
Quantum Algorithm for Finding the
Negative Curvature Direction

KAINING ZHANG

Supervisor: Prof. Dacheng Tao

A thesis submitted in fulfilment of the requirements for the degree of
Master of Philosophy

Faculty of Engineering and Information Technologies
University of Sydney

2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sydney eScholarship

https://core.ac.uk/display/286559577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Statement of Originality

This is to certify that to the best of my knowledge, the work contained in

this thesis has not been submitted for any degree or other purposes. I certify

that the intellectual content of this thesis is the product of my own work and

that all the assistance received in preparing this thesis and sources have been

acknowledged.

Kaining Zhang

ii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Pro-

fessor Dacheng Tao. I learned a lot about doing research when working with

him.

Secondly, I would like to thank Professor Min-Hsiu Hsieh, Dr. Liu Liu

and Mr. Yuxuan Du. They all gave me great guidance on the way of studying

optimization and quantum computing.

I also thank my friends in the research group of UBTECH Sydney Artificial

Intelligence Centre for helpful discussion.

Finally, I thank my parents for their encouragement and support in my whole

life.

iii

Abstract

Non-convex optimization is an essential problem in the field of machine

learning. Optimization methods for non-convex problems can be roughly di-

vided into first-order methods and second-order methods, depending on the or-

der of the derivative to the objective function they used. Generally, to find the

local minima, the second-order methods are applied to find the effective direc-

tion to escape the saddle point. Specifically, finding the Negative Curvature

is considered as the subroutine to analyze the characteristic of the saddle point.

However, the calculation of the Negative Curvature is expensive, which prevents

the practical usage of second-order algorithms.

In this thesis, we present an efficient quantum algorithm aiming to find the

negative curvature direction for escaping the saddle point, which is a critical

subroutine for many second-order non-convex optimization algorithms. We

prove that our algorithm could produce the target state corresponding to the

negative curvature direction with query complexity Õ(polylog(d)ϵ−1), where

d is the dimension of the optimization function. The quantum negative curva-

ture finding algorithm is exponentially faster than any known classical method,

which takes time at least O(dϵ−1/2). Moreover, we propose an efficient quan-

tum algorithm to achieve the classical read-out of the target state. Our classical

read-out algorithm runs exponentially faster on the degree of d than existing

counterparts.

iv

CONTENTS

Statement of Originality ii

Acknowledgements iii

Abstract iv

Chapter 1 Introduction 1

1.1 Our contribution . 3

Chapter 2 Literature Review 5

2.1 Non-convex Optimization . 5

2.2 Quantum Computing . 6

2.2.1 Basic Knowledge . 6

2.2.2 Hamiltonian Simulation . 7

2.2.3 Quantum Singular Value Estimation (SVE) Algorithm 8

2.2.4 Quantum SWAP Test . 9

Chapter 3 QNCF Algorithm 11

3.1 The Sign of Eigenvalue . 13

3.2 Proper Eigenvalue Labelling . 15

3.3 Target State Generating . 17

Chapter 4 State read-out 19

4.1 Complete Basis Selection . 21

4.1.1 The CBS Algorithm . 22

4.1.2 Implementation of C(Rl) . 24

4.1.3 Error and Runtime Analysis . 33

4.2 Coordinate Estimation . 37
v

CONTENTS vi

4.2.1 Overlap Estimation . 38

4.2.2 Error and Runtime Analysis . 42

4.3 Numerical Simulation . 44

4.3.1 CBS Basis . 44

4.3.2 Read-out Error . 45

Chapter 5 Conclusion 49

Chapter 6 Appendix 50

Bibliography 54

CHAPTER 1

Introduction

Algorithms for finding the minimum of functions have attracted significant at-

tention due in part to their prevalent applications in machine learning, deep

learning, and robust statistics; in particular, those with good complexity guaran-

tees that can converge to the local minimum. Numerous algorithms have been

proposed in recent years for finding points that satisfying

∥∇f (x)∥ ≤ ϵg, and λmin

(
∇2f (x)

)
≥ −ϵH ,

where ϵg, ϵH ∈ (0, 1). Recent proposals [1, 2, 3] based on the second-order

Newton-type and the first-order methodology have been analyzed from such a

perspective. However, those methods normally deal with the situations in which

the iterations may be trapped in the saddle points, such as deep neural networks

[4, 5]. The existence of many saddle points is the main bottleneck.

Many algorithms have been proposed to escape the saddle points in general

non-convex optimizations. These algorithms can be divided into the following

two categories: first-order gradient-based algorithms and second-order Hessian-

based algorithms. Generally, second-order algorithms have better iteration com-

plexity compared with first-order algorithms (cf. [6]). However, each iteration

in the second-order method involves the computation of the negative curva-

ture direction, namely, the eigenvector of a Hessian matrix H = ∇2f(x) with

negative eigenvalue. This computation could take time O(d2) when the Hessian

matrix is given, or O(d/
√
ϵ) when the Lanczos method is used with Gradient

information to approximate the Hessian-vector product.

1

1 INTRODUCTION 2

Quantum algorithms have shown great potential to become faster alternatives

than classical algorithms for many kinds of problems in the field of linear al-

gebra, including principal component analysis [7], support-vector machine [8],

singular value decomposition [9]. These works encourage us to develop an ef-

ficient quantum algorithm for finding negative curvature. To begin with, we

formally define the negative curvature finding problem as follows.

Negative Curvature Finding (NCF) problem: Given a function f(x) : Rd →

R which has L-Lipschitz continuous gradient and the corresponding Hessian,

along with parameters α ∈ (0, L) and ϵ ∈ (0, α), we aim to build a quantum

algorithm that could efficiently provide the unit vector u with the condition:

uTHu ≤ −α + ϵ, (1.1)

or make the non-vector statement that all unit vector u satisfying the following

condition with high probability:

uTHu ≥ −α. (1.2)

We present definitions of smoothness and γ-separation here.

DEFINITION 1.1. (smoothness) A function f : Rd → R is L-smooth if it has L-

Lipschitz continuous gradient, that is ∥∇f(x)−∇f(y)∥ ≤ L∥x−y∥, ∀x,y ∈

X , where X is the domain of f(x).

DEFINITION 1.2. (γ-separation) The set G = {a1, a2, · · · , an} is said to be

γ-separated if |ai − aj| > γ, ∀i, j ∈ [n] and i ̸= j.

Based on these definitions, we assume that the Hessian matrix H in this article

has two properties:

(1) H ∈ Rd×d is a r-rank Hessian matrix which is derived from the d-

dimensional optimization problem minx∈Rd f(x) in which the objec-

tive function f has L-Lipschitz continuous gradient;

1.1 OUR CONTRIBUTION 3

(2) The absolute value of H’s non-zero eigenvalue is ϵ-separated.

The first property is directly derived from the assumption of the previous clas-

sical non-convex optimization method [10], and the low-rank Hessian case has

been observed in neural networks [11]. The second property is assumed such

that we could distinguish different eigenvalues by their absolute value. We

further assume that the Hessian matrix H has the eigen-decomposition H =∑r
j=1 λjuju

T
j , for the convenience of the following discussion.

1.1 Our contribution

The contribution of this work can be briefly divided into two parts: 1) an efficient

quantum algorithm to generate the required quantum state, which corresponds

to the negative curvature direction, and 2) an efficient quantum algorithm to

obtain the description of the target state |ut⟩ =
∑r

i=1 xi|si⟩, where {si}ri=1 is

an independent vector set selected from rows of Hessian H with rank r.

Negative Curvature Finding: We develop an efficient quantum algorithm to

produce the target state |ut⟩ (for case (1.1)) or make the non-vector statement

(for case (1.2)). We provide Proposition 1.1 as the main result of this part, which

guarantees the time complexity of our NCF algorithm:

PROPOSITION 1.1. There exists a quantum algorithm that could solve the Neg-

ative Curvature Finding problem in time Õ(poly(r, log d)ϵ−1), by providing the

target state |ut⟩ (for case (1.1)), or making the non-vector statement (for case

(1.2)).

Classical Read-out: The classical read-out problem is one bottleneck for many

quantum machine learning algorithms whose results are quantum states. Gener-

ally, the read-out of a d-dimensional quantum state takes timeO(dϵ−2) [12], and

could offset the claimed quantum speed-up. In order to solve this dilemma, we

develop an efficient quantum algorithm for the classical read-out of the target

1.1 OUR CONTRIBUTION 4

state. We notice that the target state |ut⟩ can be written as the linear combi-

nation form |ut⟩ =
∑r

i=1 xi|si⟩, where {si}ri=1 is a linearly independent basis

sampled from row vectors {hj}dj=1. The algorithm suits the case when the re-

sult quantum state lies in the span of several given states, and may give rise to

independent interest.

Our state read-out algorithm contains two subroutines named as the complete

basis selection and the coordinate estimation algorithm, with main results sum-

marized (informally) as following theorems:

THEOREM 1.1. There exists a quantum algorithm that finds an index set {g(i)}ri=1

in time Õ(poly(λ−1
min(H), r)), where r is the rank of H and {g(i)}ri=1 forms a

complete basis {hg(i)}ri=1 with probability at least 3/4.

THEOREM 1.2. The classical description ut =
∑r

i=1 xisi/∥si∥ for the target

state could be presented in time Õ(poly(r, log d)ϵ−3) with error bounds in ϵ,

when the basis set {sj}rj=1 is given.

The rest of this thesis is organized as follows. Some literature about non-convex

optimization and quantum computing are introduced in Chapter 2. In Chapter 3,

we develop a quantum algorithm to solve the NCF problem. In Chapter 4, we

develop a quantum algorithm aiming to read out the target state. We summarize

our results and contributions in Chapter 5.

CHAPTER 2

Literature Review

2.1 Non-convex Optimization

Optimization methods for non-convex problems can be roughly divided into

first-order methods and second-order methods, depending on the order of the

derivative to the objective function they used. Generally, to find the local min-

ima, the second-order methods [10, 3] are exploited to find the effective direc-

tion to escape the saddle point. Specifically, finding the Negative Curvature is

considered to be a critical subroutine to analyze the characteristic of the saddle

point.

First-order algorithms: For the non-convex problem, the first-order method

(Gradient-based method) can find the stationary point, which could be a global

minimum, local minimum, or saddle point. However, standard analysis by gra-

dient descent cannot distinguish between saddle points and local minima, leav-

ing open the possibility that gradient descent may get stuck at saddle points.

Recent works [13, 6, 14] showed that by adding noise at each step, gradient

descent could escape all saddle points in a polynomial number of iterations.

Ref.[15] proved that under similar conditions, gradient descent with random

initialization avoids saddle points even without adding noise. However, each

step of Gradient-based methods requires O(d) operations, and their iteration

complexity is higher than second-order algorithms [6].
5

2.2 QUANTUM COMPUTING 6

Second-order algorithms: Traditionally, second-order Newton-based methods

can converge to local minima, which uses the Hessian information to distinguish

between first-order and second-order stationary points. There are two kinds of

methods that make use of Hessian information. 1) Hessian-based: trust-region

[2] and cubic regularization [1] are two methods, in which the sub-problem is

to find the decrease direction based on the given Hessian. The calculation of

each iteration involves performing Hessian-vector production, which takes time

at least O(d2). 2) Hessian-free: The Hessian-free methods use the Lanczos

method to calculate the negative curvature direction and use the gradient to ap-

proximate the Hessian-vector product [3, 10, 16]. The Hessian-free method

involves O(dϵ−1/2) complexity per iteration. The advantage of the second-

order algorithm is the superior iteration complexity than the first-order algo-

rithm. However, using Hessian information usually increases computation time

per iteration.

2.2 Quantum Computing

2.2.1 Basic Knowledge

In this section, we present some basic quantum knowledge. Here we introduce

the Dirac notation, which is often used in quantum computing. The form |x⟩

denotes the state, which corresponds to the vector x, and the form ⟨y| denotes

the state, which corresponds to the vector yT . The notation ⟨y|x⟩ denotes the

value yTx/(∥y∥∥x∥). The notation |y⟩⟨x| denotes the matrix yxT/(∥y∥∥x∥).

Quantum state is unitary, which means ∥|x⟩∥2 = ⟨x|x⟩ = 1. Thus for vector

x ∈ Cd, the state |x⟩ is defined as
∑d

j=1 xj/∥x∥|j⟩, where xj is the j-th compo-

nent of vector x and {|j⟩}dj=1 is the state basis which acts like {ej}dj=1 in clas-

sical case. One could obtain information from the quantum state by performing

measurement. For example, the measurement of |x⟩ on the basis {|j⟩}dj=1 could

randomly produce different index j with probability x2j/∥x∥2.

2.2 QUANTUM COMPUTING 7

2.2.2 Hamiltonian Simulation

Hamiltonian simulation is a task in quantum information field [17] aiming to

simulate the evolution of a quantum system. The time evolution with given

Hamiltonian H can be described as |ϕ(t)⟩ = e−iHt|ϕ(0)⟩ in the Schrödinger

picture with initial state |ϕ(0)⟩, or σ(t) = e−iHtσ(0)eiHt in the Heisenberg pic-

ture with initial state (in the form of density matrix) σ(0). Given a Hamiltonian

(2n × 2n dimensional hermitian matrix on n qubits system), an evolution time

t, and an error bound ϵ, the goal is to implement the unitary operation U , such

that:

∥U − e−iHt∥ ≤ ϵ,

where ∥ · ∥ is the spectral norm of a matrix.

There are many proposed frameworks for the Hamiltonian simulation task, such

as the technique based on Trotter-Suzuki decompositions [18] that suits the

sparse Hamiltonian case. Some other Hamiltonian simulation algorithms are

developed by using techniques like the Taylor series expansion [19], quantum

walk [20], or quantum signal processing [21].

