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Abstract 

In the clinical management of pediatric solid tumors, histological examination of tumor tissue 

obtained by a biopsy remains the gold standard to establish a conclusive pathological 

diagnosis. The DNA methylation pattern of a tumor is known to correlate with the 

histopathological diagnosis across cancer types and is showing promise in the diagnostic 

workup of tumor samples. This methylation pattern can be detected in the cell-free DNA. 

Here, we provide proof-of-concept of histopathologic classification of pediatric tumors using 

cell-free reduced representation bisulfite sequencing (cf-RRBS) from retrospectively 

collected plasma and cerebrospinal fluid samples. We determined the correct tumor type in 

49 out of 60 (81.6%) samples starting from minute amounts (less than 10 ng) of cell-free 

DNA. We demonstrate that the majority of misclassifications were associated with sample 
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quality and not with the extent of disease. Our approach has the potential to help tackle 

some of the remaining diagnostic challenges in pediatric oncology in a cost-effective and 

minimally invasive manner. 

Translational relevance 

Obtaining a correct diagnosis in pediatric oncology can be challenging in some tumor types, 

especially in renal tumors or central nervous system tumors. Furthermore, the diagnostic 

odyssey can result in anxiety and discomfort for these children. By applying a novel 

technique, reduced representation bisulfite sequencing on cell-free DNA (cf-RRBS), we 

show the feasibility of obtaining the histopathological diagnosis with a minimally invasive test 

on either plasma or cerebrospinal fluid. Furthermore, we were able to derive the copy 

number profile or tumor subtype from the same assay. Given that primary tumor material 

might be difficult to obtain, in particular in critically ill children or depending on the tumor 

location, and might be limited in terms of quantity or quality, our assay could become 

complementary to the classical tissue biopsy in difficult cases. 

Introduction 

The diagnostic work-up of pediatric cancer patients with solid tumors requires a number of 

investigations to obtain a full diagnosis and a complete staging. Most imaging and tumor 

marker investigations are of low specificity and do not result in a definitive diagnosis. Thus, 

in most cases, a histopathological examination of a surgically derived tumor biopsy is 

required. Many of the pediatric tumors share a “small blue” histology and show few lineage-

specific morphological features. Hence, extensive immunohistochemistry staining is often 

required to establish a diagnosis. Nevertheless, some types of embryonic tumors or 

sarcomas remain hard to classify correctly. In the context of international frontline clinical 

trial protocols tumor specimens are often sent for central pathology review. In a small 

percentage of patients, discrepancy in either stage or diagnosis can result in suboptimal 

treatment1,2. In pediatric renal tumors, the rate of misdiagnosis was estimated to range from 

3.5% to 17% based on multicenter clinical trials1. Limited tissue availability due to fine 

needle biopsy sampling can further complicate the diagnostic work-up. Furthermore, for 

some types of pediatric tumors, sampling of the tumor is not routinely recommended in some 

treatment protocols (e.g. SIOP protocol for treatment of renal tumors3,4) or is deemed too 

risky due to the location (e.g. diffuse intrinsic pontine glioma) or clinical condition of the 

patient (e.g. contra-indications for anesthesia due to extensive disease). Thus, therapy 

needs to be started empirically based on imaging and clinical characteristics alone, 

increasing the odds for misdiagnosis. 
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The epigenetic signal of primary tissue samples is currently being explored to complement 

classical histopathological analysis. This epigenetic signal seems to be highly tissue-

specific5–7 as opposed to most mutational or copy number alterations. This tissue specificity 

is the dominant remaining signal after malignant transformation, resulting in a unique 

fingerprint of DNA for different tumor entities8,9. For example, the DNA methylation signal 

contributed to obtaining the correct diagnosis in 25 out of 30 cases in a cohort of 

translocation-negative Ewing sarcoma samples10. Among brain tumors, primitive neuro-

ectodermal tumors of the central nervous system (CNS-PNETs) are notoriously difficult to 

diagnose based on histology alone. DNA methylation revealed that this entity is actually 

composed of multiple known and previously unknown tumor types11. Furthermore, in a large 

cohort of 1155 prospectively collected brain tumor samples, 12% of histopathological 

diagnoses could be adjusted based on tumor DNA methylation characteristics12. In 

medulloblastoma, prospective clinical trials are currently ongoing to test whether the 

adaptation of treatment based on new multi-omics (including DNA methylation) improves 

event-free survival (NCT02066220).   

