC-LR (Fig. 12E-J).

377 3.5.2. Microscope observations of cells exposed to pure CYN

378 At the highest concentration assayed (1 µg/mL), undifferentiated cell cultures 

379 presented clear morphological alterations leading to cell death such as apoptotic bodies, 
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380 and heterochromatin condensation (Fig. 13A and B). Ultrastructurally, nuclei presented 

381 irregular shape and, frequently, the presence of apoptotic nuclei is high, with 

382 cytoplasmic fragmentation. In addition, segregated nucleolus was observed, being only 

383 visible their fibrillar component (Fig. 13C). At 0.5 and 0.25 µg/mL CYN, no 

384 remarkable morphological alterations were observed under light microscopy, where it is 

385 possible to observe the cellular cycle in mitosis phase. The TEM showed euchromatic 

386 nuclei and numerous mitochondria in the cytoplasm, a characteristic of undifferentiated 

387 cells (Fig. 13D and E).

388 After differentiation, SH-SY5Y cells exposed to the highest CYN concentration 

389 (0.3 µg/mL CYN) experienced a massive cell death, easily observable by phase-contrast 

390 (high refraction) and light (many cellular debris) microscopies. No cell division was 

391 observed (Fig. 14A-B). Ultrastructurally, apoptotic nuclei with heterochromatin 

392 condensation were appreciated, together with the presence of heterophagosomes (Fig. 

393 14C). After exposure to 0.15 and 0.075 µg/mL CYN, cells presented an increased 

394 number of ribosomes compared to control cells. Moreover, an increment in lipidic 

395 vacuoles and dilated endoplasmic reticuli was observed. Nuclei presented the typical 

396 apoptotic morphology (Fig.  14D-I).

397 3.5.3. Microscope observations of cells exposed to the combination MC-LR/ CYN

398 Concerning the combinations, the combination with the highest CYN and MC-

399 LR concentrations (1 + 37 µg/mL) induced and intense cell death in undifferentiated 

400 cells, mainly by apoptosis, appearing numerous cellular debris and apoptotic bodies. 

401 Moreover, apoptotic nuclei with chromatin condensation were observed (Fig. 15A and 

402 B). The combination composed by 0.5 + 18.5 µg/mL induced a moderate cell death by 
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403 apoptosis, were cells presented blisters in the surface, a typical observation in cells 

404 dying by apoptosis (Fig. 15C and D).

405 Differentiated cells presented two extremes. At the highest concentration 

406 assayed (0.3 + 45 µg/mL CYN + MC-LR), a remarkable cell death was observed, with 

407 the presence of pre-apoptotic bodies all over the culture. On the other hand, when cells 

408 were exposed to the other two concentrations, zones without any visible damage and 

409 zones with intense cellular death were perceived (Fig. 16A-C). The TEM showed 

410 numerous indicators of cellular damage in cells exposed to the highest exposure 

411 concentration. Thus, lipidic degeneration, apoptotic nuclei, endoplasmic reticulum with 

412 protein concentration, pre-apoptotic bodies, heterophagosomes, nuclear bodies, and 

413 nucleolar segregation were observed (Fig. 16D-G).

414 4. Discussion

415 Microcystin-LR and CYN have been extensively studied in vitro in hepatic and 

416 renal cell lines (Chen and Xie, 2016; McLellan and Manderville, 2017; Pichardo et al., 

417 2017). However, the studies concerning neuronal cell lines are still scarce, although 

418 some in vivo studies point out that these cyanotoxins could induce neurotoxic effects 

419 (Guzmán-Guillén et al., 2015; Kist et al., 2012; Qian et al., 2018; Wu et al., 2016; 

420 2017). Neurotoxicity of cyanotoxins has been reviewed, including the main mechanisms 

421 and effects (Florczyk et al., 2014; Hu et al., 2016) although the molecular mechanisms 

422 underlying these effects have not been still elucidated yet. In this sense, the present 

423 work focused on the potential effects induced by MC-LR, CYN, and their combination 

424 in the human neuronal SH-SY5Y cell line. For MC-LR, only Zhang et al. (2018) used 

425 this experimental model but for different purposes, such as transport, bioaccumulation, 

426 hyperphosphorylation of PP2A-dependent Tau sites, and cell death. In the case of CYN 
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427 and its combination with MC-LR, the present study shows their effects in vitro, 

428 contributing to mend the lack of information about this matter.

429 Regarding to MC-LR, our results showed a decrease of the cell viability after 24 

430 and 48 h of exposure to MC-LR in both undifferentiated and differentiated cells, being 

431 the undifferentiated the most sensitive cells. According to our results, several authors 

432 have described a reduction of cell viability in different neuronal cell lines exposed to 

433 MC-LR (primary murine WBC, primary murine CGNs cells, primary hippocampal 

434 neurons, RAW246.7 murine macrophage-like cells, BV-2 cells, N2a cells, GT1-7 cells 

435 and SH-SY5Y cells) (Cai et al., 2015; Ding et al., 2017; Feurstein et al., 2009; 2011; Li 

436 et al., 2015; Takser et al., 2016; Zhang et al., 2018). However, most of these authors 

