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Abstract

Location data of individuals is one of the most sensitive sources of information that once

revealed to ill-intended individuals or service providers, can cause severe privacy concerns. In

this thesis, we aim at preserving the privacy of users in telecommunication networks against

untrusted service providers as well as improving their privacy in the publication of location

datasets.

For improving the location privacy of users in telecommunication networks, we consider

the movement of users in trajectories and investigate the threats that the query history may

pose on location privacy. We develop an attack model based on the Viterbi algorithm termed as

Viterbi attack, which represents a realistic privacy threat in trajectories. Next, we propose a

metric called transition entropy that helps to evaluate the performance of dummy generation

algorithms, followed by developing a robust dummy generation algorithm that can defend users

against the Viterbi attack. We compare and evaluate our proposed algorithm and metric on a

publicly available dataset published by Microsoft, i.e., Geolife dataset.

For privacy preserving data publishing, an enhanced framework for anonymization of

spatio-temporal trajectory datasets termed the machine learning based anonymization (MLA)

is proposed. The framework consists of a robust alignment technique and a machine learning

approach for clustering datasets. The framework and all the proposed algorithms are applied to

the Geolife dataset, which includes GPS logs of over 180 users in Beijing, China.
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Chapter 1

Introduction

This chapter presents a brief background knowledge of our research topics and raises research

problems. Moreover, this chapter illustrates the main contributions of this thesis.

1.1 Location Privacy

The ubiquitous use of location-based mobile applications has made location data one of the

primary sources of information. Users of such applications provide their location data to

location-based service (LBS) providers in exchange for the services they offer. This process

is referred to as querying a service from the LBS provider. An example of LBS application

is Google Maps, with over 2 billion monthly users in 2018. Perhaps, it is not a surprise

to know that the annual market for LBSs is expected to reach 77.84 billion US dollars by

2021, according to ‘Research and Markets’ report [2]. Fig. 1.1 categorizes the services LBS

applications provide based on their most widely used applications. On the service provider

side, location data are captured in trajectories of moving objects and stored in datasets. Each

entry of the dataset indicates a path traveled by a user ordered based on the time of queries.

In spite of numerous advantages that the LBS applications provide for their users, they

are associated with a number of location privacy concerns that severely compromise the
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Fig. 1.1 Classification of the LBS apps based on their application.

privacy of users. If ill-intended individuals or organizations (adversaries) have access to the

location data of users, they can compromise the privacy of users. Adversaries may unveil

sensitive information, such as home address [3], workplace [4], health conditions [5], children’s

schools [6], and daily shopping habits [7].

Privacy threats become more drastic if the user locations are stored along with other

sources of information. For instance, consider an LBS application that daily records the health

conditions of its users and stores them along with their location coordinates [8–10]. If the

LBS provider publishes the stored dataset without applying any anonymization technique,

adversaries may be able to identify individuals and infer their health status. To mention a few,

adversaries can know about diseases users carry, the medication they use, or health conditions
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that they may have. Therefore, it is crucial to anonymize the location data of users so that they

can enjoy the benefits of LBS applications without compromising their privacy.

More formally, Beresford et al. [11] define location privacy as the ability to prevent other

parties from learning one’s current or past locations. In simple words, it refers to having

control over on how our location data is being used. Recent misconducts in the US election

and Facebook scandal has exposed the importance of privacy and in particular location privacy

more than any time before in history [12]. Also, the most widely used metric for preserving

the location privacy of users is called k-anonymity, in which the aims is to hide the location of

users among at least k−1 other users to prevent malicious attacks on their privacy.

1.2 Research Problems

In this thesis, we consider the location privacy of individuals in telecommunication networks

in two perspectives. In the first scenario, the location privacy of users is investigated in

telecommunications networks, in which the LBS provider itself can be the source of threat. In

this scenario, the aim is to hide the actual location of users to protect them from untrusted LBS

providers. In the second scenario, the publication of location trajectory datasets is considered,

in which the aim is to anonymize the dataset so that no individual can be identified in the dataset.

In the following two subsections, these two scenarios and the existing research problems are

elaborated.

1.2.1 Location Privacy in Telecommunication Networks

The architecture of the first scenario is shown in Fig. 1.2. In this scenario, the LBS users

are directly in contact with the LBS provider with no middle-man or a third-party service

provider. If the LBS provider is untrusted, it can collect the location data of users and analyze

them to learn sensitive information, such as the type of queries submitted [3], shopping habits



4 Introduction

of users [7], and the address of users’ properties or workplaces [4]. Therefore, it is of great

importance to devise new ways to preserve the location privacy of LBS application users.

Fig. 1.2 Scenario 1: Location privacy of users in telecommunication networks.

1.2.2 Location Privacy in Publication of Location Datasets

The architecture used for the second scenario is shown in Fig. 1.3. This scenario considers

the publication of location trajectory datasets to the public or third-parties. Despite numerous

use cases that the publication of location data can provide to users and researchers, it poses a

significant threat to users’ privacy. As an example, consider a person who has been using GPS

navigation to travel from home to work every morning of weekdays. If an adversary has some

prior knowledge about the user, such as the home address, it may be able to identify the user.

This can compromise private information about the user, such as the user’s health condition

and how often does the user visit his/her specialist. Therefore, it is crucial to anonymize

spatiotemporal datasets before publishing them to the public.
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Fig. 1.3 Scenario 2: Location privacy in publication of location trajectory datasets.

1.3 Contribution of The Thesis and The Thesis Outline

In this thesis, improving the location privacy of users is considered in telecommunication

networks as well as the publication of location datasets. With respect to the two major research

problems, contributions are classified into the following two parts.

With regard to location privacy in telecommunication networks, we have made the following

contributions:

• We propose a novel metric called the transition entropy, which considers the privacy of

users in trajectories and not just the static snapshots of the queried locations. We explain

the calculation of the metric for two consecutive locations and then expand it to paths

with higher lengths. Moreover, we develop an exhaustive search algorithm to improve

the transition entropy of the existing dummy-generation algorithms.
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• We propose an attack model based on the Viterbi algorithm and term it as Viterbi attack.

Based on our experiment, it is crucial to consider the Viterbi attack in the design of

dummy-based algorithms as it can severely compromise the privacy of users.

• We propose an algorithm called robust dummy generation (RDG) that is resilient to the

Viterbi attack while maintaining the high performance in terms of the traditional cell

entropy metric in addition to having a robust performance in terms of transition entropy.

• We compare and evaluate the performance of the proposed metrics and algorithms on a

publicly available dataset published by Microsoft, i.e., Geolife dataset.

For the publication of location datasets without compromising the privacy of users, our

contributions are as follows:

• We propose to use k′-means algorithm for trajectory clustering and develop a technique

to enable it. We also propose a variation of k′-means algorithm to preserve user privacy

in overly sensitive spatio-temporal trajectory datasets.

• We propose to use a method termed the progressive sequence alignment for alignment of

the trajectories in each cluster.

• We propose a privacy metric to evaluate and compare generalization algorithms based on

the released area by data generalization.



Chapter 2

Background

In this chapter, comprehensive background knowledge and literature review associated with the

two research problems explained in the previous chapter are provided and elaborated.

2.1 Location Data in Telecommunication Networks

Anonymity is defined as “the state of being not identifiable within a set of subjects, the

anonymity set" [13]. Also, the location of a user is said to be k-anonymous if it is not

distinguishable from at least k−1 other user locations [14]. To obtain k-anonymity for users,

several approaches have been proposed, from which we have identified four broad categories:

location cloaking, mixed-zones, pseudonyms, and dummy aided algorithms. The location

cloaking technique is based on requesting LBSs for an area consisting of k locations via a

trusted party, mixed-zones are predicated on anonymous regions for users, the pseudonyms

approach takes advantage of fake IDs for users, and finally, the dummy generation algorithms

query fake locations to confuse adversaries.

Gruteser and Grunwald [15] initiated the research on location cloaking. The key idea is to

employ a trusted server in order to aid users become k-anonymous. Upon receiving a query

from a user, the location anonymizer server computes a cloaking box including the location of
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the user and k−1 other user locations and queries the requested service from the LBS provider

for all the k locations. Therefore, making it difficult for the LBS provider to identify the user

[16, 17]. Several algorithms have been proposed to implement location cloaking scheme such

as ICliqueCloak [18] and MaxAccuCloak [19]. The main drawback of the location cloaking is

the need for a location anonymizer, which is an additional cost overhead to the system. Also,

the location anonymizer can become a data privacy threat itself.

The authors in [20] proposed the idea of mixed zones. Mixed zone is defined as the spatial

zone where the identity of users is not identifiable. All users entering into a mixed zone will

change their pseudonym to a new unused pseudonym making it difficult for adversaries to

identify the users. The anonymization process is performed by a middle-ware mechanism

before transferring the data to third-party applications. The authors further extended their

work in [21] by considering irregular shapes for mixed zones. Moreover, the use of mixed

zones has particularly attracted attention in vehicular communications. Applying mixed zones

on road networks is considered in [22, 23], where a mixed zone construction method called

MobiMix is proposed. Lu et al. [24] exploited the pseudonym changes in mixed zones at

social spots, and Gao et al. [25] applied mix zones approach on trajectories for mobile crowd

sensing applications. Furthermore, the use of cryptography for the generation of mixed zones

in vehicular communications is considered in [26]. As it is the case for location cloaking

approach, the main drawback of mixed zones is also the need for a middle-ware mechanism or

a trusted party before transferring the data to an untrusted LBS provider.

Another technique to increase the location privacy of users is based on the assignment

of pseudonyms to hide the identity of users. The identity of a user can be the name of the

person, a unique identifier, such as IP address, or any properties that can be related to the

user. The authors in [27] proposed a scenario called the intermediary scenario, in which a

trusted intermediary collects the location information of users, such as GPS data and assigns a

pseudonym before sending them to an untrusted third-party LBS provider. The paper claims
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that the use of pseudonyms prevents the third-party LBS provider from identifying and tracking

users. The work in [28] suggests that instead of delegating the generation of pseudonyms to

the location intermediary, users are suggested to generate the pseudonyms themselves. The

use of pseudonyms for preserving the location privacy has also been considered in vehicular

communication systems, such as the work presented in [29]. There are several drawbacks

associated with this approach. First of all, many of the location-based applications require

users to subscribe in order to use services. Secondly, similar to the last two categories, this

approach also requires a trusted intermediary, and more importantly, by analyzing the patterns

in location data, an adversary can discover the identity of the users [30].

The dummy-based algorithms are considered to be a more promising approach as there is

no need for a trusted anonymizer. This technique was initially proposed in [31]. The key idea

is to achieve k-anonymity by sending k−1 dummy locations aside from the real location of the

user while requesting for a service. All locations use the same identifier corresponding to the

user, and therefore, it would be difficult for adversaries to identify the real locations of users.

Several algorithms have been proposed to help users generate dummies. The authors in [32]

proposed to use a virtual circle or a virtual grid that is based on the real location of users to

generate dummies. The idea was further developed in [33]. More recently, an algorithm called

dummy-location selection (DLS) was proposed in [34]. The algorithm takes the number of

queries made on the map into consideration and demonstrates via simulations that the previous

algorithms are susceptible to probability attacks. Although the algorithm provides an excellent

framework for the generation of dummies, it does not take into account the susceptibility

of users in trajectories and the privacy threats associated with that. Do et al. [35] utilized

conditional probabilities to generate realistic false locations, and Hara et al. [36] proposed a

method based on physical constraints of the real environment.
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2.2 Publication of Location Data

In the second scenario considered in this thesis, the service provider aims to publish location

datasets to the public or third parties. Unfortunately, merely removing unique identifiers of

users cannot protect their privacy, as databases can be linked to each other based on their

quasi-identifiers. Doing so, adversaries can reveal sensitive information about the users and

compromise their privacy.

