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Abstract: The Wigner formalism in the Heisenberg picture constitutes a bridge that connects Quantum
Optics to Stochastic Optics. The vacuum field appears explicitly in the formalism, and the wavelike
aspects of light are emphasised. In addition, the zeropoint intensity as a threshold for detection is a
common denominator in both theories. In this paper, after summarising the basic rules of the Wigner
approach and its application to parametric down-conversion, some new results are presented that
delve into the physical meaning of the zeropoint field in optical quantum communication. Specifically,
the relationship between Bell-state distinguishability and the number of sets of zeropoint modes
that take part in the experiment is analysed in terms of the coupling between the phases of the
different fields involved and the subtraction of the zeropoint intensity at the detectors. Additionally,
the connection between the compatibility theorem in quantum cryptography and zeropoint field
is stressed.

Keywords: stochastic electrodynamics; Wigner representation; zeropoint field; parametric
down-conversion; entanglement; quantum communication; Bell-state measurement

1. Introduction

Stochastic Electrodynamics (SED) was independently developed by T. W. Marshall [1–3] and
T. Boyer [4,5] in the 1960s in order to give a classical explanation of quantum phenomena in terms
of a real stochastic zeropoint field. While notable successes have been achieved by SED through
time, some important problems have not yet been solved. From our point of view, the not-yet-solved
fundamental problems of quantum mechanics require further research into the arena of SED. Perhaps
these problems will be overcome when we are able to understand how the zeropoint field affects
things, including gravity [6,7].

A branch of SED in the field of optics, the so-called Stochastic Optics (SO), devised by
T. W. Marshall and E. Santos [8,9], emerged in the early 1980s as an alternative to Quantum Optics
(QO). The goal of SO is to explain the experimental results using the zeropoint field (ZPF) instead of
the photon concept as a particle, returning to the idea of light as something intrinsically undulatory.
The detection of photons is understood from the subtraction to the total intensity of the corresponding
one to pure zeropoint field at the position of the detector. It was in the 1990s when QO and SO found a
bridge through quantum mechanics in phase space [10,11]. The Wigner formalism of QO resumes the
idea of the zeropoint as a threshold for detection, and explicitly shows the effects of the vacuum field
in the experiments. In general, the Wigner distribution is not positive-definite, which constitutes a
break with respect to the point of view of SO. However, as it has been argued, when the signals are
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described according to actual experimental parameters the area of negativity of the Wigner function in
phase space decreases [12].

For a long time, experiments with photons produced in parametric down-conversion (PDC)
have been performed with the aim of showing non-classical aspects of light [13–15] and testing Bell’s
inequalities [16], as well as in the field of quantum communication [17]. The Wigner representation of
quantum optics in the Heisenberg picture (WRHP) opened the possibility of studying PDC experiments
using classical evolution equations by simply adding the zeropoint field at the entrance of the crystal,
and by taking into consideration the vacuum inputs at the different linear optical devices placed
between the source and the detectors.

The WRHP approach was applied to type-I PDC [18,19] and type-II PDC [20] within a Hamiltonian
model, along with the theory of single and joint detection. The positivity of the Wigner function in
PDC opened the door to a stochastic interpretation of the generated fields and its propagation through
linear optical devices. Precisely, polarisation entanglement is understood in terms of correlated
waves through the coupling of the vacuum field with the laser beam inside the nonlinear source.
Experiments on non-classical aspects of light and Bell’s inequalities were analysed showing that the
WRHP formalism constitutes an alternative way of analysing the experiments for calculation and
interpretation purposes [21]. The quantum behavior was then transferred to the detection due to the
appearance of “negative probabilities”, given that the total intensity can remain below the zeropoint
threshold for certain realisations of the field.

Furthermore, the theory of PDC was developed starting from the quantised Maxwell equations
and passing to the Wigner formalism, in order to calculate the correlation time between the signal
and idler fields [22] and the spectrum of light [23] in terms of typical experimental parameters.
A similar treatment was given to the study of parametric down and up conversion [24,25]. For related
experiments involving the process of parametric up conversion of the vacuum, see the work in [26–28].

In [20,23], detailed discussions about the similarities and differences between the WRHP approach
of Bell-type experiments using PDC, and a local realistic theory in which the hidden variables are
represented by the ZPF amplitudes, can be consulted. Some reasonable hypotheses concerning the
diminishment of the intensity fluctuations, by means of integrations over the surface and the time
window of the detectors, could give rise to a possible way to link them by performing a modification
of the quantum theory of detection in order to eliminate the “negative probabilities”. In [29,30], a local
hidden variable model based on a real zeropoint field is presented, along with the conditions for this
model to be compatible with the experimental results. Nevertheless, given the constraint imposed
by the necessity of a minimum value of the intensity fluctuations [31,32], it prevents a full agreement
between these models and the results concerning joint detection experiments.

In recent years, the WRHP formalism has been applied to the analysis of the influence of the
vacuum field in experiments on quantum communication using PDC: (i) The first study focused on
the Ekert’s cryptography protocol and the fundamental role of the ZPF in eavesdropping attacks [33].
(ii) Partial and complete Bell-state analyses have been investigated, and it has been shown that the
number of vacuum inputs at the experimental setup is closely related to the capacity to distinguish Bell
states [34,35]. (iii) Entanglement swapping and the Rome teleportation experiment have been studied
in order to give a different point of view of teleportation, based on the correlations mediated by the
zeropoint field. The projection postulate is replaced by the consideration of a suitable contribution of
vacuum inputs at the analysers [36,37].

The WRHP formalism has the peculiarity of highlighting the importance of the vacuum field
in the transport, conformation and measurement of optical quantum information. Its relevance as
an interpretive alternative to orthodox QO, and consistent to SO, is represented by the following
underlying assumptions: (i) the quantum information is stored in the vacuum amplitudes, which
are amplified at the source; (ii) entanglement is just an interplay of correlated waves; and (iii) the
idle channels located inside the analysers constitute a fundamental source of noise that limits the
information that can be extracted in the measurement.
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In this paper, we investigate the role of the ZPF amplitudes as hidden variables in optical quantum
communication. Although this step is given without having solved the problem of detection in SO,
new insights are achieved that reinforce the role of the zeropoint field in the experiments.

The paper is organised as follows. In Section 2, the basic aspects of WRHP formalism of PDC are
reviewed, along with recent contributions of this approach to Bell-state distinguishability. In Section 3,
we study the relationship between Bell-state measurement (BSM), the role played by the vacuum
amplitudes as stochastic variables, and the number of sets of zeropoint modes in a basic experiment
in which the two photons do not interact. This relation has been previously demonstrated by a
heuristic approach, and it has been applied to BSM of two photons hyperentangled in momentum and
polarisation [35]. Section 4 is devoted to investigating the relationship between zeropoint field and the
compatibility theorem in quantum key distribution. In Section 5, we analyse a teleportation experiment
based on the Popescu’s scheme [38], in which the qubit to be teleported is encoded in the momentum
degree of freedom of one of the two entangled photons in polarisation. In [37], the relationship
between zeropoint field and the distinguishability of the four one-photon polarisation–momentum
Bell-states was demonstrated by a heuristic argument, and here we give a fully consistent proof based
on the coupling between the phases of the fields involved. Finally, in Section 6, we discuss the main
conclusions of our work.

The common denominator in the analyses given in Sections 3–5 is the calculation of the field
amplitudes at the detectors according to the corresponding setup, along with the expression of the
intensity of light in terms of the modulus and phase of the different fields involved. The noise
subtraction at the detectors constitute the last step of each analysis. New physical insights are given
according to the consideration of the underlying assumptions concerning the role of the vacuum field
supported by SO.