437 used MC-LR concentrations up to 10 µM for 24, 48 or 72 h of exposure, and although 

438 they described decreases in cell viability, only Cai et al. (2015) referred an EC50 value 

439 for pure MC-LR. These authors exposed cells up to 30 µM MC-LR, establishing an 

440 EC50 of 10 µM MC-LR in primary hippocampal neurons after 24 h of exposure using 

441 the MTT cytotoxicity assay. In this regard, the presence of organic anion transporting 

442 polypeptide transporters (OATPs) has been described as an important requirement to 

443 MC-LR toxicity. It is well known that the OATP1B subfamily members are MCs 

444 transporters (Fischer et al., 2005). Fischer et al. (2005) suggested that OATP1A2 

445 transporters expressed in brain capillary endothelial cells and in the cell membrane of 

446 human neurons could be involved in MC-LR transport through the blood-brain barrier. 

447 In addition, Ding et al. (2017) demonstrated the role of the Oatp1a5 transporting MC-

448 LR into neuronal cells. These facts support that MC-LR damage could only evolve if it 

449 is transported into the nervous system through OATPs or other different transporters 

450 (Feurstein et al., 2009; 2011). However, the presence of these transporters in the 

451 nervous system is scarce and, in some cases, their number can vary with the 
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452 differentiation process (Rozman et al., 2017; Yagdiran et al., 2016). Thus, the low MC-

453 LR-toxicity in those cell lines (primary murine WBC, primary murine CGNs cells, 

454 primary hippocampal neurons, RAW246.7 murine macrophage-like cells, BV-2 cells, 

455 N2a cells, GT1-7 cells and SH-SY5Y cells) and the increment in the EC50 value in the 

456 differentiated SH-SY5Y cells from our study, compared with the undifferentiated ones, 

457 could be due to this fact.

458 The potential mechanisms by which MC-LR induces its neurotoxic effects 

459 include effects on neurotransmitters, neurochannels, signal transduction, oxidative stress 

460 and cytoskeleton disruption (Hu et al., 2016). The neurotoxicity of MCs seems a multi-

461 pathway process, although the molecular mechanisms remain evasive. In this sense, Cai 

462 et al. (2015) described that MC-LR disrupt calcium homeostasis in neurons, inducing a 

463 concentration-dependent increment of intracellular free Ca2+ levels from stores together 

464 with a decrease in cell viability. In agreement with these findings, Li et al. (2015) 

465 reported that increased intracellular Ca2+ levels led to an activation of the phosphatase 

466 calcineurin, which result in apoptosis via dephosphorylation of the proapoptotic Bcl-2 

467 family member Bad. This calcium release, together with the associated cytochrome C 

468 release, also activates the caspases protein family, well-known apoptotic proteins. Thus, 

469 Feurstein et al. (2011) and Rozman et al. (2017) demonstrated that MC-LR induced cell 

470 death by apoptosis through the activation of caspase proteins in primary murine CGN 

471 cells and primary rat astrocytes, respectively. These findings support our results, since 

472 our most sensitive cytotoxicity biomarker was the MTS assay, which assesses the 

473 mitochondrial health and its activity, which is related with cell death (Tait and Green, 

474 2013). Zhang et al. (2018) demonstrated that 10 µM MC-LR with endoporter caused 

475 cell death in SH-SY5Y cells by using the lactate dehydrogenase (LDH) release assay. In 

476 this experimental model, the authors indicated that MC-LR induced phosphorylation of 
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477 protein Tau, promoting dissociation of Tau from microtubules and aggregation of 

478 phospho-paired helical filaments-Tau, and consequently, neuronal degeneration and cell 

479 death. Cytoskeleton disruption is considered to be one of the cytotoxicity triggering 

480 caused by MC-LR (Hu et al., 2016) based on the alterations induced in vivo by the toxin 

481 in diverse cytosqueletal proteins in brains of rats (Zhao et al., 2015), and in in vitro 

482 experiments (Meng et al., 2011). 

483 Cellular death can be also corroborated through morphological studies. In this 

484 regard, the present work shows how MC-LR induced the most common characteristics 

485 of cellular death such as cytoplasm fragmentation, chromatin condensation, and 

486 nucleolar segregation, endoplasmic reticulum dilatation, lipidic vacuoles, and presence 

487 of heterophagosomes, both in the undifferentiated and differentiated SH-SY5Y cells. In 

488 this sense, Feurstein et al. (2011) found that MC-LR induced a slight impairment of the 

489 neurite network in primary murine CGN cells. In addition, Meng et al. (2011) described 

490 some apoptotic effects such as the reorganization of cytoskeletal architectures in 

491 differentiated PC12 cells exposed to 10 µM MC-LR, which was also observable in the 

492 differentiated SH-SY5Y cells from our study. Moreover, Zhang et al. (2018) described 

493 neurites degeneration and cell death in SH-SY5Y cells exposed to 10 µM MC-LR.

494 Two other toxic mechanisms studied in the present work are the oxidative stress 

495 generation and the AChE disruption. For the oxidative stress evaluation two related 

496 parameters were studied, ROS generation and GSH depletion, since it has been stated 

497 that free-radical damage is one of the toxic mechanisms of MC-LR (Meng et al., 2013). 

