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SAMENVATTING

In veel ontwikkelingslanden, waaronder Zuid-Afrika, zijn niet alle gegevens beschik-

baar die nodig zijn om de reële waarde van financiële instrumenten te berekenen.

Bovendien zijn bedrijven die niet over de nodige kwantitatieve vaardigheden be-

schikken in sommige gevallen terughoudend om de juiste reële waardering op te

nemen door verkeerde technieken te gebruiken. Dit probleem is het meest opval-

lend met betrekking tot niet-genoteerde schuldinstrumenten.

Er zijn twee belangrijke inputs met betrekking tot de waardering van niet-beursge-

noteerde schuldinstrumenten, met name de risicovrije curve en de renteverschui-

ving. Onderzoek naar deze twee componenten vormt de basis van dit proefschrift.

Eerst wordt er een analyse uitgevoerd en een methode ontwikkeld om de risico-

vrije curves te benaderen zelfs wanneer data schaars is. Daarna wordt onderzocht

of er voldoende aanwijzingen zijn voor een significante wijziging in de rendements-

spreads van niet-genoteerde schuldinstrumenten. Om deze veranderingen te bepa-

len, werd een nieuwe methode ontwikkeld – triplot-classificatie met polybags – die

zowel de visualisatie als classificatie van gegevens mogelijk maakt. Deze nieuwe

classificatietechniek laat ook toe om misclassificatietarieven te beperken.

In het eerste artikel wordt een proxy voor de uitgebreide nulcurve berekend obv

andere waarneembare inputs. Hiervoor wordt een simulatiebenadering gebruikt

waarbij twee nieuwe technieken, gepermuteerde integer multiple lineaire regressie

en geaggregeerde gestandaardiseerde modelscoring, worden geïntegreerd. Een

Nelson Siegel-fit op een gereduceerde dataset, met een mix van één jaar forward-

tarieven als proxy voor het nulpunt op de lange termijn presteerde relatief goed

in de trainings- en testdatasets. Deze nieuwe methode maakt de benadering van

risicovrije curven mogelijk wanneer er geen lange-termijnpunten beschikbaar zijn,

en laat ook toe om de determinanten van de vorm van de rentecurve te berekenen

door andere beschikbare gegevens te overwegen. De veranderingen in deze vorm-

bepalende parameters worden in het laatste artikel gebruikt als determinanten voor

veranderingen in de opbrengstspreads.
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Voor het tweede artikel is een nieuwe classificatietechniek ontwikkeld die in het

laatste artikel wordt gebruikt. Classificatietechnieken zijn moeilijk visueel te inter-

preteren en laten niet toe om de foutnegatieve en foutpositieve percentages te be-

perken. Voor sommige onderzoeksgebieden en praktische toepassingen zijn deze

tekortkomingen van belang. In dit artikel worden classificatietechnieken gecombi-

neerd met biplots, waardoor gelijktijdige visuele weergave en classificatie van de

gegevens mogelijk is, wat resulteert in de zogenaamde triplot. Door verder poly-

bags te integreren, wordt ook het vermogen om fouten van het misclassificatie-type

te beperken geïntroduceerd. Een simulatieonderzoek en een toepassing tonen aan

dat de resultaten van deze methode vergelijkbaar zijn met bestaande methoden,

maar met toegevoegde visualisatievoordelen. Het artikel richt zich puur op het ont-

wikkelen van een statistische techniek die in elk veld kan worden toegepast. Zo

betreft de toepassing in het artikel, bijvoorbeeld, een set van medische gegevens.

In het laatste artikel wordt de techniek gebruikt om veranderingen in renteverschil-

len te meten.

Het derde artikel beschouwt veranderingen in rendementsspreads. Deze rende-

mentspreads werden geanalyseerd via verschillende covariaten om te bepalen of

er significante dalingen of stijgingen zouden hebben plaatsgevonden voor niet-

genoteerde schuldinstrumenten. De methodologie bepaalt niet de nieuwe spread,

maar geeft aan of de aanvankelijke impliciete spread dezelfde kan blijven of dat

er een nieuwe spread moet worden bepaald. Deze renteverschuivingsbewegin-

gen worden geclassificeerd met behulp van verschillende aandelen, rentetarieven,

financiële ratio’s en economische covariaten op een visueel interpreteerbare ma-

nier. Dit geeft ook een beter inzicht in hoe verschillende factoren de veranderingen

in de rendementspreads beïnvloeden.

Ten slotte werd als aanvulling op elke paper een webgebaseerde applicatie ge-

bouwd waarmee de lezer kan communiceren met alle gegevens en eigenschappen

van de besproken methoden. De volgende links verschaffen toegang tot deze drie

applicaties:

� Artikel 1: https://carelvdmerwe.shinyapps.io/ProxyCurve/
� Artikel 2: https://carelvdmerwe.shinyapps.io/TriplotSimulation/
� Artikel 3: https://carelvdmerwe.shinyapps.io/SpreadsTriplot/
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SUMMARY

In many developing countries, including South Africa, all data that are required to

calculate the fair values of financial instruments are not always readily available.

Additionally, in some instances, companies who do not have the necessary quantit-

ative skills are reluctant to incorporate the correct fair valuation by failing to employ

the appropriate techniques. This problem is most notable with regards to unlisted

debt instruments.

There are two main inputs with regards to the valuation of unlisted debt instru-

ments, namely the the risk-free curve and the the yield spread. Investigation into

these two components forms the basis of this thesis. Firstly, an analysis is car-

ried out to derive approximations of risk-free curves in areas where data is sparse.

Thereafter it is investigated whether there is sufficient evidence of a significant

change in yield spreads of unlisted debt instruments. In order to determine these

changes, however, a new method that allows for simultaneous visualisation and

classification of data was developed - termed triplot classification with polybags.

This new classification technique also has the ability to limit misclassification rates.

In the first paper, a proxy for the extended zero curve, calculated from other observ-

able inputs, is found through a simulation approach by incorporating two new tech-

niques, namely permuted integer multiple linear regression and aggregate stand-

ardised model scoring. It was found that a Nelson Siegel fit, with a mixture of one

year forward rates as proxies for the long term zero point, and some discarding

of initial data points, performs relatively well in the training and testing data sets.

This new method allows for the approximation of risk-free curves where no long

term points are available, and further allows for the determinants of the yield curve

shape by considering other available data. The changes in these shape determ-

ining parameters are used in the final paper as determinants for changes in yield

spreads.

For the second paper, a new classification technique is developed that was used in

the final paper. Classification techniques do not easily allow for visual interpreta-

tion, nor do they usually allow for the limitation of the false negative and positive
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error rates. For some areas of research and practical applications these shortcom-

ings are important to address. In this paper, classification techniques are combined

with biplots, allowing for simultaneous visual representation and classification of

the data, resulting in the so-called triplot. By further incorporating polybags, the

ability of limiting misclassification type errors is also introduced. A simulation study

as well as an application is provided showing that the method provides similar res-

ults compared to existing methods, but with added visualisation benefits. The paper

focuses purely on developing a statistical technique that can be applied to any field.

The application that is provided, for example, is on a medical data set. In the final

paper the technique is applied to changes in yield spreads.

The third paper considered changes in yield spreads which were analysed through

various covariates to determine whether significant decreases or increases would

have been observed for unlisted debt instruments. The methodology does not spe-

cifically determine the new spread, but gives evidence on whether the initial implied

spread could be left the same, or whether a new spread should be determined.

These yield spread movements are classified using various share, interest rate, fin-

ancial ratio, and economic type covariates in a visually interpretive manner. This

also allows for a better understanding of how various factors drive the changes in

yield spreads.

Finally, as supplement to each paper, a web-based application was built allowing

the reader to interact with all the data and properties of the methodologies dis-

cussed. The following links can be used to access these three applications:

� Paper 1: https://carelvdmerwe.shinyapps.io/ProxyCurve/
� Paper 2: https://carelvdmerwe.shinyapps.io/TriplotSimulation/
� Paper 3: https://carelvdmerwe.shinyapps.io/SpreadsTriplot/
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OPSOMMING

In baie ontwikkelende lande, insluitend Suid-Afrika, is al die inligting wat benodig

word om die billike waardes van finansiële instrumente te bereken, nie altyd gere-

delik beskikbaar nie. In sommige gevalle is ondernemings, wat nie oor die nodige

kwantitatiewe vaardighede beskik nie, teësinnig om die regte billike waardasie te

bereken deur nie-toepaslike tegnieke te gebruik. Hierdie probleem is veral opval-

lend ten opsigte van ongenoteerde skuldinstrumente.

Daar is twee hoof insette met betrekking tot die waardasie van ongenoteerde skuld-

instrumente, naamlik die risiko-vrye kromme en die opbrengskoersspreiding. Die

ondersoek na hierdie twee komponente vorm die basis van hierdie tesis. Eerstens

word ’n analise uitgevoer om benaderings vir die risiko-vrye kurwes af te lei in areas

waar die data skaars is. Daarna word ondersoek gedoen om vas te stel of daar vol-

doende bewyse is van betekenisvolle veranderinge in die opbrengskoersspreiding

van ongenoteerde skuldinstrumente. Ten einde hierdie veranderinge te bepaal, is

’n nuwe metode wat gelyktydige visualisering en klassifikasie van data moontlik

maak, ontwikkel - genaamd tri-stipping-klassifisering met poli-sakke. Hierdie nuwe

klassifikasietegniek het ook die vermoë om wanklassifikasiekoerse te beperk.

In die eerste artikel word ’n benadering vir die uitgebreide nul-kromme bereken uit

ander waarneembare insette. Dit word gevind deur middel van ’n simulasiebena-

dering deur twee nuwe tegnieke, naamlik gepermuteerde heelgetal meervoudige

liniêre regressie en totale gestandaardiseerde model-telling, te gebruik. Dit is ge-

vind dat ’n Nelson Siegel-passing, met ’n kombinasie van een jaar vooruitkoerse as

benaderings vir die langtermyn nulpunt, en ’n mate van weglating van die aanvank-

like datapunte, relatief goed in die leer en toetsing van datastelle presteer. Hierdie

nuwe metode maak voorsiening vir die benadering van risiko-vrye krommes waar

geen langtermynpunte beskikbaar is nie. Dit maak ook voorsiening vir die kompo-

nente van die opbrengskrommevorm deur ander beskikbare data in ag te neem.

Die veranderinge in hierdie vormbepalingsparameters word in die finale artikel as

komponente vir veranderinge in opbrengskoersspreidings gebruik.
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In die tweede artikel word ’n nuwe klassifikasietegniek ontwikkel wat in die finale

artikel gebruik word. Klassifikasietegnieke laat nie maklik visuele interpretasie toe

nie, en maak gewoonlik ook nie die beperking van die vals negatiewe en posi-

tiewe foutkoerse moontlik nie. Hierdie tekortkominge is belangrik vir sommige

navorsings- en praktiese toepassingsareas. In hierdie artikel word klassifikasieteg-

nieke gekombineer met bi-stippings, waardeur die data gelyktydig visueel voorge-

stel en geklassifiseer word, wat die sogenaamde tri-stipping tot gevolg het. Deur

poli-sakke in te bring, word die vermoë om foute in die wanklassifikasie te beperk

geïnkorporeer. ’n Simulasie-studie sowel as ’n toepassing word word geïllustreer.

Dit toon aan dat die metode soortgelyke resultate lewer in vergelyking met die be-

staande metodes, maar met ekstra visualiseringsvoordele. Die artikel fokus slegs

op die ontwikkeling van ’n statistiese tegniek wat op enige veld toegepas kan word.

Die toepassing wat byvoorbeeld verskaf is, was op ’n mediese datastel. In die finale

artikel word die tegniek op veranderinge in opbrengskoersspreidings toegepas.

In die derde artikel word veranderinge in opbrengskoersspreidings ondersoek en

word dit deur middel van verskillende ko-variate ontleed om te bepaal of beteke-

nisvolle daling of stygings by ongenoteerde skuldinstrumente waargeneem word.

Die metodologie bepaal nie die nuwe spreiding spesifiek nie, maar lewer ’n be-

wys of die aanvanklike geïmpliseerde spreiding dieselfde gelaat kan word, of dat

’n nuwe spreiding bepaal moet word. Hierdie opbrengskoersspreidingbewegings

word op ’n visueel interpretatiewe wyse geklassifiseer met behulp van verskillende

aandeel-, rentekoers-, finansiële verhouding- en ekonomiese tipe ko-variate. Dit

gee ook ’n beter begrip van hoe verskillende faktore die veranderinge in opbrengs-

koerse beïnvloed.

Ten slotte, aanvullend tot elke artikel, is ’n webtoepassing gebou wat die leser in

staat stel om met al die data en eienskappe van die metodologieë wat bespreek is,

te eksperimenteer. Die volgende skakels kan gebruik word om toegang tot hierdie

drie toepassings te verkry:

� Artikel 1: https://carelvdmerwe.shinyapps.io/ProxyCurve/
� Artikel 2: https://carelvdmerwe.shinyapps.io/TriplotSimulation/
� Artikel 3: https://carelvdmerwe.shinyapps.io/SpreadsTriplot/
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CHAPTER 1

APPROXIMATING RISK-FREE

CURVES IN SPARSE DATA

ENVIRONMENTS

A shortened version of this paper was published in Finance Research Letters 26

(2018) pp. 112–118. The published paper can be found at http://doi.org/10.

1016/j.frl.2017.12.016. This paper was co-authored with supervisors (at the

time of publication) Dries Heyman and Tertius de Wet.

Abstract

Accounting standards require one to minimise the use of unobservable inputs when calcu-

lating fair values of financial assets and liabilities. In emerging markets and less developed

countries, zero curves are not as readily observable over the longer term, as data are often

more sparse than in developed countries. A proxy for the extended zero curve, calculated

from other observable inputs, is found through a simulation approach by incorporating two

new techniques, namely permuted integer multiple linear regression and aggregate stand-

ardized model scoring. A Nelson Siegel fit, with a mixture of one year forward rates as

proxies for the long term zero point, and some discarding of initial data points, was found

to perform relatively well in the training and testing data sets.

1 Introduction

The International Accounting Standards Board defines, in the International Finan-

cial Reporting Standards (IFRS) 13 Fair Value Measurement, the fair value for fin-

ancial instruments as the price that would be received from selling an asset or

paid to transfer a liability in an orderly transaction between market participants at

the measurement date, i.e. an exit price. The definition of fair value is similar to

1
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that of the Financial Accounting Standards Board’s Accounting Standards Codifica-

tion (ASC) Topic 810 (formerly, Statement of Financial Accounting Standards (SFAS)

157) Fair Value Measurement. These fair value accounting standards are relatively

similar, with the most significant differences between them being the recognition of

day one gains and losses, accounting for alternative investments, some quantitat-

ive sensitivity disclosure requirements, and disclosure exemptions (RMS US, 2012).

Further guidance is provided in the standards in terms of considerations when de-

ciding the most appropriate method and inputs to determine the fair value of a

financial instrument. Considerations include the condition, location, restriction of

sale, the principal or most advantageous market, assumptions market participants

would use, as well as maximising the use of observable inputs in the fair value

calculation. These inputs are classified into three levels, with the first level be-

ing broadly directly observable inputs, the second level inputs that are derived via

models from other observable inputs, and lastly unobservable inputs.

Some emerging markets and less developed countries, however, lack these ob-

servable inputs. While there exists a vast amount of research on parameterising

the interest rate curve, extrapolating it, and forecasting it as well, very little re-

search has been and is being done on extending it in sparse data environments.

The approach followed in this research was to simulate such sparse environments

from data rich environments and find methods that perform well in extrapolating

curves under these conditions.

This paper focuses specifically on zero coupon risk-free curves, and finds a proxy

that can be used to obtain the extended curve through other observable inputs

and specified models, allowing them to be considered as second level, rather than

third level inputs under IFRS 13. The approximations are found through a phased

simulation1 approach which incorporates two new techniques, namely permuted in-

teger multiple linear regression (PIMLR) and aggregate standardised model scoring

(ASMS).

The approach followed deviates from the classical econometric approaches and

attempts to utilise the power of high performance computing to solve the research

question. The PIMLR and ASMS are techniques which were designed to be used in

1When referring to simulation in the text it refers to repetitive evaluation of models over a set of
predefined models and input values.
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conjunction with high performance computing - they are discussed in more detail

later.

The research provides a method for obtaining a possible extrapolation of the zero

curve. It can easily be used within the valuation of financial instruments, or could

possibly be used as a starting value for the pricing of them as well.

2 Background and literature overview

Kumarasiri and Fisher (2011) summarised Pacter’s (2007) concerns regarding the

application of fair value measurement in developing countries. The first being that

inactive markets cause unreliable fair value estimates due to infrequent transac-

tions, large bid-ask spreads, and market prices only being influenced by a few mar-

ket participants or transactions. Secondly, there exists a trade-off between cost and

benefit of implementing sophisticated fair valuation techniques. Furthermore, there

are significant skill shortages in these countries - not only in-house, but externally

as well.

Further, various transactions are entered into with related parties, hence it might

be struck at non-market prices causing mismatches between market implied prices.

Market prices could also be influenced by government, and therefore might not

reflect normal market interactions. Also, a weak regulatory environment in some

developing countries, could see low compliance with financial reporting standards.

Lastly, lack of valuation standards and guidance on how to determine fair value

raises additional concerns.

In addition to the above, some other studies have been performed with regards to

the appropriateness of fair value accounting. Palea and Maino (2013) investigated

whether the application of IFRS 13 for private equity valuation actually does con-

tribute to the enhancing of transparency and comparability in financial statements

(stated as one of the objectives in the EU Regulation 1606/2002). This also relates

to the IASB’s Conceptual Framework for Financial Reporting, where one of the fun-

damental qualitative characteristics of useful (financial statement) information is to

provide a faithful representation of the underlying events and transactions, which

includes completeness.

3
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Another relates to the enhancing qualitative characteristics with regards to the

comparability of financial statements. Benston (2008) found that fair values other

than those that are directly observable in the market, could be manipulated easily

and often are difficult to verify. Laux and Leuz (2009) discussed the different views

regarding fair value accounting, and pointed to further research. Barth (2004) in-

vestigated the impact of the volatility of estimates on financial statements due to

fair value, Penman (2007) discussed the benefits and disadvantages of fair value

over historical cost estimates for various assets, while Ryan (2008) criticised the

definition and measurement of fair value during a financial crisis.

Kumarasiri and Fisher (2011) surveyed 156 Sri Lankan practitioners with regards to

their perception of fair value accounting. They identified various areas for future

research, one of which includes the extension of their study to other developing

countries due to the concerns raised regarding the credibility of financial state-

ments prepared on the basis of fair value accounting in developing markets. They

further stated that there is a perceived lack of technical guidance for preparers and

auditors regarding fair valuation in developing countries, and that further research

should consider the optimal nature, form, and source of such guidance.

As an example, some issued application guidance does exist with regards to credit

value adjustments, such as, EY (2014), Deloitte (2013), PwC (2013), and KPMG

(2015). While these all tend to agree on the standard guidance as per Gregory

(2012), there is some degree of divergence on the approximation approaches. The

issued guidance in most cases merely states what has been observed from market

participants, and often lacks the underlying (published) scientific research support-

ing the methods.