Recently, analysis of cell-free tumor-derived DNA (ctDNA) isolated from liquid biopsies 

including blood has emerged as a complementary assay for tumor tissue genomic profiling13. 

Several groups have investigated the use of cell-free DNA methylation for noninvasive 

diagnosis of both benign14 and malignant15 conditions. For example, Kang et al. developed 

CancerLocator8, an algorithm based on the epigenetic signature determined on whole 

genome bisulfite sequencing (WGBS) to classify cell-free DNA of adult cancer patients to 

their corresponding tumor tissue.  Through data deconvolution, the CancerLocator method 

was able to correctly classify samples, even if they had a low percentage of circulating tumor 

DNA, outperforming standard machine-learning approaches.  

Although tumor classification from the epigenetic cfDNA profile is possible, the high cost of 

WGBS limits its use in routine clinical diagnostics and follow-up. Reduced representation 

bisulfite sequencing (RRBS) is a cost-effective alternative whereby only a small informative 

fraction of the genome is surveyed 16. Enrichment of CpG-rich sites by digesting DNA with 

the MspI restriction enzyme (cuts 5’-C/CGG-3’), followed by DNA fragment size-selection is 

a commonly applied strategy of RRBS. This method was redesigned by De Koker et al.17 to 

allow single tube RRBS library preparation on low input levels (10 ng) of low-quality and/or 

fragmented DNA. 

Our study investigates whether the methylome profile generated with RRBS on cell-free 

DNA (cf-RRBS) is capable of classifying pediatric tumors according to their histopathological 

diagnosis. To this end, we profiled plasma or cerebrospinal fluid of 59 patients with pediatric 
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cancer. This profile was used to classify the sample according to a reference dataset built 

from publicly available methylome data of pediatric tumors of known histology. We further 

explored the tumor copy number profile extracted from cf-RRBS comparing it against the 

copy number profile obtained from shallow whole genome sequencing data. 

Materials and methods 

Patients and samples 

Pediatric cancer patients (median age 46 months [18.5 – 114.5]) were included 

retrospectively if plasma or CSF was available at diagnosis (n = 58) or at relapse (n = 1). For 

one case (patient_36, clear cell sarcoma of the kidney), two plasma samples were available 

at different timepoints, resulting in a total of 60 samples. Samples were collected at Ghent 

University Hospital (Ghent, Belgium, n = 20), Prinses Máxima Centrum (Utrecht, The 

Netherlands, n = 15), Institut Curie (Paris, France, n = 6) and Prague Motol University 

Hospital (Prague, Czech Republic, n = 19). Blood was collected from patients with 

neuroblastoma (n = 10), nephroblastoma (n = 16), malignant rhabdoid tumor of the kidney (n 

= 1), clear cell sarcoma of the kidney (n = 2), alveolar rhabdomyosarcoma (n = 9), 

embryonal rhabdomyosarcoma (n = 8), osteosarcoma (n = 4) and Ewing sarcoma (n = 6). 

Cerebrospinal fluid was collected from patients with medulloblastoma (n = 3) and atypical 

teratoid-rhabdoid tumor (n = 1). The local ethical committee approved the study and written 

consent was obtained from all patients enrolled in this study or their representatives. Per-

sample information is available in supplementary table 2. Descriptive statistics were 

performed with R v3.5.1 and Python v3.6.3 and are expressed by median [Q25 – Q75]. 

Unless otherwise stated, the non-parametric Wilcoxon rank sum test was used to test for 

significance with alpha specified at 0.05. 

Sample collection and processing 

Ghent University Hospital. Whole blood was collected in citrate tubes (Greiner Bio-One, n 

= 16). Plasma was obtained after 1 x 8 min centrifugation at 1885 g. The time between blood 

collection and plasma preparation was not documented. All plasma samples were stored at 

−80 °C until processing for cfDNA extraction. CSF was collected into tubes without additives. 

The CSF was stored at -80 °C until further processing for cfDNA extraction. 