498 In the present work, ROS levels did not suffer any alteration in undifferentiated cells 

499 exposed to pure MC-LR. However, Meng et al. (2013) found that concentrations up to 

500 10 µM MC-LR induced significant enhancement of ROS levels at early times, reaching 

501 the highest levels at 3 h after the exposure. Nonetheless, these authors also found that 
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502 after this time, ROS levels started to decline to basal levels due to a rapid response of 

503 cells (differentiated PC12 cells) against MC-LR. Moreover, in the present study, GSH 

504 levels decreased after 24 h of exposure at all the concentrations assayed. This could 

505 confirm the fact that ROS levels appeared unaffected since GSH could act directly 

506 against ROS (Circu and Aw, 2010).  These oxidative stress parameters were not 

507 evaluated in differentiated SH-SY5Y cells since several authors have highlighted that 

508 these cells are more resistant to oxidative stressors due to changes in mitochondrial 

509 metabolism and antioxidant defenses (Cecchi et al., 2008; Cheung et al., 2009; 

510 Schneider et al., 2011). In contrast, diverse in vivo studies have reported the implication 

511 of oxidative stress in the neurotoxicity induced by MC-LR (Li et al., 2014 Mello et al., 

512 2018, Wang et al., 2010; Zhao et al., 2015). 

513 Concerning the AChE activity, this enzyme is a well-known biomarker of 

514 neuronal damage, as the affectation of the cholinergic system could lead to a 

515 malfunctioning of the locomotor system, behavior and cognitive processes (Kist et al., 

516 2012). MCs may influence brain AChE indirectly via the inhibition of serine/threonine 

517 phosphatases (Hu et al., 2016). In our study, a significant increase of AChE activity was 

518 observed when undifferentiated SH-SY5Y cells were exposed to the highest 

519 concentration of MC-LR (37 µg/mL). The increased AChE activity could lead to a 

520 reduction of the cholinergic neurotransmission efficiency because of the lack of 

521 acetylcholine in the synaptic space, possibly contributing to a progressive cognitive 

522 impairment (Teodorak et al., 2015). Despite this, some other authors have demonstrated 

523 that AChE plays a role by promoting or suppressing cell death. An enhanced AChE 

524 activity take part in apoptosis, participating in the formation of apoptosomes or 

525 influencing the expression of apoptotic genes (Park et al., 2004; Ben-Ari et al., 2006; 

526 Zhu et al., 2007). Zhu et al. (2007) also stated that AChE expression during apoptosis is 
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527 associated with calcium mobilization. These facts are in agreement with our findings, 

528 since it has been shown that MC-LR induced cell death by apoptosis at the highest 

529 concentration assayed, correlating this effect with the AChE activity enhancement. On 

530 the contrary, when differentiated SH-SY5Y cells were exposed to 45 µg/mL MC-LR, 

531 no significant changes in the AChE activity were detected compared to the control 

532 group. This could be due to structural and functional modifications of the cells after the 

533 differentiation process, which could impede the effects of MC-LR over the AChE 

534 activity. However, cell death by apoptosis was also observed in these cells, which 

535 implies that not only the rise of the AChE could be involved in the cellular death, but 

536 also other potential factors such as intracellular calcium levels etc., that should be 

537 further investigated. Other authors have also evaluated the AChE activity disruption 

538 induced by MC-LR, but their studies have been carried out in in vivo systems (Kist et 

539 al., 2012; Qian et al., 2018; Wu et al., 2016; 2017), obtaining contradictory and not 

540 conclusive results, depending on the administration route, or the experimental model 

541 assayed, etc. Consequently, further research should be carried out in order to clarify the 

542 effects of MCs on this key enzyme in the nervous system.

543 Concerning CYN, a very scarce number of studies have been carried out in order 

544 to elucidate its neurotoxicity. However, due to its zwitterionic behavior and its small 

545 size, CYN is likely to be taken by the cells through diffusion, being able the crossing 

546 through the blood brain barrier (Florczyk et al., 2014; Valério et al. 2010). In the present 

547 study, CYN showed EC50 values even lower than MC-LR both in undifferentiated and 

548 differentiated cells. In agreement, Takser et al. (2016) found that pure CYN reached an 

549 EC50 value between 0.1 and 10 µM CYN in N2a cells after 24, 48 and 72 h of exposure. 

550 These authors also found that CYN induced almost a total cellular death at a 

551 concentration of 10 µM in RAW264.7 and BV-2 cells. These findings are also in 
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552 agreement with the morphological results, which showed clear signs of cellular death by 

553 apoptosis in both types of SH-SY5Y cells exposed to 1 µg/mL (2.4 µM) and 0.3 µg/mL 

554 (0.7 µM) CYN. Relative to oxidative stress, although numerous works demonstrate in 

555 vitro the oxidative stress induction by CYN in different cell lines (reviewed by Pichardo 

556 et al., 2017), this work investigated the potential effects on ROS and GSH levels in the 

557 undifferentiated SH-SY5Y cell line. However, no effects were found, which is in 

558 disagreement with some in vivo studies, where oxidative stress was a main component 

559 of the cellular damaged observed (Guzmán-Guillén et al., 2015; da Silva et al., 2018). 

