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Abstract 

The overall aim of this thesis was to understand gender differences in obstructive sleep 

apnea (OSA) and use this information to develop a tailored therapy for female patients. 

Specific aims were to determine whether gender differences commonly reported in the 

literature are present in mild OSA and upper airway resistance syndrome (UARS) patient 

groups, and whether symptoms could be linked to respiratory parameters in these groups. 

The final aim was to develop, test and validate a new AutoSet treatment for female OSA 

patients.  

CHAPTER 1 of this thesis provides a detailed review of gender differences in the 

prevalence, symptoms, clinical experience, and health outcomes of OSA and UARS 

patients, with a focus on the implications of different scoring rules.  

CHAPTER 2 reviews of quality of life questionnaires from 259 untreated patients with mild 

OSA. Females reported statistically significantly higher levels of sleepiness, fatigue, 

insomnia, and anxiety/depression compared to males.  

CHAPTER 3 of this thesis reviews polygraphy data from patients with mild OSA.  Male 

patients were found to have significantly more breathing disturbances than females, however 

many of these difference disappeared when updated scoring criteria were used. Some weak 

correlations were found between respiratory parameters and symptoms; however, no clear 

conclusions could be drawn.  

CHAPTER 4 outlines the development of a new AutoSet device designed for female- 

specific breathing patterns. The remaining chapters (CHAPTER 5, and CHAPTER 6) of this 

thesis describe the testing and validation activities undertaken on the AutoSet F, including a 

clinical trial to test efficacy; a bench test to compare performance against other commercially 

available devices; a controlled product launch to validate the features of the algorithm; and 

finally a clinical trial which demonstrated improvements in sleep efficacy and quality of life 

over a three-month usage period.  

In summary, this thesis has shown that at the mild end of the OSA spectrum females are 

more symptomatic than males, even though respiratory differences in the genders are less 

pronounced than those described in moderate-to-severe patients. An AutoSet designed 

specifically for female OSA patients was successful in demonstrating efficacy and clinical 

effectiveness.     



  

16 

 

CHAPTER 1. INTRODUCTION – GENDER DIFFERENCES 

IN OBSTRUCTIVE SLEEP APNEA 

 

1.1. General introduction to the thesis 

The overall aim of this thesis was to understand gender differences in OSA and use this 

information to develop a tailored therapy for female patients. Specific aims were to 

determine whether gender differences commonly reported in the literature still exist in the 

mild OSA and UARS patient groups, and whether symptoms could be linked to breathing 

parameters in these groups. The final aim was to develop, test and validate a new AutoSet 

treatment for female OSA patients.  

The sections of this chapter are intended to provide a detailed background to this thesis, 

beginning with an overview of the difficulties in defining severity in OSA. In the next sections, 

the gender differences of OSA will be discussed, including prevalence, symptoms, clinical 

presentation, short and long-term health consequences, and suspected mechanisms. Mild 

OSA and UARS are then reviewed to determine whether gender differences are present in 

these patient groups. Gender differences in polysomnography data are then explored, along 

with mechanisms to explain why females appear to have different features of OSA. The final 

sections of this chapter describe the current treatments for OSA and options for female OSA 

patients, including the limitations of current treatments for female patients. 
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1.2. How should we define severity in OSA? 

Sleep disordered breathing (SDB) can be conceptualised as a continuum, ranging from 

simple snoring through to severe OSA (Figure 1).  

 
Figure 1: Continuum of sleep disordered breathing 

OSA is defined as repetitive closures of the upper airway during sleep. The airway closures 

can either be partial (hypopneas), or complete (apneas), and are associated with reduced 

airflow, oxygen desaturation, and arousal from sleep. The severity of OSA is determined 

from the number of breathing events occurring each hour (the apnea-hypopnea index [AHI)]. 

Patients are defined as having mild (AHI 5 to <15), moderate (AHI 15 to <30), or severe 

OSA (AHI >30). While the definition of obstructive apneas has remained relatively constant, 

the exact definition of what qualifies as a hypopnea has been one of considerable debate 

(1). Table 1 displays the recent history of hypopnea definitions according to the American 

Academy of Sleep Medicine (AASM).  

Table 1: Definitions of hypopneas 
 

Recommended Alternative 

AASM 

2012 (1) 

A hypopnea is scored when there 

is: 

 A decrease in oronasal airflow by ≥ 

30% from baseline AND 

 The event is ≥ 10 sec long AND 

 The event is associated with ≥ 3% 

SpO2 desaturation OR arousal 

Note: The AASM 2007 recommended 
definition may be used if the 
diagnosis is required for U.S. 
Medicaid or Medicare 
reimbursement. 

 

AASM 

2007 (2) 

A hypopnea is scored when there 

is: 

 A decrease in oronasal airflow by ≥ 

30% from baseline AND 

 The event is ≥ 10 sec long AND 

A hypopnea is scored when there 

is: 

 A decrease in oronasal airflow by 

≥ 50% from baseline AND 

 The event is ≥ 10 sec long AND 

Simple 
snoring

Upper 
Airway 

Resistance 
Syndrome 

(UARS)

Mild OSA
Moderate 

OSA
Severe 

OSA
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 The event is associated with ≥ 4% 

SpO2 desaturation 

 Associated with ≥ 3% SpO2 

desaturation OR an arousal 

AASM 

Chicago 

Rules 

(Classic 

criteria) 

1999 (3) 

Those with a > 50% decrease in a 

valid measure of airflow without a 

requirement for associated oxygen 

desaturation or arousal 

Those with a lesser airflow 

reduction in association with 

oxygen desaturation of > 3% or 

an arousal  

In 2007, the criteria of a ≥4% decrease in oxygen saturation during hypopneas was set due 

to the evidence at the time demonstrating the strongest links between oxygen saturation of 

≥4% and adverse cardiovascular outcomes (1). Further studies then showed that the risk 

was very similar with oxygen desaturation of ≥3%, and therefore in 2012 the taskforce 

recommended adoption of the ≥3% oxygen desaturation criteria for hypopneas (1). Arousals 

were added to the definition of hypopneas because the AASM wished to recognise the 

detrimental effects of repetitive arousals from sleep, regardless of oxygen saturation (1).  

1.2.1. Impact of changes in scoring rules  

It is well known that different hypopnea definitions result in different AHI values. The clinical 

consequence is that some patients may be denied treatment based on one set of scoring 

rules and provided treatment when using another set. This issue was discussed at length 

when the scoring rules changed in 2007. Guilliminault et al. found that up to 40% of patients 

who had been diagnosed with OSA based on the 1999 criteria would not have been 

diagnosed with OSA if they were scored according to AASM 2007 (4). Bahamman et al. (5) 

found that up to 45% (when using an AHI cut-off of 5) and 52% (when using an AHI cut-off of 

15) of patients would have not been diagnosed with OSA using AASM 2007 criteria, but 

were diagnosed when using AASM 2012 criteria. Table 2 displays the changes in number of 

patients diagnosed with OSA when using AASM 2007 and 2012 scoring techniques.  
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Table 2: Percentage of patients with positive sleep studies based on AASM scoring criteria of hypopneas  

Author n AASM 2007  
Recommended 
 (%) 

AASM 2007  
Alternative 
 (%) 

AASM 2012  
Recommended 
 (%) 

  AHI ≥ 5 AHI ≥ 
15 

AHI ≥ 
5 

AHI ≥ 
15 

AHI ≥ 
5 

AHI ≥ 
15 

Ruehland et al. (6)  328 59 38 76 50 - - 

Bahammam et al. (5) 100 24 11 31 21 19 31 

Ho et al. (7) 6,441 30.4 21.7 - - 38.15 44.8 

 

1.2.2. Where does Upper Airway Resistance Syndrome fit in?  

Upper Airway Resistance Syndrome (UARS) was first described by Guilleminault et al. in 

1993 (8), although the characteristics of the disease were first described in the late 1950s 

(9). Guilleminault et al. studied a group of 15 subjects who complained of daytime sleepiness 

and displayed breathing abnormalities during sleep, but did not have obstructive sleep 

apnea based on guidelines at the time. Guilleminault et al. described periods of flow 

limitation during which esophageal pressure continually increased until a short EEG arousal 

occurred. These events were termed Respiratory Effort Related Arousals (RERAs). In UARS 

patients RERAs occur multiple times during the night and significantly disrupt sleep. The key 

components of RERAs are: increase in respiratory effort with small decrease in flow (less 

than 30%) (10), cortical or autonomic arousal (10), and very little oxygen desaturation (11). 

The increase in respiratory effort can be measured directly by esophageal pressure, or 

indirectly from flow limitation via a nasal cannula (11). Although esophageal manometry is 

considered the gold standard for detecting respiratory effort, it can be poorly tolerated and is 

restricted to use within a clinical environment. The inspiratory flow shape seen when using 

nasal cannula is sufficient to identify flow limitation events and RERAs with similar accuracy 

than the detail provided by esophageal manometry (12, 13). 

The AASM has defined diagnostic criteria for RERAs and UARS (Table 3). 
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Table 3: Diagnostic criteria for RERAs and UARS 

Diagnostic Criteria  

RERA (AASM 2007) (2) A sequence of breaths lasting at least 10 seconds 
characterized by  

i. increasing respiratory effort or 
ii. flattening of the inspiratory portion of the nasal 

pressure (diagnostic study) or PAP flow 
waveform  

iii. which leads to an arousal from sleep and does 
not meet the criteria for an apnea or a 
hypopnea.  

 

UARS (AASM 2005) (14) Major criteria  

 Excessive daytime sleepiness 

 AHI< 5 

 RERA Index/ hr > 20 
Minor criteria 

 Snoring 

 Increase in the intensity of snoring 
before EEG arousal 

 Clinical response to CPAP therapy 
 

 

1.2.3. Differentiating between UARS and Mild OSA 

The main breathing events which contribute to UARS are RERAs. However, with the update 

to the hypopnea definition in 2012, RERAs and hypopneas terminated by arousal become 

very similar. In both classifications, the rules require the event to last at least 10 seconds, 

and to be concluded by arousal from sleep. The only difference is that hypopneas require a 

peak signal drop of ≥ 30%, while RERAs do not quantify the amount of flattening in the 

AASM definition (1). In clinical practice accurately measuring the reduction in flow is not 

common, and indeed the AASM stated that majority of RERAs can be re-classified as 

hypopneas when using 2012 scoring rules (10). This means that a significant proportion of 

patients previously identified as UARS may now be reclassified as having mild OSA.  

The differing definitions of hypopneas and associated changes in patient populations make it 

difficult to navigate the literature, particularly in the mild OSA/ UARS definitions where there 

may be considerable overlap in the patient groups and much less data is available.  
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1.3. Are there gender differences in OSA? 

Historically, OSA has been primarily regarded as a male disorder (15). The short and long-

term health consequences of OSA are heavily documented and well understood in a 

population which has largely consisted of male patients. More recently, studies have 

specifically looked at the consequences of moderate-to-severe OSA in female patients and 

found gender differences in prevalence, symptoms, clinical experience and health 

consequences of the disease.  

1.3.1. Prevalence of OSA by gender and severity 

The population prevalence of moderate-to-severe OSA, was estimated to be around 9% of 

males, and 4% of females in 1993 (16). The impact of rising global obesity along with 

stronger global recognition of OSA gave more recent estimates of 13.5% of males and 6% of 

females (17). When updated diagnostic criteria is used, as many as 49.7% of males and 

23.4% of females may have moderate-to-severe OSA, and 34% of males and 38% of 

females may have mild OSA (18) (Table 4).   

Table 4: Prevalence data for OSA in the general population  

Study 

Mild OSA  (AHI 

≥5/h) 

Moderate to severe 

OSA  (AHI ≥15/h) 

Males Females Males Females 

Young et al. (1993) (16) 24% 9% 9% 4% 

Redline et al.(1994) (19)* - - 26% 13% 

Bixler et al.(1998, 2001) (20, 21) 17% - 7% %2 

Duran et al.(2001) (22) 26.2% 28% 14% 7% 

Peppard et al.(2013) (17) - - 13.5% 6% 

Franklin et al.(2013) (15)^# - 50% - 26% 

Heinzer et al.(2015) (18)# 34% 38% 49.7% 23.4% 

*Respiratory Disturbance Index (RDI) rather than AHI given. 
^Women aged 20-70 years. 
#Updated scoring criteria (AASM 2012) used. 

 

1.3.2. Symptoms of OSA in moderate-to-severe patients  

The typical symptoms that males with sleep apnea present with are snoring, witnessed 

apneas and excessive daytime sleepiness. The most common symptoms that females 
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complain of are insomnia, fatigue, lack of energy, headaches, muscle pain, depression, and 

anxiety (23-27). Indeed, a population-based sample found that up to 40% of females with an 

AHI ≥15/h did not report any of the classic OSA symptoms (snoring, witnessed apneas, and 

daytime sleepiness) (28).  

1.3.2.1. Quality of life in women with OSA  

Comparisons of women and men with untreated OSA have found that women experience 

more mood disturbances such as anxiety and depression, impaired daytime mood, reduced 

sleep quality, and worsened neurobehavioral symptoms (29, 30). Ye et al. compared women 

and men with untreated OSA using the Functional Outcomes of Sleep Questionnaire 

(FOSQ). They found that women had significantly lower scores in daily activity level, general 

productivity and overall daytime functioning. They also found that women had significantly 

higher total mood disturbances, and performed significantly worse on the psychomotor 

vigilance task compared with men (29).  

1.3.2.2. Do women with OSA experience sleepiness?  

Excessive daytime sleepiness (EDS) is a common identifying symptom of male OSA. The 

Epworth Sleepiness Scale  (ESS) is a short questionnaire, developed in 1991 by Dr Murray 

Johns, which aims to assess levels of daytime sleepiness (31). Patients rate their likelihood 

to fall asleep in 8 different scenarios. The ESS has shown to be a reliable measure of 

sleepiness, with strong correlation to OSA severity and objective sleepiness, as well as good 

sensitivity to post-treatment changes (32-34).  

In women, sleepiness may not be a common OSA symptom. Women typically have lower 

scores than men on the ESS (28), and despite its widespread use, the ESS has never been 

properly validated as a tool to measure sleepiness in female OSA patients (31). The 

Wisconsin Sleep Cohort, a large population-based exploration of the prevalence and health 

outcomes of sleep disordered breathing (35), found that OSA was not strongly associated 

with subjective or objective sleepiness in women (36). Similar results were reported from 

another large population-based study, the Sleep Heart Health Study. This study found that 

women had similar levels of self-reported daytime sleepiness as men, but were less likely to 

report falling asleep in public. The authors concluded that the ESS was not a sensitive 

measure of subjective sleepiness in women (31). A more recent population-based study 

including 400 women aged 20-70 years found that daytime sleepiness was not related to 

obstructive sleep apnea in females (37). 
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It remains unclear whether women have a higher threshold for sleepiness, feel sleepy but 

are less likely to fall asleep in public situations, or are simply less inclined to report excessive 

sleepiness. It is also possible that women feel fatigued rather than sleepy, or interpret 

feelings of sleepiness as fatigue. There may also be some confusion around the meanings 

of the terms sleepy, fatigued and similar adjectives (Table 5).  

Table 5: Terms and definitions related to sleepiness  

Term Merriam-Webster’s Dictionary Definition  

Sleepy  Ready to fall asleep 

 Sluggish, as if from sleep 

 Sleep-inducing 

Lethargic  Characterized by laziness or lack of energy 

Tired  Drained of strength and energy 

 Fatigued often to the point of exhaustion 

Fatigue (d)  Weariness or exhaustion from labour, exertion, or stress 

 Drained of strength and energy 

Sluggish  Averse to activity or exertion 

 Indolent  

 Torpid 

 Slow to respond (as to stimulation or treatment)  

 Markedly slow in movement, flow, or growth.  

Weary  Feeling or showing extreme tiredness, especially as a result of 
excessive exertion 

In the ESS sleepiness is defined as “the likelihood of falling asleep in certain situations”. This 

is fairly easy to quantify; however, it doesn’t capture other feelings of daytime tiredness. 

Another short screening questionnaire which is similar to the ESS in length and ease of 

completion is the Fatigue Severity Scale (FSS). The FSS is designed to measure how 

feelings of fatigue impact an individual’s daily life in terms of motivation, exercise, daily 

activity, work, family and social life. The FSS requires patients to report how fatigued they 

felt at various times, but it does not define what is meant by fatigued. The FSS was 

developed by Dr Laurent Krupp in 1989 as a tool to facilitate research in medical conditions 

where fatigue is a prominent syndrome (38). The FSS has been utilised successfully for a 

number of health conditions, including sleep apnea (39-41). While it has not been validated 

in OSA patients specifically, it has been shown to have excellent internal consistencies and 

re-test stability in multiple health conditions, including chronic fatigue and multiple sclerosis 

(38, 42-44).  
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The literature states that women report fatigue rather than sleepiness as a common 

symptom of OSA (28). In order to better understand symptoms and post-treatment 

improvements in female patients, the FSS, along with the ESS, was included as part of 

clinical routine in two UK-based sleep clinics. Consecutive female patients were asked to 

complete the FSS, along with the ESS at their first clinic visit. When reviewing the outcomes 

of the screening questionnaires, 50% of symptomatic patients reported normal levels of 

sleepiness on the ESS, but high levels of fatigue on the FSS (45). This finding is consistent 

with the literature which states that females are more likely to report fatigue than sleepiness, 

and also highlights the importance of not relying solely on sleepiness when screening for 

OSA.  

1.3.3. Clinical experience of women with OSA 

OSA has been estimated to have a male to female ratio of between 3:1 and 5:1 in the 

general population and a much greater ratio of between 8:1 and 10:1 in some clinical 

populations (16, 23, 46). It is thought that the large discrepancy between the population 

prevalence of OSA and the clinical populations is due to females being frequently 

misdiagnosed (23, 47). 

Men often attend clinical appointments with their partner, whereas women are more likely to 

attend on their own (23, 46). This may mean that snoring and apneas in women are less 

frequently observed (46), or that male partners tend to be less concerned about the events 

(48). Women may also not know if they snore (37), or could be reluctant to complain about 

their own snoring as they consider it unladylike or embarrassing (23, 26). 

Less-frequent reporting of classic OSA symptoms (snoring, witnessed apneas and daytime 

sleepiness) plus a higher prevalence of atypical symptoms (insomnia, headache, anxiety 

and depression), means that physicians may not associate the complaint with OSA. Women 

with OSA are often misdiagnosed with depression or other illnesses (23, 24, 47). The result 

is lower referral rates to sleep clinics and an under-evaluation of OSA in women (47, 49), 

(23, 26, 49). It has been stated that recognizing the different features of SDB in women is 

central to effectively detecting and treating the condition (50). 

Young and colleagues found that even when women reported the classic symptoms of OSA 

(snoring, witnessed apneas and daytime sleepiness), they were still less likely to be referred 

to sleep clinics than men. This raised concerns that physicians tend to disregard these 

symptoms in women (47). Young et al. published this data in 1996, and therefore it is 
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plausible that this situation has improved due to increased awareness among primary care 

physicians and potential patients. However, data presented by Lindberg et al. during the 

2015 European Respiratory Society Congress showed that women who reported classic 

symptoms of OSA were significantly less likely to have a diagnosis or treatment for OSA 

than males with the same risk score (51).  

1.3.4. Health consequences of OSA in women 

The clinical impact of moderate-to-severe OSA (AHI ≥ 15) has been well documented in a 

male-dominated population. It is known to cause excessive daytime sleepiness, impaired 

cognitive function, and reduced quality of life (52, 53). Moderate-to-severe OSA is also 

associated with poor health consequences such as hypertension, diabetes, stroke, and 

cardiovascular morbidity and mortality (52, 54-57). Effective treatment with continuous 

positive airway pressure (CPAP) has been shown to improve symptoms and health 

outcomes in patients with moderate-to-severe OSA (53, 54, 57-61). 

Data comparing females with and without OSA has shown that those with OSA are at 

greater risk of reduced quality of life and impaired cognitive function. Yaffe et al. studied a 

group of women with OSA and found that they were more likely to develop cognitive 

impairment and dementia than women without OSA. Cognitive issues were more likely to 

develop in patients with increased oxygen desaturation and higher periods of time spent in 

apnea or hypopnea (62). Another study showed that female OSA patients experienced more 

brain white matter injury than their male counterparts (30). It is hypothesised that this change 

in white matter structure may be responsible for the long-term cognitive impairment found in 

some women with OSA (30). Further research in this area identified lateral and sex-specific 

volume differences in the hippocampus, demonstrating that females with OSA experience 

more volume decreases and injury in the brain compared to males with OSA (63).  

The correlation between OSA and sexual dysfunction in males has been explored in a 

number of studies (64, 65), with one meta-analysis estimating a pooled relative risk for male 

sexual dysfunction of 1.82 (95% CI: 1.12-2.97) (65). Female sexual health may also be 

impacted by OSA, although research in this area is scarce and no randomised controlled 

trials have been conducted. Small studies have reported that females with OSA have 

significantly more sexual distress and sexual dysfunction compared to females without OSA 

(66) (67). One meta-analysis of four small studies estimates the pooled relative risk of 

female sexual dysfunction in OSA patients as being 2.00 (95% CI: 1.29-3.08) (65).  
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Greenberg-Dotan et al. found that, compared to female controls, women with OSA were 

more likely to have a comorbid diagnosis of cardiovascular disease (OR 1.4) (68). Campos-

Rodriguez et al. followed 1116 females diagnosed with OSA between 1998 and 2007 in two 

Spanish sleep units. Patients with an AHI ≥ 10 were considered the OSA group while those 

with an AHI < 10 served as the control group. The study endpoint was cardiovascular death 

(including deaths from stroke, heart failure, arrhythmia, or myocardial infarction). The 

authors found that in women, untreated severe OSA is associated with cardiovascular death 

(adjust hazard ratio of 3.50, CI 1.23-9.98) (69).  

When reviewing the impact of OSA in females compared with males, studies have found that 

women with OSA are at increased risk of developing several health conditions. One study 

found that women with OSA have a higher odds ratio (OR) than men with OSA of developing 

hyperlipidemia (OR 1.5), hypothyroidism (OR 1.6), arthropathy (OR 1.6), diabetes (OR 1.6), 

asthma (OR 2.1), and reflux/gastritis (OR 2.5) (68). These women also experienced lower 

perceived health status, overuse of psychoactive drugs, and increased healthcare costs of 

1.3 times compared with men with OSA (68).  

Data from a cohort of 1,704,905 patients with matched controls taken from a collection of 

U.S. health insurance data found that overall comorbidities were more common in OSA 

patients than non-OSA patients (70). Compared with male OSA patients, hypertension was 

more prevalent in female OSA patients (70). It is possible that women with moderate-to-

severe sleep apnea are more susceptible to the adverse cardiovascular consequences of 

OSA than men. Females with OSA have more marked endothelial dysfunction (71), and 

respond less effectively to autonomic challenges than males, which may reduce the 

effectiveness of BP regulation (72).  

In summary, the limited data available suggest that although the prevalence and severity of 

OSA is lower in women than in men, the consequences of the disease in moderate-to-

severe females are at least the same, and potentially even worse in some quality of life and 

cardiovascular outcomes (29).  

1.3.4.1. Pregnancy and OSA 

Pregnancy is one area which highlights the importance of OSA recognition in women. 

Women are at increased risk of OSA during pregnancy due to a number of factors. The 

growing uterus elevates the diaphragm which changes pulmonary mechanics (73). During 

pregnancy neck circumference increases (74, 75), nasal patency is reduced (76), and 
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pharyngeal edema occurs (77). Substantial increases in snoring, snorting/gasping and 

witnessed apneas have been documented in pregnant women (75). Snoring during 

pregnancy appears to be a risk factor for both pregnancy-induced hypertension and 

intrauterine growth retardation (78). An observational study of 1.5 million pregnant women 

found significant associations between OSA and gestational diabetes (adjusted OR 1.51, 

1.34-1.72); pre-eclampsia (adjusted OR, 2.22, CI 1.94-2.54); and eclampsia (adjusted OR 

2.95, CI 1.08-8.02) (79). Similarly, a large observational cohort of nearly 3 million women 

found that OSA during pregnancy increased risk of preterm birth by 1.5 (O.R 1.2–1.8, 

P<.001, 15.5%) (80).  

A recently published prospective cohort study reviewed the prevalence and outcomes of 

OSA during pregnancy in 3705 women (81). Preliminary data from this group showed that 

OSA affects 8.1% of pregnant women by the second trimester, and that there was an 

association between OSA and hypertension and diabetes in this group (82). The final data 

set confirmed the findings that there is an independent association between OSA during 

mid-pregnancy and hypertension (OR 1.73, CI 1.19-2.52), pre-eclampsia (OR 1.95, CI 1.18-

3.23), and gestational diabetes (OR 2.79, CI 1.63-4.77) (83). 

1.4. Do the same gender differences exist in mild OSA and 

UARS? 

It is difficult to navigate the literature regarding gender differences in the milder patient 

groups for two reasons. The first is due to the changing definitions and overlap in patient 

groups described in Section 1.2. Secondly, there is a lack of research exploring these 

groups, with minimal data available on the gender differences. 

The literature available for moderate-to-severe patients implies that there are clear-cut 

symptomology differences between males and females with OSA. A conflicting hypothesis is 

that women do not suffer from different symptoms, but instead more women have mild OSA, 

and mild OSA itself, rather than gender, is responsible for the different symptoms reported 

by women. It is possible that characteristic symptoms such as snoring, witnessed apneas 

and excessive daytime sleepiness may be more prominent at higher AHIs, and perhaps 

patients with mild OSA dominated by flow limitation and constant arousals have different 

symptoms. 
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This hypothesis is supported by data from patients enrolled in the Wisconsin Sleep Cohort. 

Young et al. reported that snoring was the strongest and most sensitive predictor of OSA in 

both genders (47). Daytime sleepiness and pauses in breathing during sleep were reported 

equally by both genders with mild OSA. Reports of morning headache, depression and 

anxiety were reported equally by both genders across all severities of sleep apnea (47). 

Young et al. did, however, find that more females had mild OSA than males, and that 

females with an AHI of 2-5 had similar symptoms to females with an AHI of ≥ 15, while the 

same didn’t hold true for males (47). Similar analysis from the Wisconsin University Sleep 

Laboratory showed that lower rates of recognition of OSA in women compared with men 

only occurred in the subset of patients with an AHI of 5-20/h (84), again supporting the 

notion that symptoms may be based on severity rather than gender.  

1.4.1. Prevalence of OSA and UARS  

The prevalence of female OSA is consistently lower than male OSA, and as a group women 

have lower AHIs than men. Therefore, it is understandable if symptoms of mild OSA are 

attributed to females rather than the characteristics of the mild condition. When the updated 

(AASM 2012) hypopnea definition is used, which includes 3% oxygen desaturation and/or 

arousal from sleep, the prevalence of OSA in female patients becomes much higher. This is 

consistent with studies of UARS patients, where females represent close to 50% of the study 

population (85-87). 

The exact prevalence of UARS is not known. From the limited clinical trial data available, 

prevalence has been reported as 6% (88), 8% (89) 15% (90) 19% (87), and 32% (86) of 

patients reporting to sleep clinics with suspected OSA. However, as described in Section 1.2 

it seems that many of these patients may now be reclassified as OSA patients.  

1.4.2. Symptoms of mild OSA and UARS 

Common symptoms of mild OSA and UARS are reported as being similar to those of 

moderate-to-severe OSA: daytime sleepiness, snoring, nocturia, nocturnal awakenings, poor 

sleep efficiency and reduced cognitive function (11, 90). However, in the literature for these 

patient groups there are more complaints of sleep onset insomnia, sleep maintenance 

insomnia, and generally disrupted sleep (11, 85). Other symptoms which have been reported 

in the UARS group are irritable bowel syndrome and headaches (85).  
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Although snoring is commonly listed as a symptom of UARS, it does not occur in every 

instance. Guilleminault et al. reported snoring in only 67% (8) of patients during the original 

description of UARS. The same authors found in a later study that only 71% of men and 

11% of women with UARS reported snoring (91). A similar study reviewing the prevalence of 

OSA in military personnel found that 8.4% had UARS despite no reported snoring from the 

participants, and no significant snoring measured on the PSG (89). This indicates that 

snoring is not a reliable symptom of UARS, particularly in female patients.  

1.4.2.1. Quality of life in mild OSA 

The Sleep Heart Health Study found that quality of life in mild OSA subjects was significantly 

worse than in controls. This study also reported that patients with snoring, but an AHI < 5, 

reported significantly more sleepiness and quality of life issues than the control group (92). 

They found that females were more likely to report insomnia than males, and that mild OSA 

was associated with reduced vitality in both genders (92).  

A recent study of interest is the Apnea Positive Pressure Long Term Efficacy Study 

(APPLES) (93). A review of the mild patients in this study showed that, when compared with 

the participants with no OSA, the mild group did not have worse quality of life, as measured 

using the SAQLI questionnaire (no OSA vs Mild OSA: 4.5 ± 0.8 vs. 4.7 ± 0.7, p=0.39) (94).  

1.4.2.2. Quality of life in UARS 

An in-depth comparison of personality characteristics in UARS patients and OSA patients 

was recently conducted in a Korean population (87). Researchers compared 88 UARS 

patients to 365 OSA patients. They found that UARS patients reported very poor sleep 

quality, and were more likely to complain of insomnia and excessive daytime sleepiness, 

despite PSG studies showing that, objectively, their sleep efficiency and total sleep time was 

superior to that of OSA patients. They also found that UARS patients tended to rate 

significantly worse on a range of psychiatric scales, including: somatization, obsessive-

compulsiveness, interpersonal sensitivity, depression, anxiety, hostility, phobic anxiety, 

paranoid ideation, psychoticism, global severity index, positive symptoms distress index, and 

total positive symptoms. They concluded that UARS patients had a higher degree of neurotic 

and sensitive tendencies than their OSA counterparts (87). 
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1.4.2.3. Do mild OSA and UARS patients experience sleepiness? 

There is no consensus as to whether mild OSA is associated with EDS. A review by the 

American Thoracic Society (ATS) of suitable studies comparing mild OSA to no OSA found 

that 20 studies reported no significant difference between sleepiness in mild OSA compared 

to no OSA (95). Conversely, 9 studies did show a significant relationship between mild OSA 

and sleepiness measured using the ESS tool (95).  

Daytime sleepiness is reported as a significant indicator of UARS (8). However, an 

investigation of military personnel with UARS found that only one third had a mean sleep 

latency significantly less than normal (86). This may indicate that the majority of UARS 

patients are not objectively sleepy. Insomnia is reported by approximately 20% of UARS 

patients (11), which may be a reflection of constant arousals and disturbed sleep throughout 

the night (11, 31).  

1.4.3. Clinical experience of mild and UARS patients  

1.4.3.1. Clinical experience of mild OSA patients 

There is no universal agreement on the appropriate treatment for mild OSA patients, or 

indeed if treatment at this stage of the disease is warranted. The definition of mild OSA was 

revised in 2012 by the AASM in an attempt to recognize the potentially detrimental effects of 

repetitive breathing-related arousals from sleep (1). An unintended outcome of the updated 

classification is that some healthcare providers, most notably the U.S. Centres of Medicaid 

Services (CMS), have taken the decision not to offer CPAP treatment based on AASM 2012 

guidelines, citing a lack of evidence that treatment of these is beneficial (1, 96). In many 

European countries, including France, Czech Republic, Belgium, and the Netherlands, 

treatment for mild OSA is not reimbursed by healthcare systems. The consequence of this to 

a patient with mild OSA is that they may not be offered treatment, depending on which 

scoring criteria is used, and where they are physically located. The MERGE clinical trial aims 

to provide evidence on the benefits of treatment mild OSA patients with CPAP, with a focus 

on AASM 2012 scoring (clinicaltrials.gov ID: NCT02699463; Appendix C). Results for this 

study are expected at the end of 2019. 

1.4.3.2. Clinical experience of UARS patients 

Clinical diagnosis of UARS is rare, partly due to the lack of use of the diagnosis in sleep 

clinics, and partly due to inconsistent definitions used. In their description of the syndrome, 

Guilleminault et al. listed complaints of daytime fatigue and/or sleepiness, increased upper 
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airway resistance during sleep, frequent arousals from the increased upper airway 

resistance, and no significant hypoxia (97). Pepin et al. placed more emphasis on the 

sleepiness of the patient, and described UARS as being present when a complaint of 

excessive sleepiness does not have any other causes (e.g. insomnia, periodic leg 

movements or obstructive sleep apnea) and when a sleep study shows that >50% of 

arousals during sleep are due to RERAs (11).  

Köktürk et al. (88) highlighted the importance of oxygen saturation during sleep, and defined 

UARS as being likely when AHI<5, RERA index >20 and excessive sleepiness was present 

without nocturnal oxygen desaturation.  

Bao et al. (98) reported that UARS patients are more likely to seek treatment for somatic 

functional syndrome than daytime sleepiness. As a result, they are often referred to 

psychiatrists, and consequently remain untreated.  

1.4.4. The importance of flow limitation 

One glaring omission from the AHI based definition of OSA is flow limitation. Currently, the 

percentage of flow limitation a patient experiences during the night does not influence their 

AHI. Flow limitation increases work of breathing, causes arousals and disrupted sleep, and 

impacts on daytime cognitive function (13). Upper airway resistance alone, without 

obstructive apneas, has been shown to produce clinical symptoms such as daytime fatigue 

and depression (99), both of which are symptoms reported by women with OSA. Women 

with partial upper airway obstruction have been shown to have similar symptoms, including 

sleepiness, to women with OSA, resulting in a call for partial upper airway obstruction to be 

clinically recognized in the same way as OSA in women (100).  

It is not clear at what level flow limitation, without OSA, becomes harmful. Flow limitation 

frequently occurs in normal patients to some degree, particularly during sleep onset (101). A 

population-based study of over 1000 individuals in Sao Paulo found that 95% of individuals 

with >30% flow limitation had symptoms of excessive daytime sleepiness and chronic fatigue 

similar to those with mild OSA (102). This was consistent with findings from a 

pathophysiological investigation, which found that >30% flow limitation was associated with 

nasal and palatal abnormalities (102). The authors concluded that >30% of flow limitation 

during the night may be a good measure of SDB in subjects with an AHI < 5 (102).  
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Hosselet et al. paired complaints of EDS with different measures of abnormal breathing 

patterns and found that an index which included inspiratory flow limitation provided better 

sensitivity and specificity for identifying subjects with SDB than AHI (103). 

1.4.5. Health consequences of mild and UARS patients 

There is some evidence to suggest that even minor sleep-related breathing disturbances 

have a negative impact on hypertension (104, 105), cognitive function (106, 107), quality of 

life (95, 108), and the risk of motor vehicle accidents (109). However, the evidence is mixed, 

with a recent review by the American Thoracic Society (ATS) stating that the impact of mild 

OSA on cognitive function, mood, vehicle accidents, cardiovascular events, stroke and 

arrhythmias is inconsistent (95). 

UARS appears to be associated with adverse cardiovascular consequences, in particular the 

development of hypertension, however the evidence is scarce. One study reported that 35% 

of UARS patients had drug resistant hypertension (110), and a similar investigation showed 

that 36% of UARS patients had systemic hypertension (111).  

1.4.5.1. What are the mechanisms for adverse cardiovascular outcomes in 
mild and UARS patients?  

The association between moderate-to-severe OSA and cardiovascular morbidity and 

mortality has been well documented, and repetitive hypoxia during sleep appears to play the 

most important role in this association (11). The potential mechanisms for how mild OSA and 

UARS could be associated with poor cardiovascular consequences are not clear, as these 

patients do not have significant oxygen desaturation (11, 111). It appears that flow-limited 

breaths and repetitive arousals from sleep are both harmful. In 1996 Guilleminault et al. 

demonstrated through continuous 24-hour blood pressure (BP) monitoring that flow-limited 

breaths without significant hypoxia were associated with increases in systolic and diastolic 

blood pressure (97). These findings were supported by a larger investigation of 448 subjects. 

Stradling et al. found that the level of respiratory effort was an independent predictor for the 

overnight change in systolic BP. The authors concluded that increased respiratory effort 

during sleep prohibits the normal nocturnal fall in BP, and this may be one mechanism for 

the development of hypertension in patients with nocturnal flow limitation (112). It has also 

been shown in a small group of patients that prolonged flow limitation increases CO2 (113). It 

has previously been established that any increase in CO2 stimulates the sympathetic 

nervous system (11).  
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The repetitive arousals seen in UARS and many mild OSA patients may also be responsible 

for increased BP. Arousals from sleep are shown to coincide with autonomic and 

cardiovascular activations during the night (11, 114). Guilleminault et al. showed that EEG 

arousal is significantly associated with an increase in heart rate, and that an increase then 

decrease in parasympathetic activity can be seen immediately after an arousal (115). The 

investigators demonstrated a relationship between RERA events and increases in systemic 

BP. They also found that the magnitude of the increase in BP was directly related to the 

severity of the arousal (116). Asker et al. demonstrated an association between arousals 

and uncontrolled hypertension in a small study of 14 patients (110). In their study they were 

able to establish a strong association between the patient’s arousal index and systolic BP 

(110). A study of healthy volunteers also provides evidence of the harmful effects of sleep 

disruption. In these healthy subjects, two nights of sleep fragmentation lead to a 20% 

decrease in insulin sensitivity and a significant reduction in glucose effectiveness (117). It 

was hypothesized that increases in sympathetic nervous system activation and 

adrenocortical activity were responsible for these metabolic consequences (117).  

