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ABSTRACT 

 

In saliency object detection, inappropriate boundary- 

background priors is known to degrade performance in 

challenging image datasets, and even may lead to ‘inverse’ 

results when saliency regions are attached to the image 

boundaries. This is an active field where many works have 

proposed various techniques to lessen such degradation by 

inappropriate boundary-background priors. Although the use 

of boundary-background priors has shown to be capable of 

improving the detection, inherently, these techniques 

confront serious challenges in background suppression. To 

overcome this limitation, we propose an adaptive background 

extractor to search background seeds without the need of 

boundary-background priors. With the adaptive background 

seeds, the saliency objects can be then extracted via our 

proposed hierarchical foreground estimation model. We 

evaluate our adaptive Background Search and Foreground 

Estimation (BSFE) algorithm in comparison with six state-

of-the-art methods on four well-recognized public datasets. 

The experimental results demonstrate that our BSFE 

algorithm outperforms compared methods in majority of the 

datasets and in particular achieves double-winners in terms of 

F-measure and mean absolute error on two challenging 

datasets. 

 

Index Terms— saliency detection, autoencoder, deep 

learning 

 

1. INTRODUCTION 

 

Saliency detection aims to predict the most informative 

regions of the images and serves as a fundamental process for 

a large variety of multimedia tasks, such as in image montage 

[6], action recognition [27], and image segmentation [14]. As 

a sub-field of saliency detection, saliency object detection has 

gained intensive attention since it tends to extract whole 

meaningful objects compared to saliency fixation prediction 

which focuses on the human fixation locations. 

A common approach for saliency object detection is to 

select several background seeds as the first step and then to 

apply various strategies to form the saliency map, such as 

cellular automata [16], manifold ranking [13, 25], bootstrap 

learning [21], Markov chain [12, 15], normalized cut [8], and 

foreground connectivity [20]. The background seeds 

selection thus is an essential step and directly affects the 

accuracy of the saliency detection. However, most existing 

methods [10, 12, 16, 21] simply use image boundaries as the 

background seeds. Such boundary-background seed 

selections are technically sound for simple image sets (e.g. 

MSRA-10K [7]), but are at risk of failing to produce saliency 

map for complex image sets (e.g. ECSSD [24] and PASCAL-

S [14]) when the candidate objects are attached to the image 

boundaries. Although some works [13] have improved the 

boundary-background priors, it is still insufficient for precise 

saliency detection. 

To deal with the above limitations, high-level features 

are extracted by deep neural networks for saliency 

region/object prediction. Compared to the conventional 

methods, recent works [22, 26, 28] with high-level features, 

generated saliency maps directly from the deep neural 

networks, and therefore did not rely on boundary-background 

priors; these high-level features proved more effective than 

low-level features. Hence, we exploit the high-level features 

that are extracted by a comprehensive autoencoder (AE), 

which has the advantage of exploring intrinsic structures of 

the input data [17].  

The works of [10, 11] have studied the AE in saliency 

detection. However, [11] focused on saliency fixation 

prediction and cannot be directly applied in saliency object 

detection. In [10], they only utilized AE for classification and 

 
Figure 1. Overview of our proposed BSFE method for saliency 

detection.  
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still heavily relied on boundary-background priors. As shown 

in Figure 1, in this work, we propose an AE-based approach 

to first search the background seeds with no need of 

boundary-background priors and then hierarchically form the 

final saliency map via data reconstruction capability inherent 

in AE. Our work has two major contributions. Firstly, our 

proposed adaptive background extractor can approximate 

background regions semantically and cognitively, and thus 

improves the accuracy of saliency detection. Secondly, with 

the image segmentation algorithm, we hierarchically utilize 

the favorable capacity of data reconstruction of AE to tune 

the saliency map. 

 

2. METHODOLOGY 

 

In this section, we propose two individual stacked 

autoencoder (SAE) models for adaptive background search 

and foreground estimation respectively. As shown in Figure 

2, SAE is one type of deep neural network tending to learn 

feature representation and data reconstruction. With a 

classifier (e.g. softmax regression) on the top of the feature 

representation layer, SAE can serve as a powerful supervised 

learning model for classification of unlabeled data. To better 

understand our algorithm, we refer readers to [10, 11] for the 

theory of SAE. 

 

2.1. Adaptive Background Search 

 

In this sub-section, the rough background region of an image 

can be adaptively extracted by our proposed background 

search SAE model (BS-SAE), which has favorable capability 

of feature representation. Specifically, for a three-channel 

image patch 𝑝𝑏𝑠  with the size of 𝑚 ×𝑚  pixels from the 

training image 𝐼 , the input vector 𝑓(𝑝𝑏𝑠)  of BS-SAE is 

obtained by 

 

 𝑓(𝑝𝑏𝑠) = [
𝑔(𝑝𝑏𝑠)

𝑔(𝐼)
] (1) 

 

where 𝐼 ∈ ℝ𝑚×𝑚×3 is the resized image of 𝐼, and following 

[22], 𝑚  is set to 51 in this work; 𝑔(∙) is the vectorization 

operation, and thus we have 𝑓(𝑝𝑏𝑠) ∈ ℝ
15606×1. As 𝑓(𝑝𝑏𝑠) is 

the concatenation of local context (𝑝𝑏𝑠) and global context 

(𝐼), the trained BS-SAE model can infer background region 

from holistic view, rather than strictly local view [22] or 

regional view [11]. 