Here we explain a Hamiltonian simulation framework developed in the quantum

principal component analysis (PCA) [7], which is employed in our quantum

algorithms developed in this thesis. The Hamiltonian simulation framework in

quantum PCA aims to simulate the evolution e−iρt by using multiple copies of

ρ, where ρ is the density matrix of some unknown quantum state. Specifically,

consider the evolution e−ρtσeiρt on state σ. One could simply prepare the initial

state ρ⊗ σ and perform operation:

Tr1e−iS∆t(ρ⊗ σ)eiS∆t = (cos2∆t)σ + (sin2∆t)ρ− i sin∆t[ρ, σ]

= σ − i∆t[ρ, σ] +O(∆t2)

= e−iρ∆tσeiρ∆t +O(∆t2),

2.2 QUANTUM COMPUTING 8

where Tr1 denotes the partial trace over the first variable and S : |i⟩ ⊗ |j⟩ →

|j⟩ ⊗ |i⟩ is the SWAP operator. Remark that S is a sparse matrix so that e−S∆t

could be implemented efficiently [22]. Repeat the above operation for n times

could yield e−iρn∆tσeiρn∆t+O(n∆t2). Let n∆t = t, then operation e−iρt could

be implemented with error O(t2/n), so n = t2/ϵ copies of state ρ is required to

achieve a ϵ error bounded Hamiltonian simulation with time t.

Note that in many cases, the operator e−iHt is used in the controlled form, such

as the phase estimation algorithm [23]. The controlled e−iρt operation here

could be similarly constructed by using a controlled version of SWAP opera-

tor.

2.2.3 Quantum Singular Value Estimation (SVE) Algorithm

For the whole paper, we assume the existence of following quantum oracles,

and discuss the query complexity of our algorithms to these oracles. Given

Hessian H ∈ Rd×d, we assume that H is stored in a data structure named as

the quantum random access memory (QRAM), such that the following quantum

oracles could be implemented:

UH : |i⟩|0⟩ → |i⟩|hi⟩ =
1

∥hi∥

d∑
j=1

hij|i⟩|j⟩,∀i ∈ [d], (2.1)

VH : |0⟩|j⟩ → |h̃⟩|j⟩ = 1

∥H∥F

d∑
i=1

∥hi∥|i⟩|j⟩,∀j ∈ [d], (2.2)

where hj ∈ Rd×1 denotes the transpose of j-th row vector of matrixH , ∥H∥F =√∑d
i,j=1 h

2
ij is the Frobenius norm of matrixH , and h̃ stands for the d-dimensional

vector whose i-th component is ∥hi∥/∥H∥F . The required data structure has a

binary tree form. The sign and square value for each entry are stored in differ-

ent leaves, and the value stored in each parent node is the sum of its children’s

value. The detailed description about this data structure can be referred to [24].

We denote TH as the time complexity of these oracles.

2.2 QUANTUM COMPUTING 9

Suppose the matrix H ∈ Rd×d, which has the eigenvalue decomposition H =∑r
j=1 λjujuj , is stored in the data structure mentioned before. Previous work

by I. Kerenidis and A. Prakash [24] provides an efficient quantum singular value

estimation algorithm, which could be used for estimating singular value or gen-

erating eigenstate. Here we briefly introduce their conclusion about the time

complexity of their algorithm:

THEOREM 2.1. [24] Suppose quantum accesses to oracles (2.1) and (2.2) exist.

There is a quantum algorithm which could perform the mapping
∑

j βj|uj⟩ →∑
j βj|uj⟩||̂λj|⟩ with time complexity O(THpolylog(d)ϵ

−1), where λ̂j ∈ [λj −

ϵ∥H∥F , λj + ϵ∥H∥F] with probability at least 1− 1/poly(d).

2.2.4 Quantum SWAP Test

Here we introduce a quantum algorithm named the Quantum SWAP test [25].

The goal of quantum SWAP test is to estimate the projection |⟨ϕ|ψ⟩|2 between

two states |ϕ⟩ and |ψ⟩. We present a quantum circuit for the SWAP test in

Figure 2.1.

FIGURE 2.1: Circuit of the Quantum SWAP Test

As shown in Figure 2.1, Quantum SWAP test performs the operation:

|0⟩|ϕ⟩|ψ⟩ → (H ⊗ I)(|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ S)(H ⊗ I)|0⟩|ϕ⟩|ψ⟩. (2.3)

The final state could be written as:

1

2
|0⟩(|ϕ⟩|ψ⟩+ |ψ⟩|ϕ⟩) + 1

2
|1⟩(|ϕ⟩|ψ⟩ − |ψ⟩|ϕ⟩). (2.4)

2.2 QUANTUM COMPUTING 10

The S gate performs the SWAP operation |ϕ⟩|ψ⟩ → |ψ⟩|ϕ⟩ for state |ϕ⟩ and |ψ⟩.

The measurement on the first qubit of the final state produces 0 with probability:

P0 =
1

4
∥|ϕ⟩|ψ⟩+ |ψ⟩|ϕ⟩∥2 = 1

2
(1 + |⟨ϕ|ψ⟩|2).

By the Hoeffding’s inequality (Lemma 6.1 in Appendix), one could perform the

measurement for O(ϵ′−2 log(1/δ)) times to obtain an estimation on the square

of the overlap |⟨ϕ|ψ⟩|2 with error bounded in ϵ′ with probability at least 1− δ.

CHAPTER 3

QNCF Algorithm

Our main contribution in this chapter is the quantum Negative Curvature Finding

(NCF) algorithm presented as Algorithm 1. The quantum NCF algorithm solves

the NCF problem by providing the target state |ut⟩ for case (1.1) or making

the non-vector statement for case (1.2). The target state |ut⟩ here corresponds

to the eigenvector ut, which satisfies the condition uT
t Hut ≤ −α + ϵ/2. We

present a tighter restrict on the target state |ut⟩ than the condition in case (1.1) to

keep a ϵ/2 redundancy for the classical read-out of the quantum state. Quantum

NCF Algorithm uses the Proper Eigenvalue Labelling (Algorithm 3) and the

Target State Generating (Algorithm 4) as subroutines proposed in Section 3.1

and Section 3.3, respectively. We summarize our conclusion on the complexity

Algorithm 1 Quantum Negative Curvature Finding (Quantum NCF) Algorithm
Input: Quantum access to oracles UH and VH . The parameter ϵ and α in the

NCF problem.
Output: A target state |ut⟩ such that the corresponding vector satisfies

uT
t Hut ≤ −α + ϵ/2; or a statement that with high probability there is

no unit vector u satisfies the condition uTHu < −α.
1: Label the proper (less than −α+ ϵ/2) eigenvalue of H (Proper Eigenvalue

Labelling).
2: if the least eigenvalue of H is labeled to be less than −α + ϵ/2, then
3: generate the target state (Target State Generating) and output the state;
4: else,
5: claim that there is no unit vector u satisfies the condition uTHu < −α.
6: end if

of Algorithm 1 in Theorem 3.1.

11

3 QNCF ALGORITHM 12

THEOREM 3.1. Algorithm 1 takes time O(THr5/2L5α−4polylog(d)ϵ−1) to solve

the NCF problem by providing the target state |ut⟩ or making the statement that

there is no unit vector satisfies the condition uTHu < −α.

PROOF. The complexity of Algorithm 1 could be directly obtained by the

complexity of Algorithm 3 and Algorithm 4, whose complexity analyses are

presented in Theorem 3.2 and Theorem 3.3, respectively. □

The core technical component of our quantum NCF algorithm is the quantum

SVE algorithm. However, there are three major challenges that we have to over-

come. Firstly, the positive-negative eigenvalue problem. In the NCF problem,

we are interested in eigenvectors with negative eigenvalues, but the quantum

SVE algorithm only gives estimations on singular values |λj|. To overcome this

issue, we develop Algorithm 2 to label negative eigenvalues.

Secondly, since the quantum SVE algorithm presents ϵ-estimations on singular

values with complexity O(TH∥H∥Fpolylog(d)ϵ−1) (Theorem 2.1), we need to

provide a tight upper bound for the Frobenius norm ∥H∥F , which is shown in

Lemma 3.1 (proved in Appendix):

LEMMA 3.1. SupposeH ∈ Rd×d is the Hessian matrix derived from the function

f : Rd → R with L-Lipschitz continuous gradient. Thus the Frobenius norm of

H is upper bounded by
√
rL, where r is the rank of H .

Finally, the input-state problem. For a general input state
∑

j βj|uj⟩, the output

of the quantum SVE algorithm has the form
∑

j βj|uj⟩||λ̂j|⟩. We could gener-

ate different eigenstates |uj⟩ with probability |βj|2 by the measurement on the

eigenvalue register. Thus to guarantee a small complexity, we need to prepare

a specific input such that the projection between the input and the target state is

relatively large.

3.1 THE SIGN OF EIGENVALUE 13

3.1 The Sign of Eigenvalue

In this section, we propose a quantum algorithm aiming to label the eigenvalue

that is less than −α + ϵ/2. This algorithm helps verify the existence of the

solution to the NCF problem and generating the target state. Since the quantum

SVE algorithm only provides estimations on singular values |λj|, we need to

develop Algorithm 2 first for obtaining the sign of an eigenvalue.

Algorithm 2 sign(λ) Algorithm

Input: Quantum access to oracles UH and VH . An eigenstate |u⟩ whose corre-
sponding eigenvalue is λ.

Output: A random variable which has different values 0 and 1 with probability
P (0) = 1+λ/∥H∥F

2
and P (1) = 1−λ/∥H∥F

2
.

1: Create state |u⟩|0⟩|0⟩. The second register has the same qubit length with
state |u⟩ and the third register has one qubit length.

2: Apply the Hadamard gate to obtain the state 1√
2
(|u⟩|0⟩|0⟩+ |u⟩|0⟩|1⟩).

3: Apply the controlled SWAP operation to obtain the state 1√
2
(|u⟩|0⟩|0⟩ +

|0⟩|u⟩|1⟩).
4: Apply operation UH ⊗ |0⟩⟨0| + VH ⊗ |1⟩⟨1| to obtain state 1√

2
(|Pu⟩|0⟩ +

|Qu⟩|1⟩).
5: Apply the Hadamard gate to obtain the state |Pu⟩+|Qu⟩

2
|0⟩+ |Pu⟩−|Qu⟩

2
|1⟩.

6: Measure the single qubit register and output the result.

In Algorithm 2, P ∈ Rd2×d is the matrix with column vectors pi = ei ⊗ hi

∥hi∥

for i ∈ [d] , and Q ∈ Rd2×d is the matrix with column vectors qj =
h̃

∥H∥F
⊗ ej

for j ∈ [d]. hj ∈ Rd×1 is the transpose of j-th row vector of matrix H , and

h̃ is the d-dimensional vector whose i-th component is ∥hi∥/∥H∥F . By direct

calculation, there is:

P TQ =
H

∥H∥F
, P TP = QTQ = I.

Mappings |u⟩|0⟩ → |Pu⟩ and |0⟩|u⟩ → |Qu⟩ can be performed by quantum

oracles UH and VH , respectively.

LEMMA 3.2. One could obtain the correct sign(λ) with probability 1 − δ by

using n = 2
∥H∥2F
λ2 log 1

δ
copies of eigenstate |u⟩ for Algorithm 2.

3.1 THE SIGN OF EIGENVALUE 14

PROOF. The measurement in step 6 of Algorithm 2 outputs 1 with probabil-

ity:

P (1) = ∥|Pu⟩ − |Qu⟩
2

∥2 = 1

4
(⟨Pu| − ⟨Qu|)(|Pu⟩ − |Qu⟩).

Note that ⟨Pu|Qu⟩ = uTP TQu = 1
∥H∥F

uTHu = λ
∥H∥F

, so P (1) = 1−λ/∥H∥F
2

.

Similarly, we have P (0) = 1+λ/∥H∥F
2

.

Suppose that we need n = 2x+ 1 times of measurement to give a 1− δ correct

statement about whether λ > 0 or λ < 0. The problem can be viewed as

the biased coin task. Define random variables Xi such that P (Xi = 1) = p

and P (Xi = 0) = 1 − p, define Sn =
∑n

i=1Xi/n. Then by the Hoeffding’s

inequality (Lemma 6.1), there is:

P (Sn/n− p ≤ −ϵ) ≤ e−2nϵ2 , P (Sn/n− p ≥ ϵ) ≤ e−2nϵ2 .

Back to the problem, the probability p = 1−λ/∥H∥F
2

. Suppose λ < 0, and we

consider:

sign(λ) = −sign(Sn − x).

The probability of obtaining the wrong sign is:

P (Sn ≤ x) = P (Sn/n− p ≤ x/n− p)

≤ exp
(
−2n(x/n− p)2

)
= exp

(
−2n

(
1

2n
− λ

2∥H∥F

)2
)

≤ exp

(
− nλ2

2∥H∥2F

)
.

Similarly for λ > 0, there is P (Sn ≥ x) ≤ exp
(
− nλ2

2∥H∥2F

)
.

Let exp
(
− nλ2

2∥H∥2F

)
≤ δ , we have n ≥ 2

∥H∥2F
λ2 log 1

δ
. □

3.2 PROPER EIGENVALUE LABELLING 15

3.2 Proper Eigenvalue Labelling

Now we build the Algorithm 3 to label the proper eigenvalue, which would

also benefit the target state generation task in the following section. The proper

here means the eigenvalue is less than −α + ϵ/2. We view the corresponding

eigenvector as our target vector.

Algorithm 3 Proper Eigenvalue Labelling
Input: Quantum access to oracles UH and VH . The parameter ϵ and α in the

NCF problem.
Output: A proper label to the singular value |λj| such that λj ≤ −α + ϵ/2

with probability 1− δ, or a non-vector statement that there is no unit vector
u satisfies uTHu < −α.

