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Abstract 

Spatial uncertainty modelling and prediction of a set of regionalized dependent 

variables from various sample spaces (e.g. continuous and categorical) is a common 

challenge for geoscience modellers and many geoscience applications such as 

evaluation of mineral resources, characterization of oil reservoirs or hydrology of 

groundwater. To consider the complex statistical and spatial relationships, 

categorical data such as rock types, soil types, alteration units, and continental 

crustal blocks should be modelled jointly with other continuous attributes (e.g. 

porosity, permeability, seismic velocity, mineral and geochemical compositions or 

pollutant concentration). These multivariate geospatial data normally have complex 

statistical and spatial relationships which should be honoured in the predicted 

models.  

Continuous variables in the form of percentages, proportions, frequencies, and 

concentrations are compositional which means they are non-negative values 

representing some parts of a whole. Such data carry just relative information and 

the constant sum constraint forces at least one covariance to be negative and induces 

spurious statistical and spatial correlations. As a result, classical (geo)statistical 

techniques should not be implemented on the original compositional data. Several 

geostatistical techniques have been developed recently for the spatial modelling of 

compositional data. However, few of these consider the joint statistical and/or 

spatial relationships of regionalized compositional data with the other dependent 

categorical information.  

This PhD thesis explores and introduces approaches to spatial modelling of 

regionalized compositional and categorical data. The first proposed approach is in 

the multiple-point geostatistics framework, where the direct sampling algorithm is 

developed for joint simulation of compositional and categorical data. The second 

proposed method is based on two-point geostatistics and is useful for the situation 

where a large and representative training image is not available or difficult to build. 

Approaches to geostatistical simulation of regionalized compositions consisting of 

several populations are explored and investigated. The multi-population 

characteristic is usually related to a dependent categorical variable (e.g. rock type, 

soil type, and land use). Finally, a hybrid predictive model based on the advanced 



iii 

 

geostatistical simulation techniques for compositional data and machine learning is 

introduced. Such a hybrid model has the ability to rank and select features 

internally, which is useful for geoscience process discovery analysis.  

The proposed techniques were evaluated via several case studies and results 

supported their usefulness and applicability. 

 

Keywords: compositional data, two-point geostatistics, multiple-point 

geostatistics, machine leaning, spatial predictive models. 
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Chapter 1      

1. General Introduction1 

1.1 Research background 

In many geoscience applications such as evaluation of mineral resources, 

characterization of oil reservoirs, hydrology of groundwater, and contaminated site 

characterization and remediation, spatial uncertainty modelling and prediction of 

regionalized variables from various sample spaces (e.g. continuous and categorical) 

is required. Some of these variables are discrete or qualitative such as rock types, 

soil types, land uses, alteration or mineralization and some of them are continuous 

or quantitative such as mineral grade, porosity, permeability, water or oil saturation, 

and pollutant concentration. Several geostatistical models have been developed for 

the spatial modelling of categorical or continuous variables (Chilès and Delfiner 

2012; Deutsch and Journel 1998; Goovaerts 1997; Wackernagel 2003), but for the 

joint modelling of such data little has been done because of the difficulties of 

integrated multivariate modelling of data of different characteristics.  As the spatial 

distributions of these multivariate data are often interdependent, separate modelling 

of them is insufficient (Emery and Silva 2009; Maleki and Emery 2015; Talebi et 

al. 2017; van den Boogaart et al. 2018). Multivariate continuous data in the form of 

percentages, proportions, frequencies, and concentrations are common in 

geosciences (e.g. geochemical or mineralogical data, proportions of rock types in a 

mining block, and proportions of soil types or land uses in a study area). Such data 

are compositional in their nature which means they are non-negative and bounded, 

representing some parts of a whole (Aitchison 1982; Aitchison 1986). 

Compositional data carry just relative information and the constant sum constraint 

forces at least one covariance to be negative inducing spurious statistical and spatial 

correlations (Aitchison 1986; Pawlowsky-Glahn et al. 2015; Pawlowsky‐Glahn and 

Buccianti 2011; Tolosana-Delgado 2006; van den Boogaart and Tolosana-Delgado 

2013). As a result, classical (geo)statistical techniques should not be implemented 

on the original compositional data (Pawlowsky-Glahn and Egozcue 2016; 

Pawlowsky-Glahn and Olea 2004; Tolosana-Delgado 2006). The spatial analysis of 

                                                 
1 This thesis is presented and organised as “Thesis with publication” format.  
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compositional data is an open area of research (Buccianti and Grunsky 2014; 

McKinley et al. 2016; Mueller et al. 2014; Mueller et al. 2017; Pawlowsky-Glahn 

and Egozcue 2016; Tolosana-Delgado et al. 2015a; Tolosana-Delgado et al. 2016; 

Tolosana-Delgado et al. 2015b; Tolosana-Delgado and van den Boogaart 2014; van 

den Boogaart et al. 2017; van den Boogaart and Tolosana-Delgado 2013; van den 

Boogaart et al. 2018). Demands for spatial modelling of such constrained 

multivariate data with different categorical variables simultaneously add more 

complexity (Talebi et al. 2017; van den Boogaart et al. 2018). To jointly model such 

mixed and constrained data, and to reproduce complex relationships between them, 

existing geostatistical techniques need to be modified and adapted.  

 

1.2 Literature review 

 Spatial modelling of compositional data 

A random vector with non-negative components representing parts of a whole 

which carries relative information (ratios between components carry information 

and not the absolute values) is a composition (Aitchison 1982, 1986). Statistical 

analysis of compositional data and the log-ratio approaches were first introduced 

by Aitchison (1982, 1986). Many of the regionalized variables predicted via 

geostatistical approaches are compositional such as ore grades, mineral and 

geochemical data, contaminants, porosity, saturation, and many other petro-

physical variables. Spurious spatial correlations between such regionalized 

compositional variables, were first recognised by Pawlowsky-Glahn (1984). 

Spurious correlation is generated when compositional data are treated as real data, 

with the usual Euclidean geometry (Pawlowsky-Glahn and Egozcue 2016). Indeed, 

compositions are equivalence classes, so a closed composition is just a 

representation (Pawlowsky-Glahn et al., 2015). The result of compositional 

analyses under the assumption of equivalence classes are valid for any other 

representations and are fully addressed via the implementation of log-ratio 

transformations. The first attempt to construct spatial models of regionalised 

compositions was the implementation of the additive log-ratio (alr) transformation 

and cokriging the log-ratios (Aitchison, 1982; Aitchison, 1986; Pawlowsky-Glahn 

and Olea, 2004). However, this approach has some limitations. For instance, 
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computation of variances and covariances using the alr coordinates may be 

problematic (See Pawlowsky-Glahn and Olea, (2004) for more information). 

Orthogonal projection of compositional data into real (Cartesian coordinates) space 

leads to easy use of many (geo)statistical algorithms (Mateu-Figueras et al., 2011). 

Nowadays analysis of compositional data is commonly summarised by working on 

coordinates (projection to orthogonal coordinates known as isometric log-ratio 

transformation (Egozcue et al. 2003)), where compositional data are projected to 

real space (unbounded and unconstrained) and multivariate geostatistical 

algorithms can be implemented for spatial modelling purposes, followed by back-

transformation to compositional space.  

In the case of geostatistical simulation, having a multivariate Gaussian distribution 

is a primary assumption for experimental data (log-ratios in the case of 

compositional data). Several methods have been proposed to address this 

assumption. The results of geostatistical simulation achieved by simple methods of 

transformation to normal space, like the normal score transformation (Deutsch and 

Journel 1998), or in the case of high dimensional data with complicated 

relationships, advanced transformation methods like the stepwise conditional 

transformation (Leuangthong and Deutsch 2003) and projection pursuit method 

(Barnett et al. 2014), are not independent of the choice of log-ratio transformation. 

In the geostatistical treatment of compositional data, it is desirable to have invariant 

results in each step (Tolosana-Delgado 2006). To transform the log-ratios into a 

multivariate standard normal distribution, van den Boogaart et al. (2017) proposed 

a method based on a continuous affine-equivariant multivariate kernel density 

deformation (flow anamorphosis) which is quite useful for joint geostatistical 

simulation of compositional data. Several applications have shown that the 

transformed data via flow anamorphosis are not only multivariate normal but often 

exhibit absence of spatial cross-correlation which make the geostatistical simulation 

of such orthogonal factors, more straightforward (Mueller et al. 2017; van den 

Boogaart et al. 2017). Flow anamorphosis is also capable of reproducing complex 

patterns in input data including presence of outliers, presence of several 

populations, nonlinearity, and heteroscedasticity.  

Although many studies have been conducted on the spatial modelling of 

regionalized compositional data (Buccianti and Grunsky 2014; Grunsky et al. 2017; 



4 

 

Grunsky et al. 2014; McKinley et al. 2018; McKinley et al. 2016; Mueller et al. 

2014; Pawlowsky-Glahn and Egozcue 2016; Pawlowsky-Glahn and Olea 2004; 

Tolosana-Delgado and McKinley 2016; Tolosana-Delgado et al. 2016; Tolosana-

Delgado et al. 2015b; Tolosana-Delgado and van den Boogaart 2013; Tolosana 

Delgado 2006; van den Boogaart and Tolosana-Delgado 2013), few of these studies 

considered the spatial relationships between regionalized compositions and the 

other dependent categorical information (Talebi et al. 2017; van den Boogaart et al. 

2018). The dependent categorical data such as rock type, soil type, mineralization 

type, and crustal blocks are related (statistically and spatially) to the compositional 

data. The multi-population characteristic of the input data is generally related to a 

dependent categorical variable. Most of the time, the input data are separated into 

purer subpopulations and geostatistical analyses are implemented on these subsets 

independently (this process is commonly known as domaining). Another approach 

is to apply nonstationary geostatistical algorithms. However, multivariate 

geostatistical simulation via flow anamorphosis introduces new ways for spatial 

modelling of complex compositional data. For instance, the need for domaining 

prior to geostatistical modelling (to fulfil stationarity assumptions) due to multi-

population characteristic of input data may become unnecessary in some 

applications. More studies are needed to assess the potential of geostatistical 

simulation of compositional data via orthogonal projection (isometric log-ratio 

transformation) and flow anamorphosis. The complex relationships between 

compositional and categorical data should be honoured in the estimated or 

simulated models. More studies are needed to assess the effect of one or more 

dependent (statistically and spatially) categorical variable on spatial modelling of 

compositional data. 