Therefore, in summary it can be seen that even in developed markets, after the

crisis there is a concern about fair value in certain asset classes, and in the devel-

oping markets, this problem is worse and structural.

3 Research methodology

It is clear from the above discussion that there is a certain expectation from the

fair value accounting standards that an appropriate fair value be calculated, or

4
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at a minimum that the relevant risks be identified and incorporated in the valu-

ation. Paragraph 11 in IFRS 13 also states that ‘an entity shall take into account

the characteristics of the asset or liability if market participants would take those

characteristics into account when pricing the asset or liability at the measurement

date’, which indicates that the notional of ‘relevant’ is not absolute but relative to

market practices for a given use.

The focus of this paper will be the approximation of the zero coupon risk-free curves

that can be used in valuation in sparse data environments. In markets where risk-

free curves are sparse and it is required to value unlisted financial instruments, an

estimation of the relevant curve needs to be obtained.

A simulation study was designed and performed in order to find the overall average

optimal proxy for the risk-free rates where there are no data in the longer end of the

curve. This is done through fitting various different models to an artificially created

sparse environment and comparing it to the actual observed rates. The models

were then scored to determine the average best performing model across various

data sets. Out-of-sample data sets were used to test for consistency of the overall

results. The observed data points were interpolated up to the relevant sparse en-

vironment, after which it is extrapolated using various techniques discussed later.

Figure 1.1 provides a graphical representation of the approach followed.

In the figure assume that the data represented by the line AD are known, and an

artificially sparse environment is created by discarding CD. This allows for various

curves (A′D′) to be fitted to the remaining AC data points. In order to improve a fit

over the area of interest CD, some initial data (AB) is truncated and a data point E

is added. The goodness of fit of the newly fitted curve C′D′, based on BC and E, is

then measured by considering the squared differences between CD and C′D′. The
single additional data point was chosen in order to ‘pull’ the longer term estimated

curve towards the true values, something which would be difficult to accomplish by

only considering the sparse data. The original curve on a specific date t is denoted

by Zt(τ) = Rt(0, τ), where τ indicates the relevant term.

The simulation study was split into two phases, the estimation methods for the addi-

tional data point forms the basis of Phase I, while simulating the different variations

of the fitted curve was done in Phase II. That is, the first defines a modelling frame-

5
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work for the additional data point and the second sets up the simulation design and

carries out the simulation.

The framework for the additional data point followed an approach, whereby a train-

ing data set was used to obtain a number of additional data point models from

presumed observable data through permuted integer multiple linear regression

(PIMLR). These models were then scored using the aggregate standardised model

scoring (ASMS) technique in order to obtain the better performing regression output

across the training set.

Once these models were obtained, they were incorporated into the simulation

design. The simulation fitted a number of different Nelson Siegel and Svensson

parameterisations to artificially created sparse data environments, and found the

better performing models again using the ASMS technique across the training data

set. The process was repeated on a test data set (using the same modelling frame-

work from Phase I), in order to test robustness and consistency of results.

In section 4 the various modelling techniques that were used are discussed. They

include the Nelson-Siegel method used in estimating the additional data point as

well as the curve fitting, together with the PIMRL and ASMS techniques. Thereafter,

in section 5, the data that was used is discussed. This is followed, in section 6, with

the practical implementation of the modelling framework for the additional data

point, or rather the first phase, together with the results and a discussion thereof.

The paper is concluded with the simulation framework for the second phase in

section 7, the presentation of the results in section 8, a discussion thereof and

some areas for future research in section 10.

4 Modeling framework

Three core theoretical concepts were incorporated into the research. The first being

the well known Nelson Siegel parameterisation of the interest rate curve, together

with the Svensson extension. The other two are new techniques, namely the PIMLR

and ASMS. These three methods are theoretically discussed in the following sec-

tions, and are referred to in various other sections of the paper.
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4.1 Nelson-Siegel family type parametric curve fitting

Nelson and Siegel (1987) introduced a simplified approach to the modelling of the

term structure of interest rates. This comes after Friedman, in his 1977 paper,

identified the need for one to be modelled with fewer parameters.

The approach was built on the notion that, if the term structure of interest rates

can be generated by a differential equation, then the solution to that differential

equation can be regarded as the forward rates.

Their formulation, after some further simplifying assumptions, is the following:

r(τ) = β0 + β1e−λτ + β2 (λτ)e−λτ

with r(τ) the instantaneous forward rate. From this the zero rates can be obtained

as:

R(0, τ) ≡ 1

τ

∫ τ

0
r()d = β0 + (β1 + β2)

�
1 − e−λτ

λτ

�
− β2e−λτ.

Diebold and Li (2006) rewrote the above R(0, τ) in the form of level (L), slope (S),

and curvature (C) coefficients. In fact, they only parametrised it with β’s, while

Diebold et al. (2006) renamed them L, S, and C. Additionally, they also made these

parameters time varying.

This gave the following generalised form obtained for the interest rate curve (whether

zero or yield):

Rt(0, τ) = Lt + St

�
1 − e−λτ

λτ

�
+ Ct

�
1 − e−λτ

λτ
− e−λτ

�
(1.1)
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They further noted that, approximations for the various factor coefficients can be

estimated as follows:

Lt ≈ Rt(0,∞) ≈ Rt(0,10)

St ≈ −(Rt(0,∞) − Rt(0,0)) ≈ −(Rt(0,10) − Rt(0,0.25))

Ct ≈ 2 × Rt(0,2) − Rt(0,0.25) − Rt(0,10)

(1.2)

After fitting the coefficients over various data sets, they found that little accuracy

is lost if λ is fixed. The value of λ determines the maturity at which the loading

on the medium-term (or curvature) factor achieves its maximum. They fixed λ at

0.0609 (if τ is measured in months, therefore it should be 12 × 0.0609 = 0.7308

when τ is the number of years), which maximizes the loading on the medium-term

factor. This allowed them to compute the loading factors, and find the estimates of

the factor coefficients through least squares.

Another well known extension of the Nelson Siegel parametrisation of the interest

rate curve is that of Svensson (1994), which added an additional curvature term to

(1.1), namely

C′t

�
1 − e−λ′τ

λ′τ
− e−λ′τ

�
.

The above parameterisations are conveniently parsimonious, however they do not

fit the actual term structure on a specific time t, which would open up the possibility

of arbitrage opportunities. They do, however, provide the user with intuitive latent

factor loadings and coefficients.

One of the key concepts that will be utilised in going forward is that some of the

coefficients could be proxied through the linear use of the current term structure as

per (1.2).

In the next subsection, a new regression methodology is discussed, which allows

one to obtain similar approximations.

9
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4.2 Permuted Integer Multiple Linear Regression (PIMLR)

PIMLR is a regression method which allows one to limit the number of variables

as well as placing certain restrictions on the values of the coefficients, resulting

in a more intuitive interpretation of the result, allowing for similar results as in

(1.2). While restricting coefficients to predetermined values and limiting the num-

ber of covariates will certainly reduce the accuracy of the regression, it is traded

for the benefit of simplicity. In essence it allows for the use of a range of predefined

regression coefficients and covariates to be evaluated through high performance

computing.

More formally, let Y be a dependent variable (response), depending on the inde-

pendent variables (covariates) X1, X2, ..., Xn . A linear model is assumed in their

relationship, i.e.

Y = c1X1 + c2X2 + ... + cnXn + ε,

with ε denoting the usual error term.

Furthermore, a sequence of predetermined coefficients {c1, ..., cnC} is chosen, with

nC arbitrary. In the application, these coefficients will be chosen as integers, i.e.

c ∈ Z,  = 1,2, ..., nC.

Now, consider size nP ≤ n subsets of combinations of covariates {X′1, X′2, ..., X′nP} ⊆
{X1, ..., Xn}, with repetitions not allowed, and of coefficients {c′1, c′2, ..., c′nP} ⊆
{c1, ..., cnC}, with repetitions allowed. Combining each subset of covariates with

each subset of coefficients, results in a total number of

nM =
n!

(n − nP)!nP! (nC)
nP (1.3)

possible pairings. Given a certain choice for the coefficients, there could be du-

plicates, hence only the unique pairings need to be considered. For each of these

pairings, the response can be estimated as

Ŷ = c′1X
′
1 + c′2X

′
2 + ... + c′nPX

′
nP
. (1.4)

10
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Denote the estimated response based on a specific pairing, or model, M, by Ŷ[M] ,

M = 1,2, ..., nM. Repeat this process for each of the nt observations (in data set, D)

of Y with the covariates X1, ..., Xn . For the 
th observation y and the specified model

M, denote the corresponding estimate, obtained from (1.4), by ŷ[M] ,  = 1,2, ..., nt,

M = 1,2, ..., nM.

Define the root mean squared error (RMSE) as

θD,M =

√√√√ 1

nt

nt∑
=1

�
y − ŷ[M]

�2
, (1.5)

for model M = 1,2, ..., nM, and nt the number of observations in data set D =

1,2, ..., nD.

In addition, the coefficients can be normalised through the transformation

c∗j =
c′j∑nP
j=1 c

′
j

,

with j = 1,2, ..., nP. Here again, {c′1, c′2, ..., c′nP} ⊆ {c1, ..., cnC}, however ck ∈
Z+ ∪ {0} and

∑nP
j=1 c

′
j > 0. This is referred to as the fraction variation of the PIMLR.

In the following section a scoring methodology will be introduced, which allows one

to identify the top performing model from a pool (of size nM) of predetermined

models, over nD data sets. The methodology utilises the RMSE (similar to (1.5)), in

the scoring process. It will be denoted by θD,M, with D referring to a specific data

set D = 1, ..., nD, and M relating to a specific model M = 1, ..., nM.

4.3 Aggregate standardised model scoring (ASMS)

If nM models are fitted across nD data sets, it becomes difficult to assess the RMSE-

based goodness of fit. The ASMS technique helps to overcome this problem.

In choosing an average top performing model, the following requirements were

incorporated:

11
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1. Standardisation: The RMSEs could differ in size across the various data sets

since the magnitude of the values in the data sets could differ. A standardised

measure was therefore used.

2. Transformation: Models were ranked in terms of RMSE, with models having val-

ues close to each other not penalised, but assigned a relatively similar stand-

ardised measure while still maintaining ranking.

3. Penalisation: A model that performed well across most data sets, but ex-

tremely poorly in a single one, was significantly penalised.

4. Removal of outliers: Due to the nature of a simulation study, outliers could be

present. Such values were removed since they could distort the results.

The following methodology was followed to address these requirements.

As defined above, let θD,M denote the RMSE for a specific model (M) and data set

(D), and let θ(r)D denote the rth ranked RMSE for data set D across the models.

Tukey (1977) defined an outlier detection rule with which to detect outliers based on

the three quartiles of a probability distribution together with its inter-quartile range

(QR = θ(Q3)−θ(Q1)). Tukey’s rule states that any observation above θ(Q3)+1.5× QR
can be considered an outlier. Now, applying Tukey’s rule, the scoring methodology

for model M, across the various data sets, is defined as:

θ′′M =
� nD∏
D=1

θ′D,M

� 1
nD

, (1.6)

with

θ′D,M =


1 − θD,M−θ(1)D

θ(U)D −θ(1)D

: θD,M < θ(U)D

0 : θD,M ≥ θ(U)D

(1.7)

and

θUD = θ(Q3)D + 1.5
�
θ(Q3)D − θ(Q1)D

�
, (1.8)
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with Q1 = 0.25 · nM and Q3 = 0.75 · nM, and θ(U)D the largest ranked RMSE smaller

than θUD.

Equations (1.7) and (1.8) allow for the removal of outliers. Furthermore, (1.7) stand-

ardises and transforms the resulting RSMEs such that an individual score between

0 and 1 is obtained. Finally, using the geometric average of these scores, in (1.6),

the relevant models are penalised if they perform poorly. The resulting θ′′M, with
0 ≤ θ′′M ≤ 1, are then ranked in order to investigate how the models performed on

average across the various data sets.

The simulation study incorporated various different variables that were required to

complete the modelling framework. These will be discussed in the next section.

5 Description of data

The various response variables and covariates are discussed in general in this sec-

tion, and in each case the specific values and data used will be stated. Interest

rate data were sourced from Reuters using the unique identification codes for the

various term points2, while the non-term dependent data points were sourced from

a combination of Quantec and Reuters.

All variables were obtained across a training set of currencies, namely ZAR, GBP,

JPY, USD, and AUD. The training set is used in the first phase in order to define the

full modelling framework, after which both the training and test data sets are used

in the second phase. The test data sets were obtained from KES, HKD, CAD, NZD,

and EUR. The lengths of the sparse environments, TS, were chosen as 2, 6, and 9

years. Here, TS is equivalent to point C in figure 1.1.

Table 1.1 provides a more detailed description of the data. The data were chosen

such that only dates with observed terms longer than 10 years were included, and

where outliers were observed (in the case of KES), they were removed. For this

reason, it can be observed from the table that not all currencies had complete data

2Note that, while different bootstrapping techniques could result in different zero curves, it is not
expected that these will significantly influence the final result due to the nature of the PIMLR technique
using predefined coefficients.
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sets over the full sampling period from the start of 2000. The standard zero coupon

swap curve as defined by Reuters was used for each currency.3

Table 1.1: Description of training (in-sample) and testing (out-of-sample) data used.

Training data Testing data

Cur-
rency Timespan Data

points
Cur-
rency Timespan Data

points

AUD
2005/05/16

-
2016/10/31

2894 NZD
2010/05/31

-
2016/10/31

1601

GBP
2001/01/02

-
2016/10/31

4035 EUR
2000/01/03

-
2016/10/31

4341

JPY
2000/08/29

-
2016/10/31

4034 HKD
2009/09/17

-
2016/10/31

1745

USD
2000/01/03

-
2016/10/31

4282 CAD
2002/11/19

-
2016/10/31

3539

ZAR
2005/06/09

-
2016/10/31

2867 KES
2010/10/21

-
2016/10/31

814

Total training data
points

18 112
Total testing data
points

12 040

5.1 Response variables

Four models were employed to obtain the additional data point at certain terms.

These included predicting the zero rate, the bullet forward rate (defined later), and

utilising the Nelson Siegel parameterisation with and without a proxy for the level

parameter. For each of these models, a number of parameters, or response vari-

ables, needed to be estimated in order to obtain the additional data point. These

four models together with their parameters are discussed in the following subsec-

tions. In each of the various models, the term τ was chosen as 10, 20, and 30

years.

3Further research could be done on how the choice of time window influences the results. The
choice of time window for this research was done on the basis of trade-off on the availability of the
various currencies’ data points.
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Zero coupon term structure, Zt(τ)

The first dependent variable was chosen to be the actual observed zero rates for

certain terms, τ, over certain times (or dates), t. It is denoted by Rt(0, τ), τ ∈ [0, T],
and t = 1,2, ..., nt. In some instances the zero rate for a certain term is referred to

as Zt(τ), with τ ∈ [0, T] and t = 1,2, ..., nt. Here, T denotes the last observable

point on the actual term structure, and TS the last observable point on the sparse

term structure.

Bullet forward rates, B[τB]t (τ)

Next, the concept of bullet forward rates is introduced. These bullet rates were

chosen such that, for any zero rate of term τB, an accompanying forward rate to a

predetermined tenor (τ) could be obtained.

That is, given an arbitrary term τB, the bullet rate, B[τB]t , was defined such that

B[τB]t (τ) =
τRt(0, τ) − τBRt(0, τB)

τ − τB ,

with τB ∈ [0, τ), τ ≤ T, and t = 1,2, ..., nt.

Note that, these bullet rates can be used to calculate the zero rate through

Zt(τ) =
τBRt(0, τB) + (τ − τB)B[τB]t (τ)

τ
.

The value of τB was chosen as the last observable point in the sparse data environ-

ments (TS), such that τB = TS < τ.

Nelson Siegel parameters (without level proxy)

As described in section 4.1, through the application of the NS methodology on the

fully observed curve, the three parameters, Level (L), Slope (S), and Curve (C), can

be obtained.
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They can be estimated over a single daily observation of the zero curve (considered

here), as well as over a number of days. The estimated parameters are therefore

denoted by LNSt , SNSt , and CNS
t , with t ∈ {1,2, ..., nt}.

Note that these estimated parameters can be used to estimate the zero rate, by

applying (1.1) to obtain

Zt(τ) = LNSt + SNSt

�
1 − e−λτ

λτ

�
+ CNS

t

�
1 − e−λτ

λτ
− e−λτ

�

with some predetermined estimate of λ, τ ≥ 0, and t ∈ {1,2, ..., nt}.

The λ was fixed at 0.7308 (as discussed in section 4.1) after being tested for robust-

ness at arbitrary different values of 0.375 and 1.125 which delivered similar results

for the overall analysis. The chosen λ corresponds to a maximum of the curvature

factor at 2.5 years, with the robustness λ’s to years 4.8 and 1.6. The parameters

were not calculated on an average basis, but rather on a daily basis.

Nelson Siegel parameters (with level proxy)

Here the same procedure was performed as in the previous case, except that the

level parameter was not estimated but rather proxied separately. That is, LESTt , was

chosen as some predetermined proxied value, after which the optimal fits for the

slope and curve parameters were found, denoted by SNSLt and CNSL
t . Using these,

the zero rates were estimated as:

Zt(τ) = LESTt + SNSLt

�
1 − e−λτ

λτ

�
+ CNSL

t

�
1 − e−λτ

λτ
− e−λτ

�
(1.9)

with some predetermined estimate of λ, τ ≥ 0, and t ∈ {1,2, ..., nt}.

Again, λ was fixed at 0.7308, and additionally LESTt was calculated as the average

medium term one month forward rate, taken over

τA =


{T} : T < 3¦
3,3 3

12 ,3
6
12 , ...,min(T,6)

©
: T ≥ 3

(1.10)
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with T the last observable point on the actual term structure. The parameters were

also calculated on a daily basis as before, and T in (1.10) was replaced with TS in

the second phase.

5.2 Covariates

The previous section described the various models together with their parameters

(response variables obtained from the true data) that will be estimated with some

covariate sets. Table 1.2 provides a summary of the three additional data points at

τ = 10,20 and 30, as discussed in the previous section.

Table 1.2: List of all methods and parameters estimated in Phase I for the additional data
point.

Model Additional data point: Zt(τ), τ = 10,20,30

Zero coupon term
structure

Ẑt(τ) = R̂t(0, τ)

Bullet forward
rates

Ẑt(τ) =
�
τBRt(0, τB) + (τ − τB)B̂[τB]t (τ)

�
/τ, τB = TS < τ

Nelson Siegel
(without level

proxy)
Ẑt(τ) = L̂NSt + ŜNSt

�
1−e−λτ

λτ

�
+ ĈNS

t

�
1−e−λτ

λτ − e−λτ
�

Nelson Siegel
(with level proxy)

Ẑt(τ) = LESTt + ŜNSLt

�
1−e−λτ

λτ

�
+ ĈNSL

t

�
1−e−λτ

λτ − e−λτ
�

The covariates used to estimate the response variables were chosen in a manner

as to represent observed variables within sparse data environments. They were

broadly split into three categories, with one or more from each category used in

the final analysis. These three categories are single term structure points, average

term structure points, and other non-term dependent data points. When used as

covariates, they are grouped together, and in no instance used in combination

with each other. For the sparse data sets, the last observable term on the sparse

term structure was chosen as TS ∈ {2,6,9}, with TS ≤ T. This is done so that the

last observable points in the covariates are always observed before the response

variables. Therefore, from each of the 5 sparse training data sets, three sparse

data environments were constructed. These data sets were then used to obtain the

covariates.
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Single term structure points

The first group of covariates comprises single points in the term structure. These

take the form of R(τ1, τ2) with 0 ≤ τ1 < τ2 ≤ T and T the term of the last observable

point on the curve.

