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Abstract 

The first examples of adenine binding by isomeric organoplatinum(II) complexes bearing H-

bonding nicotinic and isonicotinic acid ligands are reported.  Notably, a subtle switching of the 

H-bonding functionality from the 3- to 4-position of the pyridyl ring leads to a significant 

change in both the strength of association and the site of adenine binding. 
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1. Introduction 

There is great interest in the study of synthetic receptors for the selective binding of 

nucleobases [1, 2], particularly derivatives of adenine, owing to their many important 

functional roles in biological systems, e.g. intracellular energy transfer, signal transduction and 

nucleic acid synthesis.  The interest of these systems is aimed at better understanding the 

intermolecular interactions that are involved in these diverse molecular bio-recognition 

processes, and to provide tools to aid in the design of efficient tailor-made probes and drugs 

that could be potentially applied in number of theranostic applications [3, 4]. Hydrogen 

bonding interactions are a major driving force in the formation of numerous supramolecular 

structures involving nucleobases with a variety of structural geometries [5]. Indeed, natural and 

artificial host-guest complexes as well as many nucleic acid structural elements are a direct 

result of specific, highly-directional intermolecular hydrogen bonding interactions [5, 6]. 

Various modes of hydrogen-bonding recognition have been shown to occur between 

nucleobases and simple carboxylic acids. For example, it has been demonstrated that many 

aromatic carboxylic acids preferentially bind Hoogsteen (HG) sites whereas aliphatic 

carboxylic acids bind preferentially at the Watson-Crick (WC) site [7, 8].  In addition to 

hydrogen-bonding, -stacking is usually found to augment the interaction involving aromatic 

hosts and nucleobase guests, and both macrocyclic and non-macrocyclic molecular receptors 

containing hydrogen-bonding and/or -stacking binding domains have been reported [9-22], 

all of which have the capacity to target nucleobases such as adenine and its derivatives.  

Theoretical studies have also complemented this work [14, 15]. 

 

Macrocyclic nucleobase receptors can discriminate their guest molecule by attributes such as 

size, electronic properties, nature of the hydrogen-bonding groups and the -stacking surface 

area [9, 10, 16, 23].  In contrast, non-macrocyclic “molecular tweezers” possess two binding 



 4 

sites with convergent functionality which are linked together by a spacer unit [9, 11-13, 17, 19-

22].  Molecular tweezers usually possess one or more hydrogen-bonding functionalities such 

as carboxylic acids or amides and, in some cases, converging aromatic surfaces that have the 

capacity to undergo -stacking interactions. Organometallic complexes in which direct 

coordination of adenine to the metal centre is augmented by H-bonding and -stacking 

interactions are also known [24, 25], but to the best of our knowledge there exist no examples 

in these systems whereby metal coordination does not play a key role in the recognition motif. 

 

We have previously reported the preparation, pKa data and X-ray structures of mononuclear -

phenylplatinum(II) complexes bearing carboxylic acid functionalities [26, 27].  Herein we 

report an example of the recognition of 9-sec-pentyladenine (9-PA) by two isomeric -

phenylplatinum(II) complexes of the type trans-[Pt(-C6H5)(PMePh2)2L]OTf (L = isonicotinic 

1 or nicotinic acid 2) bearing a single carboxylic acid functionality.  We have found that the 

binding modes and association constants (Kassoc) for the binding of 9-PA by the complexes 

differ quite considerably in CDCl3 solution. 

 

2. Results and Discussion 

The synthesis of complexes 1 and 2 has been previously reported by our group [26].  In the 1H 

NMR spectrum of free 9-PA in CDCl3 solution, the two resonances observed at  8.37 and  

7.80 are assigned to H-2 and H-8, respectively.  In the presence of 1, for example, the former 

signal was found move slightly upfield (H-2 = 0.02 [28]) whilst the latter shifted 

significantly downfield (H-8 = 0.10) consistent with a strong association between the nearby 

N-7 atom and the platinum(II) complex [7, 8].  Furthermore, the exocyclic NH2 signal was 

shifted downfield by 0.58 ppm indicating that, as observed with N-7, it is directly involved in 

the binding to the receptor molecule.  The significant shifts associated with both the H-8 and 
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NH2 signals in the presence of 9-PA are consistent with 1 binding to the H-8 (HG) site of the 

nucleobase.  A Job titration of 9- PA and 1 was conducted at 298 K by maintaining the total 

molar concentration of both solutes constant in CDCl3 solution [29].  Due to the water 

sensitivity of NH2 signal,  the chemical shift of H-8 was recorded and then plotted against the 

mole fraction (Figure 1).  The maximum appears at a mole fraction of 0.5 which is consistent 

with the platinum(II) complex binding to 9-sec-pentyladenine in a 1:1 stoichiometry; no other 

binding modes or aggregation stoichiometries were observed at concentrations up to 30 mM 

whereby complete saturation was observed.  By means of a Scatchard analysis (Figure 2) [30], 

the value of Kassoc for 1.9-PA was calculated to be 25 ± 4 M–1 (at 12 mM).   

