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Abstract

Metamodel method is widely used in structural reliability analysis. A main

limitation of this method is that it is difficult or even impossible to quantify

the model uncertainty caused by the metamodel approximation. This paper

develops an improved metalmodel method which is unbiased and highly effi-

cient. The new method formulates a probability of failure as a product of a

metamodel-based probability of failure and a correction term, which accounts

for the approximation error due to metamodel approximation. The correc-

tion term is constructed and estimated using the Markov chain simulation.

An iterative scheme is further developed to adaptively improve the accura-

cy of the metamodel and the associated correction term. The accuracy and

efficiency of the new metamodel method is illustrated and compared with

the classical Kriging metamodel and high dimensional model representation

methods using a number of numerical and structural examples.
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1. Introduction1

A common technique for evaluating structural reliabilities with complex2

limit state functions is to use the metamodel method. It uses a strategic3

design of experiments (DoE) to obtain an analytical approximation of the4

relationships between the input random variables and the limit state re-5

sponse of interest. Earlier application of this approach is the use of the6

response surface methods [1]. Construction of metalmodels is a challenging7

problem. Recent developments include but not limited to artificial neural8

networks [2–4], support vector machines [5–8], high dimensional model rep-9

resentation (HDMR) [9, 10], polynomial chaos expansion [11, 12] and Kriging10

[13, 14]. For the commonly used polynomial-based metamodel, the results11

may be sensitive to the selected interpolation polynomials and their param-12

eters due to the rigid and non-adaptive structure of the polynomials [6]. For13

instance, although polynomial chaos can be used for local interpolation, the14

definitions of the design of numerical experiments and of the polynomial de-15

grees are tricky [11]. The performance of artificial neural networks cannot16

be guaranteed due to the fitting problems as there is no efficient constructive17

method for choosing the structure and the learning parameters of artificial18

neural network [5]. In addition to these limitations, a general drawback of19

the metalmodel method is that it is difficult or even impossible to quantify20

the error caused by approximating the actual limit state function (LSF) by21

a metalmodel [15–17].22

In order to overcome the aforementioned difficulties, this paper develops23

a new metamodel method which is unbiased and highly efficient. The basic24
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idea is to formulate an unknown probability of failure as the product of a25

metamodel-based failure probability and a correction term, which accounts26

for the approximation error due to metamodel approximation. Although27

this idea is mathematically straightforward and has been used in structural28

reliability analysis very recently [17, 18], the construction and the estimation29

of the correction term is a very challenging task in such methods. In this30

paper, the correction term is constructed by introducing an intermediate31

event, which is the union of the actual failure region and the metamodel-32

based failure region. The correction term is estimated efficiently using the33

Markov chain simulation. Furthermore, an adaptive refinement procedure is34

developed to simultaneously improve the metamodel and the corresponding35

correction term, to further improve the efficiency of the proposed method.36

The paper is organized as follows: the Kriging metamodel is briefly in-37

troduced in Section 2, followed by the presentation of the proposed unbiased38

metamodel method in Section 3. The procedure of the proposed method is39

then summarized in Section 4. Three examples are then given to demon-40

strate the application and efficiency of the proposed method. Comparisons41

of the proposed method and the conventional metamodel methods, includ-42

ing Kriging metamodelling and high dimensional model representation, are43

made.44

2. Kriging method45

Among the available metamodel methods, herein we focus on the Krig-46

ing method, which has gained significant attention in the field of structural47

reliability theory in recent years [13, 14, 19]. It should be noted that the48
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proposed method of constructing and estimating the correction term is gen-49

eral and can be applied to any metalmodel method, and not restricted to the50

Kriging metamodel discussed here. This section briefly introduces the Krig-51

ing method for the completeness of introducing the proposed methodology.52

Details about Kriging method can be found elsewhere, e.g, [20, 21].53

Kriging metamodel is an interpolation technique based on statistical the-54

ory, which consists of a parametric linear regression model and a nonpara-55

metric stochastic process [20]. It requires DoE to determine its stochas-56

tic parameters and then predictions of the response can be computed on57

any unknown sample. Given an initial DoE X = [x(1), . . . ,x(p)]T, with58

x(i) ∈ Rn (i = 1, . . . , p) the ith input, and Y = [g(x(1)), . . . , g(x(p))]T with59

g(x(i)) ∈ R the corresponding response to x(i). The approximate relationship60

between any sample x and the response g(x) can be denoted as61

g(x) = F (β,x) + z(x) = fT(x)β+ z(x) (1)62

where fT(x)β is the regression model representing the trend of the model,63

which is defined by a set of basis functions f(x) = [f1(x), . . . , fm(x)]
T and the64

corresponding regression coefficients β = [β1, . . . , βm]
T. In the ordinary K-65

riging, F (β,x) is a scalar and always taken as F (β,x) = β. So the estimated66

g(x) can be simplified as67

g(x) = β + z(x). (2)68

Here z(x) is a zero-mean stationary Gaussian process with autocovariance at69

points x and w defined as70

cov(z(x), z(w)) = σ2R(x,w) (3)71
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where cov = covariance, σ2 is the process variance and R(x,w) is the au-72

tocorrelation function. The most widely used autocorrelation function is73

anisotropic Gaussian model and is adopted in this paper:74

R(x,w) = exp

(
−

n∑
i=1

θi(xi, wi)
2

)
(4)75

where xi and wi are the ith component of the points x and w respectively,76

and θi is the correlation parameter in the ith dimension.77

Define R as a p×p symmetric correlation matrix with Rij = R(x(i),x(j)),78

i, j = 1, . . . , p, and F as a p× 1 unit vector, then β and σ2 are estimated as79