2.2.1 Generalization Technique

Generalization is currently one of the mainstream approaches for the anonymization of spa-

tiotemporal trajectory datasets. The generalization technique is predicated on two interrelated

mechanisms: clustering and alignment. Clustering aims at finding the best grouping of trajecto-

ries that minimizes a predefined cost function, and the alignment process aligns trajectories in

each group.

The notion of k-anonymity was adopted in [37] for anonymization of spatiotemporal

datasets. The authors proved that the anonymization process is NP-hard and followed a heuristic

approach to cluster the trajectories. The use of ‘edit distance’ metric for anonymization of

spatiotemporal datasets was proposed in [38]. In this work, the authors target grouping the

trajectories based on their similarity and choose a cluster head for each cluster to represent the

cluster. Also, dummy trajectories were added to anonymize the datasets further. Yarovoy et

al. [39] proposed to use Hilbert indexing for clustering trajectories. The authors in [40, 41]

chose to avoid alignment by selecting trajectories with the highest similarity as representatives

of clusters. Poulis et al. [42] investigated applying restriction on the amount of generalization

that can be applied by proposing a user-defined utility metric. Takahashi et al. [43] proposed

an approach termed as CMAO to anonymize the real-time publication of spatiotemporal

trajectories. The proposed idea is based on generalizing each queried location point with k−1

other queried location by other users, and hence, achieving k-anonmity.
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The current state-of-art technique for applying gerelization to spatiotemporal datasets is

based on domain generalization hierarchy (DGH) trees. In essence, DGH can be seen as a

coding scheme to anonymize trajectories. We have categorized types of DGHs in the literature

as:

• Full-domain generalization: This technique emphasizes on the level that each value of an

attribute is located in the generalization tree. If a value of an attribute is generalized to its

parent node, all values of that attribute in the dataset must be generalized to the same

level [44–46].

• Subtree generalization: In this method, if a value of an attribute is generalized to its

parent node, all other child nodes of that parent node need to be replaced with the parent

node as well [47, 48].

• Cell generalization: This generalization technique considers each cell in the table sepa-

rately. One cell can be generalized to its parent node while other values of that attribute

remain unchanged [49–51].

2.2.2 Other Anonymization Techniques

Aside from the generalization technique, we have categorized the existing methods for the

anonymization spatiotemporal datasets into three major groups:

• Perturbation anonymizes location datasets by addition of noise to data;

• ID swapping swaps user IDs in road junctions to anonymize location datasets;

• Splitting divides trajectories into shorter lengths to anonymize location datasets.

The authors in [52] proposed an algorithm that swaps the IDs of users in trajectories once

they reach an intersection. Doing so, the algorithm prevents adversaries from identifying a
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particular user. Cicek et al. [53] made a distinction between sensitive and insensitive location

nodes of trajectories. Their proposed algorithm only groups the paths around the sensitive

nodes and exploits generalization to create supernodes.

Moreover, Cristina et al. [54] shifted the burden of privacy preservation in data publishing

to the user side. The authors attempted to anonymize the data on the mobile phones before

storage on the database as they would have more control over their privacy. Instead of clustering

trajectories for anonymization, Cicek et al. in [53] focused on the obfuscation of underlying

map for sensitive locations. Brito et al. [55] minimized the information loss during the data

anonymization by suppressing key locations. The Local suppression and splitting techniques

were considered for trajectory anonymization in [56]. Although the proposed approach is

useful for a predefined number of locations, it cannot be generalized to system models in which

the users can make queries from an arbitrary location on the map. Naghizadeh et al. [57]

focused on the stop points along trajectories. A sensitivity measure is introduced in this work,

which relies on the amount of time users spend in different locations. Sensitive locations are

replaced or displaced with a less sensitive location to preserve the privacy of users. Jiang et

al. [58] considered the perturbation of locations by adding noise to preserve the privacy of

users. Adding noise can generate fake trajectories that do not correspond to realistic scenarios.



Chapter 3

Location Privacy in Mobile Networks

3.1 Introduction

With the ubiquitous use of smartphones and social networks, location-based services (LBSs)

have become an essential part of contemporary society. The users of smart devices can

download LBS applications from Google Play or Apple Store, and query for LBSs they desire.

For example, users can query their locations from an LBS provider to find restaurants nearby

[59], refine route planning [60], and receive location-based advertisements [61]. The annual

market for LBSs is expected to reach 77.84 billion US dollars by 2021, with an annual growth

rate of 38.9% [2].

Unfortunately, the privacy issues associated with the LBSs have raised many concerns.

Notably, after the recent Facebook data privacy scandal occupying the headlines of major media

[62]. Different from the security of data, which is mainly concerned with secure encryption

and integrity, privacy indicates how in control users are to prevent the leakage of their data;

Can LBS providers analyze users’ locations to find out their home address? Can LBS providers

take advantage of users’ data to figure out their shopping habits? Can LBS providers share user

data with third-parties? And these are just some of the issues that may compromise the location

privacy of users.
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Krumm et al. [63] warn about the current location privacy threats. The authors show that

just by having the last location of a day, it is possible to estimate the home location within 60

meters of the actual site. The authors in [64] demonstrate that even when locations are queried

from LBS providers as members of a community, sensitive locations associated with users can

still be identified based on the distribution of queries. Beresford and Stajano [11] also warn that

a system collecting users’ locations may invade their location privacy. Therefore, it is crucial to

devise new ways to preserve the location privacy of users formally defined as “the ability to

prevent other parties from learning one’s current or past locations" [65].

Researchers have proposed several approaches to preserve the location privacy of users,

among which dummy-based algorithms have drawn a great deal of attention [66–69, 65, 70–73].

For a given user location, the dummy generation algorithms aim at generating k−1 dummy

locations aside from the actual location of the user and submitting them all together to the LBS

server. Thus, making it difficult for untrusted servers, or so-called adversaries, to identify the

actual user location. All algorithms are executed in the application layer of mobile phones

before sending queries to LBS providers. The groundwork in this field was laid by the authors

of [31]. They generated dummies randomly throughout the map and evolved them as users

move. Followed by this work, the authors in [32] and [33] proposed to choose the candidate

dummies from a virtual circle or grid constructed around the current location of the user.

More recently, an enhanced algorithm was proposed in [34], termed as the dummy-location

selection (DLS) algorithm. The algorithm considers the likelihood of locations being real or

fake predicated on the history of queries on the map. The basic idea of the DLS algorithm can

be explained intuitively in Fig. 3.1. Assume that a user is at location A and a dummy generation

algorithm is required to generate one dummy to preserve the location privacy of user shown by

A′. The DLS algorithm argues that A′ cannot just be any point on the map but a location that has

a similar likelihood of being queried as to the location A. Such a likelihood can be calculated

from the history of queries on the map. For instance, if the location A has been queried 1000
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Fig. 3.1 An example of location privacy of the user being compromised by considering the
introduced side information.

times, and A′ has been queried only 5 times, the LBS provider can infer with a high likelihood

that the location A is the real location of the user. Based on this logic, the DLS algorithm

attempts to select dummies with the same likelihood as the actual locations. Information such

as the query likelihood, and extra details that adversaries may know are usually referred to

as ‘side information’. Unfortunately, the DLS algorithm overlooks a significant piece of side

information, which can severely compromise the location privacy, as explained in the following.

Suppose that the user A moves to location B and the DLS algorithm generates another

dummy B′ associated with the location B. Based on the history of trajectories traveled on the

map, the adversary may know the likelihood of paths which have been traveled by users. For

instance, the location B has been queried sequentially after the location A for 220 times. This is

shown by a directed arrow connecting A to B in the map. Let us now look at the four directed

edges connecting the two sets of locations and consider the number of times that each path has

been traveled. It can be seen from Fig. 3.1 that in total, location B has been called 320 times

after locations A and A′, whereas location B′ has been queried only 110 times. Therefore, the

adversary can infer with a high likelihood that the real location is possibly location B, and thus,

compromise the location privacy of user.
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In this work, we study the impact of such side information on the location privacy of users.

Compared with the existing literature, the main contributions of this study are presented as

follows:

• We propose a novel metric called transition entropy. This metric investigates the privacy

of users in trajectories as well as static queries. To improve the transition entropy of

already existing algorithms, we have also developed an exhaustive framework that can

improve transition entropy for a given algorithm.

• We show the susceptibility of user privacy in trajectories by developing an attack model

based on Viterbi Algorithm.

• We propose an algorithm called robust dummy generation (RDG) that is resilient to the

Viterbi attack. Moreover, this algorithm maintains high cell entropy performance as well

as higher levels of transition entropy.

• We compare and evaluate the performance of the proposed metrics and algorithms on a

publicly available dataset published by Microsoft, i.e., Geolife dataset.

3.2 System Model and Problem Formulation

3.2.1 System Architecture

Following the recent standards and the current system designs used in the telecommunications

industry [74, 41, 75, 76], we adopt a non-cooperative system architecture as shown in Fig. 3.2.

In this design, there are two main parties involved: LBS users and an LBS server. There is also

the telecommunication infrastructure in between which works as a medium for communications

between the two parties. The role of each party is explained in the following.

1) LBS users: The system model consists of multiple users equipped with mobile phones

with embedded GPS modules. Users can benefit from numerous LBSs provided by LBS servers
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via a variety of LBS applications that can be downloaded and installed. Regardless of whether

applications require users to log in to the system or not, the users request for services by

providing their (I) identifiers such as IP address, username, etc. (II) location information (III)

type of services (IV) some dummy locations to hide their exact locations. Moreover, in this

work, we focus on ‘explicit’ trajectory data in which queries are made at uniform time intervals.

GPS data is the most representative example of explicit trajectory data which is widely used in

researches of trajectory analysis [77–79].

2) LBS server: The LBS provider is responsible for providing queried services by users.

The LBS server is capable of storing the queried information and may have access to other

databases and side information. This configuration enables the LBS server to infer historical

query probabilities of users. After each query from a user, the server stores the requested

information and updates the database accordingly.

3) Intermediary infrastructure: The queried services from the LBS server are transmitted

through telecommunications infrastructure. The telecommunications infrastructure is con-

trolled by mobile operators and regulated by government agencies [80, 41]. Therefore, such

infrastructure is considered to be trusted in the system model. Admittedly, this assumption

might not hold for untrusted operators and governments that violate the privacy of users in the

name of national security. Such a consideration is out of the scope of our work here.

3.2.2 Preliminaries

Assume that the location map is divided into an n× n grid, and a user communicates with

an LBS server for service. At the time tq, the user intends to make his/her q-th query from

the service provider, preserving kq-anonymity. Here, kq quantifies the privacy protection

requirement of the user. This metric implies that the adversary is not able to identify the

real location of the user with a probability higher than 1/kq. Hence, such a user needs to

transmit kq−1 dummy locations to hide his/her true location from the observer. Note that the
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Fig. 3.2 System architecture of LBSs.

term ‘location’ refers to the cell in which the user is located. We denote the set of locations

transmitted to the LBS provider at q-th query by

LSq = {lq
1 , l

q
2 , ..., l

q
kq}. (3.1)

Also, the real location is shown by rq, where rq ∈ LSq. The probability of location lq
x being the

real location can be expressed as

Pr(lq
x = rq), ∀x = 1, ...,kq. (3.2)

In the next query, the user requires kq+1-anonymity and queries the location set LSq+1 =

{lq+1
1 , lq+1

2 , ..., lq+1
kq+1} from the LBS provider. The probability of lq+1

y ∈ LSq+1 being queried

consecutively after lq
x ∈ LSq is denoted by

Pr(lq
x ⇒ lq+1

y ). (3.3)
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3.2.3 Cell Entropy Metric

The cell entropy metric was implicitly proposed as part of the DLS algorithm in [34]. The

metric is predicated on two factors: query probabilities of cells and the concept of entropy

explained as follows.

For a given location set LSq = {lq
1 , l

q
2 , ..., l

q
kq} which includes the real location of a user and

kq−1 dummies chosen to preserve kq-anonymity, the set of query probabilities are shown by

Bq = {bq
1,b

q
2, ...,b

q
kq}, where bq

j is the query probability of location (cell) lq
j for j = 1,2, ...,kq.