Prinses Máxima Center. Whole blood from all patients was collected in EDTA Vacutainer 

tubes (BD Biosciences). Plasma was obtained after 1 x 10 min centrifugation at 1375 g with 

centrifuge acceleration and without deceleration. The plasma was stored at -20 °C until 

processing for cfDNA extraction. Plasma was prepared within 24 hours after blood 

collection. 
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Prague Motol University Hospital. Whole blood from all patients was collected in EDTA 

Vacutainer tubes (BD Biosciences). Plasma was obtained after 1 x 10 min centrifugation at 

1600 g at room temperature, centrifuge acceleration, and deceleration was set to two, 

followed by a subsequent centrifugation step of 1 x 10 minutes at 16,000 g at room 

temperature. The plasma was stored at −80 °C until processing for cfDNA extraction. Before 

the first centrifugation step, 2.5% (v/v) of a 10% formaldehyde solution was added. Plasma 

was prepared within 4 hours after blood draw. 

Institut Curie. Whole blood was collected in EDTA tubes. Plasma was obtained after 1 x 20 

min centrifugation at 2000 g at room temperature, centrifuge acceleration, and deceleration 

was set to two, followed by a subsequent centrifugation step of 1 x 2 minutes at 16,000 g at 

room temperature. The plasma was stored at −80 °C until processing for cfDNA extraction.  

 

Cell-free DNA extraction 

Ghent University Hospital and Prinses Maxima Center. cfDNA was extracted using the 

Maxwell RSC LV ccfDNA kit (Promega). Isolation of cfDNA was done starting from 200 µL to 

2 mL of plasma or CSF, and if less volume was available, volumes were adjusted to 2 mL by 

adding 1x PBS (Gibco). DNA extraction was performed according to the manufacturer's 

instructions. DNA was eluted in 75 μL of elution buffer (Promega).  

Prague Motol University Hospital. cfDNA was extracted using the QIAamp Circulating 

Nucleic Acid kit (Qiagen). Isolation of cfDNA was done from 1 mL of plasma. DNA extraction 

was performed according to the manufacturer's instructions. DNA was eluted in 25 μL of 

AVE buffer (Qiagen).  

Institut Curie. cfDNA was extracted using QIAamp Circulating Nucleic Acid Kit (Qiagen) 

with the Qiavac24s system, according to the manufacturers' recommendations. Isolation of 

cfDNA was done starting from 200 µL to 1.5 mL of plasma. Volumes were adjusted to 2 mL 

by adding 1x PBS (Gibco). DNA was eluted in 36 μL of AVE buffer (Qiagen). 

Cell-free DNA quality control 

DNA concentration was measured using the Qubit high-sensitivity kit (Thermo Fisher 

Scientific). Size distribution of the cfDNA was measured using the FEMTO Pulse Automated 

Pulsed-Field CE Instrument (Agilent) according to the manufacturer's instructions (NGS Kit, 

FP-1101-0275). The ratio between cell-free DNA and high-molecular weight DNA (HMW) 

was calculated with the Prosize 3.0 software (Agilent). To this end, two blinded independent 

observers visually selected the cfDNA regions and high molecular weight (HMW) regions, 

excluding the upper marker. Then, the percentage of cfDNA was divided by the percentage 
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of HMW DNA to obtain the cfDNA/HMW ratio. Detailed figures are shown in supplementary 

figures. Because this interpretation is inherently subjective, the coefficient of determination 

(R2) and Cohen’s Kappa coefficient between both observers was calculated. R2 between the 

two observers was 0.91. Samples with a cfDNA/HMW ratio less than 1 were labeled as “high 

HMW contamination”, samples with a cfDNA/HMW ratio between 1 and 5 “medium HMW 

contamination” and samples with a cfDNA/HMW ratio >5 as “low HMW contamination”. 

Cohen’s Kappa coefficient with equal weights between the two observers was 0.798 (p < 

0.001). We then evaluated these cut-offs by collecting blood from 3 healthy volunteers in 

EDTA tubes. The tubes were either processed immediately or left standing at room 

temperature for 24 or 72 hours. The blood tubes that were processed immediately all 

showed a cfDNA/HMW ratio above 5 (11.48, 9.01 and 36.03, respectively). The 

cfDNA/HMW ratio of the EDTA tubes that were left standing for 24h were all between 1 and 

5 (5.02, 1.37 and 4.05, respectively) and the cfDNA/HMW ratio of the tubes that were left 

standing for 72h were all lower than 1 (0.33, 0.20 and 0.42, respectively). 