1: for k = 1 to 32
∥H∥4F
α4 log 1

δ
do

2: Create the state |ψeigen⟩ in Equation 3.1.
3: Measure the singular value register and mark the result.
4: Use the rest state in the first register as the input for Algorithm 2.
5: end for
6: Count the result in step 3 and step 4 for the sequence {(|λ̃j|, nj,mj)}rj=1,

where nj is the number of resulting |λ̃j| in step 3, and mj is the number of
resulting 1 in step 4 for different j.

7: if mj

nj
< 1

2
for all j ∈ [r], then make the non-vector statement;

8: else, choose the largest |λ̃j| that satisfies the condition mj

nj
> 1

2
.

9: if |λ̃j| < α− ϵ/4, then make the non-vector statement;
10: else, label eigenvalue λj as the proper eigenvalue.
11: end if
12: end if

The mean idea of Algorithm 3 is to use the input state:

1

∥H∥F

r∑
j=1

λj|uj⟩|uj⟩,

for the quantum SVE model and obtain the state:

|ψeigen⟩ =
1

∥H∥F

r∑
j=1

λj|uj⟩|uj⟩||λ̃j|⟩, (3.1)

where |λ̃j| ∈ |λj|±ϵ/4 with probability 1−1/poly(d). The measurement on the

singular value register would let this entangled state collapse to different states

3.2 PROPER EIGENVALUE LABELLING 16

|uj⟩|uj⟩ for j ∈ [r]. Since |uj⟩|uj⟩ is a pure state, we could obtain the state

|uj⟩ by neglecting the state in any other register. Using state |uj⟩ as the input

for Algorithm 2 could provide discrimination on the value of sign(λj). Thus,

we could label the proper eigenvalue, for the case that the least eigenvalue is

less than −α + ϵ/2; or make the non-vector statement, for the case that all

eigenvalues are greater than −α. We analyze the complexity of Algorithm 3 in

Theorem 3.2.

THEOREM 3.2. Algorithm 3 labels the proper eigenvalue of H , or claim with

high probability that there is no unit vector u satisfies uTHu < −α, with time

complexity O(TH∥H∥5Fα−4polylog(d)ϵ−1), where TH is the time complexity for

quantum oracles UH and VH .

PROOF. The input state 1
∥H∥F

∑r
j=1 λj|uj⟩|uj⟩ could be generated with or-

acles UH and VH :

|0⟩|0⟩ VH−→ 1

∥H∥F

d∑
i=1

∥hi∥|i⟩|0⟩
UH−→ 1

∥H∥F

d∑
i=1

d∑
j=1

hij|i⟩|j⟩. (3.2)

Since H has the eigen-decomposition H =
∑r

k=1 λkuku
T
k , we could rewrite

each entry of H as hij =
∑r

k=1 λku
(i)
k u

(j)
k , where u(i)k is the i-th component of

vector uk. Thus the state 1
∥H∥F

∑d
i=1

∑d
j=1 hij|i⟩|j⟩ could be written as:

1

∥H∥F

d∑
i=1

d∑
j=1

r∑
k=1

λku
(i)
k u

(j)
k |i⟩|j⟩ = 1

∥H∥F

r∑
k=1

λk|uk⟩|uk⟩.

Then we apply the quantum SVE model on this state. To provide ϵ/4-estimation

on the singular value, the time complexity to run the quantum SVE algorithm

needs to be O(TH∥H∥Fpolylog(d)ϵ−1) by Theorem 2.1.

Suppose there exist some eigenvalues λj ≤ −α + ϵ/2. We denote the least

one of them as λt and label it as the proper eigenvalue. By Theorem 3.2, we

need nt = 2
∥H∥2F
λ2
t

log 1
δ

numbers of state |ut⟩ to guarantee that λt < 0 with

3.3 TARGET STATE GENERATING 17

probability 1 − δ. Note that the probability of generating state |ut⟩ in each

iteration of step 2-3 in Algorithm 3 is Pt =
λ2
t

∥H∥2F
. So we need to perform step

2-3 in Algorithm 3 for n = 2
∥H∥4F
λ4
t

log 1
δ

times. The number n can be roughly

upper bounded by n = 32
∥H∥4F
α4 log 1

δ
, since for negative curvature case ϵ < α,

we have |λt| = α− ϵ/2 > α/2.

By considering the time complexity to run the quantum SVE algorithm and

setting the error bound δ = 1/poly(d), we could obtain the time complexity of

Algorithm 3, that is O(TH∥H∥5Fα−4polylog(d)ϵ−1). □

3.3 Target State Generating

Suppose the result of Algorithm 3 implies the existence of the target eigenvector

ut that satisfies uT
t Hut ≤ −α + ϵ/2. To give a solution to the NCF problem,

we need to obtain the vector ut efficiently. Thus we develop Algorithm 4 in

Section 3.3, which generates the quantum state |ut⟩ in time Õ(polylog(d)). The

classical read-out of |ut⟩, which means to obtain the classical form ut from

quantum state |ut⟩, will be discussed in Chapter 4.

Algorithm 4 Target State Generating
Input: Quantum access to oracles UH and VH . The number α and the error

bound ϵ in the NCF problem. The probability error bound δ.
Output: The target state |ut⟩ with property ⟨ut|H|ut⟩ = λt ≤ −α + ϵ/2.

1: for k = 1 to 4
∥H∥2F
α2 log 1

δ
do

2: Create the state |ψeigen⟩ (Equation 3.1).
3: Measure the eigenvalue register and mark the result.
4: if the eigenvalue is labelled to be proper in Algorithm 3, then
5: output the state in the first register as the target state.
6: end if
7: end for

The main idea of Algorithm 4 is similar to Algorithm 3. We still use the state
1

∥H∥F

∑r
j=1 λj|uj⟩|uj⟩ as the input of the quantum SVE algorithm to obtain

3.3 TARGET STATE GENERATING 18

state:

|ψeigen⟩ =
1

∥H∥F

r∑
j=1

λj|uj⟩|uj⟩||λ̃j|⟩.

Denote the target eigenvalue as λt ≤ −α+ ϵ/2 and the target eigenstate as |ut⟩.

The probability of generating |ut⟩ in each iteration of step 2-6 in Algorithm 4 is

Pt =
λ2
t

∥H∥2F
≥ α2

4∥H∥2F
. Thus the probability of generating at least one state |ut⟩

in N = 4
∥H∥2F
α2 log 1

δ
times of step 2-6 is 1− (1− Pt)

N . There is:

1− (1− Pt)
N ≥ 1− e−NPt ≥ 1− e− log(1/δ) = 1− δ.

So Algorithm 4 could generate at least one state |ut⟩ with probability at least

1 − δ. By considering the time complexity to run the quantum SVE algo-

rithm (O(TH∥H∥Fpolylog(d)ϵ−1)) and setting the probability error bound δ =

1/poly(d), we could derive the complexity of Algorithm 4 in Theorem 3.3:

THEOREM 3.3. Suppose the least eigenvalue ofH is less than −α+ϵ/2. Denote

|ut⟩ as the corresponding eigenstate. Then Algorithm 4 generates state |ut⟩ in

time O(TH∥H∥3Fα−2polylog(d)ϵ−1) with probability at least 1 − 1/poly(d), ,

where TH is the time complexity for quantum oracles UH and VH .

By using Lemma 3.1, Theorem 3.2 and Theorem 3.3, we could provide the main

result of this chapter in Theorem 3.1.

CHAPTER 4

State read-out

Recovering the unknown quantum state from measurements (state read-out) is

also known as the quantum state tomography (QST), which is one of the fun-

damental problems in quantum information science. QST has attracted signif-

icant interest from both theoretical [26, 27, 28, 29, 30, 31] and experimental

[32, 33, 34] perspectives in recent years. Specifically, reconstructing a d × d

density matrix ρ requires at least n = O(d2/ϵ2) copies for general mixed state

case or n = O(d/ϵ2) copies for pure state case ρ = |v⟩⟨v|[29]. Directly using

state tomography methods for state read-out is computationally expensive and

would offset the gained quantum speedup [12]. Since the required number n

is proven optimal for both cases [29], any further improvement on n could be

achieved only by assuming specific prior knowledge on state ρ. For example,

QST via local measurements provides efficient estimation for states which can

be determined by locally reduced density matrices [31] or states with a low-

rank tensor decomposition [30]. However, the output states generated by most

quantum machine learning (QML) algorithms do not have these structures.

Instead, many QML algorithms, which involve an input matrix, have the solu-

tion state lies in the row or column matrix space. For example, the quantum

SVD algorithm focuses on providing singular value σi and corresponding sin-

gular vector states |ui⟩ and |vi⟩ for matrix A =
∑

i σiuiv
T
i . States |ui⟩ and

|vi⟩ lies in the column and row space of A, respectively. Another example is

the quantum linear system solver for linear system Ax = b. Solution state

|x⟩ ∝ A−1b here lies in the row space of A. Since these solution vectors play

19

4 STATE READ-OUT 20

crucial roles in modern machine learning [10], a fast read-out protocol could

enhance the capability of existing QML algorithms by providing efficient end-

to-end versions.

In this chapter, we design an efficient state read-out protocol that works for

QML algorithms which involve an r-rank input matrix stored in quantum ran-

dom access memory (QRAM), and the output state |v⟩ lies in the row space

of the matrix. Our algorithm takes Õ(poly(r)) copies of output state for the

tomography. The main idea is to obtain the description |v⟩ =
∑r

i=1 xi|si⟩, or

to say v =
∑r

i=1 xisi/∥si∥, where {si}ri=1 is a basis selected from rows of the

input matrix.

Now we back to the read-out problem of the target state. Recall that our Hessian

matrix has the eigen decomposition H =
∑r

j=1 λjuju
T
j . Then, any eigenvector

uj lies in the row space span{hj}dj=1, because uT
j H = λju

T
j can be rewritten

as
∑d

i=1 h
T
i u

(i)
j = λju

T
j . Since H has the rank of r, there exists an r-elements

subset of all rows that is complete for the row space:

span{hg(i)}ri=1 = span{hj}dj=1.
1

Thus, eigenvector uj could also be represented as the linear combination of

vectors in {hg(i)}ri=1. We denote hg(i) as si for simplicity. The read-out problem

can be viewed as solving the equation:

|ut⟩ =
r∑

i=1

xi|si⟩,

where xi ∈ R,∀i ∈ [r] are unknown variables. Thus, instead of simply read-

ing out components of vector ut, we could get the classical description ut by

|ut⟩ =
∑r

i=1 xi|si⟩. Note that the complete basis {si}ri=1 is not unique, and

we only need to identify one of them. The main result is informally stated in

Theorem 4.1.

1g is a map from [r] to [d], such that g(i) is the index of the i-th row basis vector.

4.1 COMPLETE BASIS SELECTION 21

THEOREM 4.1. The classical description ut =
∑r

i=1 xisi/∥si∥ for the negative

curvature direction could be presented in time Õ(poly(r, log d)ϵ−3) with l2 norm

error bounded in ϵ, when the complete basis set {si}ri=1 is given.

We also notice some recent breakthroughs about quantum-inspired algorithms

[35, 36] based on sampling techniques and the FKV algorithm [37]. These

quantum-inspired algorithms perform the approximate SVD and output eigen-

vector as the linear-sum on a group of row vectors. However, to cover the whole

column space, the quantum-inspired algorithm need to sample at least O(r
2

ϵ2
)

numbers of rows and columns to form the basis, while our method exactly gen-

erates the linear-sum form on r rows. A more detailed comparison between the

quantum-inspired sampling algorithm and our read-out protocol is discussed in

Section 4.3.

4.1 Complete Basis Selection

In this section, we develop a quantum algorithm to select an index set SI =

{g(i)}ri=1 from [d], which corresponds to the complete row basis {hg(i)}ri=1. The

complete basis selection (CBS) algorithm is summarized in Algorithm 5 along

with circuit implementation illustrated in Figure 4.1. The CBS algorithm can be

viewed as a quantum generalization of the Gram-Schmidt orthogonalization.

We remark that there are some related literatures for constructing orthogonal

states [38, 39, 40, 41]. However, Ref. [38] focuses on the single-qubit system.

Ref. [39, 40] focus on generating the state orthogonal to the input state, which

implies a O(d) time complexity for all rows. Ref. [41] constructs orthogonal

states from original states by simply lifting the dimension of the Hilbert space,

which, although named as the "generalized" Gram-Schmidt process, cannot se-

lect the needed complete basis as standard Gram-Schmidt process. Hence, our

CBS algorithm is the first efficient quantum version for the Gram-Schmidt pro-

cess that can be of independent interest.

4.1 COMPLETE BASIS SELECTION 22

4.1.1 The CBS Algorithm

Now we describe the CBS algorithm in detail. In the first iteration of the CBS

algorithm, we choose |hg(1)⟩ from {|hj⟩}j∈[d] with probability proportional to

∥hg(1)∥2, and define |t1⟩ := |hg(1)⟩. We initialize the index set SI = {g(1)}.

In the l-th iteration, a group of orthogonal states {|tm⟩}l−1
m=1 and an index set

SI = {g(i)}l−1
i=1 for a group of linearly independent rows are given. We perform

the quantum circuit illustrated in Fig 4.1, where the unitaryRm = I−2|tm⟩⟨tm|.

We choose the new index g(l) from the set:{
j :
∥∥∥|hj⟩ −

l−1∑
m=1

|tm⟩⟨tm|hj⟩
∥∥∥ ̸= 0

}
with probability proportional to ∥|hj⟩ −

∑l−1
m=1 |tm⟩⟨tm|hj⟩∥2, and obtain the

new orthonormal state:

|tl⟩ ∝ |hg(l)⟩ −
l−1∑
m=1

|tm⟩⟨tm|hg(l)⟩.

