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ABSTRACT

As the service life of ducts and manholes reaches their end, there is a growing need
to preserve the structures. In order to prevent casualties and service interruption,
more frequent inspections are advised. To this day most of the inspections are still,
manually made. These inspectors need to be highly qualified, and the inspections
are done in an hazardous environment so, automating the inspection process would
lead to a healthier workplace. Given the recent development in RGBD cameras, with
smaller size factor, cost, and weight, this project aims to evaluate the application of
one of the more recent models in a manhole inspection environment. Several analysis
are done to assess the RGBD sensor performance for 3D model reconstruction,
including the comparison with a ground-truth 3D model obtained using a laser
point profile sensor with an industrial robot.
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1
INTRODUCTION

The maintenance and inspection of ducts and manholes is mainly done visually
by qualified personnel, which implies a visit inside the structure. This is, in most
cases, a hazardous and/or unhealthy environment, exposing the inspector to stale
and sewer waters, low oxygen atmospheres, little natural light and confined spaces.
This set of conditions may hinder the effectiveness of the inspection (Nomura et al.,
2002). With the increasing number of new structures and the natural aging of the
existent, there is a need for maintenance actions, which are often lengthy, costly
and disruptive (Bergeson and Ernst, 2015), (Balaguer and Victores, 2010). The
estimated service life of a manhole is about 50 years with most of these structures
being made of concrete, considered to be a solid construction material. Natural
disasters, the continuous traffic load, plant (roots) invasion, land movements and
the aging of these structures may lead to defects which, if not detected by a peri-
odic inspection, frequently result in large damage, or may lead to the collapse of
these elements, increasing disruption and repair costs. The most common of these
problems are:

• Displaced joints (Fig. 1a): when the concrete element joints are not aligned
due to land movements;

• Cracking (Fig. 1b): Cracks may vary in size and, if large enough, the integrity
of the structure may be in danger. Cracks often result from the natural rigidity
of the concrete elements when subjected to land movements or to load in
unsupported areas;

• Clogging (Fig. 1c): Caused by the blocking of the flow of water in the draining
points due to the accumulation of debris or residues, or even tree roots.

1



introduction

a: Displayed Joints. b: Cracks. c: Clogged.

Figure 1: Typical problems in manholes1

The inspection based on acquired data serves the same goals of manual inspection
with the added advantages of:

• Reducing the harsh working conditions for inspectors;

• Increasing the availability and richness of the collected data, allowing re-
peated and deeper analysis, increasing the effectiveness of preventive actions;

• Increasing the lifespan of ducts and manholes through adequate maintenance;

• Decrease the time spent per inspection when compared to the current, manual
inspections, hence reducing the overall cost of the maintenance operations.

With the recent evolution of sensor-based data acquisition systems, several study
cases have been described in the literature regarding tunnel inspection, (David
Jenkins et al., 2017), (Stent et al., 2015), (Ozaslan et al., 2017), as well successful
real environment tests such as “ROBO-SPECT” (Montero et al., 2017), (Loupos
et al., 2014), including also some commercial applications like the "Optical Manhole
Scanner" from "IBAK"2 and "QuickView" from "iPEK"3.

The purpose of this project is to provide a low-cost and robust solution to man-
hole inspection, and explore new technology not available in a previous work (Reis,
2018). This report will focus on laying ground for future endeavours, by obtaining
a ground truth model of a manhole. Using state of the art scanning technology, the
ground truth model can be created, which can provide the means for a comparison
with a RGBD camera. Using a RGBD camera happens to provide besides depth,
a texture. This texture can help an to inspector have a better analysis, as some
structure defects can be seen with color. The comparison will then provide a ver-
dict of how viable the choice of the RGBD camera is for manhole inspection. To
accomplish this, there needs to be an effort into calibrating the equipment to get

1 https://info.wesslerengineering.com/blog/5-most-important-manhole-inspection-items
https://www.sciencedirect.com/topics/engineering/pipe-joints

2 http://www.rapidview.com/panoramo_si.html
3 https://www.ipek.at/index.php?id=706
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introduction

the best results possible within the restrictions of the experiment. This includes a
RGBD camera calibration, and the chosen laser range finder to obtain the ground
truth model. The latter will also be subject to calibration, since it is required for all
3D models obtained to exist in the same world coordinates, for the best comparison.
The world coordinates will come from the robot manipulator used. This will give
a high accuracy, and precision across tests, to reduce as much error as possible.
The current state of the art of ducts, tunnels and manhole inspection, was explored
and presented in Chapter 2. With a newer RGBD camera, several tests were per-
formed to analyse its accuracy and precision, including the use of a laser range
finder to obtain a ground truth model comparison. The setup and calibration of
the equipment used can be seen in Chapter 3 and the obtained results in Chapter
4. In Chapter 5, the final conclusions are drawn, as well as ideas for future work.
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2
STATE OF THE ART RELATED WORK

In addition to manual inspection, the inspection can be made with the help of tele-
operated robots equipped with video cameras or other appropriate sensors (Laird
et al., 2000), particularly in confined spaces and in the presence of hazardous sub-
stances.

Figure 2: Teleoperated tunnel inspection robot (Zhuang et al., 2008).

By teleoperating the robot, the inspector is no longer in a health risk situation
and the comfort of the operation improves considerably. However, this has no effect
in reducing inspection time, with frequent communication breaks and associated
control problems (Zhuang et al., 2008, Lichiardopol, 2007). To avoid these problems,
some effort has been spent in projects with the goal to automate the inspection. By
using modern computer vision technology, it is possible to evaluate an inspection
from it. Some of these projects can be reviewed below, utilizing different solutions
of obtaining visual data for inspection automation.
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2.1 road tunnel inspection using a mobile robot

ROBO-SPECT (ROBOtic System with Intelligent Vision and Control for Tunnel
Structural inSPECTion and Evaluation) (Montero et al., 2017), (Loupos et al.,
2014), was an EU funded project running from 2013 to 2016. Here, an autonomous
vehicle moves along a road tunnel, using a crane to support a manipulator arm with
several sensors attached. It uses a range sensor to detect structural deformation,
a digital camera to detect cracks, and two RGBD cameras to acquire point cloud
data for offline 3D reconstruction of the detected defects.

Figure 3: ROBINSPECT robot diagram (Montero et al., 2017).

The robot navigates the tunnel using visual marks detected by two laser scan-
ners and a digital camera, maintaining a constant distance to the wall. With the
digital camera on the arm, the system records its position in space and, if needed,
approaches the wall and scans the affected region with the RGBD setup. After
this detailed inspection, the system goes back to the earlier pose and resumes the
movement along the tunnel. To operate all the systems together, a global controller
has been developed with the architecture depicted in Fig. 4.

6



2.2 rail-based duct inspections

Figure 4: Global Controller Architecture used in the ROBINSPECT project (Montero et
al., 2017).

The project aimed for tunnel inspection in normal traffic conditions, and the
reliability of the system was shown in real life situations. This solution, however,
involves a large set of complex subsystems, increasing its size. As such, its use in
ducts and manholes is not feasible.

2.2 rail-based duct inspections

With the increased use of underground ducts for the installation of high voltage
power cables (Stent et al., 2015), more frequent inspections will be needed to ensure
the integrity of both ducts and cables. In this project, a monorail setting is used to
guide an inspection robot carrying digital cameras for later reconstruction of the
tunnel’s inner geometry 3D model.
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Figure 5: Tunnel reconstruction prototype (Stent et al., 2015).

With two digital cameras placed as shown in Fig. 5, each one with a field of view
slightly higher than 180º, an image of a complete section of the tunnel is captured.
To get better quality images, the movement is stopped and a set of lenses with
polarizing filters (to improve images in wet areas) is used to obtain very accurate
images allowing the detection of cracks as thin as 0,3 mm (Fig. 6).

Figure 6: Detection and evolution of a crack between sample pictures (Stent et al., 2015).