β̂ =
(
FTR−1F

)−1
FTR−1Y, (5)80

σ̂2 =
1

p
(Y − Fβ)T R−1 (Y − Fβ) . (6)81

82

The correlation parameter θ can be obtained through the maximum likeli-83

hood estimation:84

θ = argmin
θ

(detR)
1
p σ̂2. (7)85

Since there exists corresponding interpolation model for each θ, the best86

Kriging model can be obtained by optimizing θ.87

Then at an unknown point x(0), the Best Linear Unbiased Predictor88

(BLUP) of the response g̃(x(0)) and Kriging variance σ2
g̃(x

(0)) are computed89

as90

g̃(x(0)) = qT(x(0))β+ r(x(0))TR−1(Y − Fβ), (8)91

σ2
g̃(x

(0)) = σ̂2
(
1 + u(x(0))T(FTR−1F)−1u(x(0))− r(x(0))TR−1r(x(0))

)
(9)92

93

where r(x(0)) = [R(x(0),x(1)), . . . , R(x(0),x(p))]T and u(x(0)) = FTR−1r(x(0))−94

1.95
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3. An unbiased metamodel method96

Although some metamodels like Kriging can provide a measure of the97

local uncertainty of the prediction of new samples, i.e., Kriging variance, the98

overall error resulting from replacing the actual LSF with the metamodel99

cannot be quantified. This model uncertainty is the epistemic uncertainty100

of the metamodel. It cannot be quantified by the metamodel itself. As a101

consequence, the direct use of Kriging metamodel will inevitably result in a102

biased estimator of the probability of failure. Having identified this issue,103

we propose a correction term to quantify the bias of the metamodel-based104

failure probability, and formulate the unknown probability of failure as a105

product of the metamodel-based failure probability and a correction term.106

In this manner, the bias of the metamodel-based failure probability can be107

accounted for and an unbiased estimator of the failure probability is obtained.108

Let g̃(x) be a Kriging metamodel for the real LSF g(x), and F̃ = {x |109

g̃(x) ≤ 0} be the metamodel-based failure region for the real failure region110

F = {x | g(x) ≤ 0}. The correction term, denoted by K, is defined as111

K =
P (F )

P (F̃ )
(10)112

where P (F ) and P (F̃ ) is the failure probability and the metamodel-based113

failure probability, respectively. Then P (F ) can be written as114

P (F ) = K · P (F̃ ). (11)115

Eq. (10) shows that the correction term K quantifies the error resulting from116

substituting g(x) with g̃(x), thus it can be used to consider the bias of the117

metamodel-based failure probability P (F̃ ) even a poor metamodel g̃(x) is118
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employed. By multiplying P (F̃ ) with K, an unbiased estimator of P (F ) is119

achieved as shown in Eq. (11).120

Clearly, the key issue of the method is the computation of the correction121

term K. Since one cannot guarantee that the metamodel-based failure region122

F̃ covers the real failure region F , sampling methods such as importance123

sampling or Markov chain simulation, cannot be used to estimate K. We124

introduce an intermediate event F ∪ F̃ and reformulate the correction term125

in Eq. (10) as126

K =
P (F ∪ F̃ )

P (F̃ )

P (F )

P (F ∪ F̃ )
=

1

K1

K2 (12)127

where K1 = P (F̃ )/P (F ∪ F̃ ), and K2 = P (F )/P (F ∪ F̃ ). Therefore, K can128

be estimated provided that K1 and K2 are obtained.129

3.1. Estimation of the correction term130

By introducing an importance sampling density hF∪F̃ (x), P (F̃ ) is formu-131

lated as132

P (F̃ ) =

∫
Rn

IF̃ (x)fX(x)dx =

∫
Rn

IF̃ (x)
fX(x)

hF∪F̃ (x)
hF∪F̃ (x)dx (13)133

where IF̃ (x) is the indicator function of F̃ : IF̃ (x) = 1 if x ∈ F̃ and IF̃ (x) = 0134

otherwise. hF∪F̃ (x) denotes the conditional distribution of X given that it135

lies in the region of F ∪ F̃ :136

hF∪F̃ (x) =
IF∪F̃ (x)fX(x)∫

Rn IF∪F̃ (x)fX(x)dx
=

IF∪F̃ (x)fX(x)

P (F ∪ F̃ )
. (14)137

Utilizing Eq. (14) and Eq. (13), K1 is then formulated as138

K1 =
P (F̃ )

P (F ∪ F̃ )
=

∫
Rn

IF̃ (x)
IF∪F̃ (x)

hF∪F̃ (x)dx. (15)139
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Similarly, K2 can be also formulated as140

K2 =
P (F )

P (F ∪ F̃ )
=

∫
Rn

IF (x)
IF∪F̃ (x)

hF∪F̃ (x)dx. (16)141

Since the conditions that F̃ ⊆ F ∪ F̃ and F ⊆ F ∪ F̃ always hold, we have142

0 ≤ K1 ≤ 1 and 0 ≤ K2 ≤ 1, and it is thus possible to estimate K1 and K2143

by sampling the regions of F ∪ F̃ .144

Note that P (F ∪ F̃ ) in the denominator of hF∪F̃ (x) is unknown, thus145

the conventional Monte Carlo sampling procedure cannot be used to sample146

hF∪F̃ (x). The Markov chain simulation is used to generate samples from147

hF∪F̃ (x) since only the ratio of hF∪F̃ (x) between consecutive states are re-148

quired, and the unknown constant P (F ∪ F̃ ) is not needed in the Markov149

chain simulations. In particular, when F ∪ F̃ has multiple sub-regions, espe-150

cially when those sub-regions are disconnected, multiple Markov chain with151

different initial states are used to generate samples from such regions in the152

present study.153

Suppose that the total number of Markov chain samples is NK , and NC154

Markov chains are generated, so that NK/NC samples are simulated for each155

chain. Let {x(i,j), i = 1, 2, . . . , NC , j = 1, 2, . . . , NK/NC} be the Markov chain156

samples drawn from hF∪F̃ (x), then the estimators of K1 and K2 are given157

by158

K̂1 =
1

NK

NC∑
i=1

NK/NC∑
j=1

IF̃ (x(ij))