2. The WRHP Formalism of QO

In this section, the fundamental aspects of the Wigner formalism in the Heisenberg picture are
reviewed [18–20]. From now on, we refer to the electric field corresponding to narrow light beams,
containing frequencies in an interval between ωmin and ωmax, and wave vectors whose transversal
components are limited by an upper bound:

ωmin < ωk < ωmax, |ktr| � ωmin

c
. (1)

The electric field operator is expressed by the sum of two mutually conjugated operators

Ê(r, t) = Ê(+)(r, t) + Ê(−)(r, t), (2)

Ê(+)(r, t) = i ∑
[k],λ

(
h̄ωk
2L3

) 1
2

εεεk,λ âk,λ(t)eik·r. (3)

L3 is the normalisation volume and âk,λ(t) is the annihilation operator for a photon with wave
vector k and polarisation vector εεεk,λ, where ωk = c|k|. The sum is restricted to the set of modes that
verify Equation (1).

Equation (3) corresponds to the Heisenberg picture, where all time dependence is included in
the creation and annihilation operators â†

k,λ(t) and âk,λ(t). The evolution of the operator âk,λ(t) is
described by the equation:

˙̂ak,λ =
1
ih̄
[âk,λ, Ĥ], (4)

where Ĥ is the Hamiltonian. For instance, for the free electromagnetic field

âk,λ(t) = âk,λ(0)e
−iωkt. (5)
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For situations in which there is an interaction between electromagnetic fields, this dependence is
more complex and contains all the dynamics of the process. In the Heisenberg picture, the state of the
field is represented by a time independent density operator ρ̂.

The Wigner transformation establishes a correspondence between the density operator and a
distribution function in phase space:

W(α, α∗) = Tr[ρ̂Φ(α, α∗)] ; α ≡
{

αk,λ
}

, (6)

where
Φ(α, α∗) = ∏

[k,λ]

1
π2

∫
eβk,λ(â†

k,λ−α∗k,λ)−β∗k,λ(âk,λ−αk,λ) d2βk. (7)

The operators Ê(+)(r, t) and Ê(−)(r, t) are replaced by complex amplitudes, the annihilation
operators âk(t) being replaced by random variables αk(t), and the creation operators â†

k(t) by α∗k(t).
Then, the electric field of a light beam is represented by the amplitude:

E(+)(r, t) = i ∑
[k],λ

(
h̄ωk
2L3

) 1
2

εεεk,λαk,λ(t)eik·r. (8)

The evolution equation for the amplitude αk,λ(t) is given by the Moyal equation [39]. A crucial
property is that this equation coincides with the one derived from the application of the Heisenberg
equation of motion (see Equation (4)) in the case that the Hamiltonian is quadratic, which gives rise to
linear evolution equations.

2.1. The Vacuum Field

The vacuum state is represented by a stochastic field:

Ev(r, t) = E(+)
v (r, t) + E(−)

v (r, t), (9)

where

E(+)
v (r, t) = i ∑k,λ

(
h̄ωk
2L3

) 1
2

αk,λεεεk,λei(k·r−ωkt) . (10)

The lowercase letter “v” refers to vacuum or zeropoint field. The amplitudes α∗k,λ and αk,λ
are distributed according to the Wigner function for the vacuum state, which corresponds to the
Gaussian [19]:

W(α) = ∏k,λ
2
π e−2|αk,λ |2 . (11)

From Equation (11), the following correlation properties are fulfilled:

〈
αk,λαk′ ,λ′

〉
≡
∫

dαW (α) αk,λαk′ ,λ′ = 0, (12)

〈
α∗k,λα∗k′ ,λ′

〉
≡
∫

dαW (α) α∗k,λα∗k′ ,λ′ = 0, (13)〈
αk,λα∗k′ ,λ′

〉
≡
∫

dαW (α) αk,λα∗k′ ,λ′ =
1
2

δk,k′δλ,λ′ . (14)

The consideration of Equations (11)–(14) in the study of the stochastic properties of the zeropoint
radiation entails that the ZPF is a field of zero mean value, with an average energy per mode equal to
(1/2)h̄ω, and identical fluctuations.
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2.2. The Theory of Detection

From now on, we work with slowly varying fields F(+)(r, t) instead of the amplitudes E(+)(r, t),
the relation between them being

F(+)(r, t) = eiωstE(+)(r, t), (15)

where ωs is the central frequency of the beam. The relationship between F(+)(rB, t) and F(+)(rA, t) is

F(+) (rB, t) = F(+)
(

rA, t− rAB
c

)
eiωs

rAB
c , (16)

where rAB = rB − rA and rAB = |rAB|.
In the Wigner formalism, the expression for the single detection probability is:

PA ∝ 〈IA − Iv,A〉, (17)

where IA ∝ EA
(+) · EA

(−) = FA
(+) · FA

(−), in appropriate units, is the intensity of light arriving at
the detector, and Iv,A corresponds to the average intensity of the zeropoint field. Equation (17) is
completely equivalent to the standard single detection theory in the Hilbert formalism, which is based
on the normal ordering of operators. This equation is similar but not equivalent to the corresponding
one in SO:

PA ∝ {IA − Iv,A}+, (18)

where {}+ means putting zero if the bracket is negative [9].
Let us now consider joint detection. The corresponding expression is more complicated and

involves more terms than the mere subtraction of the zeropoint intensity at the detectors [19].
In experiments where the field operators at two detectors A and B commute, as in the case of Bell-type
experiments, the joint detection probability can be expressed:

PAB ∝ 〈(IA − Iv,A)(IB − Iv,B)〉. (19)

The proportionality constants in Equations (17) and (19) are irrelevant for many purposes,
including the test of those “Bell’s inequalities” which are derived using additional hypotheses [40].
However, those constants are very important for the test of genuine Bell’s inequalities, derived from
local realism alone. Consequently, we write Equations (17) and (19) in the following form:

Pj =
∫

W(α)Qj(α, φj)dα, (20)

PAB =
∫

W(α)QA(α, φA)QB(α, φB)dα, (21)

Qj(α, φj) = ηj(hνj)
−1
∫

dtj

∫
d2rj

[
Ij(α, φj, rj, tj)− Iv,j

]
; j = A, B. (22)

IA and IB are complicated functions of the amplitudes α which take account of the evolution,
including the effect of the source and the various optical devices present in the experiment. These
devices may contain controllable parameters which have been labeled as φA and φB. The integrals
extend over an appropriate detection window and the surface aperture of the detector. Finally, ηj is the
quantum efficiency of the detector.

2.3. Type II PDC in the WRHP Formalism

Parametric down-conversion is characterised by having a quadratic Hamiltonian which gives rise
to linear evolution equations for the mode operators. The state (independent of time) that characterises
the laser beam is a coherent state of the electromagnetic field, which in the Wigner formalism consists
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of the superposition of a classical wave and zeropoint radiation. As a result of the coupling between
the pumping V(r, t) = (Vp exp[i

(
kp · r−ωpt

)
] + c.c.)u, u being a unit vector perpendicular to kp,

and the zeropoint field inside the crystal (see Equation (10)), two type-II radiation cones are generated,
which are composed of pairs of conjugated beams with orthogonal polarisations [20]:

F(+)
e (r, t) = F(+)

e (r, t)εεεe

= [F(+)
e,v (r, t) + gVpGF(−)

o,v (r, t) + g2|Vp|2 JF(+)
e,v (r, t)]εεεe,

(23)

F(+)
o (r, t) = F(+)

o (r, t)εεεo

= [F(+)
o,v (r, t) + gVpGF(−)

e,v (r, t) + g2|Vp|2 JF(+)
o,v (r, t)]εεεo,

(24)

where e stands for extraordinary (i.e., horizontal “H”) polarisation, o stands for ordinary (i.e., vertical
“V”) polarisation, and εεεe · εεεo = 0. Here, F(+)

e,v and F(+)
o,v are the incoming vacuum fields, i.e.,

F(+)
e,v (r, t) = i ∑

[k]e

(
h̄ωek
2L3

) 1
2

eik·rei(ωe−ωek)tαek, (25)

F(+)
o,v (r, t) = i ∑

[k′ ]o

(
h̄ωok′

2L3

) 1
2

eik′ ·rei(ωo−ωok′ )tαok′ . (26)

G and J are linear operators defined elsewhere [20]. Their main effect is to select a set of modes
that fulfills the matching conditions k + k′ ≈ kp and ωk + ωk′ ≈ ωp.