The index set is updated as SI = SI∪{g(l)}. Finally, after r iterations, we obtain

the index set SI = {g(i)}ri=1 such that {hg(i)}ri=1 forms a linearly independent

basis, which is complete for the r-rank row space.

Algorithm 5 Complete Basis Selection (CBS)
Input: Quantum access to oracles UH and VH .
Output: The index set of the complete basis: SI = {g(i)}ri=1.

1: Initialize the index set SI = ∅.
2: for l = 1 to r do
3: Run the quantum circuit in Fig 4.1. Measure the third register and post-

select on result 0. Measure the first register to obtain an index g(l). Let
SI = SI ∪ {g(l)}.

4: end for

4.1 COMPLETE BASIS SELECTION 23
1

∥H∥F

∑d
j=1 ∥hj∥|j⟩|hj⟩ |ϕ(l)

1 ⟩ |ϕ(l)
2 ⟩

|0⟩
VH UH

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

|0⟩ R1 R2 · · · Rl−1

|0⟩ H H

FIGURE 4.1: Quantum circuit for the l-th iteration of the CBS Algorithm.

In the l-th iteration, the quantum circuit first creates the state:

1

∥H∥F

d∑
j=1

∥hj∥|j⟩|hj⟩|0⟩,

by using oracles UH and VH . Then a Hadamard gate is applied to the third

register, followed by a list of controlled Rm gate:

C(Rm) = Rm ⊗ |0⟩⟨0|+ I ⊗ |1⟩⟨1|,

where the unitaryRm = I−2|tm⟩⟨tm|,∀m ∈ [l−1]. The final unitary operation

is again a Hadamard gate to the third register. The state before the measurement

is:

|ϕ(l)
1 ⟩ = 1

∥H∥F

d∑
j=1

∥hj∥|j⟩

{[
|hj⟩ −

l−1∑
m=1

|tm⟩⟨tm|hj⟩
]
|0⟩ −

l−1∑
m=1

|tm⟩⟨tm|hj⟩|1⟩

}
.

Then we measure the third register and post-select on result 0. The probability

of outcome 0 is

Pl =
1

∥A∥2F

d∑
j=1

∥hj∥2
∥∥∥|hj⟩ −

l−1∑
m=1

|tm⟩⟨tm|hj⟩
∥∥∥2, (4.1)

and the post-selected state is

|ϕ(l)
2 ⟩ = 1√

Pl∥H∥F

d∑
j=1

∥hj∥|j⟩
[
|hj⟩ −

l−1∑
m=1

|tm⟩⟨tm|hj⟩
]
.

Note that we need O(1/Pl) copies of |ϕ(l)
1 ⟩ to generate the state |ϕ(l)

2 ⟩. Finally,

we measure the first register for a new basis index g(l) and a new orthogonal

4.1 COMPLETE BASIS SELECTION 24

state:

|tl⟩ =
1

Zl

[
|hg(l)⟩ −

l−1∑
m=1

|tm⟩⟨tm|hg(l)⟩

]
, (4.2)

where Zl = ∥|hg(l)⟩ −
∑l−1

m=1 |tm⟩⟨tm|hg(l)⟩∥ is the normalizing constant.

The difficulty of constructing the circuit in Fig 4.1 is to efficiently implement

the controlled version of unitary Rm = I − 2|tm⟩⟨tm|. Since each |tm⟩ is gen-

erated during the algorithm, we do not have oracle Ot to prepare |0⟩ → |tm⟩,

so we cannot implement Rm by Ot(I − 2|0⟩⟨0|)O†
t . To overcome the afore-

mentioned difficulty, we note that the state |tm⟩ lies in span{|hg(i)⟩}mi=1, so

there is |tm⟩ =
∑m

i=1 zi|hg(i)⟩, where parameters {zi}mi=1 could be calculated.

Then we could generate |tm⟩ with post-selections by the linear combination

of unitary (LCU) method [42]. Given copies of |tm⟩⟨tm|, we can implement

Rm = I − 2|tm⟩⟨tm| = e−iπ|tm⟩⟨tm| with the help of the Hamiltonian Simu-

lation technique developed in Quantum PCA [7]. By considering the error of

implementing each Rm, we prove that the CBS algorithm could select a linearly

independent basis in time Õ(poly(r)) with probability at least 3/4. We detail

the error and time complexity analysis in Section 4.1.2 and 4.1.3 with the main

result provided as Theorem 4.2.

THEOREM 4.2. By using O(r3∥H∥2Fλ−2
min(H)c−1/2(∥H∥2Fλ−2

min(H) + r2.5c−1))

queries to input oracles, the CBS algorithm could find an index set {g(i)}ri=1,

which forms a complete basis {|hg(i)⟩}ri=1 with probability at least 3/4, where c

is a parameter 2 between (0, 1).

4.1.2 Implementation of C(Rl)

The crucial part in Algorithm 5 is to implement the controlled operation:

C(Rl) = Rl ⊗ |0⟩⟨0|+ I ⊗ |1⟩⟨1|,∀l ∈ [r − 1],

2The detail about c will be discussed in Section 4.1 with numerical analysis in Section 4.3.

4.1 COMPLETE BASIS SELECTION 25

where Rl = I − 2|tl⟩⟨tl|. In the following, we denote si := hg(i) for the

simplicity of notation. By the definition of states {|tl⟩}rl=1:

|tl⟩ =
1

Zl

(|sl⟩ −
l−1∑
i=1

|ti⟩⟨ti|sl⟩), (4.3)

each state |tl⟩ can be written as the linear combination of states {|si⟩}li=1,

namely,

|tl⟩ =
l∑

j=1

zj|sj⟩,

for some coefficients {zj}lj=1. By using the linear combination of unitaries

(LCU) and the Hamiltonian simulation methods, we could implement operation

C(Rl) with given coefficients {zj}lj=1. See Lemma 4.3 for detail. Lemma 4.1

provides a calculation method of coefficients {zj}lj=1, while the error analysis is

in Lemma 4.2. The main result about implementing operationC(Rl) is provided

in Proposition 4.1.

First we focus on calculating coefficients {zj}lj=1. Define:

b =
l−1∑
j=1

⟨sj|sl⟩ej; Cm = [cij ≡ ⟨si|sj⟩]m,m
i,j ,∀m ∈ [r].

We provide the equation of {zj}lj=1 in Lemma 4.1. Notation | · | here denotes

the determinant of a matrix.

LEMMA 4.1. All components in vector zT =
√

|Cl−1|
|Cl|

(−bTC−1
l−1, 1) could form

coefficients {zi}li=1, such that |tl⟩ =
∑l

j=1 zj|sj⟩.

PROOF. The restriction that |tl⟩ is normalized and is orthogonal to states

|s1⟩, |s2⟩, · · · |sl−1⟩ could yield:

l∑
i=1

zi⟨sj|si⟩ = 0, ∀j ∈ [l − 1], (4.4)

l∑
j=1

l∑
i=1

zjzi⟨sj|si⟩ = 1. (4.5)

4.1 COMPLETE BASIS SELECTION 26

Note that zl = 1/Zl by (4.3). Define the l − 1 dimensional vector

y = −Zl

l−1∑
i=1

ziei,

and rewrite (4.4) in the vector form:

Cl−1y = b. (4.6)

Equation (4.5) could be written as:

1 =
l∑

j=1

l∑
i=1

zizj⟨sj|si⟩

=
l−1∑
i=1

l−1∑
j=1

zizjcij + 2zl

l−1∑
i=1

zibi + z2l

=
yTCl−1y − 2yTb+ 1

Z2
l

=
1− yTb

Z2
l

,

which yields

yTb = 1− Z2
l . (4.7)

Solving (4.6) is trivial:

y = C−1
l−1b, or, yi =

|C(i)
l−1|

|Cl−1|
, ∀i ∈ [l − 1], (4.8)

whereC(i)
l−1 denotes the matrix generated fromCl−1 by replacing the i-th column

with b. Replacing yi in (4.7) by (4.8), there is:

Z2
l = 1− yTb

= 1− 1

|Cl−1|

l−1∑
i=1

|C(i)
l−1|bi

=
|Cl−1| −

∑l−1
i=1 |C

(i)
l−1|cil

|Cl−1|

4.1 COMPLETE BASIS SELECTION 27

=
1

|Cl−1|

[
(−1)2l|Mll|+

l−1∑
i=1

(−1)l+i|Mil|cil
]

=
|Cl|
|Cl−1|

.

Matrix Mij denotes the minor of l × l matrix Cl by removing the i-th row and

j-th column. The fourth equation holds by noticing:

|C(i)
l−1| = (−1)l−1−i|Mil| = (−1)l−1+i|Mil|,

since we could obtain the transpose of the matrix C(i)
l−1 by exchanging the last

row of Mil with its previous row for (l − 1− i) times. Therefore, we have:

z =

√
|Cl−1|
|Cl|

(−bTC−1
l−1, 1)

T . (4.9)

There is another equivalent formulation of coefficients z. Consider state:

|tl⟩ =
1

Zl

(|sl⟩ −
l−1∑
i=1

|ti⟩⟨ti|sl⟩),

multiply the state ⟨tl| on both sides could yield:

⟨sl|tl⟩ =
l∑

i=1

zi⟨sl|si⟩ = Zl. (4.10)

Define the l-dimensional vector el = (0, 0, · · · , 0, 1)T . Rewrite Equation (4.10),

(4.4) and (4.5) in the vector form

Clz = Zlel, (4.11)

zTClz = 1. (4.12)

We could also calculate the coefficients as z = ZlC
−1
l el. □

By Lemma 4.1, coefficients {zj}lj=1 is calculated as:

Zl =
√
|Cl|/|Cl−1|,

4.1 COMPLETE BASIS SELECTION 28

y = C−1
l−1b,

z = Z−1
l (−yT , 1)T .

Remark that each element in vector b or matrix Cl−1 is the inner product be-

tween states. We use the technique developed in [43] to estimate each inner

product ⟨si|sj⟩, which provides ϵ error estimation by using O(1/ϵ) queries to

input oracles. Thus, the error on b and Cl−1 could influence the accuracy of

coefficients {zj}. We provide Lemma 4.2 to verify the influence of error to the

description |tl⟩ =
∑l

j=1 zj|sj⟩.

LEMMA 4.2. The approximate coefficients {z̃j}lj=1 could be obtained by using

O(l7/2λ
−3/2
min (Cl)ϵ

−1) queries to UH , which introduces a l2 norm error on |tl⟩

bounded as ∥|tl⟩ − |t̃l⟩
∥t̃l⟩∥

∥ ≤ ϵ.

PROOF. Define C̃l−1 and b̃ as estimations to Cl−1 and b, respectively, where

each element in C̃l−1 or b̃ has error bounded by ϵ1. Denote ∆Cl−1 = C̃l−1 −

Cl−1, ∆b = b̃ − b and ỹ = C̃−1
l−1b̃. Then the norm of ∆y = ỹ − y could be

bounded as

∥∆y∥ = ∥C̃−1
l−1b̃− C−1

l−1b∥

= ∥(Cl−1 +∆Cl−1)
−1(b+∆b)− C−1

l−1b∥

= ∥(Cl−1 +∆Cl−1)
−1(∆b−∆Cl−1 · C−1

l−1b)∥

≤ ∥C−1
l−1∥ · ∥(I + C−1

l−1∆Cl−1)
−1∥ · (∥∆b∥+ ∥∆Cl−1 · C−1

l−1b∥)

≤ ∥C−1
l−1∥ ·

∥∆b∥+ ∥∆Cl−1∥∥y∥
1− ∥C−1

l−1∆Cl−1∥
,

where the norm ∥ · ∥ denotes the largest singular value of the matrix. Based on

(4.12), the l2 norm of vector z is bounded as

∥z∥2 ≤ 1

λmin(Cl)
,

4.1 COMPLETE BASIS SELECTION 29

so there is

∥y∥ =
√
Z2

l ∥z∥2 − 1 < Zl∥z∥ ≤ Zlλ
−1/2
min (Cl).

Based on (4.11), there is

Zl = ∥Clz∥ ≥ λmin(Cl)∥z∥ ≥ λmin(Cl)|zl| =
λmin(Cl)

Zl

,

so

Zl ≥
√
λmin(Cl). (4.13)

There is:

∥∆y∥ ≤ ∥C−1
l−1∥ ·

∥∆b∥+ ∥∆Cl−1∥∥y∥
1− ∥C−1

l−1∆Cl−1∥

≤
∥C−1

l−1∥(
√
l − 1ϵ1 + (l − 1)ϵ1Zlλ

−1/2
min (Cl))

1− ∥C−1
l−1∥(l − 1)ϵ1

≤ 2(l − 1)Zlλ
−3/2
min (Cl)ϵ1

1− (l − 1)λ−1
min(Cl)ϵ1

≤ ϵ2,

where ϵ2 = 3Zl(l − 1)λ
−3/2
min (Cl)ϵ1. The second equation is derived by noticing

∥∆b∥ ≤
√
l − 1ϵ1, ∥b∥ ≤

√
l − 1, ∥∆Cl−1∥ ≤ (l − 1)ϵ1 and Zl ≥ λ

1/2
min(Cl).

The third equation is derived by noticing ∥C−1
l−1∥ = λmin(Cl−1) ≤ λmin(Cl).

Now we analyse how the error ∆y could influence the infidelity of the coeffi-

cients {zj}lj=1 for state |tl⟩. Define the unnormalized state as |t̃l⟩ =
∑l

i=1 z̃i|si⟩,

there is:

⟨tl|t̃l⟩ = zTClz̃

=
1

ZlZ̃l

[yTCl−1ỹ − bTy − bT ỹ + 1]

=
1

ZlZ̃l

[1− bTy] =
Zl

Z̃l

.