If τ1 = 0, then the single term structure point takes the form of a zero rate, simply

denoted as Zt(τ2). If τ1 > 0, then the single term structure point takes the form of a

forward rate from τ1 for a term τF = τ2− τ1, denoted by F[τF]t (τ1), with τ2 ≤ TS ≤ T.4

Given the details above, it is clear that the number of different variables will dif-

fer for a given sparse data environment. A standardised approach to obtain vari-

ables from the full term structure was therefore needed. To overcome this problem,

equally spaced term points were taken from the available terms, i.e. for R(τ1, τ2),

with 0 ≤ τ1 < τ2 ≤ TS.

Fixing τF = τ2 − τ1, implies that 0 ≤ τ1 ≤ TS − τF. Now, by choosing nB blocks of

length τB = (TS − τF)/nB, results in τ1 ∈ { · τB;  = 0, ..., nB}. The resulting variables

are therefore, F[τF]t (τ1), with the special case of τF = τ1 = 0, and 0 ≤ τ2 ≤ TS,

resulting in Zt(τ2).

For the data used in Phase I, three single term structure data sets were used,

namely the zero coupon rates, Zt(τ2), the one-month (1M) forward rates, F[1M]t (τ1),

and one-year (1Y) forward rates, F[1Y]t (τ1). The number of points, or data blocks, for

each of these data sets was chosen as nB = 10, resulting in 11 covariates for each

sparse data set. That is Z[ ] , F[1M,] , and F[1Y,] with  = 0,0.1,0.2, ...,1 indicating

the equally spaced term points corresponding to the data block.5

Average term structure points

The next group of covariates follows from the single term structure points as it takes

the average of a set of points over a certain term. That is,

4Note that the last covariate forward point will always end at TS.
5These can also be denoted by a block number, in combination with the amount of blocks, as per

table 1.3.
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F̄
[τ,τF]
t =

1

nττF

nτ∑
=1

(τRt (0, τ) − (τ − τF)Rt (0, τ − τF))

=
1

nτ

nτ∑
=1

F[τF]t (τ − τF)

where nτ denotes the number of term points over which is averaged and τ is a

vector containing the specific terms being averaged over, i.e. τ ∈ τ,  = 1, ..., nτ.

The averaging was only employed for forward rates, but could easily be adjusted to

incorporate the average zero rates as:

Z̄
τ
t =

1

nτ

nτ∑
=1

Rt(0, τ),

where {τ} indicates the respective zero term structure points that are incorpor-

ated.

Similar to the single term structure points, if a sparse data environment is present,

then τnτ ≤ TS ≤ T.

The averaging employed consists of an average of either short (S), medium (M), or

long (L) terms, i.e.

τS =
¦
τS,1, ..., τS,nSA

© ∈ [τS,min(τM, TS)]

τM =
¦
τM,1, ..., τM,nMA

© ∈ (min(τM, TS),min(τL, TS)]

τL =
¦
τL,1, ..., τL,nLA

© ∈ (min(τL, TS), TS]

The various covariates therefore take the form of F̄[X,τF] , where X = τS, τM, τL indic-

ates the underlying terms used in the averaging, as described above.

For the purpose of the analysis, τF was taken as one month (1M), 6 months (6M),

and 1 year (1Y). Additionally, τS = 1/365 + τF, τM = 3, and τL = 6. The possible

values that τ could take were, τ = {1/365, 2/365, 7/365, 14/365, 1/12, 2/12, 0.25,

0.5, 0.75, 1, 1.25, 1.5, ..., 9.75, 10, 11,12,...,50}. More explicitly, with writing

{} + c as shorthand for {1 + c, 2 + c, ...},
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τS =
�

1

365
,

2

365
,

7

365
,
14

365
,
1

12
,
2

12
,
3

12
,
6

12
,
9

12
, ...,min(TS,3) − τF

�
+ τF (1.11)

τM =


{TS} : TS ≤ 3
{3 3

12 ,3
6
12 ,3

9
12 , ...,min(TS,6)} : TS > 3

(1.12)

τL =


{TS} : TS ≤ 6
{6 3

12 ,6
6
12 ,6

9
12 , ...,10,11,12, ..., TS} : TS > 6

(1.13)

Therefore, the total number of variables in the average term structure points cohort,

is F̄[X,Y] , with X ∈ {τS, τM, τL} and Y ∈ {1/12,6/12,1}, i.e. 9 in total.

Non-term dependent data points

Finally, non-term dependent data points were incorporated in the analysis. These

are denoted by E[1]t , E[2]t , ..., E[nE]t , with nE the total number of covariates. These

variables are usually unrelated to each other. This, however, does not imply that

they are uncorrelated.

In this study, the economic variables used were deposit rate, lending rate, money

market rate, central bank policy rate, inflation (lagged by 4 months), real GDP

growth rate (lagged by 4 months), and nominal GDP growth (lagged by 4 months).

These covariates are denoted by E[D] , E[L] , E[M] , E[C] , E[ ] , E[R] , and E[N] . A lag of 4

months was chosen in order to be more conservative with regards to the availability

of data in sparse data environments. As mentioned, these non-term dependent

data points were sourced from a combination of Quantec and Reuters.

Summary

Table 1.3 provides a summary of all the covariates discussed in this section.
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Table 1.3: List of covariates incorporated in Phase I.

Covariate
group Description List of covariates

Single term
structure
points

Zero Rates Z[ ]t = Rt(0,  · (TS/nB)), with  = 0, ..., nB

1 Month
forward rates

F[1M,]t = Rt

�
 · TS−1/12nB

,  · TS−1/12nB
+ 1/12

�
, with

 = 0, ..., nB

1 Year forward
rates

F[1Y,]t = Rt

�
 · TS−1nB

,  · TS−1nB
+ 1

�
, with

 = 0, ..., nB

Average
term

structure
points

Groups of
average

forward rates

F̄
[τ,τF]
t =
1

nττF

∑nτ
=1 (τRt (0, τ) − (τ − τF)Rt (0, τ − τF))

Non-term
dependent
data points

Economic
variables

Deposit rate (D), Lending rate (L), money
market rate (M), central bank policy rate (C),
inflation (lagged by 4 months) (I), real GDP
growth rate (lagged by 4 months) (R), and
nominal GDP growth (lagged by 4 months) -
denoted with E[ ·]

6 Phase I: Calculation and results of additional data

point methods

The different parameters from the additional data point models were estimated

with the various covariate groups through the PIMLR. The RMSEs obtained for each

combination of response variable and covariate sets were then scored according to

the ASMSmethodology across 5 training currency data sets and 3 artificially created

sparse data environments, i.e. 15 data sets. This provided the top performing model

that was used to estimate the additional data point in the simulation framework

discussed in the following section. Given that estimates for each of Z10, Z20, Z30,

B10, B20, B30, LNS, SNS, CNS, SNSL, and SNSL were needed, and 5 covariate data sets

(Z[ ·] , F[1M,·] , F[1Y,·] , F̄[ ·,·] , and E[ ·]) were used, a total number of 55 top performing

estimation methods, across the 15 data sets were obtained. Figure A1.1 in the

appendix provides a diagram detailing the approach followed in this section.

In the PIMLR process, the coefficients, {c}, were chosen as {−1,0,1} for the in-

teger variation, and {0,1,2} for the fraction variation. The number of covariates
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used in the regression was limited to nP = 3 per covariate set.6 All other response

and covariate data were used as described in the previous sections. Table 1.4

provides a summary of the number of possible pairings for each of the covariate

sets that would be linked to the response variables, as per (1.3), per integer/frac-

tion variation:

Table 1.4: Number of simulated variations per covariate set for both variations of the
PIMLR and response variable.

Simulation summary Z[ ·] F[1M,·] F[1Y,·] F̄[ ·,·] E[ ·]

Covariates (n) 11 11 11 9 7

Coefficients per method (nC) 3 3 3 3 3

Covariates used (nP) 3 3 3 3 3

Total variations 8910 8910 8910 4536 1890

Unique variations (nM) 2883 2883 2883 1531 687

Given the above, it can therefore be seen that a total number of 10 867 variations

were used across the 11 response variables and 3 sparse data sets. Therefore

358 611 model variations were fitted on daily data across 5 currency training data.

Given that there were on average 3622 data points for each of the 5 currencies, it

equated to a total number of 6.494 billion fits.

Only a single result will be described in detail, while the other results are given in

the appendix. The result given was used as an example due to its importance in

the results of the next phase of the research, and relates to the one year forward

rates used to predict the zero rate.

Table 1.5 provides an example of the top combination of a response and covariate

pairing for all the combinations of sparse environments and currencies. The specific

response was the Z30, with the covariate set as F[1Y,·] . Recall from table 1.4 that

there were 2883 unique variations of this covariate, the top estimation took the

form

Ẑ30 = −F[1Y,0.7] + F[1Y,0.8] + F[1Y,1] , (1.14)
6The values of these covariates and coefficients can be extended, however for this research they

were chosen as the three smallest whole numbers for each of the PIMLR variations.
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for which the resulting RMSEs, or θD,M, are given. Through the use of (1.6) to

(1.8), the resulting θ′′M was obtained. These were then compared to the other θ′′M in

the response/covariate set combination in order to choose the highest performing

model over the data sets.

The process followed in table 1.5 was repeated for the 10 867 unique model com-

binations for each of the 11 response variables, such that a top performing model

from each covariate set was obtained for each response variable. For the response

variable Z30, the following top performing models were obtained from each of the

covariate sets:

Ẑ30 =



−Z[0.5] + Z[0.9] + Z[1]

−F[1M,0.5] + F[1M,0.6] + F[1M,0.9]

−F[1Y,0.7] + F[1Y,0.8] + F[1Y,1]

−F̄[τS,1/12] + F̄[τS,6/12] + F̄[τL,1]

0.67E[L] + 0.33E[R]

The results for the other parameters are provided in tables A1.1 to A1.5 in the

appendix, and were all used to obtain additional data points on the zero curve at

10, 20, and 30 years.

7 Phase II: Simulation design

Within the second phase, repetitive refits of variations of the Nelson Siegel and

Svensson extensions are performed using the sparse data environments together

with the additional data point. These fits are then used to forecast the zero rates

into the so-called ‘empty’ part of the curve. These different fits’ RMSEs are then

evaluated using the ASMS.

That is, once the 55 models for the parameters of the additional data points from

the first phase were obtained, the models could be incorporated in the second

phase of the simulation, to obtain 60 additional zero points by using the models in

table 1.2. That is, term points at 10, 20, and 30 years with the four different meth-
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Table 1.5: ASMS calculation for top performing unique combination of response Z30 and
covariate set F[1Y,·] , as per (1.14).

Data set θD,M θ(1)D θ(Q1)D θ(Q3)D θUD θ(U)D θ′D,M%

AUD

2 1.14 1.07 1.25 7.73 17.47 15.43 99.49%

6 0.53 0.45 0.68 8.00 18.98 18.45 99.51%

9 0.6 0.35 0.55 8.30 19.92 19.34 98.70%

GBP

2 1.29 1.12 1.55 7.37 16.11 15.16 98.78%

6 0.47 0.46 0.87 7.72 18.01 16.78 99.94%

9 0.56 0.29 0.61 7.87 18.76 17.33 98.42%

JPY

2 1.70 1.14 1.77 2.53 3.67 3.67 77.89%

6 0.72 0.50 1.25 2.37 4.06 4.06 93.82%

9 0.82 0.39 0.96 2.64 5.16 5.16 91.09%

USD

2 1.99 1.66 2.26 7.43 15.19 14.71 97.46%

6 0.27 0.27 1.04 7.52 17.24 17.21 100.00%

9 0.45 0.15 0.63 7.97 18.96 18.94 98.39%

ZAR

2 1.45 1.19 1.55 14.2 33.16 29.46 99.08%

6 1.41 0.82 1.16 15.04 35.85 33.48 98.20%

9 1.39 0.87 1.14 15.35 36.67 34.33 98.43%

θ′′M% 96.44%

ods, across the 5 covariate data sets. These models, together with numerous other

variations (discussed below) were then applied to both the training and testing data

sets in order to obtain the better overall performing parameterisation procedure in

the sparse data environments. Here, only the ASMS technique is applied in order to

score the different variations.

In order to approximate data points that are not observed in sparse data environ-

ments, a simulation of various parametrisation variations was performed. These

variations were tested, and subsequently scored using the ASMS methodology. The

variations in the models and data sets are described below.

The first variation, which was discussed in length in the previous section, relates

to the additional data point obtained from some observable data in the sparse

environments. This is used together with the artificially sparse data environments.

It should further be noted that the 55 models that were obtained, were estimated

from a training data set, and were kept the same when applied on the testing data
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set. The combination of term, method, and covariates results in 60 variations of

additional data points.

The second variation relates to the sparse data environments. These were chosen

such that they represent various sparse environments observed in the market. In

order to prevent overlaps in the simulated models, these sparse data environments

were limited to terms shorter than the first additional data point generated (as per

Phase I). That is, the sparse data environments could only be smaller than 10 years.

A further variation, also relating to the data points used in the parameterisation,

is with regards to the discarding of initial term points. This was done in order to

provide a possible better approximation of the long term points, when the sparse

data environment is used together with the additional data point.

Finally, two types of parametrisation methods were applied to the data points de-

scribed above, namely the Nelson Siegel and Svensson methods. The lambda val-

ues for these methods were chosen in such a way that it minimises the least square

fit for each data set across λ. More specifically, for the Nelson Siegel, λ was limited

to values that maximised the C factor loading between 0 and TS. The Svensson

extension limited the choice of λ to values that maximised C between 0 and the

median term, and λ′ to values that maximised C′ between the median term and TS.

Table 1.6 summarises the total number of combinations utilised in the simulation

study. Furthermore, figure 1.1, together with figure A1.2 in the appendix, provides

a graphical representation of the approach described above. Note that the ‘error

terms’ form the input to the RMSE calculation which is then utilised in the ASMS

procedure in order to obtain the better overall performing model. Furthermore, the

‘estimated zero curve’ relates to either the Nelson Siegel or the Svensson paramet-

erisation of the artificially sparse zero curve (excluding the truncated zero curve),

together with the additional data point.

The variations performed in the simulation described above, included 2 curve para-

meterisation methods, 3 initial data truncations, 60 additional data points, 10 cur-

rencies (average 3622 in-sample and 2408 out-of-sample), and three sparse envir-

onments, which resulted in 32.562 million fits. The 360 models’ RMSEs across the

15 data sets in the training and testing data sets were then scored according to the

ASMS and the results are summarised in the next section.
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Table 1.6: List of all simulation variations incorporated in Phase II.

Simulation Variation Variations description
Number
of vari-
ations

Additional data points

Term points: Z10, Z20, Z30 3

Methods: Z, B, NS, NSL 4

Covariate sets:
Z[ ·] , F[1M,·] , F[1Y,·] , F̄[ ·,·] , E[ ·] 5

Initial data discarded 0, 0.5, 1.5 years 3

Model
parameterisation

Nelson Siegel (NS), Svensson
(SV)

2

Total model variations 360

8 Results and Interpretation

In order to obtain the better performing parameterisation of the zero curves in

sparse environments, the different variations’ RMSEs were scored according to the

ASMS. The result of the top 10% performing variations, or models, for the in- and

out-of-sample data is provided in table 1.7. The notation of table 1.6 is used.

Considering the results, the second model will be formalised below as a possible

method to approximate the extension of the curve in a sparse data environment.7

Now, given a sparse zero curve environment, with R(0, τ), τ ∈ [0, TS]. Then R(0, τ),

with τ > TS, can be approximated through obtaining the least squares parameter

estimates of the Nelson Siegel method.

That is, through obtaining the L̂, Ŝ, Ĉ, and λ̂, that minimise the following sum of

squared residuals (SSR)8:

SSR =
∑
∀τ

�
R′(0, τ) − R̂(0, τ)�2 ,

7An Excel implemented model can be obtained from the authors upon request.
8Here, λ is limited to values that maximise the curvature loading factor between 0 and 30.
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Table 1.7: Top 10% best in- and out-of-sample performing parameterisation variations.
The additional data point description takes the form of Term point - Method - Covariate set

In-sample
Ranking
(n = 360)

Model
Parameter-
isation

Initial
data dis-
carded

Additional data
point

Score
Out-of-
sample
Ranking

12 NS 0.5 Z30 - NS - F[1Y,·] 79.7% 22

14 NS 0.5 Z30 - Z - F[1Y,·] 79.2% 10

15 NS 0.5 Z30 - NS - F̄[ ·,·] 79.2% 6

17 NS 1.5 Z30 - NS - F[1M,·] 79.0% 19

18 NS 1.5 Z30 - B - F[1M,·] 78.5% 21

19 NS 1.5 Z30 - Z - F[1M,·] 78.4% 23

20 NS 1.5 Z30 - NS - F[1Y,·] 78.4% 4

21 NS 0.5 Z20 - NS - F̄[ ·,·] 78.3% 9

27 NS 0.5 Z30 - Z - F̄[ ·,·] 78.0% 7

29 NS 1.5 Z30 - NS - F̄[ ·,·] 77.9% 1

30 NS 1.5 Z30 - Z - F[1Y,·] 77.7% 3

32 NS 1.5 Z30 - Z - F̄[ ·,·] 77.4% 2

33 NS 0 Z30 - NS - F̄[ ·,·] 76.8% 32

35 NS 1.5 Z30 - B - F[1Y,·] 76.8% 8

36 NS 0.5 Z30 - B - F̄[ ·,·] 76.7% 27

with

R̂(0, τ) = L̂ + Ŝ

 
1 − e−λ̂τ

λ̂τ

!
+ Ĉ

 
1 − e−λ̂τ

λ̂τ
− e−λ̂τ

!
,

over τ ∈ {0.5 ≤ τ ≤ TS}∪{30}, such that R′(0, τ) ∈ {R(0, τ) : 0.5 ≤ τ ≤ TS}∪�Ẑ30
	
,

with

Ẑ30 = −F[1Y,7] + F[1Y,8] + F[1Y,10] ,

F[1Y,] = R
�
 · TS − 1

10
,  · TS − 1

10
+ 1

�
.

Given that the other variations also performed relatively well out-of-sample, they

can also be considered as some of the better performing models.
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Various methods can be employed to connect the actual sparse curve to the ex-

trapolated curve in order to make it continuous between the observed and fitted

parts, these could range from simple interpolation to more advanced methods such

as the Smith Wilson extrapolation technique (Smith and Wilson, 2001).

9 Web-based application

A web-based application (see Van der Merwe, 2019) was also built to show how

the methods discussed in this paper are implemented. The user has access to

all the various currencies discussed, change the sparsity of the data, change the

determinants of the additional data point, change the initial discarded data, and

choose between the various fits of the curve. A screenshot of the application can

be seen in figure 1.2.