By using Equation (16), the cross-correlations, at any position and time, can be expressed in terms
of the corresponding ones at the centre of the nonlinear source. We have:

〈F(+)
e (0, t)F(+)

o (0, t′)〉 = gVpν(t′ − t), (27)

where ν(t′ − t) is a function which vanishes when |t′ − t| is greater than the correlation time between
the amplitudes F(+)

e and F(+)
o . On the other hand, by considering the amplitude F(+)

e at the position r
and times t and t′, the following autocorrelation property holds:

〈F(+)
e (r, t)F(−)

e (r, t′)〉 − 〈F(+)
e,v (r, t)F(−)

e,v (r, t′)〉 = g2|Vp|2µ(t′ − t), (28)

where µ(t′ − t) is a correlation function which goes to zero when |t′ − t| is greater than the coherence
time of PDC light. A similar expression holds for F(+)

o .
In PDC experiments involving polarisation, the following expression for the joint detection

probability is used for calculation purposes:

PAB(r, t; r′, t′) ∝ ∑
λ

∑
λ′
|〈F(+)

λ (φA; r, t)F(+)
λ′ (φB; r′, t′)〉|2. (29)

2.4. Entanglement and Zeropoint Field

A key point of the WRHP formalism is the description of polarisation entanglement. In the
standard Hilbert-space description entanglement corresponds to a superposition in tensor product
of Hilbert spaces. For instance, the four polarisation Bell states constitute a basis for two photons
maximally entangled in polarisation:

|Ψ±〉 = 1√
2
[|H〉1|V〉2 ± |V〉1|H〉2], (30)
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|Φ±〉 = 1√
2
[|H〉1|H〉2 ± |V〉1|V〉2]. (31)

In type-II PDC, due to the matching conditions, the ordinary and extraordinary beams exit
in the form of two cones, with a specific polarisation each. These two cones intersect in two
points. Therefore, the beams in these intersections give rise to an interplay of correlated waves,
through the distribution of the vacuum amplitudes in the different polarisation components of
the field [20]. For instance, the quantum predictions corresponding to the polarisation states
|Ψ±〉 = (1/

√
2)(|e〉1|o〉2 ± |o〉1|e〉2)|k1〉|k2〉 are reproduced in the Wigner framework by considering

the following two correlated beams

F(+)
1 (r, t) = F(+)

e (r, t; {αk1,e; α∗k2,o})i1 + F(+)
o′ (r, t; {αk1,o; α∗k2,e})j1, (32)

F(+)
2 (r, t) = F(+)

e′ (r, t; {αk2,e; α∗k1,o})i2 + eiχF(+)
o (r, t; {αk2,o; α∗k1,e})j2, (33)

where χ = 0 (χ = π) stands for |Ψ+〉 (|Ψ−〉). {αki ,λ} ≡ {αk,λ; k ∈ [k]i} (i = 1, 2; λ = e, o)
represents the set of zeropoint amplitudes corresponding to the polarisation λ of the entering
zeropoint beam with wave vector ki (see Figure 1). The sets of zeropoint amplitudes that appear
in each electric field component have been included for a better understanding of the correlation
properties that characterise entanglement in the WRHP formalism. In Equations (32) and (33), the only
non-vanishing cross-correlations are those concerning e ↔ o and e′ ↔ o′, which is a consequence
of Equations (12)–(14). On the other hand, the states |Φ±〉 = (1/

√
2)(|e〉1|e〉2 ± |o〉1|o〉2)|k1〉|k2〉 are

described using the correlated beams [33]:

F(+)
1 (r, t) = F(+)

e (r, t)i1 + F(+)
o′ (r, t)j1 (34)

F(+)
2 (r, t) = eiχF(+)

o (r, t)i2 + F(+)
e′ (r, t)j2, (35)

where χ = 0 (χ = π) stands for |Φ+〉 (|Φ−〉).

 
v',oF  

 
v',eF

 

k2 

 
v,eF  

k1 
 

v,oF
 

Laser 

Source

 
1F  

 
2F

 

Figure 1. Polarisation entanglement arises as a consequence of the coupling of the laser and four sets
of zeropoint modes, two for each input direction.

2.5. ZPF and the Limits on Optimal BSM

Bell-state analysis is a key aspect in quantum information [41]. In optical communication, it is
well-known that a complete distinguishability of the four Bell-states of two photons entangled in
one degree of freedom (see Equations (30) and (31)) is not possible, by using only linear evolution
and local measurement (LELM) [42]. Hyperentanglement is a good resource for getting complete
distinguishability [43]. However, increasing the dimensionality of the Hilbert space also opens the
possibility of exploring the capacity for maximal distinguishability.
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This subject has brought about a lot of theoretical works, of which we summarise the main
results [44]. Let us consider two bosons entangled in n dichotomic degrees of freedom. The dimension
of the Hilbert space is 4n, and the maximal distinguishability of Bell-like states using LELM is bounded
above by 2n+1: a single detection event at any of the 2n+1 detectors does not discriminate Bell states,
so that the maximal distinguishability is bounded by the 2n+1 possibilities for the second detection.
The maximum number of distinguishable Bell-states classes depends on the way in which the two
particles propagate through the setup. If they are not brought together, the maximal distinguishability
is 2n (each single detection area contains 2n detectors). If the two bosons interact at the apparatus,
the maximum number of Bell-state classes that can be distinguished is equal to 2n+1 − 1. For instance,
for n = 1, the dimension of the Hilbert space is 4, the maximal distinguishability is equal to 2 if the
two particles are not mixed at the apparatus, and 3 if they interact. Then, for n = 1, it is not possible to
distinguish the four Bell-states.

The original contribution of the WRHP approach to the subject of optical BSM is based on the
counting of the different zeropoint inputs at the setup. Hyperentanglement implies the “activation” of
a greater number of sets of ZPF modes at the source. As it has been proved elsewhere [35], the upper
bound to maximal distinguishability (2n+1) just corresponds to the number of sets of ZPF modes that
are amplified at the source of entanglement (NZPF,S = 2n+1). On the other hand, measuring implies
the existence of a fundamental noise inside the analyser, which limits the information that can be
obtained. The zeropoint modes entering the idle channels inside the analyser must be subtracted, in an
appropriate manner, to the number of sets of amplified ZPF modes entering the analyser, in order to
obtain the maximal distinguishability.

If the two photons propagate from the source to the detectors via separated spatial channels,
i.e., the photons do not interact, it has been demonstrated that the maximal distinguishability, Nmax,class,
is equal to the difference between the number of sets of amplified ZPF modes that enter the analyser,
NZPF,A, and the number of sets of ZPF modes entering the area corresponding to a single detection
event, Nnoise

Single det. area, which is located inside the analyser. Hence,

Nmax,class = NZPF,A − Nnoise
Single det. area , (36)

where NZPF,A coincides to NZPF,S in the case in which there are no additional ZPF inputs between the
source and the analyser (NZPF,A=NZPF,S=2n+1). On the other hand,

Nnoise
Single det. area =

Nnoise
ZPF,A

2
, (37)

with Nnoise
ZPF,A=2n+1 being the total number of sets of ZPF modes that enter the idle channels inside the

analyser. In this way,
Nmax,class = 2n+1 − 2n = 2n. (38)

This result coincides with the one predicted in [44]. The case n = 2 (polarisation–momentum
hyperentanglement) has been studied with the WRHP approach in [35]. On the other hand,
Equation (36) has been recently applied to the analysis of the four polarisation–momentum Bell-states
corresponding to only one photon [37].