The form |t̃l⟩ =
∑l

i=1 z̃i|si⟩ is not normalized:

∥|t̃l⟩∥2 = z̃TClz̃

4.1 COMPLETE BASIS SELECTION 30

=
1

Z̃2
l

[ỹTCl−1ỹ + 1− 2ỹTb]

=
1

Z̃2
l

[
∆yTCl−1∆y + 2∆yTCl−1y + yTCl−1y + 1− 2∆yTb− 2yTb

]
=

1

Z̃2
l

[Z2
l +∆yTCl−1∆y],

where the final equation is derived by noticing Cl−1y = b and Z2
l = 1 − yTb.

So the l2 norm distance between the state |tl⟩ and |t̃l⟩ is bounded as:∥∥∥∥|tl⟩ − |t̃l⟩
∥|t̃l⟩∥

∥∥∥∥ =

√
2− 2

⟨tl|t̃l⟩
∥|t̃l⟩∥

=

√
2− 2

Zl√
Z2

l +∆yTCl−1∆y

≤
√

2− 2
Zl√

Z2
l + ∥∆y∥2∥Cl−1∥

≤
√

2− 2
Zl

Zl +
∥Cl−1∥∥∆y∥2

2Zl

≤∥Cl−1∥1/2∥∆y∥
Zl

≤(l − 1)1/2ϵ2
Zl

.

The fourth equation follows from

(Z2
l + ∥∆y∥2∥Cl−1∥)−

(
Zl +

∥Cl−1∥∥∆y∥2

2Zl

)2

= −∥Cl−1∥2∥∆y∥4

4Z2
l

≤ 0.

Denote

ϵ =
(l − 1)

1
2

Zl

ϵ2 = 3(l − 1)3/2λ
−3/2
min (Cl)ϵ1.

To guarantee an ϵ error bound on the accuracy of state |tl⟩, each inner product

⟨si|sj⟩ needs an ϵ1 error bounded estimation, which takes

O(1/ϵ1) = O(l3/2λ
−3/2
min (Cl)ϵ

−1)

4.1 COMPLETE BASIS SELECTION 31

queries to input oracles. Considering l(l−1)
2

numbers of different inner products,

the total query complexity is bounded by O(l7/2λ−3/2
min (Cl)ϵ

−1). □

Given coefficients {zj}lj=1, we provide a framework to implement operation

C(Rl) = Rl ⊗ |0⟩⟨0|+ I ⊗ |1⟩⟨1| in Lemma 4.3.

LEMMA 4.3. Given coefficients {zj} such that |tl⟩ =
∑l

j=1 zj|sj⟩, the operation

C(Rl) can be implemented with error ϵ by using O(lλ−1/2
min (Cl)ϵ

−1) queries to

the oracle UA.

PROOF. Assume coefficients {zj}lj=1 are given such that |tl⟩ =
∑l

j=1 zj|sj⟩.

Define the index oracle: Uindex : |0⟩⊗ log d → 1√
l

∑l
j=1 |g(j)⟩. We could prepare

the pure state ρl = |tl⟩⟨tl| by the linear combination of unitaries method as fol-

lows. Firstly, initialize the state |0⟩⊗ log d|0⟩⊗ log d|0⟩. Then, apply oracle Uindex

on the first register, followed by the oracle UH , to yield:

1√
l

l∑
j=1

|g(j)⟩|hg(j)⟩|0⟩ =
1√
l

l∑
j=1

|g(j)⟩|sj⟩|0⟩.

Denote z ≡ maxj |zj|. Then we perform the controlled rotation e−iσy arccos(zj/z)

on the third register, conditioned on the first register |g(j)⟩, to obtain

1√
l

l∑
j=1

|g(j)⟩|sj⟩

zj
z
|0⟩+

√
1−

z2j
z2
|1⟩

 .

Finally, apply U †
index to the first register and obtain the state

l∑
j=1

|0⟩zj
zl
|sj⟩|0⟩+ orthogonal garbage state

=
1

zl
|0⟩|tl⟩|0⟩+ orthogonal garbage state.

The success probability of obtaining state |tl⟩ is 1/z2l2, so we could prepare

the state |tl⟩ with O(zl) queries to UH by using the amplitude amplification

method [44].

4.1 COMPLETE BASIS SELECTION 32

Note that Rl = I − 2|tl⟩⟨tl| can be viewed as the unitary with Hamiltonian

ρl = |tl⟩⟨tl|:

Rl = I − 2|tl⟩⟨tl| = e−iπρl .

Therefore, by using the Hamiltonian simulation method developed in Quan-

tum PCA [7], the operation C(Rl) could be performed with error ϵ consuming

O(π2/ϵ) = O(1/ϵ) copies of ρl. Taking the complexity of generating state |tl⟩

into account, we could implement operation C(Rl) with error bounded as ϵ by

usingO(lmaxi |zj|/ϵ) queries toUH when coefficients {zj}lj=1 are given. Based

on (4.12), the l2 norm of vector z is bounded as

∥z∥2 ≤ 1

λmin(Cl)
,

which yields:

max
j

|zj| ≤ ∥z∥ ≤ λ
−1/2
min (Cl). (4.14)

So the query complexity for implementing C(Rl) with given coefficients could

be bounded as O(lλ−1/2
min (Cl)ϵ

−1). □

With the help of Lemma 4.1, Lemma 4.2 and Lemma 4.3, we could derive the

main result about implementing operation C(Rl) in Proposition 4.1.

PROPOSITION 4.1. Operation C(Rl) could be implemented with error bounded

in ϵ by using O(lλ−1/2
min (Cl)ϵ

−1) queries to input oracles. The construction of

C(Rl) needs a group of coefficients {zi}li=1, which could be obtained by us-

ing O(l7/2λ−3/2
min (Cl)ϵ

−1) queries to oracle UH . Cl is the gram matrix of states

{|si⟩}li=1.

PROOF. By Lemma 4.1 and Lemma 4.2, one could obtain coefficients {z̃j}lj=1

by using O(l7/2λ−3/2
min (Cl)ϵ

−1) queries to oracle UH , such that the corresponding

state |t̃l⟩ satisfies: ∥∥∥∥|tl⟩ − |t̃l⟩
∥|t̃l⟩∥

∥∥∥∥ ≤ ϵ

5
.

4.1 COMPLETE BASIS SELECTION 33

By Lemma 4.3, given known coefficients, constructing operation C(Rl) with

error bounded by ϵ
5

needs O(lλ−1/2
min (Cl)ϵ

−1) queries to input oracle. Then the

total error for implementing C(Rl) is:

error(Rl) ≤
ϵ

5
+ ∥Rl − R̃l∥

=
ϵ

5
+ 2∥|tl⟩⟨tl| − |t̃l⟩⟨t̃l|∥

≤ ϵ

5
+ 4 · error(|tl⟩)

≤ ϵ

5
+ 4

ϵ

5
= ϵ.

□

4.1.3 Error and Runtime Analysis

In this section, we analyse the error and runtime of the Complete Basis Selection

Algorithm (Algorithm 5). The main result is provided in Theorem 4.3.

THEOREM 4.3. By using O(r3∥H∥2Fλ−2
min(H)c−1/2(∥H∥2Fλ−2

min(H) + r2.5c−1))

queries to input oracles, Algorithm 5 could find an index set {g(i)}ri=1, which

forms a complete basis {hg(i)}ri=1 with probability at least 3/4. Parameter c =

λmin(Cr−1) is a positive number between (0, 1).

PROOF. First, we discuss the success probability of Algorithm 5, which

could be influenced by the error on operation Rl = I − 2|tl⟩⟨tl|. Suppose

each Rl is implemented with error ∥R̃l − Rl∥ ≤ ϵ. Denote Πl =
∏l

i=1Ri and

Π̃l =
∏l

i=1 R̃i, then there is ∥Π̃l −Πl∥ ≤ lϵ by [23]. State |ϕ(l)
2 ⟩ in Algorithm 5

can be rewritten as:

|ϕ(l)
2 ⟩ = 1√

Pl∥H∥F

d∑
j=1

∥hj∥|j⟩
Πl−1 + I

2
|hj⟩,

4.1 COMPLETE BASIS SELECTION 34

and Pl could also be rewritten as:

Pl =
1

∥H∥2F

d∑
j=1

∥hj∥2∥
Πl−1 + I

2
|hj⟩∥2. (4.15)

Similarly, we denote:

|ϕ̃(l)
2 ⟩ = 1√

P̃l∥H∥F

d∑
j=1

∥hj∥|j⟩
Π̃l−1 + I

2
|hj⟩, (4.16)

P̃l =
1

∥H∥2F

d∑
j=1

∥hj∥2∥
Π̃l−1 + I

2
|hj⟩∥2. (4.17)

Remark the objective of Algorithm 5 is to obtain the index set {g(l)} such that

corresponding rows are linearly independent. We denote P false
l as the probabil-

ity of selecting out the state |sl⟩ ∈ span{|si⟩}l−1
i=1, which implies the failure of

the Algorithm 5 at the l-th iteration. Denote Sl = span{|si⟩}l−1
i=1, there is:

P false
l (4.18)

=
∑

j:|hj⟩∈Sl

P
(

resulting j when measure |ϕ̃(l)
2 ⟩
)

(4.19)

=
1

P̃l∥H∥2F

∑
j:|hj⟩∈Sl

∥hj∥2
∥∥∥∥∥Π̃l−1 + I

2
|hj⟩

∥∥∥∥∥
2

(4.20)

=

∑
j:|hj⟩∈Sl

∥hj∥2
∥∥∥(Π̃l−1 + I)|hj⟩

∥∥∥2∑d
j=1 ∥hj∥2

∥∥∥(Π̃l−1 + I)|hj⟩
∥∥∥2 (4.21)

=

∑
j:|hj⟩∈Sl

∥hj∥2
∥∥∥(Π̃l−1 − Πl−1)|hj⟩

∥∥∥2∑d
j=1 ∥hj∥2

[
2 + 2⟨hj|

(
Π̃l−1 − Πl−1 +Πl−1

)
|hj⟩

] (4.22)

≤
∑

j:|hj⟩∈Sl
∥hj∥2(l − 1)2ϵ2∑d

j=1 ∥hj∥2
[
∥(Πl−1 + I)|hj⟩∥2 − 2∥Π̃l−1 − Πl−1∥

] (4.23)

≤ ∥H∥2F (l − 1)2ϵ2

4∥H∥2FPl − 2∥H∥2F (l − 1)ϵ
. (4.24)

4.1 COMPLETE BASIS SELECTION 35

Equation (4.21) is derived by using (4.17). Equation (4.22) is derived by notic-

ing that for state |hj⟩ ∈ Sl, (Πl−1 + I)|hj⟩ = 0. Inequality (4.23) is derived by

using ∥Π̃l−1 − Πl−1∥ ≤ (l − 1)ϵ and ∥(Πl−1 + I)|hj⟩∥2 = 2 + 2⟨hj|Πl−1|hj⟩.

Inequality (4.24) comes from (4.15). We provide Lemma 4.4 for a lower bound

on Pl.

LEMMA 4.4. The probability Pl is lower bounded by (r+1−l)λ2
min(H)

∥H∥2F
.

PROOF. Denote |λ1| ≥ |λ2| ≥ · · · ≥ |λr|, where {λj}rj=1 are eigenvalues

of the matrix H =
∑r

i=1 λiuiu
T
i . Since state |tm⟩ is the linear sum of rows

{|hj⟩}dj=1, while each row is the linear sum hj =
∑r

i=1 λiu
(j)
i ui, we can further

write |tm⟩ =
∑r

i=1wmi|ui⟩. There is:

Pl =
1

∥H∥2F

d∑
j=1

[
∥hj∥2∥|hj⟩ −

l−1∑
m=1

|tm⟩⟨tm|hj⟩∥2
]

=
1

∥H∥2F

d∑
j=1

[
∥hj∥2 −

l−1∑
m=1

∥hj∥2|⟨tm|hj⟩|2
]

= 1− 1

∥H∥2F

d∑
j=1

l−1∑
m=1

[
r∑

i=1

wmiλiu
(j)
i

]2

= 1− 1

∥H∥2F

d∑
j=1

l−1∑
m=1

[
r∑

i=1

w2
miλ

2
i (u

(j)
i)2 +

r∑
i ̸=k

wmiwmkλiλku
(j)
i u

(j)
k

]

= 1− 1

∥H∥2F

l−1∑
m=1

r∑
i=1

w2
miλ

2
i

= 1− 1

∥H∥2F

r∑
i=1

ciλ
2
i ,

where ci =
∑l−1

m=1w
2
mi. The third equation is derived by using hj =

∑r
i=1 λiu

(j)
i ui

and |tm⟩ =
∑r

i=1wmi|ui⟩, the fifth equation is derived by using uT
i ui =∑N

j=1(u
(j)
i)2 = 1 and

∑r
i=1wmiwni = ⟨tm|tn⟩ = δmn.

Define the r-dimensional vector wm =
∑r

i=1wmiei. Vectors in set {wm}l−1
m=1

are orthogonal with each other. We can add wl, · · ·wr such that {wm}rm=1

4.1 COMPLETE BASIS SELECTION 36

forms an orthonormal basis in the r-dimensional space. Denote matrix W =

(w1,w2, · · · ,wr). Since W TW = I , we have:

0 ≤ ci =
l−1∑
m=1

w2
mi ≤

r∑
m=1

w2
mi = [WW T]ii = 1, ∀i ∈ [r].