10 Discussion and Concluding Remarks

In the literature review and background in section 2, it was noted that there is a

clear need for more guidance on fair valuation in developing countries. One of the

most prevalent shortcomings of developing countries is their sparsity of data, one

of which is the risk-free zero curves needed for fair valuation calculations.

In the absence of data, management requires an estimate of such values in order

to estimate reliable fair values. IFRS 13 suggests that inputs estimated with models

that use observable inputs (level 2) are preferred to unobservable inputs (level 3).

The results presented in this paper provide a method to estimate unobserved zero

rates from other observable data, resulting in level 2 inputs, rather than level 3.

The results allow not only increased transparency in the extrapolation of the zero

coupon risk-free curve through the use of observable points, but also incorporate

consistency between market participants. Additionally, this also provides the audit-

ors of financial statements a much simpler task of assessing the reasonableness of

the firm’s estimate through the use of a standard model, rather than a management

estimate. Having a level 2 instead of level 3 input will also reduce the additional

disclosures required.
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The total wall time of the simulation study amounted to 105 days, a task that could

not have been performed without the help of high performance computing. A lim-

itation of this research still remains, however, that the results are limited to the

models incorporated. Further research is planned to increase the number of mod-

els in order to find a more refined method.

Areas of further research include the application of other techniques to further

smooth the extended curve from the observed points and alternative variations

of the parameterisation procedure. Lastly, the new PIMLR and ASMS techniques

can be applied easily to other simulation studies in sparse environments, such as

for example credit spreads.
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APPENDICES

A Additional graphs and results

Various additional graphs and tables of results, referred to in the text, are provided

in this appendix.
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Ŝ
N
S
L

Ĉ
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CHAPTER 2

TRIPLOT CLASSIFICATION WITH

POLYBAGS

This working paper was submitted to an applied statistics journal and two anonym-

ous referee reports were obtained. The suggested changes were incorporated and

the paper will be resubmitted together with their addressed comments.

Abstract

Classification techniques do not allow for simple visual interpretation, nor do they usually

allow for the limitation of false negative and positive error rates. In this paper, classifica-

tion techniques are combined with biplots, allowing for simultaneous visual representation

and classification of the data, resulting in the so-called triplot. By further incorporating

polybags, the ability to limit misclassification type errors is introduced. A simulation study

as well as an application is provided, showing that the method provides similar results as

compared to existing methods, but with the added benefit of visualisation. A web-based

application is also provided, allowing the user to interact with the data sets and methods

discussed.

1 Introduction

Visualisation is important for obtaining information from large data sets, but visual-

isation is complicated for multivariate data. Furthermore, while high accuracy rates

for classification techniques are preferred, in some instances, low frequencies of

false positives and negatives are more important. A way in which these frequen-

cies can be reduced is by refraining from classifying observations at high risk of

misclassification; in other words, shifting the focus from how, to instead determin-

ing when to classify an observation.
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The two shortcomings above are particularly relevant in areas where classification

is usually treated as a black-box, as well as where the result of obtaining false pos-

itives and negatives has a more severe negative impact than the converse positive

impact a correct classification would have. A remedy for this is to flag a given

observation for further investigation if the classification technique is not powerful

enough, thereby reducing the risk of misclassification.

One example of a field of inquiry and practical application where these limitations

could be considerable is medicine. As a simple example, one could use data to

classify a patient as having a disease or not using some classification technique.

The preferred outcome is for the technique to correctly predict the patient’s status.

However, if a patient is erroneously diagnosed, the resulting adverse effects could

be significant for both patient and doctor. Such incorrect classifications can be

limited by not classifying the patient, but rather requiring further tests to obtain a

more accurate diagnosis.

Additionally, the visualisation of the classification technique allows for further in-

terpretation by the end-user, who would not necessarily possess the underlying

mathematical background to understand black-box classification techniques, allow-

ing for better understanding of the resulting classification.

This paper presents a new classification methodology, expanding on the biplot

and triplot classification methodologies of Gardner-Lubbe (2016) and Aldrich et al.

(2004). Four key properties are incorporated in the new proposed methodology.

These are: (i) allowing for various underlying biplot methodologies to be used, (ii)

determination of classification regions based on all data points in the training set in

contrast to basing it only on class means (as in Aldrich et al. (2004)), (iii) allowing

for the limitation of misclassification errors by considering outlying and overlapping

observations from different classes, and (iv) the creation of a web-based application

for the user to interact with the methodology.

The new methodology uses triplots (a combination of biplots and an underlying

classification technique in a two-dimensional graph) which allow for the observa-

tions, variables, classes, and classification regions to be observed simultaneously.

Through combining these triplots with sample density areas via α-bags, areas where

sample points overlap significantly (indicating heightened risk of misclassification)

can be identified and treated as ‘unclassified’. These areas are termed ‘polybags’.
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The advantage of this new method of triplot classification with polybags is that it is

visually interpretable and limits misclassification errors. For background on biplots

and α-bags, see appendix A.

Section 2 discusses current methods that allow for visualisation of classification

techniques, including that of Gardner-Lubbe (2016) and Aldrich et al. (2004). There-

after, the new classification methodology is illustrated and discussed in section 3

using two randomly generated data sets, each with three classes. The first data

set will be a ‘perfect’ data set, where the covariance matrices are the same for the

three classes and variances are kept small. The second data set will be much more

variable than the first. These two data sets are referred to as the ‘small and simil-

arly variable’ (SSV) and ‘large and differently variable’ (LDV) data sets respectively.

Both data sets were simulated from multivariate normal distributions for illustra-

tion purposes as the CVA biplots have the underlying assumption of normality and

would therefore allow for better illustration of the technique. The LDV data set

is then analysed in section 4 using the new proposed approach and compared to

similar available techniques through a simulation study.

In section 5, a medical research data set is used to further illustrate the perform-

ance of the proposed technique. Thereafter, the web-based application that was

built supplementary to this paper is discussed. The application allows the user to

change the various properties of the proposed technique and the resulting output

can then be inspected. Two additional data sets are provided for the user to inter-

act with and the application also allows the users to upload their own training and

testing data sets in order to see how the technique would perform. The link to the

application can be found at https://doi.org/10.5281/zenodo.3562013 (Van der

Merwe, 2019).

The paper is concluded in section 6.

2 Current methods

Visualisation of multivariate categorical data comprises of how variables, observa-

tions, and classifications can be optimally represented in a single graph. Further-

more, classification techniques are not usually designed around limiting misclas-
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sification errors. In this section, current techniques for simultaneously visualising

and classifying multivariate data are illustrated and discussed with regard to these

challenges. None of these methods were designed with limitation of misclassific-

ation errors specifically in mind, but a simple way to achieve this is to limit such

errors by classifying observations only if the posterior probability is higher than an

arbitrarily chosen threshold. This limitation will be applied to the techniques below

and included in the subsequent discussion.

In order to illustrate the techniques, two data sets, each of size n = 150, were

simulated from multivariate normal distributions with each class containing 50 ob-

servations. In one data set, all the various responses’ covariates have the same

underlying covariance matrix, but different means, and the variances for the cov-

ariates were also kept small. This data set is referred to as the SSV data set. The

other data set was constructed by simulating from normal distributions with the

same means and different covariance matrices for all the responses. Here the vari-

ances were increased such that discrimination became more difficult. This data set

is called the LDV data set.

A more detailed discussion on these data sets along with a discussion on how to

interpret their respective biplots can be found in appendix B.

2.1 Correlation multiplots and radar graphs

A traditional scatterplot allows for straightforward visual interpretation of all ob-

servations, but is limited to the interaction between two variables. A correlation

multiplot, such as the ones in figure 2.1, can be drawn to see all the various in-

teractions, but quickly becomes large as one needs (p × (p − 1))/2 to see all the

interactions. While this does include all the variables, it remains difficult to con-

sider the full extent of the interactions between variables.

Another simple approach is radar graphs. This graph allows for all the variables to

be visualised, but only very few observations. Additionally, interactions between

variables are limited to those which are positioned next to each other on the radar

graph.

Neither of the above techniques allow for classification. Therefore, a possible

approach would be to classify the observations using an external classification
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Figure 2.1: Correlation multiplot of the SSV (top) and LDV (bottom) data sets.
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method, and to indicate the classified value on the graphs subsequently with a

specific indicator. Out-of-sample observations would require the external method

to be classified and plotted afterwards.

Traditional visualisation and classification techniques for multivariate data have

some shortcomings. There are, however, methods available to simultaneously visu-

alise and classify multidimensional data, which are discussed in the next two sub-

sections.

2.2 Biplots with α-bags and classification regions

Initially introduced by Gabriel (1971), the concept of biplots is not new, but has only

recently been popularised by e.g. Gower et al. (2011) and Greenacre (2010). The

field of biplots has since been extended from simple principal component analysis

(PCA) biplots to more complex methods, such as canonical variate analysis (CVA)

and analysis of distance (AOD) biplots. Biplots have the benefit of presenting data

in two or three dimensions, thus providing the necessary basis for visualising and

classifying high dimensional data.

Through combining CVA biplots with classification rules within the biplot plotting

space, Aldrich et al. (2004) was able to simultaneously view a full multivariate data

set on copper froth containing eight variables and five classes, classifying obser-

vations into these classes. They noted however, that some of the classes were

indistinguishable. They plotted the means of the classes in the CVA biplot space,

and then classified the observations according to the closest class mean in the CVA

biplot space.

They then used α-bags (Rousseeuw et al., 1999; Gower et al., 2011) to visualise the

sample densities of the various classes to allow for better identification of overlap.

The benefit of using α-bags compared to other techniques, such as convex hull

peeling, is that the latter does not fully utilise the statistical properties of the data

set.

Figure 2.2 shows two CVA biplots for each of the SSV and LDV data sets. The first

contains the class means together with the classification region relative to the class

means, and the second shows 95%-bags used to determine the extent of the class
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overlap. It is clear that for the SSV data set, the classes are well separated, while

there is significant overlap between two of the classes in the LDV data set.

There are, however, still some shortcomings to this approach, namely that only

CVA biplots were considered; their classification only relied on the class means as

opposed to the underlying data for each class; and they included areas where risk

of misclassification was high due to overlap.

An alternative approach for visualising classification with biplots would be to use an

external classification method trained on the original data, and to plot these obser-

vations according to their external classification. However, classifying these out-

of-sample points would still require an external classification model, and if points

overlap it would be difficult to use the triplot to classify these points.

2.3 Posterior probability log-ratio triplots

The CVA biplot provides a visual representation of the optimal class separation ob-

tained in linear discriminant analysis. A similar concept of multiclass classification

visualisation was introduced by Gardner-Lubbe (2016), which consisted of a log-

ratio biplot of the posterior probabilities belonging to a class in order to calculate

classification regions. This was extended to include information on the underlying

variables, ultimately resulting in a triplot.

Posterior probabilities obtained from classification can be considered as compos-

itional data, and log-ratio biplots of compositional data can be constructed eas-

ily for two-dimensional visualisation and interpretation (see Aitchison and Green-

acre, 2002; Greenacre, 2018). Log-ratio biplots are interpreted differently from the

biplots discussed in the previous section. On a log-ratio biplot the observations are

considered relative to two variables of the compositional data (or classes, in the

case of posterior probability data). Therefore, the outputs of the log-ratio biplot can

be used to create classification regions. It is important to note that this biplot on its

own would not provide any information of the underlying variables.

Gardner-Lubbe, therefore, uses the log-ratio biplot to create underlying classifica-

tion regions by considering the axes of the log-ratio biplot, but then discards them,

as their information is contained in the classification regions. The remaining data
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Figure 2.2: CVA biplots of the SSV (left column) and LDV (right column) data sets. The top
row contains the class means along with classification areas relative to the class means,
while the bottom biplots contains the class means with 95%-bags.
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are the observations in the log-ratio biplot space along with the classification re-

gions. Information of the underlying variables is then added through regressing the

original matrix X on the coordinates of the observations in the biplot space, Z.

They state, importantly, that the triplot was not designed for optimal classification

of samples, but rather to provide visual representation of all three aspects involved

in the multiclass classification and their interrelationships. In figure 2.3, the k-

nearest neighbour (KNN) triplot of Gardner-Lubbe is provided for the SSV and LDV

data sets.

In figure 2.3, the SSV data set is visibly well separated. This is due to the posterior

probabilities being mostly 100% for certain classes. The problem is that these

observations, although different from each other, lie exactly on top of each other

in the log-ratio biplot. Other observations that have a 0% posterior probability for

a certain class and a split probability for the other two classes would fall between

the two regions, which could result in misclassification. Similar observations can

be made for the LDV data set, with additional points in the middle of the graph

indicating observations for which none of the posterior probabilities are equal to 0%

or 100%. It is therefore clear that the log-ratio triplot focuses on the classification

values first, thereafter incorporating additional information on the variables.

Additionally, while this approach allows for the classification of out-of-sample data,

the posterior probabilities obtained from the underlying classification method would

still be required. This is due to the underlying biplot being constructed from these

probabilities.

The triplot could also possibly provide an alternative classification to what the un-

derlying classification method renders. This technique would therefore be most

useful to investigate and visualise data classified under a specified method, rather

than classifying out-of-sample observations.

3 Proposed approach and illustrative results

In this section, the proposed approach is discussed and illustrated on the SSV and

LDV data sets. The proposed approach joins three of the above techniques - biplots,
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Figure 2.3: The posterior probability log-ratio triplot with underlying KNN (k = 11) classi-
fication of the SSV (top) and LDV (bottom) data sets.
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underlying classification techniques and α-bags - to create a new classification

methodology that allows for:

1. visual presentation of the data through a base biplot of the original data;

2. out-of-sample classification that does not depend on an external classification

model; and

3. limitation of the classification error due to outliers and overlapping classes.

In the following subsections, a biplot with classification regions is discussed after

which the concept of polybags is introduced. The polybags are illustrated by first

drawing the outer-polybags, which cater for outliers; and then the inner-polybags,

which cater for overlapping data. This is followed by an interpretation of the final

triplot with polybags.

3.1 Base biplot with classification areas

In order to illustrate the proposed technique, a simple biplot of the data is drawn

to which the various components are added. The proposed approach does not

rely on any specific underlying biplot. For illustrative purposes, though, the CVA

biplot is shown, and the PCA and AOD biplots are tested for robustness in section

4.1. PCA does not differentiate between classes and AOD is constructed using only

the means of the classes - shortcomings mitigated by the CVA biplot. Therefore,

the CVA biplot was chosen, as it is expected to render the best results through

differentiating between the classes and using more than only the class means.

In order to add the classification region, a similar approach to Aldrich et al. (2004)

is followed. Recall that they classified any point in the biplot space according to

the closest class mean. This was illustrated on the biplot by drawing a grid in the

biplot space and filling the areas of the biplot space with the colour that matches

the classification.

An alternative approach is to take all the training data points in the two-dimensional

biplot space and train an underlying classification model on these coordinates. The

grid points in the biplot space are then classified using this model, and shaded

contour areas are created accordingly.
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The training models were implemented through the caret (Kuhn et al., 2008) pack-

age in R. The illustrated classification method for this paper was chosen as KNN.

Other available methods that were also tested for robustness in section 4.2 in-

clude linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), na-

ive Bayes with Gaussian model (NB with GM), naive Bayes with kernel density estim-

ation (NB with KDE), multinomial, support vector machine with polynomial kernel

(SVM with PK), support vector machine with Gaussian kernel (SVM with GK), classi-

fication and regression trees (CART), bagging, and random forest (RF).

Figure 2.4 shows a base CVA biplot with underlying KNN (k = 11) classification

together with 95%-bags. Note here that the resulting triplot looks similar to a com-

bination of the ones illustrated in figure 2.2, however with the LDV data set having

visually dissimilar classification regions.

The figure shows that there are areas in the classification region of the SSV data

set’s triplot that clearly lie outside of the concentration of the data. There is also

significant overlap between some of the classes for the LDV data set. These two

shortcomings are addressed with the help of inner- and outer-polybags.

3.2 Polybags

The α-bags are used to find areas which can be excluded from the classification,

as they lie beyond the classifiable range. The α-bags furthermore help to identify

areas where sample points overlap significantly and classification would therefore

be imprecise. The expectation is that these areas will not render conclusive classi-

fication, and are thus left unclassified pending further investigation. Two types of

polybags are used, the first being the compliment of the area containing at least

one α-bag, and another where all α-bags overlap, i.e. the union and intersections

of the α-bags. These two areas are termed the outer- and inner-polybags.

The sizes of these α-bags are considered tuning parameters to the proposed classi-

fication methodology. It should therefore be noted that there is no ‘correct’ choice

of the tuning values. Instead, the user should ensure that the chosen parameter

values provide them with a level of misclassification on the test data set that they

are comfortable with. One could also investigate the possibility of determining the
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Figure 2.4: CVA biplots of the SSV (top) and LDV (bottom) data sets with 95%-bags and
classification regions drawn based on KNN with k = 11.
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theoretical unclassified rate and consider the relationship between the α-bag sizes

and this rate.

Once these polybags are determined, such areas are left unclassified. That is, the

intersection of the inner α-bags (inner-polybag) and the complement of the union

of the outer α-bags (outer-polybag). The coordinates for the polybags are found

through the R package polyclip (Johnson and Baddeley, 2017), while determination

of whether certain sample points lie within the polybag is facilitated by the package

SDMTools (VanDerWal et al., 2014).

Outer-polybags

Considering the SSV data set’s triplot in figure 2.4, if a ‘normal’ observation occurs,

it is most likely going to lie within the 95%-bag area. If an outlier occurs, it will

typically fall outside of the bag, but still relatively close to the bag. This poses

a problem as the whole triplot area was classified into one of the three classes.

The outer-polybags are introduced to mitigate this. It takes α-bags, inflates them

by a predetermined factor, and deems everything outside of the union of these

bags unclassified. These outer-polybags, using 1.5 × 95%-bags, are applied and

presented in figure 2.5.

Inner-polybags

The second problem only occurs in the LDV data set’s triplot: Class B’s (◦) ob-
servations are almost entirely enveloped by Class C (△). This would complicate

classification, so ideally these types of areas should remain unclassified. The inner-

polybag is therefore constructed by taking the intersection of at least two of the

α-bags. This is illustrated as the middle white area in figure 2.6 with 95%-bags.

As the SSV data set does not contain overlapping α-bags, only the LDV data set’s

triplot was redrawn indicating the inner-polybag.

3.3 Interpreting the triplot with polybags

Consider now the interpretations of the two data sets’ triplots. For the SSV data

set, the same classification as discussed in appendix B.1 holds. Interpretation of
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Figure 2.5: KNN-triplots of the SSV (top) and LDV (bottom) data sets with 95%-bags and
each point classified using KNN with k = 11 along with 1.5 × 95% outer-polybags.
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Figure 2.6: KNN-Triplot of the LDV data set with each point classified using KNN with k =
11 together with 1.5 × 95% outer- and 95% inner-polybags.
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the LDV data set remains arduous, but can be summarised as follows: for values of

−100 < V4 < 100 the majority of the points are classified as Class A (�), for values
of 130 < V4 < 250 and 100 < V1 < 200, or 50 < V4 < 150 and 0 < V1 < 50, Class

C (△) is observed, and finally, for values of 150 < V4 < 250 and 20 < V1 < 100,

Class B (◦) is observed. The exact classification can, and should, be obtained by

calculating the coordinates of the observation in the biplot plotting space (Z∗). To

be specific:

A = {−100 < V4 < 100}

B = {130 < V4 < 250 ∩ 100 < V1 < 200} ∪ {50 < V4 < 150 ∩ 0 < V1 < 50}

C = {150 < V4 < 250 ∩ 20 < V1 < 100}

where css indicates the respective classes that the observation should belong to.