 

 Two-point geostatistical modelling of mixed data 

Two-point geostatistical algorithms are based on the moments up to second order 

(variogram, covariance and variance). The spatial autocorrelation (spatial variation 

for a single variable) and cross-correlation (spatial variation between different 

variables) are considered via calculating experimental (cross)variograms and fitting 

models to them (Chilès and Delfiner 2012; Isaaks and Srivastava 1989). As an early 



5 

 

solution to joint spatial modelling of multivariate data with different characteristics, 

modellers suggested the use of a deterministic model based on one categorical 

variable and prediction of continuous data within each category separately (Dowd 

1986; Duke and Hanna 2001; Rossi and Deutsch 2014; Sinclair 1998; Sinclair and 

Blackwell 2002). Although this model is simple to apply, it does not consider the 

uncertainty in the layout of the categories (e.g. geological domains). In this 

approach geologists have to delineate the exact shape of each layout based on 

experimental data and their interpretation of earth science processes. Unfortunately, 

very few of such processes are understood well enough to allow modellers to use 

deterministic models (Isaaks and Srivastava 1989). As the experimental data 

become sparse and geology becomes more complex the likelihood of 

misclassification in the spatial model of categorical variable increases dramatically. 

A solution to this shortcoming is to use probabilistic models to simulate the 

categorical data distributions in space and predict the continuous data in each 

simulated category independently (Alabert and Massonnat 1990; Boucher and 

Dimitrakopoulos 2012; Dubrule 1993; Jones et al. 2013; Roldão et al. 2012; Talebi 

et al. 2016). This method is known as a cascade or hierarchical approach. In this 

approach geostatistical simulations for categorical data are used to improve the 

domain definition and quantify the uncertainty in the position of their boundaries 

by generating multiple realizations. Many simulation models are available for 

simulating categorical data including sequential indicator (Deutsch 2006; Journel 

and Alabert 1990; Journel and Gomez-Hernandez 1993), Boolean (Lantuéjoul 

2002), truncated Gaussian (Galli et al. 1994; Matheron et al. 1987), plurigaussian 

(Armstrong et al. 2011), and multipoint simulation (Mariethoz and Caers 2015; 

Strebelle 2002) and therefore a method suited to the specific data can be selected at 

this step. Although the cascade approach is simple and has powerful tools for 

measuring uncertainty in categorical and continuous data, it has some substantial 

drawbacks. The method does not consider the spatial relationship of continuous and 

categorical data and also does not take into account the spatial dependence of 

continuous data across domain boundaries and in turn generates abrupt transitions 

when crossing boundaries which is not always the case in practice (Kim et al. 2005; 

Larrondo et al. 2004; Ortiz and Emery 2006; Talebi et al. 2015; Tolosana-Delgado 

et al. 2014; Wilde and Deutsch 2012). 
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To account for the continuity of the continuous data across domain boundaries and 

the uncertainty in the spatial extent of these domains, a probabilistic approach can 

be applied based on geostatistical simulation of the categorical data and on the 

calculation of their probabilities of occurrence over the area of interest. These 

probabilities are then used for weighting the predictions of continuous data to derive 

predictions associated with each domain (Emery and González 2007a; Emery and 

González 2007b; Talebi et al. 2015). This approach is appropriate for reproducing 

gradual transitions in the realization of continuous variables across boundaries (soft 

boundaries). However, it provides just one scenario of variation for the continuous 

data in the area of interest which is not useful for uncertainty modelling and risk 

assessment purposes. On the other hand, the final integrated map may be over-

smoothed due to the averaging nature of this algorithm.  

To take into account the spatial correlations of continuous and categorical data and 

spatial correlations of continuous data across boundaries, and as well as considering 

the uncertainty of categorical and continuous data distributions simultaneously, one 

approach is to co-simulate these two kinds of variables. Bahar and Kelkar (2000) 

proposed a co-simulation approach in which one categorical variable is generated 

by truncating one Gaussian random field and one continuous variable by 

transforming an independent Gaussian random field. For reproducing the spatial 

dependencies of two variables they proposed a transformation function for the 

second Gaussian random field conditionally on the simulated domain. An 

alternative to this approach is to use a truncated Gaussian random field for 

categorical data and a correlated Gaussian random field for continuous data (Dowd 

1994; Dowd 1997; Freulon et al. 1990). However, the two aforementioned models 

may have some shortcomings when multivariate data with complex spatial 

relationships are considered. These methods use several simplifications including 

using a restrictive coregionalization model for two Gaussian random fields, 

transforming the categorical variables into continuous Gaussian data without 

considering the effects of conditional continuous variables, assuming spatially 

ordered sequences of categories and using one model of anisotropy for them 

(therefore this model is not practical for modelling complex relationships of 

geological domains). A more general approach is to use an extension of multivariate 

Gaussian and plurigaussian models simultaneously (Cáceres and Emery 2010; 
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Emery and Silva 2009; Maleki and Emery 2015). In this model continuous data are 

associated with a multivariate Gaussian random field and categorical data with the 

truncation of one or more Gaussian random fields. Further, it is assumed that all 

Gaussian random fields are spatially cross-correlated so it is possible to reproduce 

the dependencies between the categorical and continuous data. This method offers 

several advantages such as accounting for the uncertainty in the spatial layout of 

the boundaries between different categories, the ability to reproduce soft boundaries 

and considering the spatial dependencies between categorical and continuous data. 

The model also has the ability to incorporate non-stationarity in the categorical data 

(Maleki and Emery 2017) and can be generalized to the  joint simulation of several 

continuous and categorical variables by adding more Gaussian random fields. 

Although the method is very flexible and has several advantages over earlier 

models, there are still some shortcomings. This approach follows a co-simulation 

based on defining a linear model of coregionalization (LMC) to jointly simulate 

multivariate data. Simplicity of modelling and verification of the admissibility 

make the LMC a popular means for defining the spatial relationships of multivariate 

data (Goulard and Voltz 1992). However, defining symmetrical cross-covariances 

and using the same structure in the cross-covariance and related variables are 

shortcomings which decrease the flexibility of the method since in geoscience 

applications variables are cross-correlated with different support and different 

spatial behaviour.  

To address the problems of LMC, Marcotte (2012) offered a generalized of LMC 

(GLMC) in which the observed variables are considered as linear combinations of 

few primary independent variables and some other variables which are 

deterministic functions of primary variables. A more flexible technique would be, 

in the multivariate case, the non-LMC approach. Through the use of a non-LMC 

approach any number of variables, with any number of components for each 

structure can be considered. Furthermore each component can be isotropic or 

anisotropic (Marcotte 2015). 

High-dimensional data are very common in geosciences and as the number of 

variables and simulation domain increase, co-simulation approaches based on an 

LMC or non-LMC will need considerable computer processing to solve large 

systems of equations per simulated node. An alternative is to decompose the 
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variables under study into factors which are uncorrelated spatially. Such orthogonal 

factors can then be simulated independently. Statistical and spatial relationships 

between variables can be reimposed on the simulated model afterward. This 

approach for joint simulation offers better accuracy and computational efficiency 

as the number of attributes being simulated increases. Principal component analysis 

(PCA) (Davis 1987; Wackernagel 2003), minimum/maximum autocorrelation 

factors (MAF) (Bandarian et al. 2008; Desbarats and Dimitrakopoulos 2000; 

Rondon 2012; Vargas-Guzmán and Dimitrakopoulos 2003), and U-WEDGE 

(Mueller and Ferreira 2012) are some examples of decorrelation methods. As these 

decorrelation methods have not been developed enough for reproduction of 

complex relationships such as non-linearity, constraints, or heteroscedasticity, 

using a chained transformation might produce more satisfactory results (Barnett and 

Deutsch 2012; Barnett et al. 2014; Mueller et al. 2014). However, a sensitivity 

analysis must be done to find the optimum order of transformations in a chain. 

Furthermore, the aforementioned spatial decorrelation techniques were developed 

for joint simulation of multivariate continuous variables and none of them 

considered the effects of other dependent regionalized categorical variables. Spatial 

prediction and uncertainty modelling of a mixture of regionalized continuous and 

categorical variables is common in many geoscience applications. New spatial 

decorrelation techniques have to be developed with the ability to jointly simulate 

many dependent (statistically and spatially) continuous and categorical variables. 

Such techniques should be able to address the compositional nature of some 

continuous variables.  

 

 Multiple-point geostatistical modelling of mixed data 

Two-point geostatistical techniques are constrained by using 2-point statistics only 

and are inefficient in reproducing complex spatial structures and patterns 

(Guardiano and Srivastava 1993; Mariethoz and Caers 2015; Strebelle 2000; 

Strebelle 2002). Such complex spatial patterns might not be properly modelled 

using traditional two point spatial statistics such as variograms (Journel and Zhang 

2006). Multiple-point geostatistical simulation (MPS) techniques capture spatial 

patterns from so-called training images or training data. Using higher order 
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statistics makes the MPS algorithms capable of reproducing complex spatial 

patterns. However, large and representative training images or training data with 

desirable resolution are needed to model the spatial uncertainties properly. Many 

MPS algorithms have been developed in the recent years, however few of them are 

capable of running co-simulation of mixed data (Mariethoz et al. 2010; Peredo and 

Ortiz 2011; van den Boogaart et al. 2018).  

A spatial predictive model was developed by van den Boogaart et al. (2018) which 

combines a multipoint geostatistical algorithm with a new form of distributional 

regression to estimate conditional distributions. The algorithm is capable of jointly 

simulating dependent spatial variables from various sample spaces (e.g. 

compositional, distributional, geometrical, and categorical). However, 

computational effort is substantial. The algorithm needs further development to 

simulate large mineral deposits or petroleum reservoirs. MPS algorithms for joint 

simulation of compositional and categorical data need to be developed or adapted 

which are easy to implement and fast enough to simulate many dependent variables 

on large simulation grids. Among the MPS techniques, the Direct Sampling (DS) 

technique (Mariethoz et al. 2010) is well suited to the co-simulation of mixed data 

since an explicit  estimation of  a model of co-dependence is not required, 

multivariate spatial patterns of different sizes are captured without the need to 

define a search template of specific size and geometry, and spatial patterns of 

different scales are captured without the need for a multigrid search strategy. 

However, DS is a distance based technique and requires measuring the distance 

between the spatial data events, which is problematic in the case of compositional 

data. Distances should not be measured from the original compositional data (data 

in form of proportions, percentages, probabilities, frequencies, and concentrations). 

The lack of sub-compositional coherence of Euclidean distances (Pawlowsky-

Glahn et al. 2015) and the fact that these distances are massively dominated by the 

major components of the system (while the component of interest might be one of 

the small components) are some of the reasons why DS should not be implemented 

on the original compositional data, but on suitably transformed data. Other metrics 

for measuring the distance between spatial compositional patterns should be 

developed and implemented (such as Aitchison distance) or compositional data 

should be transformed to real space via an isometric transformation prior to 
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simulation via DS. New metrics should be defined to assess the performances of 

DS to simulate the compositional random function and spatial compositional 

patterns.  

 

 Application of machine learning algorithm for compositional data 

modelling 

Over the past few years, many studies have involved the use of machine learning 

algorithms (MLAs) to explore the compositional patterns as footprints for 

geoscience process discovery analysis (Caritat et al. 2017; Carranza 2017; Grunsky 

et al. 2017; Grunsky et al. 2014; McKinley et al. 2018; Tolosana-Delgado et al. 