IF∪F̃ (x
(ij))

(17)159

and160

K̂2 =
1

NK

NC∑
i=1

NK/NC∑
j=1

IF (x(ij))

IF∪F̃ (x
(ij))

(18)161

respectively.162
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Theoretically, the Markov chain samples are asymptotically distributed163

according to hF∪F̃ (x), thus the estimators K̂1 and K̂2 in Eqs.(17) and (18)164

are asymptotically unbiased [22]. Although the Markov chain samples are165

correlated, the estimators of K1 and K2 still have the usual convergence166

properties of estimators according to the Strong Law of Large Numbers [22].167

Therefore, K̂1 and K̂2 converge almost surely to K1 and K2.168

Once the estimators of K1 and K2 are obtained by Eqs.(17) and (18), the169

estimator of the correction term K can be computed by substituting Eqs.(17)170

and (18) into Eq. (12) as171

K ≈ K(K̂1, K̂2) =
K̂2

K̂1

. (19)172

However, the estimator of K given by Eq. (19) is unbiased only if the total173

number of Markov chain samples NK is infinite. In practice, the estimator174

of K is biased. The bias of K̂2/K̂1, defined as the difference between the175

expectation of the estimator and the true value of K, is given by:176

Bias(K̂) =
K2

NKK3
1

Var(K̂1). (20)177

The derivation of Eq. (20) is found in Appendix A. In order to construct an178

unbiased estimator of K, the bias in Eq. (20) should be subtracted from the179

biased estimator in Eq. (19). Since Bias(K̂) involves the variance of K̂1, the180

following devotes to the computation of the variance of K̂1.181

As shown in [23], the variance of the estimator K̂1 is given by182

Var(K̂1) = E(K̂1 −K1)
2

=
1

NK

R1(0) + 2

NK/NC−1∑
l=1

(
1− lNC

NK

)
R1(l)

 (21)183
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whereR1(l) is the covariance between IF̃ (x
(i,m))/IF∪F̃ (x

(i,m)) and IF̃ (x
(i,m+l))/IF∪F̃ (x

(i,m+l))184

for l = 0, 1, · · · , NK−1. R1(l) can be estimated using the Markov chain sam-185

ples {x(i,j), i = 1, 2, . . . , NC , j = 1, 2, . . . , NK/NC} by186

R1(l) ≈ R̂1(l)

=
1

NK − lNC

NC∑
i=1

NK/NC−l∑
m=1

[
IF̃ (x(i,m))

IF∪F̃ (x
(i,m))

IF̃ (x(i,m+l))

IF∪F̃ (x
(i,m+l))

]
− K̂2

1 .
(22)187

R1(l) depends on the correlation between the samples. It is positive in general188

and equal to zero when the samples are independent. Thus the correlation of189

the Markov chain samples has to be considered when computing the variance190

of K̂1, as is shown in Eq. (21). However, for large values of l, the estimated191

R1(l) will be too noisy. Hence, a truncated summation, which starts from192

l = 0 until the sum of covariance estimates for two successive lags R̂1(T1 +193

1)+ R̂1(T1+2) is negative, is used when computing the summations of R1(l)194

in Eq. (21) [24]. Consequently, Var(K̂1) is approximated as195

Var(K̂1) ≈
1

NK

[
R1(0) + 2

T1∑
l=1

(
1− lNC

NK

)
R1(l)

]
(23)196

where T1 is the first odd positive integer for which R̂1(T1 + 1) + R̂1(T1 + 2)197

is negative.198

Similarly, Var(K̂2) is approximated as199

Var(K̂2) ≈
1

NK

[
R2(0) + 2

T2∑
l=1

(
1− lNC

NK

)
R2(l)

]
(24)200

where201

R2(l) ≈ R̂2(l)

=
1

NK − lNC

NC∑
i=1

NK/NC−l∑
m=1

[
IF (x(i,m))

IF∪F̃ (x
(i,m))

IF (x(i,m+l))

IF∪F̃ (x
(i,m+l))

]
− K̂2

2

(25)202
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and T2 is the first odd positive integer for which R̂2(T1 + 1) + R̂2(T1 + 2) is203

negative.204

Combining Eqs.(19) and (20), an unbiased estimator of K is constructed205

as206

K̂ ≈ K̂2

K̂1

− K̂2

K̂3
1

Var(K̂1). (26)207

The estimator of K given in Eq. (26) is asymptotically unbiased and consis-208

tent, as proved in Appendix A.209

When Eq. (26) is used to estimate the correction term K, the variance of210

the estimator K is given by211

Var(K̂) ≈ Var(K̂2)

K̂2
1

+
K̂2

2

K̂4
1

Var(K̂1). (27)212

The proof of Eq. (27) can be found in Appendix A. The coefficient of variation213

of K̂ is then estimated as214

Cov(K̂) ≈

√
Var(K̂)