Here the polybags become important: should the new observation fall within one

of these white areas, it is as yet unclassified. This provides the benefit of avoid-

ing classification in areas of overlap with no clearly visible differentiation between

groups, along with extreme outlier data. It is also possible to train a set of models

over various parameters to select an optimal one. In this illustrative application,

KNN with k = 11 was chosen and therefore any training of the models would add no

benefit, as all parameters were chosen at the outset. The choice of k was made as

a trade-off between a small and large value. A small value of k would not delineate

the classification regions nicely as it would over fit the training data, while a large

value of k would result in higher computation time as well as very rigid classifica-

tion regions. Similar to the sizes of the polybags, the choice of k is also considered

a tuning parameter, and the user should be comfortable with the performance of

the test data set for the choice of the tuning value.

One could, for instance, train the KNN over a set of values of k to find the value

of k for which the out-of-sample test data performs the best. The accuracy of

the final classification method is determined through a validation set which is not

used in the training of the model. The classification methodology is applied using

other classification methods in the simulation study in the following section to check

robustness.
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4 Robustness checks

Different properties of the new methodology can easily be varied. This includes

the underlying biplot, the underlying classification technique, and the size of the

inner- and outer-polybags. Additionally, this method could possibly favour certain

types of data structures over others. In the previous section, these properties were

fixed. Only CVA biplots were used as the underlying base triplots, KNN was used as

the underlying classification method, and the size of the inner- and outer-polybags

were kept at 95% and 1.5 × 95%, respectively. Additionally, only the SSV and LDV

data sets were considered, which in essence only differ in terms of variance size.

In this section, the results of two simulation studies are discussed. The first con-

siders how the misclassification rates vary for different underlying biplots and sizes

of the inner- and outer-polybags, applied to the LDV data set. The second invest-

igates how the misclassification rate varies with regards to different underlying

classification methodologies and different types of data structures, relative to the

posterior probability log-ratio triplot and black-box techniques.

Table 3.1 provides an updated confusion matrix that includes observations that are

not classified or predicted using the new method.

Table 2.1: Confusion matrix, updated to include inconclusive observations.

TOTAL POPULATION (N) True Positive
Condition (TPC)

True Negative
Condition (TNC)

Predicted Positive
Condition (PPC) True Positive (TP) False Positive (FP)

Predicted Negative
Condition (PNC)

False Negative
(FN)

True Negative (TN)

Not Predicted (NA) NA Positive (NAP)
NA Negative

(NAN)
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4.1 Effects of using different base biplots and sizes of inner- and

outer-polybags

Three types of triplots were discussed in the text, while only the CVA triplot was

illustrated. Through sampling 100 validation sets of 25% from the LDV data set,

the average effects of varying the size of the inner-polybag as well as the multiple

for the outer- polybag over PCA, CVA, and AOD base biplots are considered. The

validation samples were kept the same in each instance for consistency.

Figure 2.7 illustrates the results of how the validation data set performed on av-

erage over the three different types of triplots with KNN (k = 11) as underlying

method, varying the size of the inner-polybag from 0% to 95%. The outer-polybag’s

size varies over 0.5, 1.5, and 3 × 95%.

The lowest bar (indicated with ‘Full’) illustrates the classification error if all the ori-

ginal data was classified using the traditional KNN (k = 11), i.e. circa 27% misclas-

sification. Note that no visualisation (unless only two variables are used) is possible

with the traditional classification. Thus it is expected to perform worse, because

the reduction in dimensionality results in a loss of information. It is interesting to

note, however, that the CVA triplot with outer-polybags with a multiple larger than

1.5 performed better than the full classification.

Additionally, the intersection of the two lines on the graphs can be interpreted as

the inner-polybag size at which the triplot method produced a lower misclassifica-

tion rate than the full model. Accuracy considered, the lower this crossing lies, the

more powerful the method becomes.

Of the graphs in figure 2.7, CVA performs the best of the three triplot methods, as

it renders the lowest misclassification rate without losing as much accuracy as the

other methods. It also provides, given an inner-polybag of 0%, the lowest misclas-

sification rate of all three methods.

The effects of changing the multiple for the outer-polybag can also be seen. A

multiple of 0.5 × 95% resulted in a large number of unclassified data points. That

is, all the points not classified by an inner-polybag of 0% result from the outer-

polybag. As the multiple increases, the effects of the outer-polybag decreases. The

incorporation of the outer-polybag is mainly to capture outliers. Too small an outer-

58



CHAPTER 2. TRIPLOT CLASSIFICATION WITH POLYBAGS

0% 20% 40% 60% 80% 100%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

In
n
er

 p
o

ly
b

ag
 (

P
C

A
 w

it
h
 0

.5
 x

 9
5

%
 o

u
te

r 
p

o
ly

b
ag

)

Correct NA Missclassified

Full

0% 20% 40% 60% 80% 100%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

In
n
er

 p
o

ly
b

ag
 (

C
V

A
 w

it
h
 0

.5
 x

 9
5

%
 o

u
te

r 
p

o
ly

b
ag

)

Correct NA Missclassified

Full

0% 20% 40% 60% 80% 100%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

In
n
er

 p
o

ly
b

ag
 (

A
O

D
 w

it
h
 0

.5
 x

 9
5

%
 o

u
te

r 
p

o
ly

b
ag

)

Correct NA Missclassified

Full

0% 20% 40% 60% 80% 100%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

In
n
er

 p
o

ly
b

ag
 (

P
C

A
 w

it
h
 1

.5
 x

 9
5

%
 o

u
te

r 
p

o
ly

b
ag

)

Correct NA Missclassified

Full

0% 20% 40% 60% 80% 100%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

In
n
er

 p
o

ly
b

ag
 (

C
V

A
 w

it
h
 1

.5
 x

 9
5

%
 o

u
te

r 
p

o
ly

b
ag

)

Correct NA Missclassified

Full

0% 20% 40% 60% 80% 100%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

In
n
er

 p
o

ly
b

ag
 (

A
O

D
 w

it
h
 1

.5
 x

 9
5

%
 o

u
te

r 
p

o
ly

b
ag

)

Correct NA Missclassified

Full

0% 20% 40% 60% 80% 100%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

In
n
er

 p
o

ly
b

ag
 (

P
C

A
 w

it
h
 3

.0
 x

 9
5

%
 o

u
te

r 
p

o
ly

b
ag

)

Correct NA Missclassified

Full

0% 20% 40% 60% 80% 100%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

In
n
er

 p
o

ly
b

ag
 (

C
V

A
 w

it
h
 3

.0
 x

 9
5

%
 o

u
te

r 
p

o
ly

b
ag

)

Correct NA Missclassified

Full

0% 20% 40% 60% 80% 100%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

In
n
er

 p
o

ly
b

ag
 (

A
O

D
 w

it
h
 3

.0
 x

 9
5

%
 o

u
te

r 
p

o
ly

b
ag

)

Correct NA Missclassified

Full

Figure 2.7: Classification error with varying sizes of the inner-polybag for PCA (left
column), CVA (middle column), and AOD (right column) triplots with various outer-polybags
equal to 0.5 (top row), 1.5 (middle row), and 3.0 × 95% (bottom row).
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polybag, therefore, is inadequate, as half the observations would be considered

outliers; too large and no outliers would be detected.

In the above simulation study, only the LDV data set with underlying KNN classific-

ation was considered. In the next subsection the results of a simulation study will

be provided. The results show how the overall misclassification rates vary when

different underlying classification techniques are used. This will be applied to vari-

ous types of data structures and the results will be compared with the posterior

probability log-ratio triplots and black-box techniques.

4.2 Effects of using different underlying classification techniques

and data structures

A second simulation study was done with regards to the underlying classification

techniques in order to see the performance of different data structures using triplots

with polybags compared to the posterior probability log-ratio triplot and black-box

techniques. Throughout this study, a CVA-base biplot was chosen with the inner-

polybag kept at 95% and outer-polybag at 1.5 × 95%.

Comparison of various techniques

The posterior probability log-ratio triplot (L) and black-box (B) techniques were ad-

apted to exclude the same number of unclassified observations as with the triplot

with polybags (P). This was to ensure comparability between the techniques. The

observations with the smallest posterior probability for the classified class were dis-

carded until the same number of observations was excluded as with the triplot with

polybags.

The underlying classification methods included all those mentioned in section 3.1.

The classification techniques are denoted with Mmt ,mc with mt = P, L, B indicating

the tested techniques, and mc = KNN, QDA, NB with GM, NB with KDE, multino-

mial, SVM with PK, SVM with GK, CART, bagging, and RF the respective underlying

classification methods.

Combining the various techniques with different underlying classification methods

results in 30 different classification methods to be tested.
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The different data structures that were used are discussed in the next subsection.

Thereafter, a method for comparison is discussed and the results are provided and

interpreted.

Simulating different data structures

In order to determine how well triplots with polybags perform over different data

structures, a combination of certain attributes was determined and a number of

data sets were created from these parameters. It follows a similar approach as

the compilation of the SSV and LDV data sets considered above. In each case,

150 observations were sampled from multivariate normal distributions for the three

classes. The assumption of multivariate normal distribution might not always hold

for real life data and a future extension of the simulation study would be to incor-

porate other distributions. The benefit, however, of only simulating from one well-

known distribution is to see the effect on how different data structures perform in

the new classification technique. For the application in the following section it will

be seen that the classification method still performs relatively well even though the

data is not necessarily normally distributed.

Four main areas were identified to describe the data structures. Once all the prop-

erties of the structures were identified, 10 simulated data sets were created with

both the parameters and observations randomly generated. The distribution para-

meters were arbitrarily chosen in such a manner that the simulated data represents

the properties of the data structures being simulated.

The first structural property incorporated regards the means of the various classes.

Two types of mean structures were identified, including separate (SEPR) and over-

lapping (OVLP) means. The means for the separate structure were uniformly sim-

ulated from three ranges ([−7.5, −2.5], [−2.5, 2.5], and [2.5, 7.5]) while the over-

lapping structure only included class means from a single range, [−5, 5].

The second structural property is with regards to the variance of the classes. In

order to ignore the scale of the data, the coefficient of variation (CV) was used. The

first type of simulated CVs was small with low variation (SL), while the second type

was large and highly variable (VH). The small and low variable CVs were uniformly

simulated from [0.5, 1] and the large and highly variable CVs from [2, 5]. The
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variances were then calculated using the class means that were simulated in the

previous structure.

Next the balance of the classes is considered. This structural property considers the

proportion of observations in each class. Even and skewed class balance structures

were randomly allocated to each class, with the skewed structure allocating 60% to

the largest class, 40% to the middle class, and 20% to the smallest class.

The last simulated structural property of the data sets relates to the correlation

structure. Three types of correlation structures were considered. These included a

low correlation structure (Low) that only contained correlations between −0.5 and

0.5, highly negative correlations (Hneg) with values between −0.5 and −0.9, and
highly positive correlations (Hpos), with values between 0.5 and 0.9. Once the

correlation structures for each class were simulated, the closest positive definite

covariance matrix was calculated using the variances simulated in the previous

step.

There are 24 different combinations of data structures, of which 10 data sets were

simulated for each. Let these 240 data sets be denoted with Dds,dn , with ds =

1,...,24 the various data structure combinations, and dn = 1, ...,10 the various sim-

ulations from that specific structure.

Simulating misclassification errors

Ten randomly sampled training and test sets from each of the 240 data sets (Dds,dn)

were used to train and test the 30 classification methods (Mmt ,mc). The confusion

matrix from table 3.1 was calculated and certain error metrics were calculated and

averaged over the 10 simulations. These are denoted by ds,dn,mt ,mc, with  the er-

ror metric,  = 1, ...,10 indicating the sampled data set, and ̄ds,dn,mt ,mc the average

of the simulated error metrics. While various misclassification type errors were cal-

culated, only the overall misclassification was considered here. This was calculated

as the FP+FN
N as per the notation in table 3.1.

These misclassifications are summarised in table 2.2, starting with the calculation

of the mean and variance of the average misclassification rates of the 10 data sets

with similar structures. That is, calculate
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μds,mt ,mc =
1

10

10∑
dn=1

̄ds,dn,mt ,mc

and

σ2ds,mt ,mc
=

1

10

10∑
dn=1

(̄ds,dn,mt ,mc − μds,mt ,mc)
2

These two values are then used to calculate the mean squared error (MSE) of the

misclassification rate with

MSEds,mt ,mc = (μds,mt ,mc − )2 + σ2ds,mt ,mc

with  = 0% the target for the misclassification rate (for accuracy,  would be set

at 100%).

Next the MSEs for the proposed technique (mt = P) are compared relative to the

minimum of the other two techniques (mt = L, B) and the difference is calculated

such that a table can be constructed with the data structures (ds) and underly-

ing classification methods (mc). That is, a table that contains the relative MSEs

(RelMSE).

ReMSEds,mc = MSEds,P,mc −min
�
MSEds,L,mc ,MSEds,B,mc

	
.

The higher the values for ReMSEds,mc , the worse the proposed method performed

relative to the better of the other two methods, and vice versa. The benefit of using

MSE is that it penalises classification methods that render inconsistent classifica-

tions. The results are provided in table 2.2.

The simulation results show that the proposed method with KNN, CART, bagging,

or RF as underlying classification methodology performs better than, or relatively

similarly to, the other two techniques over all tested data structures apart from

low and positively correlated highly variable variables. For multinomial and LDA as

underlying, the proposed method performed equally well as the better of the other

two methods. It proved difficult for this technique to outperform the benchmarks for
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data sets with large and highly variable CVs and for variables that were positively

correlated. On the other hand, negatively correlated data sets seem to consist-

ently outperform the other data sets, regardless of other structural properties or

underlying classification methodology.

The following section presents a realistic application of the methodology.

5 Application

In this section, the proposed methodology is applied to a well-known machine learn-

ing data set relating to vertebral column data obtained from UCI’s machine learning

repository (Dheeru and Karra Taniskidou, 2017). The web-based application that

was created is introduced thereafter.

5.1 Application to medical data set

Application of the classification technique proposed in this paper could greatly be-

nefit the medical sciences, as further testing is much preferred to an erroneous

classification, or diagnosis. Visual presentation of the data is an additional advant-

age.

The selected data set contains values for six biomechanical features used to clas-

sify orthopaedic patients into three classes: normal (△), disk hernia (�) or spon-
dylolisthesis (◦), including 310 instances and six attributes - all real numbers. Each

patient (or observation) is represented in the data set by six biomechanical attrib-

utes derived from the shape and orientation of the pelvis and lumbar spine (in this

order): pelvic incidence (V1), pelvic tilt (V2), lumbar lordosis angle (V3), sacralslope

(V4), pelvic radius (V5) and grade of spondylolisthesis (V6).

Table 2.3 provides descriptive statistics of the data set. It also includes the p-value

for the Shapiro-Wilk (Shapiro and Wilk, 1965) test for normality. The Shapiro-Wilk

test tests the null hypothesis that the variable is normally distribution. If the hypo-

thesis is rejected with a low p-value, then the variable can be considered to be non-

normally distributed. Additionally, the Mardia (Mardia, 1970) test for multivariate

normality showed that at the 5% level neither the Disk Hernia nor Spondylolisthesis
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classes are multivariate normally distributed. While this is a slight deviation from

the assumption of normality that underlies the CVA biplot, it will be seen in the res-

ults that this does not significantly reduce the accurateness of the technique. The

MVN (Korkmaz et al., 2014) package in R was used to perform the summary and

tests.

Figure 2.8 provides an example of the triplot with polybags and underlying KNN

classification applied to this data set. The axes were shifted parallel for enhanced

visual interpretation.

In this illustration, k was chosen as 21, and the inner- and outer-polybags as 85%

and 1.5 × 95%, respectively. These were chosen for illustrative purposes and was

found to provide a good fit for the training data. The triplot with polybags using

an underlying KNN classification was trained on 232 of the 310 data points (75%).

Of the resulting out-of-sample data points, 54 were classified correctly, three incor-

rectly, and the remaining 21 were inconclusive. Twenty of these data points can

be seen in the white area in figure 2.8, while the last point was deemed an outlier,

falling outside the plotting area.

This implies that the misclassification rate was only 4%, and that further investiga-

tion should be done with regards to the 21 data points.

Additional to the classification, the visualisation proves useful in describing the

multivariate data set. The grade of spondylolisthesis (V6) is shown to be a clear

indicator of patients suffering spondylolisthesis (◦) (values above 25 are mostly

classified as such). It also becomes clear that high values for pelvic incidence (V1),

lumbar lordosis angle (V3), and sacral slope (V4) indicate spondylolisthesis (◦).

For low values of the above-mentioned variables, the pelvic tilt (V2) or pelvic radius

(V5) determine whether the patient is either normal (△) or suffers from disk hernia

(�) - for values of pelvic tilt (V2) below 15 and higher than 120 for pelvic radius

(V5), the patient would be classified as normal (△), otherwise with disk hernia (�).

Next, the posterior probability log-ratio triplot of Gardner-Lubbe (2016) was applied

and the result is illustrated in figure 2.9. The same number of points was left un-

classified by considering their posterior probabilities.
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Figure 2.8: Triplot with polybags and underlying KNN classification of out-of-sample data
using polybags with k = 21 and 1.5 × 95% outer- and 85% inner-polybags for the vertebral
column data.
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Figure 2.9: Posterior probability log-ratio triplot with underlying KNN (k = 21) applied to
the vertebral column data. Points that were not classified are indicated with a cross.
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Figure 2.9 shows almost no classification for disk hernia class (�) compared to figure

2.8. Another observable benefit of figure 2.8 vis-à-vis figure 2.9 is the underlying

CVA biplot, rendering more accurate interpolation of points.

Finally, the data were also tested across all the methods discussed in section 4.2

and the resulting classification metrics are provided in table 2.4.

The proposed technique fares well against the other incorporated techniques, ren-

dering either comparable or reduced misclassification type errors.

The above example illustrates that triplot and polybag methodology allows for in-

tuitive visual classification and limits misclassification. While highly relevant to

medical research in particular, the technique is broadly applicable to other areas of

research as well.

5.2 Web-based application and replication

The technique was developed through creating and amending various pieces of

code in order to produce the final triplot with polybags. As such, instead of leaving

the replication exercise for the reader, a web-based application was created as

supplementary data which allows the user to interact with all the properties and

data sets discussed in this paper. Furthermore, the code underlying the technique

is also available.

Web-based application

The web-based application allows the user to interact with various data sets as

well as the various properties of the technique. The resulting triplot with poly-

bags, together with the classification metrics and out-of-sample classifications, are

provided. A screenshot and instructions on how to access it is provided in figure

2.10.