Captured images are later superimposed to create a point cloud representing
the tunnel. The system can also detect the evolution of the size of the cracks size
between samples.

For the system to operate with this degree of precision, the duct must be equipped
with a rail and supporting structure, rendering the solution expensive. However,
having the supporting structure deployed, this represents a very fast way to do the
inspection and repeat it, when compared with the typical mobile (track-free) robot
solution.
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2.3 tunnel inspection using an airborne vehicle

2.3 tunnel inspection using an airborne vehicle

The project demonstrated the possibility of navigating a tunnel with an airborne
vehicle as a base for a later implementation of an inspection system (Ozaslan et al.,
2017). The chosen vehicle, named MAV, exhibits a higher ability to move in a 3D
space when compared with wheeled or tracked vehicles. According to the system
diagram shown in Fig. 7, the system uses four cameras and a 3D laser range scanner
to obtain the 3D point cloud, as well as surface pictures of the duct walls. Based
on the built point cloud, and on the data generated by an IMU, the system uses a
local map and range-based pose estimation to locate the robot in that map. The
estimation is later adjusted in a 6 DOF frame using an Unscented Kalman Filter
(Simon, 2006).

Figure 7: System diagram (Ozaslan et al., 2017).

The system is remotely operated through an interface and requires additional
commands to define an initial direction. The reported tests were one-directional,
so the main control objective for the trajectory was to maintain the alignment of
the vehicle with the center of the duct, as shown by the red line in Fig. 8. Further
work is to be done to allow the inspection of branched ducts.
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Figure 8: Trajectory (red line) and 3D structure created in real time (Ozaslan et al., 2017).

The project demonstrates advances in pose estimation of an aerial robot in a dark,
symmetrical, low in distinctive features, challenging environment. Nevertheless, the
authors claim an error limited to 5% for their system.

Although still in a testing phase, the use of the MAV looks promising for au-
tonomous inspection. However, only the 3D envelope of the duct was recognized,
and no real inspection results are reported. The proposed future work, in that
project, has to do with the development of image analysis algorithms to build a
panoramic image and to automatically identity defects in the structure.

2.4 visual inspection of a railway tunnel

In (David Jenkins et al., 2017), the goal is to develop a low-cost railway tunnel
inspection. A set of 5 IP cameras takes overlapping images of the tunnel wall inner
surface (see Fig. 9), which are combined afterwards. To avoid shadows, two light
sources are directed to the cameras image center.
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2.4 visual inspection of a railway tunnel

Figure 9: Position and overlapping of the cameras (David Jenkins et al., 2017).

The choice for IP cameras, is driven by the existence of an on-board computer
running the algorithm to compose the images, detect defects, and create a 3D model
of the inner structure. This reconstruction maps the pictures onto the 3D mesh to
help inspectors understand the contexts and location of the damages. Three steps
are as follows in the anomaly feature detection algorithm: first, a comparison is
done with an earlier picture (Fig. 10a) with the most likely alignment (Fig. 10b) -
this alignment is needed, since there is no guarantee that the same spot is covered
by a picture taken exactly from the same pose (Fig. 10c); second, once aligned, the
images are compared and a mask revealing the differences on the pixels is created
(Fig. 10d,) where white pixels represent those differences between inspection runs;
in the third, and final step, the mask is applied to the most recent picture showing
the perceived changes in red (Fig. 10e).

The detection is not perfect, since a number of false positive results can be
observed in the used mask (Fig. 10d) which can be explained from light intensity
variation or misalignment from the images.

The system’s travel speed is directly associated to the cameras framerate, and
the authors call it a “walking speed”. One can assume that the trolley needs to be
pushed by hand, and to capture the other half of the tunnel, either another trolley
equipped with their system is needed, or the system must be moved to the other
rail manually.

11
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a: Previous image. b: Recent image.

c: Aligned image. d: Mask.

e: Application of the mask to the recent aligned image.

Figure 10: Defect detection process example (David Jenkins et al., 2017).

2.5 ibak’s commercial application for manhole inspection"

The "PANORAMO SI 3D Optical Manhole Scanner"1 is a proprietary technology
from IBAK allowing the 360º visualization of a manhole in real time. It uses two

1 http://www.rapidview.com/panoramo_si.html
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2.6 ipek’s manhole inspection system

digital cameras to do the scanning in seconds. Along with the images, a 3D point
cloud is also generated so that the integrity of the structure is verified. (Fig. 11).

Figure 11: 3D model of a manhole in the PANORAMO system (IBAK).1

The equipment, however, cannot automatically identify defects and the data must
always be analyzed by a qualified person. Nevertheless, it reduces the inspection
time spent on site and the risks for the inspectors. The lengthy and thorough
analysis is still needed but can be done offline.

2.6 ipek’s manhole inspection system

The "QuickView" system, from iPEK2, is limited to real time visualization of the
images captured by the camera introduced in the manhole. With this camera, it
is possible to obtain high zoom level images, which also allows looking into the
ducts attached to the manhole, to some extent. It is the cheapest solution, does
not reduce the time on site, but still minimizes the risk and comfort problems to
the inspector.

2 https://www.ipek.at/fileadmin/FILES/downloads/brochures-datasheets/brochures/
iPEK-Quickview-Broschuere_EN_web_01.pdf
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3
DEVELOPMENT

This chapter presents the reasoning behind the equipment chosen. This includes
the systems characteristics, like their resolution and the purpose for what they were
built. Since they were not specifically built for manhole inspection, calibrations had
to be done to make sure the results obtained would comply with what is expected.
This includes the construction of point clouds, shown in Chapter 4, as these require
the capture system to be properly calibrated, so the model created appears as it is
in the real world. If this fails, the model won’t be coherent and, therefore, it won’t
have the structure required to be able to conduct an inspection, as if the inspector
would have in the real local place. To accommodate each point cloud created, there
is the need to use a reference. With the need of also being able to conduct a capture,
inside the manhole, using a robot manipulator gave the world reference and the
necessary motions. This concept can be seen in Fig. 12.

During the development of this project, extra work was put, to make sure all
these systems would synchronize with each other. This work is described in the
Appendix, as it does not fit in the computer vision focus of the main objective of
this report.
This chapter starts with an explanation of the RGBD camera and the laser point
profile sensor chosen. It will continue with their respective calibrations. Such cali-
brations include the selection of parameters for capture, as well as the calculus of
transformations, to accommodate both point clouds in the same world reference.

3.1 choosing the rgbd camera

When this project started, Intel had recently released new RGBD sensors, the D400
family (Keselman et al., 2017). Previous work done in our laboratory (Reis, 2018)
proved that the goal of providing a 3D model of a manhole for inspection purposes
could work, although at that time the error obtained was still large. This new
generation of RGBD sensors has improved characteristics in a smaller form-factor
and with lower costs. Table 3 and Table 2 summarize relevant properties of Intel
RGBD sensors.
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Figure 12: Example of the robot manipulator positioned inside the manhole. The selected
capture system would then be attached to the flange.

16



3.1 choosing the rgbd camera

Table 1: RGB sensor specifications for the Intel Realsense R200, D415 and D435.

Specifications R200 D415 D435

Max. Resolution 1920 x 1080 1920 x 1080 1920 x 1080
Aspect Ratio 16:9 16:9 16:9

Horizontal FOV 70°+/-2° 69.4°+/-3° 69.4°+/-3°
Vertical FOV 43°+/-2° 42.5°+/-3° 42.5°+/-3°
Diagonal FOV 77°+/-2° 77°+/-3° 77°+/-3°

Table 2: Depth sensor specifications for the Intel Realsense R200, D415 and D435.