With the feature representations of each image patch by 

the trained BS-SAE model, we use softmax regression to 

measure the probability of each image patch being 

background. This generates a background mask 𝑀𝑏𝑠  of 𝐼 , 

which can be utilized for further foreground estimation 

(Section 2.2). As shown in Figure 3, compared to the 

conventional boundary-background priors [9, 10, 12, 13, 21, 

23, 25], such background mask can capture the background 

region semantically and cognitively, thus it is adaptive for 

background search.  

 

2.2. Foreground Estimation 

 

In this sub-section, we propose our estimation of finer object 

saliency with the guidance of the background mask. To 

improve the efficiency of our algorithm, we transform 𝑀𝑏𝑠 to 

a superpixel-wise background mask and use superpixel as the 

atomic unit in further operation. This can be easily 

implemented by calculating the mean value of pixels 

belonging to one superpixel as the probability of the 

superpixel being background. For brevity, we use 𝑀𝑏𝑠 

defined in Section 2.1 to denote the superpixel-wise 

background mask unless otherwise specified. In this work, we 

partition each image into 250 superpixels using the SLIC 

algorithm [2]. 

With the testing image 𝐼  and the corresponding 

background mask 𝑀𝑏𝑠 , we construct the foreground 

estimation SAE model (FE-SAE) to extract the foreground of 

𝐼. Different from the BS-SAE model, the RGB histogram of 

the superpixel, with 20 bins in each color channel, are 

exploited as the input vector of the FE-SAE; and there is no 

 
Figure 2. Illustration of SAE. The red nodes are original input 

data; the yellow nodes are feature representation; the green 

nodes are data reconstruction; and the blue nodes are outputs of 

softmax regression for binary classification.  

 
Figure 3. Examples of background mask by BS-SAE. 



softmax regression in FE-SAE, thus it is totally an 

unsupervised learning model. Only those superpixels whose 

values on 𝑀𝑏𝑠 are more than 0.7 are selected as the training 

set for the FE-SAE model. 

After the training of FE-SAE, we calculate the 

reconstruction residual 𝑟𝑝𝑓𝑒 for each superpixel 𝑝𝑓𝑒 of 𝐼 by 

 

 𝑟𝑝𝑓𝑒 = ‖ℎ(𝑝𝑓𝑒) − ℎ̅(𝑝𝑓𝑒)‖ (2) 

 

where ℎ(𝑝𝑓𝑒) is the original input vector corresponding to 

𝑝𝑓𝑒  and ℎ̅(𝑝𝑓𝑒) is the data reconstruction of ℎ(𝑝𝑓𝑒) by FE-

SAE. Inspired by [10], our idea is that as the FE-SAE is 

constructed by the background superpixels, the superpixels 

belonging to background have low reconstruction residual, 

while those belonging to foreground have high reconstruction 

residual. Hence, we use the reconstruction residual to 

measure the saliency value of 𝑝𝑓𝑒  with the following 

formula: 

 

 

{
  
 

  
 𝑠𝑝𝑓𝑒 =

1

1 + 𝑒
𝜉(𝑢−𝑟𝑝𝑓𝑒)

𝑢−𝑣

𝑢 = max{𝑟𝑝: 𝑝 ∈ 𝒟}

𝑣 =
1

|𝒟|
∑ 𝑟𝑝
𝑝∈𝒟

 (3) 

 

where 𝜉 is the smooth factor and set to 6 empirically; 𝑟𝑝 is the 

reconstruction residual of superpixel 𝑝 by (2); and 𝒟 is the 

training set of FE-SAE. 

Considering the complex background which may impede 

the precise foreground estimation, we hierarchically conduct 

foreground estimation algorithm in regional scales for better 

performance. Specifically, the testing image 𝐼  is first 

segmented into two regions by Ncut algorithm [19]. Two 

individual FE-SAEs are then constructed respectively under 

the two regions and each superpixel of 𝐼 is assigned to the 

saliency value by (3) with the corresponding FE-SAE. In the 

next hierarchy, we segment the two regions respectively to 

generate four smaller regions and construct four individual 

FE-SAEs corresponding to these regions. Each superpixel of 

𝐼  is assigned to the new saliency value by (3) in this 

hierarchy. Note that in each segmentation operation, only two 

sub-regions are generated and the region is no longer 

segmented when |𝒟′| ≤ 0.3 × |𝒜|  or |𝒟′| ≥ 0.7 × |𝒜| , 

where 𝒟′  and 𝒜  are the training set and superpixel set 

respectively corresponding to the region. This process is 

repeated until there regions to be segmented are exhausted. 