K̂
, (28)215

in which Cov = coefficient of variation. Cov(K̂) measures the accuracy of the216

estimator K̂. Besides, it is used as the convergence criterion for the adaptive217

refinement of the metamodel, which will be introduced in Section 3.2.218

3.2. Adaptive refinement of the metamodel219

Although the proposed method is independent of the adopted metamodel,220

a metamodel of high accuracy is still preferred since it affects the efficiency221

of computing the correction term K. Because of this, an adaptive strategy is222

developed to simultaneously refine the metamodel and update the correction223

term. The general idea is to enrich the DoE with additional ‘useful’ samples224
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until a more strict criterion is satisfied. A straightforward way is to add NK225

Markov chain samples used in the computation of the correction term to the226

initial DoE. However, the target distribution of the Markov chain is hF∪F̃ (x).227

These NK samples tend to concentrate in the regions of F ∪F̃ . Therefore, the228

real failure region F may not be adequately explored if only these samples229

are added to the DoE. It is proposed to further enrich the DoE by adding230

another NM samples that distributed as hF̃ (x) = IF̃ (x)fX(x)/P (F̃ ). The231

NM samples are selected as the K -means clusters’ center of a large sample232

population (say 104 samples) generated by Markov chain simulation from the233

metamodel-based failure region F̃ . As the centroids of the clusters identified234

by the K -means algorithm, these NM samples are more likely to dispersely235

populate the region of F̃ . Although F̃ deviates from F at the initial stage,236

it is expected that F̃ will approach to F as the refinement continues and the237

clusted NM centroids can enhance the exploration of F . As a consequence,238

by adding NK Markov chain samples and NM centroids of the clusters to the239

DoE, the failure region F can be better approximated and thus an improved240

metamodel can be obtained.241

Based on the refined metamodel g̃(x) and corresponding metamodel-242

based failure region F̃ obtained above, one can generate another NK Markov243

chain samples that distributed according to the new event F ∪ F̃ to estimate244

the new correction term. These new NK Markov chain samples, together245

with new NM centroids of the clusters of a large sample population from the246

refine failure region F̃ , are used to further enrich the current DoE, and to re-247

fine the current metamodel g̃(x). The above adaptive refinement is repeated248

until either of the following criterion is satisfied: the coefficient of variation249
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Figure 1: Flowchart of the adaptively refinement scheme.

of K reaches the target value, i.e., Cov(K̂) 6 CovK , or the total number250

of LSF calls exceeds the threshold, i.e., Ncall > Nmax. The algorithm for251

adaptively refining the metamodel is summarized in Figure 1252

According to the authors’ experience, a satisfied mix proportion of NK253

and NM can be adopted as NK/NM = 1, and their initial values are both254

selected as N0. Thus, the total number of samples used to adaptively refine255
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the metamodel is 2iN0, where i represents the number of the iterations.256

4. Procedure of the unbiased metamodel method257

The proposed methodology can be summarized as follows.258

Step 1 Construction of the initial metamodel: Generate an initial K-259

riging metamodel as described in Section 2 based on m initial DoE260

samples.261

Step 2 Adaptive refinement of the metamodel and correction term:262

Generate NK Markov chain samples to estimate the correction term for263

the Kriging metamodel obtained in Step 1. Enrich the initial DoE by264

adding these NK samples and another NM centroids of the clusters of a265

large sample population from the failure region F̃ , and then adaptively266

refine the metamodel and its correction term as described in Section267

3.2, until the convergence criterion is satisfied.268

Step 3 Estimation of the failure probability: Compute the failure prob-269

ability based on the refined metamodel and its correction term that270

obtained in Step 2 according to Eq. (11). Since the expression of the271

refined metamodel has been extracted in Step 2, the metamodal-based272

failure probability P (F̃ ) can be readily estimated by the direct Monte273

Carlo simulation. The coefficient of variation of the failure probability274

is approximated by275

Cov(P̂F ) ≈
√

Cov2(P̂F̃ ) + Cov2(K̂). (29)276

The derivation of Eq. (29) can be found in Appendix B.277
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In the proposed method, Steps 1 and 2 requires multiple evaluations of278

the LSF. Since m DoE samples are used to construct the initial Kriging279

metamodel in Step 1, and 2iN0 samples are used to adaptively refine the280

metamodel in Step 2, the total number of function evaluations of LSF is m+281

2iN0. For most reliability analysis of structures of practical interest, majority282

of the computational cost is expended on the multiple evaluations of LSF. The283

CPU time needed for constructing the Kriging metamodel is insignificant in284

comparison with that of performing multiple limit state analyses. Therefore,285

the total number of function calls of the LSF to achieve a given accuracy is286

used in this work as the relevant measure of the computational cost.287

5. Examples288

Three examples from literature were selected to demonstrate the proposed289

method. The performance of the proposed method is examined through290

comparison with importance sampling (IS) and directional sampling (DS) in291

[25], and two commonly used metamodel methods including the Kriging and292

high dimensional model representation (HDMR) method [10]. The accuracy293

of the methods are assessed by comparing with the ‘exact’ probability of294

failure given by standard Monte Carlo simulation. To obtain a variance-295

type error estimate, each method was repeated 20 times to obtain a sample296

of 20 results. On the basis of the 20 calculations, the sample coefficient of297

variation (Cov) for the estimated failure probability by each method was298

calculated and compared. In all the metalmodel methods, the initial DoE299

were generated by using Latin Hypercube sampling.300
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5.1. Example 1: a series system with four branches301