3. Polarisation Entanglement, Zeropoint Field, and BSM

The motivation for this section comes from the following question: How do the ZPF amplitudes
act in BSM, so that Equation (36) is fulfilled in the case n = 1? Let us consider the following basic
setup. Four sets of ZPF amplitudes entering the crystal are amplified, giving rise to two correlated
beams. Two polarising beam-splitters, PBS1 and PBS2, separate the horizontal and vertical components
of the light fields, which are detected at DT1, DR1, DT2 and DR2 (see Figure 2). The two sets of
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ZPF amplitudes entering the idle channels of each PBS are crucial. In this case, NZPF,S = NZPF,A = 4,
and Nnoise

ZPF,A = 4, in such a way that Nnoise
Single det. area = 2. It follows that

Nmax,class = 4− 2 = 2. (39)

In this experiment, the first class corresponds to the states |Ψ+〉 and |Ψ−〉. A joint detection can
be produced at detectors DR1 and DT2, or DT1 and DR2. On the other hand, the second class contains
the states |Φ+〉 and |Φ−〉: the joint detection can be given at detectors DR1 and DR2, or DT1 and DT2.
As a conclusion, this setup is unable to distinguish the value of χ.

The joint detection probabilities for this basic setup, calculated with the WRHP approach, can be
consulted in [33].

Let us now proceed to give a physical interpretation of Equation (39) based on the role of the
zeropoint amplitudes as “hidden” stochastic variables. For simplicity, we consider an identical distance
separating the crystal from the respective PBSs and detectors, in such a way that the phase shift in
Equation (16) can be ignored. In addition, we take tA=tB in Equation (19), so that the spacetime
dependence is discarded. From Equations (23), (24), (32) and (33), we have:

F(+)
1 =

F(+)
e

F(+)
o′

 =

(1 + g2|V|2 J)F(+)
e,v1 + gVGF(−)

o,v2

(1 + g2|V|2 J)F(+)
o,v1 + gVGF(−)

e,v2

 , (40)

F(+)
2 =

 F(+)
e′

eiχF(+)
o

 =

 (1 + g2|V|2 J)F(+)
e,v2 + gVGF(−)

o,v1

eiχ[(1 + g2|V|2 J)F(+)
o,v2 + gVGF(−)

e,v1 ]

 , (41)

where we have made the change Vp → V=Vp/
√

2, in order to consider that the energy of the classical
wave corresponding to the laser, which is proportional to the squared amplitude, must be divided into
four amplitudes. On the other hand, χ = 0 (χ = π) stands for |Ψ+〉 (|Ψ−〉), and F(+)

vi = (F(+)
e,vi , F(+)

o,vi )

(i = 1, 2) represents the vacuum beam entering the crystal with wave vector ki. If we were considering
the states |Φ+〉 and |Φ−〉, Equation (40) would not change, but the horizontal and vertical components
should be exchanged in Equation (41). Taking into consideration the zeropoint field entering the idle
channel of each PBS, which transmits (reflects) horizontal (vertical) polarisation, the field amplitudes
at the detectors DT1, DR1, DT2 and DR2, are:

F(+)
DT1 =

(1 + g2|V|2 J)F(+)
e,v1 + gVGF(−)

o,v2

iF(+)
ZPF1,V

 , (42)

F(+)
DR1 =

 F(+)
ZPF1,H

i[(1 + g2|V|2 J)F(+)
o,v1 + gVGF(−)

e,v2 ]

 , (43)

F(+)
DT2 =

(1 + g2|V|2 J)F(+)
e,v2 + gVGF(−)

o,v1

iF(+)
ZPF2,V

 , (44)

F(+)
DR2 =

 F(+)
ZPF2,H

ieiχ[(1 + g2|V|2 J)F(+)
o,v2 + gVGF(−)

e,v1 ]

 , (45)



Atoms 2019, 7, 76 10 of 22

where F(+)
ZPFi = (F(+)

ZPFi,H , F(+)
ZPFi,V) (i = 1, 2) represents the zeropoint beam entering the polarising

beam-splitter PBSi. For the sake of clarity, we use the notation “v” for the vacuum fields entering the
source, and “ZPF” for the corresponding ones entering the idle channels inside the analyser.
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   ZPF1 (2) 

NZPF,S =4 
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DT2 

PBS2 

4, noise
AZPFN

1 

2 

  (b) Analyser  

4, AZPFN  
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PBS1 

DR1 

)2(v
)(

1
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 (a) Source 

)2(v
)(

2


F  

Figure 2. Zeropoint entries corresponding to a simple experiment on BSM. The number of relevant
sets of vacuum modes are written between brackets. (a) Source. The beams concerning the inputs
v1 and v2, each containing two sets of vacuum modes, interact with the laser field inside the crystal
giving rise to the down-converted light (amplification of vacuum fluctuations). In this way, NZPF,S = 4.
(b) Analyser. It consists on two PBSs that transmit (reflect) horizontal (vertical) polarisation and four
detectors. There are two zones for single detection, each consisting on one PBS and two detectors.
Because there are not ZPF inputs between the source and the analyser, the number of sets of ZPF modes
entering the analyser is NZPF,A=NZPF,S = 4. On the other hand, Nnoise

Single det. area = 2.

Let us calculate the intensity at the detectors. For simplicity, we consider that only four
zeropoint modes enter the crystal, fulfilling the exact matching conditions, so that the operator
G (J) can be replaced by 1 (1/2) [19,29]. By putting V = |V| exp(iθ), F(+)

e,vi = |F(+)
e,vi | exp(iϕe,vi) and F(+)

o,vi

=|F(+)
o,vi | exp(iϕo,vi) (i = 1, 2), the intensity at the detectors, retaining terms of order up to g2, are:

IDT1 = |F(+)
ZPF1,V |2 + |F

(+)
e,v1 |2 + Ĩ1(g|V|, |F(+)

e,v1 |, |F
(+)
o,v2 |, Ω1), (46)

IDR1 = |F(+)
ZPF1,H |2 + |F

(+)
o,v1 |2 + Ĩ2(g|V|, |F(+)

o,v1 |, |F
(+)
e,v2 |, Ω2), (47)

IDT2 = |F(+)
ZPF2,V |2 + |F

(+)
e,v2 |2 + Ĩ2(g|V|, |F(+)

o,v1 |, |F
(+)
e,v2 |, Ω2), (48)

IDR2 = |F(+)
ZPF2,H |2 + |F

(+)
o,v2 |2 + Ĩ1(g|V|, |F(+)

e,v1 |, |F
(+)
o,v2 |, Ω1), (49)

where
Ω1 = ϕe,v1 + ϕo,v2 − θ ; Ω2 = ϕo,v1 + ϕe,v2 − θ, (50)

and
Ĩ1 = g2|V|2(|F(+)

o,v2 |2 + |F
(+)
e,v1 |2) + 2g|V||F(+)

o,v2 ||F
(+)
e,v1 | cos Ω1. (51)

Ĩ2 = g2|V|2(|F(+)
e,v2 |2 + |F

(+)
o,v1 |2) + 2g|V||F(+)

e,v2 ||F
(+)
o,v1 | cos Ω2. (52)

Equations (46)–(49) correspond to the intensity of light at each detector in the case of |Ψ±〉. If we
were considering the states |Φ±〉, only IDT2 and IDR2 would change, by exchanging |F(+)

e,v2 |2 + Ĩ2 and
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|F(+)
o,v2 |2 + Ĩ1 in Equations (48) and (49). The single detection probability can be calculated by using

Equation (17). For instance, from Equations (46) and (51), we have:

PDT1 ∝ 〈 Ĩ1(g|V|, |F(+)
e,v1 |, |F

(+)
o,v2 |, Ω1)〉 = g2|V|2〈|F(+)

o,v2 |2 + |F
(+)
e,v1 |2〉, (53)

where we have taken into account that 〈cos Ω1〉 = 0, which can be deduced from Equation (11). Similar
expressions hold for PDR1, PDT2 and PDR2, irrespective of the state. For this reason, a single detection
event does not discriminate any of the four Bell states.