Therefore, it appears that flow limitation during sleep combined with repetitive arousals lead 

to chronic increases in sympathetic activity, which may be responsible for hypertension, 

cardiovascular consequences, and potentially adverse metabolic outcomes (11).  

Another potential mechanism of cardiovascular damage may be through snoring, although 

the evidence for this hypothesis is mixed. Lee et al. found that snoring was an independent 

factor for the development of atherosclerosis (118). The researchers proposed that the 

vibrations generated during heavy snoring may be transmitted to the carotid artery wall. 

These vibrations may then cause endothelial damage which eventually leads to carotid 

atherosclerosis (118). However, a large population study of 380 participants over a 17-year 

period was unable to find any independent correlation between snoring and cardiovascular 

morbidity and mortality (119).  

1.4.6. Are mild OSA and UARS different from moderate and severe OSA? 

There is not universal agreement on whether UARS is simply a very mild form of OSA, or 

whether it should be considered a completely different condition. Gold et al. proposed that if 

UARS is an extension of OSA then there should be an increasing progression in 

somnolence from minor in UARS patients to extreme sleepiness in severe OSA patients 

(120). A small comparison of 12 symptomatic OSA subjects, 12 UARS subjects, and 12 

normal subjects found that the UARS subjects reported significantly worse tiredness and 
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daytime sleepiness than the normal subjects, although they were not significantly different 

from OSA patients (121). A larger study of 2783 patients with OSA, UARS, or snoring, found 

that patents with UARS described the highest degree of daytime impairment (90). UARS 

patients rated the quality of their daytime functioning as significantly worse than OSA 

patients. They also reported issues with daily functioning, such as difficulty concentrating 

and completing tasks, as well as depressed mood. They scored lower than OSA or snoring 

patients in their perception of sleep quality. The authors found that the female-to-male ratio 

was higher in the UARS group than those with OSA, although males still accounted for 60% 

of the group. The authors did not break down the study outcomes into gender differences 

(90).  

Stoohs and colleagues compared the reaction time of UARS patients with OSA patients to 

determine if UARS patients had the same high risk of motor vehicle crashes as OSA patients 

(122). They found that UARS patients had significantly worse results than the OSA patients 

on the majority of psychomotor performance tasks, including reaction time, vigilance and 

attention tests. They concluded that UARS patients may be at an increased risk of motor 

vehicle crashes compared with the already elevated risk of OSA patients (122).  

Taken together, the limited information available suggests that UARS patients experience 

much more excessive daytime sleepiness and reduced daytime functioning than expected if 

UARS was a very mild form of OSA. They also report high levels of insomnia not seen in 

severe OSA patients (120). This supports the hypothesis that patients with sleep disordered 

breathing characterised by flow limitation and frequent arousals from sleep have different 

symptoms than sleep disordered breathing characterised by obstructive apneas and severe 

oxygen desaturation. 

1.5. Are there polysomnography (PSG) differences between the 

genders? 

1.5.1. Gender differences in PSG data 

There are a number of gender differences in both the severity of OSA and its distribution 

across the sleep cycle. One of the largest reviews of PSG data, including 830 patients, found 

that women had a significantly lower overall AHI compared with men (20.2/h vs 31.8/h; 

p<0.001). AHI during non-REM sleep was also significantly lower in women vs men (14.6/h 

vs 29.6/h; p<0.001), but there was no difference between females and males with respect to 
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AHI during REM sleep (42.7/h vs 39.9/h, respectively), indicating a greater clustering of 

apneic events during REM sleep in women (123). This study also found that OSA in the 

supine position occurred almost exclusively in men, indicating that positional OSA is not an 

issue for women (123).  

PSG data from patients referred for suspected sleep disorders also showed that a difference 

between males and females in AHI was evident during stage 2 sleep, but not during REM 

sleep, further providing evidence that women often have mainly REM-based events (124). In 

addition, this data showed that women had shorter apnea events and less severe oxygen 

desaturations than men (both p<0.001) (124).  

Gender differences have also been observed in sleep architecture. A study of 307 patients 

found that women took longer to fall asleep than men. Women also had fewer awakenings 

and more slow wave (deep) sleep, despite no differences between the sexes in age, 

respiratory disturbance index or oxygen saturation (125). 

As a group, women with OSA have more episodes of upper airway resistance and flow 

limitation than men with OSA (126). This combined with the shorter apnea events and less 

severe oxygen desaturations (124) explains why more women are categorised as UARS and 

mild OSA than moderate-to-severe OSA. 

 

1.5.2. Why do these PSG differences occur? 

Overall females have less-severe OSA than males, which can be explained by several 

physiological differences. In women, the neck and upper airway are smaller in size than in 

men (23). Magnetic resonance imaging has shown that the airway length, tongue, soft 

palate, and total amount of soft tissue in the throat are all smaller in women (127). Intuitively, 

a smaller airway should occlude more easily than a larger one; however, this doesn’t seem 

to be the case. Men have a longer, softer oropharynx, and a larger, fatter, more posterior 

tongue, increasing the susceptibility of the large airway to collapse (23). Upper airway 

collapsibility, determined by the pharyngeal critical closing pressure, has been shown to be 

less in women compared with men with the same OSA severity (128). Gender differences in 

airway collapsibility are most evident during non-REM sleep, suggesting that women may be 

more susceptible to pharyngeal collapse during sleep transition and REM sleep but not 

during established sleep when some muscle tone is preserved (129). 
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Obesity is a well-recognized risk factor for OSA, and higher body mass index (BMI) is 

associated with increased severity of OSA for both sexes (130). However, for the same AHI, 

women tend to be more obese than men (128, 131). One potential explanation for this is 

differences in fat distribution between the sexes (132). For the same BMI, men have higher 

mean body weight, more free fat mass, and larger neck circumference compared with 

women (133). MRI studies have confirmed more pharyngeal fat and increased soft tissue 

volume in the neck in obese men compared with obese women (127). Upper airway fat 

distribution, particularly in the posterior tongue, is important in the pathogenesis of OSA. The 

increased weight and fat in the upper airway leads to more severe occlusion when muscle 

tone is lost during sleep (23). Additionally, upper body and visceral adiposity are associated 

with reductions in lung function, including total lung capacity, forced vital capacity and forced 

expiratory volume (134). This reduction in lung function impacts the body’s ability to achieve 

adequate ventilation, particularly during sleep when muscle tone is lost, and the positional 

load on the thorax is increased (135). 

Fat distribution might have physiological as well as mechanical effects in patients with OSA. 

Obese women, particularly those with OSA, have increased hypercapnic and hypoxic 

responses, whereas this was not the case in obese men (136). This increased sensitivity to 

changing blood gases means a better maintenance of optimal minute ventilation when the 

chest wall load is increased. 

Men and women have also been shown to respond differently to changing blood gases. Men 

experience respiratory instability from much lower levels of carbon dioxide in the blood, and 

as a result men are more susceptible to hypocapnic dysfunction during non-REM sleep than 

women (137), (138). There may also be gender differences in the arousal response to 

apneas. Jordan and colleagues found that during non-REM sleep men had a higher 

ventilatory response to apneas than women, but then they developed greater hypoventilation 

when they went back to sleep, especially in the supine position. This prolonged 

hypoventilation often leads to ventilatory instability upon returning to sleep. The study 

authors hypothesized that this may play a role in explaining why sleep apnea syndromes are 

more severe in men (139). 

A further explanation for these PSG differences may be related to hormones. Post-

menopause, the incidence of OSA markedly increases in female patients (21, 140, 141). 

Younger females (<30 years) are less likely to snore, have less severe OSA, and have a 

trend towards more upper airway resistance and flow limitation (50). Therefore, it has been 
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suggested that female sex hormones have some sort of protective effect on upper airway 

patency and/or ventilatory drive (24). The hormone progesterone is a known respiratory 

stimulant which increases chemoreceptor responses to hypercapnia and hypoxia, and has 

been shown to increase upper airway muscle tone (142). Progesterone levels increase 

during pregnancy and may play a protective role in maintaining ventilation against increasing 

weight of the developing fetus. Progesterone levels decrease after menopause. However, 

studies that have given males progesterone in an attempt to improve OSA have not yielded 

strong results (143).  

Hormones also play a role in the distribution of body fat. Post-menopausal women have a 

higher fat mass than prior to menopause, and fat distribution is more likely to be in the upper 

body and trunk area compared with the lower body (144, 145).  

In summary, women have less severe OSA. This is likely due to differences in body fat 

distribution, differing responses to blood gases, and the protective role of female sex 

hormones.  

1.5.3. Why do some patients have UARS or mild OSA and others have 

moderate-to-severe OSA? 

Individuals are susceptible to developing OSA due to a number of factors. In particular: 

upper airway anatomy; chemoreceptor responses to changes in blood oxygen and carbon 

dioxide levels; and the individual’s reaction to negative intra-oesophageal pressures and 

upper airway dilator muscle stimulus.  

UARS patients are commonly described as being younger with a lower BMI than OSA 

patients (87, 90, 110). Many UARS patients display defining craniofacial characteristics, 

including a long face with a short and narrow chin (11). In this patient group the mandible is 

retracted and the palate is narrow and high with reduced mouth opening (11, 146).  

Patients with UARS and mild OSA arouse from sleep very quickly in response to upper 

airway resistance. It is likely that the mechanoreceptors in the upper airway, coupled with 

increased sympathetic function, increase efferent activity in the central respiratory receptors 

which leads to arousal from sleep (114). This sleep disruption impacts daytime mood, 

function and quality of life. Conversely, patients with more severe OSA have longer 

obstructive events and more severe oxygen desaturation, but have less sleep arousals and 

fragmentation.  
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High levels of resistance in the upper airway, resulting in excessive amounts of flow 

limitation, are found in UARS patients (11, 147). UARS patients have a higher mean 

resistance at peak pressure in the upper airway during wake compared with OSA and 

normal subjects (147). The required forces to collapse the airway can be measured using 

the PCrit (critical closing pressure). PCrit is a continuum from normal, to UARS, to OSA 

(148-150). The amount of collapse that occurs in the upper airway is due to a combination of 

factors, including bony structures, retropalatal mechanical load, soft tissues and upper 

airway narrowing (146). In OSA patients, the blend of a collapsible airway with the loss of 

tonic input to the upper airway dilator muscle motor neurons during sleep leads to airway 

occlusion (151). UARS patients are able to maintain higher levels of upper airway resistance 

without collapse (147), despite employing the same amount of respiratory effort as severe 

OSA patients (152). It appears that UARS patients have preserved protective reflexes in the 

pharynx, which lead to increasing muscle activity to counteract the upper airway resistance 

and prevent further upper airway collapse (11). This idea is supported by research showing 

that upper airway sensitivity in UARS is not impaired, while it is severely impaired in OSA 

patients (153). 

Patients with UARS have much higher parasympathetic activation during sleep than OSA 

patients (115), which enables them to arouse quickly in response to small increases in 

respiratory effort (91). This appears to be because UARS patients respond efficiently to 

upper airway changes, while more severe OSA patients have dampened respiratory 

responses, which permits apneas to occur (98). While females as a group have less severe 

OSA and are more prone to flow limitation and respiratory-related arousals from sleep, it is 

not clear whether there are additional gender differences in the UARS and mild OSA groups. 

1.6. Continuous Positive Airway Pressure (CPAP) 

Continuous positive airway pressure (CPAP), first described by Sullivan et al. in 1981 (154), 

is considered the gold standard treatment for OSA. CPAP applies continuous positive 

pressure to the patient’s airway via tubing and a mask. The pressure provides a pneumatic 

splint to the upper airway which prevents the airway from collapsing (154).  

Effective CPAP treatment in compliant moderate-to-severe OSA patients has been shown to 

decrease elevated blood pressure, improve cardiovascular disease outcomes, and reduce 

the risk of cardiovascular fatal and non-fatal events (53, 155-157). CPAP treatment also 

eliminates excessive daytime sleepiness, improves quality of life, and restores cognitive 
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function to normal levels (53, 54, 57-61, 158). The majority of clinical trials of CPAP have 

included mainly male participants (159). 

1.6.1. The impact of CPAP on quality of life in women  

 
Studies that have split the results into genders found that CPAP improved symptoms and 

quality of life in both genders. A study by Ye et al. (160) compared a group of male and 

female patients presenting to sleep clinics. They found that despite similar age, BMI and 

AHI, women reported significantly worse scores in daily functioning measured by the 

functional outcomes of sleep questionnaire (FOSQ) (males 15 ± 2.9 vs females 12.8 ± 3.7, p 

= 0.002). Women also reported higher levels of sleepiness through the ESS (males 14.5 ± 

4.8 vs females 16.8 ± 4.1, p = 0.032), and more mood disturbance, measured using the total 

mood disorder (TMD) scale (males 11.9 ± 25.9 vs females 21.0 ± 17.6, p = 0.007). CPAP 

treatment significantly improved daily functioning, sleepiness and mood equally in both 

genders (160).  

A similar study which evaluated depression in OSA patients before and after treatment 

included 183 women with an average age of 52 ± 15 years and BMI of 32.1 ± 7.1 (161). 

Patients completed the PHQ-9, a questionnaire-based depression scale containing 9 items, 

asking about participants’ feelings of sadness, tiredness, sleepiness, lack of interest in 

activities, perceived personal successes, ability to concentrate, self-confidence, slow/fast 

speech patterns, and suicidal thoughts. Participants rate each item on a scale of 0-3, with 0 

indicating no symptoms and 3 indicating highly symptomatic. A total score of 27 is possible. 

Scores ≤ 4 are indicative of no depression; 5-9 is mild depression; 10-14 equals moderate 

depression; 15-19 is moderately severe depression; and ≥ 20 equals severe depression 

(162). In this study, the PHQ-9 in female patients at baseline was 10.4 ± 5.9, and after 3 

months of CPAP therapy this had decreased to 3.4 ± 2.8 (p < 0.001) (161).  

Campos-Rodriguez et al. published the first study to review quality of life in a female-only 

patient group. The authors studied 307 women diagnosed with moderate-to-severe OSA 

presenting concurrently to 19 sleep units throughout Spain. The average age was 57.1 + 

10.1 years with an average BMI of 33.7 (range 20.0 – 38.5). Women were randomized to 

receive CPAP therapy or conservative treatment for three months. The primary outcome was 

quality of life using the Quebec Sleep Questionnaire (QSQ). After three months CPAP usage 

all quality of life domains of the QSQ were significantly improved in the CPAP group 
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compared with the control group, including sleepiness (p<0.001), mood (p=0.012), anxiety 

(p=0.014) and depression (p=0.016) (163).  

1.6.2. The impact of CPAP on cardiovascular health in women  

Recently, Campos-Rodriguez et al. found that CPAP use for 3 months resulted in a 

significant decrease in diastolic blood pressure in female subjects (164). A prospective study 

by the same group evaluated the long-term outcomes of OSA in treated and non-treated 

female patients. They found that severe OSA was associated with increased cardiovascular 

mortality risk (adjusted hazard ratio 3.50, 95% CI 1.23-9.98), and that CPAP treatment may 

reduce this risk (25). 

1.6.3. CPAP in Pregnancy 

There are limited data on the treatment outcomes of OSA during pregnancy, and no 

adequately powered randomized controlled trials have been conducted in this area. Small 

studies have shown that CPAP treatment reduces blood pressure during pregnancy even 

when OSA is mild (165), and may improve pregnancy outcomes compared with untreated 

OSA (166, 167); however, more research is required in this area.  

1.6.4. CPAP compliance in women 

Gender differences in the use and response to CPAP devices have not been extensively 

studied to date. A review of a database of 4281 patients found that average daily CPAP 

usage in male patients was slightly higher than in female patients. Average nightly usage in 

both genders was high (6.3 ± 1.6 vs. 6.2 ± 1.6) (168). One study followed a group of 708 

women for a median of 6.2 (4.2-7.7) years. Long term compliance to treatment was good in 

these patients, with a median daily usage of 6 hours per day (IQR 4-7). 82.8% were still 

using CPAP after 5 years, and 79.9% were still using CPAP at 10 years (169). 

1.6.5. Non-CPAP treatments for women  

Non-CPAP treatments have rarely been studied for gender-specific effects. Weight loss is a 

common recommendation for mild patients; however, this may be more beneficial to males 

than females due to the increased fat distribution in the upper airway of males (170).  
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Mandibular Advancement Devices (MADs) are a treatment option for those with mild and 

moderate OSA or those who have rejected CPAP. One large study found female gender was 

a predictor of treatment success, particularly in the mild group (171). 

1.6.6. Treatment of Mild OSA with CPAP 

Effective treatment with CPAP has been shown to improve symptoms and reduce health 

risks in moderate-to-severe OSA patients (58). However, there is very little evidence 

regarding treatment of mild OSA, and the degree of severity at which symptoms are 

improved by treatment is not clear. Indeed, the few randomised controlled trials (RCT) in this 

area have yielded mixed results, potentially due to small sample sizes and methodology 

issues (58). Small studies in mild OSA subjects have generally shown that CPAP reduced 

AHI but did not improve objective sleepiness or blood pressure (BP) (58). Conflicting results 

were found for subjective sleepiness, neurobehavioral performance, mood and quality of life 

(58).  

One early trial from 2000 which aimed to evaluate the effectiveness of CPAP in mild OSA 

evaluated 142 consecutive patients in Spain. Patients with an AHI between 10-30 were 

entered into the trial and were randomised to receive either conservative care (sleep hygiene 

and weight loss) or conservative care in addition to CPAP treatment (172). Quality of life was 

assessed at 3 months and 6 months using the Sleep Apnea Hypopnea Syndrome (SAHS) 

questionnaire. The questionnaire measures how frequently the patient experiences 

symptoms including snoring, breathing pauses, nocturia, choking, morning headaches, non-

restorative sleep, morning drowsiness, and difficulty concentrating (173). The ESS, multiple 

sleep latency test (MSLT), FOSQ and Nottingham Health Profile (NHP) were also used to 

measure quality of life. The authors found improved quality of life in the CPAP group using 

the SAHS assessment (p <0.001). There were also improvements in quality of life measured 

by the FOSQ, although these did not reach significance (p = 0.06). No significant 

improvements were seen in any of the other quality of life assessments. When reviewing the 

gender differences in this study no clear conclusions can be made, as 91% of the control 

group and 81% of the CPAP group were male.  

A review of the trials using CPAP for mild OSA in 2006 by Gay et al., found that there was 

insufficient evidence regarding the effectiveness of treatment in the mild OSA group to draw 

conclusions (58). Following that review there have been two adequately powered studies in 

mild OSA populations. 
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The CPAP Apnea Trial North American Program (CATNAP) was conducted by Weaver et al. 

and published in 2012 (174). The rationale for the CATNAP trial was to understand the effect 

of CPAP on daily functioning in patients with daytime sleepiness (ESS >10) and mild to 

moderate OSA (AHI 5-30) (174). Patients were randomised to receive either CPAP 

treatment or sham-CPAP for a period of 8 weeks. The primary outcome was the FOSQ. 223 

patients completed the trial. The investigators found a significant improvement in daily 

functioning in the active CPAP group compared with the sham-CPAP group (174). The 

results of this study have not been broken down into gender.  

It remains unclear from the CATNAP study whether mild OSA patients without excessive 

daytime sleepiness would also benefit from CPAP treatment (174). The Multicenter 

Obstructive Sleep Apnea Interventional Cardiovascular (MOSAIC) clinical trial aimed to 

answer this question in an RCT of 391 patients who were diagnosed with OSA (ODI >7.5/h), 

but at a level not severe enough to warrant treatment (175). Patients were randomised to 

receive either CPAP therapy or standard care. The investigators found that CPAP improved 

daytime sleepiness (based on ESS scores), objective sleepiness and self-assessed health 

status, but not vascular health risk (175). A sub-group of the participants underwent 

endothelial function measurements. The study found a large improvement in brachial artery 

flow-mediated dilation in the CPAP group, particularly in those using CPAP for >4 hours per 

night. There was no effect on arterial stiffness. The authors concluded that minimally 

symptomatic OSA may be a cardiovascular risk factor (176). The improvement on ESS from 

CPAP was independent of gender, as was the 5-year vascular risk. In this study men 

accounted for 78% of the sample.  

The CATNAP and MOSAIC clinical trials used the AASM 2007 scoring criteria. No studies in 

the mild population have used the AASM 2012 scoring criteria, although the MERGE clinical 

trial is currently examining this population group (Appendix C). By definition, the AASM 2012 

scoring leads to inclusion of milder patients, so may yield different results.  

It is difficult to draw conclusions due to various definitions of mild OSA being used in studies 

as well as the predominance of males and lack of gender-specific results. Currently there is 

no global consensus on how mild OSA should be scored and whether mild OSA should be 

treated (177, 178), so it is not surprising that gender differences in mild OSA have not yet 

been properly explored.  
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1.6.7. UARS Treatment 

Very little data exists on the treatment of UARS with CPAP. Guilleminault et al. showed that 

CPAP was able to normalize breathing, significantly reduce nocturnal arousals, and 

eliminate daytime sleepiness in UARS (8). Non-randomised trials have examined the use of 

CPAP in UARS in subjects with an AHI <10 with positive results (114). Similarly, small 

studies have shown that CPAP can normalize breathing and assist in the control of BP in 

these patients (97, 110).  

Oral devices may be an alternative to CPAP in UARS patients. One investigation of 32 

patients found that treatment with a mandibular advancement device was able to 

significantly reduce daytime sleepiness, arousal index, and minimum oxygen saturation 

(179). 

1.7. Auto-adjusting CPAP devices and gender 

Auto-adjusting CPAP devices, commonly called AutoSet devices, monitor the patient’s 

breathing on a breath-by-breath basis and make calculations about the appropriate pressure 

response. If the patient’s breathing shows signs of obstruction, either through snoring, flow 

limitation or lack of breathing (apnea), the AutoSet algorithm is programmed to increase the 

pressure delivered to the patient until the obstruction is overcome and breathing is regular. 

Once breathing has been stable for a period of time, AutoSet devices then slowly decrease 

the delivered pressure to improve patient comfort. AutoSet devices have an advantage over 

fixed CPAP devices as they are able to overcome obstruction during changing 

circumstances, such as the intake of alcohol, supine sleeping, or weight gain. They can 

differentiate central apneas from obstructive apneas and only increase the pressure when 

obstruction is present. Theoretically, they are more comfortable and tolerable for patients 

because they keep the mean pressure lower.  

The first AutoSet devices were developed in the late 1990s. At this time OSA was viewed 

primarily as a male disease (15). Indeed, the patient population described in studies during 

the development and validation of AutoSet algorithms is typically 100% male (180-182). 

Personalised medicine, the practice of tailoring medical decisions and interventions to 

individual characteristics, has not yet penetrated OSA treatments. However, due to the 

different gender structures and pathologies of the disease, personalised diagnostic methods 
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and treatments may be a way to improve patient treatment and long term acceptance (183, 

184).  

1.8. Summary of the main themes and overall aims of the 

thesis 

Gender differences in the symptoms of OSA are frequently reported. Females do not present 

with the classic OSA symptoms, such as snoring, obesity and daytime sleepiness. Instead, 

females may complain of depression, anxiety, mood disturbance, reduced quality of life, 

insomnia and fatigue (29, 185-187). However, a detailed review of the research shows that 

these ‘female’ symptoms appear to be commonly reported in both genders in the mild OSA 

and UARS patient groups. However, there is limited data available on these patient groups 

and it often is not analysed by gender.  

What remains unclear is whether the gender differences described in moderate-to-severe 

OSA are present in the UARS and mild OSA patient groups.  

The first aim of this thesis is:  

1) Determine whether gender-related differences exist in symptoms of mild OSA 

patients (CHAPTER 2) 

The severity of OSA appears to differ between genders, with PSG examinations finding that 

females have less-severe OSA with overall lower AHI, shorter apneas, and a higher 

likelihood to have REM-only events (123). Younger women, in particular, often have more 

episodes of flow limitation and RERAs (50, 123). However, UARS and mild OSA are 

comprised largely of flow limitation and RERAs/hypopneas terminated by arousal. Therefore, 

it is not clear whether the reported gender-specific respiratory characteristics are present in 

the mild patient groups. Additionally, some mild OSA patients are reported as being 

symptomatic, despite having low AHI’s. It is hypothesised that the symptoms could be an 

outcome of flow limitation and arousals during the night rather than gender. 

The next aims of this thesis are: 

2) Determine whether gender-related respiratory differences exist in respiratory 
data of mild OSA patients (CHAPTER 3). 
 

3) Determine whether a relationship exists between respiratory data and patient 
symptoms in mild OSA patients (CHAPTER 3). 



  

45 

 

Effective CPAP treatment in adherent patients has been shown to improve sleepiness and 

quality of life, and reduce the cardiovascular health risk in patients (54, 57-60). However, the 

majority of clinical trials of CPAP have included mainly male participants (159), and indeed 

the development of AutoSet devices has been conducted on primarily male participants.  

As the final part of this thesis, the development of a new AutoSet device tailored specifically 

for females is outlined.  

The final aim of this thesis is: 

4) Develop and validate new AutoSet for the treatment of female-specific 
breathing characteristics (CHAPTER 4, CHAPTER 5, and CHAPTER 6).  
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CHAPTER 2. SYMPTOM COMPARISON IN MILD OSA 

PATIENTS  

 

2.1. Introduction 

As described in Section 1.3, the literature implies clear differences in symptoms between 

males and females with OSA. The typical symptoms that males with sleep apnea present 

with are snoring, witnessed apneas and excessive daytime sleepiness. The most common 

symptoms that females complain of are insomnia, fatigue, lack of energy, headaches, 

muscle pain, depression, and anxiety (23-27). However, detailed examination of patients 

with UARS and mild OSA indicates that symptoms attributed to females are common in both 

genders. To explore this further, this chapter examines a group of mild OSA patients to 

determine whether gender differences are present.  

The aim of this review was to determine whether gender-related differences exist in 

symptoms of mild OSA patients. The hypothesis is that clear gender differences will still exist 

even in these patients at the very mild end of the OSA spectrum.   

2.2. Methods  

Baseline questionnaire data from the MERGE clinical trial was used in this analysis. 

The full methodology for the MERGE study is contained in Appendix D. In summary, the 

MERGE study is a multi-centre, randomised, controlled study taking place in 11 centres in 

the UK Respiratory Sleep Research Network (clinicatrials.gov ID: NCT02699463). The 

MERGE study has been approved by South Central – Hampshire A Research Ethics 

Committee (approval reference 16/SC/0387). 

Polygraphy data from patients with mild OSA (AHI 5-15) is scored using both AASM 2007 

and AASM 2012 definitions. Patients are randomised to receive either CPAP treatment or 

standard care (sleep hygiene counselling) for three months.  

Primary Endpoint (AASM 2012 scoring): 

 Energy and Vitality Dimension of the SF-36 questionnaire 
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Secondary Endpoints (AASM 2007 & AASM 2012 scoring): 

 Short Form 36 (SF 36) 

 Epworth Sleepiness Scale (ESS) 

 Fatigue Severity Scale (FSS) 

 Functional Outcomes of Sleep Questionnaire (FOSQ) 

 Hospital Anxiety and Depression Scale (HADS) 

 Insomnia Severity index (ISI) 
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Patients who have either no OSA or mild OSA when scored with AASM 2007 scoring are 
entered into the trial. Those with no OSA are expedited for rescoring to see if they may have 
OSA when scored as per AASM 2012 scoring criteria (Figure 2). 

 
Figure 2: MERGE study methodology 
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In this chapter, baseline questionnaire data from the ESS, FSS, ISI, and HADS 

questionnaires were reviewed for gender differences. 

Statistical analysis of the data was performed using MiniTab statistical software (Version 

7.1.0). Data was split into genders in order to compare baseline questionnaires for females 

compared with males. Group means were first checked for normality, and then compared 

using the 2 sample T-test.  A value of P < 0.05 was considered statistically significant.  

A post hoc analysis of the data was undertaken to determine the power of the results. The 

minimally clinical important difference (MCID) of a questionnaire is the smallest change that 

would be expected to have clinical benefits.  The MCID for the ESS is 2 points. A power 

calculation using a sample size of 4.34 (found in this data review) shows that a sample size 

of 74 is needed to show a 2-point increase in the ESS with 80% power. Using this sample 

size of 259 participants, power is 99.9%. A similar calculation using the MCID of the FSS 

(0.74) and standard deviation found in this data set (12.9) shows that the power of the FSS 

result is 99%.  

2.3. Results 

Baseline ESS, FSS, ISI and HADS questionnaire data from the first 259 participants in the 

MERGE study were examined for differences based on gender. Data from 186 males and 73 

females was included in the analysis.  

On average, the females were significantly older with a higher BMI than the males (Table 6). 

Comparison of AHIs from these patients is presented in Section 3.3.  

Table 6: Demographics of the mild patient group 

 males females p-value 

Age (years)    

Mean ± SD 50.4 ± 12.1 54.9 + 9.8  

Min - Max 23 - 80 30 - 76  

   0.002 

BMI (units)    

Mean ± SD 29.5 ± 3.6 31.8 ± 5.2  

Min - Max 21 - 39 19.7 - 39  

   < 0.000 
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ESS scores are contained in Table 7. There were significant differences between the 

genders in ESS scores. The female patients in this study were sleepier as a group than the 

males. When using the ESS, scores of 10 or higher indicate problematic sleepiness. In this 

mild group of patients, 87/186 (47%) of males and 46/73 (63%) of females reported being 

excessively sleepy with a score ≥ 10. As can been seen Figure 3, the ESS data spread is 

fairly similar; however, females have a spike of scores at 11 and 14.  

Table 7: ESS Scores in mild patients 

 n min Mean ± SD Max p-value 

Males 186 0 9.13 ± 4.34 21  

Females 72 0 10.63 ± 4.34 20  

     0.014 

 

 
Figure 3: Histogram of ESS scores 

FSS scores are displayed in Table 8. There were significant gender differences. An FSS 

score of 36 or greater indicates high levels of fatigue. In this patient group 82/186 (44%) of 

males and 56/73 (77%) of females were excessively fatigued. Figure 4 shows the spread of 

data, and demonstrates that the female scores were clustered around 50-60. 

 

2
00.0

20.0

40.0

60.0

80.0

01.0

21.0

41.0

61.0

81.0

0 3 6 9 21 51 81 1

9.129 4.336 186

10.63 4.339 72

Mean StDev N

D

ytis
n

e
D

ata

m

elbairaV

SSE elamef

SSE ela

H
 lamroN

SSE elamef ,SSE elam fo margotsi



  

51 

 

Table 8: FSS scores in mild patients 

 n min Mean ± SD Max p-value 

Males 186 9 33.69 ± 13.94 63  

Females 73 9 43.10 ± 12.94 63  

     0.000 

 
Figure 4: Histogram of FSS Scores 

The ISI scores are displayed in Table 9. There were significant gender differences in the ISI 

scores.  

Table 9: ISI Scores of mild patients 

 n min Mean ± SD Max p-value 

Males 186 0 11.90 ± 5.48 24  

Females 73 1 14.62 ± 5.67 28  

     0.001 

Regarding the ISI questionnaire, scores of 0–7 indicate no clinically significant insomnia, 

scores 8-14 are indicative of subthreshold insomnia, and scores of 15 and over indicate 

clinical insomnia, with those above 21 being severe. Table 10 shows the breakdown of 

insomnia severity. 58% of females in this group had clinically significant insomnia, compared 

with only 31% of males. Figure 5 shows the spread of data and the higher scores from 

female participants.  
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Table 10: Insomnia severity in mild patients  

Category % of males % of females 

No insomnia 23 10 

Subthreshold 
insomnia 

46 33 

Clinical insomnia 28 44 

Severe insomnia 3 14 

 

 
Figure 5: Histogram of ISI scores 

The HADS scores from the data are displayed in Table 11. There were significant 

differences between males and females. Scores ≥ 11 indicate abnormally high levels of 

anxiety and depression. In this data set, 89/186 (48%) of males and 48/73 (66%) of females 

had high scores. As displayed in Figure 6, females had a pattern of higher scores than 

males.  

Table 11: HADS scores from mild patients 

 n min Mean ± SD Max p-value 

Males 186 0 11.03 ± 6.94 33  

Females 73 0 14.81 ± 7.57 37  

     0.000 
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Figure 6: Boxplot of HADS Scores  

2.4. Discussion 

Patients in the MERGE study were scored using AASM 2012 scoring criteria, which allows 

the inclusion of hypopneas with arousals. As per Section 1.2.3, if these hypopneas were 

rescored as RERAs (using AASM 2007 criteria), it is likely that many patients in the MERGE 

study may meet a diagnosis of UARS. However, no formal UARS diagnosis was made for 

these patients in this analysis.    

Of the first 259 patients enrolled in the study, only 73 were female. The literature suggests 

that in the mild OSA/UARS patient groups the gender split is almost 50/50. It would be 

reasonable to expect that females would make up close to 50% of the patient population in 

this study. The lower presentation of female patients supports the notion that females are 

underdiagnosed and present less often to sleep clinics (23, 47). 

Despite being considered a mild patient group, these patients experienced high levels of 

symptoms. Defining these patients as mild is misleading, and using AHI as the measure of 

severity categorisation may be inappropriate for this reason. Mild patients are often denied 

reimbursement for treatment. In many European countries a diagnosis of moderate-to-

severe OSA is required before CPAP treatment is provided to patients (1, 96).   
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There were significant gender differences in each of the baseline questionnaire scores, with 

females as a group being more symptomatic than males. Patients in this study had relative 

high ESS scores, especially for female patients and those with mild OSA. This contradicts 

the general consensus in the literature that females report less sleepiness than males (28). It 

is possible that females in the MERGE study are more symptomatic than those in other 

studies, as they have been referred from primary care to a sleep clinic due to suspected 

sleep apnea, and may have previously been investigated for other sleepiness causes.    

In this data set the groups were not completely matched. The females were older and 

slightly more obese. It is possible that this has driven the increased symptoms seen in these 

female patients. These relationships have been explored further in Section 3.3; however, 

future studies should match (or control for) participants on age and BMI.    

While this data set has clearly shown that mild OSA female patients are more symptomatic 

than male patients, it does not answer the question of why. It is not clear whether females 

perceive symptoms differently, or whether they describe them differently. Future studies 

could investigate the psychology behind symptom perception and reporting in mild OSA 

patients in order to better understand why these differences occur.  

2.5. Conclusion 

In this data set, females were found to suffer significantly higher levels of sleepiness, fatigue, 

insomnia, and anxiety and depression than males with the same severity of OSA. 

The literature regarding symptoms of OSA in females states that females with OSA do not 

often report daytime sleepiness (Section 1.3.2.2). However, in this patient group, 63% of 

female patients, compared to 47% of male patients had a score of ≥ 10 on the ESS, 

indicating excessive sleepiness. More female patients than male patients complained of high 

levels of daytime fatigue in this patient group, with 77% of females and 44% of males scoring 

highly on the FSS questionnaire. This is consistent with the literature cited in Section 1.3.2, 

which states that in females with OSA fatigue is commonly listed as a key symptom. Severe 

insomnia was present in 14% of females and only 3% of males. The literature also 

documents insomnia as a key symptom of female OSA. Insomnia is also frequently 

mentioned as a symptom of UARS. In this mild patient group clinically important levels of 

insomnia were present in 60% of females, and 31% of males, showing that insomnia impacts 

more females than males in the mild group. Anxiety and depression, scored using the HADS 

questionnaire, was high in both groups. Females reported more symptoms than males, and 
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clinically significant levels of anxiety and depression were found in 66% of females and 48% 

of males.  

This data set has shown that these patients experienced high levels of symptoms, despite 

being considered mild when using AHI as the measure of severity. There are significant 

symptom differences in the genders. A higher percentage of female patients were 

considered symptomatic in sleepiness, fatigue, insomnia and anxiety/depression. In this 

group a higher proportion of females than males experienced excessive daytime sleepiness, 

which is inconsistent with the literature.  
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CHAPTER 3. DETAILED ANALYSIS OF GENDER 

DIFFERENCES IN RESPIRATORY EVENTS  

3.1. Introduction 

Women with OSA are characterised as having more flow limitation, lower AHIs, and shorter 

apneas (Section 1.5.1). However, as described in Section 1.5.3, the literature on UARS 

indicates that that both genders may have similar amounts of airway obstruction. Therefore, 

the following chapter will explore whether mild OSA and UARS patients have clear gender 

differences in their respiratory data.  

As shown in CHAPTER 2, gender differences in symptoms still exist even amongst patients 

with mild OSA. What remains unclear is whether those symptoms are a result of gender, or 

whether they are related to different types of sleep disordered breathing events. This chapter 

will explore associations between the symptoms discussed in CHAPTER 2, and sleep study 

data taken from the PG studies of mild patients.  

The aim of this review was to determine whether there are gender differences in respiratory 

data from mild OSA patients, and whether respiratory data can be correlated with symptoms. 

The hypothesis is that gender differences will still exist in this respiratory data, and that 

worsening respiratory parameters will correlate with worsening symptoms.  

3.2. Methods 

The full methodology of the MERGE study is contained in Appendix D, and summarised in 

Section 2.2. 

