
 
I. INTRODUCTION 

ONOLITHIC scintillation detectors are investigated as 
an alternative to pixelated detectors in PET systems due 

to their good timing and energy resolution, high sensitivity 
and potentially lower cost. However, monolithic crystals are 
not yet implemented in any commercial clinical scanner as 
accurate and efficient algorithms are required to position 
scintillation events in the crystal. To this end, a wide range of 
statistical positioning algorithms, like maximum likelihood 
estimation [1], k-nearest neighbor (kNN) [2], gradient tree 
boosting [3] or neural networks [4] have been proposed. These 
methods require calibration where often a pencil beam is 
traversed over the crystal surface with a certain step size. They 
need to achieve a high spatial resolution and should be 
computationally efficient to process all events from a large 
number of detector blocks with a sufficient rate. The kNN 
algorithm for example attains good spatial resolutions but a 
distance metric needs to be calculated with all or a subset of 
training events which is computationally intensive. 
In this work, we use a calibration dataset obtained from optical 
simulations (Stockhoff et al [5]) to investigate the use of deep 
neural networks for high resolution 2D positioning of 
scintillation events in a monolithic crystal. Neural networks 
have the advantage that they are able to learn complex non-
linear relationships, can outperform more traditional machine 
learning algorithms and, once trained, events can be 
positioned with one forward propagation through the network 
which is fast and parallelizable on a GPU. 

II. MATERIALS AND METHODS 

A. Data 
In this study we use simulation data of a monolithic 50x50x16 
mm3 L(Y)SO scintillation crystal with a back side SiPM 
readout, 75% PDE and without LYSO intrinsic radioactivity. 
Arrays of 3 mm SiPM pixels are used with combined channel 
readout (summing the rows and columns) resulting in 32 
channels. The calibration data is obtained using a perfect 
monoenergetic 511 keV source in 1 mm steps. Hence events 
are acquired for 49x49 positions. After energy filtering, the 
dataset consists of 10,000 calibration events per position from 
which 2,000/pos. are used for validation and an additional test 
set of 2,000 events/pos. for final evaluation. Each event is 
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standardized to zero mean and unit variance. More details 
regarding the optical simulation setup can be found in the 
paper by Stockhoff et al [5].  

B. Neural Network Positioning 
The positioning algorithm used is a regression neural network 
with 32 inputs and 2 outputs (x and y coordinate) as illustrated 
in Figure 1. Every hidden layer is followed by a softsign 
activation function. The network weights are optimized 
through backpropagation using stochastic gradient descent 
with Nesterov momentum (𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 0.9), mini-batch 
size of 256 and initial learning rate of 10-3. The mean squared 
error between the predicted and ground truth calibration 
position was used as the loss function. Training is stopped 
when the validation loss did not improve for 30 epochs. After 
training, the network performance is evaluated on the 
independent test set. The networks are implemented in 
PyTorch and trained on an 11 GB NVIDIA GTX 1080 Ti 
GPU.  

 
Figure 1: Neural Network architecture with 32 inputs, two hidden 
layers and two outputs x and y 

Different networks are evaluated in terms of spatial resolution 
and computation time required to position 10,000,000 events 
on the GPU with varying number of hidden layers (two, three 
or four), number neurons (from 64 to 1024) in each layer and 
number of training events per position (from 1000 to 8000).  

C. Nearest Neighbor Positioning 
The neural network performance is compared with a nearest 
neighbor positioning algorithm. Here, the mean of all (energy 
filtered) events for each position is calculated and stored as a 
calibration map and all maps are interpolated to a calibration 
grid step size of 0.25 mm. For new events, the square 
difference to every calibration map is calculated. The event is 
then classified to the position with the nearest calibration map.  

D. Performance Measures 
We used the following performance parameters to evaluate the 
positioning models: 
• Bias: Defined as the Euclidean distance between the 

actual and predicted x,y-position. The bias is calculated 
for every test event and the median bias is reported.  

• FWHM: For each beam position a 2D histogram of the 
predicted positions was created from which the full width 
at half maximum (Gaussian fit) along the x- and y-
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directions was calculated as a measure of the detector’s 
intrinsic spatial resolution.   

III. RESULTS AND DISCUSSION 

A. Neural Network Performance 
The median bias performance measures for different network 
architectures is shown in Figure 2. We can observe that for 
1,000 training events/pos., the bias saturates or even increases 
for more complex networks as overfitting starts to occur 
beyond 256 neurons. By increasing the number of training 
events, we can further improve the performance. The best 
performance is obtained with a neural network with four 
hidden layers, 512 neurons in each layer and 8000 training 
events per position for which the median bias and average 
FWHM values are shown in Table 1. A 2D histogram of all 
test predictions across the whole detector is plotted in Figure 
4. These results show that a very high resolution can be 
obtained with enough training data and a complex network.  
When reducing the complexity and/or the number of training 
events, the performance decreases. The resolution versus 
training set size for a three hidden layer (with each 256 
neurons) network can be observed in Figure 3. With 1,000 
events/pos. a FWHM of 0.52 mm is achieved. However, the 
resolution can be improved to a FWHM of 0.43 mm through 
the use of data augmentations (DA) like transposing and 
flipping. Moreover, with this network, 10 million events can 
be positioned per second. Hence the most favorable model can 
be selected based on the desired minimum resolution, amount 
of available calibration data and required event rate.   

 
Figure 2: Median Bias for different neural network architectures. 
N_train indicates the number of training events per position. 

 
Figure 3: Median Bias and FWHM of a neural network with 3 hidden 
layers and 256 neurons in each layer for different numbers of 
training events/pos. 

Table 1: Median Bias and mean FWHM (mm) across the whole 
detector and center 11x11 positions. Ntrain indicates the number of 
training events/pos. Time signifies the compute time required to 
position 10 million events on the GPU. DA: Data Augmentation 

Network Ntrain 
Whole Detector Detector Center Time 

(s) Bias FWHM Bias FWHM 

3L-256 
1000 0.55 0.52 0.52 0.41 

1.04 1000+DA 0.51 0.43 0.46 0.33 
8000 0.47 0.35 0.44 0.28 

4L-512 8000 0.43 0.23 0.39 0.20 3.53 

 
Figure 4: 2D histogram of predicted positions on the test set for the 
best performing neural network with 4 hidden layers and 512 
neurons in each layer. 

B. Nearest Neighbor Performance 
With the nearest neighbor positioning algorithm, a median 
bias of 0.56 mm and FWHM of 0.3 mm is achieved in the 
center (11x11 positions) of the detector with 10,000 
calibration events/pos. Hence, with deep neural networks we 
can achieve a better spatial resolution of 0.20 mm and lower 
bias of 0.39 mm with less calibration data.  

IV. CONCLUSION 
In this work we presented a neural network positioning 
algorithm trained on data from optical simulations. Different 
architectures were compared in terms of spatial resolution, 
event processing rate and required amount of training data. 
We showed that, based on the same dataset, deep neural 
networks can achieve a better spatial resolution compared to a 
nearest neighbor positioning method, even with lower number 
of training events. Furthermore, these results are better than, to 
the authors’ best knowledge, any result currently reported in 
literature. Future work includes 3D positioning and training on 
real datasets. 
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