The first example is a series system with four branches which has been302

studied in [15, 19, 26]. The failure probability is controlled by two linear and303

two nonlinear limit states defined as follows:304

g (x1, x2) = min



3 + 0.1(x1 − x2)
2 − (x1+x2)√

2

3 + 0.1(x1 − x2)
2 + (x1+x2)√

2

(x1 − x2) +
7√
2

(x2 − x1) +
7√
2

(30)305

where x1 and x2 are independent standard normal variables. The different306

branches have comparable contribution to the system failure probability. As307

the limit state is explicit and relatively simple, using the metamodel method308

for this example offers no particular advantage. The purpose of the example309

is to graphically demonstrate the refined Kriging metamodel, together with310

the Markov chain samples in the computation of correction term and the311

K-means clusters’ centers.312

Figure (2a) and (2b) plot the actual and the approximated limit state sur-313

face, 50 initial DoE samples, 66 additional samples that are used to adaptively314

refine the metamodel, including the Markov chain samples and centroids of315

the clusters identified by the K-means algorithm. It can be seen that, with316

the initial DoE samples, the direct Kriging metamodel leads to noticeable317

error in the LSF approximation. By enriching the DoE with some ‘useful’318

samples, the accuracy of the adaptively refined Kriging metamodel has been319

significantly improved, especially in the region of most likely failure. This320

illustrates the effectiveness of the adaptive refinement strategy developed in321

this study. From Figure (2b), it is also clear that the Markov chain samples322
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Figure 2: Example 1: Adaptive refinement of the Kriging metamodel.
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concentrate in the region of higher probability density in the failure region,323

thus the real failure region cannot be sufficiently approximated if just adding324

the Markov chain samples into the initial DoE. The supplement of K -means325

clusters center from the metamodel-based failure region F̃ to DoE helps to326

refine the Kriging metamodel.327

Table 1: Reliability results of Example 1.

Method Ncall P̂F Cov εP̂F
(%)

MCS 106 2.233× 10−3 0.021 -

DS [25] 9192 2.6× 10−3 - 16.44

IS [25] 4750 2.2× 10−3 - 1.48

Kriging 116 2.889× 10−3 0.4128 29.4

400 2.782× 10−3 0.4686 24.59

600 2.450× 10−3 0.1597 9.72

Proposed method 116 2.22× 10−3 0.047 0.58

Table 1 compares the failure probabilities and the number of function328

calls of LSF of different methods. The ‘exact’ probability of failure was329

found to be 2.233× 10−3 using 106 Monte Carlo simulations. It can be seen330

that the proposed method agrees reasonably well with the exact solution331

at the expense of a significantly smaller Ncall than the simulation methods.332

Specifically, with the same number of Ncall (i.e., Ncall = 116), the relative333

error of the proposed method and the direct Kriging method is 0.58% and334

29.4%, respectively. This illustrates that the correction term can eliminate335

the approximation error induced by direct Kriging metamodel and achieve336
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an accurate estimate of the failure probability even a poor metamodel is337

used. With the increasing number of DoE samples (e.g., N = 600), the accu-338

racy of the direct Kriging metamodel method is improved, and comparable339

accuracy can be achieved as the proposed method. This suggests that the340

proposed method can be particularly advantageous when the number of Ncall341

is relatively small.342

5.2. Example 2: a nonlinear oscillator343

A non-linear undamped single degree of freedom system shown in Figure 3344

is considered next. The problem involves six random variables and is a classic345

illustration in the literatures [19, 26, 27]. The statistics of the basic random346

variables are given in Table 2. The limit state is defined by347

g(x) = 3r − |zmax| = 3r −
∣∣∣∣ 2F1

mω2
0

sin

(
ω2
0t1
2

)∣∣∣∣ (31)348

where zmax represents the maximum displacement response of the system,349

ω0 =
√

(c1 + c2)/m, and r is the displacement at which one of the springs350

yields.351
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Figure 3: Example 2: a nonlinear oscillator.

In the proposed method, the initial DoE size is adopted as 100, and the352

number of the samples added to the DoE in each round of iteration is 6.353

19



Table 2: Random variables of the non-linear oscillator.

Variable Distribution Mean Standard deviation

m Normal 1 0.05

c1 Normal 1 0.1

c2 Normal 0.1 0.01

r Normal 0.5 0.05

F1 Normal 1 0.2

t1 Normal 1 0.2

Since a moderate number of random variables is involved in this example,354

the commonly used 2nd-order HDMR metamodel method is also used to355

compare with the proposed method.356

Table 3 compares the failure probabilities and the number of function357

calls of LSF of different methods. The probability of failure is found to be358

2.834 × 10−2 using 7 × 104 direct Monte Carlo simulation. Similar observa-359

tions are made as in Example 1, the proposed method achieved the highest360

accuracy among all methods with the smallest number of function calls of361

LSF. The proposed method converges to the ‘exact’ solution with only 233362

samples, while 2nd-order HDMR metamodel requires at least 577 samples363

to achieve the comparable accuracy. With a relative large number of DoE364

samples, e.g., Ncall = 600, the relative error obtained from the Kriging meta-365

model method is still noticeably larger than that of the new method with 233366

samples. The Cov(P̂F ) for these two cases are 0.17 and 0.072, respectively.367

This demonstrates the advantage of the proposed method over the direct368
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Table 3: Reliability results of Example 2.