PG data used in this review was collected using the Apnealink Air home sleep test 

(ResMed). Data including AHI, ODI, hypopnea index, flow limitation, and snore were 

analysed using both the AASM 2007 and AASM 2012 scoring criteria (see Section 1.2 for 

details on the different scoring criteria).  

The AASM 2007 analysis of the Apnealink Air was undertaken using AirView software 

(ResMed). Automated analysis of sleep studies using AASM 2007 criteria has been 

extensively validated and is closely correlated with manual PSG scoring (188-197). 
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The AASM 2012 analysis was done using a recently developed algorithm which estimates 

arousals from sleep. Although PSG is the most precise measure of arousals, surrogate 

measures such as pulse wave amplitude drops, respiratory changes, and movement have 

shown to accurately estimate arousals(198-200). The AASM 2012 scoring algorithm used in 

the MERGE study uses surrogate measures of arousal and machine learning to estimate 

arousals from sleep following hypopneas. This algorithm has been shown to have high 

sensitivity and specificity (92% and 80%) to rule in OSA at AHI ≥ 5, when compared with 

manual polysomnography scoring (201).Statistical analysis of the data was performed using 

MiniTab statistical software (Version 7.1.0). PG data was split into genders and compared 

using the Two-Sample T test. PG data was then analysed against baseline symptoms (as 

described in CHAPTER 2) using the Pearson’s Correlation Test to determine correlations. 

These relationships were further explored using the coefficient of determination (R2) in order 

to better understand the interactions between age, BMI, gender and symptoms.  

3.3. Results 

3.3.1. Gender comparison of PG data 

The first 259 consecutively enrolled participants in the MERGE study with full data sets were 

analysed. Of these 259 patients, 73 (28%) were female. Demographics for these participants 

can be found in Section 2.3.  

When PG studies were scored according to the AASM 2007 criteria, the males had more 

severe SDB in all respiratory categories (AHI, ODI at 4%, and number of hypopneas). 

However, when re-scoring with AASM 2012, the differences were much less obvious. 

When scored using AASM 2007 criteria, the males were found to have a higher AHI, ODI, 

and hypopnea index than the females (Table 12).  

Table 12: Mild patients scored with AASM 2007 criteria 

 males females p-value 

2007 AHI 7.17 ± 3.4 5.97 ± 2.71 0.004 

4% ODI 8.65 ± 2.3 7.06 ± 3.8 0.008 

Hypopnea index 5.31 ± 3.71 4.26 ± 2.71 0.015 

When scored using AASM 2012 criteria, the gender differences disappeared. The females 

did have slightly more hypopneas terminated by arousals; however, this was not statistically 

significant (Table 13). 



  

58 

 

Table 13: Mild patients scored with AASM 2012 criteria 

 males females p-value 

2012 AHI 12.52 ± 5.01 11.65 ± 4.69 0.197 

3% ODI 17.02 ± 4.96 15.6 ± 5.25 0.111 

Hypopneas terminated by arousal 3.2 ± 3.58 3.65 ± 3.58 0.370 

Hypopnea index 9.54 ± 3.97 9.03 ± 3.46 0.410 

Males had significantly more snore than females. The percentage of overall flow-limited 

breaths was similar between the genders; however, the females had significantly less flow-

limited breaths with snore (Table 14). 

Table 14: Flow limitation and snore in mild OSA patients  

 males females p-value 

% flow-limited breaths 39.8 ± 13.8 38.4 ± 15.6 0.598 

% flow-limited breaths without snore 33.2 ± 13.3 35.3 ± 14.3 0.348 

% flow-limited breaths with snore 6.55 ± 8.14 3.09 ± 4.69 0.001 

No. of snore breaths 1147 ± 1139 843 ± 845 0.022 

Patients who were classified as having no OSA at baseline (AHI < 5 by AASM 2007 scoring) 

were re-scored using AASM 2012 guidelines. Following the rescoring, 26/73 (36%) of 

females and 52/184 (28%) of males had an increased AHI sufficient to lead to diagnosis of 

OSA (AHI ≥ 5). 

The average AHI of this female group when scored with AASM 2007 was 5.97; it increased 

to an average of 11.65 when rescored according to AASM 2012 rules. The average AHI of 

the male group was 7.17, and it increased to 12.52 when rescored. The two groups were not 

significantly different regarding AHI changes between AASM 2007 and 2012 scoring.  

3.3.2. Relationships between PG data and symptoms 

There were correlations between AHI (scored with both AASM 2007 and AASM 2012) and 

daytime symptoms (Table 15). However, all the relationships were inverse: the higher the 

symptom, the lower the AHI. Flow limitation was only correlated with the ISI score, with an 

inverse relationship, with higher scores of insomnia being linked to lower percentages of flow 

limitation scores. Hypopneas terminated by arousals had no relationship with symptoms. 



  

59 

 

Table 15: Correlations between symptoms and respiratory parameters  

 2007 AHI 2012 AHI 
Percent of flow 
limited breaths 

Hypopneas 
terminated by 

arousal 

ESS 

r 

p-value 

 

-0.169 

0.007 

 

-0.158 

0.012 

 

0.047 

0.537 

 

0.025 

0.692 

FSS 

r 

p-value 

 

-0.152 

0.016 

 

-0.179 

0.004 

 

-0.10.2 

0.182 

 

-0.031 

0.622 

HADS 

r 

p-value 

 

-0.166 

0.008 

 

-0.144 

0.022 

 

-0.093 

0.228 

 

0.081 

0.202 

ISI 

r 

p-value 

 

-0.139 

0.027 

 

-0.156 

0.014 

 

-0.159 

0.037 

 

-0.029 

0.646 

When analysing the data by gender, there were far fewer correlations between SDB 

measures in the males than the females (Table 16). In the males, correlations were only 

found between AASM 2012 AHI, and FSS. In the female patients, correlations were found 

between AASM 2007 AHI and ESS, HADS, and ISI. In the female data scored with AASM 

2012 rules, correlations were found between AHI, and HADS, and ISI (Figure 11). There 

were no correlations between flow limitation and symptoms in the male group. In the female 

group correlations were found between percent of flow limited breaths and FSS, and ISI. 

Again these correlations were inverted, with higher symptoms being associated with lower 

percentage of flow limitation.  
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Table 16: Correlations between symptoms and respiratory parameters analysed by gender 

 2007 AHI 2012 AHI 
% flow limited 

breaths 

Hypopneas 
terminated by 

arousal 

Males 

ESS 

r 

p-value 

 

-0.093 

0.213 

 

-0.130 

0.083 

 

0.043 

0.633 

 

-0.042 

0.571 

FSS 

r 

p-value 

 

-0.074 

0.321 

 

-0.153 

0.040 

 

-0.006 

0.943 

 

-0.105 

0.160 

HADS 

r 

p-value 

 

-0.043 

0.563 

 

-0.026 

0.735 

 

-0.048 

0.598 

 

0.035 

0.637 

ISI 

r 

p-value 

 

-0.054 

0.468 

 

-0.103 

0.171 

 

-0.033 

0.712 

 

-0.085 

0.253 

Females 

ESS 

r 

p-value 

 

-0.317 

0.007 

 

-0.197 

0.099 

 

0.070 

0.639 

 

0.164 

0.171 

FSS 

r 

p-value 

 

-0.218 

0.068 

 

-0.192 

0.109 

 

-0.300 

0.040 

 

0.100 

0.408 

HADS 

r 

p-value 

 

-0.372 

0.001 

 

-0.381 

0.001 

 

-0.178 

0.231 

 

0.146 

0.224 

ISI 

r 

p-value 

 

-0.242 

0.042 

 

-0.240 

0.044 

 

-0.416 

0.004 

 

0.055 

0.648 

In male patients, the strongest relationship was seen between AASM 2012 AHI and FSS 

(Figure 7).  
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Figure 7: Relationship between AASM 2012 AHI and average FSS in male patients 

In the female patients the strongest relationships were seen between flow-limited breathing 

and ISI (Figure 8); AASM 2007 AHI and ESS (Figure 9); AASM 2007 AHI and HADS (Figure 

10); and AASM 2012 AHI and HADS (Figure 11).

 

Figure 8. Relationship between flow limited breaths and average ISI score in female patients 
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Figure 9: Relationship between AASM 2007 AHI and average ESS in female patients  

 
Figure 10: Relationship between AASM 2007 AHI and average HADS score in female patients  
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Figure 11: Relationship between AASM 2012 AHI and average HADS score in female patients  

 

3.3.3. Correlations between PG data, symptoms, gender, age and BMI  

When reviewing the data by the adjusted R², accounting for BMI and AHI, the FSS values of 

females are 33 points higher than that of males. They increase by 1.1 per unit of BMI 

increase and drop by 0.5 points for every one-unit increase in AHI. The increase of FSS per 

unit rise in BMI is 0.8 points lower in women than in men (Table 17, Figure 12).   

Table 17: Correlations between FSS and Gender, AHI, and BMI 

Dependent Variable:  FSS 

Variable  Estimated 
change per 

unit 
95%-C.I. p-value 

Female gender 33 [8.5 ; 57.5] 0.008 

BMI 1.1 [0.6 ; 1.6] <0.001 

2012AHI -0.5 [-0.8 ; -0.2] 0.004 

Female gender and 
BMI 

-0.8 [-1.6 ; -0.1] 0.037 
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Figure 12: Correlations between FSS, gender and BMI 

The HADS values of females are 11.1 points higher than that of males. In contrast to males, 

the values of females decrease with rising AHI by 0.6 per unit of AHI. There is a slight but 

significant decrease of 0.1 points per year of age (Table 18, Figure 13). 
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Table 18: Correlation of HADS, gender, age and AHI 

Dependent Variable:  HADS  
  

Variable  Estimated 
change per 

unit 
95%-C.I. p-value 

Female gender 11.1 [6 ; 16.1] <0.001 

Age -0.1 [-0.2 ; 0] 0.048 

2012 AHI 0 [-0.2 ; 0.2] 0.992 

Female gender and 
2012 AHI 

-0.6 [-1 ; -0.2] 0.005 

 
Figure 13: Correlations between HADS, AHI and gender 

Regarding sleepiness, in this group the risk of having an ESS of ≥11 is 90% higher in 

women than in men, and it decreases in both genders by 3 % per year of age (Table 19, 

Figure 14).  
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Table 19: Correlations between ESS, gender and age 

Dependent Variable: ESS 

Variable  Estimated 
change per 

unit 
95%-C.I. p-value 

Gender=Female 0.9 [0.3 ; 1.5] 0.002 

Age -0.03 [-0.06 ; -0.01] 0.005 

 
Figure 14: Relationship between ESS, age and gender 

The ISI values of females are 12.8 points higher than that of males. In contrast to females, 

the values of males increase with rising BMI values by 0.3 per unit. In both genders there is 

a small but significant decrease with increasing AHI values (Table 20, Figure 15, Figure 16). 
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Table 20: Correlations between ISI, gender, BMI and AHI 

Dependent Variable:  ISI 

Variable  Estimated 
change per 

unit 
95%-C.I. p-value 

Female gender 12.8 [2.8 ; 22.9] 0.012 

BMI 0.3 [0.1 ; 0.6] 0.001 

2012AHI -0.2 [-0.3 ; 0] 0.014 

Female gender and 
BMI 

-0.3 [-0.7 ; 0] 0.042 

 
Figure 15: Correlations between ISI, BMI and gender 
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Figure 16: Correlations between ISI, AHI and gender 

 

3.4. Discussion 

Many more male patients were enrolled in the MERGE study than female patients (72% vs. 

28%). Therefore, it appears true that more males are presenting to the clinics, even in this 

very mild group. Snoring was significantly more common in the male patients than females. 

It is possible that one reason female patients had worse symptoms is that their motivation for 

attending the sleep clinic was due to symptoms, whereas more males may have been 

referred due to snoring. The reasons for referral to sleep clinics were collected as part of the 

MERGE study (Appendix C). This will allow future analysis of the MERGE study data to 

describe any relationship between snoring as a reason for referral, and gender. 
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Figure 17: Gender and AASM scoring criteria 

This data found that males do have more severe OSA (more events with 4% desaturation) 

than females, however the differences were much less clear when using AASM 2007 scoring 

(Figure 17).   Changing the scoring criteria to AASM 2012 is more inclusive for females with 

OSA, as this allows for scoring of events with 3% desaturation, and also hypopneas 

terminated by arousals. The females did not have more of these types of hypopneas than 

the males; rather, they had a higher proportion of hypopneas terminated by arousal making 

up their AHI.  

Interestingly, this data did not show that females have more flow limitation than males. This 

was a surprising finding as this is commonly stated in the literature (section 1.5.1). It is 

possible this finding is due to how flow limitation is measured in different studies. It is difficult 

to get a consensus on what qualifies as flow limitation from manual scoring and different 

algorithms. The quality of the signal obtained, along with recognition of flow shapes, can 

lead to inconsistency. This is a known issue in sleep medicine, and in response the 

American Thoracic Society (ATS) workshop "Non-Invasive Identification of Inspiratory Flow 

Limitation in Sleep Studies” aims to standardise the methodology of visually identifying flow 

limitation (202).  

It is difficult to interpret the results correlating the patient symptoms and measures of SDB. 

Though some correlations were found, there was a wide scatter of data and no clear 
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conclusions can be drawn. The females, who were more symptomatic as a group, had more 

correlations, but the correlations were inverse. The higher the SDB measures, the less 

symptomatic the female patients were. In female patients, ESS was strongly correlated with 

age, with younger females much more likely to have high levels of daytime sleepiness. 

Female FSS scores were more strongly associated with BMI than AHI, whereas, in male 

patients increasing BMI was associated with worsening insomnia. Obesity, even without 

comorbid OSA, is associated with anxiety, depression and sleepiness (203). The underlying 

obesity in some of these participants may have a stronger impact on daytime symptoms than 

their OSA. The female patients, as a group, were more obese than the males, and were 

more symptomatic. In order to understand the different roles of obesity and OSA on daytime 

symptoms, treating the OSA in these patients and measuring any change in their BMI levels 

is important. The MERGE study (Appendix C) aims to do this, with results expected late 

2019.  

The literature comparing UARS to moderate and severe OSA patients has found that UARS 

patients are more symptomatic despite lower AHIs (section 1.4.6). In this data it was found 

that even within a mild patient population the less severe OSA patients had more symptoms. 

It was originally hypothesised in the introduction to this chapter that these symptoms may be 

correlated with other measures of SDB such as flow limitation, or hypopneas terminated by 

arousals, which appear more often in women. However, although some correlations did exist 

between measures of SDB and symptoms, the relationships were inverse. In this data there 

were no clear relationships between symptoms and sleep. Confounding factors such as age 

and BMI appear to have a large influence on symptoms. Additionally, there may be changes 

to symptoms over time, with patients becoming habituated to poor quality of life. Individual 

differences, including sensitivities to disrupted sleep and coping mechanisms, potentially 

play a large role and are difficult to quantify. It is also possible there are other SDB 

measures not collected during this study which correlate more strongly with symptoms.  

One limitation of this patient data is that it was gathered using PG rather than PSG. PG 

studies are less accurate than PSG studies, as they cannot definitively measure states of 

sleep and wake. This means that PG studies tend to underestimate AHI. This is a well-

known limitation of PG (204). As PGs are unable record to EEG waves, they cannot 

measure arousals from sleep, and therefore currently cannot identify hypopneas terminated 

by arousals. In the MERGE study a new PG algorithm was employed, which estimates 

arousals from surrogate measures such as pulse wave amplitude drops, respiratory changes 

and movement. The new algorithm has been shown to have high sensitivity and specificity 
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(92% and 80%) to rule in OSA at AHI ≥ 5, when compared with manual PSG scoring 

(201)(clinicaltrials.gov ID: NCT03470493). The benefits of PG studies are that they are 

simpler and more cost effective to use on large volumes of patients. Overall, studies suggest 

that home sleep testing is suitable for home diagnosis of OSA (204-206), and for the most 

part national sleep societies have recommended the use of PG studies for symptomatic 

patients at risk of moderate-to-severe OSA without other pathologies (207-209) (204, 210). 

However, the use of PG in mild patients has not been widely studied, and it is quite possible 

that AHI was underestimated in this study. Conversely, night-to-night variability in AHI is 

another known issue, which may have led to over-estimation of AHI in some of these 

patients (211). A single night study was used to facilitate a pragmatic trial design which is in 

line with majority of clinical pathways used in the diagnosis of OSA.  

 

3.5. Conclusion 

The gender differences in respiratory data described in the literature do still exist in this mild 

patient group; however, they are much less pronounced. When AASM 2012 scoring criteria 

is used, the gender differences in AHI are even less obvious. This indicates that women 

have less-severe oxygen desaturations, more flow limitation without snore, and more 

hypopneas terminated by arousals than men. There were some correlations between AHI, 

and flow limitation, and symptoms. These correlations primarily occurred in the female 

patient group and were inverse (higher SDB was correlated with lower symptom profile). 

Confounding factors including age, and BMI were also correlated with symptoms. High 

sleepiness was strongly correlated with age in younger patients. BMI was associated with 

increased FSS in female patients and increased ISI in male patients. No clear conclusions 

regarding symptoms and sleep measures could be drawn from this data. Future studies 

which investigate the changes in symptomology after application of OSA treatment will 

provide important insights into what level of symptoms can be attributed to OSA. 
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CHAPTER 4. DEVELOPMENT OF A FEMALE SPECIFIC 

AUTOSET DEVICE 

4.1. Introduction 

As described in Section 1.7, AutoSet devices have been developed for and validated with 

exclusively male patients. The aim of this chapter was to develop an AutoSet algorithm 

specifically for female patients.  

The differences in PSG data between males and females with OSA is described in Section 

1.5.1. In summary, females with OSA:  

 Have more episodes of upper airway resistance (flow limitation), and RERAs (126)  

 Have a higher occurrence of apneas during REM sleep (123)  

 Require lower CPAP pressures (212) 

 Have less severe OSA with lower apnea/ hypopnea index (AHI) (123)  

 Have shorter apneas/ hypopneas (124) 

 Take longer to fall asleep (125) 

 

The new AutoSet (described in this document as AutoSet F, and commercially released as 

AutoSet for Her [ResMed, Sydney]), was designed to appropriately treat these 

characteristics of female OSA.  

The AutoSet F algorithm was designed at ResMed. The first step in development was a 

thorough literature review to understand the differences in female and male OSA patients. 

As part of this review, detailed analysis of existing AutoSet algorithms was done to 

understand how they currently respond to female-specific breathing patterns. The next part 

of the algorithm development involved reviewing de-identified PSG files kept at ResMed 

from previous clinical trials to determine if the breathing patterns described in the literature 

could be quantified in PSGs from female patients compared with PSGs from male patients. 

Finally, in-house computer simulations were run to test various new algorithm learning and 

parameters in order to make final decisions about the behaviour of the algorithms. The 

following Sections describe the features of the algorithm and how they correspond to female-

specific breathing patterns. Clinical trials validating the algorithm and involving patients are 

described in CHAPTER 5. 
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4.2. Development of a new female-specific algorithm  

4.2.1. Modified Flow Limitation Response  

Females have more upper airway resistance, flow limitation, and hypopneas terminated by 

arousal (126). Therefore, the AutoSet F has a more sensitive flow limitation response. The 

algorithm will calculate and respond to a single breath of flow limitation (as opposed to the 3 

breath average used in the standard AutoSet algorithm). The purpose is to make it more 

responsive to flow limitation. This faster response allows the female patient’s flow limitation 

to be treated more efficiently, hopefully leading to a reduction in associated arousals from 

sleep.  

The algorithms’ response to flow limitation, although faster, has a gentler and lower pressure 

increase overall (Figure 18). This is to ensure the pressure changes remain comfortable for 

female patients and the pressure doesn’t increase too much or too quickly. 

 
Figure 18: The AutoSet F response to flow limitation (pink), compared to the standard AutoSet response to flow 
limitation (blue).  

4.2.2. Floor Pressure to protect against REM OSA 

As it is common for females with OSA to exhibit clusters of events during REM sleep (123), 

the AutoSet F contains a floor pressure. The floor pressure works by calculating a minimum 

pressure at which obstructive apneas no longer occur. If the algorithm detects two 

obstructive apneas occurring within one minute, then the pressure reached in response to 

the second apnea will become the new floor pressure. For example, when the algorithm 

senses a run of apneas and the patient requires a pressure of 8cm H2O to overcome the run 

of events, then for the remainder of the night the pressure will not drop below 8cm H2O.The 

floor pressure is capped so it will never increase higher than 10cm H2O. It is reset every time 

the device is stopped.  
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Figure 19 shows an example of a female patient with all her obstructive apneas occurring 

during REM sleep. If a standard AutoSet algorithm were used in this situation, the pressure 

would decay down to 4cm H20 during non-REM sleep when ventilation was stable. When 

the female patient requires higher pressure during REM sleep, the AutoSet may take some 

time to increase the pressure. During this pressure increase the patient may continue to 

have obstructive apneas. Once pressure is stable, REM sleep could be over, and the 

pressure would decay again before the next period of REM. In this case, the residual AHI 

could remain quite high.  

 
Figure 19: Female with obstructive events clustered during REM sleep 

4.2.3. Lower Mean CPAP Pressures 

Clinical trial data suggest that men require higher pressures during CPAP therapy than 

females, after adjusting for baseline OSA severity or BMI (168, 212, 213). To accommodate 

this, the AutoSet F algorithm has been designed to keep the CPAP pressure lower (and 

therefore more comfortable) while still adequately treating the majority of females. The 

maximum pressure that can be attained due to an obstructive apnea is 12cm H2O. In the 

standard AutoSet, the pressure increases from closed airway apneas were permitted up to 

20cm H2O. The AutoSet F therapy pressure can still rise above 12cm H2O for obstructions 

other than apneas (e.g. if the device detects flow limitation or snore). However, the algorithm 

includes logic to reduce the likelihood of reaching high pressures over short periods. 

The majority of research on women with CPAP has demonstrated the requirement for 

pressures at an average of around 10cm H2O (29, 212-214). The AutoSet F targets a 

pressure range of 8-12cm H2O and actively slows pressure increases as delivered pressure 

gets higher than 12cm H2O. 
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4.2.4. RERA Detection 

Respiratory Effort-Related Arousals (RERAs), have been described in Section 1.2.1. When 

scoring with AASM 2012 criteria, the majority of RERAs are likely to be reclassified as 

hypopneas terminated by arousals (1).  

Women tend to have short apneas and increased levels of flow limitation, and, as shown in 

CHAPTER 3, are more likely to arouse from sleep during a hypopnea rather than have 

continued lowering of their oxygen saturation. Therefore, the count of RERAs/hypopneas 

terminated by arousals is higher in female patients. An example of this event is shown in 

Figure 20.  

 
Figure 20: Example of a RERA (AASM 2007 scoring), or hypopnea with arousal  (AASM 2012 scoring). 

Device-scored AHIs are typically correlated with AASM 2007 scoring, and therefore do not 

include hypopneas terminated by arousals. To ensure that these events are still recognised, 

the algorithm detects and reports RERAs. RERA reporting is based on the following rules: 

 A minimum of two flow-limited breaths (flat/m-shape) AND 

 A reduction in the magnitude of these breaths. 

The RERA algorithm calculates three quantities: 

1. Flow limitation present in the three most recent breaths 

2. Flattening and length of event does not meet the criteria for a hypopnea  

3. Ventilation step change of at least 50% 
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If at least two breaths are flow-limited and a step change in ventilation of 50% from one 

breath to the next is identified, then a RERA is scored. 

 
Figure 21: Example of how the RERA detection algorithm identifies RERAs and avoids false positives.  

The purpose of the RERA index is to help physicians to review their patient’s treatment and 

ensure they are not having residual events. Figure 22 shows an example of a RERA 

occurring (scored as per AASM 2007 rules). In this case, the patient may require a higher 

minimum CPAP pressure to prevent partial airway closure.  

 
Figure 22: Example of a RERA from a CPAP download 

4.2.5. Automatic Ramp 

As women take longer, on average, to fall asleep than men (125), an automatic ramp has 

been introduced to the AutoSet F. Traditional ramp options work by starting at a minimum 

pressure and slowly increasing the pressure over a user-defined period of time until a 

suitable treatment pressure is reached. For example, a patient who uses a CPAP set to 

10cm H2O may find it difficult to fall asleep starting at 10cm H2O. Therefore, they may set a 

ramp period starting at 4cm H2O to increase to 10cm H2O over a period of 30 minutes.  
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The automatic ramp (AutoRamp, ResMed) measures the patient’s breathing and waits until 

sleep is established before increasing the pressure. Sleep onset is inferred via one of the 

following events: 

 Presence of 3 obstructive apnea or hypopnea events within 2 minutes 

 Presence of 5 consecutive snore breaths  

 Detection of stable metronomic (consistent) breathing indicative of sleep (30 

consecutive breaths which have similar breath durations, tidal volumes and peak 

flows). An example of this is available in Figure 23. 

 
Figure 23: Automatic ramp activated after 30 consecutive breaths inferring sleep onset. 

4.2.6. Gentle Pressure Adjustments 

There are anecdotal reports that some women may be disturbed by the changes in pressure 

when using standard AutoSet. The AutoSet F contains several modifications which 

effectively result in a slower (and lower) pressure rise and decay when compared to the 

standard AutoSet algorithm. An example is provided in Figure 24. 

The main changes from the standard AutoSet to the AutoSet F are:  

 The level of pressure increase has been dropped by 0.5 for every pressure rise, and 

the maximum increment per breath has been capped at 0.5 cm H2O. 

 The flow limitation response has been de-weighted linearly from 1 at 10 cm H2O to 

0 at 20 cm H2O. The higher the CPAP pressure goes, the less the AutoSet will 

increase in response to flow limitation. 

 The decay period has been increased 60 minutes (from 20 minutes in the standard 

AutoSet). When stable breathing is detected the algorithm will slowly decrease the 

pressure to the minimum over 60 minutes. 
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Figure 24: Example of the slower and more gentle female specific algorithm  

4.3. Summary of new algorithm features 

As demonstrated above, female-specific respiratory breathing patterns found in the literature 

have been used to for the development of a new AutoSet algorithm designed specfically for 

female patients.  

Table 21: Summary of AutoSet F algorithm features 

Parameter New female-specific algorithm Benefit to female patients 

Females have 

lower AHIs with 

shorter apneas 

and less severe 

hypopneas 

The algorithm reports a flow-

based RERA measure 

 

The RERA detector is a measure of 

events (RERAs and hypopneas 

terminated by arousals) which 

disturb the patient’s breathing 

during their sleep. This allows the 

clinician to understand residual 

breathing issues and modify 

treatment.  

Females have 

more upper 

airway 

resistance and  

flow limitation 

A single-breath index is used to 

calculate and respond to the 

patients flow limitation (as 

opposed to the 3-breath average 

used in the standard AutoSet 

algorithm). Additional changes 

have also been made to the 

algorithm to make it more 

sensitive to flow limitation.  

This change makes the AutoSet 

more responsive to flow limitation. 

The flow limitation is identified and 

the device responds quickly, 

avoiding long period of flow 

limitation or development into 

RERA or hypopnea.  
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Females have 

more REM-

based events 

The algorithm includes the 

addition of a closed airway apnea 

floor pressure.  

 

The floor pressure protects females 

against a string of REM-based 

events by setting a minimum 

pressure based on the patients 

breathing each night. 

Females take 

longer to fall 

asleep  

A smart ramp has been 

introduced. The therapy pressure 

will remain low until sleep onset 

occurs.  

The female patient can set a long 

ramp time (45 minutes) which will 

allow lower (more comfortable) 

pressure to be delivered while she 

falls asleep. The smart ramp 

means that if the female patient 

does fall asleep during this time the 

algorithm will identify and respond 

to obstructive events. 

Females require 

lower CPAP 

pressures  

The algorithm will increase the 

pressure to a maximum of 12cm 

H2O when an obstructive apnea 

occurs.  

NOTE: The therapy pressure can 

still go above 12 cmH2O as a 

response to snore or flow 

limitation. However, the algorithm 

includes logic to reduce the 

likelihood of reaching high 

pressures over short periods. 

 

As females require lower CPAP 

pressures than males, the new 

algorithm has been designed to 

keep the CPAP pressure lower 

(and therefore more comfortable) 

while avoiding large pressure 

increases.  

Some females 

may be 

disturbed by the 

standard 

AutoSet 

changes in 

pressure 

The pressure changes which 

occur in response to respiratory 

patterns have been programmed 

to be slower than those of a 

standard AutoSet.  

The AutoSet F increases and 

decreases pressure at a slower 

rate than a standard AutoSet, 

aiming to increase comfort and 

decrease therapy-related 

disturbances during the night. 



  

80 

 

4.4. Use of the AutoSet F in male patients 

When development was commenced on the AutoSet F, it was under the assumption that the 

literature pertaining to gender differences in OSA was accurate. That is to say that females 

with OSA have more flow limitation, more RERAs, more hypopneas terminated by arousals, 

lower AHIs, shorter events, less severe oxygen desaturations and require lower CPAP 

pressures. Further investigations in the areas of mild OSA and UARS indicated that the 

differences may not be as clearly defined as the literature first indicated. Findings from 

CHAPTER 2 support the notion that females are overall less severe, but shows that the 

differences are much less pronounced in the mild groups, with no gender differences found 

in the amount of flow limitation or hypopneas terminated by arousal.  

Despite these findings, the development of the AutoSet F focused solely on female OSA 

patients. An important driver for this was the clinical experience of female patients described 

in Section 1.3.3. Females are less likely to be referred to sleep clinics, and may feel 

embarrassed to be diagnosed with what was historically considered a male disease. 

CHAPTER 3 shows that, even in very mild patients, females with OSA have significantly 

worse symptoms than males with OSA. It is hoped that, by developing and commercialising 

a device for female with OSA, awareness is increased and the stigma that some female 

patients may feel is reduced.  

The AutoSet F is likely a suitable treatment for any patients with mild OSA dominated by flow 

limitation and RERAs, however exploring that area was outside the scope and purpose of 

the development of the AutoSet F.  
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CHAPTER 5. TESTING AND VALIDATION OF THE 

AUTOSET F  

5.1. Introduction  

As described in Section 1.5.1, female OSA patients have different breathing patterns from 

male patients. A new AutoSet algorithm was developed in order to optimally treat these 

differences to improve treatment for female patients. This chapter describes the methods for 

testing and validating that the AutoSet F was working as designed. The first validation 

activity was a clinical trial which evaluated efficacy, based on AHI and ODI, of the AutoSet F 

on 20 female patients. The second validation involved a bench test which was used to 

simulate the breathing of a standard female patient. The AutoSet F was evaluated on the 

bench test in order to review its performance on a standardised, repeatable test, compared 

with other AutoSet devices. Finally, the AutoSet F was commercially released in a controlled 

product launch where data was collected to ensure correct functioning and appropriate 

treatment of female OSA in uncontrolled conditions.  

5.2. Clinical trial to evaluate the efficacy of the AutoSet F 

5.2.1. Introduction  

Following on from development of the new algorithm designed for female patients, a clinical 

trial was conducted to evaluate treatment efficacy of the AutoSet F in female patients.   

5.2.2.  Methods 

The full methodology of this clinical trial is described in Appendix E.  

This was a single-blind, randomised, crossover, non-inferiority study comparing the efficacy 

of the new AutoSet F algorithm to the standard AutoSet algorithm undertaken at two West 

Australian sleep disorders research institutes.   

The study was approved by The University of Western Australia HREC (Approval No.: 

RA/4/1/5919) and by Sir Charles Gairdner HREC (Approval No.: 2013-042). All participants 

provided informed consent. 
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Female participants established on AutoSet treatment underwent consecutive 

polysomnography (PSG) studies in a randomised order where they received either the 

AutoSet F algorithm or the standard algorithm. At visit 1, baseline information was collected, 

including demographics and data from their diagnostic PSG. Following each treatment night, 

participants completed a questionnaire about the comfort of the device.  

PSG data was scored by an expert independent scorer from six lead EEGs.  

Primary Objective:  

1) To evaluate the efficacy of the new algorithm (AutoSet F) 

 Comparison of AHI and ODI of new algorithm compared with a standard 

algorithm to demonstrate non-inferiority 

 

Secondary Objectives:  

1) To evaluate whether sleep parameters are improved using the new algorithm 

(AutoSet F) compared with the standard algorithm 

2) To evaluate the patient’s subjective feedback of the modified algorithm (AutoSet F) 

compared with the standard algorithm 

 

5.2.3. Results 

5.2.3.1. 5.2.3.1. Participant demographics  

Twenty participants took part in the study. Table 22 displays participant demographics. 

Table 22: Participant demographics  

Participant Demographics and baseline characteristics 

Age (n=20) 44.85±5.02 years 

Ethnicity (n=20) 

Caucasian: 90% 

Aboriginal: 10% 

Height (n=20) 164.51±6.04 cm 

Weight (n=20) 104.02±20.45 kg 
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Diagnostic AHI (n=20) 19.08±8.69 events/hr 

Mask Type (n=20) 

Nasal Pillows: 35% 

Nasal: 55% 

Full Face: 15% 

Chin Strap (n=20) 

Yes: 15% 

No: 85% 

Duration of PAP Therapy (n=19)* 
23.3±34.5 months; range 1-144 
months 

 
5.2.3.2. Comparison of treatment efficacy 

No significant differences were found between participant AHI and ODI values when treated 

with the new algorithm compared to the standard AutoSet algorithm as shown by paired t-test  

(Table 23 and Table 24). 

Table 23: AHI comparison 

Efficacy Results – AHI (events/hr) 

 Valid N Mean Std. Dev. Min Max 

Standard AutoSet 20 0.96 1.40 0.00 4.34 

AutoSet F 20 0.91 0.90 0.00 2.84 

 Valid N 
Difference 
in means 

95% CI for mean diff p-value 

Paired t-test analysis 20 0.05  (-0.562, 0.658) 0.870 

 

Table 24: ODI comparison  

Efficacy Results – ODI (desaturations≥3%/hr) 

 Valid N Mean Std. Dev. Min Max 

Standard AutoSet 20 1.92 1.82 0.13  6.57 

AutoSet F 20 2.19  2.15   0.12  6.70 

 Valid N 
Difference 
in means* 

95% CI for mean diff p-value 

Paired t-test analysis 20 -0.28  (-1.072, 0.521) 0.477 

 

Further comparison analysis with patients’ diagnostic AHI values shows a statistically and 

clinically significant reduction in AHI with treatment of either the standard AutoSet [diagnostic 
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vs. standard AutoSet (19.07 vs. 0.95; p=0.000)] or AutoSet F algorithms [diagnostic vs. 

AutoSet F (19.07 vs. 0.91; p=0.000)] (Table 25 and Figure 25).  

Table 25: Comparison of untreated AHI vs. AutoSet F AHI  

AHI Comparison Analysis (Untreated vs. Standard AutoSet vs. AutoSet F) 

 Valid N Mean Std. Dev. Min Max 

Untreated 20 19.07 8.69 7.00 33.00 

Standard AutoSet 20 0.96 1.40 0.00 4.34 

AutoSet F 20 0.91 0.90 0.00 2.84 

Paired t-test analysis Valid N 
Difference 
in means 

95% CI for mean diff p-value 

Untreated vs. 

Standard AutoSet 
20 18.12  (14.01, 22.24) 0.000 

Untreated vs. 

AutoSet F 
20 18.17  (14.19, 22.14) 0.000 

 

 
Figure 25: Individual patient AHI comparison (Diagnostic vs. standard AutoSet vs. AfH (AutoSet F algorithm)).  
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5.2.3.3. Comparison of sleep parameters  

When comparing the sleep parameters, the data shows that flow limitation (% of breaths) was 

significantly lower when participants were treated with the new algorithm compared with the 

standard AutoSet algorithm (0.14% vs. 0.20%; p=0.003) as shown by paired t-test (Table 26). 

No other significant differences were found between sleep parameters.  

Table 26. Comparison of sleep parameters  

Sleep Parameter Results 

 
Therapy Valid N Mean 

Std. 
Dev. 