2015a; Tolosana-Delgado and van den Boogaart 2014). Few of these studies have 

addressed the spatial correlations between geospatial data and the associated spatial 

uncertainty. Most of the machine learning algorithms are non-spatial techniques, 

which means they do not consider the multivariate spatial relationships between 

variables. As a result, the probability maps generated via MLAs cannot be accepted 

as the model of spatial uncertainty. In geostatistics, spatial relationships are taken 

into account via means such as second order ((cross)variograms) and/or higher 

order statistics (training images). In many applications of MLAs for spatial data, 

uncertainty associated with the input spatial data is ignored. However, this 

uncertainty can be incorporated into the machine learning algorithms by combining 

these non-spatial learners with geostatistical simulation. Each realization of random 

function can be used as an input (new observation) to a trained classifier. Ensemble 

classifiers which combine many simple learners (e.g. built from bootstrap samples) 

are preferable due to their stability, better predictive performance, ability to 

measure the performance and to select the most significant features internally 

(Breiman 1996). The estimated probabilities of different classes (e.g. rock or soil 

type as a categorical response variable) for all geostatistical realizations should be 

combined afterward. Such combination integrates elements of statistical and spatial 

uncertainties. However, care should be taken when combining these estimated 

probabilities to avoid any systematic bias. The new combined spatial uncertainty 

model can be used further to predict most probable classes. The proposed algorithm 

should address the compositional nature of data. Due to the high-dimensional 
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characteristics of compositional features (log-contrasts), developing a 

compositionally compliant feature selection will be useful for geoscience process 

discoveries.     

 

1.3 Research objectives 

The main objective of this research is to develop approaches for the joint modelling 

of regionalized compositional and categorical data.  This study aims to address the 

following objectives: 

1. To adapt the implementation of the direct sampling technique for the joint 

simulation of compositional and categorical data, and to introduce new 

metrics to evaluate the simulated compositional random function.    

2. To develop a spatial decorrelation technique for joint two-point 

geostatistical simulation of high-dimensional continuous and categorical 

data. The compositional nature of some multivariate continuous variables 

will be addressed properly within the proposed algorithm.   

3. To assess the capability of geostatistical simulation of complex regionalized 

compositional data via orthogonal projection (isometric log-ratio 

transformation) and flow anamorphosis. Effects of a dependent regionalized 

categorical variable on the predicted compositions will be assessed.  

4. To adapt the implementation of machine learning algorithms (non-spatial 

ensemble classifiers in this study) to address the spatial uncertainty of input 

data. This will be achieved by combining the non-spatial classifiers (e.g. 

random forest) with geostatistical simulation. The estimated probabilities 

for several realizations of random function will be combined to integrate 

elements of statistical and spatial uncertainties. The new model of spatial 

uncertainty will be used further for prediction of various classes (e.g. rock 

or soil type as a categorical response variable). A coherent compositional 

feature selection will be introduced. The compositional nature of data will 

be addressed properly within all steps of proposed technique.  



12 

 

5. To assess the capability and performance of the developed techniques via 

implementing on real geoscientific case studies.     

For situations where large and representative training images are available, 

multiple-point geostatistical methods are preferable. Due to the complexity of 

multivariate mixed and constrained geospatial data, the implementation of direct 

sampling technique is adapted for joint simulation of compositional and categorical 

data. The applicability and usefulness of the proposed algorithm is tested on one 

synthetic and one real case study.  

The second objective of this PhD research is to develop a spatial decorrelation 

technique for joint simulation of high-dimensional continuous and categorical data. 

This method is appropriate for modelling projects where large and representative 

training images with proper resolution are not available. Along with generating 

predictions, the spatial uncertainty of regionalized continuous and categorical 

variables will be evaluated. The compositional nature of some multivariate 

continuous variables will be considered. The new method will be tested on a real 

mining case study. 

Advanced geostatistical simulation of compositional data via orthogonal projection 

(isometric log-ratio transformation) and flow anamorphosis will be investigated. 

Ability of such algorithm to reproduce complex patterns such as presence of 

outliers, multi-population characteristic, and nonlinearity will be assessed. Multi-

population characteristic and/or non-stationarity phenomenon might be related to a 

dependent categorical variable (e.g. geological units). Implementing such advanced 

geostatistical simulation technique may make the need for domaining and/or 

handling of non-stationarity unnecessary in some applications and situations. 

Effects of a dependent regionalized categorical variable on the whole process of 

spatial simulation of compositions will be investigated. The new method will be 

tested on a real mining case study. 

Finally, to utilize the capability of machine learning algorithms to explore complex 

multivariate patterns and to select and rank features in a spatial framework, a hybrid 

spatial predictive model is developed based on the combined use of advanced 

geostatistical simulation techniques and machine learning algorithms. The spatial 

uncertainty of input compositional data is fully addressed. The new combined 
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spatial uncertainty model is used further for class prediction. A fully compositional 

feature selection is introduced. The developed hybrid model is used for surficial 

and deep earth material prediction through two real case studies.    

 

1.4 Thesis structure 

This thesis is presented and organised as “Thesis with publication” format1; and 

is structured in chapters as follows: 

Chapter 1 presents the background of this PhD research and literature overview. 

The objectives of the research and the structures of the thesis are discussed in 

separate subsections. 

Chapter 2 presents the developed method for joint simulation of compositional and 

categorical data via the direct sampling technique. The potential of the developed 

algorithm to improve mineral resource confidence is explored via one synthetic and 

one real mining case study.   

Chapter 3 introduces a hybrid model for joint simulation of high-dimensional 

continuous and categorical variables in two-point geostatistical framework. The 

model is tested on a real mining case study. 

Chapter 4 explores various approaches to geostatistical simulation of regionalized 

compositions consisting of several populations. Applications of such techniques to 

mineral resource evaluation are investigated. 

Chapter 5 introduces a new workflow for implementation of a spatial predictive 

model (a hybrid of geostatistical simulation and machine learning). The potential 

of the new model is investigated through its application to surficial and deep earth 

material prediction from geochemical compositions.  

                                                 
1 “Thesis with publication” format is an acceptable format of thesis for postgraduate research at 

ECU policy. The current thesis has been written based on the guideline provided at 

http://www.ecu.edu.au/GPPS/policies_db/policies_view.php?rec_id=0000000434. In this format, 

the submitted thesis can consist of publications that have already been published, are in the process 

of being published, or a combination of these. 

 

http://www.ecu.edu.au/GPPS/policies_db/policies_view.php?rec_id=0000000434
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Chapter 6 presents the general discussions on the developed techniques. Pros and 

cons of the developed techniques and the area of their application are discussed in 

this chapter.     

Chapter 7 covers the overall conclusions of this PhD thesis and further 

recommendations.  
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Chapter 5  

5. Surficial and deep earth material prediction from geochemical 

compositions - a spatial predictive model1 

 

Abstract 

Prediction of true classes of surficial and deep earth materials using multivariate 

geospatial data is a common challenge for geoscience modellers. Most geological 

processes leave a footprint that can be explored by geochemical data analysis. These 

footprints are normally complex statistical and spatial patterns buried deep in the 

high-dimensional compositional space. This paper proposes a spatial predictive 

model for classification of surficial and deep earth materials derived from the 

geochemical composition of surface regolith. The model is based on a combination 

of geostatistical simulation and machine learning approaches. A random forest 

predictive model is trained and features are ranked based on their contribution to 

the predictive model. To generate potential and uncertainty maps, compositional 

data are simulated at unsampled locations via a chain of transformations (isometric 

log-ratio transformation followed by the flow anamorphosis) and geostatistical 

simulation. The simulated results are subsequently back-transformed to the original 

compositional space. The trained predictive model is used to estimate the 

probability of classes for simulated compositions. The proposed approach is 

illustrated through two case studies. In the first case study the major crustal blocks 

of the Australian continent are predicted from the surface regolith geochemistry of 

the National Geochemical Survey of Australia project. The aim of the second case 

study is to discover the superficial deposits (peat) from the regional-scale soil 

geochemical data of the Tellus project. The accuracy of the results in these two case 

studies confirms the usefulness of the proposed method for geological class 

prediction and geological process discovery. 

                                                 
1 This chapter has been submitted for publication as a full research paper in: 

Talebi, H., Mueller, U., Tolosana-Delgado, R., Grunsky, E.C., McKinley, J.M., Caritat, P.D., 2018. Surficial 

and Deep Earth Material Prediction from Geochemical Compositions - a Spatial Predictive Model, Natural 

Resources Research, (In review).  

Whilst efforts were made to retain original content of the article, minor changes such as number formats, font 

size and style were implemented in order to maintain consistency in the formatting style of the thesis. 
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5.1 Introduction 

Surficial and deep earth materials are normally representatives of several classes 

with different characteristics. Tectonic, lithological and alteration units, soil types, 

vegetation classes, plant species, and land uses are examples of such classes. Spatial 

maps of these classes and their associated uncertainties are vital components in 

current strategies for managing projects such as mineral exploration, animal and 

human health, environmental and ecological planning, efficient management of 

water resources, geo-hazard risk assessment, agriculture and sustainable food 

production. Class prediction and spatial uncertainty modelling using multivariate 

geospatial data are a common challenge for geoscience modellers. Mechanisms 

behind geological systems can be explained partly by geochemical data and 

methods (Buccianti and Grunsky 2014; Caritat et al. 2017; Grunsky et al. 2017; 

Grunsky et al. 2014; Harris and Grunsky 2015; McKinley 2015; McKinley et al. 

2018; Tolosana-Delgado and McKinley 2016; Tolosana-Delgado and van den 

Boogaart 2014). Spatial or spatiotemporal geoscientific entities such as climate 

zones, ecosystems, landforms, and surface and subsurface geology are related to 

geochemistry derived from surface and near-surface materials (Drew et al. 2010; 

Grunsky et al. 2017; Grunsky et al. 2013; McKinley 2015; McKinley et al. 2018). 

Over the last decade, geochemical surveys at different scales (e.g. regional, 

national, transnational, and continent scales) have become widely available. These 

geochemical surveys normally constitute “big data” of high-dimensionality making 

the statistical and spatial analyses challenging (Grunsky 2010; Grunsky et al. 2014; 

Tolosana-Delgado and McKinley 2016). Most geological processes leave some sort 

of footprint that can be explored by advanced geochemical data analysis. These 

footprints are complex multivariate statistical and/or spatial patterns hidden deep in 

the geochemical compositional space. Advanced statistical and/or spatial 

compositional data analysis should be implemented to explore these patterns. 

Geochemical data are inherently compositional in nature, presenting several 

challenges for spatial predictive models (Pawlowsky-Glahn and Egozcue 2016; 
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Pawlowsky-Glahn and Olea 2004; Tolosana-Delgado 2006; Tolosana-Delgado and 

van den Boogaart 2013; van den Boogaart and Tolosana-Delgado 2013). 