The query probability of cell lq
j is calculated by

bq
j =

number of queries in lq
j

number of queries in the whole map
. (3.4)

The cell entropy borrows the concept of entropy from information theory to quantify uncertainty

in query probabilities. The cell entropy metric for location set LSq can be calculated as [34]

hc =−
kq

∑
j=1

bq
j log2(b

q
j). (3.5)

3.2.4 Adversary Model

Two types of adversary models are considered in our work: active adversary, and passive

adversary. A passive adversary can listen to the communications between the users and the LBS

provider. The passive adversary can compromise the location privacy of users by performing

an eavesdropping attack and analyzing the collected information. An active adversary, on the

other hand, compromises the LBS provider and has access to the data stored on the server.

3.2.5 Side Information

There are several side information that adversaries may possess to compromise the location

privacy of users. Adversaries may know about the probability of a query being made in different
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locations of the map. For instance, if a location has been queried five times among the overall

1000 queries made on the map, its query probability can be calculated as 5/1000. Exploiting

query probabilities, adversaries can understand the likelihood of locations being genuine or

fake. For instance, if a user queries two locations at the same time, one with a comparably

higher probability, it is more likely that the real location is the one with the higher probability.

Query probability has always been a critical consideration in the generation of dummy

locations. In this work, apart from the possession of traditional side information by adversaries,

we consider another prominent side information that can severely compromise the privacy of

users. That is, the trajectories users have traveled, which reveals how many time a location has

been queried after its neighbor locations. Authorities do not specify any time limit for storing

the location information of the users, as it is the case in the US [81]. This lack of legislation

enables adversaries to monitor users and get access to trajectories they travel.

3.3 Transition Entropy

In this section, we propose a metric called transition entropy to quantify privacy preservation in

LBSs. We first explain the metric for two consecutive queries, then, expand it to trajectories

with higher lengths. This metric quantifies the privacy of users in trajectories and can be

used as a benchmark to compare and evaluate the performance of dummy-based algorithms.

Moreover, transition entropy necessitates the development of new algorithms, as it reveals the

susceptibility of user privacy.

3.3.1 Transition entropy metric for two consecutive queries

Consider q-th and (q+1)-th query of a user from the LBS provider. In the q-th query, the user

requests service for the location set LSq = {lq
1 , l

q
2 , ..., l

q
kq} including kq−1 dummies and the real

location of the user to achieve kq-anonymity; followed by, moving to a new location with the
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Fig. 3.3 Bipartite graph generated by two consecutive queries of a user.

anonymity constraint of kq+1 and making its (q+1)-th query. Dummies can be generated using

any of the existing algorithms. Based on the sets LSq and LSq+1, we generate a bipartite graph

shown in Fig. 3.3, where each set forms vertices at one side of the bipartite graph. Looking at

the history of queries on the map, we denote the number of times location lq+1
y ∈ LSq+1 has

been queried after location lq
x ∈ LSq by nxy, and assign it to the directed edge connecting lq

x to

lq+1
y . Also, as explained in the system model section, for every location lq

x ∈ LSq, we denote

the query probability of location lq
x by bq

x . Query probabilities are also calculated from the

historical data stored at the LBS provider.

Our goal is to find out how probable it is for each member of the location set LSq+1 to be

the real location, given the location set LSq. In other words, the aim is to calculate the posterior

probability of members in LSq+1 with respect to LSq. This probability for each member of

LSq+1 can be written as
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∀ lq+1
y ∈ LSq+1 :

Pr(lq+1
y = rq+1|LSq) = (3.6)

kq

∑
s=1

Pr((lq
s ⇒ lq+1

y ),(lq
s = rq)) = (3.7)

kq

∑
s=1

Pr(lq
s ⇒ lq+1

y |lq
s = rq)Pr(lq

s = rq), (3.8)

where (3.7) is the joint probability of lq
s being the real location of LSq, and moving to the

location lq+1
y after lq

s . The former probability in (3.8) can be calculated as

∀ lq+1
y ∈LSq+1, ∀ lq

x ∈ LSq :

Pr(lq
x ⇒ lq+1

y |lq
x = rq) =

nxy

∑
kq+1

y=1 nxy
, (3.9)

and the latter probability indicates the normalized query probability and is given by

∀ lq
x ∈ LSq : Pr(lq

x = rq) =
bq

x

∑
kq

j=1 bq
j
. (3.10)

Note that (3.10) indicates that the posterior probabilities of cells in LSq are set to the normalized

query probability of the locations in LSq. By calculating (3.8) for every member of LSq+1,

the posterior probabilities of locations in LSq+1 are determined based on LSq. Having these

probabilities, we exploit the concept of entropy to infer the uncertainty in identifying dummies.

The entropy can be derived by

ht =−
kq+1

∑
y=1

Pr(lq+1
y = rq+1|LSq) log2(Pr(lq+1

y = rq+1|LSq)). (3.11)
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Algorithm 1: Transition entropy for two consecutive queries.
1 Input: LSq and LSq+1

2 Output: ht
3 Initialization: CellSum = 0, h = 0.
4 for 1≤ x≤ kq do
5 EdgeSum = 0
6 for 1≤ y≤ kq+1 do
7 EdgeSum = EdgeSum+nxy
8 end
9 for 1≤ y≤ kq+1 do

10 Pr(lq
x ⇒ lq+1

y |lq
x = rq) = nxy/EdgeSum

11 end
12 end
13 for 1≤ x≤ kq do
14 CellSum =CellSum+bq

x
15 end
16 for 1≤ x≤ kq do
17 Pr(lq

x = rq) = bq
x/CellSum

18 end
19 for 1≤ y≤ kq+1 do
20 Pr(lq+1

y = rq+1|LSq) = 0
21 for 1≤ x≤ kq do
22 Pr(lq+1

y = rq+1|LSq) = Pr(lq+1
y = rq+1|LSq)

23 +Pr(lq+1
y = rq+1|lq

x = rq)Pr(lq
x = rq)

24 end
25 ht = ht−
26 Pr(lq+1

y = rq+1|LSq) log2(Pr(lq+1
y = rq+1|LSq))

27 end
28 return ht

We define ht as the transition entropy of the location set LSq+1 with respect to LSq. The

transition entropy metric reveals the uncertainty in identifying the real location by adversaries.

Having a higher transition entropy reveals that for each member of LSq+1, the probability of

paths originating from LSq to the destination of that member is similar to the other members of

LSq+1. Hence, it would be more difficult for the adversary to compromise kq+1-anonymity of

the user. The formal algorithm for computing the transition entropy in two consecutive queries

is presented in Algorithm 1.
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Algorithm 2: Transition entropy for trajectories of length c+1.
1 Input: LSq,LSq+1, ...,LSq+c

2 Output: ht
3 Start:
4 Run Algo. 1 for LSq and LSq+1

5 for q+1≤ query≤ q+ c−1 do
6 Normalize posterior probabilities of LSquery

7 Query probabilities of LSquery← posterior probabilities of LSquery

8 Run Algo. 1 for LSquery and LSquery+1

9 end
10 ht ← Normalize posterior probabilities of LSq+c and calculate their entropy
11 return ht

The main advantages of the transition entropy metric are:

• considering the performance of the dummy based algorithms in trajectories and not just

for a stationary set of locations.

• being able to investigate the performance of the dummy based algorithms for users with

varying k-anonymity requirements in their trajectories.

• elimination of the need for many other previously considered factors, such as time

reachability and direction similarity.

3.3.2 Transition entropy metric for trajectories

Here, we generalize the transition entropy metric for trajectories with different lengths. Consider

a user requesting for its (c+1)-th query at time tq+c. Hence, providing the LBS provider with

the location set LSq+c = {lq+c
1 , lq+c

2 , ..., lq+c
kq+c} in order to preserve kq+c-anonymity. The previous

queried location sets of the user are shown by LSq+i for i = 0, ...,c−1, each with the privacy

requirement shown by kq+i. Initially, we aim to calculate the posterior probability of each

location in LSq+c. The posterior probabilities indicate the likelihood of any location in LSq+c

being the real location based on the previous queries of the user. The posterior probability for

each location in LSq+c can be written as
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kq+c−1

∑
sc=1

kq+c−2

∑
sc−1=1

...
kq

∑
s1=1

(Pr(lq
s1 = rq)Pr(lq+c−1

sc ⇒lq+c
y |lq+c−1

sc = rq+c−1)×

c−1

∏
i=1

Pr(lq+i−1
si ⇒ lq+i+1

q+i |l
q+i−1
si = rq+i−1))

(3.15)

∀ lq+c
y ∈ LSq+c : Pr(lq+c

y = rq+c|LSq, ...,LSq+c−1) = (3.12)

kq+c−1

∑
sc=1

Pr((lq+c−1
sc ⇒ lq+c

y ),

(lq+c−1
sc = rq+c−1)|LSq, ...,LSq+c−2)) = (3.13)

kq+c−1

∑
sc=1

Pr(lq+c−1
sc ⇒ lq+c

y |lq+c−1
sc = rq+c−1)×

Pr(lq+c−1
sc = rq+c−1|LSq, ...,LSq+c−2). (3.14)

Following the same process of moving from (3.12) to (3.14), the probability of Pr(lq+c−1
sc−1 =

rq+c−1|LSq, ...,LSq+c−2) can be solved recursively to reach (3.15). Also, the transition proba-

bilities in (3.12) can be calculated as (3.9). Therefore, evaluating (3.15) for each node in LSq+c,

we can determine the likelihood of a location being the real location of the queried set LSq+c.

Finally, we borrow the concept of entropy to characterize the uncertainty in probabilities of

LSq+c. So that:

ht =−
kq+c

∑
y=1

Pr(lq+c
y = rq+c|LSq, ...,LSq+c−1)

log2(Pr(lq+c
y = rq+c|LSq, ...,LSq+c−1)). (3.16)
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We call ht , the transition entropy of the set LSq+c with respect to location sets LSq, ...,LSq+c−1.

Our experiments will demonstrate that the proposed transition entropy metric shows the high

possibility of revealing the real location of users from their previous queries made on the map.

The algorithm to calculate the transition entropy metric is presented formally in Algorithm 4.

In the derivation of transition entropy, the only place in which query probabilities of loca-

tions play a role is in the first queried location set. The transitions between the queried locations

determine the remaining factors. It is essential to understand why the query probabilities of the

other locations on the path are not used in the calculation of transition entropy.

We explain the concept using an example. Fig. 3.4. demonstrates a case where a user

requests an LBS in two consecutive queries. The numbers written on the nodes indicate the

normalized query probability of locations, and the numbers printed on the edges indicate the

normalized probability of that transition. Now, consider the calculation of LSq+1 based on

the previous queried location set LSq. The purpose of the example is to illustrate why the

posterior probabilities calculated by previous queries for LSq+1 is more reliable than the query

probabilities of locations in LSq+1. First, let us calculate the posterior probabilities of LSq+1

and its entropy. According to (3.15), the posterior probabilities can be written as

Posterior probability of A being the true location = (3.17)

3
5
× 1

3
+

1
5
× 1

4
+

1
5
× 1

4
=

6
20

Posterior probability of B being the true location = (3.18)

3
5
× 1

3
+

1
5
× 2

4
+

1
5
× 3

4
=

9
20

Posterior probability of C being the true location = (3.19)

3
5
× 1

3
+

1
5
× 1

4
=

5
20
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Fig. 3.4 An example of two consecutive queried location sets.