560 These discrepancies could be due to the different experimental model or the 

561 concentrations used.

562 In relation to the AChE activity disruption, to our knowledge, no other papers 

563 have been published concerning the effects of CYN on AChE activity in vitro. In the 

564 present work, our results did not indicate any alteration at all CYN concentrations 

565 assayed (up to 1 µg/mL) in undifferentiated cells. This is in agreement with da Silva et 

566 al. (2018), who described no significant differences in the AChE activity in brain of fish 

567 (Hoplias malabaricus) exposed to pure CYN after 7- and 14-days post treatment. In 

568 addition, these authors also reported increased AChE activity by 44% in brain at 7 days 

569 of exposure to aqueous CYN-producing cyanobacteria extracts, returning to control 

570 levels after 14 days. However, when differentiated SH-SY5Y cells were exposed to 0-

571 0.3 µg/mL CYN, cultures showed a significant decrease of AChE activity at all CYN 

572 concentrations. These observations are in agreement with the findings reported by 

573 Guzmán-Guillén et al. (2015), who found a significant inhibition of 35% of AChE 

574 activity in the brain of tilapia subchronically exposed to CYN (10 µg/L CYN) by 

575 immersion in an A. ovalisporum culture for 14 days has been reported. In this study, 

576 after a depuration process (7 days) a recovery of the enzyme was found. These contrary 
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577 responses could be due to differences in the experimental conditions, highlighting the 

578 need to perform further studies.

579 Once the neurotoxic effects of pure MC-LR and CYN were studied separately, it 

580 was interesting to study their effects in combination, since these toxins can appear 

581 together in the nature (Bittencourt-Oliveira et al., 2014; Oehrle et al., 2010; Vasas et al., 

582 2004). In this sense, in the present work the MC-LR + CYN combination resulted more 

583 cytotoxic than each individual toxin after 24 and 48 h of exposure in undifferentiated 

584 SH-SY5Y cells. However, the differentiation process resulted in a lower cytotoxicity of 

585 the toxin combination, as the effect of MC-LR + CYN was similar to that obtained for 

586 MC-LR. The combination interaction was analyzed by the isobolograms method 

587 described by Chou and Talalay (1984), which establish the foundations for assessing 

588 whether cytotoxicity induced by a combination of cyanotoxins is more or less harmful 

589 than the expected for individual cyanotoxins. This method is independent of the mode 

590 of action of the compounds and considers both the potency (EC50, Dm) and the shape 

591 (m) of the dose-effect curve for each toxin (Ruiz et al., 2011a; 2011b). The method 

592 allows a prediction of synergism/antagonism at all effect levels (fa) for a combination of 

593 a different number of cyanotoxins. Depending on the equipotency level of MC-LR and 

594 CYN, it is feasible the cyanotoxin interaction can vary between antagonism and 

595 additivity. To explore this, the IC values at 50% inhibition (IC50) and 90% inhibition 

596 (IC90) were determined. The combined effect of the combination observed on 

597 undifferentiated SH-SY5Y cells is of antagonistic nature, with a slightly tendency to 

598 additivity at higher concentrations. In differentiated cells, only an antagonistic behavior 

599 was observed. However, experimental cytotoxicity and histopathological changes 

600 obtained by the combination appeared to be more related with additivity than 

601 antagonism in both cell types, although the antagonistic effect seems to be probable 
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602 since the effect of the combination was not as intense as it could be expected. Similar 

603 results were obtained by Gutiérrez-Praena et al. (2018) in the hepatic cell line HepG2, 

604 where the combination of both cyanotoxins also presented an antagonistic response in 

605 the cells. This response could be due to complex dissimilar actions of these different 

606 cyanotoxins, although the mechanisms of interaction remain unknown. However, it is 

607 difficult to give an explanation to this phenomenon because of the isobolograms method 

608 only allows quantitative determination of synergism or antagonism, and the elucidation 

609 of the mechanism by which these relations occur is a separate issue that requires a 

610 different kind of approach (Lu et al., 2013). Similar to our results, Takser et al. (2016) 

611 found that a combination of MC-LR, CYN and anatoxin-a in an equimolar proportion 

612 (3.33 µM) induced a significant reduction of cell viability in N2a cells after 24, 48 and 

613 72 h of exposure. Moreover, these authors also found that this combination induced a 

614 total cell death in the RAW264.7 and BV-2 cell lines. They also suggested that the 

615 combination was more toxic compared with the individual compounds. Regarding cell 

616 death, Takser et al. (2016) showed that the combination induced clear signs of cell 

617 apoptosis in all the cell lines used. This is in agreement with our morphological results, 

618 where an intense cell death was observed at the highest concentrations of the 

619 combination assayed for both SH-SY5Y cell types (37 µg/mL MC-LR + 1 µg/mL CYN 

620 and 45 µg/mL MC-LR + 0.3 µg/mL CYN for undifferentiated and differentiated 

621 cultures, respectively), mainly by apoptosis. Concerning oxidative stress and the AChE 

622 activity, no significant changes were observed respect to the control group at any of the 

623 combination concentrations assayed in the undifferentiated cells. However, in the 

624 differentiated SH-SY5Y cells a significant increase of AChE activity was observed at 

625 the highest combination concentration (45 µg/mL MC-LR + 0.3 µg/mL CYN), which 

626 could lead to the consequences previously described.  To our knowledge, this is the first 



ACCEPTED MANUSCRIPT

27

627 report concerning these toxicological parameters, obtaining different responses after the 

628 exposure to the combination and to the isolated toxins, highlighting the importance of 

629 considering more realistic exposure-scenarios. Therefore, further investigations would 

630 be needed to clarify the effects of the MC-LR-CYN-combination on neuronal cells, and 

631 in different experimental models.