From Equations (46)–(49), the intensity above the threshold takes an identical value in DT1
and DR2 (DT2) (DR1 and DT2 (DR2)) for states |Ψ±〉 (|Φ±〉). The value of χ does not appear in
Equations (46)–(49) so that only two classes can be distinguished. The value of Ĩi (i = 1, 2) depends on
the crystal and the laser beam through the coupling parameter g|V|, and the modulus and phase of
two of the four vacuum amplitudes entering the crystal. Specifically, the wave coupling is represented
by a first-order term in the parameter g, which depends on the phase Ωi given in Equation (50).

We conjecture that detection in any of the four ideal detectors (h = 1) would be produced
when the vacuum amplitudes entering the crystal gave rise to constructive interference at the
corresponding outgoing channel. For instance, if detection in, e.g., DT1, is produced in the case Ω1 = 0,
then the second detection event will occur in DR2 (DT2) in the case |Ψ±〉 (|Φ±〉). However, these
two possibilities could be distinguished only by subtracting the total contribution of the zeropoint
field entering PBS2, which is represented by the two sets of ZPF modes F(+)

ZPF2,V and F(+)
ZPF2,H .

In fact, the stochastic intensity |F(+)
ZPF2,V |2 (|F(+)

ZPF2,H |2) keep hidden the contribution of the vacuum

amplitudes F(+)
o,v1 and F(+)

e,v2 (F(+)
e,v1 and F(+)

o,v2 ) to the total intensity IDT2 (IDR2). The difference, 4− 2 = 2
(see Equation (39)), which gives the maximal distinguishability in this experiment, is a proof of the
visible presence of the vacuum field.

4. The Role of the Zeropoint Field in Quantum Cryptography

Quantum cryptography is based on the projection postulate and the compatibility theorem of
quantum mechanics. The use of non-compatible observables in the send and reception of quantum
information is the basic principle of the first protocol for quantum key distribution (QKD), known
as BB84, that was developed by Bennett and Brassard in 1984 [45]. Some years later, QKD based on
entangled states was presented by Ekert in 1991 [46]. This allowed the use of Bell’s inequalities in order
to detect eavesdropping attacks in the case of projective measurements, which implies the introduction
of hidden variables that destroy the quantum behaviour of the system.

Experiments on quantum cryptography using entangled photons generated in PDC have been
analysed with the WRHP formalism [33]. Although the Wigner formalism is purely quantum,
its connection with SO gives rise to a new perspective that reinforces the crucial role of the zeropoint
field. For instance, in the case of eavesdropping attacks, an essential ingredient is the noise introduced
by Eve through the idle channels of their apparatuses, which gives rise to a change in the correlation
properties of the light field. Hence, the hidden variables introduced during the attack can be identified
to the zeropoint amplitudes entering the idle channels of the polarisers. In classical optics, where the
intensities of light are so high that vacuum fluctuations can be neglected, the noise introduced by Eve
does not have any influence. For this reason, attacks in classical cryptography can be made without
being detected. In contrast, this noise is very important in quantum cryptography, and allows for the
detection of the attack.

Let us now proceed to study the generation and measurement of linearly polarised signals with
the WRHP approach, with the aim of investigating the role played by the vacuum field in the BB84
protocol. We consider the general case of signals described in Equation (8). In classical optics, polarised
light can be generated by using a linear polariser, so that the Malus law relates the outgoing and
incoming intensities. Let us consider the action of a PBS. If a signal beam enters one of the channels,
the light at each output channel is linearly polarised and the outgoing intensities are lower than the
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incoming one. However, if the intensity is decreased in such a way that only one photon can be
detected, then the vacuum fluctuations become relevant. In the WRHP formalism, this implies that
a zeropoint beam entering the idle channel of the PBS must be considered. For instance, a vertically
polarised beam must be described by the sum of a signal (F(+)

V ) and the horizontal component of the

ZPF (F(+)
v,H ):

F(+) = F(+)
v,H i + F(+)

V j. (54)

The measurement of the polarisation in the diagonal basis can be accomplished by means of
a half-wave-plate (HWP) and a PBS that transmits (reflects) horizontal (vertical) polarisation (see
Figure 3). The beam F(+)

a leaving the HWP is:

F(+)
a = 1√

2

(
F(+)

v,H + F(+)
V

F(+)
v,H − F(+)

V

)
. (55)

 

)(
v

bF  

a 

b1 

a1 

HWP b 

  

 
H,vF  

 
VF  

Figure 3. Measurement of the polarisation in the diagonal basis. A vertically polarised signal must be
accompanied by the horizontal component of the ZPF. The intensities corresponding to the horizontal
and vertical components of the light beam leaving the HWP give rise to anticorrelation in channels a1

and b1.

On the other hand, to obtain the beams exiting the PBS, the vacuum field entering the idle channel,
F(+)

vb , must be considered. We have:

F(+)
a1 = 1√

2
(F(+)

v,H + F(+)
V )i + iF(+)

vb,V j,

F(+)
b1

= F(+)
vb,Hi + i√

2
(F(+)

v,H − F(+)
V )j.

(56)

Let us now calculate the total intensity at each of the outgoing channels, Ia1 = |F(+)
a1 |2 and

Ib1 = |F(+)
b1
|2. By putting F(+)

V =|F(+)
V | exp (iϕV) and F(+)

v,H = |F(+)
v,H | exp (iϕv,H) and by taking into

account that F(+)
v,H F(−)

V +F(+)
V F(−)

v,H =2|F(+)
v,H ||F

(+)
V | cos(ϕv,H − ϕV), the outgoing intensities are:

Ia1 = |F(+)
vb,V |

2 + Ia
2 + 2|F(+)

v,H ||F
(+)
V | cos(ϕv,H − ϕV), (57)

Ib1 = |F(+)
vb,H |

2 + Ia
2 − 2|F(+)

v,H ||F
(+)
V | cos(ϕv,H − ϕV), (58)

where Ia=|F(+)
v,H |2+|F(+)

V |2 corresponds to the intensity entering the PBS. From the above equations,
it can be seen that the intensity at each outgoing channel has an identical contribution, Ia/2,
corresponding to the vertically polarised signal, and there is also an addend that represents the
interference between F(+)

v,H and F(+)
V , with opposite values at each outgoing channel. Finally, there is a

different contribution |F(+)
vb,V |

2 (|F(+)
vb,H |

2), coming from the idle channel of the PBS, in the expression of
Ia1 (Ib1 ).



Atoms 2019, 7, 76 13 of 22

At this point, we should note that the intensity in each output channel can be greater than the
corresponding one to the input, giving rise to enhancement. This phenomenon is not produced in
classical optics, where vacuum fluctuations do not have any influence. In contrast, enhancement is a
key piece in SO [47] and a basic ingredient of the wave-like description in the WRHP approach.