According to the query probabilities of LSq+1, the location A is more likely to be the real

location as it has a significantly higher query probability. However, looking at the posterior

probabilities calculated for the location set, we can see that based on LSq, location B is more

probable to be the real location of the user. This discrepancy can be explained by looking at

what the actual meaning of query probability is. The query probability indicates the number of

times a location has been called but does not specify if it has been called after any particular

location. Therefore, although the location A has been called more times than the other locations

in LSq+1, most of these queries have been made after locations E and D, which are not a

member of the location set LSq. Hence, it can be seen that the posterior probabilities are more

credible, as they are considering the number of times queries made after the previous location

set LSq.
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3.4 Viterbi Attack

The Viterbi algorithm is a well-known dynamic programming algorithm proposed in 1967 [82].

Initially, it was used for convolutional codes, but then it found numerous applications, such

as exploring the most likely sequence of hidden states in Hidden Markov Models (HMMs).

For a given graph, the aim of the algorithm is to find the shortest path or so-called Viterbi

path. The Viterbi algorithm provides several features which distinguish this algorithm from the

other existing algorithms for this purpose. The most essential characteristic of the algorithm

is the low computational complexity. Here, we design an attack model based on the Viterbi

algorithm and name it Viterbi attack, since the principal idea behind the attack is inspired by

the Viterbi algorithm. The proposed Viterbi attack can significantly compromise the location

privacy of users if it is not considered in the design of the dummy generation algorithms. As it

will be demonstrated in simulations, even for short trajectories, the Viterbi attack can reveal a

significant number of user locations.

Given the location sets LSq, LSq+1,...,LSq+c, corresponding to a trajectory of length c+1

of a user, an adversary seeks to find the most probable location sequence or so-called state

sequence. Hence, the attacker aims to identify locations which are most likely to be the actual

locations of the user and not the dummies. The desired state sequence of the adversary includes

all the real locations of the user shown by {rq,rq+1, ...,rq+c}.

We define µ(c+1,u) to be the maximum probability of a state sequence with the length

of c+ 1, given zq,zq+1, ...,zq+c where z j ∈ LS j and zq+c = u ∈ LSq+c. This function can be

mathematically expressed as

µ(c+1,u) = max
zq:q+m|zq+m=u

Pr(zq+m = rq+m), (3.20)
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where for each u ∈ LSq, and the initial value of the µ function is set to be

µ(0,u) = Pr(u = rq). (3.21)

As the most credible information for the first queried location set is the query probability,

Pr(u = rq) is calculated via equation (3.10). Starting from the second queried location set the

most probable path can be calculated recursively as

µ(m+1,u) = max
u′∈LSq+c−1

µ(c,u′)Pr(u′→ u). (3.22)

Algorithm 3: Viterbi attack.
1 Input: Location sets LSq, LSq+1,...,LSq+c and the normalized query probability for the

location set LSq

2 Output: EstState which is the most likely path
3 Start: .
4 for 1≤ u≤ kq do
5 µ(q,u) = Pr(lq

u = rq)
6 pointer(q,u) = 0
7 end
8 for 1≤ j ≤ c do
9 for 1≤ u≤ kq+ j do

10 µ(q+ j,u) = max
u′∈LSq+ j−1

µ(q+ j−1,u′)Pr(u′→ u)

11 pointer(q+ j,u)← state of max
u′∈LSq+ j−1

µ(q+ j−1,u′)

12 end
13 end
14 EstState[c] = state of max(µ(q+ c, :))
15 for c−1≥ j ≥ 0 do
16 EstState[ j] = pointer(q+ j+1,EstState[ j+1])
17 end
18 Output: EstState.

The formal presentation of Viterbi attack is given in Algorithm 3. The algorithm starts

by setting the initial values of the µ array to their normalized query probability in lines 4−7.

An array called pointer is used to keep track of the most likely state of the previous queried
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location set as the most probable path is calculated in lines 8−13. Finally, the most probable

path is chosen and the corresponding states are returned as outputs.

3.5 Proposed Algorithms to Improve Location Privacy of

Users

In this section, we start by developing an exhaustive search algorithm to improve the transition

entropy metric for a given dummy-generation algorithm. We denote this hypothetical algorithm

by X and aim at increasing its transition entropy in trajectories.

Next, we propose an algorithm called RDG that significantly increase the privacy of users

against the Viterbi attack, while maintaining the high performance in terms of transition entropy

and cell entropy. The basis of the RDG algorithm is an algorithm called DLS proposed in [34].

3.5.1 Exhaustive Search Algorithm

Algorithm 4: Exhaustive search algorithm

1 Input: LSq = {lq
1 , l

q
2 , ..., l

q
kq}, {lq+1

1 }, kq+1

2 Output: LSq+1

3 Start:
4 D← generate a pool of 4kq+1 dummies using the X algorithm
5 {S1,S2, ...Sm}← choose m distinct (kq+1−1)-subsets of D
6 for 1≤ y≤ m do
7 Sy← Sy∪{lq+1

1 }
8 hy← calculate transition entropy of Sy
9 H← H ∪{hy}

10 end
11 LSq+1← S corresponding to the maximum h
12 return LSq+1

Suppose that a user has made its q-th query shown by LSq = {lq
1 , l

q
2 , ..., l

q
kq}, which includes

the real location and its associated dummies. The dummies in LSq are generated using a given
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algorithm X . In the next query, the user moves to a new location (lq+1
1 ) and seeks to generate

kq+1−1 dummy locations. The following approach will help the user increase its transition

entropy while generating LSq+1.

The idea is to generate a pool of dummies based on the algorithm X instead of only kq+1−1

dummy locations. Having the dummy pool, the exhaustive search algorithm goes through

kq+1−1 subsets of the pool to find the one that maximizes the transition entropy. The formal

description of the proposed exhaustive approach is presented in Algorithm 4. The inputs

of the algorithm are the location set LSq = {lq
1 , l

q
2 , ..., l

q
kq}, the real location of the user in

(q+1)-th query, and the privacy requirement of the user in (q+1)-th query.

The exhaustive search algorithm starts by generating a pool of 4kq+1 dummies using the X

algorithm and assigns them to an empty set D. Then, m distinct subsets of D with (kq+1−1)

members are chosen and assigned to S = {S1,S2, ...Sm}. Any of the members in S , once

attached to lq+1
1 will form a complete kq+1 set, preserving kq+1-anonymity. Note that the

constraint m is chosen to limit the number of subsets computed in case of a large pool size.

Next, the transition entropies resulted from the members of S are calculated and stored in

H. Finally, the member of S that results in the maximum transition entropy is returned as the

output.

3.5.2 RDG Algorithm

We propose a robust algorithm called RDG to preserve the location privacy of LBS users. The

RDG algorithm has three advantages compared with the existing algorithms: (I) Provides high

resilience against the Viterbi attack (II) Achieves near-optimal cell entropy (III) Results in a

much higher transition entropy compared with the existing approaches. The algorithm is based

on the idea of posterior probabilities, and it is formally presented in Algorithm 5.

Following the same setup as the proposed exhaustive search algorithm, a user has made its

q-th query shown by LSq = {lq
1 , l

q
2 , ..., l

q
kq}, which includes the real location and its associated



32 Location Privacy in Mobile Networks

dummies. The dummies in LSq are generated using the DLS algorithm. In the next query, the

user moves to a new location (lq+1
1 ) and seeks to generate kq+1−1 dummy locations. If LSq

is the initial query of the user from the LBS provider, then the initial posterior probabilities

are set to the normalized query probabilities of the locations in LSq; otherwise, the posterior

probabilities are calculated by (3.12). In the algorithm, posterior probabilities are assigned to

an array called weight.

The algorithm starts with the generation of a pool of dummies using the DLS algorithm

based on the real location of LSq+1. Using the DLS algorithm to generate the pool of dummies

will ensure high performance in terms of cell entropy. From our experiments, setting the pool

size to four times of the kq+1 maintains the cell entropy sufficiently high, while resulting in a

robust performance in terms of the transition entropy and Viterbi attack resilience. Next, the

algorithm continues by employing a greedy approach to add the most suitable dummies for

the location set LSq+1. For choosing the i-th member of the set LSq+1, each of the remaining

dummies in the pool is checked one by one. A criterion chosen here is based on maximizing

the entropy for the array weight. For each member u ∈ LSq+1, the weight array is calculated as

weight(q+1,u) = max
u′∈LSq

weight(q,u′)Pr(u′→ u). (3.23)

The first index of the weight array is used to distinguish between weights corresponding to

different location sets. For each member of the dummy pool, its weight is calculated, followed

by the entropy of the weight array. After calculation of the entropy for all possible members,

the member having the maximum entropy is chosen as the next member of LSq+1. The process

continues until all kq+1−1 dummies of LSq+1 are chosen. Note that before the calculation of

entropy, the weights are normalized to make the accumulation of probabilities add up to one.

The algorithm is designed to provide a high cell entropy and transition entropy for users’ of the

LBS applications while protecting them from the Viterbi attack on trajectories.
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Algorithm 5: RDG algorithm.

1 Input: LSq = {lq
1 , l

q
2 , ..., l

q
kq}, {lq+1

1 }, kq+1

2 Output: LSq+1

3 Start:
4 for 1≤ u≤ kq do
5 weight(q,u)← Posterior probability of lq

u
6 end
7 D← generate a pool of 4kq+1 dummies using the DLS algorithm
8 for 1≤ member ≤ kq+1−1 do
9 entropy = zeros(1×|D|)

10 for 1≤ d ≤ |D| do
11 LSq+1 = LSq+1∪{D[d]}
12 for 1≤ u≤ kq+1 do
13 weight(q+1,u) = max

u′∈LSq
weight(q,u′)Pr(u′→ u)

14 end
15 normalize weight(2, :)
16 entropy[d]← entropy of weight(q+1, :)
17 LSq+1 = LSq+1−{D[d]}
18 end
19 NewMember←{member of D which maximize entropy}

LSq+1 = LSq+1∪{NewMember}
20 D = D−{NewMember}
21 end
22 return LSq+1

3.6 Performance Evaluation

3.6.1 Experimental Setup

In our experiments, we use the data collected by Geolife project [83–85]. The Geolife dataset

includes the GPS trajectories of 182 users from April 2007 to August 2012 in Beijing, China.

The dataset contains 17,621 trajectories with a total distance of 1,292,951 km. Two main

advantages are distinguishing Geolife dataset for our work: Firstly, the recorded data aside

from monitoring the daily routines of users, such as going to work or home, includes trajec-

tories involving sports activities such as hiking and cycling. Secondly, many of the recorded
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Fig. 3.5 Comparison of algorithms in terms of cell entropy for different k.

trajectories are tagged with transportation modes, which indicate the use of various means of

traveling from bus and car to airplane and train.

We conducted our experiments on 1km× 1km central part on the Beijing map with the

resolution of 0.01km×0.01km for each grid cell. The location privacy requirements of users

are investigated for values 2 to 30. For each value of k, the trial is repeated 3000 times to

ensure the reliability of results. The experiments were performed on a PC with a 3.40 GHz

Core-i7 Intel processor, 64-bit Windows 7 operating system, and an 8.00 GB of RAM. Python

programming is used to implement algorithms.

3.6.2 Performance Analysis

We evaluate the performance of the proposed algorithms and metrics through extensive experi-

ments. We intend to show that the proposed RDG algorithm can achieve:

• Near-optimal cell entropy;



3.6 Performance Evaluation 35

• Robust transition entropy performance compared to prior works;

• Privacy protection against the Viterbi attack.

Therefore, in the following subsections, we start by evaluating the performance of algorithms

in terms of cell entropy, followed by transition entropy analysis and investigating the resilience

to the Viterbi attack.

Cell entropy performance evaluation

Cell entropy indicates how different is the query probability of the actual user location from

its associated dummies. A higher cell entropy is desirable, as it results in higher uncertainty

of finding the real location. Fig. 3.5 presents the comparison among different algorithms in

terms of cell entropy. The optimal value is achieved when all k locations queried from the LBS

provider have the same probability of 1/k, or equivalently, the location set has the cell entropy

of h = log2(k). The optimal value is the upper bound for all algorithms since it is the maximum

entropy that a location set can achieve.