RRBS library construction 

Median input DNA for the library construction was 10.00 ng [7.65 – 10.19]. Library 

construction was performed according to the methods described by De Koker et al.17 with 

the following modifications: [1] If DNA concentration was lower than 0.2 ng/µL, samples were 

concentrated with a vacuum centrifuge (SpeedVac, Thermo Fischer Scientific) at 35°C and 

H2O was added to a volume of 10.6 or 11.1 µL, depending on the amount of lambda spike-in 

(1 µL or 0.5 µL of a 0.01 ng/µL solution). [2] Libraries prepared using the cf-RRBS 

protocol were cleaned by magnetic bead selection (AMPure XT beads – NEB) and eluted in 

0.1X TE buffer. The libraries were visualized with the Fragment Analyzer (Advanced 

Analytical Technologies) and quantified using the Kapa library quantification kit for Illumina 

platforms (Kapa Biosystems). [3] Based on the concentration, the libraries were equimolarly 

pooled and were sequenced on a NextSeq500 instrument with a NextSeq 500/550 High 

Output Kit V2.5 (75 cycles) using 5% PhiX without dark cycles (n = 11) or 10-20% PhiX with 

7 dark cycles (protocol provided by Illumina, n = 49). A maximum of 12 samples were pooled 

in one sequencing run resulting in 19.05 million [17.05 – 21.72] single-end reads per sample 

on average (supplementary table 3).  

 
Sequencing quality control and mapping 

After sequencing, bcl files were demultiplexed using bcl2fastq v2.19.1.403. The raw fastq 

files were first quality checked with FastQC v0.11.518. During this check, many reads did not 

pass QC due to severe adaptor contamination. These adaptors were removed with Trim 

Galore v0.4.419 (with --rrbs flag for RRBS data) and CutAdapt v1.1620 with default 

parameters except for “--three_prime_clip_R1 1”, and processed fastq files were again 
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quality checked with FastQC. Mapping to GRCh37 was done with Bismark v0.19.021 with 

default parameters. Mapping efficiency of the cf-RRBS samples was 50.25% [46.00 – 

52.62]. Bisulfite conversion percentage was assessed by mapping to the lambda genome 

and was 98.05% [98.65 – 97.50]. The bait regions were defined as the MspI regions 

between 20-200 bp in GRCh37 (see ‘Feature Generation’) and the number of reads in these 

regions were counted with picard tools v2.18.27 (hsmetrics module; 

http://broadinstitute.github.io/picard/). The percentage of bases mapping to these “bait” 

regions was 87.43% [85.29 – 90.19]. Per-sample information is available in supplementary 

table 3. Visualizations were made with the R programming language v3.2.1. and ggplot2 

v3.0.0. 

 

Copy number alteration profiling 

For each sample, shallow whole genome sequencing (sWGS) data was available to assess 

copy number alterations (CNAs) in cfDNA. After DNA isolation, cfDNA was processed as 

previously described by Raman et al.22. After sequencing, fastq files were mapped to 

GRCh38 with bwa 0.7.17 and duplicate reads were removed after mapping with picard tools 

v2.1.1. WisecondorX (https://github.com/CenterForMedicalGeneticsGhent/WisecondorX) 

with 400 kb binsize was used to call copy number variations. In addition, we used 

WisecondorX to detect CNA in the cf-RRBS data with 400 kb bins after mapping to a 

bisulfite converted GRCh38 reference genome. Duplicate reads were not removed in the cf-

RRBS data in accordance with the Bismark user guide21. All samples were normalized with 

an in-house dataset from data obtained from healthy volunteers for both sWGS and cf-

RRBS. Copy number profiles from all samples are available in supplementary data. 

IchorCNA. To estimate the circulating tumor percentage in the cfDNA from the sWGS data, 

we used ichorCNA (https://github.com/broadinstitute/ichorCNA) with 500 kb binsize and the 

following parameters:         "--chrs 'c(1:22)' --chrTrain 'c(1:22)'  --scStates 'c(1,3)' --txnE 

0.9999 --txnStrength 10000 --normal 'c(0.2,0.35,0.5,0.65,0.8)' --maxCN 5”. 