Let us now consider detection. It implies noise subtraction, i.e., the total contribution to the
intensity coming from the zeropoint field itself must be subtracted. We have:

Ia1 − Ia1,v = 1
2 (|F

(+)
V |2 − |F(+)

v,V |2) +
1
2 [F

(+)
v,H F(−)

V + F(+)
V F(−)

v,H

−(F(+)
v,H F(−)

v,V + F(+)
v,V F(−)

v,H )],

(59)

Ib1 − Ib1,v = 1
2 (|F

(+)
V |2 − |F(+)

v,V |2)−
1
2 [F

(+)
v,H F(−)

V + F(+)
V F(−)

v,H

−(F(+)
v,H F(−)

v,V + F(+)
v,V F(−)

v,H )],

(60)

where F(+)
v,V is the part of F(+)

V corresponding to pure zeropoint field. The above equations explain
anticorrelation : detection (not detection) in one of the exit channels comes from a constructive
(destructive) interference between the vertically polarised signal beam and the horizontal component
of the zeropoint field that accompanies the signal. By performing an average with the Wigner function
corresponding to the signal beam, and taking into account that F(+)

V and F(+)
v,H are uncorrelated,

we obtain:
〈Ia1 − Ia1,v〉 =

〈
Ib1 − Ib1,v

〉
= 1

2 〈|F
(+)
V |2 − |F(+)

v,V |2〉, (61)

which implies an identical detection probability at each outgoing channel.
The uncertainty in the photon-path when different bases are chosen in the sending and reception of

qubits is in the heart of secure KQD. In the WRHP approach, this is explained through anticorrelation at
the exit channels, a typical effect based on wave interference, added to the consideration of a threshold
for detection just at the zeropoint level.

5. The Meaning of Teleportation in Terms of the Zeropoint Field

At the end of the 1990s, quantum teleportation was achieved [48–50]. Teleportation consists of
transferring the quantum state of a two-state system S1 at a distant place, using
Einstein–Podolsky–Rosen (EPR) entanglement of systems S2 and S3 and classical communication.
A BSM on S1 and S2 gives Alice an information which, transmitted to Bob, allows him to manipulate
S3 in order to put it in a state identical to the initial state of S1. The Innsbruck experiment on
teleportation was performed by means of two independent pairs of entangled photons, and one of
the four photons as a trigger in order to prepare the state to be teleported [49]. This scheme cannot
be accomplished with 100% success due to the impossibility of a complete Bell-state analysis of two
photons entangled only in one degree of freedom.

In contrast, in the Rome teleportation experiment, only two entangled photons are needed, S1 and
S2 being replaced by two different properties of one photon, namely polarisation and momentum. One
of these is teleported to the other photon in the pair [50]. In the theoretical proposal of Popescu [38],
the two photons were entangled in momentum and polarisation was teleported. This experiment
has been recently analysed with the Wigner formalism [37]. We develop here this other version,
used by Michler et al. [51], taking advantage of the fact that photons produced in type-II PDC are
already entangled in polarisation. A study of this experiment was done with the Wigner approach,
with the aim of stressing the role of ZPF in teleportation [52]. The significant contribution of this
paper is that we analyse the mechanism leading to the fulfillment of Equation (36) in one-photon
polarisation–momentum BSM.
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For the sake of clarity, we first analyse this experiment with the standard Hilbert space formalism.
Let us consider the two-photon state:

|ψ〉 = 1√
2
(|H〉1|V〉2 + |V〉1|H〉2)|a〉1|b〉2, (62)

where H and V represent the polarisation of the photons and a and b their momenta. The goal is to
teleport the momentum degree of freedom from photon 1 to photon 2 by using their entanglement
in polarisation. The Preparer uses a Mach–Zehnder interferometer in which the reflectivity R (or the
transmitivity T) of the first beam-splitter and the phase φ of the interferometer can be controlled at
will. In this way, the momentum state of photon 1 becomes

|a〉1 → Teiφ|c〉1 + iR|d〉1. (63)

After that, the resulting state of the two-photon system can be written by making use of the
four-dimensional Bell-state basis of polarisation and momentum for photon 1 as

|ψ〉 ∝ (|H〉1|d〉1 + |V〉1|c〉1)(iR|V〉2 + Teiφ|H〉2)|b〉2
+(|H〉1|d〉1 − |V〉1|c〉1)(iR|V〉2 − Teiφ|H〉2)|b〉2
+(|H〉1|c〉1 + |V〉1|d〉1)(Teiφ|V〉2 + iR|H〉2)|b〉2
+(|H〉1|c〉1 − |V〉1|d〉1)(Teiφ|V〉2 − iR|H〉2)|b〉2. (64)

Alice detects photon 1 in one of its four possible states. Her analyser can consist of a set of three
PBSs followed by four detectors (see Figure 4). The two beams (represented by paths c1 and d1) inside
the different inputs of PBS1 (oriented in such a way that it transmits horizontal polarisation and
reflects vertical). Each outgoing beam (represented by paths c′1 and d′1) passes through a polarization
analyser in the ±45◦ basis, consisting of a half-wave-plate, a PBS, and two detectors. Now, depending
on which of the four detectors (D1–D4) clicks, the state of photon 1 will collapse into one of its four
possibilities expressed in Equation (64). Alice informs Bob about her result. Bob, by making use of a
quarter-wave-plate, a half-wave-plate, PBS4 (oriented like PBS1) and a polarisation rotator PR(90◦),
can always reconstruct the momentum state of photon 1.

In practice, to know whether teleportation has been successful, Bob’s signal enters a verification
station. Beams concerning paths c2 and d2 come into the different inputs of a balanced beam-splitter
BS2. By analysing coincidences between detectors D1 and D6 an interference pattern with the shape

PD1,D6 = C(1− 2RT cos φ) (65)

should appear, where C is a constant related with the efficiency of the detectors.
In the WRHP approach, the beams outgoing the crystal are given by Equations (32) and (33),

by putting χ = 0. For simplicity, we discard the dependence on r and t. Beam F(+)
1 (F(+)

2 ) is sent to

Alice (Bob). Now, beam F(+)
1 is passed through the Mach–Zehnder interferometer. The idle channel

of BS1 constitutes a fundamental input of ZPF modes, in order to generate the superposition given
in Equation (63). By considering the action of mirrors M1, M2, and the zeropoint input beam F(+)

v ,
the beams entering PBS1 are:

F(+)
c1 = ieiφ

TF(+)
e + iRF(+)

v,H

TF(+)
o′ + iRF(+)

v,V

 , (66)

F(+)
d1

= i

iRF(+)
e + TF(+)

v,H

iRF(+)
o′ + TF(+)

v,V

 . (67)
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PBS1 transmits (reflects) horizontal (vertical) polarisation. The outgoing beams in paths c′1 and
d′1 are:

F(+)
c′1

= i

eiφ(TF(+)
e + iRF(+)

v,H )

−RF(+)
o′ + iTF(+)

v,V

 , (68)

F(+)
d′1

= i

 iRF(+)
e + TF(+)

v,H

eiφ(iTF(+)
o′ − RF(+)

v,V

 . (69)

In [51], F′(+)
d1

(F′(+)
c1

) enter a polarising beam-splitter PBS2 (PBS3) that transmits (reflects) the
diagonal polarisation at 45◦ (−45◦). This is equivalent to consider the action of a half-wave-plate (with
the optical axis at 22.5◦) that rotates the polarisation plane of the beams F(+)

d′1
and F(+)

c′1
45◦ around

the propagation direction, and that PBS2 (PBS3) transmits (reflects) horizontal (vertical) polarisation.
The field amplitudes at the detectors D1, D2, D3 and D4 are:

F(+)
D1 =


i√
2
[iRF(+)

e + TF(+)
v,H + eiφ(iTF(+)

o′ − RF(+)
v,V )]

iF(+)
ZPF2,V

 , (70)

F(+)
D2 =

 F(+)
ZPF2,H

−1√
2
[iRF(+)

e + TF(+)
v,H − eiφ(iTF(+)

o′ − RF(+)
v,V )]

 , (71)

F(+)
D3 =

 F(+)
ZPF3,H

−1√
2
[eiφ(TF(+)

e + iRF(+)
v,H ) + RF(+)

o′ − iTF(+)
v,V ]

 , (72)

F(+)
D4 =


i√
2
[eiφ(TF(+)

e + iRF(+)
v,H )− RF(+)

o′ + iTF(+)
v,V ]

iF(+)
ZPF3,V

 , (73)

where F(+)
ZPF2 and F(+)

ZPF3 represent the zeropoint beams entering the polarising beam-splitters PBS2
and PBS3.