Note that
r∑

i=1

ci =
r∑

i=1

l−1∑
m=1

w2
mi =

l−1∑
m=1

r∑
i=1

w2
mi = l − 1,

so there is:

Pl ≥ 1− 1

∥H∥2F

l−1∑
i=1

λ2i =

∑r
i=l λ

2
i

∥H∥2F
≥ (r + 1− l)λ2min(H)

∥H∥2F
. (4.25)

□

Let ϵ = λ2
min(H)

r∥H∥2F
and insert (4.25) to (4.24), there is:

P false ≤
r∑

l=1

P false
l ≤

r−1∑
l=0

l2ϵ2

4r(r − l)ϵ− 2lϵ
<

r−1∑
l=0

l

2
ϵ

=
r(r − 1)

4

λ2min(H)

r∥H∥2F
=

(r − 1)λ2min(H)

4∥H∥2F
<

1

4
.

Thus, when operations Rl,∀l ∈ [r − 1] are implemented with error bounded

by ϵ =
λ2
min(H)

r∥H∥2F
, Algorithm 5 could select out a complete basis {|si⟩}ri=1 with

probability at least 3
4
.

Now we analyse the time complexity of the Complete Basis Selection Algo-

rithm. Denote Tbasis as the required time to implement Algorithm 5 when each

Ri could have an error bounded by ϵ. Denote TRi
as the required time to imple-

ment operation Ri. Recall that in each iteration of l ∈ [r] in Algorithm 5, we

perform operation UH , VH , R1, R2, · · · , Rl−1 for 1/Pl times. Denote TH as the

time complexity of oracles UH , VH , there is:

Tbasis =
r∑

l=1

1

Pl

(
2TH +

l−1∑
m=1

TRm

)

4.2 COORDINATE ESTIMATION 37

≤
r∑

l=1

∥H∥2F
(r + 1− l)λ2min(H)

l−1∑
m=1

THO(mλ
−1/2
min (Cm)ϵ

−1)

≤ THO(c
−1/2λ−2

min(H)∥H∥2F ϵ−1)
r∑

l=1

l(l − 1)

r + 1− l

= THO(r
3λ−4

min(H)c−1/2∥H∥4F),

where c is a positive number between (λmin(Cr−1), 1). The second equation

follows from (4.25) and Proposition 4.1, and the fourth equation follows from

ϵ =
λ2
min(H)

r∥H∥2F
. Calculation of coefficients {zj}lj=1 for all Rl, l ∈ [r − 1] takes

time:

r−1∑
l=1

THO(l
7/2ϵ−1λ

−3/2
min (Cl))

≤ THO(r∥H∥2Fλ−2
min(H)c−3/2)

r−1∑
l=1

l7/2

= THO(r
5.5∥H∥2Fλ−2

min(H)c−3/2),

where c is a positive number between (λmin(Cr−1), 1). By considering both the

required time for calculating coefficients {zj}lj=1 for l ∈ [r − 1] and the time

Tbasis to implement Algorithm 5, we provide Theorem 4.3. □

We also provide Lemma 4.5, which gives the time complexity of confirming

whether vectors in the given set {si}ri=1 are linearly independent. The proof of

Lemma 4.5 is in Appendix.

LEMMA 4.5. It takes O(r3) time to check whether the vector set {si}ri=1 is

linearly independent, when the classical access to Hessian H is given.

4.2 Coordinate Estimation

In this section, we consider the read-out of a quantum state |v⟩ by providing

the corresponding linear-sum description on the row basis, where |v⟩ can be

4.2 COORDINATE ESTIMATION 38

any state lies in the row space of matrix H . Given the selected complete basis

{|s1⟩, |s2⟩, · · · , |sr⟩}, the read-out problem could be viewed as solving the

equation |v⟩ =
∑r

i=1 xi|si⟩, where xi ∈ R are unknown variables. We provide

the read-out framework in Algorithm 6.

Algorithm 6 Coordinate Estimation

Input: QRAM oracle for basis rows {si}ri=1. Copies of state ρ = |v⟩⟨v|.

Output: Coordinates {xi}ri=1 in the linear combination |v⟩ =
∑r

i=1 xi|si⟩.

1: Estimate the overlap cij = ⟨si|sj⟩ for i, j ∈ [r].

2: Estimate the overlap ai = ⟨v|si⟩ for i ∈ [r].

3: Output the solution x = C−1a, where C = [cij]
r×r
i,j=1 and a =

∑r
i=1 aiei.

Note that there is:

⟨sj|v⟩ =
r∑

i=1

xi⟨sj|si⟩, ∀j ∈ [r],

so coordinates {xi}ri=1 could be obtained by solving the r-dimensional linear

system Cx = a, where ai = ⟨v|si⟩ and cij = ⟨si|sj⟩ for i, j ∈ [r]. Here Cr is

denoted by C for simplicity.

4.2.1 Overlap Estimation

The crucial part of Algorithm 6 is to obtain values cij and ai, ∀i, j ∈ [r]. The

overlap cij = ⟨si|sj⟩ can be estimated by simply employing the technique de-

veloped in [43] with error bounded by ϵ using O(ϵ−1) queries to input oracles.

The estimation to ai = ⟨v|si⟩ is more complicate. We could use the quantum

SWAP test to estimate the projection |⟨v|si⟩|2 firstly, while sign(ai) remains un-

known. To overcome this difficulty, we could assume that the state |v⟩ and |sk⟩

has the positive overlap, and analysis the value:

ai = sign(⟨v|sk⟩⟨v|si⟩)|⟨v|si⟩| =
⟨v|sk⟩⟨v|si⟩
|⟨v|sk⟩|

4.2 COORDINATE ESTIMATION 39

as the state overlap, where k = argmaxi∈[r]|⟨v|si⟩| can be chosen with the help

of the SWAP test. This assumption is equivalent to adding a global phase 0

or eiπ on |v⟩. Note that for a solution state |v⟩ to some quantum algorithm,

the state −|v⟩ is the same state which involves a π-global phase, and is also

the solution in many scenarios. For example, in the negative curvature finding

problem where the target |v⟩ is |ut⟩, both |ut⟩ and −|ut⟩ are legal eigenstate.

We construct the quantum circuit illustrated in Fig 4.2 for estimating ⟨v|sk⟩⟨v|si⟩.

Unitary Ui here is the input oracle that performs operation |0⟩ → |si⟩ and can be

implemented efficiently by the QRAM ofH . We present the detail of estimating

ai = ⟨v|si⟩ in Algorithm 7.

Algorithm 7 overlap estimation

Input: Quantum access to input oracles Ui for rows si, i ∈ [r]. Copies of state

ρ = |v⟩⟨v|. The precision parameter ϵ.

Output: An ϵ-estimation ãi to the value ai = ⟨v|si⟩, ∀i ∈ [r].

1: Calculate the ϵ
2

√
λmin(C)

r
-estimation on value a2i = Tr(ρ|si⟩⟨si|), for i ∈ [r]

by SWAP Test. Mark k ≡ argmaxi∈[r]a
2
i .

2: for i ∈ [r] and i ̸= k do

3: Obtain ϵ
2

√
λmin(C)

r
-estimation on value ⟨si|v⟩⟨v|sk⟩ by using the quan-

tum circuit in Fig 4.2.

4: Calculate the value ãi =
⟨si|v⟩⟨v|sk⟩

|⟨v|sk⟩|
.

5: end for

|0⟩ H • H

ρ = |v⟩⟨v| ×

|0⟩ Uk Ui ×

|0⟩ H • H

FIGURE 4.2: Quantum circuit for estimating ⟨sk|v⟩⟨v|si⟩.

4.2 COORDINATE ESTIMATION 40

Apart from the relatively trivial part of estimating a2i by SWAP Test, Algorithm 7

runs quantum circuit in Fig 4.2 to estimate ⟨v|sk⟩⟨v|si⟩. The whole state in Fig

4.2 before measurements is:

1

4
|0⟩
[
|v⟩|sk⟩+ |v⟩|si⟩+ |sk⟩|v⟩+ |si⟩|v⟩

]
|0⟩

+
1

4
|0⟩
[
|v⟩|sk⟩ − |v⟩|si⟩+ |sk⟩|v⟩ − |si⟩|v⟩

]
|1⟩

+
1

4
|1⟩
[
|v⟩|sk⟩+ |v⟩|si⟩ − |sk⟩|v⟩ − |si⟩|v⟩

]
|0⟩

+
1

4
|1⟩
[
|v⟩|sk⟩ − |v⟩|si⟩ − |sk⟩|v⟩+ |si⟩|v⟩

]
|1⟩.

Then we measure the first and the last register, which outcome results 00 or 11

with probability:

P00 =
2 + 2⟨si|sk⟩+ |⟨v|sk⟩|2 + |⟨v|si⟩|2 + 2⟨si|v⟩⟨v|sk⟩

8
,

P11 =
2− 2⟨si|sk⟩ − |⟨v|sk⟩|2 − |⟨v|si⟩|2 + 2⟨si|v⟩⟨v|sk⟩

8
.

Two measurement results are the same with probability:

Psame = P00 + P11 =
1 + ⟨si|v⟩⟨v|sk⟩

2
.

So similar to the SWAP Test, the proposed quantum circuit provides a ϵ error

estimation to the value ⟨si|v⟩⟨v|sk⟩ with O(1/ϵ2) measurements. By using this

circuit along with the SWAP Test, we could estimate the value ai = ⟨v|si⟩. The

error and time complexity about estimating ai by Algorithm 7 is provided in

Proposition 4.2.

PROPOSITION 4.2. Algorithm 7 could present ϵ-estimation to the value ai =

⟨v|si⟩ for all i ∈ [r] by using O(λ−1
min(C)r

2/ϵ2) copies of state ρ = |v⟩⟨v| and

O(λ−1
min(C)r

2/ϵ2) queries to input oracles.

4.2 COORDINATE ESTIMATION 41

PROOF. Since there is Cx = a and ⟨v|v⟩ = xTCx = 1, we have:

|⟨v|sk⟩| = max
i∈[r]

|⟨v|si⟩| ≥

√√√√1

r

r∑
i=1

|⟨v|si⟩|2

=

√√√√1

r

r∑
i=1

a2i =

√
1

r
aTa =

√
1

r
xTC2x

≥
√

1

r
λmin(C)xTCx =

√
λmin(C)

r
.

For ϵ
2

√
λmin(C)

r
-error estimation ã2k on value a2k = |⟨v|sk⟩|2, there is:

ϵ(|ak|) = |(|ãk| − |ak|)| =
∣∣∣∣ ã2k − a2k
|ãk|+ |ak|

∣∣∣∣ ≤ ϵ
2

√
λmin(C)

r√
λmin(C)

r

=
ϵ

2
.

So a ϵ
2

√
λmin(C)

r
-error estimation on value a2k = |⟨v|sk⟩|2 could ensure a ϵ/2-

error estimation on value |ak| = |⟨v|sk⟩|. Denote aik = ⟨si|v⟩⟨v|sk⟩ for sim-

plicity. Then Algorithm 7 calculate the overlap by ai = aik/|ak| for all i ∈ [r].

Since the value aik is estimated with error bounded by ϵ
2

√
λmin(C)

r
, and ak has

the error bounded by ϵ
2
, there is:

ϵ(ai) = |ãi − ai| =
∣∣∣∣ ãik|ãk|

− aik
|ak|

∣∣∣∣
≤
∣∣∣∣ ãik|ãk|

− aik
|ãk|

∣∣∣∣+ ∣∣∣∣ aik|ãk|
− aik

|ak|

∣∣∣∣
=
ϵ(aik)

|ãk|
+ |aik|

ϵ(ak)

|ãkak|
≤

ϵ
2

√
λmin(C)

r√
λmin(C)

r

+
ϵ

2
= ϵ.

The required copies of ρ = |v⟩⟨v| is:

2r ·O((ϵ
2

√
λmin(C)

r
)−2) = O(λ−1

min(C)r
2/ϵ2).

The required queries to input oracles is:

3r ·O((ϵ
2

√
λmin(C)

r
)−2) = O(λ−1

min(C)r
2/ϵ2).

4.2 COORDINATE ESTIMATION 42

□

4.2.2 Error and Runtime Analysis

In this section, we discuss the error of Algorithm 6 along with the time com-

plexity analysis. Remark that each element ai or cij is estimated with error,

which could introduce an error on the final classical description of state |v⟩. We

provide Lemma 4.6 to verify the influence of error on a and C to the accuracy

of the description v =
∑r

i=1 xisi/∥si∥.

LEMMA 4.6. Suppose c̃jk is a ϵ1-approximation to cij = ⟨si|sj⟩ and ãj is a

ϵ2-approximation to aj = ⟨v|sj⟩, ∀j, k ∈ [r], where ϵ1 =
λ
3/2
min(C)ϵ

3r3/2
and ϵ2 =

λmin(C)ϵ
3r

. Then the coordinate x̃ = C̃−1ã leads to an approximate vector ṽ =∑r
i=1 x̃isi, such that ∥ṽ − v∥ ≤ ϵ.

PROOF. Denote ∆cij = c̃ij − cij and ∆aj = ãj − aj, ∀i, j ∈ [r]. Since the

error |∆cij| ≤ ϵ1 and |∆aj| ≤ ϵ2, there is:

∥∆C∥ ≤ rϵ1 and ∥∆a∥ ≤
√
rϵ2.

The matrix norm ∥ · ∥ here is the spectrum norm. Note that both the value

cij = ⟨si|sj⟩ and aj = ⟨v|sj⟩ are bounded in [−1, 1], so:

∥C∥ ≤ ∥C∥F ≤ r and ∥a∥ ≤
√
r.

The norm of ∆x = x̃− x is bounded by:

∥∆x∥ = ∥C̃−1ã− C−1a∥

= ∥(C +∆C)−1(a+∆a)− (C +∆C)−1(C +∆C)C−1a∥

= ∥(C +∆C)−1(∆a−∆C · C−1a)∥

≤ ∥C−1∥ · ∥(I + C−1∆C)−1∥ · (∥∆a∥+ ∥∆C · x∥)

≤ ∥C−1∥ · 1

1− ∥C−1∆C∥
· (∥∆a∥+ ∥∆C∥ · ∥x∥)

4.2 COORDINATE ESTIMATION 43

≤ ∥C−1∥
1− ∥C−1∥rϵ1

· (
√
rϵ2 + rϵ1 · λ−1/2

min (C)) ≤ ϵ√
r
.

