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ABSTRACT 

 

Automatic recognition of anatomical structures is an essential 

prerequisite in computer aided diagnoses (CAD) such as 

tissue segmentation, physiological signal measurement and 

disease classification. However, insufficient color and 
speckle information in medical images pose challenges to the 

recognition of anatomical structures. Such challenges are 

evident with prostate recognition on magnetic resonance 

(MR) images and thus remain an open problem, although 

prostate cancer is an important problem that are attracting 

increasing interests in medical imaging. In this study, we 

propose an automatic approach for prostate recognition on 

MR images. Firstly, compared to existing works which 

integrate autoencoder with a specific type of classifier, we let 

autoencoder itself serve as a classifier and therefore lessening 

the impact from irregular and complex background found in 

prostate recognition. Secondly, an image energy 

minimization scheme with consideration of the coherence 

information from neighboring pixels is proposed to improve 

the recognition results with clear boundary appearance. We 

evaluate our method in comparison with three widely applied 

classifiers and the phase of atlas-based seeds-selection in 

prostate segmentation on a public prostate database. Our 

experiment results demonstrate significant superiority of our 

method in terms of both precision and F-measure. 

 

Index Terms— prostate recognition, autoencoder, deep 

learning, classification 

 

1. INTRODUCTION 

 

The recognition and localization of anatomical structures are 

the prerequisite for many subsequent image processing 

procedures such as segmentation and classification [1]. It 

poses a challenging task because of the insufficient color 

information of pixels and low signal-to-noise ratio in medical 

images [2]. Previous works have been proposed to tackle 

anatomical structure recognition problems based on 

handcrafted features, such as steerable feature, on a wide 

array of imaging modalities, e.g., ileocecal valves [3], polyps 

[4], and livers [5] in abdominal CT, and heart chambers in 

ultrasound [6]. However, to our best knowledge, no work has 

been done on prostate recognition in MR images, although 

prostate cancer accounts for the second highest mortality rate 

among various types of cancer on males [7] and MR images 

prove effective for prostate diagnoses and treatments [8]. In 

addition to the insufficient color and speckle information, 

MR image artifacts, such as low contrast and blurred tissue 

boundary, make it even more difficult to accurately locate the 

prostate. Many prostate segmentation approaches, e.g., [9, 

10] are often limited by the recognition techniques in prostate 

imaging, as accurate segmentation often requires 

approximate localization of the prostate object as 

initialization. To address this challenge, conventional 

prostate segmentations rely on semi-automatic methods 

thereby being dependent on the user [2, 11, 12]. Alternative 

approaches explore the use of an image atlas to define the 

foreground/background seeds in prostate segmentation [9, 

10]. However, as noted in prior studies [8], reliance on atlas 

are still prone to generating errors. 

While the above handcrafted-feature-based anatomical 

structure recognition methods [3-6] are technically sound, 

one major drawback is that these low-level features may fail 

to describe complex anatomical structure [13-16], and hence 

it dampens the recognition performance demonstrated by the 

experiment results of our work (Section 3.2) and consistent 

to [1, 17, 18]. Recently, autoencoder (AE) has been proven to 

effectively extract high-level features from input data for 

(patch-based) image classifications [14, 15], object 

detections [19], and disease diagnosis [13, 20]. It learns a set 

of encoding weights to construct a code vector as the feature 

of input data, and then learns another set of decoding weights 

to map the code vector into an approximate reconstruction for 

the input data. Although AE can learn high-level features 

directly from the pixel intensity values, for its application to 

medical images, it may be insufficient for later tissue 

recognition or classification from the experiment results of 

existing works [13, 15], especially for the low-contrast 

images or blurred tissue boundaries. 

In this paper, to solve these issues, we propose a novel 

prostate recognition method on MR images by combining 

handcrafted features with AE. Our work has two major 

contributions. Firstly, different from the most works which 

embed a classifier on the top of the hidden layer in AE [13, 

15, 19, 20], we propose a novel method to compute prostate 

recognition map through taking advantage of favorable 

capability of data reconstruction [21] from AE. Secondly, we 

design an image energy minimization scheme to generate a 
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stronger prostate recognition map with consideration of the 

relationship among neighboring pixels. 