632

633 5. Conclusions

634 Our results showed a cytotoxic effect caused by the exposure to MC-LR and 

635 CYN individually and in combination in both undifferentiated and differentiated SH-

636 SY5Y cells. CYN resulted more cytotoxic than MC-LR, but the combination presented 

637 the highest cytotoxicity. However, the isobolograms method establishes that these 

638 toxins together induce, mainly, an antagonistic response. Concerning oxidative stress 

639 biomarkers, only MC-LR and the combination decreased GHS levels at the highest 

640 concentration assayed. Moreover, AChE activity also showed different results for 

641 individual toxins and their combination. The morphology study corroborated those 

642 results observed with the cytotoxicity assays, since cell death by apoptosis was observed 

643 at almost all the concentrations assayed of both toxins and the combination. Taking all 

644 this into account, both cyanotoxins seem to present neurotoxic effects in the SH-SY5Y 

645 cell line. Thus, as the potential neurotoxicity induced by MC-LR and CYN is of interest, 

646 more studies concerning the different mechanisms by which both cyanotoxins can cross 

647 the blood-brain barrier (diffusion, transporters, direct affectation of the barrier, etc.) 

648 would be required. In addition, the affinity of these two cyanotoxins by the different 

649 cells composing the nervous system would be also of interest, together with the study of 
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650 the toxic mechanisms these cyanotoxins can exert and their changes when single and 

651 combination toxin exposure are considered.
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Figure captions

Figure 1. Reduction of tetrazolium salt (MTS), neutral red uptake (NR) and protein 

content (PC) on SH-SY5Y cells after 24 h (A) and 48 h (B) of exposure to 0-100 µg/mL 

MC-LR. All values are expressed as mean ± s.d. ** MTS significantly different from 

control group (p<0.01), §§ all parameters significantly different from control group 

(p<0.01).

Figure 2. Reduction of tetrazolium salt (MTS), neutral red uptake (NR) and protein 

content (PC) on SH-SY5Y cells after 24 h (A) and 48 h (B) of exposure to 0-10 µg/mL 

CYN. All values are expressed as mean ± s.d. ** MTS significantly different from 

control group (p<0.01), ¥ NR significantly different from control group (p<0.05), §§ all 

parameters significantly different from control group (p<0.01).

Figure 3. Reduction of tetrazolium salt (MTS) on SH-SY5Y cells after 24 h (A) and 48 

h (B) of exposure to different concentrations of MC-LR + CYN combinations at a ratio 

of CE50 MC-LR / CE50 CYN (37:1). All values are expressed as mean ± s.d. ** 

significantly different from control (p<0.01) for the three toxins tested, and ¥¥ 

significantly different from control group (p<0.01) for the MC-LR toxin alone.

Figure 4. Combination index (CI)/fraction affected (fa) curve in undifferentiated (A, B) 

and differentiated (C, D) SH-SY5Y cells exposed to a MC-LR and CYN binary 

combination after 24 h and 48 h of exposure. Each point represents the CI ± s.d. at a 

fractional effect. The dotted line (CI = 1) indicates additivity, the area under the dotted 

line points out a synergist effect, and the area above the dotted line signify antagonism.

Figure 5. Reactive oxygen species (ROS) and reduced glutathione (GSH) levels on SH-

SY5Y cells after 4, 8, 12 and 24 hours of exposure to 0-37 µg/mL MC-LR. Cells 

exposed to medium without serum were used as negative control in both assays (C-).  

Cells exposed to 200 µM MnCl2·4H2O and exposed to 1 µM BSO were used as positive 

control (C+) in the case of the ROS and the GSH assays, respectively. All values are 

expressed as mean ± s.d. The significance levels observed are * p<0.05 and ** p<0.01 

significantly different from control group.

Figure 6. Reactive oxygen species (ROS) and reduced glutathione (GSH) levels on SH-

SY5Y clls after 4, 8, 12 and 24 hours of exposure to 0-1 µg/mL CYN. Cells exposed to 

medium without serum were used as negative control in both assays (C-).  Cells 

exposed to 200 µM MnCl2·4H2O and exposed to 1 µM BSO were used as positive 



ACCEPTED MANUSCRIPT

control (C+) in the case of the ROS and the GSH assays, respectively. All values are 

expressed as mean ± s.d. ** Significantly different from control group (p<0.01).