The application provides access to three preloaded data sets. The vertebral column

data from section 5.1 is loaded automatically, and there is an additional set of

bankruptcy data (Dheeru and Karra Taniskidou, 2017) where three levels (negat-

ive, average, and positive) of industrial risk, management risk, financial flexibility,
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Table 2.4: Simulated classification and misclassification type errors for the proposed (P),
posterior probability log-ratio triplot (L), and black-box (B) techniques on the vertebral
column data. A 75/25 training/validation split was used on the data. The measures were
calculated as follows: Total accuracy: TP+TN

N ; Total misclassification: NAP+NAN
N ; Precision:

1
c

∑c
=1

TP
PPC

; Negative predictive value = 1
c

∑c
=1

TN
PNC

; True positive rate: 1
c

∑c
=1

TP
TPC

; False

negative rate: 1
c

∑c
=1

FN
TPC

; False positive rate: 1
c

∑c
=1

FP
TNC

; True negative rate: 1
c

∑c
=1

TN
TNC

;
with c equal to the number of classes.

Classifica-
tion
method

Total
ac-
cur-
acy
(+)

Total
mis-
class.
(−)

Preci-
sion
(+)

Neg.
pred.
value
(+)

True
pos.
rate
(+)

False
neg.
rate
(−)

False
pos.
rate
(−)

True
neg.
rate
(+)

Average
over all

P 0.68 0.09 0.86 0.94 0.62 0.10 0.04 0.71
L 0.66 0.10 0.81 0.94 0.58 0.11 0.05 0.70
B 0.69 0.07 0.86 0.96 0.60 0.09 0.04 0.71

KNN
P 0.68 0.08 0.86 0.94 0.62 0.09 0.04 0.71
L 0.61 0.15 0.75 0.92 0.53 0.16 0.07 0.68
B 0.69 0.07 0.84 0.95 0.60 0.08 0.03 0.71

LDA
P 0.68 0.08 0.86 0.94 0.62 0.08 0.04 0.71
L 0.66 0.10 0.82 0.93 0.61 0.10 0.05 0.70
B 0.64 0.13 0.79 0.93 0.56 0.13 0.06 0.69

QDA
P 0.68 0.08 0.86 0.94 0.62 0.09 0.04 0.71
L 0.68 0.08 0.84 0.94 0.60 0.09 0.04 0.70
B 0.69 0.07 0.86 0.96 0.59 0.09 0.04 0.71

NB with
GM

P 0.68 0.08 0.86 0.94 0.62 0.09 0.04 0.71
L 0.68 0.08 0.86 0.95 0.60 0.09 0.04 0.70
B 0.68 0.08 0.86 0.94 0.62 0.09 0.04 0.71

NB with
KDE

P 0.67 0.09 0.85 0.94 0.61 0.10 0.05 0.70
L 0.64 0.12 0.78 0.92 0.56 0.14 0.06 0.68
B 0.70 0.06 0.88 0.96 0.60 0.08 0.03 0.71

Multi-
nomial

P 0.68 0.08 0.86 0.94 0.62 0.09 0.04 0.71
L 0.70 0.06 0.89 0.96 0.63 0.06 0.03 0.72
B 0.69 0.08 0.88 0.96 0.60 0.09 0.04 0.70

SVM with
PK

P 0.68 0.08 0.86 0.94 0.62 0.09 0.04 0.71
L 0.69 0.07 0.87 0.95 0.63 0.07 0.03 0.71
B 0.67 0.10 0.84 0.94 0.58 0.11 0.05 0.69

SVM with
GK

P 0.68 0.08 0.86 0.94 0.62 0.09 0.04 0.71
L 0.69 0.07 0.86 0.96 0.61 0.09 0.04 0.71
B 0.71 0.05 0.91 0.97 0.64 0.05 0.02 0.72

CART
P 0.67 0.09 0.85 0.94 0.61 0.10 0.05 0.70
L 0.56 0.21 0.64 0.90 0.46 0.22 0.09 0.65
B 0.71 0.05 0.90 0.97 0.64 0.06 0.03 0.72

Bagging
P 0.67 0.09 0.85 0.94 0.61 0.10 0.05 0.70
L 0.69 0.07 0.84 0.95 0.60 0.08 0.03 0.71
B 0.69 0.07 0.86 0.96 0.61 0.09 0.04 0.71

Random
Forest

P 0.67 0.10 0.84 0.93 0.60 0.11 0.05 0.70
L 0.64 0.13 0.79 0.93 0.56 0.13 0.06 0.69
B 0.67 0.09 0.81 0.94 0.56 0.12 0.04 0.70
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credibility, competitiveness, and operating risk are used to predict bankruptcy. The

copper froth data set from Aldrich et al. (2004) is also included.

The application allows the user to visualise the training set, a testing set, or a single

observation. This can be changed under the ‘Data set to plot’ radio buttons. Within

the ‘Data’ tab, each of the above data sets’ percentage test data can be changed,

as well as the single point to be plotted.

The application also allows the user to upload data sets to experiment further with

plotting. Note that the web-based application is limited to five classes, and care

should be taken that the training and test set files follow the guidelines of the

application.

The user can also simulate and analyse all of the 24 various data structures dis-

cussed in section 4.2.

Lastly, under the ‘Triplot settings’ the following can be changed:

� Underlying biplot used,

� Underlying classification method used,

� k used within KNN classification

� The size of the inner-polybag,

� The multiple and size of the outer-polybag,

� Whether the α-bags used in the construction of the polybags should be plotted,

� The eigenvectors used in the construction of the underlying biplot, and

� Size (zoom) and number of points presented on axes. (These two options are

mostly relevant if data does not present well on the triplot.)

Underlying R code

The reader can access the underlying code for the Shiny application in the app.R file

on the GitHub repository that can be found at https://doi.org/10.5281/zenodo.

3562013 (Van der Merwe, 2019). Here one can see the exact implementation of all

the underlying source files. For completeness, the purpose of each of these source

files is summarised in appendix C.

The code for the log-ratio triplot was obtained from the author.
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6 Discussion and conclusion

In this paper a new classification methodology using traditional classification meth-

ods combined with biplots and α-bags was introduced. The technique introduces an

inconclusive area within a triplot that can be seen as an area where there is insuf-

ficient evidence to classify a certain data point, necessitating further investigation.

Incorporating this method reduces the misclassification error of the classification

technique employed.

The technique and methods were illustrated on two randomly generated data sets,

additional robustness checks were done, and a medical application was discussed.

Additionally, a web-based application is available supplementary to this paper, al-

lowing the reader to interact with the data and techniques discussed.

The simulation study showed that this technique performs very well compared to

others for negatively correlated data, and as good as others for certain underlying

classification methods such as KNN, LDA, and multinomial. Future research may fo-

cus on combining similar methodologies with triplots to further explore visualisation

of classification techniques and related methods, as well as applying the approach

to non-linear axes.

REFERENCES

Aitchison, J., Greenacre, M., 2002. Biplots of compositional data. Journal of the

Royal Statistical Society: Series C (Applied Statistics) 51, 375–392. URL: https:

//doi.org/10.1111/1467-9876.00275.

Aldrich, C., Gardner, S., Le Roux, N.J., 2004. Monitoring of metallurgical process

plants by using biplots. AIChE Journal 50, 2167–2186. URL: https://doi.org/

10.1002/aic.10170.

Bates, D., Maechler, M., 2019. Matrix: Sparse and Dense Matrix Classes and Meth-

ods. URL: https://CRAN.R-project.org/package=Matrix. r package version

1.2-17.

Dheeru, D., Karra Taniskidou, E., 2017. UCI machine learning repository. URL: http:

//archive.ics.uci.edu/ml.

74

https://doi.org/10.1111/1467-9876.00275
https://doi.org/10.1111/1467-9876.00275
https://doi.org/10.1002/aic.10170
https://doi.org/10.1002/aic.10170
https://CRAN.R-project.org/package=Matrix
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


CHAPTER 2. TRIPLOT CLASSIFICATION WITH POLYBAGS

Gabriel, K.R., 1971. The biplot graphic display of matrices with application to prin-

cipal component analysis. Biometrika 58, 453–467. URL: https://doi.org/10.

1093/biomet/58.3.453.

Gardner-Lubbe, S., 2016. A triplot for multiclass classification visualisation. Compu-

tational Statistics & Data Analysis 94, 20–32. URL: https://doi.org/10.1016/

j.csda.2015.07.014.

Gower, J.C., Gardner-Lubbe, S., Le Roux, N.J., 2011. Understanding biplots. John

Wiley & Sons.

Gower, J.C., Krzanowski, W.J., 1999. Analysis of distance for structured multivariate

data and extensions to multivariate analysis of variance. Journal of the Royal

Statistical Society: Series C (Applied Statistics) 48, 505–519. URL: https://doi.

org/10.1111/1467-9876.00168.

Greenacre, M., 2010. Biplots in Practice. Number 2011113 in Books, Fundacion

BBVA / BBVA Foundation. URL: https://ideas.repec.org/b/fbb/booklb/

2011113.html.

Greenacre, M., 2018. Compositional data analysis in practice. Chapman and

Hall/CRC. URL: https://doi.org/10.1201/9780429455537.

Johnson, A., Baddeley, A., 2017. polyclip: Polygon Clipping. URL: https://CRAN.

R-project.org/package=polyclip. r package version 1.6-1.

Korkmaz, S., Goksuluk, D., Zararsiz, G., 2014. Mvn: An r package for assess-

ing multivariate normality. The R Journal 6, 151–162. URL: https://journal.

r-project.org/archive/2014-2/korkmaz-goksuluk-zararsiz.pdf.

Kuhn, M., et al., 2008. Building predictive models in r using the caret package.

Journal of statistical software 28, 1–26. URL: http://dx.doi.org/10.18637/jss.

v028.i05.

Le Roux, N.J., Lubbe, S., 2013. UBbipl: Understanding biplots: Data sets and func-

tions. URL: http://www.wiley.com/go/biplots. r package version 3.0.4.

Mardia, K.V., 1970. Measures of multivariate skewness and kurtosis with applica-

tions. Biometrika 57, 519–530. URL: https://doi.org/10.1093/biomet/57.3.

519.

75

https://doi.org/10.1093/biomet/58.3.453
https://doi.org/10.1093/biomet/58.3.453
https://doi.org/10.1016/j.csda.2015.07.014
https://doi.org/10.1016/j.csda.2015.07.014
https://doi.org/10.1111/1467-9876.00168
https://doi.org/10.1111/1467-9876.00168
https://ideas.repec.org/b/fbb/booklb/2011113.html
https://ideas.repec.org/b/fbb/booklb/2011113.html
https://doi.org/10.1201/9780429455537
https://CRAN.R-project.org/package=polyclip
https://CRAN.R-project.org/package=polyclip
https://journal.r-project.org/archive/2014-2/korkmaz-goksuluk-zararsiz.pdf
https://journal.r-project.org/archive/2014-2/korkmaz-goksuluk-zararsiz.pdf
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.18637/jss.v028.i05
http://www.wiley.com/go/biplots
https://doi.org/10.1093/biomet/57.3.519
https://doi.org/10.1093/biomet/57.3.519


CHAPTER 2. TRIPLOT CLASSIFICATION WITH POLYBAGS

Rousseeuw, P.J., Ruts, I., Tukey, J.W., 1999. The bagplot: A bivariate boxplot. The

American Statistician 53, 382–387. URL: http://doi.org/10.1080/00031305.

1999.10474494.

Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete

samples). Biometrika 52, 591–611. URL: https://doi.org/10.2307/2333709.

Van der Merwe, C.J., 2019. carelvdmerwe/triplotsimulation. URL: https://doi.

org/10.5281/zenodo.3562013.

VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L., Storlie, C., 2014. SDMTools:

Species Distribution Modelling Tools: Tools for processing data associated with

species distribution modelling exercises. URL: https://CRAN.R-project.org/

package=SDMTools. r package version 1.1-221.

Wolf, H.P., Bielefeld, U., 2014. aplpack: Another Plot PACKage: stem.leaf, bagplot,

faces, spin3R, plotsummary, plothulls, and some slider functions. URL: https:

//CRAN.R-project.org/package=aplpack. r package version 1.3.0.

APPENDICES

A Technical background on biplots and α-bags

One of the key concepts used in the new classification technique is biplots. Only

the most important mathematical concepts from biplots will be discussed in this

appendix. It is important to note that there are many different types of biplots. The

focus here will be on three types: original PCA biplots, CVA biplots, and AOD biplots.

The main concept behind all three of these biplots is the same: reduce the di-

mensionality of the data in order to visually represent the data in the best manner

possible. There are, however, key differences in the various methods. These are

discussed in the next subsection.

In addition to the biplot methods, the concept of α-bags (adapted from bagplots)

is also used in the new technique. Bagplots can be thought of as analogues to the

traditional univariate boxplots for bivariate data.
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A.1 Biplots

Biplots combine three statistical and mathematical techniques to visualise high di-

mensional data.

The first is the concept of scatterplots. Scatterplots allow the user to observe the

relationships between variables in two dimensions, not only enabling visual determ-

ination of given points on the diagram, but also plotting new values.

The second is dimension reduction of the underlying data set. Now, given that a

matrix X : n × p with rank r can be written as AB with A : n × r and B : r × p, one
can force the rank to equal two (i.e. r = 2), such that X ≈ ÂB̂ = X̂ with Â : n × 2
and B̂ : 2 × p. The reduction of the rank is done in such a way that the resulting

approximation meets certain criteria. These two matrices allow for the construction

of the biplot.

Lastly, simple geometry allows for the creation of the axes from the matrix B̂. By

utilising these, one can graphically predict values from the observations quite easily

by drawing perpendicular lines to each axis.

The three main methods for creating biplots of continuous ratio scale data are PCA,

CVA, and AOD. PCA does not differentiate between the various classes in the data

and the approximation is constructed by taking the singular value decomposition

(SVD) of the full data set and subsequently the eigenvectors relating to the two

largest eigenvalues to construct the biplot.

AOD and CVA differ from each other in that AOD optimally represents the class

means, while CVA optimally separates the class means through maximising the

variance between classes and minimising the variance within classes. Mathematic-

ally, CVA is equivalent to Fisher linear discriminant analysis, i.e.

mx
m

m′SBm

m′SWm
,

while AOD considers only

mx
m

m′SBm,
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with SB : p × p and SW : p × p the respective between and within class covariance

matrices, c the number of classes, n the number of observations, and p the number

of variables.

For PCA biplots, given a standardised matrix X : n× p written as UV with U : n× r,
 : r × r, and V : r × p with r the rank of the matrix X, then the coordinates of

the sample points can be approximated by Z = XV′[2] , where Z : n × 2 and V′[2] :
p × 2. The p rows of V′[2] : p × 2 are used to construct the axes that represent the

variables of the matrix X. Therefore, should any n∗ out-of-sample observations,

say X∗ : n∗ × p, be plotted on the biplot, the new coordinates, Z∗, can be found as

Z∗ = X∗V′[2] .

CVA biplots are constructed by transforming the matrix X : n × p to the canonical

space through Y = XL such that L′WL =  with , L : p×p. If each class’s covariance

matrix is equal, then this transformation to the canonical space makes each class

spherical with a covariance matrix equal to the identity matrix. The matrix SW :

p× p therefore needs to be a good estimate of each within class covariance matrix,

implying that the underlying class covariance matrices are assumed to be the same.

Next, a PCA of the canonical means, i.e. Ȳ : c × p, is performed such that Ȳ = X̄L =

UV. The class means can therefore be approximated with Z̄ = ȲV′[2] = X̄LV′[2] =
X̄M′[2] , withM′[2] : p×2 used for the construction of the variable axis. Subsequently,

new out-of-sample observations can be found as Z∗ = X∗M′[2] from the n∗ out-of-

sample observations X∗ : n∗ × p.

There are various ways to construct an AOD biplot, for the application in this paper

AOD was applied on a matrix of Euclidean inter-sample distances resulting in the

AOD reducing to a PCA biplot of the class means. That is, let X : n × p be a matrix

with c classes, then a matrix of the means of the classes can be constructed as

X̄ : c × p. Similar to the PCA biplot, the matrix X̄ is then decomposed as UV with

U : c × r,  : r × r, and V : r × p with r the rank of the matrix X̄. The coordinates

of the sample points can then be calculated with Z = XV′[2] , where Z : n × 2 and

V′[2] : p × 2. The matrix V′[2] : p × 2 is used to construct the axes that represent

the variables of the matrix X. Finally, new sample points can be added in the

same way as with PCA biplots. This method does not make assumptions about

the covariance structures between groups as CVA does, and brings the additional

benefit of optimally representing the class means, while PCA only focuses on the full
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data set. Note that, for AOD more complex methods exist such as those where the

axes become non-linear. The research can be extended to biplots with non-linear

axes where other distance measures are used. See Gower and Krzanowski (1999)

for more detail on the analysis of distance for structured multivariate data.

All functions required to construct biplots can be found in the package UBbipl (Le

Roux and Lubbe, 2013). The code was amended in order to extract certain inter-

mediary calculations for the purpose of this analysis. It should be noted that to

overcome that the matrix SW : p × p sometimes has eigenvalues very close to zero

(which could result in strange results for its inverse), the function nearPD from the

Matrix (Bates and Maechler, 2019) package was used to find the closest positive

definite matrix with eigenvalues that are further from zero.

A.2 Bagplots and α-bags

The concept of α-bags is adapted from bagplots, which were first introduced by

Rousseeuw et al. (1999) as the bivariate generalisation of the classic boxplot. A

bagplot is constructed in a two-dimensional space and provides similar information

of the data set as a boxplot. This includes its location (the depth median), spread

(the size of the bag), correlation (the orientation of the bag), skewness (the shape

of the bag and the loop), and tails (the points near the boundary of the loop and the

outliers). The bag usually contains n/2, or 50%, of the data points in the sample,

and the loop is constructed by drawing a polygon through the points that lie closest

to a fence which is derived by inflating the bag by a factor of three. The R package

aplpack (Wolf and Bielefeld, 2014) contains the code for generating these bagplots.

One of the key benefits of bagplots compared to other methods of enclosing a

configuration of sample points, is that it considers the concentration of the sample

points in construction.

Gower et al. (2011) adapted the concept of the bag by changing the percentage

of points that lie within the bag itself and subsequently ignoring the fence and

loop. This allows for the representation of various levels of concentration (α) of the

sample points over different classes in one graphic. These bags are termed α-bags.
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B Data utilised

This section provides a more detailed description of the data that was simulated

to illustrate the proposed technique. Note that the distribution parameters were

randomly chosen for the different data sets. For both data sets the means were

kept the same, for the SSV data set the covariance matrices for the classes were

randomly chosen and kept the same for each class, while for the LDV data set the

variances were changed for each class.

B.1 SSV data set

Three classes were simulated, each from their own multivariate normal distribution.

They all have the same underlying variables V1 to V4. The different classes are de-

noted by Class A (�), Class B (◦), and Class C (△). In the distribution below, the

superscript of the variables indicates the specific class’s underlying variable’s dis-

tribution. Fifty samples from each class were randomly generated and the means

and covariance matrices were arbitrarily chosen. The number of observations were

arbitrarily chosen as 50 as a trade-off between having too few data points, produ-

cing a volatile illustration of the method, and too many points, hence over-fitting

the method.
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It is clear from the correlation multiplot in figure 2.1 that the correlation structures

of all the responses are the same. For some of the variables, the observations

(Class B (◦) and Class C (△)) also tend to overlap.