Building classifier with publicly available data 

We used publicly available methylation profiling data from neuroblastoma (n = 220), 

osteosarcoma (n = 86), Wilms tumor (n = 131), clear cell sarcoma of the kidney (CCSK, n = 

11) (TARGET, https://ocg.cancer.gov/programs/target), rhabdomyosarcoma23 (n = 53), 

Ewing sarcoma12,24,25 (n = 38), malignant rhabdoid tumors26 (MRT, n = 26), prepubertal white 

blood cells27 (WBCs, n = 52) and non-malignant cfDNA15,28 (n = 24) to build the reference 

set. The methylation signature of 2801 brain tumors was obtained from Capper et al.12. 
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Neuroblastoma cases from TARGET with unspecified MYCN status, and 

rhabdomyosarcoma cases with unspecified subgroup (embryonal/alveolar) were removed 

from the datamatrix (supplementary table 1). 

Within these published datasets, the epigenetic profile of neuroblastoma, osteosarcoma, 

Wilms tumor, CCSK, WBC, rhabdomyosarcoma and Ewing sarcoma was determined with 

Infinium HumanMethylation450K and MRT samples were determined with Infinium 

HumanMethylationEPIC. For non-malignant controls by Chan et al.28 (n = 24), the authors 

used low-coverage whole genome bisulfite sequencing. Processing of raw fastq files from 

sequencing data was done similar as described above. WGBS files were deduplicated after 

mapping with Bismark, RRBS samples were not deduplicated. Accession numbers for 

published datasets are available in supplementary table 1. Chromosomes X and Y were 

removed from downstream analysis. 

 

Feature selection 
CpGs were grouped in order to use more mappable reads. Input data (cf-RRBS test set & 

public reference set) was prepared similar to Kang et al. However, we adjusted the target 

regions to make them more suited for RRBS data. First, we used mkrrgenome29 to extract all 

MspI regions between 20-200 bp from GRCh37. Then, we merged all remaining regions 

within 1 bp from each other with BEDtools30. Finally, clusters were retained if they contain at 

least 3 CpGs covered on the Illumina HM450K array, resulting in 14,103 clusters covering 

61,750 probes on the HM450K array. In our cohort, these regions were consistently covered 

across all samples, except for 8 regions that were not covered in any of the samples 

(supplementary data). 

t-SNE visualizations 

Clustered and processed beta values from the 9 reference entities were grouped in a single 

data matrix with Python v3.6.3 and pandas v0.20.3. A t-SNE plot was generated on the full 

data matrix (634 samples and 4811 CpG clusters), after removing missing values (9292 

CpG clusters, 65.88%) with sklearn v0.19.1 and matplotlib v2.1.0. The t-SNE parameters 

were n_components=2, perplexity=30, n_iter=2000. Mean sigma was 1.678887, error after 

2000 iterations was 0.466. 

 

NNLS classification 

Classification of plasma and CSF cfDNA samples was done with non-negative least squares 

(NNLS) matrix decomposition as described by Moss and colleagues14 

(https://github.com/nloyfer/meth_atlas). The reference sets were identical as previously 

described (one reference set for intracranial and one reference set for extracranial tumor 

entities) and CpGs were grouped in 14,103 clusters as well for both reference and test 
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samples. As normal class, the shallow whole genome bisulfite sequencing (sWGBS) cfDNA 

data from Chan et al. was used for both reference sets. For each tumor entity in the 

reference dataset, the median beta value of the CpG cluster was calculated, resulting in one 

column with beta values per tumor or normal entity. The sample class was determined by 

extracting the tumor entity with the highest fraction (after normal and WBC fractions) after 

running the meth_atlas NNLS wrapper. Samples with no estimated tumor fraction were 

labeled as inconclusive. 

 

 

 
Figure 1: 2-component t-SNE plot derived from the samples in the extracranial tumor reference dataset after grouping 
CpGs into 14,103 regions. 

Results 

The methylation signature is pediatric tumor type specific. Similar to the t-SNE plots as 

described by Capper et al.12, we applied t-SNE dimensionality reduction (Figure 1) to the 

extracranial reference dataset to assess the feasibility of establishing the diagnosis of 

extracranial pediatric cancers based on the methylation signature from public data. Separate 

clusters based on the histopathological diagnosis could be visually identified. Furthermore, 

Ewing sarcoma samples from three different public datasets cluster together, indicating that 

laboratory and/or method batch effects from different publicly available datasets are not 

dominating the classification. In addition, some individual tumor samples cluster with white 

blood cells (WBC). We hypothesize that either these biopsies may have been contaminated 

with leukocytes during surgery, or the tumor might have been rich in infiltrating lymphocytes. 