In Fig 3.5, three algorithms are compared, including the DLS algorithm which is the

conventional method for generation of dummy locations, our proposed RDG algorithm, and

the random scheme by which dummies are chosen randomly. Moreover, optimal cell entropy

values are shown as a benchmark.

As expected, the random scheme proposed in [31] results in a lower cell entropy compared

to the other algorithms due to the random generation of dummies. On the other hand, the RDG

and DLS algorithms both consider query probability of cells in the generation of dummies.

Therefore, the cell entropy of these two algorithms is higher than the random scheme and

almost achieve near-optimal performance. Having such a high cell entropy ensures that the

adversary is not able to compromise the location privacy of users from a stationery set of

locations submitted to the server. Unfortunately, although the DLS algorithm has a robust
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performance for a single collection of queried locations, no consideration has been given to

locations queried as part of trajectories.
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(a) Trajectories of length 2.

(b) Trajectories of length 3.

(c) Trajectories of length 4.

Fig. 3.6 Comparison of algorithms in terms of transition entropy for different k.
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Transition entropy performance evaluation

The currently established cell entropy metric only considers the location privacy for a stationary

set of queried locations submitted to the LBS server but overlooks the fact that users may ask

for services successively. If users query location sets in consecutive attempts, they reveal the

trajectory they are traveling. Therefore, adversaries can use the likelihood of traveling different

paths between consecutive location sets to calculate the posterior probabilities and compromise

the location privacy of users.

Fig. 3.6 compares the performance of different algorithms in terms of the transition entropy

metric for various k. Having a lower transition entropy suggests a lower privacy level for users

of the LBS applications and a higher likelihood for adversaries to find out the actual coordinates

of the users. We start our evaluation by trajectories of length 2 in Fig. 3.6a, and then focus

on the transition entropy for longer paths in Figs. 3.6b and 3.6c. In all the three graphs, the

comparison is conducted among the optimal transition entropy values, the widely adopted

algorithm DLS, the proposed RDG algorithm, and the random scheme.
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(a) Percentage of user locations protected for
the trajectory length of 2.

(b) Percentage of user locations protected for
the trajectory length of 4.

(c) Percentage of user locations protected for
the trajectory length of 6.

(d) Percentage of user locations protected for
the trajectory length of 8.

Fig. 3.7 The performance evaluation and comparison of algorithms against the Viterbi attack
considering various path lengths and privacy requirement k.

In Fig. 3.6a, two consecutive location sets are generated based on the specified value of

k. Each of the locations sets includes the real location of the user and its associated dummies.

To make experiments as realistic as possible, the movement pattern is chosen randomly from

the recorded trajectories in the dataset. The optimal value corresponds to a scenario, in which

all members of the second location set are equally likely to be called consecutively after
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the members of the first location set. This outcome is desirable, as it results in achieving k-

anonymity for users and protecting their location privacy. The optimal values can be calculated

in a similar way as the optimal number for the cell entropy. Considering Fig. 3.6a, the random

scheme in which the dummy locations are chosen randomly achieves the lowest transition

entropy, indicating that the adversary can easily recognize most of the dummies from the

transition entropy even for the two consecutive location sets queried by the user.

Furthermore, it can be seen from the figure that although the DLS algorithm achieves near-

optimal performance in terms of cell entropy, it results in significantly low privacy protection

in trajectories. Even for two consecutive queries from the LBS provider, the DLS algorithm

indicates a significantly low transition entropy. Such performance shows that adversaries can

compromise the location privacy of users by calculating the posterior probabilities.

Fortunately, the proposed RDG algorithm can significantly improve the transition entropy,

achieving almost twice as high transition entropy as the DLS algorithm. In other words,

the likelihood of compromising the k-anonymity requirement is decreased by the proposed

algorithm, which leads to a higher location privacy level for users of the LBSs.

Figs. 3.6b and 3.6c extend our analysis of transition entropy to trajectories with higher

lengths. Both graphs indicate that as more locations are queried from the LBS provider, the

transition entropy decreases. These experimental outcomes match well with the theory because

having more information results in a more accurate calculation of posterior probabilities by

adversaries; Hence, we expect to see less uncertainty and transition entropy.

Further investigating Figs. 3.6b and 3.6c, the DLS algorithm can be seen to have a very low

transition entropy compared to the proposed RDG algorithm. Therefore, the RDG algorithm

is viable in increasing the transition entropy of users while maintaining the cell entropy to

a near-optimal level. However, as the adversary acquires more location points, the threat to

location privacy of users gets more serious. This fact can be seen in Fig. 3.6. As the length of
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trajectory increases, the transition entropy decreases, which refers to having a higher chance

for adversaries to get access to the location data of users.

3.6.3 Performance of Algorithms against Viterbi Attack

In this section, we compare and evaluate the performance of our proposed RDG algorithm

and the widely accepted DLS method against the proposed attack model. The Viterbi attack

considers users in trajectories instead of just taking into account snapshots of the real locations

and dummies. The Viterbi attack is based on the calculation of posterior probabilities of user

locations revealed to the LBS provider. It will be shown in the following that applying such an

attack can significantly compromise the location privacy of users. Therefore, having a robust

algorithm such as RDG is crucial to protect the location privacy.

Fig. 3.7 illustrates the performance of the RDG and DLS algorithms once the Viterbi attack

is applied to the dataset. The figure consists of four subfigures to show the performance with

various length of trajectories. In each subfigure, the percentage of real locations of users which

have been protected are exhibited for different privacy requirements k. For instance, in Fig.

3.7b, when k = 5, the graph indicates that the DLS algorithm can only protect 0.8 percent of

the queried locations, and therefore, adversaries can almost distinguish all true locations of

users from their associated dummies. This indicates how dangerous and powerful the Viterbi

attack can be in compromising the privacy of users.

Considering the performance of the DLS algorithm, it can be seen in the figure that for

path lengths greater than 2, the Viterbi attack can almost find out all real locations of the users

despite the existence of dummy locations. Therefore, although in a single query user locations

are protected using the existing dummy generation algorithms, when users are considered in

trajectories, due to the extra side information that adversaries may hold, they are able to identify

user locations.
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Furthermore, another mainstream observation is that increasing the number of dummies

can improve location privacy. Such an effect is expected as having a larger k indicates the

generation of more dummies to protect user privacy. Unfortunately, the boost in privacy by

increasing the value of k is not sufficient even when the trajectory length is two.

From Fig 3.7, our proposed RDG algorithm can help users to protect their privacy signifi-

cantly better. The RDG algorithm takes into account the posterior probabilities that adversaries

may hold and aims at making the likelihood of different paths equal. Doing so, the algorithm

confuses adversaries in identifying exact locations of users. In contrast to the DLS algorithm,

the performance of RDG algorithm improves as the path length increases. It means that for

longer trajectories, the adversary has a less chance of compromising user privacy. Also, ex-

pectedly, increasing the value of k improves the privacy of users for the RDG algorithm as

well.

3.7 Conclusion

In this study, we investigated the location privacy of users in trajectories and considered the

threats that their previous queries could pose on their location privacy. We developed an attack

model based on the Viterbi algorithm that demonstrates how susceptible the location privacy

of users is. Therefore, we proposed a metric called transition entropy, which enables us to

compare and assess the performance of different algorithms as the users move in trajectories.

Furthermore, to improve the transition entropy metric, an exhaustive search approach was

proposed, which can increase the transition entropy for a given dummy generation algorithm.

We also proposed an algorithm called RDG that results in a robust performance in terms of

both transition entropy and cell entropy, while protecting users against the Viterbi attack.



Chapter 4

Location Privacy in Publication of

Location Datasets

Publishing data by different organizations and institutes is crucial for open research and

transparency of government agencies. In Australia, since 2013, over 7000 additional datasets

have been published on ’data.gov.au’, a dedicated website for publication of data by the

Australian government. Moreover, the new Australian government data sharing and legislation

encourages government agencies to publish their data, and as early as 2018 many of them

will have to do so [86]. The process of data publication can be highly risky as it may disclose

individuals’ sensitive information. Therefore, an essential step before publishing data is to

remove any uniquely identifiable information from the dataset. However, such an operation is

not sufficient for privacy preservation. Adversaries can re-identify individuals in the datasets

using common attributes called quasi-identifiers or may have prior knowledge about the

trajectories traveled by the users, which enables them to reveal sensitive information that can

cause physical, financial and reputational harms to people.

One of the most sensitive sources of data is location trajectories or spatio-temporal trajecto-

ries. Despite numerous use cases that the publication of spatio-temporal data can provide to

users and researchers, it poses a significant threat to users’ privacy. As an example, consider
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a person who has been using GPS navigation to travel from home to work every morning on

weekdays. If an adversary has some prior knowledge about a user, such as the home address,

it is possible to identify the user. Such an inference attack can compromise user privacy,

such as revealing the user’s health condition and how often the user visit his/her medical

specialist [87], [88], [89]. Therefore, it is crucial to anonymize spatio-temporal datasets before

publishing them to the public. The privacy issue gets even more severe if the adversary links

identified users to other databases, such as the database of medical records. That is the very

reason why nowadays most companies are reluctant to publish any spatio-temporal trajectory

datasets without applying effective privacy preserving techniques.

A widely accepted privacy metric for data publishing is k-anonymity. The metric can be

summarized as ensuring that every trajectory in the published dataset is at least indistinguishable

from k− 1 other trajectories. For spatio-temporal trajectories, it is particularly challenging

to achieve k-anonymity since data are dependent on each other. The authors in [90], adopted

the notion of k-anonymity for trajectories and proposed an anonymization algorithm based on

generalization. Xu et al. [91] investigated the factors such as spatio-temporal resolution and the

number of users released on privacy preservation. The authors in [40] focused on improving

the clustering approach in the anonymization process. The proposed anonymization scheme is

based on achieving k-anonymity by grouping similar trajectories and removing the ones that

are highly dissimilar. More recently, the authors in [1] developed an algorithm called k-merge

to anonymize the trajectory datasets while preserving the privacy of users from probabilistic

attacks. Local suppression and splitting techniques were also considered to preserve privacy in

[56].

However, there are three major problems with the aforementioned approaches.

• Lack of a well-defined method to cluster trajectories as there is not an easy way to

measure the cost of clustering when considering the distances among trajectories rather

than simply the locations.
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• The existing literature focuses on pairwise sequence alignment, which results in a high

amount of information loss.

• There is no unified metric to evaluate and compare the existing anonymization methods.

In this work, we address the mentioned problems by proposing an enhanced framework

termed the machine learning based anonymization (MLA) for anonymization of spatio-temporal

trajectory datasets and a metric to compare the algorithms. MLA consists of two interworking

algorithms: clustering and alignment. Our main contributions are summarized in the following

bullet points.

• We propose to use k′-means algorithm for trajectory clustering and develop a technique

to enable it. We also propose a variation of k′-means algorithm to preserve user privacy

in overly sensitive spatio-temporal trajectory datasets.

• We propose to use a method termed the progressive sequence alignment for alignment of

the trajectories in each cluster.

• We propose a privacy metric to evaluate and compare generalization algorithms based on

the released area by data generalization.

MLA and all algorithms associated with it are applied on Geolife dataset that contains GPS

logs of users in Beijing, China. The results are compared to one of the recent work presented in

[1] and the state of art algorithm introduced in [90].

4.1 System Model

We assume that a map has been discretized into an ε×ε grid and the time is discretized into bins

with length εt . Therefore, each point in the dataset represents a snapshot of a real-world location

query including x-coordinate, y-coordinate, and time. The datasets with continuous time or
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space data can fit into our model using interpolation. The level of spatial-temporal granularity in

discretization does not affect the effectiveness of the proposed model. In our model, we consider

a spatio-temporal trajectory datasets denoted by T . The dataset consists of trajectories tr1, ..., trn

where n represents the number of trajectories in the dataset (T = {tr1, ..., trn}, |T |= n). The i-th

trajectory tri is an ordered set of li spatio-temporal 3D points (i.e., tri = {p1, ..., pli}, |tri|= li).