Comparing the correlation multiplot to the biplot in figure 2.4, the three groups

can be differentiated. The groups of data are relatively concentrated and clearly

separated from each other, and if any of these data points were not included in the

training set, out-of-sample classification would be simple.

Through considering the α-bags, one can interpret the different classes with ease.

Consider now drawing lines perpendicular from the α-bags to the various axes.

As an example, Class A (�) takes on values of 100 < V1 < 120, 80 < V2 < 100,

60 < V3 < 80, and 30 < V4 < 70. These are very much in line with the underlying

distribution. Considering the other classes and denoting a particular class by css,

the following holds:

A = {100 < V1 < 120 ∩ 80 < V2 < 100 ∩ 60 < V3 < 80 ∩ 30 < V4 < 70}

B = {60 < V1 < 80 ∩ 80 < V2 < 100 ∩ 100 < V3 < 120 ∩ 120 < V4 < 160}

C = {80 < V1 < 100 ∩ 100 < V2 < 120 ∩ 120 < V3 < 140 ∩ 130 < V4 < 170}
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Although visually far superior to a scatterplot, this method of interpretation of the

biplot is quite complicated and it would be much easier to utilise the coordinates of

the points as inputs into some classification technique.

B.2 LDV data set

A second similar data set is created that has the same means as the SSV data

set, but for which the covariance matrices were randomly generated for each of

the different classes. Next, the distribution for each of the variables is given. A

notation similar to section B.1 is used.
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Figure 2.4 also provides a CVA biplot with 95%-bags of the LDV data. As expec-

ted, the ease of graphical interpretation decreases significantly in this case. The

correlation multiplot provides very little information apart from Class A (�) being
differentiated from Classes B (◦) and C (△) in terms of some variables, and Class B

(◦) and Class C (△) overlap significantly.

Considering the biplot with the α-bags, Class A (�) is shown to be clearly distin-

guished from Class B (◦) and Class C (△), and the majority of Class B (◦) is contained
within Class C (△) on the biplot.

C Summary of R code

Below follows a list of all the source files associated with the Shiny application. The

files can be found at https://doi.org/10.5281/zenodo.3562013 (Van der Merwe,

2019).

bipldrawknn.R This is the main function that draws the triplot. It takes the train-

ing and test sets, the size of the inner- and outer-polybags, the type of under-

lying biplot, the underlying classification technique, and the eigenvectors that

should be used as inputs. Some visualisation parameters can also be changed.

clipcords.R The function that returns the inner-polybag given the coordinates of

the α-bags. The code can take up to 5 classes.

compute.bagplot_C.R Amended the code for calculating the bagplot coordinates

from the aplpack (Wolf and Bielefeld, 2014) package to extract the α-bags.

confmetrics.R Code for extracting the classification metrics given a confusion

matrix that contains observations that were left unclassified.

createdata2.R Code written to create three classes of multivariate normal distri-

butions given a set of means, variances, portions for each class, correlations

within classes, and number of observations. It also finds the closest invertible

correlation matrix, so the correlations can be randomly simulated.

CVAbipl_C.R and PCAbipl_C.R Amended code from the UBbipl (Le Roux and Lubbe,

2013) package in order to extract additional information from the computation

of the underlying biplots. The CVAbipl_C.R function also includes amended

code for finding the closest invertible within class covariance matrix.
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Draw.line2.R, Draw.onecmline.R, and Plot.marker.new.R Code from the UB-

bipl (Le Roux and Lubbe, 2013) package, used to redraw the axes on top of the

classification area.

drawbipl.bagalpha_C.R Amended code from the UBbipl (Le Roux and Lubbe, 2013)

package to export the coordinates of the α-bag when drawing the base biplot.

DrawOrthogline.R Code from the UBbipl (Le Roux and Lubbe, 2013) package,

used to draw orthogonal lines from data points in the triplot perpendicular to

the axes.

Eigen.twosided.R and indmat.R Code from the UBbipl (Le Roux and Lubbe, 2013)

package required for the CVAbipl_C.R function to work.

returnconfusion.R Code for returning the confusion matrix of a classification method,

given a predetermined percentage of points not to be classified.

unioncords.R The function that returns the outer-polybag given the coordinates

of the α-bags. The code can take up to 5 classes.
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CLASSIFYING YIELD SPREAD

MOVEMENTS THROUGH

TRIPLOTS: A SOUTH AFRICAN

APPLICATION

This working paper has been submitted to an investments journal. This paper was

co-authored with supervisor Tertius de Wet.

Abstract

Significant movements in yield spreads from a sparse data environment are classified us-

ing various share, interest rate, financial ratio, and economic type covariates in a visually

interpretive manner. This allows for a better understanding of how various factors drive

the changes in yield spreads. Additionally, this visualisation technique provides the ability

to classify whether an unlisted debt instrument’s yield spread had significantly changed

or stayed stable during a specific observation period. The analysis was implemented in a

web-based application as well.

1 Introduction and background

In lieu of in-house quantitative experts, many corporate entities fail to employ ap-

propriate techniques when calculating the fair value of unlisted debt, thus opting

to leave the initial implied spread unchanged. While it is up to management to

decide how fair values are to be determined, supporting methodology underlying

their decision is still required.
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When calculating the fair value of an unlisted debt instrument for reporting pur-

poses, the best approximation is the exit price quoted on a given day. The process

of obtaining this actual price from the counterparty is, however, impractical and

cumbersome. The yield used for pricing consists of a risk-free portion that can

easily be observed, and a spread that is instrument specific. If analysis renders suf-

ficient evidence to show that the spread would have changed from inception of the

instrument, the fair value can be investigated further and, for example, an actual

updated exit price is obtainable. If, however, there is not sufficient evidence that

significant movement had occurred, the spread could be left unchanged and only

the risk-free yield curve updated.

Furthermore, management may often be reluctant to incorporate unattributable

volatile fair value profit or losses. Additionally, applying some spread model imme-

diately after the inception of an unlisted debt instrument could also create a ‘day

one’ profit or loss, implying that the security was not purchased at market value.

These practical challenges emphasise the need for a method providing a simpler

explanation why changes in the yields (or valuation) had or had not occurred.

Note also that, even if unlisted debt is held at amortised cost in the financial state-

ments, it is still required - under the International Financial Reporting Standards

(IFRS) 7 Article 25, for instance - that the fair value must be disclosed. Companies,

however, sometimes simply state that the fair values of instruments are reason-

ably approximated by their respective amortised cost values. While the fair value

could possibly be approximated by the amortised cost in the early or late stages

of a debt instrument’s term or for certain types of instruments, the assumption will

render inaccuracies. Simply stating that the approximation holds could misinform

the reader of the financial statements, and careful assessment would be required

in auditing to determine whether sufficient evidence is available to support such a

claim.

Considering the problem from the perspective of an auditor, there are different

effects that incorrect decisions would have. If, for example, the client decided to

keep the spread constant, and the auditor erroneously accepts this decision, the

balance sheet item would be misstated. IFRS 13 states that financial instruments

held at fair value need to be valued at their exit price, implying that if the unlisted

debt instrument is sold at year-end, the value (excluding trading cost) should be
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very similar to the value that is stated in the balance sheet. That implies that if the

asset is sold immediately after year-end, that there could be a considerable profit

or loss, only being attributable to the asset not being valued correctly. On the other

hand, if the client correctly decides to keep the spread constant and the auditor

believes that the spread should have changed, then the client would have to incur

indirect costs to obtain an exit-price or updated spread (and in all likelihood have a

negative impact on the relationship with the auditor due to the additional work that

had to be done).

This research proposes a methodology that can be used to determine whether an

increase, decrease, or no change in the spread would have occurred for a spe-

cific debt instrument, given observed market conditions. Additionally, the proposed

method provides new insights into the determinants of spread changes not dis-

cussed in previous research. South African data is used to illustrate the practical

application of the methodology, but it would have equal international relevance.

The proposed analysis and methodology differ from previous research in two signi-

ficant ways. The first is that an indicator for change in spread is used rather than

the size of the movement. That is, a test is proposed to establish whether there

had been a significant movement in the spread, rather than continually determin-

ing new spreads. This allows for the current spread to be kept constant, or, if there

is sufficient evidence of a significant move, to choose an appropriate method for

determining a new level.

Secondly, the visualisation of the movements and their determinants are incorpor-

ated in the analysis through k-nearest neighbour (KNN) triplots with polybags (Van

der Merwe, 2019b). This is used as an alternative to other numbered-output, or

black-box methods where analyses cannot always be visually interpreted. Triplots

allow for the two-dimensional representation and classification of high dimensional

data. Polybags then additionally restrict classification in certain areas of the triplot

through considering overlapping concentration of the data.

The inner-polybag on a KNN triplot is a non-classifiable area where the overlap of

the data is too high for clear differentiation. It is taken as the intersection of the

α-bags for any of the classes and is denoted by αN%.
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The outer-polybag places an outer boundary for the classification areas to prevent

classification of outliers and is taken as the area outside the overlapping region of

multiple inflated α-bags and is denoted by z × αOUT%, with z the inflation factor.

The triplot therefore contains a classification area where new points can be plotted

and classified according to the areas they fall into. The observations’ values are

read from the graph by drawing perpendicular lines from the observation point to

each of the axes - similar to a scatterplot, but with more than two axes.

In this research, the triplot proposed by Van der Merwe (2019b) is expanded to

include an additional visually interpretable classification method. The triplots are

built on the theory of biplots, for which the reader can refer to Gower et al. (2011)

and Greenacre (2010) for a more detailed background.

The response that will be investigated in this research is an indicator of increasing,

decreasing, or stable movement of the spread over a certain period, and its rela-

tionship with various liquidity, share, interest rate, financial ratio, and economic

type covariates. The interpretation of the covariates shows that the incorporation

of the stable class for the movements in spreads resulted in some interesting find-

ings: while most variables either have a direct relationship or inverse relationship

with the change in spread, some of these also have a split relationship with the

stable state. This implies that movements of some factors have a stronger negat-

ive impact on spreads than the positive impact they have, or vice versa.

The paper is set out as follows: in the following section an overview of previous

literature is provided, followed by a detailed discussion of the data utilised in this

study. The variable selection process and results are provided, after which the

analysis is given and discussed. Finally, some concluding remarks are given.

2 Literature overview

Determining the factors that drive the change in yield spreads of traded bonds has

been the subject of a vast amount of research, with Collin-Dufresn et al. (2001) the

first authors to investigate it in detail.

Collin-Dufresn et al. (2001) investigated the determinants of credit spread changes

on vanilla industrial bonds using multi-linear regression and principal component
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analysis (PCA) applied to the residuals. They found that theoretically explanatory

variables offered low explanatory power in their analysis, that the residuals are

highly cross-correlated, and that PCA implies that these changes are mostly driven

by a single common factor. The authors could not explain the common systematic

component, suggesting it is principally driven by local supply/demand shocks that

are independent of both credit factors and liquidity proxies. They not only incorpor-

ated the default risk, but also the loss given default (in other words, the recovery

rate). Since the corporate bond market tends to have relatively high transaction

costs and low volume, they also investigated the extent to which the credit spread

changes can be explained by proxies for liquidity changes. Their choice of cov-

ariates was based on the structural models of default, which also informed the

variables used in the regression.

Avramov et al. (2007) expanded on the research of Collin-Dufresn et al. (2001)

to include all grades of bonds and more explanatory variables. They found that

different sets of explanatory variables have different importance depending on the

grade of the bonds and that some of their additional variables yielded significant

explanatory power.

Avramov et al. (2007) also pointed out that the difference in studying spread changes

rather than spread levels is equivalent to the difference between studying equity

prices and equity excess returns - an important insight since, although these two

fields draw upon each other, they are two completely different areas of research.

Furthermore, through considering three measures of bond-specific liquidity meas-

ures, Chen et al. (2007) found that liquidity is priced into corporate yield spreads

and reaffirms that neither the level nor the dynamics of yield spreads can be fully

explained by default risk determinants. Bao et al. (2011) incorporated a theoretical

measure of illiquidity, namely the amount of price reversals captured by the neg-

ative of the autocovariance of price changes and showed that it is both statistically

and economically significant with regards to bond prices. They did not investigate

the relationship with regards to change in yields.

Most research in changes in yield spreads follows a similar approach: (i) a set of

debt instruments is identified, (ii) the spread changes are calculated over a certain

period , (iii) a set of covariates is identified, (iv) various multi-linear regression ana-

lyses are performed, and (v) the results are interpreted for statistical and economic
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significance. While the approach in this paper is very different from the above, the

relevant covariates were chosen based on such past research.

The reader is referred to Radier et al. (2016), where the authors provide an extens-

ive overview of literature in this field, as well as a detailed background to the South

African bond market, comparing conclusions of previous research in this context.

In all the literature referenced above, the change in spread is presented as the de-

pendant variable that is modelled, mostly over a different group of bonds and over

different time periods and time spans. Many of the covariates that were used in

the current analysis were also considered in these studies and can be split into five

broad categories, namely: liquidity, equity, interest rate, economic, and financial

ratio type measures. The literature also contains covariates which would not always

be readily observable in sparse data environments, and as such, these were left out

of this analysis, therefore allowing for broader application of the methodology.

In the next section the data utilised in this application are discussed in detail.

3 Data utilised

The analysis in this research was performed on data from listed non-state-owned

entities’ listed vanilla fixed coupon bonds for the period 30 September 2007 to 30

April 2018. Full records prior to this date were not available from the Johannesburg

Stock Exchange (JSE). These sample bonds contained no callable, early redemption,

nor split maturity features. Only bonds for which all covariate data points were

available were included. These various liquidity, share, interest rate, financial ratio,

and economic type covariates will be defined in the following subsections.

3.1 The indicator

The most important variable in this analysis is an indicator variable created to de-

note change in spread over a time period.

It attempts to capture significant movement in the spread. In the application a

significant movement in spread was arbitrarily defined as 25 basis points (up or

down).
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Table 3.1: The average effect in absolute terms an increase/decrease of 25 basis points
in the yield would have on different bonds valued at their respective par yields. From the
table it can be seen that bonds with lower coupons and longer maturity would be the most
severely impacted by the 25 basis point move.

PAR YIELD

TERM 2% 4% 6% 8% 10% 12% 14% 16%

1 0.25% 0.24% 0.24% 0.23% 0.23% 0.22% 0.22% 0.22%

5 1.18% 1.11% 1.05% 1.00% 0.95% 0.90% 0.86% 0.82%

10 2.25% 2.03% 1.84% 1.68% 1.54% 1.41% 1.30% 1.21%

15 3.21% 2.78% 2.43% 2.14% 1.90% 1.70% 1.54% 1.39%

20 4.09% 3.40% 2.87% 2.46% 2.13% 1.87% 1.66% 1.48%

25 4.88% 3.91% 3.20% 2.67% 2.27% 1.96% 1.72% 1.52%

30 5.60% 4.33% 3.44% 2.82% 2.36% 2.01% 1.75% 1.54%

Once all bonds to be included in the study were identified, the spread data were

obtained for each of them. The spread was calculated as the yield of a bond above

the yield of their respective companion government bonds. The trade volume for

each trading day was also included. The daily spread was then multiplied by an

indicator function which equals one if the bond was traded on a given day and zero

if it was not. This new variable - the traded spread - therefore reflects the spread

only on days when trading took place and allows for interpolation between traded

days. In previous research, the data were only used if a predetermined number of

trades took place during the observation period.

Several options regarding treatment of days when no trading took place exist, the

first being to ignore them. Even though this would be a convenient approach, given

the sparsity of the data, it would leave one with very little data for the research. The

second option is to keep the spread constant until the new data point is observed,

but this is unlikely to provide a true reflection of the market, as market participants

would have anticipated changes in the spread prior to the trade. The other possib-

ility is to apply linear interpolation between the two traded spreads. This approach

would increase the number of points available for analysis, but it would imply that

the market started moving towards a new spread immediately following a trade,

which is also unrealistic. For these reasons, a combination of keeping the spread

flat between traded days and linear interpolation towards the next observed point
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was employed. The first half of the missing traded spread data points were kept at

the previous traded spread, after which the second half was interpolated between

that value and the next traded spread. Whilst there is no single correct way to

approach this problem, the described approach mitigates the complications of the

various approaches to an extent.

Once the missing traded spreads were calculated, they were considered as a time

series of value movements. The total observation period of a bond was then di-

vided into time sub-periods that could either be classified as upward (+1), down-

ward (−1), or stable (+0) movement periods. The period was classified as a stable

period until the first significant movement of more than 25 basis points from the

reference spread (initial spread) was observed. After this observation, the stable

period ended and the upward/downward (depending on the direction of the move-

ment) movement period started, together with a new reference spread taken as the

first spread in the new period. This period continued until either another signific-

ant movement from the new reference spread was observed, or a stable period of

spread movements was observed. Once a stable number of trading days were ob-

served (chosen as five in this application), a new stable period was started together

with a new reference spread. The process repeated itself until the last observed

traded spread was considered.

Each of the bonds were then linked to their listed parent company and 116 one-

year rolling window periods taken at month-end, starting 30 September 2007 and

ending 30 April 2017, were created. The movements (+1, −1, +0) for all the com-

panies’ bonds over those periods were added together. This total movement was

then floored and capped at −1 and +1 respectively, thereby indicating whether

the aggregate movement for a certain company’s bonds was upward, downward,

or stable during the one-year observation period. This indicator is the dependent

variable investigated in this study.

It is important to note that there are various ways in which the indicator could have

been created. The proposed approach was chosen because it allows for continuous

observation periods and allows for correction of unaligned movements if some of

a company’s bonds show a decrease in spread and some an increase. It further-

more incorporates the important stable state when no significant movements were

observed.
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A graphical illustration of the indicator is presented in figure 3.1 and the results of

some robustness checks on the indicator is provided in table 3.2.

There was a total of 256 bonds from 28 different parent companies for which the

spread data were available and which were therefore included in the final sample.

The majority of the bonds that traded in the period were excluded either for not

being vanilla type bonds or having some callable or early redemption feature, res-

ulting in 690 bonds to consider. Once these bonds were excluded, almost another

third (296 bonds) were discarded due to not having available spread data. In the fi-

nal step a filter was added to only include bonds which had a listed non-state-owned

entities as their parent companies resulting in the final sample of 256 bonds. These

bonds were then analysed according to their movements and grouped according to

their parent companies and the overall movement for the parent company for the

rolling one-year period were recorded. This resulted in a total of 2369 observations.

In the next subsection, the covariates are discussed.

3.2 Covariates

Data from the parent company for the time period were gathered to provide the

relevant information for each of the observation periods. Once all the covariates

were sourced, the parent company’s reference was removed, and the final data

set was used as is. No imputation with regards to missing data was done and

the observations were removed if not all the covariates were present. The largest

contributors to data that were not available was the financial statement data and

underlying share data. This resulted in the removal of 422 observations such that

there were 1947 observation in the final data set.

All bond data were obtained from the JSE, with the underlying bond and equity

pricing data, as well as financial ratio data from IRESS. Interest rate data were

obtained from Reuters, and economic data from Quantec’s EasyData platform.