Nevertheless, to avoid bias, these samples were not excluded from the reference dataset. 

 

Classification of cell-free DNA according to histopathological diagnosis. We profiled 

the methylation pattern of 59 pediatric cancer cases (60 samples), of which 56 plasma 
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samples and 4 CSF samples and we were able to classify 49 samples (81.66%) correctly 

according to the histopathologic diagnosis.  

Within the extracranial tumor entities, we could correctly classify neuroblastoma (n = 9/10), 

Wilms tumor (n = 13/16), rhabdomyosarcoma (n = 14/17), MRT (n = 1/1), CCSK (n = 1/2), 

Ewing sarcoma (n = 3/6) and osteosarcoma (n = 4/4) from the cfDNA methylation profile 

(Figure 2). Subclasses within the rhabdomyosarcoma group (i.e. alveolar and embryonal) 

are correct in 13 out of 14 of the correctly classified rhabdomyosarcoma cases. The two 

clear cell sarcoma samples derived from the same patient but sampled 24 hours apart 

misclassified once as an osteosarcoma sample with an estimated tumor fraction of 2.5%, 

and the second time correctly classified as clear cell sarcoma of the kidney with 2.5% 

estimated tumor fraction. 

In addition, we were able to distinguish medulloblastoma (n = 3/3) from an atypical teratoid-

rhabdoid tumor using the methylation profile of CSF cfDNA. 

 

 
Figure 2: Overview of the results after classification based on the cfDNA methylation profile of the respective samples. Red 
labels near the dots on the scatter plot indicate what entity the sample is misclassified as. TFx, tumor fraction. Inconclusive 
indicates that no tumor fraction was detected in the cfDNA; NBL, neuroblastoma; aRMS, alveolar rhabdomyosarcoma; 
eRMS, embryonal rhabdomyosarcoma; OS, osteosarcoma; EWS, Ewing sarcoma; WT, Wilms tumor; CCSK, clear cell 
sarcoma of the kidney; MRT, malignant rhabdoid tumor; MB, medulloblastoma; ATRT, atypical teratoid-rhabdoid tumor.  

Classification accuracy is correlated with sample quality. Misclassified samples had 

significantly lower estimated tumor fraction in the cfDNA based on methylation data (2.10% 

[0.00 – 3.70] vs 30.90% [8.80 – 54.80], p < 0.001).  Furthermore, if the estimated tumor 
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fraction was above 10%, all samples classified correctly (n = 36). If the estimated tumor 

fraction was below 10%, 13 out of 24 samples (54.17%) classified correctly (Figure 5). To 

investigate whether a low tumor fraction correlates to disease extent, we grouped patients 

by metastatic status. Between these two groups, the estimated tumor fraction was not 

significantly different (30.90% [3.00 – 54.50] vs 16.60% [3.20 – 51.80], p = 0.39, Figure 5).  

Further investigation into the misclassified samples revealed that the majority of these 

samples had evidence for medium to high HMW contamination (cfDNA/HMW DNA ratio less 

than 5). In samples with low HMW DNA contamination, the classification accuracy was 

94.59% (n = 35/37) (Figure 5). In samples with medium to high HMW DNA contamination, 

the classification accuracy was 60.86% (n = 14/23). 

 

 
Figure 3: Top & middle: Example of the comparison of copy number profiles derived from (top) cf-RRBS data and (middle) 
sWGS data with 400 kb binsize of a high-quality sample. Lower left: sliding window of 10 Mb average log2 ratio. Lower 
right: scatterplot between cf-RRBS and sWGS with Pearson r. The dotted line equals least squares fit; the solid line equals 
the orthogonal regression fit. Cf-RRBS, cell-free reduced representation bisulfite sequencing; sWGS, shallow whole genome 
sequencing. 
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Figure 4: Top & middle: Example of the comparison of copy number profiles derived from (top) cf-RRBS data and (middle) 
sWGS data with 400 kb binsize of a low-quality sample. Lower left: sliding window of 10 Mb average log2 ratio. Lower 
right: scatterplot between cf-RRBS and sWGS with Pearson r. The dotted line equals least squares fit; the solid line equals 
the orthogonal regression fit. Cf-RRBS, cell-free reduced representation bisulfite sequencing; sWGS, shallow whole genome 
sequencing. 