Specifications R200 D415 D435

Max. Resolution 640 x 480 1280 x 720 1280 x 720
Aspect Ratio 4:3 16:9 16:9

Horizontal FOV 59°+/-5° 65°+/-2° 87°+/-3°
Vertical FOV 46°+/-5° 40°+/-1° 58°+/-1°
Diagonal FOV 70°+/-4.5° 72°+/-2° 95°+/-3°
Min. Distance 0.5 [m] 0.3 [m] 0.1 [m]

When comparing the R200 with the new D4 family of sensors in their RGB sensor
(Table 3), there is not much difference or significant evolution between the different
series, however, in the case of the depth sensor, it shows a big improvement (see
Table 2). From the R200 to the D400 series, the depth sensor resolution increased
3 times, with a wider aspect ratio. The field of view also increased by a relevant
difference between the D415 and the D435. With a wider FOV, less captures are
required for the same area coverage. This, however, is not, in practice, useful, as
the RGB sensor’s FOV of the D435 is lower than its depth sensor, rendering the
extra image size capture useless, if one wants to capture depth information with
texture. As mentioned before, the color reproduction can be a valued ally for the
inspection. The minimum distance for capture is another interesting point to take
care of in choosing a camera. Previously, with the R200, when constructing the
system to accommodate the camera inside the manhole, there was the need to add
an extra DOF, as the camera required more distance to the wall than the radius of
the manhole, in order to properly acquire data. With the D400 series, the minimum
distance is smaller. Lastly, the manholes lack lighting inside so, in the end, the D435

17
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was chosen not just because of the 10 cm minimum distance required to the closest
object, but also because of its better performance in low light as well (Carfagni
et al., 2019). Later on, additional tests were performed with an Intel D415, namely,
a small comparison between it and the D435 with the same light conditions, and
same camera settings, and at 40 cm of the same scene. In Fig. 13, it can be seen
that the D415, even if advertised with a minimum distance to the closest object to
perform a distance measure of 30 cm, could not scan the environment. Concluding,
comparing the two options, the D415 and the D435, the D435 is the right choice
since, inside the manhole, the cameras are at close range to the wall.

3.2 laser point profile sensor

In this project we used the Gocator 20401. This is an industrial-grade laser point
profile sensor, used in this project, to generate a ground truth to the 3D model
of the manhole inner structure, so as to be used to evaluate the RGBD camera
performance. The Gocator 2040 precision is, at the worst case, of 0.049 mm.

Figure 14: Gocator 2040 in its 3D printed support.

1 https://www.stemmer-imaging.com/media/uploads/websites/documents/products/systems/LMI/en-
LMI-Gocator-2000-SYLMI1-201410.pdf
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3.2 laser point profile sensor

a: D415 depth scene.

b: D435 depth scene.

Figure 13: Comparison between the Intel D415 and D435 cameras in the same scenario.
The area inside the red border was at a distance of about 40 cm.
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Although this specific model is deprecated, its resolution and precision is more
than enough for the overall objective. Since the typical manhole inspection is run
with human vision, its safe to assume that the Gocator 2040 can perform a higher
visual accuracy scan than the former.

3.3 industrial robotic arm

Unlike the previous work (Reis, 2018), no specific mechanical structure was designed
for the motion acquisition system. Instead, a robotic arm was used, namely, the
KUKA iiwa 7 R8002 (Fig. 15), so has to obtain accurate models. This models
will serve as a reference for future implementations with a mechanical structure,
developed specifically for this purpose (with lower cost of implementation).

Figure 15: Kuka iiwa 7 R800.

The robot maximum reach is 0.8 m, and with the low mobility inside the man-
hole, it cannot retract enough to provide a full inside capture of the manhole. The
results obtained contain a small portion of the full manhole. A set of trajectories
and targets was specified for the motion acquisition with the robot, using mostly
RoboDK3. RobotDK proved helpful in the simulation of collision free trajectories,

2 https://www.kuka.com/en-gb/products/robotics-systems/industrial-robots/lbr-iiwa
3 https://robodk.com/

20

https://www.kuka.com/en-gb/products/robotics-systems/industrial-robots/lbr-iiwa
https://robodk.com/


3.3 industrial robotic arm

given the tight robot working space. Using a model of the same dimensions as the
existing manhole in the lab, it was easy to obtain all the targets required for both
the RGBD camera and the Gocator sensor, as compared it to having to teach sev-
eral targets manually, avoiding the time wasted of having to recreate a lightweight
replica and/or placing the robotic arm inside the manhole just for collision testing.
For all the movements inside the manhole, the targets used were based in the joint’s
angles, and not cartesian coordinates, avoiding the possible jerk movement associ-
ated to letting the robot move to the next target according to its path calculation,
and making sure it keeps the wanted orientation. These motions can be briefly seen
in Appendix A.2.

To couple the sensors to the flange, two accessories were 3D printed. The first
one can be seen in Fig. 16, for the RGBD camera. It also shows a sharp tool used
to capture certain points in robot coordinates. The second tool created was for the
Gocator 2040, seen attached to its back in Fig. 14.

Figure 16: 3D printed accessory to support the Intel RGBD camera and a sharp tool
mounted on it to obtain points in Robot coordinates.
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To be able to reduce vibration, and avoiding a shift in the robot position, gutters
were used and screwed in with two M6 bolts on the entrance of the manhole at the
base of the robot. So, when capturing data from inside the manhole, the KUKA
robot was operated in an inverted position.
Given that the KUKA iiwa is a collaborative robot, its safety conditions were
programmed so that the robot would stop upon contact with the inner manhole
walls, in order to improve the safety of the operation.

3.4 calibration of the rgbd camera

The new Intel RGBD sensor series, D400, uses the new librealsense SDK 2.04. For
this new SDK, the cameras can be used with different user selectable presets, in
terms of camera parameters. These presets include various parameters that change
how the sensor generates depth points. They are named Default, Density, Medium
Density and High Accuracy5.

3.4.1 Choosing the right preset

Default is the preset that comes selected as default in the camera. Density has the
camera parameters tuned in order to capture the most points. Medium Density
tries to balance between having as many depth points in the screen and having a
high degree of certainty in their depth values. High Accuracy only provides depth
points that have a high degree of confidence. These presets were obtained through
machine learning algorithms6, so the purpose here is to present the analysis of
their output, and not to present additional tuning to the various settings that
were already tuned. There was no post-processing applied to the obtained data
in the sensor or the Realsense SDK, in order to work with the raw point cloud
(for 3D scanning applications, post-processing operations such as hole-filling are
not advisable (Grunnet-Jepsen and Tong, 2018)). All frames were captured at the
maximum resolution of 1280x720, for both color and depth channels, in order to
obtain a denser point cloud.
To evaluate the precision of the sensor, 50 frames were obtained for each preset,
with the sensor in a fixed position facing the inner wall of the manhole, about 40

4 https://github.com/IntelRealSense/librealsense
5 https://github.com/IntelRealSense/librealsense/wiki/D400-Series-Visual-Presets
6 https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/

intel-realsense-technology/BKMs_Tuning_RealSense_D4xx_Cam.pdf
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3.4 calibration of the rgbd camera

Figure 17: Standard deviation of each cell from the 50 samples, using the Density preset
(in meters).

cm away from it. Considering that each acquisition frame is a matrix with depth
values in each of the matrix cell positions, the standard deviation can be computed
over the set of frames for each cell, resulting in a plot shown in Fig. 17 (for all
the 50 frames with Density preset). The optimal result would be a flat plane, but
there are outliers with up to 9 m of deviation, much larger than the limits of the
manhole. These outliers can be due to the use of artificial light inside the lab, but
they mostly appear due to errors in calculating the disparity between the sensor
infrared images, likely due to the homogeneous texture of the manhole.