 

2. METHODS 

 
Our method consists of two stages. In the first stage, early 

feature descriptors for the prostate are proposed to construct 

the training inputs for our proposed classifier based on the AE 

framework as shown in Fig. 1(a-b); the probability of a pixel 

belonging to the prostate can be approximated by our trained 

stacked autoencoder (SAE) classifier as shown in Fig. 1(c). 

In the second stage, we propose a new energy minimization 

scheme to optimize the rough probability map of prostate 

from the output of first stage as described in Fig. 1(d). 

 

 
Fig. 1 Pipeline of our method. (a) Early feature extraction. (b) 

Superpixel reconstruction via proposed prostate AE model. (c) 

Superpixel classification. (d) Refinement. 

 

2.1. Early feature descriptors 

 
Instead of merely using the pixel intensity values, we adopt 

two early features, i.e. the intensity descriptor and the 

position descriptor, which reflects most critical information 

about pixel-value and spatial information. These two 

descriptors are the inputs for the AE. In this work, we use 

superpixel as the atomic homogenous region in further 

operations to boost performance in recognition around tissue 

boundaries [22]. Formally, an image I ∈ Rm×n is segmented 

into N superpixels via the SLIC algorithm [23]. We denote a 

superpixel as P. As suggested in [24], the superpixel is first 

whitened via zero phase component analysis (ZCA) to make 

the pixels less correlated with each other. An early feature 

vector f(P) is then derived for P as follows. 

 

2.1.1. Intensity descriptor 

For the intensity histogram IH(P)  of superpixel P , the 

number of bins is set to 20 empirically in our experiment. 

Then, the intensity histogram IH(P) ∈ R20×1 is normalized to 

have a uniform sum to eliminate the effect caused by the 

different number of pixels within different superpixels. 

 
2.1.2. Position descriptor 

Since the superpixels are of irregular shapes, we exploit 

bounding boxes to approximate their spatial locations. We 

denote the bounding box of P as C(P) = {cv(αv,1, αv,2): v =

1,2}, where c1 and c2 are the top-left coordinate and bottom-

right coordinate of C(P)  in image I ∈ Rm×n  respectively. 

αv,1 and αv,2 are the values of cv corresponding to x-axis and 

y-axis respectively. The position descriptor POS(P) ∈ R4×1 

of superpixel P is then calculated by 

 

 POS(P) = {
αv,u

(2−u)n+(u−1)m
: v = 1,2; u = 1,2}  (1) 

 
2.1.3. Early feature vector 

With the early feature descriptors proposed above, a 

superpixel-wise feature vector f(P)  with 24 dimensions is 

generated as 

 

 f(P) = {IH(P); POS(P)} ∈ R24×1 (2) 

 

2.2. Prostate stacked autoencoder model 

 
After obtaining the early feature vectors of prostate 

superpixels, we can build a SAE [13] to extract high-level 

features and perform reconstruction of input for later 

classification. While most works [13, 15] train AE by both 

positive and negative samples, the training set in our work 

consists of only positive samples, which focuses on the 

prostate feature extraction and thus lessens the impacts by the 

irregular and complex background that may impede feature 

extraction. 

To train a single-hidden-layered prostate AE, a training 

set F = {f(Pi): i = 1,… , K} containing K early feature vectors 

of prostate superpixels are input to the AE network. The input 

vector f(Pi)  is transformed into a hidden feature 

representation ai  by an activation function g(∙)  with the 

following formula: 

 

 ai(f(Pi); θ
(1)) = g(W(1)f(Pi) + b(1)) (3) 

 

where θ(1) is the parameter vector including weight matrix 

W(1) and bias term b(1); as a common practice, we use the 

sigmoid function g(ϕ) = 1/(1 + exp(−ϕ))  as the 

activation function. A decoder then maps the hidden feature 

representation ai  back to an approximate reconstruction 

f(Pi)̂ ∈ R24×1 in a similar transformation 

 

 f(Pi)̂(ai; θ
(2)) = g(W(2)ai + b(2)) (4) 

 

With the training set F of K samples, the latent features of 

input data can be learned by minimizing the cost function 

 

J(θ) =
1

K
∑

1

2

K

i=1

‖f(Pi) − f(Pi)̂‖
2
+
λ

2
∑∑(Wij

(1)
)2

s(2)

j=1

s(1)

i=1
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where the first term in J(θ)  is an average sum-of-squares 

error term and the second term is a weight decay term that 

tends to decrease the magnitude of the weight and prevent 



overfitting [25], with a weight decay parameter λ. s(1) and 

s(2) are the numbers of nodes in the input layer and hidden 

layer respectively. As suggested in [19], a sparsity constraint 

is imposed on the hidden nodes to enhance the probability of 

linear separability. We use gradient descent optimization 

algorithm to update θ  in iterations and back-propagation 

algorithm is applied to calculate the partial derivatives in this 

process. 