Compositional data are multivariate, non-negative values that represent the 

abundance of some parts of a whole. In such data, the constant sum constraint forces 

at least one covariance to be negative and induces spurious statistical and spatial 

correlations and patterns. Furthermore, these data carry just relative information 

(Aitchison 1986) and interpretations are necessarily multivariate, dependent on all 

components. To transform compositional data into an unbounded space and to 

increase mathematical tractability, different log-ratio transformations (Aitchison 

1986; Pawlowsky-Glahn and Olea 2004; Tolosana-Delgado 2006) can be applied 

prior to using standard (geo)statistical techniques. A geochemical survey normally 

produces thousands of samples and dozens of variables (log-ratios) and as such are 

practically impossible to effectively visualise and interpret without the assistance 

of computers and statistical tools. In addition, the underlying geological processes 

most of the time are obscure and difficult to understand. In such situations machine 

learning algorithms (MLAs) have been shown to perform well in the prediction of 

classes from spatially dispersed data and discovering the underlying geological 

processes (Harris and Grunsky 2015; Kanevski et al. 2009). However, MLAs are 

typically not spatially predictive algorithms, which means that they do not consider 

the multivariate spatial relationships between features. As a result, the probability 

maps generated via MLAs cannot be accepted as the model of spatial uncertainty. 

In a geostatistical treatment spatial relationships are taken into account via means 

such as second order ((cross)variograms) and/or higher order statistics (training 

images). To address this limitation of MLAs an alternative solution is proposed in 

this study based on the combined use of advanced multivariate geostatistical 

simulation and MLAs.  

The proposed spatial compositional predictive model is twofold: spatial simulation 

of geochemical compositions at unsampled locations and class prediction for each 

simulated map via a trained random forest (RF) algorithm (Breiman 2001). Other 

spatial (Tolosana-Delgado et al. 2015) or non-spatial (Kuhn and Johnson 2013) 

predictive models can also be implemented, but RF is utilized in this study for its 

ease of implementation, robustness against over-fitting, ability to handle many 

types of predictors (sparse, skewed, continuous, categorical, etc.) without the need 
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to pre-process them, ability to handle missing data and to select the most relevant 

features (Kuhn and Johnson 2013). Once the spatial compositional vectors have 

been simulated in the study area, MLAs (RF in this study) can be implemented to 

predict the probability of occurrence of classes conditional to each realization of 

the compositional random function. To simulate the compositional random function 

at unsampled locations, the input geochemical compositions are transformed to real 

space via an isometric log-ratio (ilr, Egozcue et al., 2003) transformation. To avoid 

violating the assumption of multivariate multigaussianity of geostatistical 

simulation techniques (Chilès and Delfiner 2012), log-ratios are transformed to 

multivariate normal space via a flow anamorphosis (FA) algorithm (Mueller et al. 

2017; van den Boogaart et al. 2017). FA is applied in this study because of its ability 

to reproduce complex patterns (e.g. presence of outliers, presence of several 

populations, nonlinearity, and heteroscedasticity) in the input data, its invariance 

property under the choice of log-ratio transformation, and its property of generating 

spatially orthogonal factors that makes geostatistical simulation straightforward. 

The turning bands (TB) algorithm (Emery 2008; Emery and Lantuéjoul 2006) is 

used to simulate the orthogonal factors at unsampled locations. Finally the 

simulated results are back-transformed to the original space to provide several 

simulated spatial maps of geochemical compositions. Based on the true classes for 

the input set, a random forest algorithm is trained using the generated features. The 

ability of RF to rank the features based on their contribution to the predictive model 

aids the discovery of underlying geological processes. Finally the trained RF is used 

to predict the probabilities of classes at unsampled locations using the simulated 

compositions. Minimum, expected, and maximum probability scenarios are defined 

for each class from simulated probabilities.  

The objectives of this research is to introduce a new method to account for spatial 

uncertainty on classifiers based on a combination of geostatistical simulation and 

machine learning classification algorithms. The most probable geological classes 

are predicted out of geochemical survey data using the new model of spatial 

uncertainty. Finally, a compositional feature selection is introduced and 

implemented for geological process discovery studies. 

The proposed approach is illustrated through two case studies. In the first case study 

surface regolith geochemistry data are used to predict the major crustal blocks of 
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the Australian continent. Discovering superficial peat deposits in Northern Ireland 

from regional-scale soil geochemical data is the aim of the second case study. 

The organization of this paper is as follows: section 5.2.1 discusses the analysis of 

compositional data. Flow anamorphosis as a powerful technique for transforming 

input data to multivariate normal space is discussed in section 5.2.2. Section 5.2.3 

presents the random forest predictive model and the recursive feature elimination 

with resampling technique. Steps of the proposed method for modelling spatial 

uncertainty are presented in section 5.2.4. Sections 5.3 and 5.4 present the 

implementation of the method and results and discussion for the two case studies. 

Finally, some conclusions and final thoughts are presented in section 5.5. 

 

5.2 Methodology  

 Compositional data analysis 

Compositions are multivariate data which components represent the relative 

contribution of some parts forming a whole. Typically, these non-negative 

components are measured on the same scale (proportions, percentages, ppm or ppb) 

and are constrained by a constant sum property. Regionalized compositions are 

consequently defined as follows:  

 

�⃗�(𝑢) = [𝑧1(𝑢), 𝑧2(𝑢),⋯ , 𝑧𝐷(𝑢)]; {

 𝑧𝑖(𝑢) ≥ 0;  𝑖 = 1,2,⋯ , 𝐷, 𝑢 ∈ 𝑨

∑𝑧𝑖(𝑢) = 𝑚

𝐷

𝑖=1

, (5.1) 

 

where  𝑧𝑖(𝑢) represents the 𝑖𝑡ℎ component measured at location 𝑢 within the study 

area 𝑨 and 𝑚 is the constant sum. Geochemical data are a typical example of 

compositional data. It is often the case that the data analysed do not add to the 

constant 𝑚, in which case an additional variable can be introduced, often called 

filler or rest, to ensure that the constant sum constraint is satisfied. Compositional 

data carry by definition relative information (Aitchison 1986) and the constant sum 

constraint is known to induce the problems of spurious statistical and spatial 
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correlations (Aitchison 1982; Pawlowsky-Glahn and Olea 2004). Constraints of 

positivity and constant sum and the spurious correlations can be appropriately 

addressed by implementing log-ratio transformations, for instance, making 

(geo)statistical treatment more amenable (Aitchison 1986; Pawlowsky-Glahn and 

Egozcue 2016; Pawlowsky-Glahn et al. 2015; van den Boogaart and Tolosana-

Delgado 2013). Several families of log-ratio transformations exist in the literature. 

The pairwise log-ratio (pwlr), additive log-ratio (alr) and centred log-ratio (clr) 

transformations were introduced by Aitchison (1986) and the isometric log-ratio 

(ilr) transformation was proposed by Egozcue et al. (2003). The pairwise log-ratios 

are readily interpretable and are defined as follows:  

pwlr (�⃗�(𝑢)) =

[
 
 
 
 
 
 
 0 ln (

𝑧1(𝑢)

𝑧2(𝑢)
)

ln (
𝑧2(𝑢)

𝑧1(𝑢)
) 0

⋯ ln(
𝑧1(𝑢)

𝑧𝐷(𝑢)
)

… ln (
𝑧2(𝑢)

𝑧𝐷(𝑢)
)

⋮ ⋮

ln (
𝑧𝐷(𝑢)

𝑧1(𝑢)
) ln (

𝑧𝐷(𝑢)

𝑧2(𝑢)
)

⋱
0

]
 
 
 
 
 
 
 

= [𝜉𝑖𝑗(𝑢)]. 

(5.2) 

 

The additive log-ratios are one of the columns of the pwlr (ratios for which 

denominator is fixed to one of the components), typically the last one: 

 

𝑎𝑙𝑟 (�⃗�(𝑢)) = [ln (
𝑧1(𝑢)

𝑧𝐷(𝑢)
) , ln (

𝑧2(𝑢)

𝑧𝐷(𝑢)
) ,… , ln (

𝑧𝐷−1(𝑢)

𝑧𝐷(𝑢)
)] = [𝜉𝑖𝐷(𝑢)]. (5.3) 

 

The centred log-ratios present the logarithms of ratios of each component to the 

geometric mean of all components. They are obtained via the following formula: 

clr (�⃗�(𝑢)) = ln

(

 
�⃗�(𝑢)

√∏  𝑧𝑖(𝑢)
𝐷
𝑖=1

𝐷

)

 . (5.4) 

 

Finally, the isometric log-ratio transformation is defined as follows: 
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ilr (�⃗�(𝑢)) = 𝑉 ⋅ clr (�⃗�(𝑢)), (5.5) 

 

where 𝑉 is a (𝐷 − 1) × 𝐷 matrix whose columns are pairwise orthogonal vectors, 

each sums to zero. Each matrix 𝑉 satisfying these conditions gives rise to an ilr 

transformation.  

All the aforementioned log-ratio transformations are log-contrasts, that is: linear 

combinations of the components in log-scale with coefficients summing to zero: 

𝜉 (𝑢) =∑𝛼𝑖

𝐷

𝑖=1

ln(𝑧𝑖(𝑢)); ∑𝛼𝑖

𝐷

𝑖=1

= 0 ;  𝛼𝑖 ∈ ℝ (5.6) 

 

Complex log-contrasts can be defined to discover the hidden underlying geological 

processes and classes. Many log-contrasts can be defined and the most appropriate 

ones depend on the aim of the analysis undertaken (McKinley et al. 2016; 

Pawlowsky‐Glahn and Buccianti 2011). 

 

 Flow anamorphosis 

As shown in the preceding section, compositional data do not have a unique, 

canonical representation and several log-ratio transformations are available. 

Invariance of the simulated results under the choice of log-ratio transform is thus 

highly desirable. This property is known as affine equivariance. Log-ratios are not 

commonly multivariate normal, so they have to be combined with a normal score 

transform prior to using geostatistical simulation techniques in order to not violate 

the assumption of multigaussianity of most of these simulation algorithms (Chilès 

and Delfiner 2012; Mueller et al. 2014). Conventional normal score transformations 

based on quantile matching are neither affine equivariant nor do provide 

multivariate normal transformed scores. The flow anamorphosis is a multivariate 

form of gaussian anamorphosis which is capable of transforming original 

multivariate data to multivariate normal space and at the same time is invariant 

under the choice of log-ratio transform (Mueller et al. 2017; van den Boogaart et al. 

2017). The method continuously deforms a kernel density estimate of the given 

multivariate density of the observations into a standard multivariate normal 
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distribution. The transformation is dependent on the selection of the two 

parameters, 𝜎0 and 𝜎1 (initial and final spreads of the smoothing kernels of the 

kernel density estimates). Deformation of the underlying space is controlled by 𝜎0. 

Smaller values of 𝜎0 lead to a stronger deformation. The choice of a suitable value 

for 𝜎0 depends on the number of variables, sample size and complexity of the input 

data (Mueller et al. 2017). On the other hand, 𝜎1 controls the ranges of the 

transformed distributions. In our experience the FA-transformed data are not only 

multivariate normal but often also exhibit a lack of spatial cross-correlation, which 

makes the geostatistical simulation of such orthogonal factors straightforward 

(Mueller et al. 2017; van den Boogaart et al. 2017). The simulated results are 

subsequently back-transformed to the original space via FA-1.  