95% CI for 
mean diff 

p-value 

Sleep Efficacy 

(%) 

Standard 

AutoSet 
20 85.99 8.55 

 (-2.92, 6.62) 0.427 

AutoSet F 20 84.14 9.62 

Wake after 

Sleep Onset 

 (mins) 

Standard 

AutoSet 
20 47.52 34.57 

 (-29.72, 
9.92) 

0.309 

AutoSet F 20 57.42 43.31 

Sleep Latency 

 (mins) 

Standard 

AutoSet 
20 16.52 19.58 

 (-8.84, 9.39) 0.950 

AutoSet F 20 16.25 12.70 

# of 

Spontaneous 

Arousals 

 

Standard 

AutoSet 
20 85.55 40.88 

 (-12.30, 
20.60) 

0.604 

AutoSet F 20 81.40 33.91 

# of RERAs 

 

Standard 

AutoSet 
20 2.60 3.32 

 (-0.249, 
2.849) 

0.095 

AutoSet F 20 1.30 1.84 

Flow Limitation 

 (% of breaths) 

Standard 

AutoSet 
20 0.20 0.13 

 (0.0217, 
0.0937) 

0.003 

AutoSet F 20 0.14 0.09 

# of Hypopneas 

 

Standard 

AutoSet 
20 1.45 2.33 

 (-2.455, 
1.355) 

0.553 

AutoSet F 20 2.00 3.42 

# of Obstructive 

Apneas 

Standard 

AutoSet 
20 1.30 4.44 

 (-1.030, 
2.030) 

0.502 

AutoSet F 20 0.80 1.36 

# of Central 

Apneas 

Standard 

AutoSet 
20 3.55 7.45 

 (-1.94, 3.04) 0.649 

AutoSet F 20 3.00 3.78 

Standard 

AutoSet 
20 96.56 0.78 

 (-0.064, 
0.551) 

0.114 
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Mean SpO2 

 (%) 

AutoSet F 20 96.31 0.81 

Time in S1 

Sleep (%) 

Standard 

AutoSet 
20 6.05 4.63 

 (-2.40, 2.11) 

0.894 

 AutoSet F 20 6.20 3.33 

Time in S2 

Sleep (%) 

Standard 

AutoSet 
20 51.28 12.91 

 (-4.12, 7.81) 0.525 

AutoSet F 20 49.44 12.01 

Time in S3 

Sleep (%) 

Standard 

AutoSet 
20 24.83 11.58 

 (-3.32, 3.76) 0.898 

AutoSet F 20 24.60 10.77 

Time in REM 

Sleep 

 (%) 

Standard 

AutoSet 
20 17.93 11.05 

 (-7.07, 3.38) 0.469 

AutoSet F 20 19.77 7.54 

 

5.2.3.4. Comparison of device data  

The mean, median and 95th percentile pressures required to treat OSA in this female 

population was less with the AutoSet F algorithm compared with the standard AutoSet 

algorithm, although this did not reach statistical significance (Table 27 and Figure 26).  

Table 27: Comparison of device pressure  

Pressure Comparison (Standard AutoSet vs. AutoSet F)  

 
Valid N Mean Median 

95th 
%ile 

IQR Kurtosis 

Standard 

AutoSet 
20 8.34 8.31 11.63 2.48 4.38 

AutoSet F 20 7.89 7.94 10.56 2.35 4.99 

 Valid N 
Difference 
in means 

95% CI for mean diff p-value 

Kurtosis 

p-value 

Paired t-test 

analysis 
20 0.45  (-0.977, 0.077) 0.089 0.68 
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Figure 26: Mean mask pressure of AutoSet F (AutoSet F) and standard AutoSet  

Participants were asked to rate breathing comfort, ease of falling asleep, sleep disturbance 

caused by CPAP, and feeling of being refreshed, after using the standard AutoSet device and 

after using the AutoSet F using an 11 point Likert scale. One participant did not complete the 

questionnaires. No significant differences were found between the subjective ratings for both 

devices as shown by Mann-Whitney statistical analysis (Table 28). 

Table 28: Comparison of patients subjective ratings 

Patient Subjective Ratings 

 
Valid N Mean 

Std. 
Dev. 

Min Max Median p-value 

Standard AutoSet 

comfort of 

breathing 

19 8.21 1.32 6.0 10.0 8.0 

0.9405 

AutoSet F comfort 

of breathing 
19 8.05 1.78 4.0 10.0 8.0 

Standard AutoSet 

ease of falling 

asleep 

19 7.84 1.77 4.0 10.0 8.0 

0.5117 

AutoSet F ease of 

falling asleep 
19 7.26 2.05 2.0 10.0 8.0 

Standard AutoSet 

sleep disturbance 
19 8.26 1.70 4.0 10.0 9.0 

0.1171 
AutoSet F sleep 

disturbance 
19 7.47 1.71 4.0 10.0 8.0 
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Standard AutoSet 

feeling of being 

refreshed 

19 7.63 1.61 5.0 10.0 8.0 

0.0582 

AutoSet F feeling 

of being refreshed 
19 6.32 2.24 2.0 10.0 7.0 

 

5.2.3.5. Technical functioning of the AutoSet F algorithm  

The technical aspects of the new algorithm, including RERA-detection, slower and softer 

increasing and decreasing pressures, increased sensitivity and responsiveness to flow 

limitation, floor pressure and automatic ramp, were all monitored during the clinical study 

and found to be working as expected.  

RERAs scored by the AutoSet F algorithm were compared with RERAs scored by a blinded 

PSG scorer. This data was compared using the Wilcoxon Signed Rank non-parametric test. 

Analysis, comparing human (0.21 ± 0.3) and algorithm (0.22 ± 0.27) scoring showed no 

significant difference in the outcome, based upon the scoring method used (p = 0.87). The 

results gave a P-value of 0.87, which indicates that the RERAs scored by human and those 

scored by the AutoSet F are not statistically different.  

Table 29: Validation of RERA Index 

Parameter Score 

P-Val (2-tail) 0.87 

W-Score -7 

Z-Score -0.163314 

Figure 27 shows the algorithm-scored RERA index plotted against the human-scored RERA 

index. 
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Figure 27: RERA algorithm plotted against manually scored RERA data. 

 

5.2.4. Discussion 

This clinical trial has shown that there are no significant differences in AHI or ODI when 

female patients are treated with the AutoSet F algorithm, compared with the standard 

AutoSet algorithm, demonstrating that the two algorithms are equivalently efficacious in the 

treatment of OSA.  

The clinical benefit of this data is that the AutoSet F algorithm, like the standard AutoSet 

algorithm, effectively treats OSA in female patients, with a residual mean AHI <5/hr shown 

for both algorithms. Further comparison analysis with patients’ diagnostic AHI values shows 

a statistically and clinically significant reduction in AHI with treatment of either the AutoSet F 

or Standard AutoSet. 

Analysis of sleep parameters also showed a significant decrease in flow limitation (percentage 

of breaths) with the AutoSet F algorithm compared with the standard AutoSet algorithm. As 

females with OSA tend to exhibit greater amounts of flow limitation and upper airway 

resistance (159), the AutoSet F algorithm was designed to be more responsive to flow 

limitation than the standard AutoSet algorithm. A significant reduction in flow-limited breaths 

when patients were treated with the AutoSet F algorithm, compared with the standard AutoSet 

algorithm, suggests that female OSA patients are being treated more effectively with the 

AutoSet F algorithm. 
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Whilst no other statistically significant beneficial differences were seen in sleep parameters 

between the AutoSet F and standard AutoSet algorithms, non-statistical improvements were 

noted in the number of RERAs that occurred (1.30 vs. 2.60; p= 0.095) and the percentage of 

REM sleep (19.77 vs. 17.93; p=0.469) with the AutoSet F algorithm. Due to female OSA 

patients frequently exhibiting more REM-based apnoeic events(123), the standard AutoSet 

algorithm may decay below the critical airway pressure during REM sleep. To counter this, the 

AutoSet F algorithm contains a floor pressure (i.e. a set minimum the pressure decays toward 

during periods absent of respiratory events). This reduces the likelihood of obstructive events 

occurring due to insufficient pressure, which has the potential to increase periods of 

consolidated sleep (in particular during REM sleep). As such, the observed reduction in 

respiratory arousals and increased REM sleep is suggestive of more efficacious treatment of 

OSA in females with the AutoSet F algorithm, compared with the standard AutoSet algorithm. 

Whilst not statistically significant, the mean, median and 95th percentile pressure required to 

effectively treat OSA in this population was less with the AutoSet F algorithm compared with 

the standard AutoSet algorithm. This suggests that while both algorithms effectively treat OSA 

in female patients, the AutoSet F algorithm does so whilst utilising lower pressures, which may 

be attributed to the AutoSet F algorithm’s design of limiting pressure increases with a slower 

and more gentle response to obstruction. As research demonstrates that female OSA patients 

require less pressure than males (215), the AutoSet F algorithm may provide the benefit of 

increasing comfort of therapy by using a lower but still efficacious pressure response. 

Participant subjective feedback revealed no significant differences in regards to self-reported 

comfort of breathing, ease of falling asleep, sleep disturbance, and feeling of being refreshed 

between the AutoSet F and standard AutoSet algorithms. Median subjective ratings for all 

outcomes for both algorithms ranged from 7.0 to 9.0 on an 11-point Likert scale (10=good; 

5=OK; 0=poor) indicating that both algorithms were rated above average for all subjective 

outcomes.  

5.2.5. Conclusion  

This trial showed that the AutoSet F algorithm was non-inferior to the standard AutoSet 

algorithm, with both algorithms effectively reducing AHI and ODI in female patients. The 

AutoSet F algorithm reached a lower mean pressure than the standard AutoSet algorithm. 

Investigation of respiratory parameters showed that flow limitation was significantly 

decreased with the AutoSet F algorithm compared to the standard AutoSet algorithm. There 

were trends towards improvements in REM sleep percentage and RERAs. Taken together, 
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this data shows that the AutoSet F is able to effectively treat OSA in women, and may be a 

more suitable treatment option than a standard AutoSet.  
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5.3. Bench Testing of the AutoSet F 

5.3.1. Introduction  

The clinical trial outlined above demonstrated the efficacy of the AutoSet F in female 

patients. The next assessment of the AutoSet F was how it reacted on a controlled, 

repeatable model compared to other commercially available AutoSet devices.  

Professor Ramon Farré and colleagues at Barcelona University have developed a simulation 

patient bench model to test various AutoSet devices for their capability at treating OSA (216, 

217). Professor Farré was approached and asked to collaborate on the development of a 

new bench test designed to replicate a female OSA patient. The new model was then used 

for testing of the AutoSet F along with other AutoSet devices.  

5.3.2. Methods  

The original bench test model created by Farré and colleagues is described in detail in Rigau 

et al. (216), and Appendix F. The model (Figure 28) consists of one generator of breathing 

(flow generator) controlled by a computer. The flow generator can reproduce either pre-

designed flows, or it can reproduce the respiratory flow of a patient recorded during PSG. 

The model contains an obstruction valve, which introduce central or obstructive events. 

There are two additional valves, which allow for the simulation of mask leaks and mouth 

breathing. A loudspeaker provides vibrations to simulate snoring. The computer is able to 

control each of these elements. Standard tubing links a commercial CPAP device to the 

bench test. The response from the AutoSet algorithm is picked up by two sensors in the 

model, one pressure sensor and one flow sensor. The response from the CPAP is fed back 

into the computer which is then able to adjust the output accordingly.  
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Figure 28: Diagram of the bench test model 
PNT = pneumotachograph; EP = exhalation port; Obstr. = obstructive; Exhal. = exhalation V = flow; m = motor; p 
= pressure. Image reproduced from Rigau et al., 2006 (216) with permission. 

The original patient model used to create breathing flow in these bench tests was developed 

from typical male OSA patients. The simulated bench model is programmed to have 

obstructive apneas when the AutoSet pressure is between 0-5cm H2O. As the AutoSet 

algorithm increases the pressure to 5-7cm H2O, the obstructive apneas on the bench model 

develop into hypopneas. As the pressure is increased towards 10 cm H2O, the hypopneas 

are overcome and prolonged flow limitation remains. The AutoSet needs to reach a pressure 

of at least 12 cm H2O for normal breathing to resume (Figure 29). 
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Figure 29: Typical Male patient model and the required CPAP pressure needed to overcome obstructive 
breathing  
Image reproduced with permission from Rigau et al., 2006 with permission (216)(216)(215)(201). 

Professor Farre and colleagues developed an updated patient model based on 

characteristics of female OSA patients described in Section 1.5.1. Compared with the male 

patient model, the new female patient model had: 

 Lower AHI: less frequent events for each pressure range  

 More episodes of flow limitation: the pressure range in which prolonged flow 

limitation is reproduced was extended 

 Longer sleep onset: 30 minutes of normal breathing before sleep onset 

 Lower CPAP pressures required: pressure ranges were rescaled and normal 

breathing was achieved with pressures of 10cm H2O. 

The flow and obstructive breathing events used in the bench testing were extracted from 

several PSG recordings of typical female OSA patients. Period of sleep and wake, sleep 

onset, body position, and REM were added to the bench model to create a realistic night of 

sleep (Figure 30).  
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Figure 30: Description of the patient simulation implemented in the bench test model  
Image reproduced from Isetta et al., 2016 (218) with permission. 

The simulator would create breathing events at each pressure until the AutoSet device 

increased the pressure to overcome the events. The bench test patient model was tested 

using ten different AutoSet devices. Devices were all set to default AutoSet mode (minimum 

pressure 4cm H2O, maximum pressure 20cm H2O), and all devices were set to a starting 

pressure of 4cm H2O. In order to standardise the testing, optional comfort features such as 

expiratory pressure relief (EPR), humidification, ramp, and any additional optional settings 

were turned off.  Each device was tested twice, with the tests running for 4 hours and 15 

minutes each. The average of the two tests was taken as the result.  
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5.3.3. Results 

The results of the bench testing are shown in Figure 31. The AutoSet F is Device B. Only 

devices A, B and D were able to overcome obstructive events and overcome flow limitation, 

although the residual flow limitation in device D was 12% of sleep time compared with 2% of 

sleep time for the AutoSet F.  

 
Figure 31: Responses of AutoSet devices to the female OSA patient bench model.  
Image reproduced from Isetta et al., 2016 (218) with permission. 
 

5.3.4. Discussion 

AutoSet devices are often considered a ‘black box’, with their inner workings and decision-

making quite difficult to interpret (219). Comparing AutoSet devices is difficult as there is 

always night-to-night variability in patient breathing. A small number of studies have 

examined the technical functioning of AutoSet devices and found clinically important 

differences in each algorithm’s ability to treat OSA, and in patient compliance (220-222). 

The benefits of bench-testing compared to patient studies is that they allow review of 

algorithm functioning under a controlled environment. Individual patient differences are 
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removed, so the pure functioning of the algorithm can be examined. This allows comparison 

of different devices under the same conditions to better understand differences in how 

algorithms treat the same breathing patterns.   

 

In this bench test, we found significant differences in the way the AutoSet algorithms 

responded to the female breathing patterns. There was a high residual AHI (AHI > 5) at the 

end of the test from four of the devices. It is concerning that four commercially available 

devices were not able to reduce the residual AHI. A patient using these devices may only be 

partially treated and still experience daytime symptoms and longer-term health 

consequences.  

 

Only three of the devices were able to achieve full breathing normalisation, with prolonged 

flow limitation being an issue for seven devices. Considering the frequency with which flow 

limitation occurs in female patients, and the concern that it leads to RERAs, arousals and 

disruption from sleep, the ability of the AutoSet to treat flow limitation is something that 

clinicians should examine closely when reviewing the effectiveness of their patient’s 

treatment.   

Meurice et al. conducted an experiment in which two groups of patients diagnosed with OSA 

were treated with different CPAP pressures. Group 1 was treated with CPAP pressures 

targeted to eliminate flow limitation, while Group 2 was titrated with pressures to overcome 

apneas, hypopneas and snoring. Group 1 pressures were higher on average. This group 

had an increase in sleep time and more consistent improvement in maintenance of 

wakefulness. These results suggest that normalizing flow limitation, although frequently 

overlooked, may be a key part of effectively treating SDB (223).  

5.3.5. Conclusion  

The new bench test model provided a controlled, repeatable method of comparing different 

AutoSet devices and their treatment responses to female breathing patterns.  

The bench testing shows that the AutoSet F was able to overcome all obstructive events and 

flow limitation while keeping the pressure low, and that some commercially available devices 

may not provide optimal treatment for female patients.  
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5.4. Controlled product launch  

5.4.1. Introduction  

During the development of the AutoSet F, a clinical trial and bench testing (described above) 

were used to validate that the algorithm was functioning as intended and able to efficiently 

treat OSA. At the time of releasing the AutoSet F for commercial use, ResMed conducted a 

controlled product launch (CPL). During a CPL the devices are heavily controlled and 

monitored. The AutoSet F was provided to a selected number of clinics, and data was 

collected nightly to ensure correct functioning.  

5.4.2. Methods 

Devices were dispensed by multiple sleep clinics in Germany and France to patients 

diagnosed with OSA who qualified for CPAP treatment. Data was collected from devices 

used on female patients participating in the CPL. The device records de-identified 

information each time it is used, including usage, mask leak, AHI, and pressure. This 

information is stored on SD cards within the device, which were returned to ResMed on a 

regular basis during the CPL.  

The technical features of the algorithm were monitored to ensure they were working as 

intended. The data was also reviewed to check whether assumptions made during algorithm 

development were appropriate for treating female patients.  

5.4.3. Results 

De-identified device functioning information was collected from 163 devices, over 2272 

nights of use. Average daily usage was 5.9 hours per night. Residual AHI was 2.61 events 

per hour. The average 95th percentile pressure was 8.76cm H2O.   

The average number of RERAs for those patients prone to RERAs was 0.63 events/ hour 

(Table 30, Figure 32). 

Table 30: Activation of RERA index in female patients  

Parameter RERA Average SD 

All AutoSet F patients 0.30 0.63 
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AutoSet F patients with at least one RERA during 

the night 
0.63 0.79 
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Figure 32: Histogram of RERA Indexes occurring in female patients  

In this CPL data, the floor pressure had been activated in 50/401 (13%) sessions monitored 

(Table 31). Each session where the floor pressure had been activated was examined in 

more detail for further strings of apneas. No additional strings of apneas were found.  

Table 31: Review of floor pressure use in female patients  

Total sessions 
Number of sessions when floor 

pressure was triggered 

Average floor 

pressure (cmH2O) 

Median floor 

pressure (cmH2O) 

401 50 9.6576 10 

In the 2272 data sessions available from the CPL, the pressure cap was activated in only 

four cases.  

All devices were found to be functioning as intended during the CPL, with no software bugs, 

unexplained algorithm behaviour, or missing data reported.  
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5.4.4. Discussion 

Average daily usage was high, at 5.9 hours per night. Residual AHI was 2.61 events per 

hour, well below what is considered efficacious (<5). This efficacy was achieved with a group 

average 95th percentile pressure of 8.76cm H2O. 

The RERA index was used to alert the clinician of disrupted breathing during treatment. 

Almost half (45%) of AutoSet F sessions had at least one RERA during the night This shows 

that respiratory events with flow limitation leading to disruption from sleep are common in 

female patients. The residual RERA index remained low, at 0.63 events/ hour, 

demonstrating that the algorithm was effectively able to treat the flow limitation and avoid 

large RERA indexes. 

The floor pressure in the AutoSet F was designed to protect patients against strings of REM-

related events. The floor pressure was activated in 13% of cases. After each initial 

activation, no more strings of obstructive events occurred during the session, demonstrating 

that the floor pressure was working as intended to prevent untreated OSA during 

subsequent REM phases.  

The pressure cap was designed to keep the average pressures lower and more comfortable 

for female patients. Clinical trial data shows that women rarely require pressures above 

12cm H2O (168). The pressure cap was only activated in 4 of the 2272 data sessions 

recorded. An examination of those cases confirmed that obstructive apneas were still 

occurring above 12cm H2O. This confirms that majority of female patients do not need high 

CPAP pressures, although a very small proportion of female patients will continue to have 

obstructive apneas at or above 12cm H2O.  The AutoSet F was designed to provide lower 

and more gentle pressures by removing any response to obstructive apneas above 12cm 

H2O. The algorithm still responds to flow limitation and snore at these pressures, however 

the response is much more gentle with less pressure increases. For the patients who did 

require pressures above 12cm H2O, the algorithm increased the pressure and overcame 

obstructive events; however, this was done in response to flow limitation and snore, which 

resulted in a slower and more gentle pressure increase.  

The limitations of a CPL are that almost no demographic data is available on participants. 

This is the reality of a CPL compared with a clinical study. The benefits of a CPL compared 

with bench testing and clinical studies is that a CPL allows testing of the device in 

uncontrolled conditions. In a clinical trial, participants are carefully selected based on 
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inclusion and exclusion criteria. The participants’ medical history and comorbidities are 

known, and further investigations can be done if a device does not respond as expected. 

During a CPL, no information is available on users of the device. This allows the device to be 

challenged in a range of situations. The CPL also allows for assumptions made during the 

development of the algorithm to be tested in real-world conditions.  

5.4.1. Conclusion 

Data collected during the CPL showed that all technical aspects of the device were working 

as intended, and that the design of the algorithm was appropriate for treatment of female 

OSA patients. This data show that, in uncontrolled, real-world conditions, the AutoSet F is 

effective for treating female OSA.  
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Abstract 

Purpose Females with obstructive sleep apnea (OSA) have more flow limitation, lower 

apnea-hypopnea index (AHI), shorter apneas, and less severe oxygen desaturations than 

males. A female-specific auto-adjusting continuous positive airway pressure (fAPAP) 

algorithm has been developed to target these characteristics. This study investigated the 

effects of fAPAP therapy on quality of life (QoL) in women with OSA. 

Methods Female patients with AHI ≥15/h were eligible. Participants underwent polygraphy or 

polysomnography. The primary endpoint was change from baseline in Functional Outcomes 

of Sleep Questionnaire (FOSQ) score after 3 months’ fAPAP (AutoSet for Her, ResMed). 

Secondary endpoints included other sleep-related and QoL questionnaires.  

Results A total of 122 patients were enrolled in the study (age 53.7±9.5 years, body mass 

index 32.8±6.2 kg/m2, apnea-hypopnea index [AHI] 39.0±18.2/h); 111/122 completed the 

study. There was a significant improvement (p<0.0001) in FOSQ score from baseline 

(15.0±3.3) to 3 months (16.9±3.2). Significant improvements were also seen in the Patient 

Health Questionnaire-9 score (12.3±6.0 vs. 7.2±5.4), Epworth Sleepiness Scale score 

(10.8±4.9 vs. 7.3±4.7), EuroQol (EQ)-5D Index score (0.636±0.248 vs. 0.763±0.210), EQ-5D 

visual analogue scale score (54.4±21.7 vs. 64.5±21.5) (all p<0.0001), and Changes in 

Sexual Functioning Questionnaire score (38.7±9.5 vs. 42.4±8.5; p=0.001). In patients with 

PSG data, fAPAP improved other respiratory parameters (AHI, oxygen desaturation index, 

oxygen saturation; all p<0.0001), and increased time spent in rapid eye movement (REM) 

sleep (39.7±24.0 vs 48.1±24.5 min; p=0.022). Average daily fAPAP usage was 4.8±2.0 

h/night. 

Conclusion Usage of fAPAP significantly improved QoL and increased REM sleep, with good 

treatment compliance. 
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Introduction 

Obstructive sleep apnea (OSA) is a common disorder characterized by upper airway closure 

during sleep, resulting in disrupted breathing and arousals. Moderate to severe OSA (apnea-

hypopnea index [AHI] ≥15/h) is present in 4–23% of the female population (17, 224), and 

may impact as many as 26% of females aged between 20-70 years (17, 37, 224).  

There are well known gender differences in OSA. This includes both clinical 

manifestations and impact on quality of life (QoL). Females often do not present with classic 

OSA symptoms, such as snoring, obesity and difficulty staying awake during the day. 

Instead females with OSA may complain of depression, anxiety, mood disturbance, reduced 

QoL, insomnia and fatigue (29, 185-187). The presence of OSA in women appears to 

increase the risk of developing diabetes, dementia and cardiovascular diseases (62, 68, 69). 

Female sexual health may also be impacted by OSA, although this has not yet been fully 

explored. A recent study found that females with OSA had significantly more sexual distress 

and sexual dysfunction compared to those without OSA (67). 

The severity of OSA also often differs between genders, with polysomnography 

(PSG) data showing that females have less severe OSA with overall lower AHI, shorter 

apneas, and a higher likelihood of REM-only events (123). Younger women in particular 

often have more episodes of upper airway resistance rather than obstructive apneas (123).  

Continuous positive airway pressure (CPAP) is considered the gold standard 

treatment for OSA. CPAP applies a fixed pressure that acts as a pneumatic splint to the 

upper airway, preventing collapse. Auto-adjusting CPAP (APAP) devices monitor breathing 

on a breath-by-breath basis and respond by delivering the appropriate pressure throughout 

the night. Effective CPAP treatment in adherent patients has been shown to improve 
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sleepiness and QoL and reduce cardiovascular risk (58-60). However, the majority of clinical 

trials of CPAP have included predominantly male participants. Indeed, patient populations in 

studies during the development and validation of early APAP devices were typically 100% 

male (180-182). Only one study to date has examined QoL changes in an entirely female 

population of OSA patients treated with CPAP (163).  

A female-specific APAP (fAPAP) treatment algorithm has been developed with the 

goal of optimally treating the characteristics of OSA in women, including more sensitive 

treatment of flow limitation, and systems for overcoming REM-based events and lowering 

overall pressure. fAPAP has been shown to effectively control AHI while reducing residual 

flow limitation and lowering 95th percentile pressure in female OSA patients during a two-

night study (225), but longer term improvements in symptoms have not been determined. 

This study investigated changes in symptoms and sleep parameters in female OSA 

patients during 3 months’ treatment with fAPAP. 

Methods 

Study design 

This prospective, observational, open-label, single cohort study was conducted at one sleep 

clinic in Spain and two sleep clinics in Germany. The study was approved by local ethics 

committees and all participants provided informed consent.  

Patients 

Female patients who presented to the sleep clinic with suspected OSA were screened for 

OSA as per the usual clinical routine (home polygraphy (PG) in Spain or in-lab 

polysomnography (PSG) in Germany). Eligible patients were those aged ≥18 years who had 

an AHI of ≥15/h on diagnostic testing. Participants were excluded from the study if they were 
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unable to complete a one-hour CPAP run in. Additional exclusion criteria included: current 

use or experience with CPAP; use of supplemental oxygen; pregnancy or planned 

pregnancy in the next 3 months; pre-existing lung disease or condition predisposing to 

pneumothorax. 

Procedures and assessments 

At the first study visit, tolerance of CPAP was assessed with a one-hour run in on therapy.  

Baseline data, including height, weight, age, blood pressure and comorbidities, were 

collected from patients continuing in the study. Participants were then asked to complete the 

following questionnaires, with assistance from the nurse/clinician if required: Functional 

Outcomes of Sleep Questionnaire (FOSQ); Patient Health Questionnaire (PHQ-9); Epworth 

Sleepiness Scale (ESS); Changes in Sexual Function Questionnaire (CSFQ); and EuroQol 

5D (EQ-5D). Patients also provided information on subjective sleep quality based on a Likert 

scale from 0 (worst) to 10 (best). 

Participants were then initiated on fAPAP therapy (AutoSet for Her; ResMed), with 

humidification and an appropriately fitting mask, and instructed to use fAPAP every night 

while sleeping for the next 3 months. All participants were phoned during the first weeks of 

therapy to troubleshoot any issues. If necessary, the participant was invited back to the clinic 

for a face-to-face visit. All participants returned to the clinic after one month for a visit. During 

this visit study staff reviewed device usage and attempted to resolve any problems that the 

participant was experiencing. 

Three months after initiation of CPAP, participants returned to the clinic for a final visit. 

Patient data were downloaded from the device for analysis, including usage, AHI, mask leak, 

and pressures. At this time participants completed all questionnaires again. In addition, 

patients in Germany underwent an on-treatment PSG.  
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Endpoints 

The primary endpoint was change in QoL during fAPAP based on the FOSQ. Secondary 

endpoints included change in QoL and sexual function based on other questionnaires, 

change in sleep quality at 3 months versus baseline based on PSG data, and change in 

other respiratory parameters at 3 months versus baseline.  

Sample size 

Sample size was determined based on the results of the CATNAP-trial (174), which showed 

an unadjusted mean change in FOSQ total score from baseline to week 8 in the modified 

intention-to-treat population of 0.98±2.89. To achieve power of 80% at α=0.05 it was 

calculated that a total of 71 patients would be required to detect an increase in FOSQ total 

score in this study. Assuming a drop-out rate of approximately 10%, the target minimum 

sample size was set at 80 participants. 

Statistical analysis 

Differences in baseline characteristics and study endpoints between Germany and Spain 

were assessed using the t-test or Wilcoxon-Mann-Whitney test for continuous parameters, 

and Fisher’s exact test for categorical parameters. All study results were presented 

combined because pool-ability was confirmed (i.e. it was determined that there was no 

significant difference between the countries with respect to the primary study endpoint 

[change in FOSQ]). Primary and secondary endpoints are displayed separately when 

significant differences were detected. 

Demographic data, baseline characteristics, medical history, medications, baseline 

PG/PSG data, CPAP data, device usage and QoL endpoints for combined data were 

summarized descriptively. Number evaluated, mean, standard deviation (SD), median, 

minimum and maximum were generated for continuous variables. Number evaluated, 



  

108 

 

proportion of patients and 95% confidence intervals (CI) were calculated for categorical 

variables. 

Changes in quality of life scores from baseline to 3 months were analyzed for 

combined data using a paired t-test, testing the null hypothesis that there is no change in 

QoL scores. Wilcoxon paired signed rank tests were also generated when a non-parametric 

test was warranted. For comparison of EQ-5D dimensions between baseline and 3 months, 

a Mantel-Haenszel test was performed with modified ridit scores. All statistical analyses 

were performed using SAS version 9.4.  

Results 

Study population 

A total of 122 patients (25 from Spain and 97 from Germany) were enrolled in the study (age 

53.7±9.5, body mass index [BMI] 32.8±6.2, 56% with hypertension) (Table 1). The majority 

of patients (74%) used an AirFit P10 for Her mask as the device interface (Table 1). Of the 

122 enrolled patients, 111 completed the study.  

 Participants from Spain and Germany were similar for most baseline 

characteristics, but those from Spain versus Germany had a significantly higher BMI 

(36.07.8 vs. 31.95.5 kg/m2; p=0.02), and were significantly more likely to have comorbid 

insomnia (36% vs. 9%; p=0.002), anxiety (44% vs. 3%; p<0.0001) or depression (36% vs. 

7%; p=0.001).  

Questionnaire results 

The change in FOSQ total score for participants in Spain versus Germany was not 

significantly different (2.63.7 vs. 1.83.2; p=0.31), thus primary and secondary endpoints 

are presented as pooled results. FOSQ total score (primary endpoint) improved significantly 
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from baseline to 3 months (Table 2). Significant improvements from baseline were also seen 

in total scores for the PHQ-9, ESS, CSFQ, indexed EQ-5D (based on country-specific 

reference values), and EQ-5D health status visual analog scale (Table 2). When individual 

EQ-5D dimensions were assessed, patients reported a significant improvement in their 

ability to perform usual activities, significantly fewer participants reported extreme pain or 

discomfort at 3 months compared with baseline, and patients also reported significant 

improvements in the Anxiety and Depression dimension after 3 months’ fAPAP therapy 

(Table 3). 

 Improvements in the majority of secondary outcome questionnaires 

were similar in the Spanish and German subgroups. The exception was the ESS score, 

which improved to a significantly greater extent in Spain versus Germany (mean  SD 

change from baseline to 3 months of –6.95.7 (median –4) vs. –2.74.4 (median –3); 

p=0.002).  

 None of the mean questionnaire scores reached normal population 

values after 3 months of fAPAP, but changes from baseline were greater than the minimal 

clinically important difference (MCID) (Table 4).  

Respiratory and sleep parameters 

Patients from the Spanish center had OSA diagnosed using PG. Baseline PG data and 

device data after 3 months of fAPAP in these patients are shown in Table 5. OSA and 

related respiratory events were largely eliminated in all patients. Participants enrolled in 

Germany underwent full PSG at baseline and after 3 months of fAPAP. There were no 

significant changes in total sleep time, sleep efficiency or time in slow wave sleep from 

baseline to 3 months, but the time spent in stage 1 sleep decreased significantly and time in 

REM sleep was significantly increased (Table 6). Combined 3-month device data from all 

participants showed that OSA was effectively treated (AHI 1.3±1.7/h, respiratory event-
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related arousals 0.2±0.5/h) with low mean mask leak (2.4±4.1 L/min, range 0–23). The 95th 

percentile pressure was 10.2±1.8 cmH2O.  

Device usage 

For the 111 patients who completed the study, average device usage was 4.8±2.0 h/night 

(median usage 5.1 h/night), and 75% of patients used their device for at least 4 h/day (Table 

7). For those calculations, zero hours usage was assumed for the duration of the study in 

patients who stopped using the device prior to the 3-month visit, providing a conservative 

estimate of device usage. In analyses that included only days where the device was used, 

average device usage was 5.2±1.9 h/night (median 5.5 h/night) and 83% of patients used 

their device for at least 4 h/day. There was a trend towards greater use of the fAPAP device 

in Spain versus Germany (calculated average usage 5.51.4 vs. 4.62.2 h/day); findings 

were similar for the proportion of days with usage >4 hours (78.221.4 vs. 63.131.6%).  

Subjective sleep quality 

Subjective sleep quality improved from baseline after fAPAP therapy, as did the number of 

hours patients reported that they slept each night (Table 8).  

Discussion 

This is the first appropriately-powered study to examine the impact of a new female-specific 

APAP device on QoL in female OSA patients. The results showed that APAP therapy using 

a female-specific algorithm was associated with improvements in a range of QoL measures.  

Our population was, on average, middle-aged and moderately obese with a 

moderate level of sleepiness at baseline and low levels of anxiety and depression. The 

primary endpoint, FOSQ score, improved significantly from baseline during the 3-month 

study in this group of women. Weaver et al. described a FOSQ score cut-off value of 17.9 
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as being normal (226). Based on this, the proportion of patients with normal FOSQ values at 

baseline in our study was 23%. After treatment, this had increased to 53%, but 47% of 

patients still had FOSQ scores below normal. These results are similar to another study of 

CPAP patients, where only 35% of patients had normal scores after treatment (227). The 

MCID for the FOSQ is 0.75. The average improvement in our patient group during fAPAP 

therapy was 1.9 points. Thus, although QoL was not normalized in all patients, 

improvements were of a magnitude that would result in a relevant improvement in clinical 

symptoms. Clinically relevant improvements (based on the MCID) were also seen in the 

ESS, PHQ-9 and EQ-5D index scores in our study, while the CSFQ score MCID has not yet 

been defined.  

We used the CSFQ in this study to better explore the area of female sexual heath 

and function in OSA. In men, untreated OSA is associated with erectile dysfunction and low 

sexual hormone levels, which are improved by treatment with CPAP (228). However, there 

are comparatively few data on the implications of OSA for female sexual health. Two small 

questionnaire-based studies in female patients (n=22 and n=25) found that women with OSA 

score lower on sexual function questionnaires compared with controls (229, 230). One study 

found that women with untreated OSA (n=80), regardless of severity, were at higher risk of 

having sexual difficulties, and rated higher on the sexual dysfunction and sexual distress 

scales than a population-based sample of women without OSA (67). In the current study, we 

also showed that females with OSA rated lower than the population average on the CSFQ. 

During the conduct of our study, it was emphasized that completion of the CSFQ was 

optional. This was done to avoid any feelings of embarrassment for participants. The 

response rate to the CSFQ was significantly lower than the other questionnaires. Therefore, 

future studies will need to carefully consider the methodology used to collect female sexual 

function information. Our findings that the CFSQ score improved from outside the normal 

range to the lower end of what might be considered normal, suggest that fAPAP has the 
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potential to improve sexual function in female patients with OSA. Increases in the CFSQ 

score reached statistical significance versus baseline, and this beneficial effect of fAPAP 

warrants further investigation. 

The questionnaires used in our study had been validated in both the German and 

Spanish languages. Therefore, it is reasonable to conclude that the improvements reported 

between countries were referring to the same symptoms. However, we did see some 

regional differences. At baseline, patients from Spain had a higher BMI and reported more 

sleepiness, anxiety and depression than those from Germany, although rates in Germany 

were particularly low compared with similar studies [4-7]. They also showed a significantly 

greater improvement in sleepiness (ESS score). It is possible that the higher BMI in the 

Spanish group was responsible for the higher levels of sleepiness, anxiety and depression, 

as obesity is associated with these symptoms even in the absence of OSA (203). Greater 

sleepiness at baseline may also have meant greater potential to improve. In addition, device 

usage was greater in the Spanish group (average 5.5±1.4 vs. 4.6±2.2 h/night; p=0.02), 

which may have been due to the higher levels of baseline sleepiness, and also may have 

contributed to the greater improvement in sleepiness seen in this group. It has been 

suggested previously that CPAP usage for ≥5 h/night is required to achieve significant 

improvements in daytime sleepiness (231), a finding supported by our results.  

Only one previous clinical study focused on QoL in female-only CPAP users (163). 

Campos-Rodriguez et al. used the Quebec Sleep Questionnaire as a primary endpoint, plus 

the Hospital Anxiety and Depression scale (HADS), the abbreviated Profile of Mood Stages 

(POMS), and the Short Form Health Survey (SF-12), none of which were used in our study. 

Our questionnaires were selected, in part, due to the availability of validation in both the 

German and Spanish languages. Despite the different questionnaires used, the study by 

Campos-Rodriguez et al. reported significant improvements in all QoL measures in females 

using fixed CPAP compared with the control group, consistent with our findings. In addition, 
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both studies showed a similar improvement in ESS scores during CPAP therapy (by 3 points 

in the Campos-Rodriguez et al. study and 3.6 points on average in this study). The findings 

of these two trials strengthen the limited pool of data evaluating females during CPAP 

therapy. 

Women in our study showed adequate compliance with fAPAP therapy, with mean 

daily usage of 4.8±2.0 hours. Generally, device usage of >4 h/night is considered 

acceptable. An analysis of female CPAP compliance published in 2013 found that females 

were generally compliant with CPAP, with 79.9% still using CPAP after 10 years and median 

usage of 6 h/day (232). In our study population, median usage of fAPAP was nearly as high, 

at 5.5 h/day in Spain and 4.6 h/day in Germany.  