The high standard deviation values arise from readings with large offsets when
compared to the expected reading. Given the nature of the problem at hand, there
should not be variations in the meters range, in fact, measured distances should be
relatively limited. As such, a simple outlier detection was introduced in the depth
capture, with values outside the range [0, 50] cm being discarded as invalid ones.
This is a filter one can also apply when acquiring data to build the manhole model
(recall that the manhole has a 40 cm radius and that the camera was placed in
the middle of the manhole, thus allowing for 25% sensor error) - this method was
denoted selective standard deviation. Given the computed standard deviation for
each pixel across all the acquired frames, the standard deviation and the maximum
standard deviation of these values were also computed, in order to understand how
precision changes across all the sensor area. The tests where then conducted using
this selective standard deviation, with and without the outliers. To see how relevant
the outliers were over the selective standard deviation, there was another filter
applied in the calculation of the standard deviation. This filter aims at decreasing
the variability of the used data, thus increasing the overall precision of the system.
The High Accuracy preset returns only depth values where the camera’s software
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Figure 18: Standard deviation when using the High Accuracy preset.

has high confidence. As it can be seen in Fig. 18, when the outliers are removed, it
does not produce significant changes, with a difference of 0.0044 mm when using
all of the data between both situations.

In Fig. 19, which shows the maximum deviation across the entire frame set,
including all the data leads to higher differences between both situations (with and
without outliers), up to 32 mm. The maximum depth value obtained in this preset
was about 1.4 m.

In this experiment, the percentage of points that were not obtained from the
sensor and the amount of outliers removed, denoted here as invalid points, were
about 22.1%.

The High Accuracy preset, as the name and description indicates, should be
the best option, however, the same tests were applied to the other presets. The
following figures, 20, 21, 22, 23, 24 and 25, are hard to interpret on paper, due
to the discrepancy in values, but can still show how big of a difference and error
they can produce from the existing outliers that are generated. At the end of this
section, there will be an comparison that should highlight this (Figs. 26 and 27).

As shown in Fig. 20, the Default preset shows low precision as it varies signif-
icantly between each frame. With the outliers removed, the invalid points were
about 14.6% of all points. With this data filtered, it shows a big improvement over
the original result, with around 0.186 mm of deviation.
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3.4 calibration of the rgbd camera
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Figure 19: Maximum standard deviation when using the High Accuracy preset.
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Figure 20: Standard deviation when using the Default preset.
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Figure 21: Maximum standard deviation when using the Default preset.

Its maximum standard deviation (see Fig. 21), also had a big improvement, since
10% of the points acquired were outliers with up to 9 m of deviation. Without the
outliers, the maximum obtained was about 3 mm.

The Density preset aims to provide a high density point cloud, even if less ac-
curate. This leads to an increase in outliers but, in terms of precision, if one only
chooses to use points that are valid in at least 20% of all frames, for the standard
deviation calculus (Fig. 22), the computed values approach that of the filtered one.
It is also worth noticing that 11.9% of the total points were outliers, and that the
maximum outliers had a lower value than in the Default preset.

The same happens with the maximum standard deviation, however, as shown in
Fig. 23, it is seen that it can lead to less precise measures than the Default preset,
with 9.6 m.

The Medium Density preset tries to provide for a highly dense point cloud, but
without compromising the accuracy. As shown in Fig. 24, there is a big deviation
that can be seen when all the points are used. However, when a minimum of 90%
of points with valid values across all frames are used for the standard deviation, it
gets close to the filtered sample, with around 0.2 mm of deviation.

The same happens at the maximum deviation value, as shown in Fig. 25, but it
does not yield the big deviations from the Default and Density presets. Only about
10.9% of all points were classified as outliers.

The purpose of the comparison described above was to select a configuration
that yields more precise depth values, with less outliers, particularly in a manhole
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Figure 22: Standard deviation when using the Default preset.
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Figure 23: Maximum standard deviation when using the Default preset.
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Figure 24: Standard deviation when using the Medium Density preset.
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Figure 25: Maximum standard deviation when using the Medium Density preset.
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3.4 calibration of the rgbd camera

inspection scenario. Figure 26a to 26c allows for a direct comparison between the
various presets. In Figure 26a clearly both Density and High Accuracy presets give
the best results when no outlier is removed. In Figure 26c, it can be seen that the
High Accuracy preset has less deviation than the Medium Density preset. Even if it
looks like the High Accuracy preset yields a static deviation, it still shows growth,
as seen in Figure 18. When using 95% of the valid values for the deviation calculus,
the Medium Density preset gets closer to the High Accuracy one, but still has a
difference of 0.02 mm. In Figure 26b, with the outliers removed, both Default and
Medium Density presets lead to less deviation, with very similar results, yielding a
minimum deviation of 0.18 mm.

Comparing the maximum standard deviation, Figure 27a to Figure 27c, it is
clear that the High Accuracy preset provides the lowest deviation, followed by the
Medium Density preset, as shown in Figure 27c. As it happened with the standard
deviation results, even when choosing 95% of valid values for the calculus, using
the High Accuracy preset still performs better by about 13 mm. On the other hand,
the Default and Density presets can lead to much less precise results, as shown in
Figure 27a.

When comparing the High Accuracy and Medium Density presets, one also needs
to check the amount of depth values that the camera outputs, namely the number
of points that were considered valid. The Medium Density preset got the lowest
number of outliers with 10.9%, while the High Accuracy preset got 22.1%. Closely
evaluating these outliers it is seen that, in the High Accuracy preset, most had
depth values of 0 (considered as invalid points), with only 240 points across the
50 images being points with depth value above 50 cm. With the Medium Density
preset, the outliers were about 12249 points.

Figure 26c and Figure 27c also show that, when considering 100% of the acquired
points, the Medium Density preset has points that variate more than the double
of the High Accuracy preset, which means it is prone to provide higher differences
between samples, even in a static scenario. One can perform multiple acquisitions,
even from different points of view, in order to produce a more dense point cloud,
while retaining the precision of this preset, even if it means some increase in the
overall acquisition time.
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a: Standard deviation comparison between all presets.
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b: Standard deviation comparison between all presets without outliers.
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Figure 26: Comparison between all presets in their standard deviation.
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a: Maximum standard deviation comparison between all presets.
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b: Maximum standard deviation comparison between all presets without
outliers.
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3.4 calibration of the rgbd camera

Figure 29: Draft of the hand to eye calibration made (Ali et al., 2019).

3.4.2 Extrinsic camera parameters

Using the 3D printed support for the RGBD camera, there was the need to dis-
cover the transformation required to transform the points obtained in camera coor-
dinates to robot coordinates. For this, 4 captures were made from different angles
and positions of a checkerboard picture, while saving the flange position in robot
coordinates and associating it with the respective picture. A visual representation
of this method can be seen in Fig. 29.

Knowing that the left infrared sensor of the RGBD camera was the origin of its
reference, a camera calibration using a chessboard pattern was made (Ali et al.,
2019). The extrinsic parameters were obtainable through the librealsense SDK and
were as follows (transformation in homogeneous coordinates):

K =


642.701 0 644.221

0 642.701 350.991

0 0 1


Having obtained the extrinsic parameters, which shows the position of the camera

in the chess pattern coordinates (lets call it cam Pchess), the next step is to know
the origin of the chess reference in robot coordinates. For this, a base frame was
calibrated using the robot’s own calibration method. Knowing the origin point,
the transformation from chess coordinates to robot coordinates (chess Trobot) is
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obtained. Multiplying this last transformation with the position of the camera in
chess coordinates, results in the camera position in robot coordinates (cam Probot):

cam Probot =chess Trobot∗ cam Pchess

In the last step, one uses the flange position in robot coordinates (flange Probot)
for the respective image. Since the goal is to obtain the transformation between
the camera and flange (cam Tflange), then it results as follows:

cam Probot =cam Tflange∗ flange Probot <=>

<=>cam Tflange = (flange Probot)−1∗ cam Probot

With the transformation between camera and flange obtained, the stitching of
the pointclouds can be obtained through the multiplication of each point in the
pointcloud (Pointcam) with the transformation of the camera coordinates to the
robot coordinates (cam Trobot), depending on the position of the flange in robot
coordinates of the respective picture. This calculation when applied to all points,
results in a pointcloud in robot coordinates:

Pointrobot = (cam Tflange∗ flange Probot) ∗ Pointcam

3.5 calibration of the laser point profile sensor

The calibration of the laser point profile sensor first needs an integration with
the robot manipulator. This integration is to make sure that, for every Gocator’s
capture, the robot’s position is the one that corresponds at the time of the Gocator’s
capture. Once this is finished, then a calibration to determine the transformation
from Gocator’s coordinates to robot coordinates, can be calculated, using the same
method previously used with the RGBD camera.
This section will start describing the process made to accomplish a communication
between KUKA and Gocator, for the capture to position synchronization. It will
then be followed with the process made to calculate the transformation required
to transform the Gocator’s points into robot points, resulting in a point cloud that
can be seen in Chapter 4.
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3.5 calibration of the laser point profile sensor

3.5.1 Communication between KUKA and Gocator

The Gocator 2040 is capable of building 3D models of objects in motion, if it has
access to encoder data from that motion. The Gocator itself is usually still, and the
object to be scanned needs to pass through the Gocator’s own laser beam. This is
typically used with a conveyer in mind, where the Gocator, staying still, can track
the distance that the object has moved with signal inputs from the conveyer’s
encoder. With the use of a robotic arm, the motion information can be obtained
by knowing the Gocator’s position at the time of the capture.
To use and combine both the Gocator and KUKA, there was the need to make sure
both communicate motion information. Since the KUKA’s controller is relatively
closed, in implementing external programming libraries, like the Gocator libraries,
an external computer was used to receive the communication from both systems.
Using the Fast Research Interface 7 communication from KUKA, allowed for a fast
communication between computer and KUKA, being able to receive KUKA’s poses
every 1 ms.

Computer

Gocator 2040

Kuka iiwa R7
800

TCP/IP

FRI

Figure 30: Initial diagram of communications between Gocator and KUKA.

A drawback of using the FRI, is that, the robot kinematics have to be calculated
externaly, since, it only returns the value of each joint. It was then used a TCP/IP
communication to receive the pose in XYZ coordinates from KUKA, even if it meant
a lower packet transmission frequency. Using Gocator’s and Kuka’s timestamps,
there was the need to synchronize their messages. This required that both clocks be
synchronized. However, the Gocator does not support a NTP server, as KUKA does,
so, using the computer’s time, it was possible to soft synchronize both messages.
This was done by saving the time in computer’s domain, for each equipment, for the

7 https://cs.stanford.edu/people/tkr/fri/html/
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first capture received. The following messages, subtracted with the initial capture,
would give the passed time in microseconds. After all messages were received, a
linear interpolation was used according to the timestamps in the computer’s clock,
to try to reduce any error to the upcoming calibration. With this communication
system built, tests started to show a problem. The Gocator 2040 clock, was having
a delay in the communication over time. This clock drift could be easily seen, by
performing a simple up and down movement, while attached to KUKA, as shown
in Fig. 31. By normalizing the distance value from Gocator, and the Z value of
KUKA, it was possible to synchronize them so they could be visualized together,
as for example, the highest distance registered from Gocator would be the highest
Z value from KUKA.
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Figure 31: Delay present from Gocator over time.

At around 50 seconds of scanning, Gocator was having a delay of almost a full
second. At this time, the Gocator was always set up to capture with its highest
frequency of 301 Hz. This meant that the time between captures was around 3.32
ms. Instead of using the Gocator’s time messages in computer’s time, the 3.32 ms
was simply added consecutively after the first message for every other one. This
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3.5 calibration of the laser point profile sensor

in long scan periods, still added to the error. As such, a different synchronization
method was implemented, by using the robot and Gocator’ digital I/O.
With this new synchronization scheme, where KUKA was the master, given that
it had higher packets transmission frequency, and Gocator the slave. Now, Kuka
controls when a capture is taken, so the number of messages received in the com-
puter should be the same between Gocator and Kuka. This however, presented
another issue, as the number of signals that KUKA was sending to Gocator were
less than what was received in the computer. Using a logic analyser, it was possible
to measure the number of signals that KUKA was outputting to fire Gocator’s
capture, and after filtering some noise from the hardware built to accommodate
the communication (that can be seen in Appendix A.1), the only way to receive the
same number of messages was to add a delay between each signal sent to Gocator.
According to the Gocator Manual, it is noted that the processing of each frame
might take up to 20 ms, however, this was not a problem as previously noted when
using its max frequency. It was then assumed that this delay is part of its signal
receiving infrastructure. To circumvent this problem, the Gocator started being
the master, and since it was not possible to send a digital signal once a capture
was finished processing (that feature is not available for this sensor), the signal
from Gocator to Kuka, had a delay of 16 [ms] once a capture was started. This
delay was selected after multiple tests with different delays, over long periods of
time. Anything higher than 16 [ms] showed a minimal improvement with a lower
frequency of messages.
The signals flow starts with a signal from KUKA to Gocator, allowing Gocator to
start a capture. KUKA waits for the signal, with 16 [ms] of delay, from the Gocator
to go low, signaling that the capture was processed. KUKA ends up not sending a
digital signal with a certain duty-cycle, it just reacts from the Gocator signals as
seen in Fig. 32.
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Kuka

Gocator

Time

16 [ms]

Wait for Gocator's signal
to go 0

Figure 32: Digital signal communication between Gocator and KUKA.

With the last adjustments, the structure for communication is shown in Fig.
33. Note that, when KUKA’s signal goes low, it does not go at the same time
as Gocator’s goes high. This is because, KUKA has a variable delay whenever
it checks the signal. The same applies when it needs to detect the descent from
Gocator’s signal to low. At best, this delay should be of only 1 ms. With this setup
is noted that there is an increased delay between the saved position from KUKA
and the corresponding Gocator’s, however this is seen as minimal, and, compared
to the original output with the timestamps, there appears no more noticeable delay
overtime.

Computer

Gocator 2040

Kuka iiwa R7
800

TCP/IP

TCP/IP
Digital Signals

Figure 33: Final diagram of communications between Gocator and KUKA.

Fig. 34 shows the result of the test previously done in Fig. 31 with this final setup.
When looking at these tests, some holes can be seen as missing the position from
KUKA. They can be seen towards the end, in Fig. 31. Since KUKA’s controller
is running in an actual Windows machine, the system, even if it prioritizes the
execution of the motions, it fails in providing a seamless execution of other tasks.
This means, that from time to time, an instruction may take longer to be executed
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than expected. In the end, the frequency between each capture is around 50 Hz, 6
times lower than the initial 300 Hz.
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Figure 34: Delay fixed but KUKA presents interruptions sporadically.

The communication and its flowchart can viewed more in depth in Appendix B.

3.5.2 Calibration with the Gocator

The Gocator calibration approach uses the hand to eye calibration method. There
is no reference in the Gocator’s manual as to its origin of reference, so as a starting
point, it was defined as the centre point of the laser projector visor’s area. Unlike,
the checkerboard pattern used with the RGBD camera previously, a parallelepiped
object was used. Initially, several markers in the scene were identified in robot
coordinates, like letters carved onto the object, but once the data from the Gocator
is reviewed, it is hard to recognize the shapes and identifying the corners, since the
time between captures might just fail to acquire the right point in question. To
circumvent this, the markers became the centre of 8 holes (Fig. 35) at the height
of the base’s plane. Using a cover over the holes it was possible to acquire the
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coordinates of its centre with KUKA. This also had an advantage of being a known
form and, no matter how different the angle from the scene was, it could always
be identified as an ellipse and, therefore, obtain its geometric centre. These holes
were also different in size, to help identify which hole is which, and, although it was
not implemented, an automatic process of identifying the holes could be developed.
After doing four different captures, three with a rotation of an axis and the last one
without any rotation, the holes were categorized and identified for each movement
manually.

Figure 35: Object with holes for Gocator calibration.