 

For the isomeric complex 2, the carboxylic acid functionality is located at the 4- rather than 3-

position. The stoichiometry of binding remains 1:1 (Figure 3). However, a dramatic switch is 

observed in the binding mode where the WC site of 9-PA is favoured. From the Scatchard plot 

(Figure 4), the value of Kassoc is calculated to be approximately two orders of magnitude higher 

(2200 ± 330 M–1) than the isomeric 1 at 4.4 mM; the lower solubility of complex 2 relative to 

its isomer 1 in CDCl3 solution precluded an assessment of Kassoc at 12 mM. In the 1H NMR 

spectrum of complex 2 in CDCl3 solution, the considerable upfield shift of the H-2 proton is 

consistent with  binding through the WC site. Preliminary molecular modelling experiments 

using DFT (B3LYP hybrid functional using the 6-311G** basis set) show that there are no 

steric issues which would account for the significant differences in Kassoc for the two complexes 

and thus electronic factors are more likely to dominate.  Maitra and co-workers have reported 

that aromatic carboxylic acids favour Hoogsteen binding, while aliphatic carboxylic acids 

prefer WC binding [7].  This appears to hold true for 1 but not for 2.  The pKa values of 1 and 

2 (3.51 ± 0.08 and 4.85 ± 0.10, respectively, in 1:1 H2O/EtOH solution at 295 K [26]) are 

significantly different and may in part account for the observed differences in Kassoc.  Indeed, 
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in a low-polarity solvent such as CDCl3, protonation of the most basic sites in adenine, e.g. N-

7, by 1 would result in a strong ion-pair association with the triflate ion and molecular 

recognition of the guest molecule may be greatly inhibited leading to a significant lower Kassoc 

value. This trend appears to agree with literature whereby an increase in K is associated with a 

higher pKa of the carboxylic acid [7]. Alternatively, the triflate ion may strongly bind to the 

carboxylic acid functionality of the organoplatinum(II) complex prior to binding to the adenine 

derivative, as previously seen in the solid state for trans-[Pt(-C6H5)(PEt3)2L]OTf (L = 

isonicotinic acid) by means of X-ray diffraction [26], however, the high Kassoc value observed 

for the less Brønsted acidic 2 is inconsistent with this proposal.  Finally, self-association of 

complex 1 to form strong, H-bonded dimers has been reported previously [26] and this 

competing equilibrium might account for the significantly lower Kassoc of 1.9-PA compared to 

that of 2.9-PA but the site selectivity is not as readily explained. 

 

19F{1H} NMR experiments were conducted for both complexes 1 and 2 with and without the 

presence of 9-PA. The chemical shift differences observed between the free complex and the 

9-PA adduct were not significant (< 0.05 ppm) however, any conclusions in this case should 

be made with care as hydrogen-bonding interactions may not lead to any significant differences 

owing to the distal nature of the CF3 group relative to the recognition site.  Furthermore, the 

use of other counter-ions (e.g. para-tolylsulfonate) instead of triflate did not lead to any 

observable differences in Kassoc for the two adducts. 

 

3. Conclusion 

Complexes 1 and 2 are the first examples of organometallic H-bonding receptors which do not 

require metal coordination for nucleobase recognition. Despite the subtle switching of the 

carboxylic acid functionality from the 3- to 4-position of the substituted pyridyl ligand in the 
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two isomers, remarkable differences were observed in the binding of an adenine derivative not 

only in terms of the strength of association but also the site of binding.  We are currently 

exploring other organoplatinum(II) derivatives possessing H-bonding functionality for the 

selective recognition of nucleobases, including amide derivatives and dinuclear “tweezer” 

species, and the results of this work will be reported in due course. 

 

4. Experimental Section 

All NMR spectra were recorded at room temperature on a Varian Gemini 2000 NMR 

spectrometer with an Oxford 300 MHz magnet.  1H NMR chemical shifts were reported in ppm 

relative to tetramethylsilane (TMS). 

 

Complexes 1 and 2 were prepared as previously described [26]. 

 

4.1 Preparation of NMR samples for Job plots and Scatchard analyses 

Job’s method was carried out by mixing aliquots of two equimolar stock solutions of the two 

species to be observed in dry CDCl3, i.e. 1 or 2 and 9-PA. This was done to keep the total 

concentration of the two components constant, while the ratio of the two components varies in 

the NMR solution [29].  Stock solutions of the desired concentrations of complex 1 or 2 and 9-

sec-pentyladenine were made in volumetric flasks in dry CDCl3. In NMR tubes, aliquots of 

each solution were added such that the stoichiometry of each component varied, but the total 

volume of solution remained at 500 L. The 1H NMR spectrum was obtained for each sample, 

and the chemical shift of the H-2, H-8 or NH2 signals were determined. This value was then 

plotted against the mole fraction of the platinum(II) complex using Microsoft Excel 2016.  A 

Scatchard analysis was also performed in order to determine Kassoc [30]. 
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4.2 Determination of pKa values 

 

The pKa determinations for 1 and 2 were carried out by making up a stock solution of the 

complex 1 or 2 in 50% ethanol/H2O solution. The solution was then titrated with KOH in 50% 

ethanol/H2O solution. The pH was measured using a glass electrode with 0.1 M silver-silver 

chloride electrode at 298 K. The electrode was first calibrated with a buffer solution (pH 4.0) 

[31]. 
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Figure 1. 

 

 
Figure 1. Job plot for 1 and 9-PA in CDCl3 solution at 298 K (R = receptor (1), S = substrate 

(9-PA),  = R – free and o = R – RS). 
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Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Scatchard plot for 1 and 9-PA in CDCl3 solution at 298 K (R = receptor (1), S = 

unbound substrate (9-PA) = [S0] – ()R, where S0 = [S] + [RS], R = [R] + [RS],  = obs 

– free and o = obs – RS). 
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Figure 3. 

 

Figure 3. Job plot for 2 and 9-PA in CDCl3 solution at 298 K (R = receptor (2), S = substrate 

(9-PA),  = R – free and o = R – RS). 
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Figure 4. 

 

 
 

Figure 4. Scatchard plot for 2 and 9-PA in CDCl3 solution at 298 K (R = receptor (2), S = 

unbound substrate (9-PA) = [S0] – ()R, where S0 = [S] + [RS], R = [R] + [RS],  = obs 

– free and o = obs – RS). 
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