Use of fAPAP in our study resulted in patients spending significantly less time in 

stage one sleep and significantly more time in REM sleep compared with baseline, as 

measured by PSG in Germany. Time spent in slow wave sleep was also increased, but this 

did not reach statistical significance. REM sleep is thought to be important for consolidation 

of procedural memories, while slow wave sleep may help patients feel rested and benefit 

declarative memories (233).  

The most important limitation of this study was its design (single cohort rather than 

randomized trial) and the resulting lack of a comparator group (e.g. APAP with a standard, 

rather than female-specific, algorithm). It is therefore not possible to categorically state that 

the improvements in QoL that occurred during fAPAP treatment were due to optimization of 

therapy based on the female-specific algorithm or whether standard APAP therapy would 

have had similar effects.  

In conclusion, this study showed significant improvements in QoL in female OSA 

patients treated for 3 months with a female-specific APAP device. This included 

improvements in sexual function, which have been rarely studied in these patients. The 
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female-specific algorithm evaluated in this study represents one approach to targeting 

therapy for individual patients (personalized medicine). The majority of existing data relate to 

OSA populations with a predominance of males, particularly with respect to treatment. A 

growing body of evidence suggests that there are substantial differences between females 

and males in the symptoms, diagnosis and consequences of OSA. Better knowledge of 

gender differences in OSA will help to improve the awareness and diagnosis of OSA in 

women. In addition, the development and availability of therapeutic options that take into 

account differences in the physiology and presentation of OSA in women could have the 

potential to improve outcomes for these patients. 
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Table 1. Baseline characteristics of the study population. 

Parameter 

Spain 

(N = 25) 

Germany 

(N = 97) p-value 

Age (years)    

       n 25 97 0.37 [1] 

       Mean ± SD (Median) 52.1 ± 8.6 (54.0) 54.1 ± 9.8 (55.0)  

       Min, Max 39, 68 25, 76  

 

 

BMI (kg/m2)    

       n 25 95 0.02 [1] 

       Mean ± SD (Median) 36.0 ± 7.8 (35.0) 31.9 ± 5.5 (32.0)  

       Min, Max 22, 51 18, 49  

 

Systolic blood pressure (mmHg)    

       n 25 91 0.08 [1] 

       Mean ± SD (Median) 137.6 ± 13.7 

(140.0) 

143.7 ± 19.5 

(142.0) 

 

       Min, Max 110, 165 100, 214  

 

Diastolic blood pressure (mmHg)    

       n 25 91 0.07 [1] 

       Mean ± SD (Median) 87.0 ± 11.0 (90.0) 92.7 ± 14.4 (94.0)  

       Min, Max 70, 114 11, 122  

 

Comorbidities n/N (%):     
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Parameter 

Spain 

(N = 25) 

Germany 

(N = 97) p-value 

Heart Disease  

Hypertension  

Diabetes 

Anxiety 

Depression  

Insomnia  

Other 

2/25 (8.0%) 

12/25 (48.0%) 

2/25 (8.0%) 

11/25 (44.0%) 

9/25 (36.0%) 

9/25 (36.0%) 

22/25 (88.0%) 

2/97 (2.1%) 

56/97 (57.7%) 

9/97 (9.3%) 

3/97 (3.1%) 

7/97 (7.2%) 

9/97 (9.3%) 

33/97 (34.0%) 

0.19 [3] 

0.38 [3] 

1.00 [3] 

< 0.0001 [3] 

0.0007 [3] 

0.002 [3] 

< 0.0001 [3] 

 

Mask Type, n/N (%)    

       AirFit N10 for Her 1/25 (4.0%) 0/97 (0.0%) < 0.0001 [3] 

       AirFit N10 11/25 (44.0%) 1/97 (1.0%)  

       Mirage FX For Her 0/25 (0.0%) 1/97 (1.0%)  

       AirFit P10 for Her 13/25 (52.0%) 95/97 (97.9%) 

 

 

[1] Independent samples t-test [2] Wilcoxon-Mann-Whitney test [3] Fisher’s exact test (or Chi-square where applicable) 

  



  

119 

 

Table 2. Change in questionnaire scores after 3 months’ female-specific auto-titrating 

positive airway pressure therapy. 

 Baseline fAPAP (3 months) Change from baseline p-value 

FOSQ total score (n=121) (n=111) (n=110)  

Mean ± SD (range) 15.0±3.3 (6–20) 16.9±3.2 (6–20) 1.9±3.3 (–14, 13) <0.0001 

PHQ-9 total score (n=119) (n=111) (n=108)  

Mean ± SD (range) 12.3±6.0 (1–27) 7.2±5.4 (0–24) –5.0±4.9 (–16, 5) <0.0001 

ESS score (n=122) (n=108) (n=108)  

Mean ± SD (range) 10.8±4.9 (1–24) 7.3±4.7 (0–20) –3.6±5.0 (–20, 6) <0.0001 

CSFQ total score (n=87) (n=70) (n=63)  

Mean ± SD (range) 38.7±9.5 (21–63) 42.4±8.5 (22–63) 2.4±5.9 (–12, 16) 0.001 

EQ-5D index score  (n=115) (n=108) (n=102)  

Mean ± SD (range) 0.64±0.25 (0.1–1.0) 0.76±0.21 (0.1–1.0) 0.12±0.21 (–0.4, 0.6) <0.0001 

EQ-5D health status 

(VAS score) 
(n=108) (n=110) (n=98)  

Mean ± SD (range) 54.4±21.7 (5–100) 64.5±21.5 (7–100) 9.7±21.5 (–45, 75) <0.0001 

CSFQ: Changes in Sexual Function Questionnaire; ESS, Epworth Sleepiness Scale; fAPAP: female-

specific auto-titrating positive airway pressure; FOSQ: Functional Outcomes of Sleep Questionnaire; 

PHQ-9: Patient Health Questionnaire-9; SD: standard deviation; VAS: visual analog scale. 
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Table 3. Change in EuroQol 5D dimensions after 3 months’ female-specific auto-titrating 

positive airway pressure therapy. 

Dimension; n (%)  Baseline fAPAP (3 months) p-value* 

Mobility  (n=116) (n=109)  

No problems in walking about 91 (78.4) 89 (81.7) 

0.55 Some problems in walking about 25 (21.6) 20 (18.3) 

Confined to bed  0 0 

Self-care  (n=117) (n=111)  

No problems with self-care 108 (92.3) 106 (95.5) 

0.32 Some problems with washing or dressing 9 (7.7) 5 (4.5) 

Unable to wash or dress myself 0 0 

Usual activities  (n=117) (n=111)  

No problems performing usual activities  64 (54.7) 78 (70.3) 

0.02 Some problems performing usual activities  51 (43.6) 32 (28.8) 

Unable to perform usual activities  2 (1.7) 1 (0.9) 

Pain/discomfort  (n=115) (n=110)  

No pain or discomfort 22 (19.1) 32 (29.1) 

0.002 Moderate pain or discomfort 64 (55.7) 69 (62.7) 

Extreme pain or discomfort 29 (25.2) 9 (8.2) 

Anxiety/depression  (n=115) (n=111)  

Not anxious or depressed 40 (34.8) 57 (51.4) 

0.005 Moderately anxious or depressed 62 (53.9) 49 (44.1) 

Extremely anxious or depressed 13 (11.3) 5 (4.5) 

fAPAP: female-specific auto-titrating positive airway pressure. 

*p-values generated using Mantel-Haenszel test with modified ridit scores. 
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Table 4. Questionnaire scores in relation to healthy populations and minimal clinically 

important difference. 

Questionnaire 

Healthy 

population 

scores 

Baseline score 

(mean ± SD) 

fAPAP 

(3 months)  

(mean ± SD) 

Change from 

baseline with 

fAPAP 

MCID 

FOSQ ≥17.9 15.0±3.3 16.9±3.2 1.9±3.3 0.75 

ESS ≤9 10.8±4.9 7.3±4.7 –3.6±5.0 2–3 

PHQ-9 ≤4 12.3±6.0 7.2±5.4 –5.0±4.9 5 

CSFQ 47.8±9 38.7±9.5 42.4±8.5 2.4±5.9 Unknown 

EQ-5D Index 1 0.636±0.248 0.763±0.210 0.12±0.21 0.074 

CSFQ: Changes in Sexual Function Questionnaire; ESS, Epworth Sleepiness Scale; fAPAP: female-

specific auto-titrating positive airway pressure; FOSQ: Functional Outcomes of Sleep Questionnaire; 

MCID: minimal clinically important difference; PHQ-9: Patient Health Questionnaire-9; SD: standard 

deviation. 
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Table 5. Respiratory data at baseline (polygraphy) and 3 months (device) for patients from 

Spain. 

 
Baseline 

(n=25) 

fAPAP (3 months)  

(n=23) 

AHI, /h 39.2±20.5 (17–76) 0.9±0.7 (0–3) 

ODI, /h 39.8±21.5 (13–79) - 

RERA, /h - 0.2±0.3 (0–1) 

OAI, /h 8.2±10.6 (0–36) 0.3±0.3 (0–1) 

CAI, /h 0.4±1.1 (0–5) 0.2±0.3 (0–1) 

Mean SaO2, % 97.1±1.6 (92–99) - 

Minimum SaO2, % 77.3±8.3 (52–88) - 

Total sleep time, min 381.5±56.5 (273–486) - 

Mean leak, L/min - 3.8±3.8 (0–16) 

95th percentile leak, L/min - 18.7±8.2 (5–35) 

Median pressure, cmH2O - 9.1±1.4 (7–11) 

95th percentile pressure, cmH2O - 11.0±1.1 (9–13) 

Values are mean  standard deviation (range). 

AHI: apnea-hypopnea index; CAI: central apnea index; fAPAP: female-specific auto-titrating positive 

airway pressure; OAI: obstructive apnea index; ODI: oxygen desaturation index; RERA: respiratory 

event-related arousals; SaO2: oxygen saturation. 
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Table 6. Polysomnography data at baseline and 3 months for patients from Germany. 

 
Baseline 

(n=97) 

fAPAP (3 months) 

(n=87) 

p-value 

Respiratory parameters    

AHI, /h 39.0±17.7 (14-100) 3.3±6.0 (0-50) <0.0001 

ODI, /h 19.1±18.0 (1-86) 4.3±7.0 (0-56) <0.0001 

OAI, /h 27.2±34.4 (0-289) 0.9±2.4 (0-14) <0.0001 

CAI, /h 1.1±3.1 (0-27) 1.2±3.0 (0-25) 0.03 

Basal SaO2, % 93.5±2,2 (87-97) 94.6±2.2 (89-98) <0.0001 

Minimum SaO2,% 79.9±8.3 (53-95) 86.7±4.8 (69-96) <0.0001 

Sleep parameters    

Total sleep time, min 321.0±63.9 (160–568) 326.5±72.2 (116–478) 0.80 

Sleep efficiency, % 79.4±12.6 (34–99) 79.7±14.7 (25–99) 0.91 

Time in S1 sleep, min 39.1±38.1 (5–260) 29.4 ± 25.2 (3–150) 0.02 

Time in S2 sleep, min 197.2±57.9 (38–326) 193.4±49.0 (25–296) 0.50 

Time in SWS, min 40.0±26.3 (0–132) 47.0±29.4 (0–113) 0.07 

Time in REM sleep, min 39.7±24.0 (0–142) 48.1±24.5 (0–110) 0.02 

Values are mean  standard deviation (range). 

AHI: apnea-hypopnea index; CAI: central apnea index; fAPAP: female-specific auto-titrating positive 

airway pressure; OAI: obstructive apnea index; ODI: oxygen desaturation index; REM: rapid eye 

movement; SaO2: oxygen saturation; SD: standard deviation; SWS: slow-wave sleep. 
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Table 7. Device usage (completed cases)  

 

fAPAP (3 months)  

(n=111) 

Average usage, h/day  4.8±2.0 (0.1–8.2) 

Days with usage >4 h/day, %  66.2±30.4 (1.9–100.0) 

Average usage 4 h/day, n (%)  75 (67.6) 

Values are mean  standard deviation (range) or number of patients (%). 

fAPAP: female-specific auto-titrating positive airway pressure. 
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Table 8. Subjective sleep quality 

 Baseline 
fAPAP 

(3 months) 

Change from 

baseline 
p-value 

How easy/difficult was it to fall 

asleep? 
(n=120) (n=107) (n=106)  

Mean ± SD (range)* 5.2±2.9 (0–10) 6.3±2.5 (0–10) 1.1±2.7 (–5, 7) <0.0001 

How well did you feel like you 

slept most nights? 
(n=119) (n=109) (n=107)  

Mean ± SD (range)* 3.5±2.4 (0–10) 6.1±2.3 (1–10) 2.6 ± 2.7 (–3, 8) <0.0001 

How refreshed did you feel in 

the mornings on waking? 
(n=120) (n=108) (n=107)  

Mean ± SD (range) 2.4±2.0 (0–10) 6.3±2.4 (0–10) 3.8±3.0 (–5, 10) <0.0001 

On average, how many times did 

you wake up each night? n (%) 
(n=119) (n=109)   

None  7 (5.9)  19 (17.4)   

<0.0001** 

1-2  43 (36.1)  58 (53.2)   

3-4  56 (47.1)  31 (28.4)   

5-6  12 (10.1)  1 (0.9)   

More than 6  1 (0.8)  0   

*Score on a scale from 0 (worst) to 10 (best).  

**Mantel-Haenszel test (modified ridit scores). 

SD: standard deviation.  
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CHAPTER 7. GENERAL CONCLUSION TO THE THESIS 

 

7.1. Summary of thesis aims 

The overall aim of this thesis was to understand gender differences in OSA and use this 

information to develop a tailored therapy for female patients.  

Specific aims of this thesis were to:  

1) Determine whether gender-related differences exist in symptoms of mild OSA 

patients (CHAPTER 2) 

 

2) Determine whether gender-related differences exist in respiratory data of mild 

OSA patients (CHAPTER 3). 

 
3) Determine whether correlations exists between respiratory parameters and 

patient symptoms in mild OSA patients (CHAPTER 3). 

 

4) Develop, test and validate a new AutoSet for the treatment of female-specific 

breathing characteristics (CHAPTER 4, CHAPTER 5 and CHAPTER 6).  

 

7.2. Summary of the literature review 

CHAPTER 1 of this thesis provides a detailed review of OSA and UARS, with a focus on 

gender differences. OSA is a common disorder characterised by repetitive nocturnal 

complete collapses (apneas) or partial collapses (hypopneas) of the upper airway during 

sleep. These events are associated with oxygen desaturation and/or arousal from sleep. The 

severity of OSA is measured by the number of occurrences of airway collapse per hour (the 

apnea-hypopnea index [AHI]). Measuring the severity of OSA is complicated due to changes 

in scoring rules introduced by the American Association of Sleep Medicine (AASM) in 2007 

and 2012. In 2012 the definition of a hypopnea was modified, which increases the number of 
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patients achieving diagnostic criteria. In particular, many patients who may have previously 

been diagnosed with UARS are likely to qualify for an OSA diagnosis if later scoring criteria 

are used.  

OSA is less prevalent in females than males. When AASM 2012 scoring criteria is used, as 

many as 49.7% of males and 23.4% of females may have moderate-to-severe OSA (18). 

Females present with different symptoms than males. While the typical OSA symptoms are 

snoring, witnessed apneas and daytime sleepiness, females are more likely to complain of 

fatigue, insomnia, depression and anxiety (23-26). Females with moderate-to-severe OSA 

have significantly worse quality of life and mood disturbances than males with OSA (29, 30). 

It is not clear whether women with OSA experience daytime sleepiness. Women consistently 

score lower on questionnaires assessing daytime sleepiness, and are more likely to 

complain of fatigue and tiredness than sleepiness (36, 37). Females with OSA are frequently 

misdiagnosed with depression and other illnesses, most likely due to the atypical symptoms 

they report (23, 24, 47). However, even when women do report the typical OSA symptoms 

they are still less likely to be referred to sleep clinics, indicating that OSA in female patients 

is often overlooked (47). Compared to males with OSA, females have a higher likelihood of 

developing a range of health conditions including diabetes (68) and hypertension (70). 

Women with OSA are more likely than those without OSA to be diagnosed with 

cardiovascular diseases (68), and severe untreated OSA in females has been associated 

with cardiovascular death (69). 

As defined by the AHI, females have less-severe OSA compared to males (126). Females 

have lower AHIs, comprised of shorter events and less-severe oxygen desaturations, than 

males (124). Females are more likely to have clusters of obstructive events during REM 

sleep (123), and less likely to experience positional OSA (123). Less severe OSA in females 

appears to be due to a combination of anatomical, hormonal, and chemoreceptor differences 

(23, 137, 138, 142).  

The gender differences in prevalence, symptoms, clinical experience, and health 

consequences of OSA patients appear to be clearly defined. However, a review of patients 

with mild OSA and UARS shows that the proportion of females reporting to sleep clinics is 

much closer to 50% (85-87). The symptoms that mild OSA and UARS patients report are 

similar to those attributed to female OSA patients, including insomnia, poor quality of life, 

and daytime tiredness (11, 85). Patients with mild OSA and UARS experience large amounts 

of flow limitation during sleep. Flow limitation alone, with obstructive apneas, has been 
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shown to produce clinical symptoms such as fatigue and depression (99). It is therefore 

possible that symptoms of OSA may be more closely related to severity of the disease than 

gender.  

The most effective treatment for OSA is continuous positive airway pressure (CPAP). CPAP 

provides a pneumatic splint by applying pressurized air from a device to a patient’s airway 

via a mask and tubing. Effective CPAP treatment in women has been shown to improve 

quality of life (160), sleepiness (163), anxiety (163) and depression (161). CPAP also 

appears to reduce the risk of cardiovascular mortality in adherent female patients (25).  

AutoSet is a mode of CPAP therapy which automatically adjusts the pressure delivered to 

the patient based on a breath-by-breath assessment of ventilation. AutoSet devices assess 

the patient’s breathing for flow limitation, snore, and reduction or lack of ventilation 

(hypopnea or apnea). The AutoSet devices then increase the pressure to overcome 

obstruction until ventilation is stable. AutoSet devices are also able to reduce pressure 

during periods of stable breathing to improve patient comfort. An advantage of AutoSet 

devices is their ability to provide efficacious treatment for patients during changing 

circumstances, for example after alcohol intake or weight gain. AutoSet devices have been 

developed and validated in patient groups consisting of 100% male patients (180-182). As 

female-specific characteristics have not been considered during the development of AutoSet 

devices, they may not be optimal for treatment of women with OSA.  

7.3. Summary of the main findings of this thesis 

CHAPTER 2 of this thesis aimed to determine whether the literature-reported female 

symptoms of OSA (fatigue, insomnia, anxiety and depression) are still a gender-specific 

phenomenon in UARS and mild OSA patients. Patient data from the MERGE clinical trial 

(Appendix C) was used for this analysis. Patients were entered into this clinical trial if they 

had mild OSA (AHI 5-15) according to either AASM 2007, or AASM 2012 criteria. At the first 

trial visit patients were asked to complete a range of quality of life questionnaires, including 

the Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), Hospital Anxiety and 

Depression Scale (HADS), and Insomnia Severity Index (ISI). Baseline questionnaire scores 

of the males and females were compared to see if gender differences were present in this 

mild patient group. 

Included in this analysis were 186 males and 73 females. On average, the females were 

significantly older (54.9 + 9.8 vs. 50.4 ± 12.1, p = 0.002), and had a higher BMI (31.8 ± 5.2 
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vs. 29.5 ± 3.6, p < 0.000). There were significant gender differences in each questionnaire 

response. The female patients reported significantly higher sleepiness according to the ESS 

(10.63 ± 4.34 vs. 9.13 ± 4.34, p = 0.014). Females also reported significantly higher levels of 

fatigue (FSS scores 43.10 ± 12.94 vs. 33.69 ± 13.94, p = 0.000), insomnia (ISI scores 14.62 

± 5.67 vs. 11.90 ± 5.48, p = 0.001), and anxiety/depression (HADS scores 14.81 ± 7.57 vs. 

11.03 ± 6.94, p = 0.000).  Overall, this data from 259 mild OSA patients shows that, even at 

the lower end of the OSA spectrum, the symptoms of females are still significantly worse 

than those of males.   

CHAPTER 3 of this thesis aimed to determine whether the gender differences reported in 

respiratory parameters of moderate-to-severe patients also exist in mild OSA and UARS 

patients. Females are reported to have more flow limitation, shorter apneas, less-severe 

oxygen desaturation, and more RERAs/hypopneas terminated by arousal. UARS is 

characterised by excessive flow limitation and RERAs. It is not clear if females have less-

severe sleep disordered breathing (SDB) within the mild OSA and UARS groups. Patients 

enrolled in the MERGE study (Appendix C) underwent polygraphy (PG) home sleep testing. 

PG data from the participants was analysed according to gender to assess for differences. 

PG data was then correlated with patient symptoms to determine whether there were 

relationships between SDB events and symptoms.  

PG studies from 259 patients (73 females) were collected. Studies were scored both with 

AASM 2007 and AASM 2012 scoring criteria. When scored according to AASM 2007 criteria, 

the male patients had significantly higher AHI (7.17 ± 3.4 vs. 5.97 ± 2.71, p = 0.004). This 

difference disappeared when the studies were rescored with AASM 2012 criteria (male vs. 

female AHI 12.52 ± 5.01 vs. 11.65 ± 4.69, p = 0.197). There were no significant differences 

in the number of hypopneas terminated by arousals (male vs. female score 3.2 ± 3.58 vs. 

3.65 ± 3.58, p = 0.370). There was also no significant difference in the percentage of flow 

limited breaths between the genders (males vs. female percentage 39.8 ± 13.8 vs. 38.4 ± 

15.6, p = 0.598).  

In the male patient group, correlations were only found between AASM 2012 AHI, and FSS 

(r = -0.153, p = 0.040). In the female patients, correlations were found between AASM 2007 

AHI and ESS (r = -0.317, p = 0.007), AHI and HADS (r = -0.372, p = 0.001), and AHI and ISI 

(r = -0.242, p = 0.042). In the female data rescored with AASM 2012 rules, correlations were 

also found between AHI and HADS (r = -0.381, p = 0.001), and AHI and ISI (r = -0.240, p = 

0.044). In all correlations found, the relationship was inverse, meaning that the symptoms 
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were higher for lower AHIs. There were no correlations between flow limitation and 

symptoms in the male group. In the female group correlations were found between percent 

of flow limited breaths and FSS (r = -0.300), and percent of flow limited breaths and ISI (-

0.416, p = 0.004). Again, these correlations were inverted, with higher symptoms associated 

with lower percentages of flow limitation. In the female patients, ESS was strongly 

associated with age, with younger females more likely to report excessive sleepiness. BMI 

was associated with FSS increases in females, and ISI increases in males.  

This data confirmed that, even in this mild patient group, females have less-severe SDB, 

with lower AHIs and a higher proportion of hypopneas terminated by arousals. There was no 

significant difference in the percentage of flow limitation between genders. It was not 

possible to draw clear conclusions from the associations between symptoms and measures 

of SDB.  

CHAPTER 4 of this thesis outlined the development of a female-specific AutoSet device. 

Females are reported as having different breathing patterns to males, including more flow 

limitation, shorter and less-severe apneas, lower AHIs, less severe-oxygen desaturations, 

more events during REM sleep, and a longer sleep latency. Traditionally, AutoSet devices 

were developed and tested on male patient groups and therefore may not appropriately 

recognise and respond to female-specific breathing events and may not provide optimal 

treatment for female patients.  

Development of the new AutoSet (AutoSet F) involved designing a new algorithm which 

would detect and respond to female-specific breathing patterns. The AutoSet F algorithm 

includes a sensitive flow limitation detection and response, a floor pressure to protect 

against strings of OSA in REM, lower overall mean pressures than a standard AutoSet, a 

new RERA detection algorithm, gentle and slow pressure increases and decreases, and an 

automatic ramp feature which keeps delivered pressure low until sleep onset is detected.  

CHAPTER 5 of this thesis detailed the testing and verification activities undertaken on the 

AutoSet F. The first activity was a clinical trial conducted on 20 female OSA patients to test 

device efficacy. Female patients with a diagnostic AHI ≥ 15 were randomised to receive 

AutoSet F or standard AutoSet on consecutive nights while undergoing PSG. The primary 

objective was to compare the AHI and ODI of the AutoSet F to the standard AutoSet to 

demonstrate non-inferiority. Secondary outcomes were sleep parameters and patient 

satisfaction.  
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Female participants were primarily Caucasian with a mean age of 44.85 ± 5.02 years and 

diagnostic AHI of 19.08 ± 8.69. No significant differences were found between the standard 

AutoSet and AutoSet F in AHI (0.96 vs. 0.91, p = 0.870); or ODI (1.92 vs. 2.19, p = 0.477). 

When comparing the sleep parameters, the data shows that flow limitation (% of breaths) 

was significantly lower when participants were treated with the AutoSet F compared with the 

standard AutoSet (0.14% vs. 0.20%; p=0.003). This study shows that the AutoSet F is able 

to efficaciously treat OSA in female patients and may be a more suitable option than 

standard AutoSet. 

The next activity for validating the AutoSet F was testing using a bench test designed to 

simulate a female OSA patient. The primary objective of this activity was to test the 

performance of the AutoSet F compared to other commercially available devices, on a test 

which is controlled and repeatable. The bench test in this study was developed Professor 

Farré and colleagues at Barcelona University.  

In this bench test, the simulated patient was designed to replicate a typical female OSA 

patient with a lot of flow limitation, short apneas, mild hypopneas and a requirement for 

overall lower treatment pressures.  

From the ten AutoSet devices tested, only the AutoSet F and two other AutoSet devices 

were able to completely overcome obstructive events and flow limitation. There was a high 

residual AHI (AHI > 5) at completion of the testing for four of the devices. This bench testing 

demonstrated that the AutoSet F was able to completely normalize breathing of a simulated 

female patient, while several other commercially available AutoSet devices were unable to 

normalize breathing.  

The next validation test for the AutoSet F was a controlled product launch (CPL). During a 

CPL, product commercial release is carefully controlled and data from participants is 

collected and analysed for correct device functioning. De-identified device functioning 

information was collected from 163 devices, over a total of 2272 nights of use. Average daily 

usage was high, at 5.9 hours per night. Residual AHI was 2.61, well below what is 

considered efficacious (< 5). This efficacy was achieved with a group average 95th percentile 

pressure of 8.76 cm H2O. During the CPL, the technical features of the AutoSet F were 

found to be working as intended, and the internal algorithm was able to treat female patients 

in real world, uncontrolled conditions.  
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CHAPTER 6 of this thesis reported a clinical trial evaluating quality of life in female patients 

before and after using the AutoSet F for three months. The literature, as well as data in this 

thesis, has shown that female OSA patients experience worse symptoms, including fatigue, 

quality of life, anxiety and depression, insomnia, than males with OSA. The purpose of this 

study was to evaluate whether ongoing use of the AutoSet F was able to improve these 

symptoms in female patients. 

Participants underwent PG (Spain) or PSG (Germany) at study entry. Those with a 

diagnostic AHI of ≥ 15/h were eligible to participate. The primary endpoint was change in 

baseline in the Functional Outcomes of Sleep Questionnaire (FOSQ) score after 3 months’ 

AutoSet F use. Secondary endpoints included other sleep-related and QoL questionnaires.  

A total of 122 patients were enrolled in the study (age 53.7 ± 9.5 years, body mass index 

32.8 ± 6.2 kg/m2, apnea-hypopnea index [AHI] 39.0±18.2/h); 111/122 completed the study. 

There was a significant improvement (p<0.0001) in FOSQ score from baseline (15.0 ± 3.3) 

to 3 months (16.9 ± 3.2). Significant improvements were also seen in the Patient Health 

Questionnaire-9 score (12.3 ± 6.0 vs. 7.2±5.4), Epworth Sleepiness Scale score (10.8 ± 4.9 

vs. 7.3 ± 4.7), EuroQol (EQ)-5D Index score (0.636 ± 0.248 vs. 0.763 ± 0.210), EQ-5D visual 

analogue scale score (54.4 ± 21.7 vs. 64.5 ± 21.5) (all p<0.0001), and Changes in Sexual 

Functioning Questionnaire score (38.7 ± 9.5 vs. 42.4 ± 8.5; p=0.001). In patients with PSG 

data, AutoSet F improved other respiratory parameters (AHI, oxygen desaturation index, 

oxygen saturation; all p<0.0001), and increased time spent in rapid eye movement (REM) 

sleep (39.7 ± 24.0 vs 48.1 ± 24.5 min; p=0.022). Average daily usage was 4.8 ± 2.0 h/night. 

This study showed significant improvements in quality of life in female OSA patients treated 

for 3 months with the AutoSet F device. This included improvements in sexual function, 

which have been rarely studied in these patients. Significant improvements were seen in 

respiratory parameters as well as time in REM sleep. Taken together, this data shows that 

the AutoSet F can improve sleep and quality of life in female OSA patients.  

7.4. Conclusion to this thesis and future direction  

During this thesis I aimed to determine whether gender differences described in OSA 

patients still exist in those patients on the mild end of the spectrum. I found that significant 

gender differences do exist in mild OSA patients, with females suffering from significantly 

worse sleepiness, fatigue, insomnia, and anxiety/depression. It was clear that these patients 

were extremely symptomatic, and defining them as mild is misleading, as is only looking at 
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AHI as a measure of severity. The reasons that female patients express worse symptoms 

remain unclear, and future studies should investigate the psychology behind how females 

perceive and report symptoms of OSA compared with males.  

Gender differences in the severity of OSA are also present in mild OSA patients, although 

they are far less pronounced than those in moderate-to-severe patients, with no significant 

differences found between the percentage of flow limitation or number of hypopneas 

terminated by arousal. I was unable to conclusively find relationships between measures of 

SDB and symptoms. Although correlations were found between some measures of SDB and 

symptoms in female patients, they were inverse, meaning that lower SDB scores were 

associated with higher symptoms. There were also strong confounding factors, including 

BMI and age, which were associated with symptoms for both genders. Future research 

should review symptom improvement following OSA treatment, as this will provide further 

insights as to which symptoms are caused by untreated OSA. The MERGE trial (Appendix 

C) aims to investigate this area further, with results expected late 2019.  

The final aim of this thesis was to develop a new AutoSet treatment for female patients. 

Using respiratory parameters commonly found in female patients, I developed an 

appropriate AutoSet which I then tested for efficacy, effectiveness, and long-term use in 

female patients. The studies demonstrated that the AutoSet F is able to significantly improve 

OSA and improve symptoms of female patients, and may provide more optimal treatment 

than other commercially available AutoSet devices. This work has contributed to the field of 

sleep medicine by bringing awareness to the gender differences that exist in OSA, and 

introducing personalised medicine for female OSA patients. It is hoped that through this work 

it will be easier for female OSA patients to be identified and treated for obstructive sleep 

apnea, which will then improve their quality of life.  

Further research in this area should compare the AutoSet F to standard AutoSet in a longer 

clinical trial to see if PAP acceptance and compliance can be improved with the use of the 

AutoSet F. Future research may also investigate the use of the AutoSet F on male patients 

with mild OSA and excessive amounts of flow limitation to see if similar improvements are 

seen in the male population.  

Female patients may benefit from introducing new definitions of OSA which move away from 

traditional AHI measures. As shown in this thesis, the AASM 2012 definition of OSA appears 

to be more beneficial to female patients as it recognises more respiratory events, however 

prolonged flow limitation and some RERAs are still not included in this definition. Finally, 
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new therapies emerging to treat OSA, including mandibular advancement devices, phrenic 

nerve simulation, and combinations of new drugs, should all be separately analysed on 

female patients. These therapies could then be optimised for the female patients, who have 

been shown to be very different from the male patients. 
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Abstract 

Obstructive sleep apnea (OSA) has traditionally been seen as a male disease. However, the 

importance of OSA in women is increasingly being recognized, along with a number of significant 

gender-related differences in the symptoms, diagnosis, consequences, and treatment of OSA. 

Women tend to have less severe OSA than males, with a lower apnea-hypopnea index (AHI) and 

shorter apneas and hypopneas. Episodes of upper airway resistance that do not meet the criteria for 

apneas are more common in women. Prevalence rates are lower in women, and proportionally 

fewer women receive a correct diagnosis. Research has also documented sex differences in the 

upper airway, fat distribution, and respiratory stability in OSA. Hormones are implicated in some 

gender-related variations, with differences between men and women in the prevalence of OSA 

decreasing as age increases. The limited data available suggest that although the prevalence and 

severity of OSA may be lower in women than in men, the consequences of the disease are at least 

the same, if not worse for comparable degrees of severity. Few studies have investigated gender 

differences in the effects of OSA treatment. However, given the differences in physiology and 

presentation, it is possible that personalised therapy may provide more optimal care. 
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1. Introduction 

Obstructive sleep apnea (OSA) is characterized by 

repetitive nocturnal complete collapses (apneas) or 

partial collapses (hypopneas) of the upper airway 

during sleep. These events are associated with 

oxygen desaturation and/or arousal from sleep. The 

severity of OSA is measured by the number of 

occurrences of airway collapse per hour (the apnea-

hypopnea index [AHI]). OSA is the most common 

form of sleep disordered breathing (SDB) and its 

prevalence has been increasing steadily, in part due 

to the global rise in obesity and in part due to 

changes to the recommended OSA scoring 

ruleswhichwereupdatedin2012toallowabroaderdefini

tion of OSA [1]. Table 1 summarizes prevalence data 

for OSA in the general population. 

OSA has been estimated to have a male-to-female 

ratio of between 3 : 1 and 5 : 1 in the general 

population and a much higher ratio of between 8 : 1 

and 10 : 1 in some clinical groups [2–4]. Perhaps not 

surprisingly then, OSA has historically been regarded 

as a male disease [5]. Prevalence data do show that 

more men than women are affected by OSA; 

however, these differences are not reflected in 

clinical populations. This indicates that females are 

being diagnosed and treated for OSA less frequently 

than males. 

2. OSA Classification, 

Diagnosis, and Symptoms 

2.1. Sleepiness. It has been suggested that 

discrepancies between males and females in the 

prevalence of OSA could be a result of women 

frequently being misdiagnosed or underdiagnosed 

due to reporting different symptoms [4]. In the past, 

sleepiness has been seen as a key component of 

OSA. Obstructive sleep apnea syndrome (OSAS), 

which refers to OSA with accompanying symptoms, 

has been the main focus 

Table 1: Estimated population prevalence of OSA. 

Mild OSA (AHI ≥ 5/h) 
Study 

Moderate-to-severe 

OSA (AHI ≥ 15/h) 

 Males Females Males Females 

Young et al. 

[2] 
24% 9% 9% 4% 

Redline et al. 
[21]∗ 

— — 26% 13% 

Bixler et al. 

[22, 23] 
17% — 7% 2% 

Duran et al.´ 

[24] 
26.2% 28% 14% 7% 

Peppard et al. 

[25] 
— — 13.5% 6% 

Franklin et al. 
[5]∧# 

— 50% — 26% 

Heinzer et al. 

[26]# 
34% 38% 49.7% 23.4% 

∗Respiratory disturbance index (RDI) rather than AHI given. 
∧Women aged 20–70 years. 
#Updated scoring criteria (AASM 2012) used. 

of treatment in the past. Furthermore, because the 

majority of clinical trial participants with OSA have 

been sleepy, it is still not clear whether 

asymptomatic OSA should be treated. 

The Epworth Sleepiness Scale (ESS) is a tool used to 

measure the likelihood of falling asleep in certain 
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situations and is commonly used to screen for OSA 

[5, 6]. Despite its widespread use, the ESS has not 

been validated for use in female OSA patients and 

has not been strongly associated with daytime 

sleepiness in female patients in population based 

studies [5, 6]. In fact, even women who report similar 

levels of daytime sleepiness to men are less likely to 

have an ESS score >10 [6]. It is not clear why these 

differences occur; however, it is possible that women 

have a different threshold for feeling sleepy and/or 

complain differently about sleepiness compared with 

men [4]. 

2.2. Other Symptoms. Making a differential diagnosis 

of OSA in women might be more difficult given that 

they tend to present with more generalized daytime 

symptoms than men [4]. Women with OSA complain 

of symptoms such as insomnia, restless legs, 

depression, nightmares, palpitations, and 

hallucinations whereas men are more likely to report 

snoring and apneic episodes [7]. Women may 

consider their own snoring “unladylike” and 

therefore be less likely to mention it [4]. In addition, 

women are more likely to attend clinical 

appointments on their own, whereas men often 

attend with their partner [3]. Therefore, information 

from a partner on snoring and witnessed apneas may 

not be as readily available for women versus men. 

Less frequent reporting of “typical” OSA symptoms 

such as sleepiness and snoring by women, plus a 

higher prevalence of atypical symptoms such as 

insomnia, headache, anxiety, and depression, could 

contribute to the under-evaluation of OSA in women, 

lower referral rates to sleep clinics, and 

underrepresentation in clinical studies [8, 9]. 

In a community-based sample, women with OSA 

reported the same symptoms as men across a range 

of severities, and snoring was the most significant 

predictor of OSA for both sexes [9]. However, a 

similar study of a population-based sample found 

that up to 40% of women with an AHI > 15/h did not 

report any of the classic OSA symptoms (snoring, 

witnessed apneas, and daytime sleepiness) [7]. 