Method Ncall P̂F Cov εP̂F
(%)

MCS 7× 104 2.834× 10−2 0.022 -

DS 1281 3.5× 10−2 - 23.5

IS 6144 2.7× 10−2 - 4.73

Kriging 233 5.077× 10−2 0.26 79.15

400 3.763× 10−2 0.28 32.78

600 3.086× 10−2 0.17 8.89

2nd-order HDMR 577 2.936× 10−2 - 3.60

Proposed method 233 2.844× 10−2 0.072 0.35

Kriging metamodel method.369

5.3. Example 3: a roof structure370

Consider a roof structure, which is subjected to a uniformly distributed371

vertical load q, as shown in Figure 4. The example is adopted from [28–372

30]. The top cords and the compression bars are concrete, and the bottom373

cords and the tension bars are steel. In structural analysis, the uniformly374

distributed load q was transformed into three nodal loads, each is P = ql/4.375

The serviceability limit state of the structure with respect to its maximum376

vertical displacement was considered. The limit state function is given by377

g = ua −
ql2

2

(
3.81

AcEc

+
1.13

AsEs

)
(32)378

in which ua is the allowable displacement and is set to be 0.03 m, E and379

A denote the Modulus of elasticity and cross-sectional area, and the sub-380
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Figure 4: Example 3: a roof structure.

scripts s and c indicate the material steel and concrete, respectively. Table 4381

summarizes the statistical information of the random variables. All random382

variables are assumed independent normals.383

Table 5 lists the reliability results of different methods.The probability of384

failure is found to be 9.37×10−3 after 5×107 direct Monte Carlo simulation-385

s. Again, it can be observed that the proposed method gives a reasonable386

result at a small computational effort. With a relative small size of DoE387

(i.e., Ncall < 600), the Kriging metamodel method is less accurate than the388

proposed method, illustrating the importance of the correction term. With389

220 samples, Cov(P̂F ) of the proposed method is 0.035, while Cov(P̂F ) of390

the Kriging metamodel method is still 0.36 even 600 DoE samples are used.391

Noted that the above sample coefficient of variation is computed from 20392
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runs of the proposed method, and is very close to the theoretical value of393

0.032 which is calculated from Eq. (29). This shows that the coefficient of394

variation obtained from Eq. (29) agrees well with the empirical result. It395

should be noted that, with 800 samples, the relative error of the Kriging396

method is even larger than that of with 600 samples, illustrating that the397

accuracy of the direct metamodel method cannot be guaranteed even a large398

number of function calls of LSF is used.399

Table 4: Random variables of the roof truss.

Variable Distribution Mean Cov

q(N/m) Normal 20000 0.07

l(m) Normal 12 0.01

AS(m
2) Normal 9.82× 10−4 0.06

AC(m
2) Normal 400× 10−4 0.12

ES(N/m
2) Normal 1× 1011 0.06

EC(N/m
2) Normal 2× 1010 0.06

6. Conclusion400

A new unbiased metamodel method has been developed for efficient re-401

liability assessment. The method formulates the probability of failure as402

a product of a metamodel-based failure probability and a correction term.403

The correction term is used to quantify and further eliminate the error re-404

sulting from approximating the real limit state function with the metamodel.405

Due to the introduction of correction term, the new method can obtain an406

23



Table 5: Reliability results of Example 3.

Method Ncall P̂F Cov εP̂F
(%)

MCS 5× 107 9.373× 10−3 0.001 -

Subset Simulation 54× 103 9.647× 10−3 - 2.92

IS 2000 9.361× 10−3 - 0.13

Kriging 220 2.534× 10−2 0.59 170.35

400 1.231× 10−2 0.44 31.35

600 7.265× 10−3 0.36 22.49

800 6.732× 10−3 0.27 28.81

2nd-order HDMR 577 9.3× 10−3 - 0.78

Proposed method 220 9.555× 10−3 0.035 1.94

asymptotically unbiased estimate of the probability of failure even when a407

poor metamodel is used. The developed iterative procedure can efficiently408

improve the accuracy of the metalmodel and the associated correction ter-409

m. The proposed methodology is general and applicable to any metamodel410

methods.411

The efficiency and accuracy of the proposed methodology was demon-412

strated through three examples, including a series system with multiple de-413

sign points, and two structural problems involving moderate dimensions.414

For all examples, it was observed that the proposed method is more accurate415

and efficient than the conventional Kriging metamodel and high dimensional416

model representation method. The proposed unbiased metamodel method417

can be a useful tool for structural reliability analysis, particularly for prob-418
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lems with complex implicit limit state functions.419
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Appendix A. Estimation of correction term425

In this appendix, we will derive the bias that induced by using Eq. (19) to426

estimate the correction term K. Based on this bias, we will further construct427

an asymptotically unbiased estimator of K. The variance of the modified428

estimator will also be derived.429

In Section 3.1, it has been pointed out that the estimator of K in Eq. (19)430

is biased. Although K̂2 and K̂1 are asymptotically unbiased estimators, their431

ratio is biased. In order to estimate this bias, we take the 2nd-order Taylor’s432
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expansion on the estimator K in Eq. (19) as433

K(K̂1, K̂2) ≈ K(K̂1, K̂2)
∣∣∣
K1,K2

+
∂K(K̂1, K̂2)

∂K̂1

∣∣∣∣∣
K1,K2

(K̂1 −K1)

+
∂K(K̂1, K̂2)

∂K̂2

∣∣∣∣∣
K1,K2

(K̂2 −K2)

+
1

2

∂2K(K̂1, K̂2)

∂K̂2
1

∣∣∣∣∣
K1,K2

(K̂1 −K1)
2

+
1

2

∂2K(K̂1, K̂2)

∂K̂2
2

∣∣∣∣∣
K1,K2

(K̂2 −K2)
2

+
∂2K(K̂1, K̂2)

∂K̂1∂K̂2

∣∣∣∣∣
K1,K2

(K̂1 −K1)(K̂2 −K2).