Each point p j is defined by a triplet < x j,y j, t j >, where x j,y j, t j indicate the x-coordinate,

y-coordinate, and the time of query, respectively.

4.1.1 Privacy Model

As the adversary is considered to have information regarding the trajectories in the dataset, the

coordinates of queries and their corresponding times are quasi-identifiers, which can endanger

the privacy of users. In this work, we use a well-known metric called k-anonymity [92] to

ensure the privacy of users. The k-anonymity in our dataset implies that a given trajectory in

the original dataset can at best be linked to k−1 other trajectories in the anonymized dataset.

Definition 1 formally defines the k-anonymity in the context of dataset.

Definition 1 k-anonymous dataset: A trajectory dataset T is a k-anonymization of a trajectory

dataset T if for every trajectory in the anonymized dataset T , there are at least k− 1 other

trajectories with exactly the same set of points, and there is a one to one mapping relation

between the trajectories in T and T .

We assume that no uniquely identifiable information is released while publishing the dataset.

However, the adversary may:

• already know about part of the released trajectory for an individual and attempt to identify

the rest of the trajectory. For instance, the adversary is aware of the workplace of an

individual and attempts to identify his or her home address.
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• already know the whole trajectory that an individual has traveled, but try to access other

information released while publishing the dataset by identifying the user in the dataset.

For instance, the published dataset may also include the type of services provided to

users and if the adversary can identify the user by its trajectory, it can also access the

services provided to the user.

To this end, our aim is to protect users against the adversary’s attempt to access sensitive

information that may endanger the privacy of users.

4.1.2 Hierarchical Tree Transformation

In this work, generalization and suppression techniques are used to anonymize the dataset.

These techniques are implemented using domain generalization hierarchy (DGH) defined in

Definition 2. To clarify the construction of DGH, an example of DGH for x-coordinate is

demonstrated in Example 1.

Definition 2 A DGH for attribute, referred to as HA , is a partially ordered tree structure,

which maps specific and generalized values of the attribute A . The root of the tree is the most

generalized value and is returned by function RT .

Example 1 Consider an 8× 8 map. The x-coordinate attribute can have 8 possible values

(0,1, ...,7). The DGH divides the largest possible interval for x-coordinate ([0−7]), which is

the root of the tree, to two, four, and eight x-coordinate intervals as the DGH increases in depth.

Fig. 4.1 shows the structure of the x-coordinate DGH. For the generation of the y-coordinate

and time DGHs, a similar approach can be taken, which is not repeated here for succinctness.

Each node on a DGH can be generalized by moving up one or multiple levels of the DGH. The

process of generalizing nodei to one of its parent nodes node j is denoted using nodei→ node j.

A special case of generalization, in which the node is generalized to the root of the DGH, is

referred to as suppression. These two techniques are used as tools to anonymize the dataset
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Fig. 4.1 An example of DGH for x-coordinate.

in the following sections. It must be noted that although quasi-identifiers in this work are

x-coordinate, y-coordinate, and the time of query, the algorithms developed in our work can be

extended to include other attributes as well.

4.1.3 Evaluation Metrics

Loss Metric

In order to quantify the loss incurred by the generalization and suppression, it is necessary to

quantify the amount of loss happened while conducting the anonymization process. Here, we

quantify the loss using the metric proposed in [93]. Definition 3 formally represents the metric

and it is further elaborated in Example 2

Definition 3 The information loss incurred by the generalization and suppression while re-

placing nodei with node j in DGH HA is defined in bits as

LS(nodei,node j) = log2 LF(node j)− log2 LF(nodei) bits, (4.1)

where LF(.) function returns the number of leaves in the subtree generated by a node and LS(.)

function returns the loss incurred by generalization of the nodes.
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Example 2 Consider the DGH given in Fig. 4.1 the loss incurred for generalizing node [4−5]

to [4−7] can be calculated as log2 4− log2 2 = 2 bits.

For generalizing two nodes, it is necessary to find the lowest common ancestor (LCA). The

LCA is a critical point in the generalization process due to its corresponding subtree that entails

both the nodes and achieves the lowest loss for any generalization. The definition of LCA is

given in Definition 4. Moreover, Lemma 1 can be used to find the total loss incurred by the

generalization of the two nodes to their LCA.

Definition 4 The LCA of nodei and node j in HA is defined as the lowest common parent root

of the two nodes. Function LCA returns the LCA.

Lemma 1 The total loss incurred by generalizing nodei and node j in HA with their LCA

nodep can be calculated as

LS(nodei +node j,nodep) =

LS(nodei,nodep)+LS(node j,nodep). (4.2)

The total loss incurred during anonymization of a trajectory and a dataset are defined in

Definitions 5 and 6, respectively.

Definition 5 The total loss rendered by the generalization of trajectory tr to achieve the

anonymized trajectory tr with respect to attribute A can be calculated as

LS(tr,A ) =
|tr|

∑
i=1

LS(tri.A , tri.A ). (4.3)

where tri.A indicates the i-th location of the trajectory tr with respect to the attribute A . Here,

A could denote x-coordinate, y-coordinate, or time.
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Definition 6 The total loss with respect to an attribute A in an anonymized dataset T can be

computed as

LS(T ,A ) =
|T |

∑
tr∈T

LS(tr,A ) (4.4)

Privacy Metric

As different anonymization techniques utilize different generalization schemes in the existing

works, it is not possible to apply one single and unified metric to compare these methods.

Therefore, it is necessary to develop a metric to evaluate and compare the performance of

anonymization schemes. We propose to use average released area per location as a new metric

to evaluate and compare various schemes. In this subsection, the calculation of average released

area per location is explained.

Any anonymization approach aims to maximize utility while preserving the privacy of

users. Utility in generalization techniques refers to the area released for locations in the

dataset. Consider a location in the dataset T with coordinates < x1,y1, t1 > and an arbitrary

generalization function F : T → T . After anonymization process, < x1,y1, t1 > is generalized

with a number of other locations < x1,y1, t1 >,..., < xa,ya, ta > in the dataset and an area S

would be released representing these locations. For instance, if generalization returns the

minimum rectangle surrounding the locations. The generalized area is given by:

S = (max
i
{xi}−min

i
{xi})× (max

i
{yi}−min

i
{yi}). (4.5)

Once the anonymization is conducted, assume that n1 locations are generalized to area S1,

n2 locations are generalized to area S2,..., nb locations are generalized to area Sb. In this case,
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the average released area per location can be calculated as

(

b

∑
i=1

ni×Si)/(

b

∑
i=1

ni), (4.6)

in which no location belongs to more than one area. Average released area per location helps

to understand how efficiently the data has been generalized and how much loss of utility has

occurred by the generalization. Having the privacy requirement k-anonymity for all locations, a

smaller released area per location indicates a higher utility of data while preserving the privacy

of users.

4.1.4 Problem Formulation

The problem we seek to answer in this work is formally presented in Problem 1 as follows.

Problem 1 Given a trajectory dataset T , a privacy requirement k, quasi-identifiers x-coordinate,

y-coordinate, and time, how to generate an anonymized dataset T which achieves the k-

anonymity privacy metric and minimizes the total loss with respect to all quasi-identifiers,

which can be explicitly formulated as

Minimize{LS(T ,x)+LS(T ,y)+LS(T , t)}. (4.7)

4.2 MLA

Our proposed anonymization framework, MLA, consists of a robust alignment technique and a

machine learning approach for clustering the trajectory datasets which are presented in this

section.
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4.2.1 Alignment

The process of alignment is defined as finding the best match between two trajectories in order

to minimize the overall cost of generalization and suppression. The process of alignment

between two trajectories has been studied in different domains mostly referred to as sequence

alignment (SA). In this work, we adopt a multiple SA technique called progressive SA [94] for

anonymization of spatio-temporal trajectories.

Progressive Sequence Alignment

The progressive SA is commonly used for SA of a set of protein sequences. Progressive

SA is a heuristic approach for multiple SA. As a part of the algorithm, pairwise alignment

of the trajectories is required. We use dynamic SA for this purpose. Dynamic SA is based

on dynamic programming and commonly used in DNA SA [95, 96]. Fig. 4.2 illustrates an

example of how the progressive SA works for four hypothetical sequences tra = {a1, a2, a3, a4},

trb = {b1, b2 }, trc = {c1, c2, c3} and trd = {d1, d2} to generate the resultant aligned trajectory

trr = {r1, r2, r3, r4}. The longest path tra is chosen as the basis and it is aligned with a

randomly chosen trajectory trb. The pairwise alignment process is implemented using dynamic

SA. Then, the resultant trajectory is aligned with a third trajectory. The process continues until

all trajectories are aligned. Instead of choosing the trajectories randomly during the progressive

SA, the algorithm can choose the trajectory resulting in the lowest loss during the alignment.

In Fig. 4.2, the way trajectory elements are located with respect to the longest path is referred

to as the structure of the shorter path, and also, the spaces indicate the suppression operation

during the alignment.

The dynamic SA algorithm is formally represented in Algorithm 6. Dynamic SA is based

on dividing the problem of finding the best SA to subproblems and storing the solutions of

subproblems in a table or matrix referred to as SAmatrix in the pseudocode. The objective

is to achieve the minimal cost for SA. As before, the cost of alignment refers to the loss
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Fig. 4.2 An overview of progressive SA for alignment of four trajectories and generating the
anonymized trajectory.

incurred during the alignment for different attributes of the sequence, which are x-coordinate,

y-coordinate, and the time of the query.

A subproblem generation for matching the first to j-th element of tr1 (tr1 = {p1, , p2, ..., p j})

with the first to i-th element of tr2 (tr2 = {q1, ,q2, ...,qi}) can be given as 1) match p j and

qi; find the optimal alignment for tr1 = {p1, , p2, ..., p j−1} and tr2 = {q1, ,q2, ...,qi−1} 2) sup-

press p j; find the optimal alignment for tr1 = {p1, , p2, ..., p j−1} and tr2 = {q1, ,q2, ...,qi} 3)

suppress qi; find the optimal alignment for tr1 = {p1, , p2, ..., p j} and tr2 = {q1, ,q2, ...,qi−1}.

The algorithm starts by creating a (m+ 1)× (n+ 1) matrix (SAmatrix), where m and n

denote the length of the trajectories. The matrix will be used to store the minimum cost of

each cell of the grid. Moreover, a list called code stores how the cells have been reached. Cell

[ j+1, i+1] can be reached from three cells [ j, i+1], [ j+1, i], [ j, i]. Each path corresponds to

one of the subproblems explained. After finding all values of the matrix and tracing back the

list code, the outputs of the algorithm are the value of cell [m,n] indicating the minimum value

of the total loss (TotLoss) required for the dynamic SA, the aligned trajectory (GenTra j), and

the structure of the shorter path compared to the longer path as ShoTra jStr.
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Algorithm 6: DynamicSA(tr1, tr2, Hx, Hy, Ht).
Required variables: tr1 = {p1, , p2, ..., pm}, tr2 = {q1, ,q2, ...,qn}, Hx, Hy, Ht

1 SAmatrix← np.zeros([m+1,n+1])
2 for i inrange(m) do
3 Loss← LS(pi.x, rt(Hx))+LS(pi.y, rt(Hx))

+LS(pi.t, rt(Ht))
4 SAmatrix[i+1,0]← SAmatrix[i,0]+Loss
5 end
6 for i inrange(n) do
7 Loss← LS(qi.x, rt(Hx))+LS(qi.y, rt(Hx))

+LS(qi.t, rt(Ht))
8 SAmatrix[0, i+1]← SAmatrix[0, i]+Loss
9 end

10 options← np.zeros(3)
11 code← list()
12 for i inrange(m) do
13 for j inrange(n) do
14 Loss← loss incurred by generalizing pi and q j
15 options[0]← SAmatrix[i, j]+Loss
16 Loss← loss incurred by suppressing q j
17 options[1]← SAmatrix[i+1, j]+Loss
18 Loss← loss incurred by suppressing pi
19 options[2]← SAmatrix[i, j+1]+Loss
20 BestOption← np.argmin(options)
21 code.append(index of option with minimum value)
22 end
23 end
24 TotLoss← SAmatrix[m,n]
25 GenTra j← trace back the code to generate the aligned trajectory
26 ShoTra jStr← trace back the code to find out structure of shorter trajectory while

alignment
27 Return GenTra j,ShoTra jStr,TotLoss
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4.2.2 Clustering

Clustering can be seen as a search for hidden patterns that may exist in datasets. In simple

words, it refers to grouping data entries in disjointed clusters so that the members of each cluster

are very similar to each other. Clustering techniques are applied in many application areas

such as data analysis and pattern recognition. In this subsection, first, we propose a heuristic

approach for clustering spatio-temporal datasets. Due to high complexity of the algorithm, we

come up with a technique to apply machine learning algorithms such as k′-means algorithm for

clustering spatio-temporal trajectories. Then, we propose a variation of k′-means that can help

to ensure k-anonymity for all the trajectories.