After the holes being identified, an ellipse was fitted to each one, and its geomet-
ric centre computed. This gemotric centre, in Gocator’s coordinates, is then asso-
ciated with the closest position obtained from KUKA through linear interpolation,
between the closest 2 positions relative to the geometric centre obtained, accord-
ing to the distance between captures from the centre coordinates. After having all
points (8 points for each movement, 32 points in total), in Gocator coordinates,
associated with their respective KUKA coordinates, the transformation between
Gocator coordinates to KUKA coordinates could be computed. To determine the
transformation parameters, the problem was approached as an optimization prob-
lem. The variables to obtain were “X”,”Y”,”Z” and its respective rotations, “C”,”B”,
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and “A”. Since the rotations are in radians, to make sure the optimizer was giving
every variable the same importance, a normalization had to be done. The cost for
the function is the square sum of the error between the estimated coordinate of
each point and its real robot coordinates. The reason for the square sum instead of
the sum is just so that the error sum always adds up.
The results, shown in Fig. 36, were not very accurate. The holes should be aligned
between movements and belong in the same plane. This was likely due to an error
in the measure of each point in robot coordinates, the existent delay from commu-
nication, as well as the calculation of the hole’s centre in Gocator’s coordinates.

Figure 36: Calibration with significant error using the first approach. Each color corre-
sponds to a different movement.

To minimize this error the approach in the cost function was redone. This time,
instead of calculating the difference between the estimated and the real position,
the purpose was to make sure the centre of each hole for all movements (M1, M2,
M3 and M4), was as close as possible. The function cost for each of the 8 points
(for n movements) becomes:

Mmean = M1 +M2 +M3 +M4
4

Errorn = norm((M1 −Mmean) + norm((M2 −Mmean)+

+norm((M3 −Mmean) + norm((M4 −Mmean)
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Cost =
8∑

n=1
Error2

n

By using this cost function in the optimization problem, one obtains better re-
sults, since it removes the error of the real manually measured points in robot
coordinates, as it can be seen in Fig 37.

Figure 37: Calibration using the second approach. Each color corresponds to a different
movement.

When scanning a different object, this time with three different movements, the
resulting 3D point cloud shows good visual integrity (Fig. 38). By closer inspection,
in this same scenario, it can be seen, at times, an error of 0.5 mm between different
captures as shown in Fig. 39.
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3.5 calibration of the laser point profile sensor

Figure 38: 3D point cloud from a wood object with Gocator. Each color corresponds to a
different movement.

Figure 39: Difference observed of 0.5 [mm] between movements from Gocator’s point cloud.
Each color corresponds to a different movement.

The error obtained is below 1 mm precision. Nevertheless, using more diverse
trajectories during the calibration would lead even lower errors. This was noted as
the quality of the calibration done with 4 trajectories, as opposed to 2, presented
better results, even if the optimization solution gave an higher number. This is due
to the error being the sum of its square value as well, due to having more points
to add to the error. For the rest of the project, all of the Gocator point clouds
were made with the transformation of Gocator to KUKA’s coordinates as follows
(transformation in homogeneous coordinates):
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goc Trobot =



1 −0.0018 −0.0023 0.9206

0.0018 1 0.0009 65.502

0.0023 −0.0009 1 70.8474

0 0 0 1
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4
RESULTS AND COMPARISON

In this Chapter, both Gocator’s and Intel’s point clouds were obtained from the
respective transformations calculated in Chapter 3. There is an analysis for each
point cloud properties, including overall visual quality, and structural integrity. In
the last section, the final comparison will be drawn, using Gocator’s final point
cloud as the ground truth, for the final Intel’s point cloud.

4.1 intel rgbd camera results

Using the Intel RGBD D435 inside the manhole, 18 captures were taken between
each strip, so every consecutive horizontal rotation was of 20 degrees. There were
also a total of 3 different full strips of the manhole taken with different heights.
When adding every capture together, there was reasonable overlapping, leading to
processing overhead when trying to visualize the point cloud. In total, for each
strip, only 7 captures were needed and the strips were spaced out at 22 cm from
their center of mass. Due to the space restraints inside the manhole, and the robot
limitations therein, only a 22 cm height strip was captured. Previously noted, the
D435 depth sensor provides a bigger FOV than its RGB sensor, so all of the extra
depth points obtained, resulted with no real color. These points appear as a copy
of the last obtained color from the texture picture, as seen in Fig. 40.
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Figure 40: Depth sensor FOV being wider than the RGB sensor provides a dragged color.

Removing the extra points with no color, the color presented is quite alike to that
of the manhole. During this test, the only source of light was of an halogen lamp
placed at the entrance of the manhole, at about 1 m away from the capture. The
manhole itself is built with different cylindrical blocks, and the camera happened
to capture the junction of two of these. In the capture it looks like there is a gap
of around 2 cm at this junction. Given the used preset only returns depth when
there is reasonable confidence, the camera’s angle, when faced at the wall, could
potentially obstruct the depth of the gap between the manhole blocks. The manhole
does not have its blocks perfectly aligned, since they are not attached to each other,
even if not visible from the outside, as seen as in Fig. 41, which represents the RGB
picture at the same angle of the previous seen point cloud.
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Figure 41: Picture of inner wall of the manhole.

If there was direct illumination onto the scene of picture, the camera could have
obtained additional points indicating a difference in depth in the junction, but, as
of now, the point cloud obtained represents what could happen if there was a visible
crack in the wall in the same setup. Across the point cloud it can also be noted,
that further away from the center of the picture, holes start to appear, even if these
do not exist in reality as their size or depth suggest. This could be fixed by using
all of the captures taken, since the holes could be overlapped with another capture,
by using direct illumination, and is something to be addressed in the future. When
stitching all point clouds together, the model obtained is as presented in Fig. 42.
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Figure 42: 3D manhole model obtained with the Intel D435 camera.

The model obtained, when compared with the result from the previous work (Fig.
43), shows a big improvement in definition and especially in color reproduction, even
if it didn’t had a light source projecting on to the scene.

Figure 43: 3D manhole model obtained with the Intel R200 camera (Reis, 2018).

When looking at all of the captures, there were noticeable points outside the
dimension of the manhole. Although rare, this still happened even if not shown

48



4.1 intel rgbd camera results

in the pictures, since it is hard to discern a single point from the others. These
outliers appeared with distances of several meters. This was even more apparent
when trying to build the whole model of the manhole with sharper angles of the
scene. For this take, the camera took pictures from a lot more angles, trying to
cover the rest of the manhole. The results, after filtering most outliers, can be seen
in Fig. 44.

Figure 44: 3D full manhole model obtained with the Intel D435 camera without color.

The color was taken as it was hard to discern the overall structure which was the
point of this test. Visually speaking, the model is similar to the manhole, which
shows that the transformation previously calculated is accurate. Some outliers can
still be seen at the bottom of the manhole. Overall, it performed quite well, even
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at 1 m of distance in the case where the camera is at the bottom looking at the
entrance on the top of the manhole. There is a big visible missing part from the
manhole, partially due to the robot not being able to do a full consecutive 360
degree movement, leaving the camera missing parts of the wall when looking up,
most point clouds barely overlapped. This could be fixed by changing some targets
of the KUKA’s movement.

4.2 gocator 2040 results

The Gocator’s manhole capture had two long captures per strip. Since the KUKA
cannot do a consecutive 360 degree movement, especially considering the orienta-
tion that Gocator must be in to perform a scan, there was the need to do a 180
degree rotation of the flange between the two long 180 degrees captures. This meant
that, in height, KUKA was again, severely constrained to make sure to not touch
the walls during this movements. The first and last strip taken, were separated
by 20 cm. This does not mean that the capture area was almost as the same as
the camera, since the Gocator can only capture around 15 cm of vertical height at
the distance of 20 cm from the wall. To be able to make sure the captures were
overlapping in order to stitch them, 3 full strips had to be taken, with 10 cm of
height separating them. The obtained model obtained is shown in Fig. 45. Recall
that, with the Gocator, one can only obtain positional information, not texture.