 

 Random forest algorithm and feature selection 

Tree-based classification models consist of several nested conditions on the 

predictors that partition the observations into purer subpopulations. Within these 

partitions, a model is used to predict the class of future observations. Tree-based 

models are very popular due to their ease of interpretation and implementation, their 

ability to handle many types of predictors (sparse, skewed, continuous, categorical, 

etc.) without the need to pre-process them, allow missing data and conduct feature 

selection (Kuhn and Johnson 2013). However, single decision trees are prone to 

instability, which means that slight changes in the input observations can drastically 

change the structure of the tree and, hence, the subsequent interpretations and 

predictions. Ensemble methods that combine many simple predictive models (e.g. 

built from bootstrap samples) into one predictive model have been developed to 

address this instability and have much better predictive performance (Breiman 

1996). The other advantage of the ensemble models is that the predictive 

performance can be estimated internally, which correlates well with either cross-

validation estimates or test set estimates. The left out observations from each 

bootstrap sample (called “out-of-bag”) are used to assess the predictive 

performance of each model in the ensemble. The average of the out-of-bag 

performance metrics can then be used to measure the overall predictive 



121 

 

performance of the entire ensemble. Algorithm 5.1 shows the processes of a general 

random forest algorithm (Breiman 2001), a well-known ensemble predictive model. 

 

Algorithm 5.1 General RF algorithm  

1. Select the number of trees in the forest (𝒕) 

2. for 𝒊 = 𝟏: 𝒕 

3.      Generate a bootstrap sample of the original observations 

4.      Train a decision tree on this sample 

5.      for each split in the tree 

6.           Randomly select a subset (𝒔 ≪ 𝑹) of the predictors (𝝃𝒓, 𝒓 = 𝟏: 𝑹) 

7.           Select the best predictor out of this subset and partition the 

observations 

8.      end 

9.      Build the ultimate tree without pruning  

10. end  

 

For each new observation each of the 𝑡 trees in the forest is used to predict its class 

and the resulting 𝑡 predictions are combined to give the forest prediction. The 

number of trees in the forest (𝑡) and the number of randomly selected predictors for 

each split (𝑠) are the most important parameters in the RF algorithm, which need to 

be tuned. It has been shown that the selection of a large 𝑡 will not adversely affect 

the RF model and does not lead to over-fitting (Breiman 2001), however it increases 

the computational burden. Several experiments have shown that the random forest 

tuning parameter does not have a drastic effect on its accuracy (Kuhn and Johnson 

2013). Several approaches have been proposed to quantify the importance of 

predictors in the RF model such as measuring the improvement of node purities for 

each predictor at each occurrence of that predictor across the whole forest and 

aggregating them to determine the overall importance. However, these approaches 

for measuring the importance of predictors are adversely affected by the 

correlations between predictors (Strobl et al. 2007). 
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Due to the high-dimensional characteristic of the log-contrasts (𝜉) calculated from 

geochemical compositions, determining which subset of them should be included 

in a predictive model is a critical question. While decision trees are not affected by 

redundant predictors due to the built-in feature selection, RF shows a moderate 

degradation in its accuracy due to random selection of predictors for splitting (Kuhn 

and Johnson 2013). Given the potential negative impact of redundant information 

(collinearity within log-contrasts), there is a need to find a smaller subset of them 

by maximizing the predictive performance of the RF algorithm. Feature selection 

is primarily implemented for removing non-informative or redundant predictors 

from the model. Multiple predictive models (built from subsets 𝑠𝑖 of significant 

predictors) are evaluated to find the optimal combination of predictors that 

maximizes model performance. A recursive feature elimination with resampling 

technique (Guyon et al. 2002; Kuhn and Johnson 2013) is used in this study to select 

the most informative subset of log-contrasts for the classification purpose. The final 

predictive model with the highest accuracy is built from this subset of significant 

predictors (Algorithm 5.2).  
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Algorithm 5.2 Recursive feature elimination with resampling 

1. for each iteration of resampling  

2.      Divide the input observations into training and test subsets via 

resampling 

3.      Build a predictive model on the training set using all the 𝑹 predictors 

4.      Measure the model accuracy 

5.      Measure the rank of predictors 

6.      for each subset size 𝒔𝒊, 𝒊 = 𝟏: 𝑺 

7.           Keep the 𝒔𝒊 most important predictors 

8.           Build a predictive model on the training set using 𝒔𝒊 predictors 

9.           Measure model performance on the test subset 

10.      end 

11. end 

12. Calculate the performance profile over the 𝒔𝒊 using the test subsets 

13. Determine the appropriate number of predictors 

14. Determine the final ranks of predictors 

15. Fit the final model based on the optimal 𝒔𝒊 predictors using all the input 

observations 

 

 

 Spatial modelling of geological classes 

To spatially predict geological classes from geochemical composition, the first step 

is to simulate the compositional random function at unsampled locations. Algorithm 

5.3 shows the procedure of geostatistical simulation of regionalized compositions. 

In line 1 of this algorithm, any log-ratio transformation can be implemented as long 

as the selected anamorphosis is affine equivariant. An 𝑖𝑙𝑟 transformation (Eq. 5.5) 

is used in this study for this purpose. After transforming the log-ratios to 

multivariate normal space via the FA algorithm, the spatially orthogonal 

multivariate normal scores are simulated at unsampled locations independently. In 

this study a turning bands algorithm will be used for this purpose (Emery et al. 

2016; Emery and Lantuéjoul 2006). After generating 𝐿 realizations of the 
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compositional random function, the expected spatial map of regionalized 

compositions is defined as follows: 

𝑍∗(𝑢) = 𝐶 [(∏𝑧1
𝑙

𝐿

𝑙=1

(𝑢))

1
𝐿⁄
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], (5.7) 

 

where 𝐶 is the closure operator defined as: 
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]. (5.8) 

 

 

The conditional total compositional variation of the simulated composition at 

location 𝑢 is given by: 

 

totvar𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑍(𝑢)) =
1

2𝐷
∑∑var (ln

𝑧𝑖(𝑢)

𝑧𝑗(𝑢)
) .

𝐷

𝑗=1

𝐷

𝑖=1

 (5.9) 

 

The map of the total compositional variations for the simulated compositions can 

be considered as a means to assess spatial uncertainty of the geochemical 

compositions. High values of this metric show the most uncertain areas (and vice 

versa) with respect to the simulated geochemical compositions.  
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Algorithm 5.3 Geostatistical simulation of geochemical compositions 

1. Transform the set of 𝑫 closed components into a set of 𝑫− 𝟏 unbounded 

log-ratios, by means of a log-ratio transformation 

2. Transform the log-ratios to multivariate normal space via an affine 

equivariant anamorphosis 

3. Simulate the multivariate normal scores at unsampled locations via any 

geostatistical simulation technique 

4. Transform the simulated results back to the original (compositional) 

space 

 

The second step is to build a predictive model based on the input labelled 

observations (input geochemical compositions). For such a predictive model, the 

features consist of log-contrasts (𝜉). To extract relevant compositional information, 

a combination of the knowledge-driven log-contrasts (based on a geochemical 

understanding of the processes under consideration) and established mathematical 

representations (e.g. pwlr and clr) can be used as the input features (McKinley et 

al. 2016). These features together with the associated classes (e.g. rock types, soil 

types, mineralized material, etc.) are used to train the RF predictive model 

(Algorithm 5.1). The significant log-contrasts are recognised and ordered based on 

their contributions to the predictive model via Algorithm 5.2. The selected log-

contrasts (out of many) and their ranks are very useful for geological process 

discovery and interpretation. The same selected log-contrasts are calculated from 

the simulated compositions at unsampled locations. The trained RF is used to 

predict classes at these locations. For each location 𝑢 and for each realization 𝑙 of 

the compositional random function, RF generates a discrete prediction (geological 

classes 𝐼𝑙(𝑢) = 𝑘; 𝑘 = 1, … , 𝐾 𝑎𝑛𝑑 𝑙 = 1,… , 𝐿) and a vector of probabilities 

�⃗�𝑙(𝑢) = [𝑝1
𝑙 (𝑢), 𝑝2

𝑙 (𝑢),⋯ , 𝑝𝐾
𝑙 (𝑢)]. However the local uncertainty of the discrete 

predictions is underestimated and should not be used for spatial classification 

purposes. As an example consider the information in the Table 5-1, where there are 

three geological classes (𝑘 = 1, 2, 3) and at location 𝑢 a compositional random 

function has been simulated 5 times (𝑙 = 1, … , 5). Running a predictive model on 
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these realizations (uncertain inputs) will generate different sets of probabilities. 

Although the probability of other classes occurring is non-zero for each realisation, 

the final decision for location 𝑢 would be class 3 with zero uncertainty, which is 

not true. This example shows that the spatial uncertainty of geological classes 

generated by a predictive model might be misleading.  

 

Table 5-1 Prediction with uncertain inputs 

Realization number (𝒍) 𝒑𝟏(𝒖) 𝒑𝟐(𝒖) 𝒑𝟑(𝒖) Most probable class (𝒌) 

1 0.10 0.20 0.70 3 

2 0.15 0.25 0.60 3 

3 0.05 0.30 0.65 3 

4 0.10 0.25 0.65 3 

5 0.15 0.30 0.55 3 

Final decision for location 𝒖 = 3 

 

As a result, discrete predictions of RF for each realization of geochemical 

compositions should be ignored and predicted probabilities (�⃗�𝑙(𝑢) =

[𝑝1
𝑙 (𝑢), 𝑝2

𝑙 (𝑢),⋯ , 𝑝𝐾
𝑙 (𝑢)]) should be treated as follows: For a location 𝑢 the 

probability of occurrence of a specific class 𝑘 varies from 𝑚𝑖𝑛 (𝑝𝑘
𝑙 (𝑢)) to 

𝑚𝑎𝑥 (𝑝𝑘
𝑙 (𝑢)) while the vector of expected probabilities is defined as closure of the 

vector of geometric means of the probabilities for each class: 

 

�⃗�(𝑢) = 𝐶 [(∏𝑝1
𝑙

𝐿

𝑙=1

(𝑢))

1
𝐿⁄

, (∏𝑝2
𝑙

𝐿

𝑙=1

(𝑢))

1
𝐿⁄

, ⋯ , (∏𝑝𝐾
𝑙

𝐿

𝑙=1

(𝑢))

1
𝐿⁄

]. (5.10) 

 

The expected spatial probability model �⃗�(𝑢) combines the statistical uncertainty 

(e.g. bootstrapping in the RF model) and the spatial uncertainty (𝐿 realizations of 

the geostatistical model). For the example in Table 5-1 probability of class 1 varies 
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from min𝑙=1,..,3(𝑝1
𝑙(𝑢)) = 0.05 to max𝑙=1,…,3 (𝑝1

𝑙 (𝑢)) = 0.15 while the expected 

probability is 0.104 ( �⃗�(𝑢) = [0.104, 0.260, 0.636]). The most probable class for 

location 𝑢 should be defined from �⃗�(𝑢) which is class 3 in this example. Finally, 

the conditional total variation of geological classes for a location 𝑢 is given by: 

totvar𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑢) =
1

2𝐾
∑∑var(ln

𝑝𝑖(𝑢)

𝑝𝑗(𝑢)
)

𝐾

𝑗=1

𝐾

𝑖=1

 (5.11) 

 

High values of this metric show the most uncertain areas (and vice versa) with 

respect to the predicted geological classes. 