Finally, the saliency value of the superpixel is obtained by 

linearly combining the saliency values of each hierarchy. The 

constructed binary segmentation tree is shown in Figure 1 and 

the hierarchical foreground estimation algorithm is 

summarized in Algorithm 1.  

 

3. EXPERIMENT 

 

3.1. Setup 

 

For BS-SAE model, we stack three AEs to extract feature 

representation in high-level manners, with 7000, 3500 and 

2000 hidden nodes in each AE, respectively. As the MSRA-

10K [7] dataset provides a large variety of natural images and 

ECSSD PASCAL-S SED1 SED2

Figure 4. The PR curve, FM and MAE of benchmarking methods on four public datasets. The best and second best results are padded 

with red and blue rectangle respectively. 

Algorithm 1: Hierarchical Foreground Estimation 

Input: testing image 𝐼, background mask 𝑀𝑏𝑠 

Output: saliency map 𝑆 = {𝑠𝑝} 

1. 𝑆 ← 1 −𝑀𝑏𝑠 

2. segment 𝐼 into two regions 𝐼1 and 𝐼2 by Ncut algorithm [19] 

3. 𝒪 ← {𝐼1, 𝐼2} 
4. while 𝒪 ≠ ∅: 

5.  for each 𝑅 ∈ 𝒪: 

6.   select training set 𝐷𝑅
′  according to 𝑀𝑏𝑠 

7.   train FE-SAE 

8.   for each superpixel 𝑝 ∈ 𝑅: 

9.    calculate saliency value 𝑠𝑝
′  by (3) 

10.    𝑠𝑝 ← (𝑠𝑝 + 𝑠𝑝
′ )/2 

11.   end for 
12.  remove 𝑅 from 𝒪 

13.   if 0.3 × |𝑅| ≤ |𝐷𝑅
′ | ≤ 0.7 × |𝑅| then: 

14.   segment 𝑅 into two regions 𝑅1 and 𝑅2 by  

   Ncut algorithm 

15.    𝒪 ← 𝒪⋃{𝑅1, 𝑅2} 
16.   end if 

17.  end for 

18. end while 

 



the corresponding pixel-wise saliency annotations, we 

randomly selected 9000 images from the dataset to train the 

BS-SAE and left out 1000 images for use in the validation. 

As suggested in [10, 11], before input to BS-SAE, 𝑓(𝑝𝑏𝑠)  is 

corrupted to enhance the robustness across a large training 

set, in which some of the units are set to be zero randomly. 

For FE-SAE model, we stacked two AEs to boost the 

performance of data reconstruction, with 60 hidden nodes in 

each of the AE. As the number of training samples is small 

(generally less than 250), we did not corrupt the original input 

vector in FE-SAE to make the trained model more specific to 

the small training set. The two models were both 

implemented with Theano frame [4, 5], which enabled the use 

of GPU to boost the speed in the training phase. The 

hyperparameters in the training of BS-SAE and FE-SAE are 

listed in Table 1. 

 

3.2. Evaluation 

 

We evaluated our proposed algorithm on four public 

benchmark datasets, i.e. ECSSD [24], PASCAL-S [14], 

SED1 [3] and SED2 [3]. Six popular state-of-the-art 

algorithms were chosen as comparison methods, including 

RR15 [13], HS13 [24], MC13 [12], MR13 [25], FT09 [1] and 

LR12 [18]. Following [13, 21, 22], we adopt F-measure 

(FM), precision-recall (PR) curve and mean absolute error 

(MAE) [13] to evaluate the performances. The experimental 

results shown in Figure 4 quantitatively demonstrate the 

superiority of our method on most datasets. Note that our 

BSFE method even achieved double-best results in terms of 

FM and MAE on PASCAL-S and SED2 datasets which 

contain more challenging scenarios with complex structures 

and double-salient-objects. 

Figure 5 visually depicts that BSFE achieves best 

qualitative performance against comparison methods. For 

example, as shown in the first row, BSFE successfully 

recognized the whole saliency object while most of the other 

methods only recognized the main body of the airplane but 

failed to capture the wing and the landing gears. Such 

favorable performance is largely attributed to the BS-SDAE, 

as it can semantically infer the whole structure of the airplane 

from the learned features. Similarly in the third row, contrary 

to our method which accurately recognized the bicycle and 

the child as the salient objects, even the boundary-

background priors based comparison methods (e.g. RR15 and 

MC13) failed to capture the bicycle which covers and in 

contact with the bottom of the image.  

 

4. CONCLUSION 

 

In this study, we proposed a novel AE-based method for 

saliency object detection. Compared to most existing 

algorithms which simply treat image boundaries as 

background query seeds, our method self-adaptively searches 

background via the proposed BS-SAE model. The saliency 

map is produced by the proposed FE-SAE model, which 

hierarchically utilizes the capacity of data reconstruction of 

AE. Our method is compared against six popular state-of-the-

art methods on four datasets, demonstrating favorable 

superiority of our method quantitatively and qualitatively. 
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