Now, we analyse the verification measurements at Bob’s station. Beam F(+)
2 is passed through a

polarising beam-splitter PBS4 that operates in the same way as PBS1, and the reflected beam enters a
polarisation rotator that rotates 90◦ the polarisation in channel d2. Then, the field amplitudes F(+)

c2 and

F(+)
d2

entering BS2 are:

F(+)
c2 =

 F(+)
e′

iF(+)
ZPF4,V

 ; F(+)
d2

=

 iF(+)
o

−F(+)
ZPF4,H

 , (74)

where F(+)
ZPF4 is the zeropoint field entering the idle channel of PBS4.



Atoms 2019, 7, 76 16 of 22

 

 

BBO 

  )2(
)(

v


F  

      ZPF3 (2) 

ZPF4 (2) 

M1 

 BS1  
(R,T) 



λ/4   λ/2         

PR(900)         
 

M3 

PBS4 (0o)                  

D5 4, SZPFN  

(d) Bob´s station 

 
 

6, AZPFN  

c2 

d2 

 

c1 

 

d1 

M2 

D4 

            
BS2              

 

 c'1 

)2(
)(

1v


F

 
)2(

)(

2v


F 

 
Laser 

a1 

 
 b2 

 
 PBS1 (0o) 

(a)  Source 

D6 

D3 

D2 

D1 

PBS2 (45o) 

4, 
noise

AZPFN

PBS3 (45o) 

(b) Preparer 
(c) Alice´s station 

Classical   communication  

(e) Verification station 

 HWP         
 
        HWP            

M4 

ZPF2 (2) 

 

d'1 

Figure 4. Zeropoint field entries corresponding to the diagram of the setup for teleportation [51].
The information concerning the number of sets of ZPF modes is written in brackets. (a) Source

(NZPF,S = 4). The inputs F(+)
v1 and F(+)

v2 , each of them containing two sets of vacuum modes, are
activated and coupled with the laser inside the crystal, so that polarisation entanglement is generated.
(b) Preparer. BS1 is a variable (R, T) beam-splitter that introduces a pair of additional sets of vacuum
modes, which are necessary to prepare photon 1 in the momentum state Texp(iφ)|c〉1 + iR|d〉1. This
state is teleported to photon 2 by using polarisation entanglement. (c) Bell-state analyser (NZPF,A = 6).
PBS1 does not introduce additional zeropoint modes. PBS2 and PBS3 transmit 45◦ polarisation and
reflect −45◦. Each of them adds two pairs of zeropoint modes (Nnoise

ZPF,A = 4). (d) Bob’s station.
After knowing which detector clicked, Alice communicates through a classical channel the necessary
information to Bob in order to reproduce the momentum state of photon 1 in photon 2, by just
performing a unitary transformation. He uses quarter-wave-plate (λ/4) and half-wave-plate (λ/2),
PBS4 and a polarisation rotator PR(90◦). The idle channel of PBS4 introduces two sets of vacuum
modes which are necessary in order to reproduce the prepared state. (e) Verification station. The rest
of the setup on Bob’s side, a balanced beam-splitter BS2 and detectors D5 and D6, is intended to check
that teleportation has been successful.

At this point, we analyse the cross-correlation properties of the light fields. The vacuum
amplitudes entering the different polarising beam-splitters are uncorrelated with the signals and
with each other. On the other hand, by taking into account that 〈F(+)

e F(+)
o 〉=〈F(+)

e′ F(+)
o′ 〉 ≡ gVν(0)

(see Equation (27)), we have:

〈F(+)
D1,H F(+)

c2,H〉 =
−gVν(0)Te√

2

iφ
; 〈F(+)

D1,H F(+)
d2,H〉 =

−igVν(0)R√
2

, (75)

〈F(+)
D2,V F(+)

c2,H〉 =
igVν(0)Te√

2

iφ
; 〈F(+)

D2,V F(+)
d2,H〉 =

gVν(0)R√
2

, (76)

〈F(+)
D3,V F(+)

c2,H〉 =
−gVν(0)R√

2
; 〈F(+)

D3,V F(+)
d2,H〉 =

−igVν(0)T√
2

eiφ, (77)

〈F(+)
D4,H F(+)

c2,H〉 =
−igVν(0)R√

2
; 〈F(+)

D4,H F(+)
d2,H〉 =

−gVν(0)T√
2

eiφ. (78)

The former equations contain the intrinsic nature of teleportation, which is mediated by the
distribution of the ZPF amplitudes in each electric field component. By comparing Equations (64)
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and (75), we deduce that a photodetection at detector D1 would give rise to the teleportation of the
prepared state to Bob’s photon. A detailed analysis of the reconstruction of the state in the WRHP
approach can be consulted in [37].

For the verification measurements, beams F(+)
c2 and F(+)

d2
enter a balanced non-polarising

beam-splitter BS2. The field amplitudes at the detectors D5 and D6 are:

F(+)
D5 =

1√
2

 i(F(+)
e′ + F(+)

o )

−F(+)
ZPF4,V − F(+)

ZPF4,H

 , (79)

F(+)
D6 =

1√
2

 F(+)
e′ − F(+)

o

i(F(+)
ZPF4,V − F(+)

ZPF4,H)

 . (80)

The joint detection probabilities are easily calculated by using Equation (29) and by taking into
account the correlation properties given by Equations (75)–(78). For instance, by considering the
detector D1, we have:

PD1,D5 ∝ 1 + 2TR cos φ, (81)

PD1,D6 ∝ 1− 2TR cos φ, (82)

and similar Equations hold for D2 by exchanging the + and − signs in Equations (81) and (82). Finally,
the corresponding expressions concerning D3 (D4) are the same as for D1 (D2).

5.1. Hidden Variables and Complete One-Photon Polarisation–Momentum Bell-State Analysis

In this experiment, NZPF,S = 4 is the number of sets of ZPF modes that are activated at the

nonlinear crystal. The Preparer introduces two additional sets of ZPF modes through F(+)
v , so that

NZPF,A = 6. By taking into account that there are two idle channels inside the analyser, each
introducing two sets of ZPF modes, we have Nnoise

ZPF,A = 4. By applying Equations (36) and (37),
the maximal distinguishability is:

Nmax,class = NZPF,A −
Nnoise

ZPF,A
2 = 6− 2 = 4. (83)

This result was demonstrated in [37] by using a heuristic argument. Now, Equation (83) is proved
based on the consideration of the role of the ZPF amplitudes as hidden stochastic variables.

Let us calculate the total intensity corresponding to the exit channels of PBS1, d′1 and c′1. By putting

F(+)
e =|F(+)

e | exp(iϕe), F(+)
o′ =|F(+)

o′ | exp(iϕo′), F(+)
v,H =|F(+)

v,H | exp(iϕv,H) and F(+)
v,V =|F(+)

v,V | exp(iϕv,V),
we have, by using Equations (68) and (69):

Id′1
= Id′1H

+ Id′1V

= R2|F(+)
e |2 + T2|F(+)

v,H |2 − 2TR|F(+)
e ||F(+)

v,H | sin α1

+T2|F(+)
o′ |

2 + R2|F(+)
v,V |2 + 2TR|F(+)

o′ ||F
(+)
v,V | sin α2,

(84)

Ic′1
= Ic′1H

+ Ic′1V

= T2|F(+)
e |2 + R2|F(+)

v,H |2 + 2TR|F(+)
e ||F(+)

v,H | sin α1

+R2|F(+)
o′ |

2 + T2|F(+)
v,V |2 − 2TR|F(+)

o′ ||F
(+)
v,V | sin α2,

(85)
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where
α1 = ϕe − ϕv,H ; α2 = ϕo′ − ϕv,V . (86)

The phases of the signal beam, F(+)
1 , and the zeropoint field entering the beam-splitter, F(+)

v , are
coupled so that the light intensities Id′1

and Ic′1
are anticorrelated: if two detectors were placed in

channels d′1 and c′1, each of them with a threshold just at the level of the zeropoint intensity, detection
would happen only in one of the two channels.