Copy number analysis is feasible using cf-RRBS data. Copy number alterations could be 

detected with shallow WGS in 42 out of 60 samples (Figure 3, Figure 4). The concordance 

between estimated tumor fraction using methylation profiling data and the estimated tumor 

fraction by ichorCNA analysis of sWGS profiles was moderate for samples with low to 

medium HMW DNA contamination (Spearman r 0.77 and 0.78, respectively, Figure 6). 

Importantly, MYCN amplification could be observed with both the sWGS and cf-RRBS CNA 

profiles in the three neuroblastoma samples with confirmed MYCN amplification. If CNAs 

were present in cf-RRBS (n = 32), the correlation of the CNA profile with sWGS was high 

(0.87 [0.82 - 0.94]). However, the reverse was not true; several samples (n = 10) showed 

CNAs according to sWGS but none using cf-RRBS. In the group with discordant CNA 

profiles between cf-RRBS and sWGS, 5 out of 10 samples (50%) had evidence for high 

HMW contamination. In contrast, in the group showing CNA with both methods, only 4 out of 

46 samples (8.69%) had evidence for high HMW DNA contamination (p = 0.004, Fisher’s 

Exact Test). None of the 18 (out of 60) samples that showed no CNA using sWGS had 

evidence for CNA based on cf-RRBS data (Figure 6). 
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Figure 5: Top left: the estimated tumor fraction is significantly lower in the misclassified group (p < 0.001, Wilcoxon rank 
sum test)). Top right: The estimated tumor fraction does not differ significantly for disease extent across all tumor types (p > 
0.05, Wilcoxon rank sum test). Bottom left: The majority of the misclassifications are situated in the medium and high HMW 
group (cfDNA/HMW ratio less than 5). Bottom right: In the group with low HMW DNA contamination, classification 
accuracy reaches 94% (n = 35/37), indicating that pre-analytical variables or sample quality might influence the 
classification accuracy. TFx, tumor fraction; HMW, high molecular weight; cfDNA, cell-free DNA; CSF, cerebrospinal 
fluid; **** = p < 0.001. 

 
Figure 6: Left: scatterplot of the estimated tumor fraction derived from cf-RRBS data vs. estimated tumor fraction derived 
from sWGS data. In samples with low to medium HMW contamination, Spearman correlation between methylation and 
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CNA-based tumor fraction estimation is moderate to high (r = 0.78 and 0.77, respectively). Solid line equals the linear 
regression fit. Dashed line equals y = x. Right: if CNAs are present in both cf-RRBS and sWGS data, Pearson correlation 
between both methods is high. “Flat” indicates copy neutral (i.e. no gains or losses) samples. eTFx, estimated tumor 
fraction; CNV, copy number variations; CNA, copy number aberrations, HMW contamination, high molecular weight DNA 
contamination; **** = p < 0.001. 

Discussion  

We show that classification based on cfDNA methylation profile as determined by cf-RRBS 

is feasible for the subset of extra- and intracranial pediatric cancer entities included in this 

study. Overall, we are able to correctly classify 49 out of 60 (81.6%) samples. We are able to 

identify specific recurrent genomic alterations such as MYCN amplification in neuroblastoma 

and differentiate between alveolar and embryonal rhabdomyosarcoma subtype from these 

same data. Importantly, only 1-10 ng of cfDNA is required for the cf-RRBS analysis, making 

clinical implementation in pediatric practice feasible from just 200 µl of plasma. Furthermore, 

cost-per-sample was calculated at a conservative 180 euro, including sample collection, 

DNA isolation, library preparation and sequencing (excluding personnel costs), favoring our 

techniques routine application over the substantially more expensive gold-standard of whole 

genome bisulfite sequencing. 

 

In our study, misclassifications seemed to be predominantly associated with sample quality. 