Figure 45: 3D manhole model obtained with the Gocator 2040.
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Apart from the lack of color, Gocator presents higher definition compared to the
D435’s model. It also lacks the sizeable holes that exist in the former’s point cloud.
However, as previous noted, the transformation calculated for the Gocator appears
to reveal a bigger error in this case. When each capture overlaps, a bigger difference
can be noted, as noted in Fig. 46.

Figure 46: Error from the Gocator’s 3D manhole model. Note that the Depth value corre-
sponds to the Y axis in this case.

In some parts, particularly at the end from a capture, this difference can reach
up to around 2.5 mm. This means that there should be more work put on into cal-
ibration, to provide a better ground truth for the upcoming comparison, although,
the stitching applied to this point cloud is going to reduce part of this error. Lastly,
when looking at the point cloud closely, one can see the interruptions when KUKA
had a delay between instructions, as seen by the spacing without points, in multiple
areas of the image (see Fig. 47).
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Figure 47: Spacing in Gocator’s point cloud from KUKA’s own delays.

4.3 comparison in manhole models

Before comparing directly, both point clouds need to be constrained to the same
space. As the Intel’s camera point cloud provides higher FOV range, its height
was trimmed down to the same range as Gocator’s point cloud output. To directly
compare this two point clouds in particular, the height becomes our basis of com-
parison. The remaining axis are the ones that are going to be compared. Fitting
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a cylinder inside each point cloud can provide some structural analysis, since now
they both are inside the same height range and correspond to only one strip of the
manhole.

Table 3: Fitted Cylinders characteristics from both point clouds.

Cylinder Mean Error Radius Center [mm]
Specifications [µm] [mm] X Y Z

Gocator 0.02 402.3 0.3967 -1.3794 -1026.1
Intel 4.2 404.7 2.8953 0.4748 -1068.1

Looking at the best cylinder fit to each point cloud, the mean error of Gocator
is much lower than the Intel camera’s point cloud. This mean error, corresponds to
the mean of the total error from each point to the cylinder fit. This can be taken
as the structure of Intel not coming as cylindrical, but not much more can be said,
since fitting a cylinder is an approximation, given that the manhole shape presents
relevant variations. Both radius obtained were similar, with 2.4 [mm] difference,
close to the manually measure radius of 40 [cm]. The center was expected to be
with both X and Y at 0, however one cannot guarantee the exact value. Between
taking out KUKA’s from its screwed place to switch between one sensor and the
other, can affect the position the slightest, however the 4 cm difference should not
be this big.
To make a direct comparison, Gocator’s point cloud is now going to be set as the
ground truth. Since both are point clouds, it would be easier to compare points to
a surface instead of point to point, since there is a point quantity disparity and
there is not guarantee that the same point in one corresponds to one in another.
The original process would be to create a mesh from Gocator’s point cloud and
create this surface for the Intel’s point cloud to be compared. This did not prove
to be pratical, since Gocator’s point cloud has 5189906 points, and trying to create
a mesh with that number of points was very time consuming. Down scaled the
number of points could be a possibility, but this would loose its precision. As such,
every Intel’s point cloud point was compared to the nearest one in Gocator’s point
cloud. To do this, the Gocator’s points coordinates were organized in a kd-tree
model (Bentley, 1975). Then, the points from Intel’s point cloud are compared
to their best single match from the kd-tree model of the Gocator’s point cloud
(Friedman et al., 1977). Having the points matched, the distance can be obtained
between the two points. Fig. 48b shows the point cloud, with each point color being
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proportional to the distance, with green representing the lowest distance error and
red the highest.

a: Both point clouds displayed together.

b: Distance error from Intel’s point cloud compared to Gocator’s point cloud.

Figure 48: Comparison between Gocator’s point cloud (in blue) and Intel’s point cloud.
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The minimum distance registered was 2.4 µm, and the maximum as 6.87 mm
with a median of 1.25 mm, lower than its average of 1.46 mm. Visually, the point
clouds are close with each other, with the exception of the corners of most Intel’s
capture. This shows what appears to be a reduction in accuracy that might be
related to a radial distortion. By performing a checkerboard calibration with 20
pictures, it was noted that in fact radial distortion existed within the lens. The
distortion in X was of 0.0088, and 0.00009 in Y. Fig. 49) shows an image before,
and after the correction. Note the difference in objects dimension in the corners.

a: Image with distortion.

b: Image with distortion corrected.

Figure 49: Comparison of pictures, before or after distortion correction was applied in the
left infrared sensor.
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This distortion could be fixed by updating Intel’s intrinsic parameters, or by just
more captures and discard the overlapping points, resulting in a point cloud that
would filter the extreme points of the captures. When looking at the histogram
(Fig. 50) of the distances, 90% of the points are below 3 mm of difference. This
goes to show how accurate the Intel’s camera can be when compared to a Laser
Range Finder, that is almost 10 times its price.
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Figure 50: Histogram of distances between points from Intel’s point cloud and Gocator’s
point cloud.
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5
CONCLUS ION AND FUTURE WORK

Manhole inspections are still mostly manually done. Work is underway to automate
these inspections, with few partially automated inspection systems being commer-
cially available. The latter ones, do provide more comfort than a typical manual
inspection, but still takes time and the mobilization of the skilled inspector. One
also need to consider the upfront cost of buying such system, as some involve expen-
sive equipment and/or expensive fixed foundation’s structure (Stent et al., 2015).
This project aims at a low-cost solution to manhole inspection. When comparing it
to a laser point profile sensor, the Intel D435 camera, showed less than a 3 mm error
in 90% of the points. Even at its highest error of 6 mm, it needs to be noted that
it is not a big difference when detecting or tracking cracks, as several holes from
the concrete texture are of this size or much larger. The Intel D435 camera is also
able to produce color. The color, with the depth points, when being looked at, by a
skilled inspector, can provide important detail to evaluate the state of the manhole.
So, even if the depth calculation provides a higher error, the inspector can dismiss
this by looking at the image. The errors, can also be overcome by having multiple
captures, and using a post-processor filter to remove any outlier if any point had
high disparity when compared with multiple captures. Even if not properly tested,
using a proper source of light, illuminating the scene that the camera is capturing,
will provide more accurate results. This could be seen before in Fig. 42, when the
well lit area of the manhole provided little to no visible holes. As the RGBD tech-
nology improves, this solution can provide more accurate and precise models in the
future. In this project there was a lot of effort into providing a ground truth for the
future. It still had calibration errors, but this could always be improved with other
techniques or progressed further from what it was presented here. In the future,
when evaluating other RGBD cameras, the Gocator’s point cloud will still be the
ground truth in depth comparison.
With the analysis proving the quality of the accuracy and precision of the results,
there is the need to build the infrastructure, to address the goal of the overall
project. To be able to capture the full size of the manhole, a structure with a lower
cost solution needs to be built, with several DOF, one wich is able to give the
camera the motion needed to capture the 360 degrees view of the inner wall, and
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the entire vertical view. There could be the need to have an extra DOF to have
the camera check the distance left to hit the bottom, or anything that the camera
could hit on its descent. This extra DOF could be overcome by the use of an extra
fixed sensor that would always measure this distance. More needs to be studied in
this subject for the future, as it needs to comply with the following points:

• Easy to move around: the point is to have multiple manhole models created
with the same equipment, so it needs to be easy to install and removed;

• Have a solid foundation: if the base is moved during the inspection, the model
created will have an error as big as to how much it moved;

• Needs to be low-cost: since it was explored the use of low-cost RGBD cameras,
the same should be applied to the infrastructure. The system as a whole
should not be expensive;

• Have a way to illuminate the manhole: even if RGBD cameras provide better
results at low light conditions, they will still perform better under the right
illumination.