The conditions for a constructive (destructive) interference in channel d′1 (c′1) are:

α1 = −π
2 ; α2 = π

2 , (87)

and constructive (destructive) interference in channel c′1 (d′1) implies:

α1 = π
2 ; α2 = −π

2 . (88)

From Equations (87) and (88), we deduce that the path choice of Alice’s photon is closely related
to the coupling between the phases of the fields involved. Given that F(+)

e and F(+)
o′ are linear

transformations of the zeropoint beams entering the crystal, Equations (87) and (88) involve the six
sets of vacuum amplitudes entering the analyser (NZPF,A = 6).

Now, we obtain the intensities at the detectors D1, D2, D3 and D4. For instance, for detectors D1
and D2, concerning d′1, we have:

Id′1±
= |F(+)

ZPF2,±|2 +
Id′1
2 ± TR|F(+)

e ||F(+)
o′ | cos α3

∓TR|F(+)
v,H ||F

(+)
v,V | cos(α2 + α3 − α1)

±R2|F(+)
e ||F(+)

v,V | sin(α2 + α3)

±T2|F(+)
o′ ||F

(+)
v,H | sin(α3 − α1),

(89)

where
α3 = ϕe − ϕo′ − φ. (90)

Id′1+
(Id′1−

) stands for D1 (D2), |F(+)
ZPF2,+|2 ≡ |F

(+)
ZPF2,V |2 and |F(+)

ZPF2,−|2 ≡ |F
(+)
ZPF2,H |2. In the same

way, the intensities at the detectors D3 and D4 are:

Ic′1±
= |F(+)

ZPF3,±|2 +
Ic′1
2 ∓ TR|F(+)

o′ ||F
(+)
e | cos α4

±TR|F(+)
v,H ||F

(+)
v,V | cos(α4 + α2 − α1)

±T2|F(+)
e ||F(+)

v,V | sin(α4 + α2)

±R2|F(+)
o′ ||F

(+)
v,H | sin(α4 − α1),

(91)

where
α4 = ϕe − ϕo′ + φ. (92)

c′1+ (c′1−) stands for D4 (D3), |F(+)
ZPF3,+|2 ≡ |F

(+)
ZPF3,V |2 and |F(+)

ZPF3,−|2 ≡ |F
(+)
ZPF3,H |2.

From Equation (89), it can be seen that the intensities at the detectors D1 and D2 contain three
contributions: (i) the intensity of the transmitted or the reflected component of F(+)

ZPF2; (ii) half of the
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total intensity at path d′1; and (iii) some addends, which depend on the phases α1, α2 and α3, given in
Equations (86) and (90), with opposite values at the detectors D1 and D2. A similar reasoning holds for
D3 and D4.

The intensities |F(+)
ZPF2,±|2 and |F(+)

ZPF3,±|2, coming from the vacuum inputs entering PBS2 and PBS3
must be subtracted, along with the rest of addends involving pure ZPF contribution at each detector,
in order to obtain the measurable intensity. From Equation (89), it can be deduced that ID1 − |F

(+)
ZPF2,V |2

(ID2 − |F
(+)
ZPF2,H |2) is maximum when Equation (87) is fulfilled, along with the condition α3 = 0

(α3 = π). The same reasoning holds for detectors D3 and D4, so that ID4 − |F
(+)
ZPF3,V |2 (ID3 − |F

(+)
ZPF3,H |2)

is maximum when Equation (88) is fulfilled, along with the condition α4 = π (α4 = 0).
The values of α1, α2, α3 and α4 depend on the six sets of ZPF amplitudes entering the analyser,

and the controllable experimental parameters V, g, θ, R, T and φ. Specifically, the phase φ of the
interferometer appears in the expressions of α3 and α4. For a given value of these parameters,
the hidden variables concerning NZPF,A would define the path choice, c′1 or d′1, of Alice’s photon exiting
PBS1. Nevertheless, for a given path in which the intensity is maximum (see Equations (84) and (85)),
the two possibilities concerning the detector to which the photon finally goes are hidden due to the
noise coming from the ZPF entering the PBS before the detectors. These two possibilities could be
distinguished only by subtracting the two sets of ZPF modes entering the corresponding detection
area. This can be applied to any of the two paths exiting PBS1, so that the difference 6− 2 = 4 gives
the maximal distinguishability, and corresponds to the four polarisation–momentum Bell-states of the
photon (see Equation (83)). Let us emphasise that four represents the number of phases (α1, α2, α3, α4)
that define the path choice of the photon from BS1 to the detectors, by subtracting the ZPF contribution
at PBS2 and PBS3.

6. Discussion and Conclusions

In this paper, new results are presented that enhance the physical meaning of the vacuum field in
optical quantum communication. These results have been obtained with the WRHP approach of QO,
being consistent with the theory of SO based on the existence of a zeropoint field.

The underlying assumptions concerning the role of the zeropoint field in the arena of
Bell-state analysis, along with the expressions that were heuristically obtained in previous
works [35,37], have been confirmed by considering the role of the ZPF amplitudes as hidden variables
(see Sections 3 and 5.1). This represents an advance in the understanding of the internal mechanisms
involving the propagation of the ZPF amplitudes through the setup, leading to the distinguishability
of Bell-states.

In the Wigner formalism of QO, photodetection implies the subtraction of pure zeropoint field
contribution to the light intensity. A part of this contribution comes from the noise entering the idle
channels inside the analyser. The role of this noise in BSM is that the maximal distinguishability must be
lower than the upper bound given by the number of sets of ZPF modes entering the analyser, in which
the quantum information is stored. Given that the Wigner formalism is a bridge that connects QO to SO,
the double role played by the ZPF as a store of information as well as as a fundamental limiting noise
comes from the consideration of the vacuum field as a real stochastic field, irrespective of the problem
of detection in SO (negative probabilities). What is remarkable is that the expressions that relate
Bell-state distinguishability and zeropoint entries at the setup have been obtained by using a quantum
formalism that resembles stochastic optics, just by adding the zeropoint field. These expressions
have been demonstrated for experiments in which the two photons travel independently by the
experimental setup, so that they do not interact. In further works, the general case, in which both
photons are brought together at the setup, will be investigated.

Furthermore, the relationship between the compatibility theorem in QKD and zeropoint field
has been emphasised. The projection postulate is an essential piece in secure quantum cryptography.
Measuring implies the destruction of the vector state of the system, and this gives rise to the possibility
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of generating secure keys and detecting eavesdropping. In this sense, the compatibility theorem
in quantum mechanics constitutes a basic ingredient in the BB84 protocol and other protocols for
QKD. The analysis made in Section 4 reinforces the role of the zeropoint field in optical quantum
cryptography, and allows for a different point of view that is insides the internal mechanism leading to
secure QKD.

A linearly polarised signal in the rectilinear basis must be superimposed to the orthogonal
component of the ZPF. When this signal is measured in the diagonal basis, the phases of the signal and
the ZPF are coupled, giving rise to anticorrelation at the output ports of the PBS. This anticorrelation
explains that detection is produced only in one of the two detectors, once the contribution of the pure
zeropoint intensity is subtracted. On the other hand, the zeropoint beam entering the idle channel
of the PBS gives rise to enhancement, i.e., the total intensity at each of the outgoing channels can be
greater than the incoming one. Enhancement and anticorrelation constitute two basic properties of the
light description in SO [8,9]. In the WRHP formalism, these two differential features are linked to the
preservation of the commutation rules of the electric field operator in unitary transformations [33].
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