2.3. Recognition and Diagnosis. It is clear that many 

women do report classic OSA symptoms, suggesting 

that factors other than symptoms also contribute to 

gender disparity in OSA populations [9]. These 

include failure of women to acknowledge OSA 

symptoms and seek medical help or failure of 

medical professionals to respond to OSA symptoms 

in women [4, 9]. Adding to the difficulty in correctly 

diagnosing female patients is the reporting of 

symptoms such as depression and anxiety, which are 

also more common in female than male patients 

without OSA [10]. 

Data from the Wisconsin University Sleep Laboratory 

showed that lower rates of recognition of OSA in 

women versus men only occurred in the subset of 

patients with an AHI of 5–20/h [11]. Their findings 

led the study authors to hypothesize that there may 

be greater gender-related differences in OSA 
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symptom expression at lower AHI values, particularly 

with respect to characteristic symptoms such as 

snoring, witnessed apneas, and excessive daytime 

sleepiness. 

Another difficulty in correctly diagnosing and treating 

OSA is understanding where the disease becomes 

significant and at what point treatment should be 

initiated. Large studies have typically shown an 

association between moderate severe OSA and poor 

cardiovascular outcomes, whereas the same 

association has not been found in mild OSA [12]. 

Growing evidence suggests that mild OSA is 

associated with reduced quality of life, including 

general tiredness, fatigue, daytime impairment, 

difficulty concentrating and completing tasks, 

depressed mood, poor sleep quality and insomnia, 

and poor psychomotor performance [1, 13–17]. 

3. Gender Differences in the 

Upper Airway, Fat 

Distribution, and 

Respiratory Stability 

Definitive explanations for differences between men 

and women in the symptoms, characteristics, and 

severity of OSA are not yet available, but various 

factors may contribute. 

The focus of a number of studies has been on the 

upper airway. Magnetic resonance imaging has 

shown that airway length, the tongue, the soft 

palate, and the total amount of soft tissue in the 

throat are all smaller in women than in men [18]. 

Although, intuitively, a smaller airway might be 

expected to occlude more easily than a larger one, 

this does not seem to be the case. It appears that 

men have a longer, softer oropharynx and a larger, 

fatter, more posterior tongue, increasing the 

susceptibility of the large airway to collapse [4]. 

Upper airway collapsibility, determined by the 

pharyngeal critical closing pressure, has been shown 

to be less in women versus men when the severity of 

OSA is the same [19]. Sex differences in airway 

collapsibility were most evident during non-REM 

sleep, suggesting that men may be more susceptible 

to pharyngeal collapse than women during 

established sleep, but not during sleep transition 

[20]. 

Obesity is a well-recognized risk factor for OSA, and 

higher body mass index (BMI) is associated with 

greater severity of OSA for both sexes [18]. However, 

for the same AHI, women tend to be more obese 

than men [19, 27]. One potential explanation for this 

is differences in fat distribution between the sexes 

[28]. For the same BMI, men tend to have higher 

mean body weight, free fat mass, and neck 

circumference compared with women [29]. MRI 

studies have confirmed less pharyngeal fat and lower 

soft tissue volume in the neck for obese women 

versus obese men [30]. Upper airway fat distribution, 

particularly in the posterior tongue, appears to be 

important in the pathogenesis of OSA and is related 

to gender [4]. Upper body and visceral adiposity have 
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been associated with reductions in lung function, 

including total lung capacity, forced vital capacity, 

and forced expiratory volume [31]. In addition, the 

independent effects of body fat distribution on lung 

function were more pronounced in men than in 

women [32]. 

Fat distribution might have physiological as well as 

mechanical effects in patients with OSA. Obese 

women, especially those with OSA, have been shown 

to have significantly increased hypercapnic and 

hypoxic responses, whereas this was not the case in 

obese men [33]. This adaptation might maintain 

adequate minute ventilation when the chest wall 

load is increased. In addition, men and women have 

been shown to require different levels of carbon 

dioxide in the blood to cause respiratory instability, 

and men were more susceptible to hypocapnic 

dysfunction during non-REM sleep than women. It is 

possible that women preserve ventilation output 

during hypocapnia more efficiently than men [34]. 

Indeed, the ventilatory response to hypercapnia has 

been shown to be greater in men than in women 

[35]. Thus, reduced lung function and decreased 

chemoresponsiveness are additional reasons why 

men are more susceptible to OSA than women. 

There may also be gender differences in the arousal 

response to apneas. Jordan and colleagues found 

that during non-REM sleep men had a higher 

ventilatory response to apneas than women, but 

then they developed greater hypoventilation when 

they went back to sleep, especially in the supine 

position. This prolonged hypoventilation often leads 

to ventilatory instability upon returning to sleep. The 

study authors hypothesized that this may play a role 

in explaining why sleep apnea syndromes are more 

severe in men [36]. 

4. Manifestations 

There are a number of gender differences in the 

manifestations of OSA; both the severity of OSA and 

its distribution across the sleep cycle differ in males 

and females. In patients with existing OSA, women 

had a significantly lower overall 

AHI compared with men (20.2/h versus 31.8/h; p < 

0.001); AHI during non-REM sleep was also 

significantly lower in women versus men (14.6/h 

versus 29.6/h; p < 0.001) but there was no difference 

between females and males with respect to AHI 

during REM sleep (42.7/h versus 39.9/h, resp.), 

suggesting greater clustering of apneic events during 

REM sleep in women [37]. This study also showed 

that OSA in the supine position occurred almost 

exclusively in men, indicating that positional OSA is 

not really an issue for women [37]. 

Polysomnographic data from patients referred for 

suspected sleep disorders also showed that a 

difference between males and females in AHI was 

evident during stage 2 sleep, but not during REM 

sleep [38]. In addition, women had shorter apnea 
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events and less severe oxygen desaturations than 

men (both p = 0.001) [38]. 

An interesting finding is that women are 

symptomatic at lower AHI cut-off values compared 

with men with the same AHI [9]. Females with an AHI 

of 2–5/h had a similar level of symptoms to men with 

an AHI of ≥15/h. In contrast, males with an AHI of 2–

5/h were indistinguishable from those with an AHI of 

0–2/h with respect to symptoms. One possibility is 

that the long-term effects of REM sleep disruption 

contribute to greater symptomatology at lower AHI 

values in women compared with men [39]. 

Another theory is that women may be more 

symptomatic because they have more episodes of 

upper airway resistance during sleep. Obstructive 

events can be thought of as a continuum from partial 

to complete upper airway obstruction. Upper airway 

resistance occurs early in this spectrum and 

describes events where resistance to airflow in the 

upper airway increases during sleep, presenting as 

flow limitation during polysomnography [40]. This 

increase in upper airway resistance could increase 

work of breathing, cause arousals and disrupted 

sleep, and impact daytime cognitive function [40]. 

Upper airway resistance alone, without complete 

obstructive apnea or respiratory disturbance, has 

been shown to produce clinical symptoms such as 

daytime fatigue and depression [41], both of which 

are symptoms reported by women with OSA. 

Sleep architecture is another aspect that has been 

shown to differ between males and females. A study 

of 307 patients found that women took longer to fall 

asleep than men and, once asleep, had fewer 

awakenings and more slow wave (deep) sleep, 

despite no differences between the sexes in age, 

respiratory disturbance index, or oxygen saturation 

[42]. 

The occurrence of multiple episodes of upper airway 

resistance without frank apneas means that an AHI 

value may not provide a physician with a true 

indication of the degree of sleep fragmentation being 

experienced by patients. As a result, episodes during 

sleep where flow is reduced, respiratory effort 

increases, and the episode is terminated by an 

arousal have been termed respiratory effort-related 

arousals (RERAs) [40] (Figure 1). The importance of 

measuring and reporting RERAs has been 

emphasized by a task force of the American Academy 

of Sleep Medicine (AASM) [43]. 

Women with partial upper airway obstruction have 

been shown to have similar symptoms, including 

sleepiness, to women with OSA, resulting in a call for 

partial upper airway obstruction to be clinically 

recognized in the same way as OSA in women [44]. It 

has also been suggested that recognizing and 

understanding the different features of SDB in 

women are central for effectively detecting and 

treating the condition [45]. An update to the AASM 
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scoring criteria in 2012 broadened the definition of 

OSA, and this may 

 

Figure 1: Respiratory effort-related arousals (RERAs). Trace shows 

a sustained period of flow limitation leading to increasing 

respiratory effort and arousal typical of RERAs. EEG: 

electroencephalography. 

theoretically increase the number of patients with 

mild OSA. The AASM felt that there was sufficient 

evidence that hypopneas without associated oxygen 

desaturation, but rather hypopneas associated with 

arousal from sleep, were associated with significant 

daytime impairment and impacted quality of life to 

the point where treatment may be of benefit [1]. 

This is particularly relevant for female OSA patients 

because they are more likely to experience milder 

OSA with less severe oxygen desaturations. In 

addition, RERAs are now very rare with the new 

definition because most events of this nature can 

now be classified as hypopneas [1]. No prospective 

studies have investigated continuous positive airway 

pressure (CPAP) treatment in this newly defined 

group of patients with mild OSA; however, there is 

one randomized controlled trial underway which 

aims to do so (merge study, NCT02699463). 

5. Menopause and 

Pregnancy 

Differences between men and women in the 

prevalence of OSA decrease as age increases, largely 

as a result of a marked increase in the prevalence 

and severity of SDB in women after menopause [22, 

46, 47]. Therefore, it has been suggested that female 

sex hormones have some sort of protective effect on 

upper airway patency and/or ventilatory drive [39]. 

The hormone progesterone is a known respiratory 

stimulant which increases chemoreceptor responses 

to hypercapnia and hypoxia and has been shown to 

increase upper airway muscle tone [48]. 

Progesterone levels decrease after menopause. 

Hormones may also play a role in the distribution of 

body fat. Postmenopausal women have a higher fat 

mass compared to the period prior to menopause, 

and fat distribution is more likely to be in the upper 

body and trunk area compared with the lower body 

[49, 50]. In female volunteers, activity of the 

genioglossus muscle during wakefulness was lower in 

postmenopausal women compared with 

premenopausal women and significantly increased 

after 2 weeks of hormone replacement therapy [51]. 

Women may be at increased risk of OSA during 

pregnancy due to a number of factors. The growing 

uterus elevates the diaphragm, changing pulmonary 

mechanics [52]. In addition, during pregnancy, neck 

circumference increases [53, 54], nasal patency is 

reduced [55], and pharyngeal edema occurs [56]. 

Substantial increases in snoring, snorting/gasping, 

and witnessed apneas have been documented in 



BioMed Research International 159 

159 

 

pregnant women [54]. Snoring during pregnancy 

appears to be a risk factor for both pregnancy-

induced hypertension and intrauterine growth 

retardation [57]. An ongoing study in this area will 

enrol 3702 women to understand the prevalence and 

outcomes of OSA during pregnancy [58]. Preliminary 

data from this group found that OSA affects 8.1% of 

pregnant women by the second trimester and that 

there was an association between OSA and 

hypertension and diabetes in this group [59]. 

There are limited data on the treatment outcomes of 

OSA during pregnancy, and no randomized 

controlled trials have been conducted in this area. 

Small studies have shown that CPAP treatment 

reduces blood pressure during pregnancy even when 

OSA is mild [60] and may improve pregnancy 

outcomes compared with untreated OSA [61, 62]; 

however, more research is required in this area. 

6. Quality of Life 

Several comparisons of women and men with 

untreated OSA have found that women report 

impaired quality of life. Women complain of more 

mood disturbances such as anxiety and depression, 

report low quality of life scores on a range of 

questionnaires, and display increased daytime 

fatigue, reduced sleep quality, and worsened 

neurobehavioral symptoms [63–66]. One limitation 

of these studies is that females were generally 

compared to males with OSA, rather than matched 

controls, meaning that there are no data on how 

female OSA patients differ from those in the general 

female population, where mood disturbances such as 

anxiety and depression can be common. 

7. Health Consequences of 

OSA and Effects of 

Treatment 

OSAS has been associated with elevated 

cardiovascular risk and increased morbidity and 

mortality [67]. Observational studies have shown 

that adequate treatment of OSA with CPAP can 

reduce the incidence of cardiovascular events in 

patients with any severity of symptomatic OSA [68, 

69]. The evidence for non-sleepy patients is mixed, 

with two short-term randomized studies showing no 

cardiovascular improvement in non-sleepy patients 

[70, 71]. However, a recent study by Barbe et al. 

included 725 non-sleepy patients´ with an AHI ≥20/h 

who were randomized to CPAP or a control group. 

There were fewer cases of new hypertension and 

cardiovascular events in the CPAP group, although 

this did not reach statistical significance (CPAP versus 

control group incidence density ratio (IDR) 0.81, 

confidence interval [CI] 0.61–1.06; 𝑝 = 0.13). 

However, an analysis of those using PAP for ≥4 

hours/night compared with the control group had an 

IDR of 0.69 (CI 0.50–0.94; 𝑝 = 0.02) compared with an 

IDR of 1.12 (CI 0.77–1.64; 𝑝 = 0.55) for those using 

CPAP <4 hours/night [72]. Due to the associations 

between OSA and harmful cardiovascular 
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consequences, many researchers advocate for CPAP 

treatment of all patients, regardless of symptoms 

[73]. 

It has been postulated that non-sleepy patients will 

not be adherent to treatment; however, a recent 

large prospective trial has shown that long-term 

CPAP treatment is feasible in non-sleepy moderate-

to-severe OSA patients [74]. 

7.1. Gender Differences in the Health Consequences 

of OSA. In the past, the belief that OSA was primarily 

a male disorder meant that clinical trial populations 

were comprised almost entirely of males [5]. 

Recently, studies have focused more specifically on 

the unique consequences of OSA in female patients. 

Greenberg-Dotan et al. found that, compared to 

female controls, women with OSA were more likely 

to have a comorbid diagnosis including 

cardiovascular disease (odds ratio [OR] 1.4), 

hyperlipidemia (OR 1.5), diabetes (OR 1.6), asthma 

(OR 2.1), hypothyroidism (OR 1.6), arthropathy (OR 

1.6), and reflux/gastritis (OR 2.5) [65]. 

Yaffe et al. studied a group of women with SDB and 

found that they were more likely to develop 

cognitive impairment or dementia than those 

without SDB. Cognitive issues were more likely to 

develop in patients with increased oxygen 

desaturation and higher periods of time spent in 

apnea or hypopnea [75]. Another study showed that 

female OSA patients experienced more brain white 

matter injury than their male counterparts [64]. It is 

hypothesized, though not yet known, that this 

change in white matter structure may be responsible 

for the worsened quality of life reported by women. 

Sympathetically mediated responses to autonomic 

challenges in patients with OSA are blunted to a 

significantly greater extent in women versus men 

with OSA; this deficit is likely to reduce the 

effectiveness of BP regulation and brain perfusion 

[76]. In addition, it is possible that women with 

moderate sleep apnea are more susceptible to the 

adverse cardiovascular consequences of OSA than 

men, having been shown to have more marked 

endothelial dysfunction [77]. Certainly, untreated 

severe OSA has been independently and significantly 

associated with cardiovascular death in women [78, 

79]. Conversely, the contribution of OSA to 

hypertension has been shown to be lower in women 

versus men [80]. 

The ability of CPAP treatment to improve outcomes 

in females has not been studied as extensively as in 

males. A prospective study by Campos-Rodriguez et 

al. evaluated the long-term outcomes of OSA in 

treated and non-treated female patients. They found 

that severe OSA was associated with increased 

cardiovascular mortality risk (adjusted hazard ratio 

3.50, 95% CI 1.23–9.98) and that adequate CPAP 

treatment may reduce this risk [78]. 
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In summary, the limited data available suggest that 

although the prevalence and severity of OSA may be 

lower in women than in men, the consequences of 

the disease are at least the same, if not worse [63]. 

8. OSA Treatment 

In 2006, the American Academy of Sleep Medicine 

(AASM) reviewed all available evidence for CPAP and 

concluded that treatment was effective in improving 

quality of life in severe and moderate OSA, but there 

was insufficient evidence for the effectiveness of 

CPAP in mild OSA [81]. More recent data showed 

that CPAP treatment significantly improved quality of 

life compared with sham treatment in 223 mild-

moderate patients (AHI 5–30/h) [82]. In addition, 

CPAP treatment was associated with significant 

improvements in quality of life in female OSA 

patients on a number of measures including daytime 

functioning, activity levels, daytime sleepiness, mood 

disturbances, and impact of sickness on daily life 

[63]. Campos-Rodriguez et al. recently published the 

first study to review the quality of life impact of CPAP 

treatment in women with moderate-to-severe OSA. 

Compared with the control group, the CPAP group 

had significantly greater improvements in all quality 

of life measures, including sleepiness 

(𝑝 < 0.001), mood (𝑝 = 0.012), anxiety (𝑝 = 0.014), 

and depression (𝑝 = 0.016) [83]. 

Craig et al. randomized 391 non-sleepy mild OSA 

patients 

toCPAPtherapyorstandardcarefor6monthsandfoundt

hat CPAP improved daytime sleepiness (based on ESS 

scores), objective sleepiness, and self-assessed 

health status (SF36), but not vascular health risk [84]. 

Interestingly, Craig et al. found no relationship 

between OSA severity and improved quality of life, 

indicating that the severity of OSA may not 

accurately predict CPAP effectiveness. In 2016, the 

American Thoracic Society again reviewed the 

evidence available for CPAP treatment of mild OSA. 

They concluded that patients with sleepiness may 

benefit from treatment and that CPAP may also 

improve quality of life. They found that there was 

still insufficient evidence to understand the impact of 

mild OSA treatment on cardiovascular events, stroke, 

and arrhythmias [17]. 

8.1. Gender Differences in OSA Treatment. Sex 

differences in the response to different OSA 

treatment strategies have not been extensively 

studied to date. The limited data available indicate 

that usage is similar between males and females. A 

review of a database of 4281 patients found that 

average daily CPAP usage in male patients was 

slightly higher than in female patients; however, 

average usage time in both genders was high 

(377±94 versus 370±96 min) [85]. A similar analysis 

followed up a group of 708 women for a median of 

6.2 (4.2– 7.7) years. Overall long-term compliance 

with treatment was good in female patients, with 

median daily usage of 6 hours per day (interquartile 

range 4–7); 82.8% of patients were still using CPAP 
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after 5 years, and 79.9% were still on CPAP at 10 

years [86]. 

Clinical trials have indicated that males require 

higher CPAP pressure than females, after adjusting 

for baseline OSA severity and BMI [87, 88]. However, 

there do not appear to be differences between men 

and women in the types of interfaces used for CPAP 

or overall satisfaction with mask treatment [89]. 

Given that there are marked differences between 

men and women in the physiology and presentation 

of OSA, it is possible that treatment options 

specifically targeting female presentations of OSA 

may result in better treatment outcomes for these 

patients [85, 87, 88]. One recent bench test has 

found that there are significant differences in the 

way commercially available CPAP devices respond to 

flow limitation common in female patients [90]. 

Personalized medicine has not made major inroads 

into OSA, despite the potentially different gender 

and potential symptom specific phenotypes [91]. 

One commercially available CPAP device contains an 

algorithm which aims to address female-specific OSA 

characteristics. This device was tested in a 

randomized, double-blind, crossover clinical trial and 

was found to be as effective as standard CPAP, with a 

significant reduction in residual flow limitation and 

lower mean pressures [92]. An ongoing clinical study 

is investigating the use of this device on quality of life 

in women, with outcome measures including daily 

functioning, sleepiness, depression, sexual function, 

and sleep quality (NCT02400073). 

Non-CPAP treatments have rarely been studied for 

gender specific effects. Mild patients are often 

instructed to lose weight; however, this may be more 

beneficial for males than females based on the fat 

distribution in the upper airway of males [93]. 

Mandibular Advancement Devices (MADs) are a 

treatment option for those with mild-moderate OSA 

or those who have rejected CPAP. One large study 

found that female gender was a predictor of MAD 

treatment success, particularly when OSA was mild 

[94]. However, more research is needed in this area. 

9. Conclusion 

A growing body of evidence suggests that there are 

substantial differences between females and males 

in the symptoms, diagnosis, and consequences of 

OSA. The majority of existing data relate to 

populations with a predominance of males, 

particularly with respect to treatment. Better 

knowledge of gender differences in OSA will help to 

improve the awareness and diagnosis of OSA in 

women, and the development and availability of 

therapeutic options that take into account 

differences in the physiology and presentation of 

OSA in women could have the potential to improve 

outcomes for these patients. 
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ABSTRACT 

Historically OSA has been regarded as a male disease. Therefore, much of our knowledge comes from 

studies with largely male populations. Growing evidence suggests that there are significantly different 

gender aspects of OSA. The symptoms of OSA may manifest differently in female patients, and females tend 

to be diagnosed and treated less often, despite reporting worse quality of life outcomes. Comparisons of 

polysomnography data have shown that women appear to have less severe OSA overall with a higher 

incidence of flow limitation and REM related events. Severe OSA in women appears to be associated with 

cardiovascular morbidity and mortality, and effective treatment may reduce this risk. Researchers are 

beginning to understand more about gender differences in OSA, and the optimal treatment for these 

patients, although more research in this field is still needed. 

PREVALENCE 

Obstructive sleep apnea (OSA) is a condition during which the upper airway closes repetitively during 

sleep. Airway closures are identified as either apneas (full upper airway closure) or hypopnoea as (partial 
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upper airway closure), where the event is associated with oxygen desaturation and /or arousal from sleep. 

The count of events per hour; the apnea hypopnea index (AHI), indicates the severity of the disorder.  

The estimated prevalence of OSA changes depending on which scoring criteria are used. Table 1 displays 

the estimated population prevalence of OSA in males and females. 

Table 1: Estimated population prevalence of OSA. 

Study Mild OSA (AHI ≥ 5) Moderate to severe OSA (AHI ≥ 15) 

 Males Females Males Females 

Young et al (1993) [2] 24% 9% 9% 4% 

Redline et al (1994) [5]* - - 26% 13% 

Bixleret al (1998, 2001) [64,65] 17% - 7% 2% 

Duran et al (2001) [66] 26.2% 28% 14% 7% 

Peppard et al (2013) [67] - - 13.5% 6% 

Franklin et al (2013) [33]^# - 50% - 26% 

Heinzeret al (2015)# 34% 38% 49.7% 23.4% 

*Respiratory Disturbance Index (RDI) rather than AHI given. 

^ Women aged 20-70 years. 

#An updated scoring criteria (AASM 2012) was used. 

The prevalence of OSA has been increasingly steadily, in part due to the global rise in obesity, and also 

due to an update to the recommended OSA scoring rules which were published in 2012 and allow a more 

liberal scoring of hypopnoeas [1]. 

CLINICAL FEATURES  

While the prevalence of OSA in males is reported to be higher than that of females, there is a much higher 

discrepancy between the genders in the clinical population. OSA is estimated to have a male to female ratio 

of between 3:1 and 5:1 in the general population and between 8:1 and 10:1 in some clinical populations [2-

5].  

It has been hypothesised that the large discrepancy between the population prevalence of OSA, and the 

clinical populations is due to women being frequently misdiagnosed [4,6]. Women often present with 

different symptoms than what are considered the “typical” symptoms of sleep apnea [4,7]. The typical 

symptoms that men with sleep apnea present with are snoring, witnessed apneas and excessive daytime 

sleepiness. However approximately 40% of women with an AHI ≥ 15 do not report any of the classic OSA 

[8]. Instead women are likely to complain of insomnia, fatigue, daytime tiredness, headaches, muscle pain 

and depression [4,9,10].  As a result, women are frequently misdiagnosed with depression or another 

illness [4,9]. In addition, women typically have lower scores than men on the Epworth sleepiness scale 

(ESS), a questionnaire designed to evaluate daytime sleepiness which is often used as a screening tool for 
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OSA [11,12]. The ESS has not been validated for use in female OSA patients, and indeed in population based 

studies OSA has not been strongly associated with daytime sleepiness in female patients [11,12]. It is 

hypothesized that women may use different words to describe sleepiness, and answer questions on 

sleepiness differently from men. Or they may have a higher threshold for sleepiness or simply be less 

inclined to complain about it [4]. 

Men often attend clinical appointments with their partner, whereas women are more likely to attend on 

their own [3,4]. This may mean that perhaps apneas in women are less frequently reported [3], or that male 

partners tend to be less concerned about the events [13]. It has also been hypothesized that women may 

be reluctant to complain about disturbed sleep and their own snoring, if they consider it unladylike or 

embarrassing [4]. 

Regardless of the symptoms which patients present with, Young and colleagues found that even when 

women did report the same classic symptoms of OSA, such as snoring, witnessed apneas and excessive 

daytime sleepiness, they were still less likely to be referred to sleep clinics than men. They raised the issue 

that physicians tend to disregard these typical symptoms in women [6]. Similar results were recently 

reported by Lindberg et al, who found that women were underrepresented at sleep clinics, and despite 

similar symptoms to males, less likely to be diagnosed or treated with OSA [14]. 

GENDER DIFFERENCES IN POLYSOMNOGRAPHY  

Recent studies have shown that the polysomnography (PSG) features of female OSA are different from 

male OSA. Overall, women have less severe OSA with lower AHIs [15] and shorter apneas [16]. Although 

overall women have lower AHIs than males, research has shown that women are more symptomatic at 

lower AHI’s than males with a similar diseases severity [6]. 

One reason women are more symptomatic may be because women have more episodes of upper airway 

resistance [17]. Obstructive events can be thought of as a continuum of partial to complete upper airway 

obstruction. Upper airway resistance occurs early in this spectrum, and refers to incidences where there 

are increases in resistance to airflow in the upper airway during sleep, presenting as flow limitation on a 

PSG [18].This upper airway narrowing has the potential to increase work of breathing, cause arousals and 

disrupted sleep, and effect daytime cognitive function [18]. Upper airway resistance alone, without 

complete obstructive apnea, has been shown to produce clinical symptoms such as daytime fatigue and 

depression [19]. 

As females may have multiple episodes of upper airway resistance without frank apneas, the AHI value 

may not give the physician a true indication of the degree of sleep fragmentation a patient is experiencing. 

As a result, episodes during sleep where the flow is reduced; respiratory effort increases; and the episode 

is terminated by an arousal have been coined Respiratory Effort Related Arousals (RERAs) [18]. The 

importance of measuring and reporting on RERAs has been emphasised by a task force of the American 

Academy of Sleep Medicine (AASM) in 2007[20]. Updates to the recommended scoring criteria by the AASM 

in 2012 meant that hypopnoeas could be defined by an arousal only, with no requirement for oxygen 

desaturation [1]. This broader definition means that less RERAs are scored and more female patients may 

now be diagnosed with OSA, who previously may not have met the requirements for hypopnoeas. This is 

likely reflected in the increase in the prevalence of female OSA seen in recent studies. 
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Women often have events mainly occurring during REM sleep [15]. Body position is far less important 

for the severity of OSA in women, while with men the severity is more based on position than sleep state 

[15]. In fact a study by O’Connor and colleagues found that in a group of 830 patients, positional OSA was 

almost exclusively a male presentation [15]. 

Sleep architecture is also different in healthy men and women with sleep apnea. A study of 307 patients 

by Valencia-Flores and colleagues found that women took longer to fall asleep than males. Once women 

were asleep, they then had fewer awakenings from sleep, and had slower wave (deep) sleep than males 

[21]. 

GENDER DIFFERENCES IN PATHOPHYSIOLOGY 

In women, the neck and upper airway are smaller in size than in men [4]. MRI imaging has shown that 

the airway length, the tongue, the soft palate, and the total amount of soft tissue in the throat are all smaller 

in women than men [22]. Although common sense would dictate that a smaller airway size would collapse 

more easily than a larger one, this isn’t the case. The pharyngeal critical closing pressure, or Pcrit, is lower 

in women with sleep apnea than men with the same severity of obstructive sleep apnea, meaning that the 

airway of males is more collapsible than that of females [4,23].  

Obstructive sleep apnea has long been associated with obesity, and in both genders increased body mass 

index indicates a higher severity of the disease [24]. However women with OSA are typically more obese 

than men who have the same AHI [9]. One possible explanation for this is the differences in fat distributions 

between the genders. Men tend to put on weight in the upper body and trunk, including the upper airway 

soft tissue structures – the tongue, soft palate, and lateral pharyngeal walls; whereas when women put on 

weight it tends to be deposited in the lower body and extremities [4]. Newman and colleagues showed that 

small weight changes influence sleep disordered breathing in men more than in women as men may reduce 

fatty tissue in the upper airway more readily [25]. Fat distribution also affects the lungs in different ways 

between men and women. Women are better able to cope with an increased chest wall load, because with 

increased obesity women have improved chemosensitivity responses to hypoxia and hypercapnia [22]. 

Respiratory stability refers to efficacy of gas exchange, blood circulation and the functioning of central 

and peripheral chemoreceptors. There are distinctive differences between the efficacy of respiratory 

stability in men and women [4]. The response to low oxygen in the blood (hypoxia) declines in men during 

sleep compared with their awake values, whereas in women the hypoxia response is similar between sleep 

and wake [26]. Men have been shown to have a more significant ventilatory response to high levels of 

carbon dioxide in the blood (hypercapnia) [27]. Zhou and colleagues showed that men and women require 

different levels of carbon dioxide in the blood to cause respiratory instability, and that men are more 

susceptible to hypocapnic dysfunction during NREM sleep than women. This may be due to the notion that 

women preserve ventilation output during hypocapnia more efficiently than men [28]. Taken together, this 

may mean that women are better able to stabilise their breathing during sleep, leading to less severe apneas 

with minimal desaturation. 

There may also be gender differences in the arousal response patients have to apneas. Jordan and 

colleagues found that during NREM men had a higher ventilatory response to apneas, but then they 

developed a greater hypoventilation when they went back to sleep, especially in the supine position. This 
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prolonged hypoventilation often leads to ventilatory instability upon returning to sleep. The result can be 

a cycle of respiratory instability leading to consecutive apneas during sleep. Jordan and colleagues 

hypothesised that this may play a role in explaining why sleep apnea is more severe in men [29]. However 

the same authors also found that loop gain was not different in males and females matched for AHI and 

BMI, and therefore respiratory control stability may be less significant than reduced upper airway 

collapsibility in female patients [30]. 

The prevalence of sleep apnea increases in post-menopausal women [9]. One reason for this increase 

may be that menstrual hormones play a role in the distribution of body fat. Post menopausal women have 

more body fat than menstruating women, and that body fat is distributed in similar areas to males, which 

is the upper body, specifically the trunk and neck [31]. A second reason that post menopausal women have 

increased incidence of sleep apnea may be due to the hormone progesterone. Progesterone is a known 

respiratory stimulant which increases chemoreceptor responses to hypercapnia and hypoxia and has also 

been shown to increase upper airway muscle tone [32]. 

HEALTH CONSEQUENCES OF OSA IN FEMALES 

In the past, obstructive sleep apnoea (OSA) has been primarily considered a male disorder, and as a 

result clinical trial populations were comprised almost entirely of males [33]. Recently studies have focused 

more specifically on the unique consequences of OSA in female patients.  

Several comparisons of women and men with untreated OSA have found that women experience a 

worsened quality of life. Women experience more mood disturbances such as anxiety and depression, 

report lower quality of life scores on a range of questionnaires, display increased daytime fatigue, reduced 

sleep quality and worsened neurobehavioral symptoms [34-37]. This worsened quality of life found in 

female patients may well be a reflection of the more severe flow limitation and sleep fragmentation seen in 

many women patients. Basically sleep physiology tells us that constant arousals during sleep in healthy 

subjects severely impacts daytime cognitive performance [38]. And indeed arousals from sleep without 

corresponding oxygen desaturation have been associated with a range of consequences including tiredness, 

fatigue and sleepiness [39]; significant daytime impairment, difficulty completing tasks, depressed mood 

and insomnia [40]. 

Women with OSA were also found to be more likely to develop hypothyroidism and arthropathy, as well 

as experience lower perceived health status, overuse psychoactive drugs, and experience increased 

healthcare costs of 1.3 times compared with men with OSA [36]. 

Yaffee al. studied a group of women with sleep disordered breathing (SDB) and found that they were 

more likely to develop cognitive impairment or dementia than those without the condition. They found that 

cognitive issues were more likely to develop in those with increased oxygen desaturation and higher 

periods of time spent in apnea or hypopnoea [41]. Further research undertaken by Macey and colleagues 

discovered that female OSA patients experienced more brain white matter injury than their male 

counterparts [35]. It is hypothesised, although not yet known, that this change in white matter structure 

may be responsible for the worsened quality of life reported by women.  
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Endothelial function, peak blood flow, systemic inflammation, and digital vascular function have been 

found to be more impaired in females than males with OSA [42-44]. These blunted responses may mean 

that women with OSA are more susceptible to the adverse cardiovascular consequences of OSA than males 

[44]. The association between OSA and hypertension in females is not conclusive, with some studies 

showing no association [45,46], and some studies finding an association in peri-menopausal and older 

females [47,48]. The largest dataset published to date included 1 704 905 patients with OSA and 1 704 417 

matched controls. The authors reported that hypertension was more prevalent in women with OSA than 

males with OSA, with an overall odds ratio of developing hypertension of 2.14 in the OSA group compared 

with controls [49].  

The same data set found that congestive heart failure was strongly associated with OSA in both sexes 

compare with controls (p<0.000) with no clear sex differences [49]. A prospective study by Campos-

Rodriguez et al. evaluated the long term outcomes of OSA in a group of treated and nontreated female 

patients. They found that severe OSA was associated with increased cardiovascular mortality risk (adjusted 

HR 3.50, 95% CI 1.23-9.98), and that adequate CPAP treatment may reduce this risk [10].  

THE ROLE OF PREGNANCY  

Pregnancy may also increase the risk of developing OSA. During a typical pregnancy, elevation of the 

diaphragm leads to reduced functional residual capacity, the upper airway narrows, neck circumference 

enlarges, nasal patency is reduced, and there is substantial weight gain. All of these factors suggest 

pregnancy may induce or exacerbate OSA [4]. Conversely, pregnant women may be more protected from 

OSA, with increased levels of female sexual hormones stimulating respiration [50]. 

While the effect of OSA on pregnancy outcome is not completely understood, some studies have found 

that OSA is associated with higher rates of pre-eclampsia and intra-uterine growth retardation [51]. An 

ongoing study in this area will enrol 3702 women to understand the prevalence and outcomes of OSA 

during pregnancy [52]. Preliminary data from this group found that OSA affects 8.1% of pregnant women 

by the second trimester, and that there was an association between OSA and hypertension and diabetes in 

this group [53]. 

TREATMENT OF OSA IN FEMALES 

The treatment of choice for OSA is continuous positive airway pressure (CPAP). CPAP attaches to the 

user with a mask and tubing, and circulates air to increase pressure in the upper airway. The result is a 

pneumatic splint which holds the airway open and prevents collapse. Effective treatment with CPAP has 

been shown to improve symptoms and reduce health risks in OSA patients [54]. 

Personalized medicine has not yet made major inroads into OSA treatments. However due to the 

different structures and pathologies involved in the disease, personalized diagnostic methods and 

treatments should be introduced as a way to improve patient care [55]. Sex differences in the use and 

response to CPAP devices are one example of personalized treatment which has not been extensively 

studied to date. A review of a database of 4281 patients found that average daily CPAP usage in male 

patients was slightly higher than in female patients, however usage in both genders was high (377 ± 94 vs. 

370 ± 96) [56]. A similar analysis followed a group of 708 women for a median of 6.2 (4.2-7.7) years. Overall 
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long term compliance to treatment was good in female patients, with a median daily usage of 6 (IQR 4-7) 

hours per day. 82.8% were still using CPAP after 5 years, and 79.9% were still on CPAP at 10 years [57]. 

The first study to investigate the role of CPAP therapy on quality of life in only female patients has 

recently been published. The authors studied 307 women with moderate to severe OSA and found that 

three months CPAP use improved quality of life, anxiety, depression, mood and daytime symptoms 

compared with controls [58]. 

Few studies have focused on the physiological differences in women when considering treatments. 

Clinical trial data suggest that men require higher pressures during CPAP therapy than females, after 

adjusting for baseline OSA severity or BMI [56,59,60]. One recent bench test has found that there are 

significant differences in the way commercially available CPAP devices respond to flow limitation common 

in female patients [61]. One CPAP device contains an algorithm which aims to address female specific OSA 

characteristics. This device was tested in a randomised, double-blind, cross-over clinical trial and was found 

to be as efficacious as a standard CPAP with a significant reduction in residual flow limitation and lower 

mean pressures [62]. An on-going clinical study is investigating the use of this device on quality of life in 

women, with outcome measures including daily functioning; sleepiness; depression; sexual function and 

sleep quality (clinicaltrials.gov registration: NCT02400073). 

Non CPAP treatments have rarely been studied for gender specific effects. Weight loss is a common 

recommendation for mild patients; however this may be more beneficial to males than females based on 

the fat distribution in the upper airway of males [25]. Mandibular Advancement Devices (MADs) are a 

treatment option for those with mild-moderate OSA or those who have rejected CPAP. One large study 

found female gender was a predictor of treatment success, particularly in the mild group [63]. However 

more research is needed in this area. 

CONCLUSION 

Historically, our understandings of OSA and its treatments have been largely focused on male patients. 