Figure 7. Reactive oxygen species (ROS) and reduced glutathione (GSH) levels on SH-

SY5Y cells after 4, 8, 12 and 24 hours of exposure to different concentrations of MC-

LR + CYN combinations at a ratio of CE50 MC-LR / CE50 CYN (37:1). Cells exposed to 

medium without serum were used as negative control in both assays (C-).  Cells 

exposed to 200 µM MnCl2·4H2O and exposed to 1 µM BSO were used as positive 

control (C+) in the case of the ROS and the GSH assays, respectively. All values are 

expressed as mean ± s.d. The significance levels observed are * p<0.05 and ** p<0.01 

significantly different from control group.

Figure 8. Acetylcholinesterase activity (AChE) on undifferentiated and differentiated 

SH-SY5Y cells exposed to MC-LR (0-37 or 0-45 µg/mL, respectively), CYN (0-1 or 

0.3 µg/mL, respectively) or MC-LR + CYN combination after 24 h. Cells exposed to 

medium without serum were used as negative control in both assays (C-).  Cells 

exposed to 50 nM parathion were used as positive control (C+). All values are 

expressed as mean ± s.d. ** Indicates significant difference from control group value 

(p<0.01).

Figure 9. Morphology of control undifferentiated SH-SY5Y cells after 24 h of exposure 

to nutrient medium without serum. Contrast-phase microscopy of a SH-SY5Y cell 

culture in normal neuronal growth. Cells present cytoplasmic projections contacting 

with other cells (arrows) and the morphological characteristics of an epithelial culture 

(arrowheads).  Bar=50µm (A). Semithin sections of cells culture were stained with 

toluidine blue. Cells in mitosis processes (arrows) with big nucleoli in the nucleus 

(arrowheads). Bar=25µm (B). Transmission electronic microscopy of SH-SY5Y cells 

with euchromatic nuclei (N) and dense nucleoli (n). Free ribosomes (asterisk) and 

scarce mitochondria (arrows). Bar=2 µm (C). 

Figure 10. Morphology of control differentiated SH-SY5Y cells after 24 h of exposure 

to nutrient medium without serum. Contrast-phase microscopy of a SH-SY5Y cell 

culture in normal neuronal growth. Cells present cytoplasmic projections contacting 

with other cells (arrows).  Bar=100µm (A). Semithin sections of cells culture were 

stained with toluidine blue. Cells in mitosis processes (asterisk). Endoplasmic reticulum 

dilatations (arrowheads) and lipidic vacuoles (arrows). Bar=25µm (B). Transmission 
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electronic microscopy of SH-SY5Y cells presenting numerous microtubules and 

intermediate filaments (arrowheads). Bar=2 µm (C). 

Figure 11. Morphology of undifferentiated SH-SY5Y cells after 24 h of exposure to 

MC-LR. Phase-contrast microscopy of cells exposed to 37 µg/mL MC-LR. Rounded 

cells (arrows) with clear signs of cell death. Bar=50 µm (A). Semithin sections of cells 

culture were stained with toluidine blue. Cells exposed to 37 µg/mL MC-LR. Nuclei 

with condensed chromatin (arrows) as clear sign of cell death. Bar=20 µm (B). 

Transmission electronic microscopy of SH-SY5Y cells exposed to 37 µg/mL MC-LR. 

Irregular nuclei (N), pseudopods retraction, appearance of blisters in the cellular 

membrane (arrows), and presence of apoptotic bodies (arrowheads). Chromatin 

condensation (Ch) and nucleolar segregation of apoptotic nuclei (N). Nucleolus 

(n).Bar=2.5 µm (C, D). Phase-contrast microscopy of cells exposed to 9.25 µg/mL MC-

LR. Enlarged cells with cytoplasmic elongations as lamellipodiums (arrows). Bar=50 

µm (E). Semithin sections of cells culture were stained with toluidine blue. Cells 

exposed to 18.5 µg/mL MC-LR. Cells with irregular shape (arrows) presenting big 

nucleoli (arrowheads). Bar=20 µm (F). Transmission electronic microscopy of SH-

SY5Y cells exposed to 18.5 and 9.25 µg/mL MC-LR. Altered mitochondria rounded by 

endoplasmic reticulum cisternae (arrows) forming autophagosomes (asterisk). 

Euchromatic nucleus (N) with a big nucleolus (n) where it is possible to observe the 

granulas component (GC), the dense fibrillary component (DFC) and the fibrillary 

center (FC). Bar=2 µm (G, H).

Figure 12. Morphology of differentiated SH-SY5Y cells after 24 h of exposure to MC-

LR. Phase-contrast microscopy of cells exposed to 45 µg/mL MC-LR. Rounded cells 

(arrows) with clear signs of cell death. Bar=100 µm (A). Semithin sections of cells 

culture were stained with toluidine blue. Cells exposed to 45 µg/mL MC-LR. Presence 

of numerous apoptotic bodies (arrows) as clear sign of cell death. Presence of dilated 

endoplasmic reticulum (arrowheads). Bar=25 µm (B). Transmission electronic 

microscopy of differentiated SH-SY5Y cells exposed to 45 µg/mL MC-LR. Chromatin 

condensation (Chr), presence of numerous mitochondria (Mit), and nucleolar 

segregation of apoptotic nuclei (N). Nucleolus (n).Bar=2.5 µm (C, D). Semithin 

sections of cells culture were stained with toluidine blue. Cells exposed to 22.5 µg/mL 

MC-LR. Enlarged cells with cytoplasmic elongations as lamellipodiums (arrows) and 

presence of apoptotic cellular debris (arrowheads). Bar=25 µm (E, F). Transmission 
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electronic microscopy of differentiated SH-SY5Y cells exposed to 22.5 µg/mL MC-LR.  