We further construct SAE [19, 21] to learn highly 

nonlinear and complex patterns, and perform feature 

presentation in the input images. As shown in Fig. 2, in a SAE 

structure, the early feature vector is input to the first (bottom) 

AE, the hidden nodes of which are concatenated as a new 

feature vector to the subsequent (higher-level) AE. The 

greedy layer-wise algorithm is adopted to obtain the 

corresponding parameter θ(l)  of the l -th layer, and back-

propagation is then applied again to tune the parameters of all 

layers at one time. Typically in our work, we stack three AEs 

to construct the prostate SAE model and hence obtain a 

totally six layer network including three encoding layers and 

three decoding layers (Fig. 2). 

 
Fig. 2 Architecture of the proposed SAE. The output of each layer 

is the input for its subsequent layer. The output of the last layer 

is a reconstruction for input data.  

 

2.3. Superpixel classification 

 
With the trained prostate SAE model, the superpixels of the 

input image can thus be classified for prostate recognition. 

Different from other deep learning algorithms (i.e. 

convolution neural network), AE is capable of not only 

intrinsic and latent feature learning for input data (3), but also 

data reconstruction (4). Therefore, we can calculate the 

reconstruction errors defined in (7) for each superpixel in a 

prostate MR image through the fixed prostate SAE model. 

Specifically, with the all parameters Ι = {θ(l): l = 1, … , L} 
learned in SAE, for a superpixel P, set 

 

 f(P)(l+1) = g(W(l)f(P)(l) + b(l)) (6) 

 
where l is the index of network layer. We initialize the first 

step of the iteration f(P)(1) as the early feature vector f(P) of 

the superpixel P . Then the reconstruction error of P  is 

calculated by f(P) and f(P)(L+1): 

 

 err(P) = ∑ ‖f(P)𝜔 − f(P)(L+1)𝜔‖
224

𝜔=1   (7) 

 

where f(P)𝜔  and f(P)(L+1)𝜔  are the 𝜔th  elements of f(P) 

and f(P)(L+1) respectively. 

As the SAE model is learned from the set of prostate 

superpixels (positive samples), the unlabelled superpixels 

belonging to prostate have low reconstruction errors, while 

those belonging to background have high reconstruction 

errors. Hence, we use the reconstruction error to measure the 

probability Dsp_AE(P) of a superpixel P being prostate tissue: 

 

 Dsp_AE(P) = exp(−τ × err(P)) (8) 

 

where τ controls the distance between different superpixel’s 

reconstruction errors within an image and is set to 100 

empirically. 

With calculating Dsp_AE  of all the superpixels in an 

image I ∈ Rm×n, we may obtain a rough prostate recognition 

map DAE = {dAEi ∈ [0,1]: i = 1,… ,m × n}  after 

normalization of DAE, as shown in the third column of Fig. 3. 

 

2.4. Refinement 

 
The rough prostate recognition map DAE may generate wrong 

labels of background near the prostate, as it is a local 

estimation without considering the spatial and intensity 

coherence among superpixels. In this sub-section, a refined 

prostate recognition map with better suppressed background, 

more smooth inner region and clear boundary is generated 

based on DAE. 

Given a one-channel image I, our task in this stage is to 

assign a label Op ∈ {0,1} to a pixel p to measure whether p 

belongs to foreground or not. For the set of pixels’ labelling 

O = {Op: p ∈ I}, this can be solved by minimizing the energy 

function [26] 

 

E(O) = ∑ H(Op)p∈I   

+ξ∑
1

1+√3(Ip−Iq)
2

(p,q)∈Y ⋅ T(Op ≠ Oq)  (9) 

 
where Y is a set of all pairs of neighboring pixels. H(Op) is 

the cost for assigning a label Op to a pixel p. We directly use 

local estimated recognition map DAE  to approximate the 

label-cost of pixels. Specifically, H(Op) is set to DAE(p) if 

Op  is a background label and 1 − DAE(p)  if Op  is a 

foreground label. The second term in (9) encourages intensity 

and spatial coherence by penalizing discontinuities [27] 

between neighboring pixels, with the parameter ξ controlling 

the scale of discontinuity penalty. T(⋅) is 1 if the condition 

inside the parentheses is true and 0 otherwise. 