There are clear gender differences in all aspects of OSA, including prevalence; symptoms; clinical 

recognition; anatomy (Including the upper airway, as well as obesity and fat distribution); physiology & 

pathophysiology (Including sleep architecture & respiratory stability) and the influence of hormones. 

Knowledge is coming to light that there may also be differences in long term consequences and 

cardiovascular outcomes of female OSA. Additionally, there may be requirements for gender specific 

treatment options. More research is required to complete our understanding of the gender differences in 

OSA and the optimal treatment for patients.  
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ABSTRACT  

Evidence-based treatment of mild obstructive sleep apnea (OSA) is hindered by a lack of research, 

specifically whether continuous positive airway pressure (CPAP) treatment is beneficial in this group. 

In addition, definitions of respiratory events are not always consistent. The American Academy of 

Sleep Medicine (AASM) definition of hypopnea was revised in 2012, resulting in a significant increase 

in the number of patients meeting diagnostic criteria for mild OSA. The MERGE study is a multicenter, 

randomized, controlled clinical trial designed to investigate the efficacy of CPAP treatment in mild 

OSA, focusing on the AASM 2012 criteria to define disease severity. Patients with mild OSA, defined 

using both AASM 2007 and 2012 criteria, will be randomized to receive 3 months’ treatment with 

either standard care (sleep hygiene counseling) alone or CPAP plus standard care. The primary 

outcome is change in the Energy and Vitality subscale of the Short Form-36 from baseline to three 

months in patients with mild OSA (apnea-hypopnea index 5–15/h) based on the AASM 2012 scoring 

criteria. The MERGE study will be the first randomized controlled trial to investigate the impact of 

CPAP treatment on symptoms and quality of life in patients with mild OSA according to the AASM 

2012 criteria. It is hoped that the findings will provide evidence to inform physicians and policy makers 

about how to manage mild OSA in clinical practice. 

 

Keywords: continuous positive airway pressure; obstructive sleep apnea; quality of life; study design; 

randomized controlled trial; treatment adherence  
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1. Introduction 

The severity of obstructive sleep apnea (OSA) is conventionally defined using the number of 

disordered breathing events per hour of sleep (the apnea-hypopnea index [AHI]): mild when the AHI 

is 5–<15/h, moderate when AHI 15–<30/h, or severe when AHI is ≥30/h. However, the definition of 

AHI has evolved over time making development of clear guidelines difficult. 

Moderate and severe OSA have been associated with increased risk of motor vehicle 

accidents, impaired cognitive function, reduced quality of life (QoL), and diseases such as 

hypertension, diabetes, stroke and cardiovascular morbidity (52, 54-57). In this setting, continuous 

positive airway pressure (CPAP) is an effective treatment, improving symptoms and reducing health 

risks (54, 57-61). Despite this, mild OSA has not been extensively studied. There is some evidence 

that low levels of sleep-disordered breathing have a negative impact on hypertension (104, 105), 

cognitive function (106, 107), QoL (95, 108), and the risk of motor vehicle accidents (109). However, 

there is no agreement on the best approach to treating mild OSA (95, 172). In terms of QoL, there is a 

lack of data on the effectiveness of CPAP in mild OSA (58), but it may be useful in this setting if QoL 

is impaired and other treatments have failed (234), or in the presence of sleepiness (95). 

Interpretation of data from studies evaluating CPAP in patients with mild OSA is complicated 

by the fact that definitions of hypopneas have changed over time. The 2007 American Academy of 

Sleep Medicine (AASM) criteria defined hypopnea as a ≥30% decrease in oronasal airflow from 

baseline for ≥10 seconds with oxygen desaturation of ≥4% (1). In 2012, the AASM modified these 

criteria to allow scoring based on arousal only or with ≥3% oxygen desaturation (1) (Table 1). The 

rationale for updating the criteria was that some patients who experience frequent respiratory events 

and arousals (insufficient to cause significant hypoxia) were not captured using the 2007 criteria but 

may benefit from diagnosis and treatment (1). The change in scoring criteria markedly increases the 

number of patients achieving the diagnostic criteria for OSA, potentially by up to 40% (4, 5). 

The 2012 change to hypopnea scoring criteria remains controversial, partly due to the lack of 

objective evidence that patients with mild OSA based on these criteria will benefit from treatment. To 

date, no adequately powered randomized controlled trials have studied the benefits of CPAP 

treatment in this expanded group of mild OSA patients. Therefore, the minimum degree of OSA likely 

to benefit from CPAP therapy has not yet been defined.  
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The majority of studies conducted in mild OSA have used sleepiness as the primary endpoint. 

However, the term “sleepiness” may not adequately capture the feelings of general tiredness, fatigue, 

poor sleep, insomnia, and lack of energy often reported by patients with mild OSA (11, 90, 95). 

Therefore, the MERGE study has been designed to evaluate the effects of CPAP treatment on QoL in 

patients with mild OSA, using outcomes such as energy and vitality that may reflect patient-relevant 

improvements.   

 

2. Methods 

2.1 Study overview 

The MERGE study is a multicenter, randomized, controlled clinical trial (NCT02699463) 

designed to measure the response to CPAP using a patient-centered outcome, the Energy and 

Vitality subscale of the Short Form-36 (SF-36). A number of other QoL measures have also been 

included (e.g. fatigue, depression, anxiety and insomnia) in order to better understand the impact of 

treatment on OSA symptoms in patients diagnosed with mild disease. Patients will be provided with 

support to optimize adherence to CPAP, and a health economic analysis is included. The first patient 

was randomized in November 2016, and the study completed recruitment in February 2019. 

 

2.2 Setting 

 Recruitment to the MERGE study is via the UK respiratory sleep network 

(Table 2), which has delivered other randomized controlled trials in the UK (61, 175, 235, 236). The 

MERGE study is a collaboration with industry, which has provided equipment, funding and ongoing 

study support. Eleven centers throughout the UK are recruiting to the study. Each site has completed 

standardized study training, and sites communicate regularly, both by phone and in-person meetings, 

to share experiences and best practice findings.  

 

2.3 Eligibility criteria 

Patients are screened for OSA by their local sleep service using a home sleep test 

(polygraphy; Apnealink Air, ResMed). Those with an AHI of 5-15/h based on automated analysis 

using AASM 2007 criteria or an AHI 0-4.9/h using AASM 2007 but ≥5/h using AASM 2012 scoring and 



 

180 

 

who meet all other selection criteria (Table 3) are eligible for inclusion (Figure 1). Patients who 

provide informed consent have their polygraphy data uploaded to a central study server. 

 

2.4 Randomization 

Randomization (1:1 ratio) to standard care (sleep hygiene counseling) alone, or standard care 

plus auto-adjusting CPAP (AirSense 10 AutoSet; or AirSense 10 AutoSet for Her, ResMed)) is 

performed centrally using a computer-generated schedule, with stratification by age, gender, and 

body mass index (BMI).  

 

2.5 Blinding 

Neither the patients nor the investigators can be blinded due to the nature of the study 

interventions. However, assessment of sleep studies is automated (unbiased and consistent), and 

research staff assessing outcomes are independent from the study and study sponsor.  

 

3. Treatment intervention 

3.1 Standard care 

All patients are given sleep hygiene counseling, based on national guidelines and 

recommendations from the UK National Health Service. Patients receive standardized information on 

healthy sleep behaviors, such as spending adequate amounts of time in bed, and setting up a 

bedroom that is conducive to sleep. Patients are given a take-home sheet summarizing the main 

points of the consultation, and will receive a telephone call from a Central Support Laboratory three 

days later for a review of sleep hygiene behaviors.  

 

3.2 Auto-adjusting CPAP 

All patients use CPAP for a one-hour run-in at their local site as part of their eligibility testing. 

During this test, CPAP is slowly increased from 4 to 10cm H2O. Patients are able to change the CPAP 

mask and test different comfort and humidification settings. Participants randomized to the CPAP 

group are given CPAP education by the local clinical team and then provided with an auto-adjusting 

CPAP device for home use (AirSense 10/AirSense 10 for Her; ResMed). CPAP patients also receive 
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a phone call from the central laboratory after 3 days, with a focus on CPAP usage and 

troubleshooting any issues identified by the patient. During study therapy, changes to CPAP settings 

will be made based on standard clinical practice by the Central Support Laboratory.  

 

3.2.1 Supporting CPAP adherence 

A Central Support Laboratory has been set up in order to assist CPAP patients. Throughout 

the study, patients in the CPAP group are monitored using a telemedicine solution (AirView patient 

management system, ResMed). The online system receives data wirelessly from registered devices 

each day after overnight use. These data are regularly monitored by the Central Support Laboratory 

(at least twice per week). The Central Support Laboratory intervenes when compliance is low (<4 

h/night) for ≥3 consecutive nights, or when other issues are identified (e.g. high mask leak [>24 L/min] 

or suboptimal treatment [residual AHI ≥5/h]). If issues are identified, the Central Support Laboratory 

contacts the patient to discuss the issues and troubleshoot potential solutions. Contact is made via 

email, phone or video calls. Face-to-face visits are organized with the local sleep service if necessary. 

Patients are encouraged to contact the Central Support Laboratory at any time if they have any 

concerns. In addition to the ability to contact the Central Support Laboratory with any CPAP-related 

issues, patients are encouraged to use a web-based application (myAir, ResMed), which wirelessly 

collects data from the patient’s device and provides automated feedback, education, resources and 

coaching tips direct to the patient. 

 

4. Data collection and measures 

 At the first study visit, medical history and information on gender, age, 

ethnicity, height, weight, and neck circumference are collected, and patients are asked which 

symptoms prompted them to visit their health care provider. Patients also complete a range of QoL 

questionnaires: Short Form-36 (SF-36; 8 scales, and 2 domains [physical and mental composite]); 

Epworth Sleepiness Scale (ESS); Fatigue Severity Scale (FSS); Functional Outcomes of Sleep 

Questionnaire (FOSQ); Hospital Anxiety and Depression Scale (HADS); Insomnia Severity Index 

(ISI); and EuroQol five dimensions (EQ-5D). At the final study visit after 3 months’ treatment with 

standard care or standard care + CPAP, patients return to their local sleep service for the final study 
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visit where they complete the same group of questionnaires as at baseline. Those in the treatment 

group will be asked if they wish to continue CPAP therapy.  

All sleep studies are scored using automated scoring algorithms based on both AASM 2007 

and AASM 2012 criteria. AASM 2007 scoring is done via AirView software (ResMed). This scoring 

algorithm has been shown to be consistent with manual polysomnography (PSG) scoring in several 

studies (189, 190, 237-241)_ENREF_11_ENREF_12_ENREF_15_ENREF_16. AASM 2012 scoring is 

done by an algorithm (ResMed) that is being concurrently validated in another clinical trial 

(clinicaltrials.gov ID: NCT03470493).  

 

5. Outcomes 

5.1 Primary outcomes 

 The primary endpoint is change from baseline to 3 months in the Energy and 

Vitality component of the SF-36 questionnaire in patients with mild OSA based on the AASM 2012 

scoring criteria.  

 

5.2 Secondary outcomes 

 Secondary endpoints are change from baseline to 3 months in patients with 

mild OSA based on either the AASM 2012 or AASM 2007 criteria in the following QoL measures: SF-

36; ESS; FSS; FOSQ; HADS; ISI; and EQ-5D.  

 

5.3 Health economics analysis 

The main objective of the health economics analysis will be to determine the cost 

effectiveness of CPAP treatment versus standard care for the management of mild OSA over an 

individual’s lifetime from the perspective of the publicly funded healthcare system. A Markov model 

will be developed, including health outcomes (health utility values, deaths) and costs over an 

individual’s life time using data collected within the trial and from published literature. The base case 

model will include two health states: mild OSA (treated with CPAP or standard of care) and death, 

with cycle lengths of 1 year. Various scenarios will be modelled including a number of relevant health 

states (stroke, cardiovascular disease, motor vehicle collision). Secondary objectives of the health 
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economic analysis are: to compare different utility-based QoL questionnaires and scoring algorithms 

(SF-6D and SF-12 utility scores taken from the SF-36, EQ-5D, and SF-12 utility mapping to EQ-5D) 

using patient-level data collected within the clinical study; and to calculate incremental cost-

effectiveness ratios for CPAP treatment versus standard care based on different utility-based QoL 

questionnaire and scoring algorithms. 

 

5.4 Sample size 

The sample size calculation was based on data from mild OSA patients in the Multicentre 

Obstructive Sleep Apnoea Interventional Cardiovascular (MOSAIC) study (175), 80% power and a 

two-sided significance level of 5%. It was calculated that a total of 224 patients (112 per group) would 

be required to detect a difference of 6.6 in mean score change (baseline to 3 months) on the Energy 

and Vitality subscale of the SF-36 questionnaire between the two treatment groups (CPAP mean 

10.817.0; standard care mean 4.218.1). Assuming a 10% dropout rate and enrolment of patients 

who meet the mild OSA criteria based on AASM 2007 but not 2012 criteria, target recruitment is set at 

300 participants. 

 

5.5 Statistical analysis 

 All statistical analyses will be performed on an intention-to-treat (ITT) basis 

including all randomized patients, using a Type 1 error rate of 0.05, unless otherwise specified. The 

ITT population will be divided into two overlapping subgroups: all randomized patients with mild OSA 

based on the AASM 2012 criteria, and those with mild OSA based on the 2007 criteria. Comparison of 

the CPAP and standard care groups at baseline will be performed using a student’s t-test or Wilcoxon 

signed rank test for continuous measures and Fisher’s exact test for categorical or binary measures, 

as appropriate. 

Homogeneity of the primary outcome across study sites will be assessed using a mixed-

effects regression model. The effect of a treatment-by-site interaction will be tested at a significance 

level of 0.10. The primary endpoint will be analyzed using a mixed-effects repeated measures model 

to account for missing values. In the case that the primary endpoint is not homogeneous across study 

sites, a treatment-by-visit-by-site interaction will be included in the model. Results will be presented as 



 

184 

 

the mean between-group difference in the change in Energy and Vitality score from baseline to 3 

months (adjusted for baseline score, as appropriate) with the associated 95% confidence interval (CI) 

and p-value. A sensitivity analysis of the primary outcome will be generated to include any baseline 

and demographic variables that were imbalanced between treatment groups using a mixed-effects 

repeated measures model to adjust the primary results for these factors.  

All secondary outcome measures for all randomized patients who complete the 3-month study 

visit will be analyzed in the same way as the primary outcome. These secondary analyses will be 

considered exploratory and no formal adjustments for multiple significance testing will be made.  

 

6. Protection of human subjects 

This study protocol has been approved by the Institutional Review Boards at each of the study 

centers. The study steering committee meet regularly and review any adverse events. All patients 

provide written informed consent prior to enrolment in the study. 

 

7. Discussion  

There is a need for reliable data on the effectiveness of CPAP treatment in patients with mild 

OSA, particularly as defined by the AASM 2012 scoring criteria and with a focus on patient-centered 

outcomes (e.g. QoL). The MERGE study has been designed to help address this data gap. We 

hypothesize that some patients with mild OSA will experience improved QoL during CPAP therapy, 

including those with disease severity defined using only the AASM 2012 criteria. If this is the case, the 

MERGE study results will provide evidence to support the consideration of CPAP for all patients with 

OSA, including those with the mildest disease. 

The SF-36 is a well validated and widely used generic QoL questionnaire (242). It has been 

used in previous studies to detect reduced QoL in OSA patients (243). One consideration when 

designing the MERGE study was whether SF-36 baseline values would actually be normal in patients 

with mild OSA, therefore excluding the possibility of any improvement with CPAP therapy. In a 

previous study of mild OSA patients, baseline FOSQ scores were within the normal range and did not 

improve significantly during CPAP therapy, although 62% of patients wanted to continue treatment at 

the end of the study (172). Those findings may also reflect the difficulty in measuring specific QoL 
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issues in patients with mild OSA, such as lack of energy and motivation rather than overt sleepiness. 

Therefore, we chose to use the Energy and Vitality dimension of the SF-36, as the primary endpoint in 

our study because this has consistently been shown to be the most sensitive dimension of the SF-36 

for measuring QoL improvements in mild OSA patients (174, 175, 244-246). Normative scores for the 

Energy and Vitality dimension of the SF-36 are reported to be 60.9 for the United States general 

population (247). For example, in a population of 90 OSA subjects, the mean SF-36 Energy and 

Vitality score before and after CPAP treatment was 40.1620.89 and 60.6820.58, respectively, which 

gave a normalized effect size of 0.98 (243). For patients in the CPAP treatment group of the MOSAIC 

study, who were considered non-sleepy at baseline, the SF-36 Energy and Vitality score effect size 

was 0.3 compared with control (mean scores at baseline and 6 months of 49.822.4 and 60.620.9, 

respectively) (175)); these figures were used in the sample size calculation for the MERGE study. The 

CPAP Apnea Study North American Program (CATNAP) trial included a large proportion of sleepy 

mild OSA patients and found that the SF-36 Energy and Vitality subscale showed an adjusted mean 

change from baseline of 12.7 with CPAP versus 6.1 in the sham CPAP group (174).  

Another consideration when designing the MERGE study was whether patients with mild OSA 

would tolerate, and therefore adhere to, CPAP therapy. A review of the evidence shows that CPAP 

can be used successfully by some asymptomatic patients. In a 12-month study of CPAP use in 

asymptomatic, non-sleepy patients with OSA, mean adherence was 4.7±2 h/night (248). At 4-year 

follow-up, those still using CPAP had median device usage of 5 h/night (interquartile range [IQR] 

2.18–6.25) and 64% had usage of >4 h/night (249). In the MOSAIC trial 71% of patients wanted to 

continue CPAP despite reporting normal levels of sleepiness at the beginning of the study (175). 

Taken together, these data suggest that mild asymptomatic patients may benefit from treatment e.g.: 

improvement in snoring, emotional wellbeing, relationships, and functioning (driving, working, study). 

Historically, clinical trials testing the efficacy of CPAP treatment have reported lower than 

desirable CPAP adherence (i.e. <4 h/night) (250-252). Factors that have shown to impact adherence 

include equipment (e.g. device, interface) (222), remote monitoring (253) and clinical support (254, 

255). Given that regular and ongoing usage is required for the benefits of therapy to be realized (227, 

231, 256-258), maximizing adherence to CPAP is a major focus of the MERGE study. Firstly, patients 

unable to tolerate a 1-hour CPAP trial are not included in the study. In addition, patients get regular 
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support from the Central Support Laboratory and telemonitoring solutions during the study, with the 

goal of maximizing device usage. 

The use of automated versus manual scoring of the diagnostic sleep study (polygraphy) was 

considered carefully when the MERGE trial was designed. The decision to use automated scoring 

was based on the reliability and repeatability of this approach (259). Specifically, the automated 

algorithm for scoring using AASM 2007 criteria has been validated in multiple studies (192, 195-197). 

Scoring based on the AASM 2012 criteria in MERGE uses a new algorithm (ResMed) that is 

concurrently being validated against PSG (clinicaltrials.gov ID: NCT03470493). To score hypopneas 

with arousal (and 3% oxygen desaturation), the new algorithm uses surrogate arousal measures that 

utilize airflow shape information and machine learning techniques. Surrogate arousal measures have 

found to accurately estimate arousals from sleep (198, 199). All automated scoring using the AASM 

2012 algorithm is reviewed by an expert to check for software errors in the scoring decisions. The 

choice was made not to use PSG in the MERGE study due to the pragmatic nature of home sleep 

testing and the desire to replicate common clinical practice in the UK National Health Service.  

In this study we defined the mild patient group as those with an AHI of 5-15, rather than 5- 

<15. This was to ensure that those patients who are borderline mild (with an AHI between 15 and 16), 

who switch between mild-moderate categories on a regular basis (and therefore may not be offered 

treatment based on a one-night sleep study) were included in the analysis.  

 

Conclusions 

The definition of mild OSA, which was revised in 2012 in an attempt to recognize the 

potentially detrimental effects of repetitive breathing-related arousals from sleep, is complex. An 

unintended outcome of the updated classification is that some healthcare professionals and providers 

have taken the decision not to offer CPAP treatment for mild OSA diagnosed based on AASM 2012 

criteria due to a lack of evidence that treatment of mild OSA could be beneficial. The MERGE study is 

a randomized controlled study that will assess, for the first time, whether CPAP treatment can 

improve quality of life in patients with mild OSA diagnosed using the AASM 2012 scoring criteria. The 

results of the study will indicate the clinical applicability of the updated scoring criteria and provide 

guidance for sleep professionals about disease classification and effective treatment options for 
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patients with mild OSA. If CPAP treatment is effective, the MERGE study will demonstrate the 

feasibility of a clinical model of assessment, treatment implementation, and ongoing CPAP therapy 

support in mild OSA patients.  
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TABLES 

Table 1. American Academy of Sleep Medicine (AASM) hypopnea scoring criteria 

Recommended hypopnea definition 

AASM 2007 criteria AASM 2012 criteria 

≥30% decrease in oronasal airflow from baseline AND ≥30% decrease in oronasal airflow from baseline AND 

Event duration ≥10 seconds AND Event duration ≥10 seconds AND 

Oxygen desaturation of ≥4%  Oxygen desaturation of ≥3% OR arousal 
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Table 2. MERGE sites participating in the UK Respiratory Sleep network 

Site Principal Investigator(s) 

National Heart and Lung Institute, Imperial College London 

Royal Brompton and Harefield Hospitals, London 

Prof Mary Morrell (MERGE CI) 

Dr Julia Kelly 

Dr Shirmila Withana 

Aintree University Hospital, Liverpool Dr John O'Reilly, Dr Sonya Craig 

Oxford Centre for Respiratory Medicine, Oxford Dr Annabel Nickol, Dr Chris Turnbull 

Freeman Hospital, Newcastle Dr Sophie West 

Lister Hospital, Stevenage Dr Alison McMillan 

Guys & St Thomas Hospital, London Dr Brian Kent 

Derriford Hospital, Plymouth Dr Neil Ward 

Taunton and Somerset Hospital, Taunton Dr Justin Pepperell 

Blackpool Teaching Hospital, Blackpool Dr Mohammad Paracha 

Tayside Health Board, Ninewells Hospital, Dundee  Dr Will Anderson 

Papworth Hospital, Cambridge Dr Tim Quinnell 

CI, chief investigator. 
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Table 3. Patient selection criteria for the MERGE study 

Inclusion Criteria 

• Age ≥18 and ≤80 years 

• Ability and willingness to provide written informed consent 

• AHI 5-15/h as per AASM 2007 scoring criteria (or AHI ≥5/h based on AASM 2012 

criteria if AHI was 0-4/h using AASM 2007 criteria) 

• Ability to tolerate a one-hour long CPAP run-in test 

Exclusion Criteria 

• Unstable cardiac disease 

• Inability to give fully informed consent 

• Supplemental oxygen 

• Secondary sleep pathology (e.g. periodic limb movement syndrome, narcolepsy, 

circadian disorder, obesity hypoventilation syndrome) 

• Epworth Sleepiness Scale score ≥15, or concerns about sleepy driving from physician/ 

sleep lab staff 

• Body mass index ≥40 kg/m2 

• Previous CPAP usage 

AASM, American Academy of Sleep Medicine; CPAP, continuous positive airway pressure.  
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FIGURES 

Fig. 1. MERGE study flow chart. AASM, American Academy of Sleep Medicine; AHI, apnea-

hypopnea index; CPAP, continuous positive airway pressure;  
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Study of a Novel APAP Algorithm for the Treatment of 
Obstructive Sleep Apnea in Women 
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Study Objectives: To assess the efficacy of a novel female-specific autotitrating continuous positive 

airway pressure (CPAP) algorithm (AutoSet for her, AfH) in premenopausal women relative to a 

standard autotitrating algorithm (AutoSet, S9) (ResMed Ltd., Bella Vista, New South Wales, Australia). 

Design: Prospective randomised crossover noninferiority trial. 

Setting: Tertiary hospital sleep clinic and university research sleep laboratory. 

Participants: 20 female patients with obstructive sleep apnea (OSA) established on long-term CPAP 

treatment. 

Interventions: Treatment with 1 night each of AfH and AutoSet while monitored with overnight 

laboratory-based polysomnography (PSG); order randomly allocated. 

Measurements and Results: The primary outcome variables were the apnea-hypopnea index (AHI) 

and 3% oxygen desaturation index (ODI 3%) determined from PSG. Treatment efficacy on the AfH 

night was noninferior to the AutoSet night as assessed by median (IQR) AHI (1.2 [0.60– 1.85]/h versus 

1.15 [0.40–2.85]/h, respectively, P = 0.51) and 3% ODI (0.85 [0.25–1.5]/h versus 0.5 [0.25–2.55]/h, 

respectively, P = 0.83). Other PSG measures were similar, except for the percentage of the night 

spent in flow limitation, which was lower on the AfH (0.14%) than the AutoSet night (0.19%, P = 

0.007). The device-downloaded 95th centile pressure on the AfH night was also lower than on the 

AutoSet night (10.6 ± 1.7 versus 11.6 ± 2.6 cmH2O, respectively; mean difference [95% confidence 

interval]: −1.1 [−2.13 to −0.01] cm H2O). 

Conclusion: Among premenopausal women a novel female-specific autotitrating algorithm (AfH) is as 

effective as the standard AutoSet algorithm in controlling obstructive sleep apnea (OSA). The new 

algorithm may reduce flow limitation more than the standard algorithm and achieve control of OSA at a 

lower (95th centile) pressure. 

Keywords: apnea-hypopnea index, automatic positive airway pressure algorithm, continuous positive 

airway pressure, obstructive sleep apnea, positive airway pressure titration, premenopausal women 

Citation: McArdle N, King S, Shepherd K, Baker V, Ramanan D, Ketheeswaran S, Bateman P, 

Wimms A, Armitstead J, Richards G, Hillman D, Eastwood P. Study of a novel APAP algorithm for the 

treatment of obstructive sleep apnea in women. SLEEP 2015;38(11):1775–1781. 



 

SLEEP, Vol. 38, No. 11, 2015 214  A Novel APAP Algorithm for Obstructive Sleep Apnea—

McArdle et al. 

INTRODUCTION 

Obstructive sleep apnea (OSA) is a common disorder 

characterized by repetitive collapse of the upper airway 

during sleep and associated nocturnal hypoxia and sleep 

fragmentation. It is a disorder that has widespread 

effects on health and is associated with reduced quality 

of life,1 neurocognitive impairment (including increased 

risk of motor vehicle accidents2), and increased 

cardiovascular morbidity and mortality; from ischemic 

heart disease, congestive heart failure, and stroke.3–5 

Early studies of OSA report a high male predominance, 

with male-to-female ratios ranging between 10:1 and 

60:1 in clinic populations.6 Hence, OSA is traditionally 

thought of as a predominantly male disorder and 

treatment options have often been developed and 

tested in male study populations. More recently, several 

studies have reported a male-to-female ratio closer to 

3:1,7,8 and indicate that women may present  
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with different clinical features8 and have different 

polysomnographic (PSG) patterns of obstructive sleep 

disordered breathing compared to men. In particular, 

PSG studies show a relative rapid eye movement (REM) 

predominance to obstructive events9 and milder disease 

(i.e., lower apnea-hypopnea index; AHI) in women 

compared to men.10,11 Women with obstructive sleep 

apnea are also less likely to manifest complete upper 

airway collapse (apneas)12 and more likely to have flow 

limitation, which can manifest as an upper airway 

resistance syndrome (UARS).11 These sex differences may 

affect therapeutic decisions and therapeutic 

effectiveness. 

The gold-standard treatment for moderate and severe  

OSA is continuous positive airway pressure (CPAP),13 

which acts as a pneumatic splint to maintain patency of 

the upper airway. Long-term treatment may be 

delivered using a standard CPAP device at a set “fixed” 

pressure, or using automatic positive airway pressure 

(APAP) devices that vary the pressure throughout the 

night based on device-monitored physiological signals. 

The pressure response in these APAP devices is 

controlled by a computerized algorithm. ResMed 

Corporation has recently developed a female-specific 

‘AutoSet for Her’ (AfH) algorithm; designed to optimize 

the pressure response to the specific patterns of 

obstructive sleep disordered breathing seen in women. 

The AfH algorithm is adapted from the S9 AutoSet 

algorithm (ResMed Ltd., Bella Vista, Sydney) with a 

number of modifications, including an increased 

sensitivity  
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to flow limitation, an optimized internal gain (a slower, 

and lower, pressure rise and decay in response to flow 

limitation), a lower cap on the pressure response to 

obstructive apneas, and an adaptive minimum pressure. 

We sought to assess the efficacy of this new algorithm in 

premenopausal women by comparing it to the standard 

ResMed S9 AutoSet algorithm. The primary aim of the 

study was to assess the efficacy of the AfH algorithm, 

based on a priori PSG outcome measures of the AHI and 

the 3% oxygen desaturation index (3% ODI). Secondary 

aims were to compare objective sleep quality measures 

and patient symptomatic responses between the 2 study 

nights. We hypothesized that the efficacy (AHI and 3% 

ODI) of the AfH algorithm would be noninferior to the 

standard AutoSet (ResMed) algorithm and speculated 

that its use would be associated with advantages in 

terms of patient comfort. 

METHODS 

Overview 

A double-blind randomized crossover study design was 

used (Figure 1), which required participants to undergo 

2 overnight laboratory-based PSGs, 1 night using an 

APAP device set in the AfH mode and the other night set 

in the standard AutoSet algorithm mode. 

Study Participants 

Inclusion criteria comprised premenopausal females 

aged 18 y or older; current positive airway pressure 

(CPAP or APAP) therapy use, where “current” was 

defined as on therapy for at least 1 mo prior to study 

entry; availability of a diagnostic PSG; diagnosis of mild-

moderate OSA (5 < AHI ≤ 30); and willingness and ability 

to give written informed consent 

Exclusion criteria comprised current use of bilevel 

positive airway pressure treatment; current use of 

supplemental oxygen; pregnancy; a preexisting lung 

disease or condition that would predispose the 

participant to pneumothorax (e.g., chronic obstructive 

pulmonary disease, lung cancer; pulmonary fibrosis; 

recent (< 2 y) pneumonia or lung infection; other lung 

injury); and any individual whom the researcher believes 

is unsuitable for inclusion because that person does not 

comprehend English or is unable to provide written 

Figure 1 —Study flow. Questionnaire asks about sleep quality  
And comfort using the device. PSG, polysomnography. 

Premenopausal Women Established  
on CPAP Treatment 

Questionnaire Questionnaire 

Laboratory PSG:  
AutoSet for Her 

Laboratory PSG:  
Standard AutoSet  

Laboratory PSG:  
AutoSet for Her 

Laboratory PSG:  
Standard AutoSet  

Questionnaire  Questionnaire 
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informed consent or physically unable to comply with 

the protocol. 

Potential participants were identified from the Sleep 

Clinic database, contacted by phone and asked if they 

wished to take part in the study. The study was 

approved by the Institutional Review Boards of the 

University of Western Australia and Sir Charles Gairdner 

Hospital. Written informed consent was obtained prior 

to participation in the study. The trial was registered 

with ClinicalTrials.gov (Clinical Trials Registry number: 

NCT01826513). 

Study Protocol 

A double-blind randomized crossover study design was 

used (Figure 1). Participants spent 1 night using an APAP 

device set in the AfH mode and another night set in the 

standard AutoSet algorithm mode. An in-house 

questionnaire asking about sleep quality and comfort 

using the device was completed after each study night. 

The studies were done on consecutive nights, apart 

from one patient whose studies were separated by 2 

nights. One member of the research team randomly 

determined the order of the nights, concealed the codes 

using opaque envelopes, and allocated device modes to 

each participant. Neither the patient nor the overnight 

research staff was able to ascertain the device mode 

because the device appeared identical irrespective of 

the algorithm used. Furthermore, all outcome analyses 

were performed by one sleep scientist, blinded to the 

study arm (i.e., scoring of respiratory events was 

performed without access to the pressure signal to 

ensure full blinding, i.e., using other respiratory signals, 

including mask flow signal). Self-reported menopause 

status, medical history, and concomitant medications 

were recorded. Comorbidities were identified based on 

reported history or treatment for the condition. 

CPAP 

During the study nights the device was set to a pressure 

range of 4–20 cm H2O, and the ramp set at the patients’ 

usual value (AutoSet night) or automatic with a 

maximum of 30 min (AfH night). All other settings (e.g., 

humidification) were set as per the patients’ usual device 

and the patient used his or her own mask and chin strap 

(if required) on both study nights. The device was set by 

research staff in the evening prior to arrival of overnight 

staff to ensure the latter were blinded to the algorithm 

used. 

PSG 

In-laboratory PSG was performed using the 

Compumedics Grael HD-PSG (Compumedics Ltd., 

Abbotsford, Australia), which recorded the following 

signals: F3-M2, F4-M1, C3M2, C4-M1, O1-M2, O2-M1 

electroencephalogram, bilateral electrooculograms, 

submental electromyogram, electrocardiogram, device 

analog outputs (i.e., mask pressure, unintentional leak 

and flow), oximetry (averaged over three beats, sampling 

256 Hz), ribcage and abdominal movement (respiratory 

inductance plethysmography), body position, sound 

intensity (dB), and bilateral tibial electromyogram. 
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Questionnaire 

Symptomatic responses to therapy, including questions 

about participant’s perception of their sleep on the 

device and quality of sleep, were assessed in the 

morning after each study night using a Likert scale (see 

supplemental material). 

Data Analyses 

PSGs were manually scored at the study site by 

experienced sleep scientists according to standard 

criteria (AASM 2012).14 Flow limitation was assessed by 

the site using the sponsor’s  

(ResMed Ltd.) flow limitation tool to perform automatic 

analyses of high-fidelity flow signals (25 Hz). The flow 

limitation tool utilizes the shape, tidal volume, and duty 

cycle (ratio of inspiratory time to total breath time) of 

each breath and automatically identifies whether each 

breath is flow limited or not. 

Statistical Analyses 

Statistical analyses were performed using SigmaStat 

version 3.5 (Systat, Richmond, CA, USA). Parametric data 

were described using means and standard deviations 

(SDs) and paired comparisons were performed using 

paired t tests and  

95th percentile confidence intervals (95% CIs) were 

reported. Nonparametric variables were described using 

medians and interquartile ranges and paired 

comparisons made with the Wilcoxon signed-rank test. 

Statistical significance was considered to occur when P < 

0.05. 

Sample Size Calculation 

We tested the hypothesis that the AfH algorithm was not 

worse (but not necessarily better) than the standard 

AutoSet algorithm. Hence, the null Hypothesis (H0) was: 

AfH is inferior to standard AutoSet and the alternate 

Hypothesis (H1) was: AfH is noninferior to standard 

AutoSet. The expected  

AHI difference (mu) is 0 events/h and the NonInferiority 

Margin (delta) is 0.75 events/h (a difference of 1 event/h 

is seen as clinically significant: 0.75 events/h was chosen 

to ensure any relevant AHI change was observed). 

Unpublished data from a trial15 supported by the 

sponsor showed that the SD of such a dataset is 1.06 

events/h. Based on a power of  

80% and two-sided alpha of 0.05 (one-sided alpha of 

0.025 used in this noninferiority trial), the sample size 

(for paired Trial)16 = (Z(1 − a.2) + Z(1 − b))2) * (SD / (mu 

− delta))2. Using our data, the sample size = (1.96 + 0.85)2 

* (1.06 / (0 − 0.75))2 = 15.8. On this basis, and allowing 

for potential dropouts, we chose a sample size of 20 for 

the study. 

RESULTS 

Patient Characteristics 

Twenty women participated in the study and all 

completed the protocol. Participants were 
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premenopausal, obese (body mass index; BMI = 38.5 ± 

7.5 kg/m2), predominantly Caucasian  

Table 1—Baseline characteristics of study participants. 

Premenopausal  
Baseline Characteristics Women, n = 20  

 Age, y  44.6 ± 5.1  
 BMI, kg/m2  38.5 ± 7.5 

 Self-reported ethnicity  9:1 
(Caucasian: Australian aboriginal) 

 History of hypertension 6 (30%) 
 History of hyperlipidemia 4 (20%) 
 History of diabetes 3 (15%) 
 History of hypothyroidism 5 (25%) 
 Diagnostic AHI, events/h 19.1 ± 8.7  
Average duration of positive airway therapy, moa 23.3 ± 

34.5  
 CPAP, cm H2O b 11.0 ± 2.0  

Data presented as mean ± standard deviation, ratio or 

number (percentage). aData missing in one. bData for 18 

participants receiving long-term fixed pressure CPAP (two 

participants were receiving automatic positive airway 

pressure as long-term therapy). AHI, apneahypopnea 

index; CPAP, continuous positive airway pressure. 

females aged 44.6 ± 5.1 y, most of whom received a 

diagnosis of moderately severe OSA (AHI = 19.1 ± 8.7 

events/h) (Table 1). Three participants were recruited 

with severe OSA after a decision was made by the study 

investigators to modify the protocol to assist with 

recruitment. This protocol variation was considered to 

be safe and was approved by the local ethics review 

board. Participants had a higher prevalence of 

cardiovascular risk factors (Table 1) than are typical for 

similar aged women in the community but similar to that 

expected in an OSA sleep clinic population. None had 

severe cardiac or pulmonary comorbidities. Participants 

had been using CPAP treatment for an average of 23 mo 

with a mean fixed CPAP pressure of 11.0 ± 2.0 cm H2O, 

apart from two patients who had been using an APAP 

device (Table 1). The majority of patients were using a 

nasal mask (55%), with the remainder using nasal pillows 

(35%) or a full face mask (15%). 