Cells with irregular shape presenting nuclei (N) with chromatin condensation (Chr). 

Bar=2 µm (G). Semithin sections of cells culture were stained with toluidine blue. Cells 

exposed to 11.25 µg/mL MC-LR. Numerous dilated endoplasmic reticuli (arrows) with 

protein condensation (arowheads). Bar=25 µm (H).  Transmission electronic 

microscopy of differentiated SH-SY5Y cells exposed to 11.25 µg/mL MC-LR. Presence 

of mitochondria (Mit), protein condensation (arrowheads) and lipidic vacuoles (Lp). 

Bar=2 µm (I, J).

Figure 13. Morphology of undifferentiated SH-SY5Y cells after 24 h of exposure to 

CYN. Semithin sections of cells culture were stained with toluidine blue. Cells exposed 

to 1 µg/mL CYN. Detention of cellular growth and decrease of cell number caused by 

cellular death by apoptosis. Apoptotic bodies (arrows). Heterochromatin in apoptotic 

nucleus (arrowhead). Bar=20µm (A, B). Transmission electronic microscopy of SH-

SY5Y cells exposed to 1 µg/mL CYN. Fractionated cytoplasm and formation of 

apoptotic bodies (arrows). Condensed chromatin in the inner face of the nucleolar 

membrane (asterisks). Fibrillar component of the nucleoulus (n). Nucleus (N). Bar=2µm 

(C). Semithin sections of cells culture were stained with toluidine blue. Cells exposed to 

0.5 µg/mL CYN. No evidence of morphological alterations. Bar=20µm (D). 

Transmission electronic microscopy of SH-SY5Y cells exposed to 0.5 and 0.25 µg/mL 

CYN. Euchromatic nuclei with irregular shape (N). Cytoplasm with numerous free 

ribosomes (asterisk). Mitochondria (arrows). Bar=2µm (E).

Figure 14. Morphology of differentiated SH-SY5Y cells after 24 h of exposure to CYN. 

Phase-contrast microscopy of cells exposed to 0.3 µg/mL CYN. Rounded cells (arrows) 

with clear signs of cell death. Bar=100 µm (A). Semithin sections of cells culture were 

stained with toluidine blue. Cells exposed to 0.3 µg/mL CYN. Presence of numerous 

apoptotic bodies (arrows) as clear sign of cell death. Presence of dilated endoplasmic 

reticulum (arrowheads). Bar=25 µm (B). Transmission electronic microscopy of SH-

SY5Y cells exposed to 0.3 µg/mL CYN. Condensed chromatin in the inner face of the 

nucleolar membrane (Chr). Bar=2µm (C). Phase-contrast microscopy of cells exposed 

to 0.15 µg/mL CYN. Rounded cells (arrows) with clear signs of cell death. Bar=100 µm 

(D). Semithin sections of cells culture were stained with toluidine blue. Cells exposed to 

0.15 µg/mL CYN. Presence of dilated endoplasmic reticulum (arrowheads) and lipidic 

vacuoles (arrows). Bar=25 µm (E). Transmission electronic microscopy of SH-SY5Y 
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cells exposed to 0.15 µg/mL CYN. Condensed chromatin (Chr) in apoptotic nucleus 

(N). Bar=2µm (F). Semithin sections of cells culture were stained with toluidine blue. 

Cells exposed to 0.075 µg/mL CYN. Presence of numerous apoptotic bodies (arrows) as 

clear sign of cell death. Bar=25 µm (G). Transmission electronic microscopy of SH-

SY5Y cells exposed to 0.075 µg/mL CYN. Euchromatic nuclei with irregular shape (N). 

Dilate endoplasmic reticulum (ER) and lipidic vacuoles (Lp). Bar=2 µm (H).

Figure 15. Morphology of undifferentiated SH-SY5Y cells after 24 h of exposure to 

MC-LR + CYN. Semithin sections of cells culture were stained with toluidine blue. 

Cells exposed to 37 µg/mL MC-LR + 1 µg/mL CYN. Intense cellular death by 

apoptosis. Heterochromatin accumulations in apoptotic nuclei (arrows). Cellular debris 

as apoptotic bodies (arrowheads). Bar=20µm (A). Transmission electronic microscopy 

of SH-SY5Y cells exposed to 37 µg/mL MC-LR + 1 µg/mL CYN. Heterochromatin 

condensation in the inner face of the nuclear membrane (asterisks). Nucleolar 

segregation with the fibrillary component (n). Apoptotic bodies formation (arrows). 

Autophagy vacuoles in the cytoplasm (arrowheads). Nucleus (N). Bar=2µm (B). 

Semithin sections of SH-SY5Y cells stained with toluidine blue. Cells exposed to 18.5 

µg/mL MC-LR + 0.5 µg/mL CYN. Blister formation in cellular surface (arrows). 