The sixth equation is derived by noticing:

λmin(C)∥x∥2 ≤ xTCx = ⟨v|v⟩ = 1.

The seventh equation is derived by using ϵ1 =
λ
3/2
min(C)ϵ

3r3/2
, ϵ2 = λmin(C)ϵ

3r
and

∥C−1∥ = λ−1
min(C). Thus, for v =

∑r
j=1 xjsj/∥sj∥ and ṽ =

∑r
j=1 x̃jsj/∥sj∥,

there is:

∥v − ṽ∥ =
√
∆xTC∆x ≤ ∥∆x∥ · ∥C∥1/2 ≤ ϵ√

r
·
√
r = ϵ.

□

By using Proposition 4.2 and Lemma 4.6, we provide the required quantum

oracle and state resources in Theorem 4.4 for a ϵ error bounded classical de-

scription.

THEOREM 4.4. Algorithm 6 provides a classical description v =
∑r

i=1 xisi/∥si∥

with l2 norm error bounded in ϵ by usingO(r4λ−3
min(C)ϵ

−2) copies of ρ = |v⟩⟨v|

and O(r4λ−3
min(C)ϵ

−2) queries to input oracles.

PROOF. Theorem 4.4 is derived by inserting Proposition 4.2 into Lemma 4.6

and considering the query complexity r2O(ϵ−1
1) = O(r7/2λ

−3/2
min (C)ϵ−1) for es-

timating the matrix Cr, such that each element cij has the error bound ϵ1. □

For the negative curvature finding problem where the target state |v⟩ = |ut⟩, the

time complexity to generate |ut⟩ is O(TH∥H∥3Fα−2polylog(d)ϵ−1) as proposed

in Theorem 3.3. We could derive Corollary 4.1 from Theorem 4.4.

COROLLARY 4.1. The classical description ut =
∑r

i=1 xisi/∥si∥ for the NCF

problem could be presented in time O(THpolylog(d)r4∥H∥3Fα−2λ−3
min(Cr)ϵ

−3)

with l2 norm error bounds in ϵ, when the complete basis set {sj}rj=1 is given.

4.3 NUMERICAL SIMULATION 44

By Theorem 3.2, the time complexity to label the proper eigenvalue is:

T1 = THO(∥H∥5Fα−4polylog(d)ϵ−1).

By Theorem 4.3, the time complexity to generate the complete basis set is:

T2 = THO(r
3∥H∥2Fλ−2

min(H)λ
−1/2
min (Cr−1)(∥H∥2Fλ−2

min(H) + r2.5λ−1
min(Cr−1))).

By considering the upper bound ∥H∥F ≤
√
rL (Lemma 3.1) and the time com-

plexity for reading-out the state |ut⟩ (Corollary 4.1):

T3 = THO(polylog(d)r
4∥H∥3Fα−2λ−3

min(Cr)ϵ
−3),

we could present the time complexity of solving the NCF problem:

T = T1 + T2 + T3

≤ THO(r
6.5L5polylog(d)(λ−4

min(H)λ
−3/2
min (Cr−1) + α−4λ−3

min(Cr)ϵ
−3)),

by providing the target vector in the form ut =
∑r

i=1 xihg(i)/∥hg(i)∥ with error

bounded in ϵ or making the non-vector statement.

4.3 Numerical Simulation

Our numerical simulation contains two parts. First, we do simulation for the

complete basis selection algorithm (Algorithm 5), to check the behavior of the

eigenvalues from the gram matrix of the basis. Then we check the read-out be-

havior of Algorithm 6 with the basis selected by Algorithm 5, with a comparison

to sampling-based quantum-inspired algorithms [35, 36].

4.3.1 CBS Basis

Our aim in this section is to check the practical performance of the basis se-

lected by the CBS Algorithm. The Hessian is initialized as a 20000 × 20000

matrix H =
∑r

i=1 λiuiu
T
i for different rank r ∈ {5, 10, 20, 30, 40}, and λi =

4.3 NUMERICAL SIMULATION 45

0 5 10 15 20 25 30 35 40
dimension of C

10−1

100

th
e
le
as
t e

ig
en

 a
lu
e
of
 C

0.587

0.354

0.083

0.035
0.026

rank(H)= 5
rank(H)= 10
rank(H)= 20
rank(H)= 30
rank(H)= 40

FIGURE 4.3: λmin(Cl) for different l ∈ [r] and different r ∈ {5, 10, 20, 30, 40}.

(−1)i−1(19+i),∀i ∈ [r] for a fixed rank. For the convenience of the simulation,

each operation Rm = I − 2|tm⟩⟨tm| is performed with random error 0.01. By

Theorem 4.3, a basis with larger λmin(Cr−1) implies a smaller time complexity

for Algorithm 5, where Cl is the gram matrix of {|sj⟩}lj=1,∀l ∈ [r]. We perform

the i-th iteration in Algorithm 5 for 10 times, ∀i ∈ [r], and choose the new ba-

sis row with the largest λmin(Ci). We illustrate the value λmin(Cl) for different

l = 1, 2, · · · , r in Fig 4.3, where the rank is chosen from {5, 10, 20, 30, 40}. The

value λmin(Cr−1) is shown to be roughly lower bounded by 1/r, which implies

the efficiency of the complete basis selection algorithm.

4.3.2 Read-out Error

In this section, we check the read-out behavior of Algorithm 6 and simulate

the sampling-based quantum-inspired algorithms [35, 36] for comparison. Hes-

sian H is initialized same with Section4.3.1 for rank r ∈ {5, 10, 20, 40}. The

test state here for read-out corresponds to the eigenvector with the smallest |λi|.

We generate the CBS basis with 10 counterparts, and choose the basis with the

4.3 NUMERICAL SIMULATION 46

104 105
number of samples

10−3

10−2

10−1

100

er
ro
r

rank(H)=5
rank(H)=10
rank(H)=20
rank(H)=40

FIGURE 4.4: Read-out error for different sample numbers and rank.

largest λmin(Cr). For fixed rank, each parameter cij = ⟨si|sj⟩ or ai = ⟨v|si⟩ is

estimated with sampling number (n1, n2), where n1 ∈ {50, 70, 100, 150, 200, 250, 300}

and n2 = n2
1. The required copies of the unknown quantum state is nρ = O(rn2)

,and the required queries to input oracles for Algorithm 6 is noracle = O(r2n1 +

rn2). Read-out error is defined as the l2-norm distance between the exact state

(vector) and the approximate state (vector). We illustrate the read-out error for

different sample numbers n2 and different rank in Fig 4.4. Dashed lines here de-

note f(x) = Cx−1/2 curve fitting functions in the standard coordinate system,

and error bars denote the standard deviation for 20 repetitions of the readout

protocol. We draw all data in the log-log coordinate figure to better show the

relationship ϵ ∝ n
−1/2
2 , which coincides with Theorem 4.4. For a fixed sampling

number, the read-out error increases with a larger r, which also coincides with

Theorem 4.4.

Now we briefly introduce sampling-based quantum-inspired algorithms. The

first sampling-based quantum-inspired algorithm was developed by E.Tang [35]

for a quantum-inspired recommendation system. Several other quantum-inspired

4.3 NUMERICAL SIMULATION 47

algorithms were proposed after that, see [45, 46, 47, 48, 49, 50] for detail. All

of these quantum-inspired algorithms use the approximate SVD designed by

the FKV Algorithm [37] to achieve the claimed exponential speed-up on the

dimension of input matrices.

Here we sketch the FKV Algorithm. For an input matrix A ∈ Rm×n with un-

known singular decomposition A =
∑

i σiuiv
T
i , denote the i-th row vector as

Ai and the j-th column vector as A·,j . Then the FKV Algorithm constructs a

classical sampling oracle with l2 norm distribution over rows: p(i) = ∥Ai∥2
∥A∥2F

, and

similar sampling oracles for every row Ai, with l2 norm distribution pi(j) =
A2

ij

∥Ai∥2 . These oracles could be constructed by the QRAM of H . The FKV Algo-

rithm proceeds as follows:

(1) Sample t rows from the distribution p(i). Denote sampled indices as

i1, · · · , it.

(2) Renormalize the row as Rs =
∥A∥F√
t∥Ais∥

Ats , ∀s ∈ [t].

(3) Construct a new t× n matrix R from Rs.

(4) Select an index s from [t] with uniform distribution.

(5) Sample a column index j with distribution pis(j).

(6) Repeat the procedure (4)-(5) for c times. Denote the selected column

index as j1, · · · , jc.

(7) Renormalize the column B·,q =
∥A∥F√
c∥R·,jq∥

,∀q ∈ [c].

(8) Construct a new t× c matrix B from B·,q.

(9) Do SVD on matrix B. Denote {σ̃i} as singular values of B. Denote

{wi} as left singular vectors of B.

(10) The right singular vector of A could be approximated as ṽi =
1
σ̃i
RTwi.

The left singular vector ofA could be approximated as ũi =
1
σ̃2
i
ARTwi.

The accuracy of approximate singular values has been shown in previous work,

see [36] for detail. However, the accuracy of approximate singular vectors has

not been discussed yet. Remark that by the step (10) of FKV Algorithm, the

4.3 NUMERICAL SIMULATION 48

102 103 104

dimension of sample matrix

10−1

100

er
ro
r

rank(H)= 5
rank(H)= 10
rank(H)= 20
rank(H)= 40

FIGURE 4.5: The error of the FKV Algorithm.

(approximate) right singular vector is written as the linear sum of t rows of

A, which shows some point of similarity to our state read-out protocol, so we

perform the FKV Algorithm with matrix H initialized the same as in previous

experiments. We illustrate the result in Fig 4.5. The error here denotes the l2

norm distance between the exact and the approximate singular vector. Different

choice of t = c ∈ {100, 300, 500, 1000, 3000, 5000, 10000, 20000} and different

rank r ∈ {5, 10, 20, 40} are considered. Based on the experiment result, the er-

ror decreases roughly when the dimension of the sample matrix increase. How-

ever, to achieve a relatively small error, say, less than 0.1, the FKV Algorithm

needs to sample rows and columns with numbers the same as the dimension of

H , and then a O(d3) time for SVD is required. Thus the speed-up could hardly

maintain. Besides, the result shows the terrible behavior of the error when the

rank of H slightly increases. Compare to the FKV Algorithm, our read-out

protocol (Fig 4.3.2) shows better performance on the read-out accuracy and the

required time complexity.

CHAPTER 5

Conclusion

We propose an efficient quantum algorithm for the Negative Curvature Finding

problem, which is a critical subroutine in many second-order methods for non-

convex optimization. The proposed quantum algorithm could produce the target

state in time Õ(poly(r, log d)ϵ−1) with probability 1 − 1/poly(d), which runs

exponentially faster than existing classical methods. Moreover, we propose an

efficient hybrid quantum-classical algorithm for the efficient classical read-out

of the target state with time complexity Õ(poly(r, log d)ϵ−3), which is expo-

nentially faster on the degree of d than existing general quantum state read-out

methods.

49

CHAPTER 6

Appendix

The proof of Lemma 3.1:

PROOF. Assume λ1 ≤ λ2 ≤ · · · ≤ λd are eigenvalues of H , we have:

min
∥v∥=1

vTHv ≤ λj ≤ max
∥v∥=1

vTHv, ∀j ∈ [d].

By the definition of the Hessian matrix, for unit vector v, we have:

Hv = ∇2f(x)v = lim
h→0

∇f(x+ hv)−∇f(x)
h

.

From above equation, we can obtain:

vTHv ≤ ∥v∥ · ∥Hv∥ ≤ lim
h→0

∥∇f(x+ hv)−∇f(x)∥
h

≤ lim
h→0

L∥hv∥
h

= L,

and:

vTHv ≥ −∥v∥·∥Hv∥ ≥ − lim
h→0

∥∇f(x+ hv)−∇f(x)∥
h

≥ − lim
h→0

L∥hv∥
h

= −L.

Thus, the eigenvalue λj is bounded in [−L,L] for all j ∈ [d]. We have:

∥H∥F =

√∑
i

∑
j

h2ij =
√
Tr(H ·H) =

√∑
j

λj(H2) ≤
√
rL.

□

LEMMA 6.1. Hoeffding’s inequality[51]
50

6 APPENDIX 51

Suppose X1, X2, · · · , Xn are independent random variables with bounds Xi ∈

[ai, bi],∀i ∈ [n]. Define X = 1
n

∑n
i=1Xi , then ∀ϵ > 0, we have:

P (X − E[X] ≥ ϵ) ≤ exp (− 2n2ϵ2∑n
i=1(bi − ai)2

), (6.1)

and

P (X − E[X] ≤ −ϵ) ≤ exp (− 2n2ϵ2∑n
i=1(bi − ai)2

). (6.2)

The proof of Lemma 4.5:

PROOF. Define the index function g : [r] → [d] such that si = hg(i),∀i ∈

[r]. Consider the eigen-decomposition of matrix H:

H =
r∑

j=1

λjuju
T
j . (6.3)

It is natural to generate the decomposition:

hj =
r∑

i=1

λiuiu
(j)
i , (6.4)

hjk =
r∑

i=1

λiu
(j)
i u

(k)
i . (6.5)

Define the r × r dimensional matrix:

C = (hT
g(1),h

T
g(2), · · · ,hT

g(r))
T (hg(1),hg(2), · · · ,hg(r)). (6.6)

There is:

{hg(i)}ri=1 is linear independent⇔ det(C) ̸= 0. (6.7)

Denote the jk-th element of C as cjk. Since cjk = hT
j hk =

∑r
i=1 λ

2
iu

(j)
i u

(k)
i ,

there is:

det(C) =

∣∣∣∣∣∣∣∣∣
∑r

i=1 λ
2
iu

(g(1))
i u

(g(1))
i · · ·

∑r
i=1 λ

2
iu

(g(1))
i u

(g(r))
i

...∑r
i=1 λ

2
iu

(g(r))
i u

(g(1))
i · · ·

∑r
i=1 λ

2
iu

(g(r))
i u

(g(r))
i

∣∣∣∣∣∣∣∣∣ (6.8)

6 APPENDIX 52

=
r∑

i1=1

r∑
i2=1

· · ·
r∑

ir=1

∣∣∣∣∣∣∣∣∣
λ2i1u

(g(1))
i1

u
(g(1))
i1

· · · λ2iru
(g(1))
ir

u
(g(r))
ir

...