Outcomes 

Treatment efficacy on the AfH night was noninferior to 

the AutoSet night as assessed by AHI (1.2 [0.60–1.85]/h 

versus 1.15 [0.40–2.85]/h, P = 0.51) and 3% ODI (0.5 

[0.25–2.55]/h versus 0.85 [0.25– 1.5]/h, P = 0.83) (Figure 

2 and Table 2). In comparison with the patients’ 

diagnostic AHI there was a statistically and clinically 

significant reduction in AHI with treatment using the 

AfH (diagnostic versus AfH: 19.07 versus 1.2/h, P < 

0.001) and AutoSet algorithms (diagnostic versus 

AutoSet: 19.07 versus 1.15/h, P < 0.001). Percentage of 

breaths with flow limitation during sleep was 

significantly less using the AfH algorithm (0.14%) than 

the AutoSet (0.20%, P = 0.02) (Table 2). Other PSG 

measures of sleep quality were similar between study 

nights (Table 2, all P > 0.05). The downloaded 95th 

centile pressure from the device on the AfH study night 

was lower than on the AutoSet night (10.56 ± 1.7 versus 

11.63 ± 2.6 cmH2O; mean difference (95% CI): −1.1 

(−2.13 to −0.01) cm H2O). The downloaded median 

pressure delivered by the AfH device was similar to that 

delivered by the AutoSet (P > 0.05). The downloaded 

median  
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leak from the device was similar on the AfH and AutoSet 

nights (P > 0.05), as was the 95th centile leak (AfH: 9.0 ± 

9.6 l/min, AutoSet: 12.6 ± 15.6 l/min, P > 0.05). Symptom 

response to the treatment nights and device tolerance 

were similar following a night using the AfH compared to 

AutoSet (all P > 0.05) (Table 3). 

DISCUSSION 

This study among premenopausal women shows the AfH 

algorithm to be as efficacious as the standard AutoSet 

algorithm, according to overnight full PSG evaluation. 

Compared to a diagnostic study night (i.e., without 

treatment) both algorithms reduced the AHI to ‘well 

controlled’ (P < 0.001), confirming that these are 

suitable algorithms for CPAP treatment of OSA. In 

addition, sleep efficiency was high on the AfH and 

AutoSet nights and other PSG measures of sleep quality 

were similar on both nights and similar to the quoted 

normal ranges for middle-aged females.17,18 Notably, 

there was a statistically significant reduction in flow 

limitation (% of breaths), achieved at a lower (95th 

centile) pressure, on the AfH night compared to the 

AutoSet night. 

Many of the early studies showing a high prevalence of 

OSA among males, compared to females, used clinic-

based samples.6,8 By contrast, community studies7,19,20 

have consistently shown male-to- female ratios to range 

from 2:1 to 4:1, suggesting clinical underrecognition of 

OSA in females, perhaps because females report less 

classic OSA symptoms such as snoring19,21 and witnessed 

apneas22 and for other sociocultural reasons.22 The 

historically high male prevalence in clinical samples has 

resulted in most treatment options being developed and 

tested in predominantly male study samples. Moreover, 

several recent studies have reported sex-specific 

differences in the patterns of sleep and sleep disordered 

breathing, particularly among premenopausal 

Figure 2 —Comparison of efficacy outcomes during standard 

AutoSet  vs AutoSet for Her (AfH) treatment nights. 



 

SLEEP, Vol. 38, No. 11, 2015 220  A Novel APAP Algorithm for Obstructive Sleep Apnea—

McArdle et al. 

women.9,10,23 These differences raise the possibility that 

tailoring OSA treatment according to sex-specific 

patterns of obstructive sleep disordered breathing may 

improve the efficacy of APAP treatment. The current 

device was, therefore, designed and developed to 

provide a female-specific APAP algorithm (AfH) with 

the aim of targeting the breathing abnormalities 

characteristic of female patients. 

The primary aim of the current study was to test the 

hypothesis that the efficacy of the new AfH algorithm is 

noninferior to the standard AutoSet algorithm. The AHI 

and ODI were chosen as the primary outcome measures. 

AHI is the standard accepted metric used to determine 

severity of OSA and the ODI may have particular 

usefulness as a predictor of OSA-related vascular and 

metabolic consequences.24 On both measures the new 

AfH algorithm performed similarly to the standard 

AutoSet algorithm, as assessed by the gold standard of 

laboratory-based PSG. This finding supports the use of 

the AfH algorithm as a new efficacious treatment option 

for mild moderate OSA among premenopausal patients. 

The AfH algorithm has been designed to be more 

sensitive to flow limitation by responding to the first 

identified flow-limited breath rather than requiring three 

consecutive flow-limited breaths, as occurs with the 

standard AutoSet algorithm. The basis for this change is 

the increasing evidence that inspiratory flow limitation is 

more prevalent in women compared to men. For example, 

a recent study among consecutive sleep clinic patients 

referred for evaluation of sleep disordered breathing 

found women to have more UARS than OSA, whereas 

among men the prevalence of OSA was greater than 

UARS.11 Similarly, women attending a sleep clinic appear 

to have fewer episodes of complete upper airway 

collapse (lower ratio of apneas to hypopneas) compared 

to men.12 The precise mechanisms underlying these 

findings have yet to be resolved, but are most likely 

related to complex sex-related differences in the 

structure and function of the upper airway. For example, 

comparisons between men and women, matched for 

BMI, found the critical airway closing pressure (Pcrit) 

was lower in women compared to men without 

differences in respiratory control stability.25 Overall, 

these studies indicate that women have a less collapsible 

upper airway, making obstructive apneas less likely and 

predisposing to partial airway collapse (hypopnoeas) and 

flow limited breathing abnormalities during sleep. 
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Despite the percentage residual flow limitation being low 

with both algorithms, the current study showed 

improved control of flow limitation on the AfH night 

(Table 2). It is unknown whether a reduction from 0.20 to 

0.14% flow-limited breaths using AfH, compared to 

standard AutoSet, is of clinical significance. However, the 

participants were compliant users, established on CPAP 

treatment, who had excellent control of their OSA using 

APAP, producing ‘floor effects’ that limit the possibility 

of showing large improvements in disease control with 

the new algorithm. Studies on consecutive CPAP naïve 

patients in the standard clinical setting are needed to 

assess the potential magnitude of improvement in flow 

limitation obtainable from the AfH algorithm. 

Table 2—Polysomnographic sleep characteristics during standard Autoset and AutoSet for her (AfH) treatment nights. 

Polysomnographic Characteristic Standard AutoSET, n = 20   AfH, n = 20  95% CI for Mean Difference  P  
 Total sleep time 383.8 ± 48.5 388.4 ± 56.0 −32.5 to 23.3 0.74 
 Sleep efficiency, %  84.1 ± 7.1  84.2 ± 9.2  −5.2 to 5.0 0.96  
 Sleep latency, min  16.2 ± 17.2  19.1 ± 15.6  −10.2 to 4.5  0.43 
 Wake after sleep onset, min 52.9 ± 31.8 52.8 ± 39.6 −22.9 to 23.0 0.99 
 Time N1, % 10.2 (8.7–15.5) 11.0 (9.3–14.2) 0.78 
 Time N2, %  51.4 (47.6–53.1) 51.4 (39.8–54.6) 0.73  
 Time N3, %  21.5 ± 8.2  22.4 ± 11.7  −3.7 to 1.8  0.49  
 Time REM, %  15.4 ± 7.1  16.6 ± 7.0  −4.9 to 2.5  0.52 
 Arousal number index, events/h 12.3 ± 6.4 11.7 ± 4.2 −1.16 to 2.47 0.46 
 AHI, events/h slept 1.15 (0.40–2.85) 1.20 (0.60–1.85) 0.51 
 Obstructive apnea index, events/h 0 (0–0) 0 (0–0) 0.81 
 Central apnea index, events/h 0.50 ± 0.68 0.38 ± 0.48 −0.15 to 0.37 0.39 
 Central apnea number 1 (0–5.5)  1 (0–4.5) 0.24 
 Hypopnea index, events/h 0.50 (0.20–1.7) 0.80 (0.25–1.35) 0.65 
 RERAS, number/h 0.75 (0.4–1.45) 0.80 (0.45–1.60) 0.50 
 Flow limitation, % of breaths  0.202 ± 0.151 0.145 ± 0.093 0.010 to 0.102 0.02 

 Mean SpO2, %  97 (96–97) 96 (96–97) 0.16 

 Lowest SpO2,% 91.65 ± 2.23 91.10 ± 0.56 −0.68 to 1.78 0.36 

 ODI 3%, events/h slept 0.85 (0.25–1.5) 0.5 (0.5–2.55) 0.83 
 ODI 4%, events/h slept 0.25 (0–0.55) 0.2 (0–0.55) 0.97 

AHI, apnea-hypopnea index; CI, confidence interval; N1, stage N1 sleep; N2, stage N2 sleep; N3, stage N3 sleep; ODI 3%, 

oxygen desaturation index of 3% or more; ODI 4%, oxygen desaturation index of 4% or more; REM, rapid eye movement 

sleep; RERAS, respiratory event-related arousals; SpO2, oxygen saturation. 

Table 3—Subjective feedback from participants after standard Autoset and Autoset for her (AfH) treatment nights. 

Mean Difference and 95% Cl  
Questionnaire Response  Standard AutoSet, n = 20  AfH, n = 20 for Mean Difference P  
 Comfort of breathing  8.0 (7.125–9.4)  8.0 (7.0–9.25)  0.67  
 Ease of falling asleep  7.9 ± 1.8  7.0 ± 2.3  0.58 (−0.78 to 1.94) 0.38 
 Sleep disturbance  9 (7.25–9.4)  8 (6.5–9.0)  0.12  
 Feeling of being refreshed  7.6 ± 1.6  6.4 ± 2.2  1.3 (−0.1 to 2.7) 0.07  

An in-house questionnaire asked for responses using an 11-point Likert rating scale (questionnaire provided in supplemental 

material). Data presented as mean ± standard deviation, or median (Interquartile range). CI, confidence interval. 
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Another novel feature of the AfH algorithm is a moving 

minimum AutoSet pressure (i.e., a minimum pressure is 

set to which pressure decreases during sleep periods 

devoid of respiratory events). If apneas occur within a 

short time period the minimum AfH pressure will 

automatically increase and the pressure will not decline 

below this level for the remainder of the night’s therapy. 

The purpose of this is to minimize inappropriate 

pressure decreases during REM sleep that could occur 

with the standard AutoSet algorithm. It is possible, for 

example, that the standard AutoSet algorithm pressure 

could decay below the critical closing airway pressure 

during REM sleep, which can result in several apneas at 

the beginning of REM sleep until the device responds 

with appropriate pressure increases. This could be 

particularly important in women, who have been shown 

to have a predominance of REM-related OSA compared 

to men.9 During REM sleep CPAP pressures may need to 

be higher to maintain patency of the upper airway 

secondary to a REM-related reduction in the tone of 

upper airway muscles. It is also possible that this 

algorithm feature could reduce pressure variability, 

contribute to longer REM sleep, and reduce REM-related 

respiratory events. However, the current study did not 

find any statistically significant differences on these 

measures, although it was not designed or statistically 

powered to detect these differences and larger studies 

would be needed in order to demonstrate any such 

changes. 

In order to prevent an excessive pressure rise, the AfH 

algorithm does not increase pressure above 12 cm H2O 

in response to detected apneas (but pressure can 

increase above 12 cm H2O if other respiratory events are 

present). Furthermore, the AfH algorithm increases 

pressure in response to flow limitation at a slower rate 

and to a lesser extent than the standard AutoSet 

algorithm (similarly the decay in the gain is lower). These 

features are in response to previous studies that have 

shown that women tend to have less severe OSA, for a 

given BMI, compared to men,9–11 and that women appear 

to require lower CPAP pressures than men as 

determined by manual attended laboratory PSG 

titration.26 The current study supports the use of this AfH 

pressure algorithm strategy among premenopausal 

female patients with OSA because equivalent control of 

apneas and hypopneas and improved control of flow 

limitation was achieved at a lower 95th centile pressure 

than the standard AutoSet algorithm. The 95th centile 

pressure is an important index of pressure requirements 

as it is the value commonly used when setting a fixed 

pressure from an AutoSet titration. 

CPAP devices often incorporate a ramp to increase 

pressure gradually when the device is first turned on; this 

aims to keep pressure low and more comfortable when 

falling asleep. The AfH algorithm incorporates a novel 

automatic ramp that keeps the pressure at a minimum 

until there are changes in the breathing pattern 

indicative of either sleep onset (based on regularity of 

the breaths); or three obstructive apneas or hypopneas 

occurring within 2 min; or five consecutive snore breaths. 

The algorithm will then ramp up to minimum therapy 

pressure within 1 min of the event occurring at a rate of 
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1 cm H2O/ min. Women with OSA have longer sleep 

latencies than men with OSA despite no difference in 

age, respiratory disturbance index, or oxygen 

saturation.27 Hence, the rationale of the AfH automatic 

ramp is to allow sufficient time for sleep onset by 

minimizing disturbance from increasing ramp pressure, 

while still responding to changes consistent with sleep or 

obstructive events as necessary. The participants’ sleep 

latency in the current study was not significantly different 

using the AfH and the standard AutoSet algorithm and 

similar to values reported in normal middle-aged 

women.18 

In practice, overall treatment effectiveness is 

determined not only by efficacy but also by compliance 

with therapy in the home environment. An in-house 

questionnaire indicated there were no significant 

differences in symptomatic report and tolerance of the 

AfH algorithm compared to the AutoSet algorithm. 

Further studies are needed to assess compliance in the 

home with the new AfH algorithm. 

The strengths of the current study include the use of a 

randomized controlled crossover design; with patients 

acting as their own controls to increase study power. In 

addition, the patients, therapists, and sleep data scorers 

were blinded to the study intervention. The gold 

standard of in-laboratory full PSG assessment was used 

to ascertain the primary study outcomes, and currently 

recommended definitions for respiratory events were also 

used. However, the study was not adequately powered 

to make conclusive statements about secondary 

outcomes.  

Although the study found reduced flow-limited breaths 

and lower pressure requirements using the AfH 

algorithm, it is unclear if these changes will translate 

into measureable clinical benefits to female OSA 

patients. Further studies, adequately powered for these 

outcomes, will be needed to answer these questions. 

In conclusion, the primary finding of this study is that the 

efficacy of a novel female-specific (AfH) algorithm 

among premenopausal women with OSA is noninferior 

to the standard AutoSet algorithm. The study also 

suggests the AfH algorithm results in superior control of 

flow limited breaths in premenopausal women 

compared to the AutoSet algorithm, and it achieves this 

at a lower 95th centile pressure. 
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Abstract 

Bench testing is a useful method to characterize the response of different automatic positive airway pressure (APAP) 

devices under well-controlled conditions. However, previous models did not consider the diversity of obstructive 

sleep apnea (OSA) patients’ characteristics and phenotypes. The objective of this proof-of-concept study was to 

design a new bench test for realistically simulating an OSA patient’s night, and to implement a one-night example of 

a typical female phenotype for comparing responses to several currently-available APAP devices. We developed a 

novel approach aimed at replicating a typical night of sleep which includes different disturbed breathing events, 

disease severities, sleep/wake phases, body postures and respiratory artefacts. The simulated female OSA patient 

example that we implemented included periods of wake, light sleep and deep sleep with positional changes and was 

connected to ten different APAP devices. Flow and pressure readings were recorded; each device was tested twice. 

The new approach for simulating female OSA patients effectively combined a wide variety of disturbed breathing 

patterns to mimic the response of a predefined patient type. There were marked differences in response between 

devices; only three were able to overcome flow limitation to normalize breathing, and only five devices were 

associated with a residual apnea-hypopnea index of <5/h. In conclusion, bench tests can be designed to simulate 

specific patient characteristics, and typical stages of sleep, body position, and wake. Each APAP device behaved 

differently when exposed to this controlled model of a female OSA patient, and should lead to further understanding 

of OSA treatment. 

 

Introduction 

Obstructive sleep apnea (OSA) is a prevalent breathing disorder and is considered a major public 

health issue, affecting 5–15% of the general population and increasing with both body mass index 

and age (up to at least 60–65 years) [1,2]. OSA is characterized by repetitive narrowing 
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and closure of the upper airway during sleep [3] that results in brain arousal, intermittent hypoxia, 

negative intrathoracic pressure swings, and increased sympathetic activity. OSA is associated with a 

reduction in quality of life, daytime sleepiness, traffic accidents, neurocognitive impairment, 

metabolic, cardiovascular disease [4] and malignancies [5]. 

The treatment of choice for OSA is the application of continuous positive airway pressure (CPAP) to 

the patient’s nose or mouth through a mask during sleep at home. This pressure in the mask is 

transmitted to the pharyngeal area, splinting the collapsible upper airway walls thereby avoiding 

obstruction. Auto-adjusting positive airway pressure (APAP) devices, which are increasingly being 

used, are driven by algorithms that measure abnormal sleep breathing events, analyze the patient’s 

breathing pattern and eventually increase the delivered pressure in response to airway obstruction, 

or decrease pressure when breathing is stable to increase patient comfort [6–11]. In theory, APAP 

devices should be ideal for treating a range of patients with different characteristics, and for 

effectively treating OSA despite within-night and night-to-night variations in the upper airway 

collapsibility experienced by each individual patient [12–16]. However, commercially available APAP 

devices contain undisclosed proprietary algorithms, and therefore the way that they measure and 

respond to specific breathing patterns varies [17]. In addition, some APAP manufacturers are 

introducing new algorithms based on specific patient characteristics. This move towards 

personalized medicine in the treatment of OSA means greater choice for patients and more 

variability in APAP algorithms. Therefore, understanding how each device responds to different OSA 

patterns requires comparative studies using well defined references. 

Bench testing is a useful method to characterize the response of different APAP algorithms under 

well-controlled conditions, thus avoiding the biological variability inherent in clinical trials. However, 

previously used bench test models have been based on subjecting the APAP device under test to a 

repetitive string of disturbed breathing patterns, without providing a sufficiently wide spectrum of 

events. These limitations mean that variety in patient characteristics and phenotypes, or the 

changes that occur during different sleep stages and body positions over the course of a night’s 

sleep, cannot be taken into consideration. This is particularly relevant given that different 
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subpopulations of OSA patients (e.g. children, men, women, the elderly) exhibit specific traits in 

their sleep-related breathing disorders [18]. 

Therefore, the aims of this proof-of-concept study were: 1) to design a new complex and versatile 

bench test approach for realistically simulating respiratory events throughout the course of the night 

in an OSA patient, mimicking breathing disturbances across different phenotypes, and 2) to 

implement a full night example of a female OSA phenotype and use this to compare the responses of 

several currently-available APAP devices. 

Materials and Methods 

The hardware of our new model was based on a previously described bench test [19]. This fully 

computer-driven model comprises a servo-controlled pump able to deliver a flow that replicates any 

breathing waveform stored in the computer. An obstruction valve allows the simulation of 

controlled obstructive events by imposing mechanical impedances previously recorded in patients 

with OSA. Two other valves can mimic leaks and mouth breathing, and a loudspeaker-in-box system 

can superimpose simulated snoring onto the breathing flow. The test bench is equipped with two 

sensors, one to measure pressure at the simulated patient entrance and one to measure the actual 

flow generated by the patient simulator. A calibrated leak based on a 4-mm internal diameter (ID) 

orifice [20] mimics the mask leak (exhalation port) in nasal masks. In previous studies, this system 

was fed by a collection of disturbed breathing events, such as obstructive and central apneas, 

hypopneas, flow limitation, mask leaks and mouth expiration [19,21]. 
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To design the new OSA simulator model we developed a novel approach aimed at realistically 

replicating a typical night of sleep for a female patient. With this aim, we considerably expanded our 

library of disturbed breathing patterns anonymously extracted from polysomnography recordings 

obtained from real OSA patients and we incorporated several new adjustable features into the 

simulator. Specifically, the new patient model can be set to react to the pressure delivered by the 

APAP device (PAP-responsive mode) or to reproduce a fixed scenario of disturbed breathing events 

(Steady mode), depending on the device characteristics being tested. Moreover, the severity of the 

simulated OSA profile is now fully modifiable by changing the frequency and duration of each 

breathing event. Various artefacts were introduced into the event spectrum, such as changes in tidal 

volume and breath rate, to replicate typical events during wake such as irregular breathing, 

swallowing, moving and talking. By combining these new features, we aimed to create a new OSA 

model concept model that can realistically replicate a whole night of sleep, including phases of 

wake, rapid eye movement (REM) and non-REM sleep, and change in body position, each one 

designed to mimic different characteristics in terms of upper airway collapsibility. 

For this study specifically, as an example of an entire night of sleep-disordered breathing (SDB), the 

bench test model was set to simulate the disturbed patterns of a female OSA patient with the 

following characteristics: long sleep latency (45 min), low positive airway pressures (PAPs) required 

to overcome obstructive events, high proportion of flow limitation events versus apneas, higher 

apnea-hypopnea index (AHI) during REM sleep, and only minor positional effects on upper airway 

collapsibility. The features and structure of this female-specific OSA patient simulation are detailed 

in Table 1. The breathing pattern of the simulated patient depended on the PAP applied by the 

device under test, with a total duration of 4 hours and 15 minutes. APAP pressure values required to 

normalize breathing during each stage of the simulation are shown in Fig 1. The simulated night 

consisted of programming the different stages described in Table 1, starting with 45 minutes of 

simulated awake stage (sleep onset) followed by a succession of different sleep stages with the 

features detailed in Table 1 (e.g. breathing frequency, number and types of respiratory events) and a 

final awake short period. In this way we were able to model a patient exhibiting different sleep 

breathing characteristics throughout consecutive sleep stages. 

Ten different commercially available APAP devices were tested using the new bench test model and 

the female-specific simulation described above: AirSense 10 (A) and AirSense 10 AutoSet for Her (B) 

by ResMed; Dreamstar by Sefam (C); Icon by Fisher & Paykel (D); 
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Resmart by BMC (E); Somnobalance (F) and Prisma 20A (G) by Weinmann; System One by 

Respironics (H); iCH (I) and XT-Auto by Apex (J). Each APAP device was connected with its own tube 

to the bench model. Default APAP settings were used (minimum pressure 4 cmH2O, maximum 

pressure 20 cmH2O). Each device was tested twice and the results averaged to obtain the final 

values. 

Results 

The new OSA patient simulator could effectively combine a great variety of SDB elements to mimic 

the response of the predefined patient type. The responses of the assessed APAP devices to the new 

female-specific bench test model are summarized in Table 2. There was considerable variation 

among devices, particularly with respect to the mean and maximum nasal pressures applied, and the 

ability to overcome obstructive events and flow limitation, The residual AHI was calculated as the 

number of residual obstructive events per hour and the residual flow limitation was measured as the 

portion of the test in minutes (excluding the initial 45-minute wake period) that the simulated 

patient remained on flow limitation. 

Table 1. Description of the patient simulation implemented in the bench test model. 

Stage Duration AHI Features 

Sleep onset 45 min -  

   16 breaths/min 

   VT 500 mL 

   Random insertion of changes in breathing rate and VT, and swallowing 

Non-REM cycle 1 60 min 15/h  

   Body position: side 

   Apneas (0–5 cmH2O): event length 12 sec 

   Hypopneas (5–7 cmH2O): event length 16 sec 

   Flow limitation (7–9 cmH2O) 

   Normal breathing (>9 cmH2O) 

REM cycle 1 15 min 30/h  

   Apneas (0–8 cmH2O): event length 18 sec 

   Hypopneas (8–10 cmH2O): event length 16 sec 

   Flow limitation (10–12 cmH2O) 

   Normal breathing (>12 cmH2O) 

Non-REM cycle 2 45 min 15/h  

   Body position: side 

   Apneas (0–5 cmH2O): event length 12 sec 



 

230 

 

   Hypopneas (5–7 cmH2O): event length 16 sec 

   Flow limitation (7–10 cmH2O) 

   Normal breathing (>10 cmH2O) 

REM cycle 2 25 min 30/h  

   Apneas (0–7 cmH2O): event length 18 sec 

   Hypopneas (7–9 cmH2O): event length 16 sec 

   Flow limitation (9–11 cmH2O) 

   Normal breathing (>11 cmH2O) 

Non-REM cycle 3 30 min 15/h  

   Apneas (0–5 cmH2O): event length 18 sec 

   Hypopneas (5–7 cmH2O): event length 16 sec 

   Flow limitation (7–10 cmH2O) 

   Normal breathing (>10 cmH2O) 

REM cycle 3 30 min 30/h  

   Body position: supine 

   Apneas (0–9 cmH2O): event length 18 sec 

   Hypopneas (9–11 cmH2O): event length 16 sec 

   Flow limitation (11–13 cmH2O) 

   Normal breathing (>13 cmH2O) 

Awake 5 min - Normal breathing 

AHI: apnea-hypopnea index; REM: rapid eye movement; VT: tidal volume. 

 

Breathing normalization with a residual AHI <5/h was only achieved with devices A, B and D; devices 

E, H, I and J were associated with more than five residual events per hour. Pressure changes of each 

device throughout the whole test are displayed in Fig 1. 

Considering the 45-minute wake period, there was significant variation in the behaviour of the 

different devices. Table 3 shows the pressure values reached by each tested device at the end of the 

simulated wake period. Device C did not increase the pressure during wake periods. 
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Fig 1. Pressure trends over a full simulated night (grey line) for all APAP devices tested. A device that delivered pressures above the blue 
line achieves full breathing normalization, while if it delivered pressures just above the red line only obstructive apneas were overcome. 

 



 

232 

 

Table 2. Reponses of automatic CPAP devices to a specific simulated OSA patient. 

Device Pmax 

cmH2O 

Pmean 

cmH2O  

Residual AHI 

AHI,/h 

Overcome obstructive 

events? 

Overcome flow limitation? Residual flow 

limitation, min (% 

sleep time) 

A 18.65 13.25 0.7 Yes Yes 4 (2%) 

B 15.4 11.8 0.7 Yes Yes 4 (2%) 

C 11.4 6.75 16.5 No No 24 (12%) 

D 15.3 11.3 0.6 Yes Yes 24.5 (12%) 

E 11.35 7.7 11.9 No No 81 (40%) 

F 12.6 9.5 2.4 Yes No 167 (81%) 

G 12.1 10.05 1.6 Yes No 122 (60%) 

H 12.45 7.75 10 No No 76 (37%) 

I 10.6 8.3 6.5 Yes No 142 (69%) 

J 10.1 8.2 8.5 No No 132.5 (65%) 

AHI: apnea-hypopnea index; Pmax: maximum positive airway pressure applied; Pmean: mean positive airway pressure; A: AirSense 10 by 

ResMed; B: AirSense 10 AutoSet for Her by ResMed; C: Dreamstar by Sefam; D: Icon by Fisher & Paykel; E: Resmart by BMC; F:  
omnobalance by Weinmann; G: Prisma 20A by Weinmann; H: System One by Respironics; I: iCH by Apex; J: XT-Auto by Apex. 

 

Three devices (A, B and E) displayed only mild pressure increases (<2 cmH2O). Moderate pressure 

increases (2.5–3 cmH2O) were displayed by three devices (H, I and J), and significant pressure 

increases (>7 cmH2O) were seen from three devices (D, F and G). Three examples of different 

responses during the simulated wake period are presented in Fig 2, together with the flow signal 

generated by the simulator during the initial awake phase, which consisted of normal breathing with 

some events inserted simulating flow alterations due to irregular breathing (E) and swallowing (S). 

Devices A, B and D contain algorithms aimed at automatically detecting sleep onset (for A, B 

AutoRamp mode and for D SenseAwake mode). Devices A and B showed similar pressure increases 

with AutoRamp mode turned off, while device D responded with higher pressure increases when the 

SenseAwake mode turned off. 

To assess whether the observed variations in pressure during wake had an influence on the results 

of testing, a subset of devices that showed a moderate to significant pressure increase during sleep 

onset (D, G, H and I) were retested without the wake phase of the test. In this 
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Table 3. Pressure values reached by each device after 45 minutes of simulated wake. 

Device APAP pressure after 45 mins of simulated wake (cmH2O) 

A 5.4 (5.8 with AutoRamp OFF) 

B 4.8 (5.2 with AutoRamp OFF) 

C 4.0 

D 11.2 (14.5 with SenseAwake OFF) 

E 4.6 

F 11.8 

G 11.7 

H 6.5 

I 6.8 

J 6.9 

A: AirSense 10 by ResMed; B: AirSense 10 AutoSet for Her by ResMed; C: Dreamstar by Sefam; D: Icon by Fisher & Paykel; E: Resmart by 
BMC; F: Somnobalance by Weinmann; G: Prisma 20A by Weinmann; H: System One by Respironics; I: iCH by Apex; J: XT-Auto by Apex. 

 

 

Fig 2. Pressure trends for three different APAP devices tested during the initial 45-minute simulated wake period. Device A (black line) 

showed a mild pressure increase (< 2 cmH2O), device I (dark grey line) showed a moderate pressure increase (2.5–3 cmH2O), while device 

D (light grey line) showed a high pressure increase (>7 cmH2O) in response to the breathing pattern simulating 45 minutes of wake period 
(blue line). E: erratic breathing; S: swallowing. 

 

doi:10.1371/journal.pone.0151530.g002 
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additional analysis (Table 4), the responses of the tested devices were relatively similar to the ones 

in the previous tests that included the 45-minute sleep onset phase. The largest change was seen in 

device D, where the residual AHI increased from 0.6 to 6 events per hour. 

Discussion 

We successfully developed and carried out a proof-of-concept test of a novel optimized bench 

model easily adaptable to simulate different SDB patterns found in OSA, including periods of wake, 

periods representing different sleep stages and phases of more or less severe SDB events. This tool 

can be useful to objectively evaluate bench test performance of different APAP devices with realistic 

breathing patterns covering a wide range of patient phenotypes. In its “Steady mode”, the simulator 

could also assess the capacity of APAP, as well as CPAP, devices to estimate treatment duration and 

detect residual respiratory events of a fixed predefined disturbed breathing scenario. 

The presentation and severity of OSA varies greatly depending on patient characteristics such as 

gender, age, body mass index, and craniofacial structure [18,22]. Specific patient 

Table 4. Results of device re-testing without the sleep onset period. 

Device Pmax 

cmH2O 

Pmean 

cmH2O 

Residual AHI, 

/h 

Overcome  

events 

Overcome 

flow 

limitation 

 Residual flow limitation, min 

(% sleep time) 

D 14.6 8.95 6 Yes Yes  9 (4%) 

G 11.65 9.25 2.6 Yes No  164 (80%) 

H 11.45 7.35 6.6 No No  70 (34%) 

I 11.3 7.9 9.6 Yes No  107.5 (52%) 

AHI: apnea-hypopnea index; NA: not available; Pmax: maximum positive airway pressure applied; Pmean: mean positive airway pressure; D: 

Icon by Fisher & Paykel; G: Prisma 20A by Weinmann; H: System One by Respironics; I: iCH by Apex. 

 

subgroups have been gaining a lot of attention recently because of their clinical relevance. At one 

end of the age spectrum, elderly patients tend to present with severe OSA and snoring becomes less 

common. In addition, the frequency of central events increases, although obstructive events still 

predominate [23]. In contrast, children with OSA have frequent snoring, restless sleep, mouth 

breathing, apneas, gasping, and laboured or paradoxical breathing [24]. With the growing trend 
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towards personalized therapy, specific patient breathing patterns will be increasingly studied as 

manufacturers work to design the most optimal treatment for each phenotype. 

One good example of this is OSA in females versus males. It is well-known that the 

polysomnographic features of female OSA are different from those of male OSA. Overall, women 

have less severe OSA with, on average, a lower AHI [25] and shorter apneas [26]. Women also have 

more episodes of upper airway events during REM sleep [25]. Body position is far less important for 

the severity of OSA in women, while OSA severity in men is based more on position than sleep state 

[25]. Furthermore, women may take longer to fall asleep, but have fewer awakenings during sleep 

[27]. Regardless of the patient’s gender, there is also significant night-to-night variation in OSA, 

based on factors such as body posture, sleep stages, and previous drug or alcohol intake [28]. 

Besides OSA pathophysiology, gender influences also patients’ PAP requirements [29], as generally 

female patients require lower pressures. Such considerable variability between phenotypes 

highlights the relevance of the simulation approach taken in this study. In our optimized bench test 

we implemented a dynamic pattern (“PAP-responsive”) simulating a female patient phenotype 

(although an individual male patient may also present with this OSA pattern), which included long 

periods of flow limitation, low AHI, and short, low-severity obstructive events. Only three of the 

APAP devices tested were able to achieve full breathing normalization by overcoming all types of 

disturbed events including flow limitation. Considering the potential for increased flow limitation in 

female patients, which may lead to breathing disturbances, the effectiveness of treatment in 

patients presenting with a high component of flow limitation should be carefully examined. 

Published data comparing different APAP algorithms is scarce, particularly for devices recently 

launched into the market. Pevernagie et al examined two APAP devices and found that the residual 

apnea-hypopnea index (AHI) was lower during use of one device compared with the other 

(3.5±5.6/h vs 9.9±31.0/h), and that the amount of snoring during the night was significantly higher 

with one device [30]. A similar study by Nolan et al compared three commercially available devices. 

The authors found that mean pressure and patient compliance were significantly lower on one of 

the APAP devices [17]. Differences between algorithms combined with a lack of information 

regarding how different auto-adjusting devices work has led to the perception that auto-adjusting 

devices are a ‘black box’ which should be used with caution [31]. In this study, we also found 

considerable variation among devices in both the magnitude of response to obstructive events, the 

time taken to increase pressure during disrupted breathing, and device behaviour during the 

simulated wake period. With the exception of one device, which did not increase the pressure at all, 
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most devices at least slightly increased pressure during simulated wakefulness. Some devices 

showed quite an intense pressure response during the wake period of the test, with one reaching 

almost 14 cmH2O and two reaching 12 cmH2O. Due to the potential impact this could have on 

patient comfort, pressure changes during wake periods should be assessed in clinical practice, 

particularly in patients who report difficulties falling asleep while using PAP therapy or issues with 

comfort at higher PAP pressures. 

As stated above, our finding of considerable variability in the response of APAP devices when 

subjected to the same breathing pattern under well-controlled conditions is in agreement with 

previous reports [19,21,32]. These variations can be attributed to the individual algorithms within 

each APAP device. Each algorithm analyses flow and pressure to determine whether there is a 

breathing disturbance, and then initiates the most appropriate response to correct such a 

disturbance. For instance, it is interesting to note that, as we explained previously [21], the 

simulated hypopneas in our model were defined according to specific values of a flowlimitation 

pattern index initially introduced by Teschler et al [33]. Therefore, it could be possible that 

automatic CPAP devices set to detect hypopneas using this index, or something similar, could be 

more suitable for detecting our simulated events than other devices that use other metrics to define 

and detect hypopneas. Another reason for the observed different response in the automatic CPAP 

devices tested is that the optimal rate of pressure increase after detection of obstructive events has 

not been clinically defined. In fact, APAP devices are designed to normalize breathing at a rate which 

treats actual SDB, avoiding any response to false events, thereby unnecessarily modifying pressure. 

The results of this bench test have shown that, under well-controlled conditions, there are marked 

variations in response by different APAP devices, and that there may be high residual AHI or 

uncontrolled flow limitation in some female patients on some APAP devices. Therefore, all APAP 

devices should not be considered equal, and efficacy and patient comfort should be carefully 

examined following APAP initiation. 

It must be noted that our results are restricted to the specific patterns of disturbed breathing used 

in this bench test to simulate a specific OSA patient. It is possible that the response of the tested 

devices would have been different from the ones reported here if SBD was simulated using different 

patterns or patient phenotypes. In addition, a limitation of this study is that one device of each type 

was used. Hence, a more complete assessment would require testing of a larger number of each 

type of device randomly obtained from those available in the market. Finally, it should be stressed 

that although bench testing is a useful way to investigate the behaviour of different devices, testing 
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outcomes may vary in clinical practice due to the almost unlimited spectrum of events and 

phenotypes found in real life. Indeed, crucial factors such as changes in loop gain, and upper airway 

compliance and pharyngeal critical pressure are not considered in our model. Accordingly, bench 

testing should be considered as a preliminary assessment before clinical evaluation in patients. 

In conclusion, this study showed that a dynamic bench model tailored to represent specific OSA 

patient phenotypes, incorporating a variety of disturbed breathing events within the same simulated 

night, including different degrees of severity along sleep stages, and a period of wakefulness, can be 

useful to characterize treatment responses of commercially-available APAP devices. This 

demonstrates that bench testing can be modified to better represent a “real” patient, and that APAP 

devices can show markedly different responses to the same simulated breathing patterns. 

Realistically mimicking OSA patients during bench testing is useful as a first step to aid in the 

understanding of actual APAP device responses observed in the clinical setting, and can be helpful in 

selecting the device that best meets the individual needs of each patient, thereby improving comfort 

and increasing adherence to therapy, which is essential for effective treatment and reducing the 

consequences of OSA [34]. 
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