The Gocator’s ground truth, needs to be developed even further. To improve the
calibration, more motions could be done, as the transformation obtained proved to
be better with more motions made.
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A
APPENDIX A

This appendix describes the hardware built, to connect the Gocator and the KUKA
digitally. The last section of this appendix, shows the use of RobotDK in creating
the required motions for KUKA, to capture the inner manhole with the Gocator.

a.1 hardware for gocator’s communication

Since the time synchronization could not be accomplished, there was the need to
have another way to be able to synchronize both Kuka and Gocator’s messages.
Using digital signals the communication could be done. To have a minimal delay
between the start of Kuka’s signaling and the start of capture from Gocator’s part,
there was the need to build an electronic "bridge" that would not increase delay.
Since the Gocator input, as well as output signals, can only be accepted within 12
V, the 24 V output and input from the Kuka’s I/O needed to be modulated to
the former range. For this a simple tension divider was used, as the Gocator has
internally a 330 Ω resistor into its own optocoupler. The output signal, signaling
that the capture was taken, from Gocator to Kuka, is open emitter. The Gocator
to output a signal, needed at least a 2.5 mA current to power through, and since
Kuka’s input cart required 3 mA, to avoid the load loss, it was necessary to separate
the Gocator output circuit from Kuka’s input. Using an optocoupler solid state
relay, this would allow the communication between circuits without delaying too
much the signal. The circuit can be seen in Fig. 51.
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Figure 51: Schematic diagram of the hardware that bridges the communication between
Gocator and Kuka.

a.2 kuka’s programmed motions

The process to create paths for KUKA to follow inside the manhole, was eased out
through the software RoboDK. This section is mostly targeted at the movements
created with Gocator’s in mind, as they proved to be the most challenging. Typ-
ically, one can define targets in XYZ coordinates so that it is easier to grasp the
location of the flange at the time. This removes a lot of control from the user, since
Kuka will define the easiest joint configuration to reach the point. Since a specific
orientation is needed at all times, all the targets were done with joint values. For
each height change, there was a 180 degrees circular rotation, with an added linear
movement of 10 cm for both extremities, to make sure the captures would overlap.
The other 180 degrees left, were only possible by changing the flange orientation.
So, if the first 180 degrees were performed with Gocator in the right direction, the
other would require it to scan it backwards. This is needed to give KUKA’s joints
the extra room to perform another 180 degrees circular movement. The circular
and the adjusting orientation path can be seen in Fig. 52 by looking at the yellow
line.

To simulate and check for colisions, models can be imported to the environment.
In Fig. 53, an example can be seen, where the simulation stops and the model of
the manhole is highlighted. The movements created can then be exported, although
with some caveats, like the missing velocity and the circular pahts, to the robots
programming language.
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Figure 52: Example of a path created inside RoboDK.

a: Manhole simulated in the environ-
ment.

b: Collision detected.

Figure 53: Colision simulation in RoboDk.

65





B
APPENDIX B

All the sections of this appendix, describe the communication built to help connect
the KUKA, the Gocator and computer together. For each of the systems, there
is a flowchart, so the programming code can be easier to understand outside the
attachments.

b.1 gocator’s communication

Gocator’s typical use is in industrial environments. As such, it is typically used
with its own provided interface. This didn’t allow for most of what was needed in
this project. Most of the Gocator’s setup was done instead by using it’s SDK. The
SDK allowed to retrieve the raw data of the sensor, as it typically only gives a
pointcloud of the object it detected. Since there was no object to capture, using
the raw data was the only way to get the depth points. The raw data is composed
by 613 points, from the laser beam. Not all points have depth information, so in
reality there are actually about 590 points that can be used. There was also the
need to change the way the distance information was obtained, since the Gocator
gives the volume of the object relative to a base. This base is typically the conveyor,
so the distance was subtracted by 100 mm, this value being the distance referred
in the manual as the base reference of Gocator’s area of work. There was no need
to have this number exact, since the calibration done would circumvent this issue.
The Gocator’s SDK allowed for setup several Gocator’s values, like the exposure
time, the type of triggers to execute a capture (with digital signals, encoder ticks, or
with time frequency), and the active area of measurement. As the documentation
wasn’t well organized some other features needed to be setup through the interface:

• Exposure calibration. Gocator has this feature and it provides the optimal
exposure time for the scene given. The value obtained from the interface was
then configured in code manually.

• Digital output signal. To be able to output signals to tell Kuka that Gocator
was done, this had to be configured manually in the interface. The output
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used was Out_1 and was triggered for whenever a capture was taken. The
output signal was then configured to be 16 [ms] wide, putting Gocator as the
master, as stated in Chapter 3.

The code used has an infinite cycle of calls to Gocator, to return the value of
each point taken when a capture was taken. For each capture taken, the sequential
number of the capture and its timestamp in Gocator’s time, were also saved. This
timestamp follows Gocator’s clock which starts at 0, once the whole system starts.
When KUKA sends a message to the computer signaling the end of the movement,
the cycle is then closed and Gocator stops.

Initializing
Communication

Configuring
Gocator

Kuka
Ready? No

Yes

Kuka
Finished?

Capture
taken?

Save capture in
memory No

Yes

Stop Gocator

Figure 54: Gocator’s Thread Flowchart.

68



anexos

b.2 kuka’s communication

To receive KUKA’s position in real time, a TCP/IP communication with the com-
puter was used. UDP could have been used to obtain a higher frequency, but this
could potentially loose data. Since KUKA has a fixed IP, it became the server. To be
able to have the position transmitted during movement, the server was running on
another thread. To be able to obtain the position, one must give the robot handler
to the server thread, otherwise it is not possible. As soon as the thread starts, the
movement only starts when a client, in this case the computer, connects to server
and sends an initial handshake. If no client is connected within 20 seconds, the
application is closed. If somehow the connection is lost during the movement, the
server is closed down and the KUKA will continue its path till the end. Once the
client is connected and sends the initial command, KUKA will start sending digital
signals to Gocator. The position and KUKA’s timestamp are obtained and then it
outputs the digital signal. It then waits for Gocator’s signal to proceed, and if this
does not happen, the position won’t be sent. Once the position is sent, KUKA’s
will wait for the signal from Gocator to go low. Once it detects that is low, it sends
another signal and the loop proceeds. When the path is done, it signals the server
thread to stop. This won’t stop immediately, as it might still be sending packets,
so there is 1 second of wait for safety to make sure everything finishes correctly.
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Robot Handlers

Starting Server
Thread

Server 
 ready? No

Yes

Starting Server
Socket

Client 
connected?

Handshake
received?

is pathing 
done?

Stop Thread

Pathing

Pathing done

Wait for Server
Thread

Stops all
Threads

No

No

Yes

Yes

Yes

Obtain Position
and Time

Send Signal to
Gocator

was signal
received?

No

Send Position
and time to PC

Figure 55: KUKA’s Threads Flowchart.

b.3 computer communication

The computer ends up being a client to both KUKA and Gocator. All the messages
during the capture, are stored in the RAM. This is so that it receives messages as
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fast as it can without having disk writing hogging the cycle execution time. It ends
up saving the data to disk after closing both communications. Each connection
is run in its own thread, and each thread has a loop cycle that waits for the
respective message. Both the KUKA position and the Gocator points are saved in
a comma separated structured file. The Gocator’s file has each line representing a
capture, and in each line it has X value followed by its Z value from a point, for all
616 points (X1,Z1,X2,Z2,Xn,Zn...). KUKA’s position file includes every position
chronologically in each line as X,Y,Z,A,B,C. A,B, and C are all saved in radians.
There is then an extra file where all timestamps are stored chronologically, also
in a comma separated structured file. These timestamps order start with KUKA’s
timestamp, KUKA’s in computer’s time, Gocator’s timestamp and Gocator’s in
computer’s time. The timestamps file is mostly for debugging purposes.
To be able to run the code, one must make sure all the external dependencies are
there, since it needs the Gocator’s SDK installed. Also for best results, in Line 67,
the value of exposure time can be changed to the value obtained from an exposure
calibration from the Gocator.
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Figure 56: Computer’s Threads Flowchart.
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