Heuristic Approach

Our proposed heuristic approach for clustering spatio-temporal trajectory datasets is detailed in

Algorithm 7 and its helper function in Algorithm 8. The intuition behind the heuristic algorithm

is to form the clusters by sequentially adding the most suitable trajectory that minimizes the

total loss incurred by generalization and suppression for x-coordinate, y-coordinate, and the

time of query, given their DGHs Hx, Hy, Ht .

The algorithm starts by calculating the number of clusters that needs to be generated and

making a duplicate of the dataset called T . Moreover, a two-dimensional list is created, which

will hold the trajectory IDs for each cluster. In lines [4-21], for each cluster (i.e., cluster c), the

algorithm assigns the first trajectory in T to Tra j1 as well as its duplicate AlignedTra j and

removes it from the database. This trajectory would be the first member of the cluster c. Then,

given the privacy requirement k, k−1 other members of the cluster are chosen in lines [10-20].

Two memory lists LossMemory and Tra jMemory are generated to hold the outcome of each

execution of StaticSA function. In lines [12-15], for each remaining trajectory in the dataset,

total loss and the aligned trajectory are calculated and assigned to the memory lists. Then, in

lines [17-19], the trajectory ID which has resulted in the minimum total loss is attached to the
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Algorithm 7: HeuristicClustering(OriginalDataset, k, Hx, Hy, Ht).

1 NumO fClus← ⌈|T |
k
⌉

2 Clusters← list()
3 T ← OriginalDataset
4 for c inrange(0,NumO fClus) do
5 Tra j1← first trajectory in T
6 AlignedTra j← Tra j1
7 cluster[c].append(NewMember)
8 T.remove(Tra j1)
9 for i inrange(1,k) do

10 LossMemory = zeros(|T |)
11 Tra jMemory = zeros(|T |)
12 for j inrange(1, |T |) do
13 Tra j2← j-th trajectory in T
14 (NewTra j[ j],LossMemory[ j])← StaticSA(AlignedTra j, Tra j2, Hx, Hy, Ht)
15 end
16 NewMember← The trajectory ID with minimum loss memory
17 cluster[c].append(NewMember)
18 T.remove(NewMember)
19 AlignedTra j← update based on NewMember
20 end
21 end
22 (T , Loss)←GenerateAnonymizedDataset(cluster, OriginalDataset, Hx, Hy, Ht)
23 Return (T , Loss)
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cluster and removed from the database. Having calculated the trajectory IDs for each cluster,

the helper function GenerateAnonymizedDataset is called in order to return the anonymized

dataset (T ) and its loss.

The helper function (GenerateAnonymizedDataset) takes the original dataset and the two-

dimensional list of IDs (cluster) which indicates the trajectory IDs that need to be in each

cluster as inputs. The target of the algorithm is to return the total loss and an anonymized

trajectory. The algorithm starts by initializing the total loss to zero in Line 1 and creating an

empty list (T ) to hold the new anonymized dataset. In lines [3-16], for each cluster, the IDs are

fetched into CluTraIDs, and then, the total generalized trajectory is calculated in lines [6-10].

Finally, in lines [11-16], the total loss for each cluster is calculated and the cluster head is

attached to the anonymized dataset.

Algorithm 8: GenerateAnonymizedDataset(cluster, OriginalDataset, Hx, Hy, Ht).

1 TotalLoss← /0
2 T ← list()
3 for i inrange(0, len(cluster)) do
4 CluTraIDs← cluster[i]
5 Tra j1← trajectory corresponding to CluTraIDs[0]
6 for j inrange(0, len(CluTraIDs)) do
7 Tra j2← trajectory corresponding to CluTraIDs[ j]
8 (NewTra j, Loss)← StaticSA(tra j1, tra j2, Hx, Hy, Ht)
9 Tra j1← NewTra j

10 end
11 for j inrange(0, len(CluTraIDs)) do
12 TempTra j←trajectory corresponding to CluTraIDs[ j]
13 (CacheTra j, Loss)← StaticSA(NewTra j, TempTra j, Hx, Hy, Ht)
14 T .append(NewTra j) TotalLoss← TotalLoss+Loss
15 end
16 end
17 Return (T , TotalLoss)
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Total loss =
|T |

∑
i=1

(LS(tri.x,RT (Hx))+LS(tri.y,RT (Hy))+LS(tri.t,RT (Ht)))︸ ︷︷ ︸
A

−

(

|cluster|

∑
i=1

|cluster[i]|

∑
j=1

(LS(h j.x,RT (Hx))+LS(h j.y,RT (Hy))+LS(h j.t,RT (Ht))))︸ ︷︷ ︸
B

.

(4.8)

k′-means Clustering Approach

k′-means algorithm [97] is an attractive clustering algorithm currently used in many applications,

especially in data analysis and pattern recognition [98]. The main advantage of k′-means

algorithm is simplicity and fast execution. The reason behind using a prime notation on top of

the variable k is to avoid confusion between the "k" in the clustering algorithm and the k used

in the definition of k-anonymity addressed before.

The algorithm aims to partition the input dataset into k′ clusters. The only inputs to the

algorithm are the number of clusters k′ and the dataset. Clusters are represented by adaptively-

changing cluster centres. The initial values of the cluster centres are chosen randomly. In each

stage, the algorithm computes the Euclidean distance of data from the centroids and partition

them based on the nearest centroid to each data. More formally, representing the set of all

centroids by C = {c1, c,..., ck′}, each point in the dataset, denoted by x, is assigned to a centroid

that has the shortest Euclidean distance to the point. This can be written as

argmin
ci∈C

dist(x,ci)
2, (4.9)
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where the function dist(.) returns the Euclidean distance between two points. Denoting the set

of assigned data to the i-th cluster by Si, new centroids are calculated in the second stage via

ci =
1
|Si|∑xi∈Si

xi. (4.10)

The algorithm continues the same process until the values of centroids no longer change. The

k′-means algorithm is guaranteed to converge [99].

In the rest of this section, we first present a Lemma followed by explaining how the k′-means

algorithm can be applied to trajectory datasets to reinforce the privacy preservation of users.

Lemma 2 The total loss incurred by generalizing nodei and node j with respect to HA can be

calculated as

LS(nodei,node j) =

|LS(nodei,RT (HA ))−LS(node j,RT (HA ))|. (4.11)

Lemma 2 indicates that the loss incurred by generalizing two nodes is equal to the difference

between losses incurred by their suppression. As before, for any clustering outcome of data,

assume that cluster is a two-dimensional list, in which the j-th element of the list returns

the IDs of the trajectories in the j-th cluster. Moreover, we denote the j-th cluster head after

generalization and suppression for all trajectories as h j. Therefore, the total loss can be written

as
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Total loss = LS(T ,x)+LS(T ,y)+LS(T , t)

=

k−1

∑
j=0

∑
tr∈cluster[ j]

(LS(h j.x, tr.x)

+LS(h j.y, tr.y)+LS(h j.t, tr.t)). (4.12)

As explained in (4.7), the objective of clustering algorithms is to minimize this equation.

Therefore, using Lemma 2 the equation (4.12) can be written as

Total loss = (4.13)

k−1

∑
j=0

∑
tr∈cluster[ j]

(|LS(h j.x,RT (Hx))−LS(tr.x,RT (Hx)|

+ |LS(h j.y,RT (Hy))−LS(tr.y,RT (Hy)|

+ |LS(h j.t,RT (Ht))−LS(tr.t,RT (Ht))|. (4.14)

Rearranging (4.13), the objective equation can be found by minimizing total loss formulated in

(4.8). This can be done by maximizing part B and minimizing part A. Since the cluster heads

are generated based on the clustering algorithm, they cannot be used as part of the optimization

process. Therefore, we aim at minimizing part A in (4.8).

Part A in the equation (4.8) refers to finding the total distance of each trajectory from DGH

root of the attributes. Therefore, for each trajectory, a three-dimensional vector < dx, dy, dt >

is constructed, where dx, dy, dt store the loss incurred by generalizing the x-coordinate, y-

coordinate, and time, respectively. Having distances of all points from the roots, we cluster the

trajectories using the k′-means algorithm. The algorithm clusters trajectories with a similar loss
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Algorithm 9: Pseudocode of iterative k′-means algorithm.
1 while true do

2 run k′-means algorithm on dataset (#clusters = ⌊#data trajectories
k

⌋)
3 remove trajectories that belong to clusters with at least k members from the dataset
4 if #len(dataset)< 2∗ k then
5 cluster the remaining trajectories together
6 break;
7 end
8 end

from the root in the same group. This process is particularly important as trajectory datasets

usually include trajectories as short as one query to trajectories with hundreds of queries.

A major drawback of the k′-means algorithm is clustering the trajectories without any

constraint on the minimum number of trajectories that needs to be in each cluster. Therefore,

the algorithm might result in some of the clusters including less than k trajectories that violate

the k-anonymity of the trajectories. If the data is not extremely sensitive such as the data used in

military, it is usually acceptable to have a few trajectories below the k-anonymity criterion. As

it will be demonstrated in Section 4.3 experiments, as a general rule the number of trajectories

not achieving k-anonymity is close to or below 20% of the trajectories based on the value of

k chosen for the privacy. To amend the naive k′-means algorithm for sensitive applications,

we propose to use a variation of k′-means algorithm, which we call it iterative k′-means. The

idea relies on running the k′-means algorithm iteratively to ensure that all clusters will achieve

k-anonymity. Therefore, after each iteration of the k′-means algorithm, the clusters including

at least k trajectories are disbanded and the trajectories are put back into the pool for the next

iteration of the k′-means algorithm. This process continues until all clusters have at least k

members. Algorithm 9 represents the pseudocode of the iterative k′-means.
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4.3 Experiments

In our experiment, we use the data collected by Geolife project [83–85]. We have conducted

our experiments on a 1km× 1km central part of the Beijing map with the resolution of

0.01km×0.01km for each grid cell. The various location privacy requirements (k) of the users

are investigated for the values 2, 5, 10, and 15. The experiments were performed on a PC with

a 3.40 GHz Core-i7 Intel processor, 64-bit Windows 7 operating system, and an 8.00 GB of

RAM. Python programming is used to implement the algorithms.

4.3.1 Performance Evaluation and Comparison

Fig. 4.3 presents the performance evaluation of MLA predicated on three clustering approaches

developed in this work. The algorithms have been investigated from three aspects: information

loss, increase in trajectory length, and execution time. In all graphs, x-axis indicates k-

anonymity requirement for the dataset. The total information loss and average information

loss per cluster of algorithms are considered in Figs. 4.3a and 4.3b, respectively. Information

loss, shown in the y-axis, indicates the total loss incurred while applying generalization and

suppression on x-coordinate, y-coordinate, and the time of the query. The maximum possible

incurred information loss for the whole dataset by suppressing all trajectories is 474572 bits.