 

5.3 Major crustal blocks prediction using surface regolith geochemistry 

 Dataset 

In this first case study multi-element near-surface geochemical compositions from 

the National Geochemical Survey of Australia (NGSA) are used to predict the 

exposed to deeply buried major crustal blocks (MCBs) of the Australian continent. 

The NGSA is a uniform and internally consistent geochemical database, covering 

approximately 81% of the continent of Australia (Caritat and Cooper 2011; Caritat 

and Cooper 2016). The NGSA dataset consists of 4 subsets based on the sampling 

depth and grain size. In this study the focus is on the “total” analysis of the fine-

grained fraction (<75 μm) of the top outlet sediment samples (0–10 cm depth) (for 

further detail please see Grunsky et al. (2017)). Figure 5-1a shows the map of the 

major MCBs over Australia, while the distribution of surface lithology and the 

geological regions of Australia are shown in Figure 5-1b. The NGSA sample site 

locations are shown as black dots on these maps. The MCBs, derived from the major 

boundaries in the Australian crust as interpreted from geophysical and geological 

data by Korsch and Doublier (2015, 2016), reflect distinct tectonic domains 

comprised of early Archean to recent Cenozoic igneous, metamorphic and 

sedimentary rock assemblages. The MCBs were numbered in order of decreasing 

size. Of the 30 MCBs derived from the crustal boundaries, 22 are used in the present 

analysis as explained in Grunsky et al. (2017). In the present contribution we 

introduce and implement a new method for modelling spatial uncertainty of 
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Australian MCBs based on surface regolith geochemistry and for predicting MCBs 

in areas lacking/between geochemical samples. The most important log-contrasts 

for distinguishing crustal blocks are introduced and mapped for further geological 

discovery analysis. 
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Figure 5-1 (a) Major crustal blocks of Australia (coloured and numbered). The line styles of the 

MCB boundaries reflect the confidence level in their position/existence (solid thick: high; solid thin: 

moderate; dashed: low; dot-dashed: none). (b) Surface geology and the geological regions of 
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Australia. The NGSA sample site locations are shown as black dots on both maps. Sources: Blake 

and Kilgour ( 1998), Caritat and Cooper (2011), Korsch and Doublier (2016), Nakamura and 

Milligan (2015), Raymond (2012). Modified after Grunsky et al. (2017) 

 

 Results and discussion 

Input data (1067 compositional samples with 52 variables, 50 elements (Al, As, Au, 

Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, F, FeT, Ga, Gd, Ge, Hf, Ho, K, La, 

Lu, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Sc, Se, Si, Sm, Sn, Sr, Tb, Th, Ti, U, 

V, Y, Yb, Zn, Zr) plus LOI and filler) were transformed to real space via an ilr 

transformation (Eq. 5.5). As the ilr-transformed data were not multivariate normal, 

a transformation to normal space was needed prior to geostatistical simulation. The 

ilr-transformed scores were transformed to multivariate normal space via flow 

anamorphosis. Due to the complexity of the data and the number of variables, 

multivariate normality was not achieved by a single FA. Two successive FA with 

the same parameters (𝜎0 = 0.1 and 𝜎1 = 1.1) were required to achieve multivariate 

normality. Spatial structural analysis (variography) showed further that the 

multivariate normal scores are spatially orthogonal, with Tercan’s (Tercan 1999) 𝜏̅ 

and �̅� equal to 0.0954 and 0.9073, respectively, so they could be simulated 

independently. The scores were simulated independently on a regular grid (25 km 

× 25 km) via a turning bands algorithm and back-transformed to compositions 

afterward. In total, 100 realizations of geochemical compositions were generated at 

unsampled locations. To illustrate the simulated model, the spatial distributions of 

three major elements (out of 52 jointly simulated variables), Ca, total Fe and Mg, 

are depicted in Figure 5-2. The expected maps were calculated via equation 5.7. 

Figure 5-3 shows the map of the conditional total compositional variations for the 

simulated compositions. This map can be considered as a means of assessing spatial 

uncertainty of the geochemical compositions. Close to sample locations where 

direct information is available variation is low, while in areas where no sample was 

taken, variation is high. Some MCBs generally show higher uncertainty than others, 

for instance MCB 6 shows less uncertainty than MCB 1 or southern parts of MCB 

4 show higher uncertainty than its northern parts. 
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Figure 5-2 Input geochemical compositions, two  realizations of the geostatistical simulation 

procedure and expected map for three major components Ca, total Fe and Mg (warm colours are 

associated with high values) 
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Figure 5-3 Conditional total compositional variation, a means to assess the spatial uncertainty of the 

geochemical compositions (warm colours are associated with high uncertainty and black dots are 

the location of samples) 

 

The RF predictive model was trained based on the input labelled log-ratios. In this 

case only pairwise (1326 log-ratios) and centred log-ratios (52 log-ratios) were used 

as predictors and MCBs as the categorical response variable. Out of 30 MCBs, 8 

were not considered due to an insufficient number of sample sites in each of these 

MCBs (Grunsky et al. 2017). Algorithm 5.2 was used to select the most informative 

subset of log-ratios for the classification purpose. The final predictive RF with the 

highest accuracy was associated with a subset of only 220 log-ratios (Figure 5-4). 

Figure 5-5 shows the top 30 (out of 220 selected log-ratios) most informative log-

ratios for classification of MCBs. To determine the most significant log-ratios for 

discriminating a crustal block of interest from the remaining blocks, a binary 

response variable can be defined (e.g. 1 is the block of interest and 0 is all other 

blocks) and Algorithm 5.2 can be run again.  
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Figure 5-4 Recursive feature elimination with resampling to identify the most important subset of 

log-ratios 

 

 

Figure 5-5 The top 30 most informative log-ratios for classification of all MCBs (the significance 

of selected log-ratios is decreasing from the top to bottom of the chart)  
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Table 5-2 shows the top 5 most important log-ratios (from left to right) for each 

MCB of interest. For example, for MCB01 and MCB02, pwlr(Eu/Na) and 

pwlr(Th/Ti) are the most significant predictors respectively. The simulated model 

for these two log-ratios are depicted in Figure 5-6. High values (warm colours) of 

pwlr(Eu/Na) and low values (cool colours) of pwlr(Th/Ti) are associated with 

MCB01 and MCB02 respectively.  

 

Table 5-2 The top 5 most important log-ratios (from left to right) associated with each MCB 

MCBs Top 5 most important log-ratios (from left to right) 

MCB01 pwlr(Eu/Na) pwlr(Ba/Na) pwlr(Bi/Na) pwlr(Co/Na) pwlr(Mg/Na) 

MCB02 pwlr(Th/Ti) pwlr(Ca/Sr) pwlr(K/Si) pwlr(K/Filler) pwlr(Eu/Na) 

MCB03 pwlr(Co/Mg) pwlr(Cs/FeT) pwlr(FeT/Mn) pwlr(Co/FeT) pwlr(K/Si) 

MCB04 pwlr(Dy/Th) pwlr(Lu/Th) pwlr(La/Nd) pwlr(La/Pr) pwlr(Ce/Nd) 

MCB05 pwlr(Cs/FeT) pwlr(FeT/Mn) pwlr(Th/Ti) pwlr(Co/FeT) pwlr(Eu/Na) 

MCB06 pwlr(Cs/FeT) pwlr(Th/Ti) pwlr(Al/FeT) pwlr(Eu/Na) pwlr(Dy/Th) 

MCB07 pwlr.Dy/Th) pwlr(Co/FeT) pwlr(FeT/Mn) pwlr(Th/Ti) pwlr(Nb/Th) 

MCB08 pwlr(Cr/Sr) pwlr(Cr/Sm) pwlr(Cr/Eu) pwlr(Cr/P) pwlr(Th/Ti) 

MCB10 pwlr(FeT/Mn) pwlr(Na/Zr) pwlr(Th/Ti) pwlr(Na/U) pwlr(Eu/Na) 

MCB11 pwlr(Cs/FeT) pwlr(Th/Ti) pwlr(FeT/Mn) pwlr(Al/FeT) pwlr(Co/FeT) 

MCB12 pwlr(Cr/K) pwlr(Co/Mg) pwlr(Co/FeT) pwlr(Th/Ti) pwlr(Cr/Rb) 

MCB13 pwlr(FeT/Mn) pwlr(Eu/Na) pwlr(Dy/Th) pwlr(Ba/Na) pwlr(Al/FeT) 

MCB14 pwlr(Co/Mg) pwlr(Cs/FeT) pwlr(Th/Ti) pwlr(Cr/Sm) pwlr(Co/FeT) 

MCB15 pwlr(Cu/LOI) pwlr(Cr/Sm) pwlr(Cs/FeT) pwlr(Cr/Eu) pwlr(Cr/Sr) 

MCB16 pwlr(Cr/Sm) pwlr(Cr/Eu) pwlr(Cs/FeT) pwlr(Dy/Th) pwlr(FeT/Mn) 

MCB18 pwlr(Cs/FeT) pwlr(Cu/LOI) pwlr(Co/FeT) pwlr(Cr/Sr) pwlr(Al/FeT) 

MCB19 pwlr(Th/Ti) pwlr(K/Si) pwlr(Nb/Yb) pwlr(Cs/FeT) pwlr(Si/Th) 

MCB20 pwlr(Th/Ti) pwlr(Cs/FeT) pwlr(FeT/Mn) pwlr(Nb/Yb) pwlr(K/Rb) 

MCB21 pwlr(Ce/Gd) pwlr(Dy/Th) pwlr(Cs/FeT) pwlr(Th/Ti) pwlr(Gd/La) 

MCB22 pwlr(Th/Ti) pwlr(Cs/FeT) pwlr(FeT/Mn) pwlr(Co/Mg) pwlr(Eu/Na) 

MCB23 pwlr(Th/Ti) pwlr(FeT/Mn) pwlr(Cs/FeT) pwlr(Co/FeT) pwlr(Eu/Na) 

MCB24 pwlr(Cs/FeT) pwlr(Th/Ti) pwlr(Co/FeT) pwlr(Al/Cs) pwlr(Cs/Rb) 
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Figure 5-6 Simulated models (two randomly selected realizations) and expected maps for the most 

significant log-ratios associated with MCB 1 and 2 (warm colours are associated with high values) 

 

The trained RF were used to estimate the probability of occurrence of MCBs at 

unsampled locations using pwlr and clr of simulated compositions as input 

predictors. For each location 𝑢 of the study area and each MCB 𝑘, 100 probabilities 

were simulated. Maps of minimum, expected (Eq. 5.10) and maximum estimated 

probabilities are shown in Figure 5-7 for MCBs 1 to 4. Figure 5-8 shows conditional 

total variation of simulated MCBs calculated via Equation 5.11. Areas close to 

geochemical samples show lower uncertainty. MCBs 1, 2 and 10 show higher 

uncertainty than the other MCBs while MCBs 3, 6, 13 and 22 show low uncertainty. 