λ2i1u
(g(r))
i1

u
(g(1))
i1

· · · λ2iru
(g(r))
ir

u
(g(r))
ir

∣∣∣∣∣∣∣∣∣ (6.9)

=
r∑

i1=1

r∑
i2=1

· · ·
r∑

ir=1

(
r∏

j=1

λ2ij)(
r∏

j=1

u
(g(j))
ij

)

∣∣∣∣∣∣∣∣∣
u
(g(1))
i1

· · · u
(g(1))
ir

...

u
(g(r))
i1

· · · u
(g(r))
ir

∣∣∣∣∣∣∣∣∣. (6.10)

On the other hand, construct the matrix H ′ whose jk-th element is h′jk =

hg(j),g(k). There is:

det(H ′) =

∣∣∣∣∣∣∣∣∣
∑r

i=1 λiu
(g(1))
i u

(g(1))
i · · ·

∑r
i=1 λiu

(g(1))
i u

(g(r))
i

...∑r
i=1 λiu

(g(r))
i u

(g(1))
i · · ·

∑r
i=1 λiu

(g(r))
i u

(g(r))
i

∣∣∣∣∣∣∣∣∣ (6.11)

=
r∑

i1=1

r∑
i2=1

· · ·
r∑

ir=1

∣∣∣∣∣∣∣∣∣
λi1u

(g(1))
i1

u
(g(1))
i1

· · · λiru
(g(1))
ir

u
(g(r))
ir

...

λi1u
(g(r))
i1

u
(g(1))
i1

· · · λiru
(g(r))
ir

u
(g(r))
ir

∣∣∣∣∣∣∣∣∣ (6.12)

=
r∑

i1=1

r∑
i2=1

· · ·
r∑

ir=1

(
r∏

j=1

λij)(
r∏

j=1

u
(g(j))
ij

)

∣∣∣∣∣∣∣∣∣
u
(g(1))
i1

· · · u
(g(1))
ir

...

u
(g(r))
i1

· · · u
(g(r))
ir

∣∣∣∣∣∣∣∣∣. (6.13)

Note that the determinant in eq(6.10) and eq(6.13) is non-zero only if im ̸= in

for any different m,n ∈ [r]. Consider the summation of ij for all j ∈ [r] over

{1, 2, · · · , r}, there is:

det(C)/
r∏

i=1

λ2i = det(H ′)/
r∏

i=1

λi (6.14)

Thus the problem about whether group {hg(i)}ri=1 is linear independent could be

solved by calculating the determinant of matrix H ′. Since H ′ is a r × r dimen-

sional matrix, det(H ′) could be calculated in O(r3) time[52]. We could claim

6 APPENDIX 53

that the group {hg(i)}ri=1 is linear independent if det(H ′) ̸= 0, or {hg(i)}ri=1 is

linear dependent if det(H ′) = 0. □

Bibliography

[1] Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method

and its global performance. Mathematical Programming, 108(1):177–205,

2006.

[2] Andrew R Conn, Nicholas IM Gould, and Ph L Toint. Trust region meth-

ods, volume 1. Siam, 2000.

[3] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and

Tengyu Ma. Finding approximate local minima faster than gradient de-

scent. In Proceedings of the 49th Annual ACM SIGACT Symposium on

Theory of Computing, pages 1195–1199. ACM, 2017.

[4] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,

Surya Ganguli, and Yoshua Bengio. Identifying and attacking the saddle

point problem in high-dimensional non-convex optimization. In Advances

in neural information processing systems, pages 2933–2941, 2014.

[5] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous,

and Yann LeCun. The loss surfaces of multilayer networks. In Artificial

Intelligence and Statistics, pages 192–204, 2015.

[6] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I

Jordan. How to escape saddle points efficiently. In Proceedings of the 34th

International Conference on Machine Learning-Volume 70, pages 1724–

1732. JMLR. org, 2017.

[7] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal

component analysis. Nature Physics, 10(9):631, 2014.

[8] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum sup-

port vector machine for big data classification. Physical review letters,

54

BIBLIOGRAPHY 55

113(13):130503, 2014.

[9] Patrick Rebentrost, Adrian Steffens, Iman Marvian, and Seth Lloyd. Quan-

tum singular-value decomposition of nonsparse low-rank matrices. Physi-

cal review A, 97(1):012327, 2018.

[10] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Acceler-

ated methods for nonconvex optimization. SIAM Journal on Optimization,

28(2):1751–1772, 2018.

[11] Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens

in a tiny subspace. arXiv preprint arXiv:1812.04754, 2018.

[12] Scott Aaronson. Read the fine print. Nature Physics, 11(4):291, 2015.

[13] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle

points − online stochastic gradient for tensor decomposition. In Confer-

ence on Learning Theory, pages 797–842, 2015.

[14] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I

Jordan. Stochastic gradient descent escapes saddle points efficiently. arXiv

preprint arXiv:1902.04811, 2019.

[15] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht.

Gradient descent only converges to minimizers. In Conference on learning

theory, pages 1246–1257, 2016.

[16] Yair Carmon and John C Duchi. Gradient descent efficiently

finds the cubic-regularized non-convex newton step. arXiv preprint

arXiv:1612.00547, 2016.

[17] Richard P. Feynman. Simulating physics with computers. International

Journal of Theoretical Physics, 21(6):467–488, Jun 1982.

[18] Thomas Barthel and Yikang Zhang. Optimized lie-trotter-suzuki decom-

positions for two and three non-commuting terms, 2019.

[19] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and

Rolando D. Somma. Simulating hamiltonian dynamics with a truncated

taylor series. Phys. Rev. Lett., 114:090502, Mar 2015.

BIBLIOGRAPHY 56

[20] Andrew M Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gut-

mann, and Daniel A Spielman. Exponential algorithmic speedup by a

quantum walk. In Proceedings of the thirty-fifth annual ACM symposium

on Theory of computing, pages 59–68. ACM, 2003.

[21] Guang Hao Low and Isaac L Chuang. Optimal hamiltonian simulation by

quantum signal processing. Physical review letters, 118(1):010501, 2017.

[22] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–

1078, 1996.

[23] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum

information, 2002.

[24] Iordanis Kerenidis and Anupam Prakash. Quantum recommendation sys-

tems. arXiv preprint arXiv:1603.08675, 2016.

[25] Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. Quan-

tum fingerprinting. Physical Review Letters, 87(16):167902, 2001.

[26] David Gross, Yi-Kai Liu, Steven T. Flammia, Stephen Becker, and Jens

Eisert. Quantum state tomography via compressed sensing. Phys. Rev.

Lett., 105:150401, Oct 2010.

[27] Anastasios Kyrillidis, Amir Kalev, Dohyung Park, Srinadh Bhojanapalli,

Constantine Caramanis, and Sujay Sanghavi. Provable compressed sens-

ing quantum state tomography via non-convex methods. npj Quantum In-

formation, 4(1):36, 2018.

[28] Jeongwan Haah, Aram W Harrow, Zhengfeng Ji, Xiaodi Wu, and Nengkun

Yu. Sample-optimal tomography of quantum states. IEEE Transactions on

Information Theory, 63(9):5628–5641, 2017.

[29] Ryan O’Donnell and John Wright. Efficient quantum tomography. In Pro-

ceedings of the forty-eighth annual ACM symposium on Theory of Com-

puting, pages 899–912. ACM, 2016.

[30] Marcus Cramer, Martin B Plenio, Steven T Flammia, Rolando Somma,

David Gross, Stephen D Bartlett, Olivier Landon-Cardinal, David Poulin,

BIBLIOGRAPHY 57

and Yi-Kai Liu. Efficient quantum state tomography. Nature communica-

tions, 1:149, 2010.

[31] Tao Xin, Dawei Lu, Joel Klassen, Nengkun Yu, Zhengfeng Ji, Jianxin

Chen, Xian Ma, Guilu Long, Bei Zeng, and Raymond Laflamme. Quantum

state tomography via reduced density matrices. Physical review letters,

118(2):020401, 2017.

[32] Hartmut Häffner, Wolfgang Hänsel, CF Roos, Jan Benhelm, Michael

Chwalla, Timo Körber, UD Rapol, Mark Riebe, PO Schmidt, Christoph

Becher, et al. Scalable multiparticle entanglement of trapped ions. Nature,

438(7068):643, 2005.

[33] M Riebe, K Kim, P Schindler, T Monz, PO Schmidt, TK Körber,

W Hänsel, H Häffner, CF Roos, and R Blatt. Process tomography of ion

trap quantum gates. Physical review letters, 97(22):220407, 2006.

[34] Alexander I Lvovsky and Michael G Raymer. Continuous-variable optical

quantum-state tomography. Reviews of Modern Physics, 81(1):299, 2009.

[35] Ewin Tang. A quantum-inspired classical algorithm for recommendation

systems. In Proceedings of the 51st Annual ACM SIGACT Symposium on

Theory of Computing, pages 217–228. ACM, 2019.

[36] Juan Miguel Arrazola, Alain Delgado, Bhaskar Roy Bardhan, and

Seth Lloyd. Quantum-inspired algorithms in practice. arXiv preprint

arXiv:1905.10415, 2019.

[37] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algo-

rithms for finding low-rank approximations. J. ACM, 51(6):1025–1041,

November 2004.

[38] MR Vanner, M Aspelmeyer, and MS Kim. Quantum state orthogonaliza-

tion and a toolset for quantum optomechanical phonon control. Physical

review letters, 110(1):010504, 2013.

[39] M Ježek, M Mičuda, I Straka, M Mikova, M Dušek, and J Fiurášek. Or-

thogonalization of partly unknown quantum states. Physical Review A,

89(4):042316, 2014.

BIBLIOGRAPHY 58

[40] Antonio S. Coelho, Luca S. Costanzo, Alessandro Zavatta, Catherine

Hughes, M.S. Kim, and Marco Bellini. Universal continuous-variable state

orthogonalizer and qubit generator. Physical Review Letters, 116(11), Mar

2016.

[41] Hans Havlicek and Karl Svozil. Dimensional lifting through the general-

ized gramschmidt process. Entropy, 20(4):284, Apr 2018.

[42] Andrew M Childs and Nathan Wiebe. Hamiltonian simulation using linear

combinations of unitary operations. arXiv preprint arXiv:1202.5822, 2012.

[43] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algo-

rithms for supervised and unsupervised machine learning. arXiv preprint

arXiv:1307.0411, 2013.

[44] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum

amplitude amplification and estimation. Quantum Computation and Infor-

mation, page 5374, 2002.

[45] András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired low-rank

stochastic regression with logarithmic dependence on the dimension, 2018.

[46] Nai-Hui Chia, Han-Hsuan Lin, and Chunhao Wang. Quantum-inspired

sublinear classical algorithms for solving low-rank linear systems, 2018.

[47] Dhawal Jethwani, François Le Gall, and Sanjay K. Singh. Quantum-

inspired classical algorithms for singular value transformation, 2019.

[48] Zhihuai Chen, Yinan Li, Xiaoming Sun, Pei Yuan, and Jialin Zhang. A

quantum-inspired classical algorithm for separable non-negative matrix

factorization. Proceedings of the Twenty-Eighth International Joint Con-

ference on Artificial Intelligence, Aug 2019.

[49] Fabio L. Traversa. Aircraft loading optimization: Memcomputing the 5th

airbus problem, 2019.

[50] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao. A

quantum-inspired algorithm for general minimum conical hull problems,

2019.

BIBLIOGRAPHY 59

[51] Wassily Hoeffding. Probability inequalities for sums of bounded random

variables. In The Collected Works of Wassily Hoeffding, pages 409–426.

Springer, 1994.

[52] Alex Schwarzenberg-Czerny. On matrix factorization and efficient least

squares solution. Astronomy and Astrophysics Supplement Series, 110:405,

1995.

	Statement of Originality
	Acknowledgements
	Abstract
	Chapter 1. Introduction
	1.1. Our contribution

	Chapter 2. Literature Review
	2.1. Non-convex Optimization
	2.2. Quantum Computing
	2.2.1. Basic Knowledge
	2.2.2. Hamiltonian Simulation
	2.2.3. Quantum Singular Value Estimation (SVE) Algorithm
	2.2.4. Quantum SWAP Test

	Chapter 3. QNCF Algorithm
	3.1. The Sign of Eigenvalue
	3.2. Proper Eigenvalue Labelling
	3.3. Target State Generating

	Chapter 4. State read-out
	4.1. Complete Basis Selection
	4.1.1. The CBS Algorithm
	4.1.2. Implementation of C(Rl)
	4.1.3. Error and Runtime Analysis

	4.2. Coordinate Estimation
	4.2.1. Overlap Estimation
	4.2.2. Error and Runtime Analysis

	4.3. Numerical Simulation
	4.3.1. CBS Basis
	4.3.2. Read-out Error

	Chapter 5. Conclusion
	Chapter 6. Appendix
	Bibliography