(A.1)434

By taking expectation on both sides of Eq. (A.1), we have435

E[K(K̂1, K̂2)] ≈
K2

K1

+
K2

K3
1

Var(K̂1). (A.2)436

Noted that E[(K̂1 −K1)(K̂2 −K2)] can be considered as zero in the above437

derivation since the value of the 2nd-order term (K̂1−K1)(K̂2−K2) is signif-438

icantly less than the other terms. In Eq. (A.2), the term of (K2/K
3
1)Var(K̂1)439

is the bias that induced by using Eq. (19) to estimate the correction term K.440

By substituting Eq. (21) to the formula of the bias, we have441

Bias(K̂) =
K2

NKK3
1

R1(0) + 2

NK/NC−1∑
l=1

(
1− lNC

NK

)
R1(l)

 . (A.3)442

From Eq. (A.3), it can be seen that the bias tends to zero as the number of443

Markov chain samples NK approaches to infinity. Only in such a case, the444

estimator of K given in Eq. (19) is asymptotically unbiased. However, in445

practice, one can never generate infinite Markov chain samples and thus the446
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estimator of K is biased. In order to eliminate this bias, a new estimator of447

K is constructed by subtracting the above computed bias from the estimator448

given in Eq. (19) as449

Km(K̂1, K̂2)

= K(K̂1, K̂2)−
K2

K3
1

Var(K̂1)

≈ K(K̂1, K̂2)−
K̂2

K̂3
1

Var(K̂1).

(A.4)450

Taking expectation on both sides of Eq. (A.4), we have451

E
[
Km(K̂1, K̂2)

]
= E[K(K̂1, K̂2)]−

K2

K3
1

Var(K̂3
1) ≈

K2

K1

. (A.5)452

Eq. (A.5) illustrates that the constructed estimator Km in Eq. (A.4) is an453

asymptotically unbiased estimation of the correction term K.454

The variance of the new estimator Km is formulated as455

Var[Km(K̂1, K̂2)]

= E

[{
Km(K̂1, K̂2)− E[Km(K̂1, K̂2)]

}2
]

= E

[{
K
(
K̂1, K̂2

)
− E[K(K̂1, K̂2)]

}2
]

≈ E

(K̂2

K̂1

− K2

K1

)2
 ≈ Var(K̂2

2)

K2
1

+
K2

2

K4
1

Var(K̂1).

(A.6)456

By substituting Eq. (23) and Eq. (24) into Eq. (A.6), the variance of Km457
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becomes458

Var[Km(K̂1, K̂2)]

=
1

NKK2
1

R2(0) + 2

NK/NC−1∑
l=1

(
1− lNC

NK

)
R2(l)


+

K2
2

NKK4
1

R1(0) + 2

NK/NC−1∑
l=1

(
1− lNC

NK

)
R1(l)

 .

(A.7)459

It can be concluded from Eq. (A.7) that the variance of the new estimatorKm460

tends to zero as NK approaches to infinity, illustrating that the constructed461

estimator of K is consistent.462

Appendix B. Coefficient of variation of P̂F463

This section shows the derivation of the coefficient of variation of the464

failure probability given in Eq. (29). The variance of P̂F can be formulated465

as466

Var(P̂F ) = E[P̂ 2
F ]− E[P̂F ]

2. (B.1)467

We rewrite P̂F as P̂F = P̂F̃ ·K̂, and noticing that P̂F̃ and K̂ are independent,468

Eq. (B.1) then becomes469

Var(P̂F ) = E[P̂ 2
F̃
]E[K̂2]− E[P̂F̃ ]

2E[K̂]2

=
(
E[P̂F̃ ]

2 +Var(P̂F̃ )
)(

E[K̂]2 +Var(K̂)
)
− E[P̂F̃ ]

2E[K̂]2.
(B.2)470

Since the estimators of both P̂F̃ and K̂ are unbiased, Eq. (B.2) can be further471

simplified as472

Var(P̂F ) =
(
P̂ 2
F̃
+Var(P̂F̃ )

)(
K̂2 +Var(K̂)

)
− P̂ 2

F̃
K̂2

= Var(P̂ 2
F̃
)Var(K̂) + P̂ 2

F̃
Var(K̂) + K̂2Var(P̂F̃ ).

(B.3)473
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Thus, the coefficient of variation of P̂F can be formulated as474

Cov(P̂F ) =

√
Var(P̂F )

P̂F

=

√
Var(P̂F )

P̂F K̂

=

√
Cov2(P̂F̃ ) + Cov2(K̂) + Cov2(P̂F̃ )Cov

2(K̂).