Finally, Figure 5-9 shows the most probable MCBs calculated via the proposed 

method. The predicted crustal blocks are broadly consistent with the known MCBs 

(continuous black lines in Figure 5-9). Discrepancies may be due to uncertain initial 

definition of crustal boundaries (e.g. due to ambiguity of geophysical data) or from 

surficial processes (e.g. chemical weathering and/or physical transport effects) that 

mask/shift the crustal block geochemical signature (see discussion in Grunsky et al. 

(2017)). In conclusion, the architecture of the MCBs of Australia can be predicted 

accurately from geochemical composition of the Australian surface regolith. These 
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results can be used further for managing projects such as mineral exploration, 

environmental and ecological planning, and efficient usage of water resources. 

 

 

Figure 5-7 Maps of minimum (first column), expected (middle column) and maximum (last 

column) probability of occurrence for MCB 1 to 4 
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Figure 5-8 Conditional total variation of all simulated MCBs (warm colours show high values) 
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Figure 5-9 Map of most probable MCBs 

 

 

5.4 Post-glacial deposits exploration for environmental monitoring 

In this study, regional-scale soil geochemical dataset (obtained as part of the Tellus 

Project generated by the Geological Survey of Northern Ireland) is analysed to 

explore the relationship between soil geochemistry and post-glacial deposits (e.g. 

surficial peat deposits) for environmental monitoring of this fragile ecosystem. 

Superficial deposits (e.g. glacial till, post-glacial alluvium, and peat) in this area 

have been created due to the advance of ice sheets and their melt-waters over the 

last 100,000 years (Figure 5-10). Accurate mapping of peat-covered areas has become 

important because of the relatively high carbon density of peat and organic-rich 

soils. 
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Figure 5-10 Post-glacial peat-covered areas; adapted from McKinley et al. (2018) 

 

 Dataset 

The Northern Ireland Tellus Survey (GSNI 2007; Young and Donald 2013) consists 

of 6862 rural soil samples (X-ray fluorescence (XRF) analyses). Geochemical 

samples presented in this study were collected at 20-cm depth, with average spatial 

coverage of one sample site every 2 km2. Each soil sample site was assigned to the 

post-glacial peat covered map (Figure 5-10), resulting in spatial data for one binary 

response variable (presence or absence of peat) and 50 continuous geochemical 

variables (Ag, Al2O3, As, Ba, Bi, Br, CaO, Cd, Ce, Cl, Co, Cr, Cs, Cu, Fe2O3, Ga, 

Ge, Hf, I, K2O, La, MgO, MnO, Mo, Na2O, Nb, Nd, Ni, P2O5, Pb, Rb, SO3, Sb, Sc, 

Se, SiO2, Sm, Sn, Sr, Th, TiO2, Tl, U, V, W, Y, Yb, Zn, Zr, and filler which includes 

Loss on Ignition (LOI)). More information on Tellus Survey field methods and 

analytical methodology are available in Smyth (2007) and Young and Donald 

(2013). 
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 Results and discussion 

Input data were transformed to real space via ilr transformation (Eq. 5.5) and 

subsequently to multivariate normal space via flow anamorphosis. Two successive 

FA with the same parameters (𝜎0 = 0.1 and 𝜎1 = 1.1) were required to achieve 

multivariate normality. The multivariate normal scores were simulated 100 times 

on a regular grid (1 km × 1 km) independently via the turning bands algorithm and 

back-transformed to compositions subsequently. Figure 5-11 shows the map of the 

conditional total compositional variations (spatial uncertainty of the geochemical 

compositions) calculated via Equation 5.9. Outlines of the peat covered areas are 

shown by black polygons. According to this map geochemical compositions show 

higher variation close to peat deposits. This may represent random disturbances of 

the geochemical signal at very small spatial scale due to peat cover. 

 

 

Figure 5-11 Conditional total compositional variation (warm colours are associated with high 

values and black polygons are peat covered areas) 

 

The pairwise log-ratios (1225 log-ratios) and centred log-ratios (50 log-ratios) were 

used as predictors and peat/non-peat as the binary response variable to train a RF 
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predictive model. The most informative subset of log-ratios for discrimination of 

peat covered areas was selected using Algorithm 5.2. The final predictive RF with 

the highest accuracy was associated with a subset of only 150 log-ratios (Figure 

5-12). Figure 5-13 shows the top 30 most significant log-ratios for discrimination 

of peat-covered areas. Figure 5-14 shows the spatial distribution (two randomly 

selected realizations and the expected map) of the most informative log-ratio, pwlr 

(Y/filler), where a coincidence between low values (cool colours) of this log-ratio 

and peat covered areas is clear. The most informative log-ratios, e.g pwlr (Y/filler), 

include the presence of LOI in the filler variable. This supports the previously 

known association between peat cover and LOI.  

 

 

Figure 5-12 Recursive feature elimination with resampling to identify the most important subset of 

log-ratios (Northern Ireland Tellus Survey data) 
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Figure 5-13 The top 30 most informative log-ratios for discrimination of peat covered areas (the 

significance of selected log-ratios is decreasing from the top to bottom of the chart)  
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Figure 5-14 Simulated model (two randomly selected realizations) and expected map of the most 

significant log-ratio (pwlr (Y/filler)) for discrimination of peat covered areas (warm colours are 

associated with high values and black polygons are peat covered areas) 

 

Finally the trained RF was used to predict the probability of occurrence of peat 

covered areas at unsampled locations. Maps of minimum, expected (Eq. 5.10) and 

maximum estimated probabilities of peat covered areas are shown in Figure 5-15 

which demonstrate good consistency with the reported peat areas (Figure 5-10). 

Figure 5-16 shows conditional total variation of predicted peat covered areas 

calculated via Equation 5.11. Areas close to peat deposits show higher uncertainty. 

Figure 5-17 shows the most probable peat covered areas calculated via the proposed 

method. Although Figure 5-15 and Figure 5-17 show good match with the reported 

peat covered areas, inconsistencies may be due to uncertain initial definition of peat 
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covered areas (Figure 5-10) and/or degradation of peat-covered areas since the 

creation of the superficial deposit classification that mask the peat geochemical 

signature. Peat covered areas include upland blanket bog which is more extensive 

and spatially coherent, and lowland ‘raised bogs’ which are smaller more fragile 

ecosystems. Using the proposed spatial predictive model, the locations of the main 

upland blanket peat covered areas have been predicted accurately from geochemical 

composition of the Northern Ireland Tellus Survey. The association of LOI with 

peat covered areas helps to explain the most informative log-ratios, e.g. pwlr 

(Y/filler). However the approach has also identified the presence of potentially 

important marker elements (Y, Ag and Sn) which may have accumulated in peat 

which acts as a sink for toxic elements. The results can be used further for managing 

projects such as environmental and ecological planning. As the underlying geology 

and spatial distribution of soil types across Northern Ireland are similar to the UK 

(Jordan et al. 2001) and Northern Europe in general, the proposed techniques in this 

study can be applied on those areas.  
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Figure 5-15 Maps of minimum, expected and maximum probability of occurrence for peat covered 

areas 
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Figure 5-16 Conditional total variation of simulated peat covered areas (warm colours are associated 

with high values and black polygons are peat covered areas) 
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Figure 5-17 Map of most probable peat covered areas (shown by red colour) 

 

5.5 Conclusions 

This study introduces a novel approach for the spatial modelling of uncertainty and 

prediction of geological classes using geochemical compositions. The approach is 

based on the combined use of advanced geostatistical simulation for compositional 

data (geostatistical simulation using isometric log-ratio transformation and flow 

anamorphosis) and a random forests predictive model. Due to the high-dimensional 

characteristics of log-ratios, recursive feature elimination with resampling 

technique were used to select the most significant log-ratios for the classification 

purpose. Such a feature selection technique is known to lead to a more stable and 

accurate predictive model and can be used further as an exploratory data analysis 

tool for geological process discoveries. The proposed approach was applied on two 

case studies. In the first case study the major crustal blocks of the Australian 

continent were predicted from the surface regolith geochemical compositions while 

in the second case study the spatial distribution of superficial deposits (peat) were 
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predicted from regional-scale soil geochemical data of Northern Ireland (Tellus 

Project). The accuracy of the results in these two case studies confirmed the 

usefulness and applicability of the proposed method. 
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Chapter 6  

6. General discussion 

 

Regionalized compositional data (in form of percentages, probabilities, 

proportions, frequencies, and concentrations) are common in geosciences. 

Geochemical and mineralogical data, proportions of material occupied the porous 

media in an aquifer or oil reservoir, proportions of rock types, soil types and land 

uses in the study area are examples of such compositional information. Most of the 

time regionalized compositional data are statistically and spatially related to one or 

more dependent categorical data such as rock types, soil types, alteration units, and 

continental crustal blocks. Complex statistical and spatial relationships between 

these mixed data should be honoured in the simulated and/or estimated models. 

Developing joint predictive models for such geospatial mixed data is necessary due 

to their applicability for geoscience modelling projects. This PhD thesis explored 

and introduced several approaches to spatial modelling of regionalized 

compositional and categorical data for different situations and applications. To this 

end, multiple-point geostatistical techniques have priority due to their capability for 

reproducing complex spatial patterns. However, to implement MPS techniques, 

large and dense compositional and categorical training images or training data are 

needed. For situations where such training information is not available and/or 

complex spatial patterns are not present in the study area (or such patterns are not 

our interest), two-point geostatistical algorithms can be implemented. Finally, 

several advantages of machine learning algorithms such as recognition of complex 

statistical patterns, internal feature selection and cross-validation can be used for 

the joint modelling of compositional and categorical data. However, care should be 

taken while implementing such techniques on geospatial data as they are non-spatial 

algorithms.     

Algorithms were developed for all the aforementioned situations. The following 

subsections discuss the pros and cons of the developed algorithms, the area of their 

application, and proper ways of implementation. 