Samples of low quality had a higher amount of high molecular weight, non-cell-free DNA and 

this artificially reduced the estimated tumor fraction, resulting in a more challenging 

classification. Inherent to the retrospective multicenter nature of our study is a lack of control 

over the pre-analytical variables such as the blood tube used, the handling of the collection 

tube, any delay between collection and downstream processing and the SOP used in cfDNA 

isolation. Preservation tubes (e.g. Streck Cell-Free DNA BCT, Streck) have been developed 

to stabilize the cfDNA and avoid high molecular weight DNA contamination. However, it is 

currently unknown to what extent the preservation medium in these tubes alters the 

methylation profile of the cfDNA or hampers its downstream processing for cf-RRBS. 

Furthermore, classification accuracy may be improved for samples with a very low ctDNA 

fraction given a more sensitive computational deconvolution algorithm, a more robust 

reference dataset or a combination of genomic and epigenomics-based classification. 

Interestingly, in our study, the estimated ctDNA fraction was not associated with extent of 

disease. This is in contrast to the adult oncology field, where it has often been suggested 

that cfDNA based assays are mainly of value in high stage, metastatic disease31. This may 

depend on the tumor entity, but should further be explored in future, prospective studies. 

Furthermore, we could correctly classify 9 out of 18 samples with a neutral cfDNA CNA 

profile. This hints at an improved sensitivity of methylation profiling over CNA profiling in 

cfDNA samples with a low tumor fraction.  
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Other efforts exploring cell-free DNA in pediatric cancer have focused on detection of copy 

number aberrations, structural variants32,33 and mutations34. However, these alterations 

come with low specificity for classification of pediatric solid tumors according to their 

histopathological diagnosis35. In addition, there is a high interest to develop a screening test 

based on cfDNA methylation in adult oncology36. Due to the rarity of cancer in children, we 

do not see our test as a screening tool, but rather as a complementary diagnostic test for 

children for whom a classic biopsy is unfeasible or of low quality. Indeed, it could improve 

the diagnosis of tumor types with very similar histology (e.g. small round blue cell tumors) as 

illustrated by the distinction of MRT, CCSK and Wilms tumor in this study. This could 

potentially impact on clinical decision making for patients with renal tumors who are usually 

not biopsied before therapy start. Another major application is in the minimally-invasive 

classification of brain tumors, where tumor tissue methylation profiling is being pitched as a 

way to improve tumor classification11,12 but high quality and sufficiently large biopsies are 

hard to obtain.  

 

While we provide proof-of-concept for the applicability of the cf-RRBS assay, there are 

several limitations to our study. Building a classifier from public datasets from many different 

laboratories will result in batch and platform effects that will inevitably bias the results of this 

study. In addition, our current classifier is also limited to entities of whom public data is 

available. The public data available was generated with different strategies (array, RRBS, 

WGBS) potentially resulting in a suboptimal classifier. Ideally, a reference atlas of RRBS or 

WGBS data from a wide array of pediatric cancers and healthy children should be generated 

to further improve our classifier. Implementation into clinical trials or routine diagnostics will 

require additional adaptations to our method. In future validation studies, the inclusion of 

children without cancer will be necessary to calculate the specificity of the assay. 

Furthermore, in its current iteration our assay has a theoretical turn-around-time of 5 working 

days which is too long for its use in real-time clinical decision making. 

 

In recent years, a number of alternatives to WGBS for cfDNA methylation profiling were 

developed. The Roche SeqCap Epi assay is a capture-based technique and is able to 

assess the methylation profile of cfDNA by enriching for CpG dense genomic areas. 

However, this technique has a lower cost-effectiveness compared to cf-RRBS, is difficult to 

implement in a routine clinical setting and the protocol is cumbersome and time-

consuming17. Single cell RRBS (scRRBS) has also been suggested as a cost-effective 

alternative to classical RRBS and WGBS for low-input samples, but is more labor-

intensive15. More recently, cfMeDIP-seq37 was used to detect and classify adult cancers in 

an early stage. However, as this method is based on immunoprecipitation it has its own 
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drawbacks38. These techniques all cover different parts of the methylome, and the optimal 

technique for sensitive tumor detection remains yet to be demonstrated. 

 

In conclusion, while a thorough prospective evaluation is required to delineate and establish 

the true value of the technique and its clinical application, this proof-of-concept study 

suggests a role for cf-RRBS as a cost-effective addition to the diagnostic toolbox in pediatric 

oncology. 
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