(B.4)475

Since the product of Cov2(P̂F̃ ) and Cov2(K̂) in Eq. (B.4) is significantly less476

than the first two terms, the coefficient of variation of P̂F is simplified as477

Cov(P̂F ) ≈
√

Cov2(P̂F̃ ) + Cov2(K̂). (B.5)478

References479

[1] C. Bucher, T. Most, A comparison of approximate response functions480

in structural reliability analysis, Probabilistic Engineering Mechanics481

23 (2-3) (2008) 154–163.482

[2] H. Dai, H. Zhang, W. Wang, A multiwavelet neural network-based483

response surface method for structural reliability analysis, Computer-484

Aided Civil and Infrastructure Engineering 30 (2) (2015) 151–162.485

[3] H. Dai, G. Xue, W. Wang, An adaptive wavelet frame neural network486

method for efficient reliability analysis, Computer-Aided Civil and In-487

frastructure Engineering 29 (10) (2014) 801–814.488

[4] J. E. Hurtado, D. A. Alvarez, Neural-network-based reliability analy-489

sis: a comparative study, Computer Methods in Applied Mechanics and490

Engineering 191 (1-2) (2001) 113–132.491

29



[5] H. Dai, B. Zhang, W. Wang, A multiwavelet support vector regres-492

sion method for efficient reliability assessment, Reliability Engineering493

& System Safety 136 (2015) 132–139.494

[6] J. E. Hurtado, An examination of methods for approximating implicit495

limit state functions from the viewpoint of statistical learning theory,496

Structural Safety 26 (3) (2004) 271–293.497

[7] J. E. Hurtado, D. A. Alvarez, Classification approach for reliability anal-498

ysis with stochastic finite-element modeling, Journal of Structural En-499

gineering 129 (8) (2003) 1141–1149.500

[8] H. Dai, H. Zhang, W. Wang, A support vector density-based importance501

sampling for reliability assessment, Reliability Engineering & System502

Safety 106 (2012) 86–93.503

[9] R. Chowdhury, B. N. Rao, Assessment of high dimensional model rep-504

resentation techniques for reliability analysis, Probabilistic Engineering505

Mechanics 24 (1) (2009) 100–115.506

[10] R. Chowdhury, B. N. Rao, A. M. Prasad, High-dimensional model rep-507

resentation for structural reliability analysis, Communications in Nu-508

merical Methods in Engineering 25 (4) (2009) 301–337.509

[11] G. Blatman, B. Sudret, An adaptive algorithm to build up sparse poly-510

nomial chaos expansions for stochastic finite element analysis, Proba-511

bilistic Engineering Mechanics 25 (2) (2010) 183–197.512

[12] J. Li, D. Xiu, Evaluation of failure probability via surrogate models,513

Journal of Computational Physics 229 (23) (2010) 8966–8980.514

30



[13] I. Kaymaz, Application of kriging method to structural reliability prob-515

lems, Structural Safety 27 (2) (2005) 133–151.516

[14] B. J. Bichon, M. S. Eldred, L. P. Swiler, S. Mahadevan, J. M. McFarland,517

Efficient global reliability analysis for nonlinear implicit performance518

functions, AIAA Journal 46 (10) (2008) 2459–2468.519

[15] F. Cadini, F. Santos, E. Zio, An improved adaptive kriging-based impor-520

tance technique for sampling multiple failure regions of low probability,521

Reliability Engineering & System Safety 131 (2014) 109–117.522

[16] Z. Lv, Z. Lu, P. Wang, A new learning function for kriging and its523

applications to solve reliability problems in engineering, Computers &524

Mathematics with Applications 70 (5) (2015) 1182–1197.525

[17] V. Dubourg, B. Sudret, F. Deheeger, Metamodel-based importance sam-526

pling for structural reliability analysis, Probabilistic Engineering Me-527

chanics 33 (2013) 47–57.528

[18] I. Depina, T. M. H. Le, G. Fenton, G. Eiksund, Reliability analysis with529

metamodel line sampling, Structural Safety 60 (2016) 1–15.530

[19] B. Echard, N. Gayton, M. Lemaire, AK-MCS: An active learning relia-531

bility method combining kriging and monte carlo simulation, Structural532

Safety 33 (2) (2011) 145–154.533

[20] D. R. Jones, M. Schonlau, W. J. Welch, Efficient global optimization534

of expensive black-box functions, Journal of Global Optimization 13 (4)535

(1998) 455–492.536

31



[21] G. Matheron, The intrinsic random functions and their applications,537

Advances in Applied Probability 5 (3) (1973) 439–468.538

[22] C. P. Robert, G. Casella, Monte Carlo statistical methods, Springer,539

2004.540

[23] S. K. Au, J. L. Beck, Estimation of small failure probabilities in high541

dimensions by subset simulation, Probabilistic Engineering Mechanics542

16 (4) (2001) 263–277.543

[24] A. Gelman, J. B. Carlin, H. Stern, D. B. Rubin, Bayesian Data Analysis,544

Vol. Third Edition, CRC Press, London, 2014.545

[25] L. Schueremans, D. Van Gemert, Benefit of splines and neural network-546

s in simulation based structural reliability analysis, Structural Safety547

27 (3) (2005) 246–261.548

[26] X. Huang, J. Chen, H. Zhu, Assessing small failure probabilities by AK-549

SS: An active learning method combining kriging and subset simulation,550

Structural Safety 59 (2016) 86–95.551

[27] H. Dai, H. Zhang, K. J. R. Rasmussen, W. Wang, Wavelet density-based552

adaptive importance sampling method, Structural Safety 52 (2015) 161–553

169.554

[28] S. Song, Z. Lu, H. Qiao, Subset simulation for structural reliability sen-555

sitivity analysis, Reliability Engineering & System Safety 94 (2) (2009)556

658–665.557

32



[29] H. Zhao, Z. Yue, Y. Liu, Z. Gao, Y. Zhang, An efficient reliability558

method combining adaptive importance sampling and kriging metamod-559

el, Applied Mathematical Modelling 39 (7) (2015) 1853–1866.560

[30] V. Dubourg, B. Sudret, Meta-model-based importance sampling for re-561

liability sensitivity analysis, Structural Safety 49 (2014) 27–36.562

33