 



153 

 

6.1 Multiple-point framework 

Among many MPS algorithms, the direct sampling technique was selected to be 

developed for the joint simulation of compositional and categorical data. DS is 

capable of running co-simulation of mixed data, capturing multivariate spatial 

patterns of different sizes without the need to define a search template with fixed 

size and geometry, and capturing spatial patterns of different scales without the 

need for a multigrid search strategy (Mariethoz and Caers 2015; Mariethoz and 

Renard 2010; Mariethoz et al. 2010). In the case of compositional data, the 

dissimilarity between spatial compositional patterns cannot be measured in the 

standard Euclidean metric, instead a compositional distance (known as Aitchison 

distance) (Aitchison 1986; Pawlowsky-Glahn et al. 2015) needs to be used. Another 

way is to transform the compositional data to real space via an isometric log-ratio 

transformation and to measure distances via commonly used distances for real data 

such as Euclidean distance. After scanning the training image and finding a close 

pattern, the whole compositional vector can be pasted in the associated node of the 

simulation grid. Simulating compositional vectors as a whole increases the speed 

of the DS algorithm. However, this approach is recommended only when a large 

compositional training image or a large set of compositional training data are 

available. The large size of the compositional training image guarantees reasonable 

total compositional variation in the simulated model. Whenever such a large 

compositional training image is not available, selecting a fully random path for 

simulation and simulating isometric log-ratios randomly at each node of the 

simulation grid generates reasonable compositional variation. Simulation based on 

a fully random path and isometric log-ratio transformation leads to generating 

compositions not present in the input data. The isometric log-ratio transformation 

also reduces the dimension of the compositional vector by one (making the 

simulation faster) while preserving the distances between compositions. Two case 

studies in chapter 2 showed that the sub-compositional patterns (shown in ternary 

diagrams) can be reproduced properly with this technique. To evaluate the 

realizations of compositional random function, new metrics (e.g., global Aitchison 

distance between the simulated results and validation set) were introduced in 

chapter 2 as in the case of compositional data, standard descriptive statistics are not 

informative. To increase the accuracy of the predictions for compositional and 
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categorical data via the proposed workflow, parameters of DS should be tuned 

properly and/or a sensitivity analysis for the appropriate size of the training data 

should be conducted. 

 

6.2 Two-point framework 

In chapter 3 a spatial decorrelation technique for joint two-point geostatistical 

simulation of high-dimensional continuous and categorical data was presented 

based on the plurigaussian model and min/max autocorrelation factors. Each 

categorical variable can be presented via one or more underlying Gaussian 

variables. As a result the proposed method is capable of simulating several 

categorical variables by defining several plurigaussian models (Armstrong et al. 

2011). On the other hand, in the case of compositional data, they should be opened 

up to real space via one of the several available log-ratio transformations (Aitchison 

1986; Egozcue et al. 2003). Any log-ratio transformation can be used as long as the 

transformation to normal space is based on a multivariate affine equivariant 

anamorphosis (van den Boogaart et al. 2017). In chapter 4 it has been shown that 

the classical transformation to normal space (Gaussian anamorphosis) is not 

capable of reproducing complex statistical patterns inside data. Geostatistical 

modelling via flow anamorphosis is capable of reproducing complex patterns in 

data including: outliers, multiple populations, nonlinearity, and heteroscedasticity. 

The invariance property of the flow anamorphosis gives modellers the freedom to 

select an appropriate log-ratio transformation (among many available log-ratio 

transformations). The transformed scores via this anamorphosis are multivariate 

normal, statistically independent, and spatially orthogonal. The orthogonality is 

particularly important in the case of high-dimensional data as the geostatistical 

modelling of such independent factors is straightforward. In chapter 4, it has been 

shown that in situations where continuous data show spatial correlation across the 

boundary between different categories (soft transitions) and consist of different 

statistical populations, geostatistical simulation via flow anamorphosis without 

domaining outperforms other approaches for spatial modelling of compositional 

data such as domaining and independent simulation or probabilistic weighted 

approach. The proposed method was implemented on a nickel-cobalt laterite 
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deposit and results were satisfactory based on several criterial (e.g. reproduction of 

probability distribution functions, sub-compositional patterns (checked via ternary 

diagrams), variograms, and grade-tonnage curves).  

 

6.3 Machine learning – Spatial predictive implementation  

Ensemble predictive models (such as the Random Forest algorithm) are very 

popular due to their ease of implementation, their ability to handle many types of 

predictors (sparse, skewed, continuous, categorical, etc.) without the need to pre-

process them, allowing missing data, conducting feature selection and cross-

validation internally, and stability of the predicted results (Kuhn and Johnson 2013). 

A major limitation of machine learning algorithms is that they generally do not 

consider the spatial relationships between observations and variables. As a result 

the uncertainty maps generated via MLAs cannot be considered a trustworthy 

spatial uncertainty model. This kind of limitation was addressed in chapter 5, where 

a hybrid model was developed based on the combined use of advanced 

geostatistical simulation (implementing a non-linear Gaussian anamorphosis) and 

random forest algorithm. In a first step, the random forest classifier was trained 

based on the available input data. To acknowledge the spatial uncertainty of 

compositional data, different realisations of the given compositional random 

function were used as input to the trained ensemble classifier. For each realisation 

of compositional random function, the probabilities of different classes (e.g., crustal 

blocks, deposit/non-deposit areas, rock type) were estimated.  Some ideas were 

borrowed from compositional data analysis to merge these probabilities in order to 

combine elements of statistical (bootstrapping via RF) and spatial (turning bands 

algorithm) uncertainties. The most probable spatial map of categories was defined 

using the final spatial uncertainty model. A compositionally compliant feature 

selection was introduced to address the high-dimensionality characteristics of 

compositional features (log-contrast). The two case studies in chapter 5, proved the 

usefulness of the proposed algorithm for geological class prediction, spatial 

uncertainty modelling, and recognising significant features for geoscience 

processes discovery analysis. In the first case study, the spatial distribution of major 

crustal block of Australian continent was predicted accurately. In the second case 
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study, the spatial distribution of peat covered areas were predicted with high 

accuracy. The spatial maps of the most significants log-ratios (associated with each 

geological class) and the associated spatial uncertainties were generated for each 

case.  

 

 

 

  



157 

 

6.4 Chapter references 

 Aitchison J (1986). The statistical analysis of compositional data. Monographs on 

statistics and applied probability. Chapman & Hall Ltd., London.  

Armstrong M et al. (2011). Plurigaussian simulations in geosciences. Springer 

Berlin Heidelberg, Berlin, Heidelberg.  

Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C (2003). 

Isometric logratio transformations for compositional data analysis. 

Mathematical Geology, 35, 279-300. 

Kuhn M, Johnson K (2013). Applied predictive modeling. Springer-Verlag New 

York.  

Mariethoz G, Caers J (2015). Multiple-point geostatistics: Stochastic modeling with 

training images. John Wiley & Sons, Ltd. 

Mariethoz G, Renard P (2010). Reconstruction of incomplete data sets or images 

using direct sampling. Mathematical Geosciences, 42, 245-268. 

Mariethoz G, Renard P, Straubhaar J (2010). The direct sampling method to 

perform multiple-point geostatistical simulations. Water Resources 

Research, 46, W11536. 

Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R (2015). Modelling and 

analysis of compositional data. John Wiley & Sons, Ltd. 

van den Boogaart KG, Mueller U, Tolosana-Delgado R (2017). An affine 

equivariant multivariate normal score transform for compositional data. 

Mathematical Geosciences, 49, 231-251. 

 

 

 

  



 

Chapter 7  

7. Overall conclusions and future recommendations 

 

This PhD research pursued the development of approaches to spatial uncertainty 

modelling and prediction of a set of regionalized dependent compositional and 

categorical variables. The proposed approaches have many geoscience applications 

including in the evaluation of mineral resources, characterization of oil reservoirs 

or hydrology of groundwater, and contaminated site characterization and 

remediation. Through the development of the proposed techniques, the 

compositional nature of continuous data was addressed and fully incorporated in 

the joint modelling approach. Two main streams were followed for the spatial 

uncertainty modelling and prediction: two-point and multiple-point geostatistics.  

For the geoscience modelling projects where a large and representative training 

images (or training data) for compositional and categorical information are 

available, the proposed approach (adapted implementation and evaluation of Direct 

Sampling algorithm) for the multiple-point stream is recommended due to its 

capability of correctly reproducing statistical and spatial, compositional and 

categorical, dependent patterns. The direct sampling algorithm is developed and 

presented in chapter 2 to this end. However, the proposed approach for simulating 

compositional data via DS should be examined further in terms of sub-

compositional coherence and total compositional variation. In this study, 

parameters of DS algorithm were selected by the user. Numerical optimisation 

techniques can be developed and implemented to find the optimum parameters. 

For the situation where the first stream is not applicable (e.g. lack of a representative 

training image), a hybrid model was developed and presented in chapter 3, based 

on plurigaussian models and min/max autocorrelation factors. This spatial 

decorrelation technique for two-point geostatistical simulation is capable of 

modelling several compositional and categorical variables. In this technique for 

each categorical variable, a separate plurigaussian model is defined. A Gibbs 

sampler algorithm was used to simulate the underlying Gaussian variables 

associated with each plurigaussian model. In the proposed algorithm the Gibbs 
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sampler was conditional only to categorical information. A Gibbs sampler 

algorithm conditional to both, categorical and compositional (in term on log-ratios) 

information, may produce more accurate predictions.    

Regionalized compositions often consist of several populations and each population 

shows different statistical and spatial characteristics. The multi-population 

characteristics are usually related to a dependent categorical variable (e.g. rock 

types, soil types, and land uses). Several geostatistical simulation approaches were 

implemented for spatial modelling of regionalized compositional data with multi-

population characteristic in chapter 4. The results proved that the flow 

anamorphosis is a vital element for geostatistical modelling of regionalized 

compositional data. Several applications were shown that the transformed data via 

flow anamorphosis are not only multivariate normal but also exhibit absence of 

spatial cross-correlation which make the geostatistical simulation of such 

orthogonal factors, more straightforward. Flow anamorphosis is capable of 

reproducing complex patterns in input data including presence of outliers, presence 

of several populations, nonlinearity, and heteroscedasticity. To pursue the 

capability and usefulness of the geostatistical simulation using flow anamorphosis 

for resources modelling, it is recommended to implement this technique to other 

multi-element deposits where several variables with complex statistical and spatial 

relationships need to be spatially simulated.  

Finally, to explore complex compositional patterns and to select and rank 

significant features (log-contrasts) in a spatial framework, a hybrid spatial 

predictive model is developed based on the combined use of advanced geostatistical 

simulation and machine learning algorithms (Random forest in this case). The 

spatial uncertainty of compositional data was fully incorporated into an ensemble 

classifier. The estimated probabilities of geological classes associated with each 

realization of compositional random function were integrated to combine elements 

of statistical and spatial uncertainties. The new model of spatial uncertainty was 

used further to predict the most probable geological classes. Due to the high-

dimensionality characteristic of log-contrasts, a compositionally compliant feature 

selection was introduced which is useful for geoscience process discovery analysis. 

The developed hybrid model was capable to predict surficial and deep earth classes 

of materials using soil geochemical compositional information with high accuracy. 
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The proposed method was implemented for  two real case studies in chapter 5 and 

the final results indicated that the generated spatial uncertainty model is consistent 

with the geological understanding of the phenomenon of interest. The predicted 

map of geological classes via the proposed hybrid model can be improved further 

by the proportion correction technique, introduced in chapter 4. This spatial 

correction technique is especially useful in the situations where one or more classes 

have low proportions and are dominated by other classes with high proportions. 
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