We adopt maximum flow algorithms [27] to minimize 

(9) and generate the corresponding prostate recognition map 



Dmf . Then the final prostate recognition map D = (DAE +
Dmf)/2 is formed to measure the probability of each pixel 

being prostate. 

 

3. EXPERIMENTS 

 

3.1. Experimental setup 

 
The prostate MR Image Segmentation 2012 (PROMISE12) 

database [28] is used in this study. It contains 50 cases, with 

each case composed of 15 to 54 prostate transverse T2-

weighted MR images. Manual segmentation are available for 

each case and used as the ground truth. 

In the prostate SAE model, the hyperparameters of each 

sub-AE, i.e. the number of hidden nodes Z, and weight decay 

parameter λ, are derived empirically and listed in Table 1. As 

suggested in [26], to achieve better performances, we 

compute five recognition maps using five superpixel scales 

with 𝑁 = 200, 250, 300, 350, 400 respectively in an image. 

Then, we linearly combine the five recognition maps as the 

final recognition result. 

We perform 10-fold cross validation on the dataset. For 

each image, we first resize it to 320∗320 pixels, and then 

increase its contrast by mapping the intensity values to new 

values such that 1% of data is saturated at low and high 

intensities of the image [29]. An atlas-based seeds-selection 

in segmentation approach (RW) [9] and three popular 

classifiers, i.e. support vector machine (SVM) with radial 

basis function kernel, random forest (RF), and naive Bayes 

(NB), are chosen as comparison methods. 

 
Table 1: Hyperparameters in the prostate SAE model. 

 sub-AE 1 sub-AE 2 sub-AE 3 

Z 60 40 16 

λ 8e-4 4e-4 4e-4 

 

3.2. Evaluation 

 
We evaluate the recognition performance using precision-

recall (PR) curve and F-measure [20, 26]. Both Table 2 and 

Fig. 4 shows that our method outperform the four comparison 

methods in terms of both PR curve and F-measure. More 

specifically, even our unrefined results outperform the 

refined results of the comparison methods in precision. This 

is mainly attributed to the SAE for high-level feature learning 

and data reconstruction, while the comparison methods 

recognize prostate directly from the low-level early features. 

Fig. 3 qualitatively demonstrates that our proposed 

refinement significantly contributes to foreground 

smoothness and background suppression. The refinement 

poses relatively low effect around the prostate with blurred 

boundary as illustrated in the second row of Fig. 3. The reason 

is that the neighboring pixels around the boundary does not 

differentiate much, thus causing a large penalty in the second 

term of (9), which encourages to assign same labels to these 

pixels around the boundary of prostate. However, from Table 

2, it can be seen that our proposed refinement improves all 

the methods in precision and F-measure. 

 

 
Fig. 3 Examples of prostate recognition results by our 

method. Left to right: raw image, ground truth, rough 

recognition map by the first stage, and final recognition map. 

 
Table 2: Precision and F-measures of our method and 

comparison methods for prostate recognition on 

PROMISE12 database. The best results in each column 

are shown in bold. 

 Precision F-measure 

 Not 

refined 
Refined Not 

refined 
Refined 

OURS 0.8518 0.8699 0.6798 0.6832 
RW 0.8284 0.8286 0.6617 0.6220 

SVM 0.5554 0.6394 0.5415 0.6238 
RF 0.4870 0.5506 0.5189 0.5766 
NB 0.3539 0.4894 0.3906 0.5033 

 

 
Fig. 4 PR curves of our method and comparison methods for 

prostate recognition on PROMISE12 database. The recognition 

results by comparison methods are also refined by our proposed 

approach for better evaluation (solid lines). 

 

4. CONCLUSION 

 

We propose an automatic prostate recognition method on MR 

images based on SAE. Compared to the most existing works 

with AE, we let the SAE itself serve as a classifier to focus 

on the prostate feature extraction. An image energy 

minimization scheme is then proposed to optimize the 

prostate recognition map constructed by SAE. Our method is 

compared against three benchmark classifiers and atlas-based 

seeds-selection approach on the PROMISE12 database, 

demonstrating superiority in both PR curves and F-measures. 
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