This value is the upper bound on all anonymization algorithms. Note that this constant changes

for different datasets. The main existing trend in Figs. 4.3a and 4.3b is that by increasing the

value of k, the total incurred loss increases. This outcome meets our expectation as increasing

the value of k indicates having larger cluster sets, which results in the alignment of a higher

number of trajectories in each cluster, and thereby, a higher total loss by the alignment. Among

our proposed algorithms, k′-means algorithm provides the best performance as it corresponds

to minimum lost bits incurred by the generalization and suppression.

The amount of information that k′-means algorithm preserves is even higher than that of

the heuristic approach, in which the most suitable trajectories are chosen to minimize the
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information. This trend can be seen for both of the total information loss of the dataset and the

average information loss of dataset per cluster for different k values. Such a trade-off exists,

because some clusters contain a small number of trajectories not satisfying the k-anonymity

requirement. The loss of privacy by k′-means algorithm is further analyzed in Fig. 4.4 which

will be explained later in this section. The iterative k′-means algorithm is constructed on top of

the k′-means algorithm to ensure that all the trajectories satisfy the required privacy requirement.

This is particularly important for sensitive applications, in which there are strict requirements

for privacy preservation. The cost of having higher privacy for the iterative k′-means algorithm

is a larger loss of information.

Figs. 4.3c and 4.3d present the average increase in the length of trajectories for the whole

dataset and per cluster. Due to the alignment process, shorter trajectories may need to be

aligned with longer trajectories, which result in an increase in the length of trajectories in the

anonymized released dataset. The best performance among the algorithms is yielded by the

k′-means algorithm with the lowest increase in the lengths of trajectories. Compared to other

two approaches, the heuristic strategy performs better than the iterative k′-means with a smaller

k, but as the k value increases, the average increase in trajectory length converges due to a large

cluster size. Figs. 4.3e and 4.3f compare the total and average per cluster execution time of

the different algorithms. Note that since the heuristic algorithm requires a significantly higher

amount of time to run, it is shown on top of the graphs as a flat line with the corresponding

values shown below it. The execution time of the k′-means and iterative k′-means algorithms

are significantly lower than that of the heuristic algorithm and as expected the iterative k′-means

consumes slightly more execution time as it has additional steps to ensure the k-anonymity of

all trajectories.
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(a) Total information loss (b) Average information loss per cluster

(c) Average increase in length of trajectories (d) Average increase in length of trajectories
per cluster

(e) Total execution time (the heuristic algo-
rithm’s results are shown as a flat line with
the values written below the line)

(f) Average execution time per cluster (the
heuristic algorithm’s results are shown as a flat
line with the values written below the line)

Fig. 4.3 Performance evaluation of MLA with different values of k.
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4.3.2 Detailed Analysis of k′-means Algorithm

Overall, the detailed k′-means algorithm’s results in satisfactory performance in terms of

information loss, execution time, and the average increase in the length of trajectories. Moreover,

the complexity of the k′-means algorithm is of an order of the number of data entries for large

datasets, whereas the order of the heuristic algorithm is proportional to the square of this

number. Therefore, the k′-means algorithm has several significant advantages compared to the

heuristic approach. Hence, if it is acceptable for the datasets to have a few trajectories below

the k-anonymity requirement, then, it is more beneficial to use the k′-means algorithm instead

of the heuristic or the iterative k′-means algorithm. This is usually true for datasets not entailing

classified information. Therefore, we further analyze the performance of this algorithm in the

remaining of this section and compare it to the state-of-art algorithms recently proposed. Also,

note that in the rest of this paper when MLA is mentioned, the k′-means algorithms is adopted

for clustering by default.

Fig. 4.4 provides two graphs showing the details of the performance yielded by the k′-

means algorithm. The first graph indicates the average value of k achieved while applying

the k′-means algorithm, and the second graph shows the percentage of trajectories that did

not achieve the k-anonymity in the anonymization process with different values of k. In Fig.

4.4(a), it is evident that despite some of the trajectories losing their k-anonymity during the

anonymization, the average value of anonymity achieved is above the minimum requirement.

The value of the average gets even better as the value of k increases. Fig. 4.4(b) shows the

percentage of the trajectories not achieving the minimum required k-anonymity. This value is

below 20% on average, which means that over 80% of the trajectories are guaranteed to at least

have k-anonymity. The reason causing the uneven curves in the figure is because the number of

clusters is divisible by k, which results in an additional cluster distorting the curves.
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(a) Average value of k achieved by applying the k′-means algorithm

(b) Percentage of users not satisfying k-anonymity requirement by applying the k′-means
algorithm

Fig. 4.4 Detailed performance evaluation of the k′-means algorithm.

4.3.3 Comparison

We compare MLA with the static algorithm proposed in [90], and recently published anonymiza-

tion approach in [1]. The idea behind the static alignment algorithm in [90] is that two tra-
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jectories are matched element by element without any shifts or spaces. In more details, the

static algorithm attempts to match two sequences based on the same index. Therefore, each

element of the first sequence tr1 is aligned with an element having the same index in the other

input trajectory tr2. Based on our evaluation, the total incurred information loss is reduced

by 7.2% by using the proposed progressive SA algorithm. It must be noted that the dataset

includes trajectories as large as hundreds of queries and as small as a single query from the

location-based service provider. Therefore, matching these length-variant trajectories would

impose a substantial information loss even for the best possible match of the sequences.

Fig. 4.5 indicates the comparison result between our proposed anonymization technique

and the recent generalization method proposed in [1]. The authors in [1] attempted to minimize

the incurred loss of the anonymization by sorting out the spatio-temporal locations in the

time domain and applying a heuristic approach for generalization. They also used a heuristic

approach for clustering trajectories. Note that any anonymization approach aims to maximize

utility while preserving the privacy of users. Utility in generalization techniques refers to the

area released for locations in the dataset. Therefore, to have a fair comparison, we compare our

work with the approach proposed in [1] based on the average released area for locations. The

metric is thoroughly explained in Section 4.1. It can be seen from the figure that our proposed

algorithm can significantly increase the utility of the generalization approach. In other words,

the anonymized dataset has on average smaller released area per location while preserving the

privacy of users. To further compare alignment approaches, in Fig. 4.5, we applied random

clustering to group the trajectories, and then, used the alignment approach in our proposed work

and the previous work to generate anonymized trajectories. As can be seen in the figure, our

alignment approach outperforms the previous work by a higher utility of anonymized dataset.
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Fig. 4.5 Comparison of MLA with the previous work proposed in [1].

Fig. 4.6 Comparison of MLA with the previous work proposed in [1] when applying random
clustering to both.

4.4 Applications

In this section, we introduce several applications that we believe our work has the most impact

on.
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4.4.1 Location-Based Data

As the framework for anonymization presented in this work considers location trajectories, one

of the main applications of the framework is the privacy of location-based data. The use of

location-based applications is more prevalent than any time before. Governments attempt to

analyze the infrastructure using the location data and researchers use these data to investigate

human behavior. Research has verified that even simple analytics on these published trajectory

data would yield serious risk of users’ privacy and even be capable of identifying users of

location-based applications. [100]. Therefore, applying anonymization techniques such as the

one we have developed in this work is necessary to preserve the privacy of the users.

4.4.2 Medical Records

The recent advances in medical information technology have enabled the collection of a detailed

description of patients and their medical status [101]. Such data is usually stored in electronic

medical record systems [102–104]. Similar to spatio-temporal trajectories, many of the medical

records need to be published by agencies and organizations. Unfortunately, research has shown

that solely relying on de-identification is insufficient to protect users’ privacy, as the medical

records from multiple databases can be linked together to identify individual patients [90].

Therefore, there is an urgent need for viable algorithms to anonymize the medical data. The

problem of anonymization in spatio-temporal trajectories is very similar to anonymization in

longitudinal electronic medical records. This can be easily justified by the similar way, in

which these data are stored. Assume a patient who has referred to medics several times in his

or her lifetime. Each time the records of the patient are stored in a longitudinal dataset, in

which the age and the diagnosed disease record are registered. These longitudinal records can

be seen as a trajectory for the patient, and our proposed algorithms in this work can be applied

to anonymize a dataset of such longitudinal electronic medical records.
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4.4.3 Web Analytics

Another important application of the framework developed in this work is web analytics. Web

analytics refers to analyzing online traces of users. Web analytics has become a competitive

advantage for many companies due to the amount of detailed information that can be extracted

from the data. Therefore, protecting the trajectories that the users explored on the Internet has

become a major challenge for researchers. The similarity between spatio-temporal trajectories

and web analytics can be well explained by the following example. For instance, Geoscience

Australia is constantly recording and publishing the site logs users make on their website.

The site log filename is composed of a four-digit station identifier, followed by a two-digit

month and a two-digit year, e.g., ALIC0414 is the site log for the Alice Springs GNSS site that

was updated in April 2014 [86]. Such a trajectory of logins to the website is analogous to a

spatio-temporal trajectory with three attributes. Therefore, the framework developed in this

work can be used to anonymize the online traces of users before publishing web browsing data.

4.5 Conclusion

In this work, we have proposed a framework to preserve the privacy of users while publishing

the spatio-temporal trajectories. The proposed approach is based on a efficient alignment

technique termed progressive sequence alignment in addition to a machine learning clustering

approach that aims to minimize the incurred loss by the anonymization process. For clustering,

several techniques have been proposed: a heuristic approach to minimize the incurred loss, an

approach based on the k′-means algorithm, and finally a variation of the k′-means algorithm

for guaranteeing the k-anonymity in sensitive datasets. Our results indicate the superior

performance of our proposed framework compared with the previous works.
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Conclusion

In the broader view of the preserving location privacy of the users, we have considered two

commons scenarios in this thesis: (I) privacy preservation of users in telecommunications

networks against untrusted LBS servers, and (II) publication of spatio-temporal trajectories by

trusted service providers while preserving the privacy of users.

For the first category, we have proposed a metric called transition entropy. This metric

enables us to evaluate and compare the performance of existing algorithms. We have also

developed an attack model based on the Viterbi algorithm to identify the susceptibility of the

user location privacy against malicious attacks. Moreover, to improve the location privacy of

users, we have developed a robust algorithm called RDG, which, according to our simulations,

has resulted in significant advancements in terms of transition entropy. The RDG algorithm

also preserves the performance in terms of the traditional accepted metric cell entropy. There

are several potential future directions associated with our work:

• Extend our approach to ‘implicit’ datasets, in which the time intervals between queries

are not equal. Our work has been focused on ‘explicit’ datasets with an equal time

interval between queries. However, it is significantly important to extend the approach

for ‘implicit’ datasets as well.
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• Improve the comprehensiveness of posterior probabilities in the calculation of transition

entropy to consider the temporal information of users. There could other factors not

considered in the calculation of our proposed posterior probabilities. This can also depend

on the considered system model. Therefore, it could be advantageous to experiment with

other significant factors in the calculation of posterior probabilities.

• Improve the RDG algorithm to achieve higher transition entropy levels. Although our

algorithms can improve the transition entropy performance, it is still far away from the

optimal value. This particularly becomes evident for large trajectories.

To improve privacy in the second scenario, we proposed a robust anonymization frame-

work termed as MLA, preserving the k-anonymity of the users. The MLA framework also

significantly reduces the information loss compared with the previous approaches. The frame-

work is based on the k′-means algorithm and develops a cost-effective methodology for the

anonymization of location datasets. Some future directions worth consideration would be:

• Developing methods to reduce information loss further while achieving k-anonymity. Al-

though our proposed framework can significantly improve information loss performance,

future work can focus on further minimizing the information loss to achieve higher levels

of privacy.

• Considering other domain generalization hierarchy trees, which can help to reduce the

complexity while decreasing information loss. In this work, we only investigated binary

search trees as the coding scheme; however, other approaches could be replaced in the

MLA framework to result in higher performance levels.

• Investigating theoretical limits of the MLA algorithm.
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