Apoptotic bodies (arrowheads). Bar=20µm (C, D).

Figure 16. Morphology of differentiated SH-SY5Y cells after 24 h of exposure to MC-

LR + CYN. Transmission electronic microscopy of SH-SY5Y cells exposed to 45 

µg/mL MC-LR + 0.3 µg/mL CYN. Apoptotic nucleus (N) with heterochromatin 

condensation (Chr). Lipidic degeneration (Lp). Dilated endoplasmic reticulum (ER) 

with protein condensation (arrowheads). Pre-apoptotic bodies (arrows). 

Heterophagosome (Het). Nucleoulus (n) with the presence of a nuclear body (NB). 

Bar=2 µm (A, B, C, D). Semithin sections of cells culture were stained with toluidine 

blue. Cells exposed to 45 µg/mL MC-LR + 0.3 µg/mL CYN. Clear formation of 

apoptotic bodies (arrowheads). Bar=25 µm (E). Cells exposed to 22.5 µg/mL MC-LR + 

0.15 µg/mL CYN and 11.25 µg/mL MC-LR + 0.075 µg/mL CYN. No significant 

alterations observed. Bar=25 µm (F, G).
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Highlights

1. Microcystin-LR and cylindrospermopsin induced cytotoxicity in SH-SY5Y cells.

2. Both cyanotoxins presented an antagonistic effect when in combination.

3. The acetylcholinesterase activity vary with the exposure to the toxins.

4. Apoptosis was the main cell death mechanism observed by microscopy.
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MTS assay NR assay PC assay
Toxin Cell type Time 

(h) EC50 values 
(µg/mL)

Significant results 
(from) (µg/mL)

EC50 values 
(µg/mL)

Significant results 
(from) (µg/mL)

EC50 values 
(µg/mL)

Significant results 
(from) (µg/mL)

24 36.21 ± 1.89 20 67.69 ± 1.65 40 >100 40Undifferentiated
48 20.80 ± 2.08 20 24.27 ± 0.45 20 29.58 ± 2.70 20
24 44.30 ± 0.91 20 - - >100 20

MC-LR
Differentiated 48 37.01 ± 1.71 20 - - >100 40

24 0.87 ± 0.13 0.2 2.26 ± 0.29 0.5 4.37 ± 1.34 0.75Undifferentiated 48 0.32 ± 0.08 0.2 1.27 ± 0.27 0.4 2.01 ± 0.29 0.4
24 0.30 ± 0.05 0.1 - - >10 2.5CYN

Differentiated 48 0.53 ± 0.02 0.1 - - >10 1

Table 1. Cytotoxicity results of undifferentiated and differentiated SH-SY5Y cells exposed to MC-LR and CYN. Results are expressed as mean ± 
s.d.
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CI values (undifferentiated cells)

Cyanotoxin Time 
(hours)

Dm 
(µg/mL) m r

CI50 CI75 CI90

MC-LR 24 44.02 5.20 0.86603

48 19.13 3.51 0.99320

CYN 24 1.01 2.20 0.98604

48 0.58 1.66 0.97832

MC-LR + 
CYN 24 29.30 5.44 0.96064 1.45 Ant 1.24 Ant 1.08 Add

48 16.17 4.25 0.99509 1.60 Ant 1.31 Ant 1.09 Add

Table 2. The parameter m, Dm and r are the antilog of x-intercept, the slope and the linear 

correlation coefficient of the median-effect plot, which signifies the shape of the dose-

effect curve, the potency (IC50), and the conformity of the data to the mass-action law, 

respectively. Dm and m values are used for calculating the CI value (CI< 1, indicates 

synergism (Syn); CI = 1, indicates additive effect (Add); CI > 1, indicates antagonism 

(Ant). IC50, IC75 and IC90 are the doses required to inhibit proliferation 50, 75 and 90%, 

respectively. CalcuSyn software provide automatically the IC50, IC75 and IC90 values.



ACCEPTED MANUSCRIPT

CI values (differentiated cells)

Cyanotoxin Time 
(hours)

Dm 
(µg/mL) m r

CI50 CI75 CI90

MC-LR 24 30.17 4.14 0.96974

48 28.09 4.06 0.97042

CYN 24 0.25 2.32 0.96974

48 0.23 2.53 0.96292

MC-LR + 
CYN 24 27.32 2.37 0.99939 1.65 Ant 1.84 Ant 2.08 Ant

48 26.50 3.00 0.99411 1.72 Ant 1.77 Ant 1.83 Ant

Table 3. The parameter m, Dm and r are the antilog of x-intercept, the slope and the linear 

correlation coefficient of the median-effect plot, which signifies the shape of the dose-

effect curve, the potency (IC50), and the conformity of the data to the mass-action law, 

respectively. Dm and m values are used for calculating the CI value (CI< 1, indicates 

synergism (Syn); CI = 1, indicates additive effect (Add); CI > 1, indicates antagonism 

(Ant). IC50, IC75 and IC90 are the doses required to inhibit proliferation 50, 75 and 90%, 

respectively. CalcuSyn software provide automatically the IC50, IC75 and IC90 values.