Liquidity measures

Change in liquidity was measured as the change in the percentage of days with no

active trades over a one-year period. It is expected that there will be a direct rela-

93



CHAPTER 3. CLASSIFYING YIELD SPREAD MOVEMENTS THROUGH TRIPLOTS: A
SOUTH AFRICAN APPLICATION

-4
0

-2
00

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

2
0
1

1
/0

9
/1

4
2

0
1

2
/0

4
/0

1
2

0
1

2
/1

0
/1

8
2

0
1

3
/0

5
/0

6
2

0
1

3
/1

1
/2

2
2

0
1

4
/0

6
/1

0
2

0
1

4
/1

2
/2

7
2

0
1

5
/0

7
/1

5
2

0
1

6
/0

1
/3

1
2

0
1

6
/0

8
/1

8
2

0
1

7
/0

3
/0

6

Spread (bps)

F
R

X
1
6

 (
tr

a
d

e
d

)
F

R
X

1
6

 (
+

0
)

F
R

X
1
6

 (
-1

)
F

R
X

1
6

 (
+

1
)

P
o

in
t 

a
t 

w
h

ic
h

 i
n

te
rp

o
la

te
d

s
p

re
a

d
 h

a
s
 d

e
c
re

a
s
e
d

 m
o

re
 

th
a
n

 2
5

 b
p

s
 f

ro
m

 s
ta

rt
 o

f 
p

e
ri

o
d

. 
D

e
c
re

a
s
e
 p

e
ri

o
d

 s
ta

rt
s
.

D
e
c
re

a
s
e
 p

e
ri

o
d

D
e
c
re

a
s
e

p
e
ri

o
d

s
D

e
c
re

a
s
e
 p

e
ri

o
d

In
c
re

a
s
e
 p

e
ri

o
d

T
ra

d
e
d

 d
a
y
s

In
te

rp
o

la
ti

o
n

 

p
e
ri

o
d

: 
fl

a
t 

a
n

d
 t

h
e
n

 l
in

e
a
r

to
w

a
rd

s
n

e
x
t 

tr
a

d
e
d

 s
p

re
a

d
D

e
c
re

a
s
e
 p

e
ri

o
d

 e
n

d
s

a
n

d
 s

ta
b

le
p

e
ri

o
d

 s
ta

rt
s
 

b
e
c
a
u

s
e
 s

p
re

a
d

 h
a
d

 

n
o

t 
c
h

a
n

g
e
d

 m
o

re
 t

h
a
n

 

2
5

 b
p

s
 i
n

 5
 t

ra
d

in
g

 d
a
y
s

S
ta

b
le

 p
e
ri

o
d

 o
v
e
r 

w
h

ic
h

 a
 

s
ig

n
if

ic
a
n

t 
d

e
c
re

a
s
e

o
c
c
u

rr
e

d

S
ta

b
le

 p
e
ri

o
d

 o
v
e
r 

w
h

ic
h

 a
 

s
ig

n
if

ic
a
n

t 
in

c
re

a
s
e
 o

c
c
u

rr
e

d

F
ig
u
re

3
.1
:
A
n
ill
u
st
ra
ti
on

of
th
e
in
d
ic
at
or

fo
r
b
on

d
FR

X
1
6
.
Th

e
fi
rs
t
fo
u
r
ar
ro
w
s
on

th
e
le
ft
in
d
ic
at
e
h
ow

m
is
si
n
g
sp
re
ad

s
w
er
e
in
te
rp
ol
at
ed

b
et
w
ee

n
tr
ad

ed
sp
re
ad

s.
It
w
as

fi
rs
t
ke
p
t
fl
at
,
af
te
r
w
h
ic
h
it
w
as

lin
ea

rl
y
in
te
rp
ol
at
ed

to
th
e
n
ex

t
tr
ad

ed
sp
re
ad

(t
h
e
sp
lit

is
in
d
ic
at
ed

b
y
a

sm
al
ll
in
e)
.
Th

e
n
ex

t
tw

o
ar
ro
w
s
sh
ow

h
ow

a
d
ec
re
as
in
g
p
er
io
d
st
ar
ts
an

d
en

d
s
af
te
r
n
o
si
g
n
ifi
ca
n
t
m
ov

em
en

t
is
ob

se
rv
ed

.
O
n
ce

n
o
si
g
n
ifi
ca
n
t

m
ov

em
en

t
w
as

ob
se
rv
ed

fo
r
fi
ve

tr
ad

in
g
d
ay

s,
a
st
ab

le
p
er
io
d
st
ar
te
d
.
Th

e
re
m
ai
n
in
g
ar
ro
w
s
on

th
e
ri
g
h
t
p
oi
n
t
to

va
ri
ou

s
in
cr
ea

si
n
g
(+

1
),

d
ec
re
as
in
g
(−

1
),
an

d
st
ab

le
(0
,
sh
ad

ed
)
p
er
io
d
s
fo
r
th
is
sp
ec
ifi
c
b
on

d
.

94



CHAPTER 3. CLASSIFYING YIELD SPREAD MOVEMENTS THROUGH TRIPLOTS: A
SOUTH AFRICAN APPLICATION

Ta
b
le

3
.2
:
R
es
u
lt
s
of

th
e
ro
b
u
st
n
es
s
ch
ec
ks

d
on

e
on

th
e
in
d
ic
at
or
.
Fo
u
r
te
st
s
w
it
h
re
g
ar
d
s
to

ro
b
u
st
n
es
s
w
er
e
p
er
fo
rm

ed
.
Th

e
fi
rs
t
w
as

to
ra
n
d
om

ly
cr
ea

te
m
is
si
n
g
d
at
a,

th
e
se
co
n
d
w
as

to
ch
an

g
e
th
e
n
u
m
b
er

of
st
ab

le
tr
ad

in
g
d
ay

s
th
at

n
ee

d
s
to

b
e
ob

se
rv
ed

b
ef
or
e
a
st
ab

le
p
er
io
d

st
ar
ts
,
th
e
th
ir
d
w
as

to
se
e
th
e
ef
fe
ct

of
u
si
n
g
ei
th
er

a
st
ra
ig
h
t
lin
e
in
te
rp
ol
at
io
n
m
et
h
od

an
d
ke
ep

in
g
th
e
sp
re
ad

co
n
st
an

t
fr
om

th
e
p
re
vi
ou

s
tr
ad

in
g
d
at
e,

an
d
la
st
ly

th
e
ef
fe
ct

of
ch
an

g
in
g
th
e
si
g
n
ifi
ca
n
t
b
as
is
p
oi
n
t
(b
p
s)

m
ov

em
en

t
va

lu
e.

Fr
om

th
e
an

al
ys
is
it
ca
n
b
e
se
en

th
at

th
e

in
d
ic
at
or

is
re
la
ti
ve

ly
ro
b
u
st

fo
r
m
is
si
n
g
d
at
a,

th
e
n
u
m
b
er

of
st
ab

le
d
ay

s
re
q
u
ir
ed

,
an

d
th
e
in
te
rp
ol
at
io
n
m
et
h
od

.
Fu
rt
h
er
m
or
e,

th
e
in
d
ic
at
or

is
se
n
si
ti
ve

to
th
e
ch
oi
ce

of
th
e
si
g
n
ifi
ca
n
t
b
as
is
p
oi
n
t
m
ov

em
en

t.

C
a
te
g
o
ry

S
tr
e
ss

D
e
cr
.

(-
1
)

S
ta
b
le

(0
)

In
cr
.

(+
1
)

N
e
w

N
A
s

To
ta
l

Δ
s

Δ
s

fr
o
m

+
/-
1

to
0

Δ
s

fr
o
m

0
to

+
/-
1

S
ig
n

Δ
s

N
o
Δ
s

N
e
w

N
A
s

%
Δ
s
%

N
o
Δ
s

%

M
is
si
n
g

d
at
a

st
re
ss

5
%

9
0
9

6
9
6

3
3
8

4
1
7

7
1
0

0
1
9
2
6

0
1

9
9

1
0
%

9
0
9

6
9
2

3
3
7

9
2
1

9
1
1

1
1
9
1
7

0
1

9
8

2
0
%

9
0
1

6
5
3

3
5
3

4
0

4
2

1
5

2
6

1
1
8
6
5

2
2

9
6

4
0
%

8
8
7

6
4
4

3
4
9

6
7

9
6

4
7

4
0

9
1
7
8
4

3
5

9
2

8
0
%

8
9
3

6
1
5

3
1
9

1
2
0

2
9
7

1
4
2

1
1
9

3
6

1
5
3
0

6
1
5

7
9

S
ta
b
le

d
ay

s
st
re
ss

1
8
9
3

6
9
6

3
5
8

0
5
2

2
1

2
8

3
1
8
9
5

0
3

9
7

1
0

8
9
4

7
0
4

3
4
9

0
4
9

2
3

2
2

4
1
8
9
8

0
3

9
7

2
5

9
2
7

6
6
0

3
6
0

0
9
2

1
6

5
9

1
7

1
8
5
5

0
5

9
5

5
0

9
5
3

6
3
2

3
6
2

0
1
7
1

4
5

1
1
6

1
0

1
7
7
6

0
9

9
1

1
0
0

1
0
0
4

5
8
0

3
6
3

0
2
7
4

6
3

1
8
6

2
5

1
6
7
3

0
1
4

8
6

In
te
rp
.

m
et
h
od

S
tr
ai
g
h
t

9
2
6

6
6
7

3
5
4

0
9
6

2
8

6
4

4
1
8
5
1

0
5

9
5

S
ta
b
le

8
9
3

7
3
6

3
1
7

1
1
0
2

6
1

2
8

1
3

1
8
4
4

0
5

9
5

B
p
s

m
ov

e
st
re
ss

1
1
1
6
5

2
9
9

4
8
3

0
5
3
6

1
2

4
1
6

1
0
8

1
4
1
1

0
2
8

7
2

5
1
1
1
9

3
8
8

4
4
0

0
4
3
6

3
0

3
4
5

6
1

1
5
1
1

0
2
2

7
8

1
0

1
0
6
4

4
8
8

3
9
4

1
3
3
4

4
4

2
5
8

3
2

1
6
1
2

0
1
7

8
3

5
0

7
3
9

9
5
8

2
4
9

1
3
6
3

3
0
2

4
7

1
4

1
5
8
3

0
1
9

8
1

1
0
0

4
4
4

1
3
5
2

1
5
0

1
7
1
2

6
7
1

2
2

1
9

1
2
3
4

0
3
7

6
3

95



CHAPTER 3. CLASSIFYING YIELD SPREAD MOVEMENTS THROUGH TRIPLOTS: A
SOUTH AFRICAN APPLICATION

tionship between this measure and the change in spreads. This variable denoted

as d.Illiquidity.

Year-on-year changes in the difference between the 10-year government bond yield

and swap rate (d.(Y-S)_10) were chosen as an indication for funding risk. As swaps

are not funded but bonds are, an increase in the value would indicate an increase

in the spread required to compensate for funding risk. Alternatively, as per Collin-

Dufresn et al. (2001), a decrease in this value (thus higher values for the swap

rates) could indicate a decrease in the liquidity of the swap market, which could

spill over to the bond market and subsequently increase spreads.

Interest rate type measures

Whilst movement in the base interest rate curve would already be incorporated

in the companion bond’s yield, the change in the government bonds’ yield term

structure could provide valuable information on the expectation of the economy,

and therefore aspects of company growth and recovery rates.

The changes in particular points (levels) on the term structure are denoted by d.Y_,

where  was chosen as two, five, 10, and the maximum available term in years. The

change in the slope of the yield curve was also considered and was calculated as the

difference between the 10- and two-year, five- and two-year, maximum available

and two-year, and maximum available and 10-year rates, indicated by d.Slo_(−y).
Increases in yield curve slopes are indicative of increases in forward rates - and

therefore the level and slopes can be considered together. Avramov et al. (2007)

proposed two opposing hypotheses to explain the effect a change in yields could

have on credit spreads. The first would be that an increase in the yield curve could

provide a higher reinvestment rate for a firm, therefore increasing firm value, which

in turn reduces credit spreads. On the other hand, increasing yields imply that the

borrowing rates also increase, diminishing the extent to which a firm can take on

profitable projects. This could decrease the value of the firm and subsequently

increase spreads. The opposite holds for a decrease in yield curves.

The curvature estimation as proposed by Diebold and Li (2006), calculated as twice

the two-year rate minus the three-month and 10-year rates, denoted as d.Cr(DL),

was incorporated. A higher curvature parameter indicates a more volatile expected
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period in the short term. Therefore, a higher curvature would signal potentially

lower recovery rates and therefore higher credit-related spreads.

Additionally, three of the parameters were also estimated based on the sparse data

approximation of Van der Merwe et al. (2018). These year-on-year changes in the

level, slope, and curvature parameters were calculated as follows: d.Lev(CvdM)=

0.9Z+1.0Z−0.2Z, d.Slo(CvdM)= 0.0Z−1.0Z, and d.Cur(CvdM)= 0.2Z−1.0Z, where
Z represents the  × 100th percentile of the available term structure.

Second and third order changes in the 10-year government bond yield were also in-

corporated to account for non-linear movements. These are indicated as (d.Y_10)

with  equal to two and three.

Economic type measures

The South African Reserve Bank (South African Reserve Bank, 2015) publishes three

composite business cycle indicators: a leading, coincident, and lagging index. Each

of these consist of underlying inputs that indicate which direction the economy is

heading (leading), the current state of the economy (coincident), and what real-

ised (lagging). The year-on-year changes of these indices as well as the change

in the year-on-year changes of these indices were included to capture any macro-

economic factors and the effects thereof. A positive change in the indices indicates

either an expectation or a realisation of an upward turn in the economy. A pos-

itive value of these changes should therefore indicate higher expected recovery

rates and positive business growth and hence lower credit related spreads (and

vice versa). They are denoted by Leading, Coincident, and Lagging.

An increase in the year-on-year percentage movement in the indices would have

a similar effect as the level. One should, however, be careful of the state from

where the change originates - for example a 1% increase from −10% is better, but

still good compared to a 1% increase from a base of 10%. These are denoted by

d.Leading, d.Coincident, and d.Lagging.

The components of the various business cycle indicators as per the SARB can be

found in the appendix. As these are published with an approximate three month lag,

the covariate data coinciding with a certain observation period were also lagged by

three months.
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Financial ratio type measures

Changes in selected financial ratios, which could indicate the creditworthiness of

a firm, were also considered as part of the set of independent variables. These

include assets over capital employed (d.AC), current ratio (d.CR), debt over assets

(d.DA), debt over equity (d.DE), interest cover (d.IC), leverage factor (d.LF), and

long-term loans as percentage of total debt (d.LTL).

An increase in assets over capital and the current ratio would indicate a stronger

financial position and therefore decrease credit related spreads. An increase in

debt over assets and debt over equity would indicate a weaker financial position

and therefore increased credit-related spreads.

An increase in interest cover would indicate a stronger position to service current

debt and therefore decreased credit related spreads. Furthermore, an increase in

the leverage factor would indicate a better utilisation of leverage employed and

therefore decreased credit-related spreads.

Finally, a decrease in the long-term loans as percentage of total debt would indicate

an increase in short-term debt, putting strain on cash flows to service current debt

which would dilute the ability to service current debt and therefore increase credit-

related spreads.

Note that in order to incorporate publication lags, a general three month lag was

used when considering changes in the financial ratio measures.

Equity type measures

Some measures from the equity market were also included. The change in volat-

ility skew (d.VolSkew), as per Collin-Dufresn et al. (2001), was incorporated as a

measure for the probability of negative jumps in the market. An increase in the

volatility skew would therefore indicate a higher risk of jumps, necessitating addi-

tional premiums for investors.

The year-on-year change in the parent company’s return (d.R), their sector’s index

(d.I), their excess return to their sector’s index (d.(R-I)), as well as the excess return

to market (d.(R-M)) were used as an indicator of how well the firm and relevant
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sector performed during the period considered. Increases in return and excess

returns indicate market sentiment that a company or sector is increasing in financial

health, therefore decreasing spreads.

Finally, some volatility measures were considered. Firstly, the year-on-year change

in the daily volatility of the parent company (d.RVol); secondly, the change in the

excess return to index volatility (d.(R-I)Vol); and finally, the change in the differ-

ence between the firm’s volatility and the market’s volatility (used as a proxy for

idiosyncratic volatility) - d.(RVol-MVol). An increase in any of these measures indic-

ates more risk, and therefore it would increase the spreads required by investors as

compensation.

In the next section all these covariates were used together with the dependent

variable to perform variable selection to reduce the number of variables in the final

analysis. In order to test the accuracy of the analysis, a validation sample of 25%

was chosen and the remaining training data were used in the variable selection and

subsequent analysis.

4 Variable selection

After all the variables were identified, a subset of the key variables needed to be

determined. Numerous variable selection techniques are available, as expounded

by Guyon and Elisseeff (2003).

James et al. (2013) note that shrinkage methods for variable selection fit a model

containing all p variables and shrink the coefficient estimates towards zero, redu-

cing the variance of the estimates. One such method - the lasso (Tibshirani, 1996)

- allows for coefficients to shrink to exactly zero. The adaptive lasso by Zou (2006)

further improves on the lasso to include the oracle property, thereby allowing for

more consistent selection of variables.

The adaptive lasso estimates are given by:

β̂ = argmin
β

 n∑
=1

 
y − β0 −

p∑
j=1

βj,j

!2
+ λ

p∑
j=1

̂j|βj|

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with ̂j = 1/ |β̂∗j |γ for j = 1,2, ..., p, γ > 0, and {β̂∗j } a number of non-zero initial

estimates of the covariates.

The tuning parameter (λ) was evaluated through calculating the multinomial devi-

ance over a range of values via cross-validation. Each evaluation provides a point

estimate of the multinomial deviance together with a one standard deviation range.

The final output renders two values: the value of λ providing minimum mean cross-

validated error; and the λ, which indicates the most regularised model such that

the error is within one standard deviation of the minimum. The latter yields fewer

variables and was thus used in this analysis. Once this parameter was obtained,

it was used to fit the lasso and the variables included were noted. The package

glmnet (Friedman et al., 2010) in R was used to implement the variable selection.

Following a similar approach to that of Morozova et al. (2015), the above process

was repeated 1000 times (through resampling with replacement of the training set),

and a graph of all the variables and their percentage inclusion rates was plotted.

A λ for the initial training data set was obtained through cross validation - this

specific λ excluded 18 of the 37 variables. Keeping this λ fixed, 95% confidence

intervals for the coefficients were obtained using the bootstrap. The bootstrap was

performed by resampling the training data set 1000 times and fitting the adaptive

lasso for each sample. If zero was not included in the 95% confidence interval,

then the coefficient was considered to be significantly different to zero. Note that

each variable has three coefficients because there are three classes per indicator.

The number of significant coefficients can therefore either be zero, one, two, or all

three of the coefficients. It should be noted that there could be some dependency

in some of the observations affecting the results of the bootstrap. The depend-

ency could be addressed through using other bootstrapping techniques such as the

block-bootstrap.

The results of the variable selection are provided in figure 3.2. The final variables

selection can be seen in the figure as those with a higher inclusion rate than the

variable with the lowest inclusion rate that had at least one significant coefficient

(i.e. all variables with a higher inclusion rate than d.Y_max).

The simulation yielded 19 variables for inclusion - all of which had at least one

significant coefficient. While the variable d.Illiquidity was included almost all the
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time, it will not form part of the analysis due to the nature of the variable. That is,

it was used to help explain some of the variance, but when used for prediction of

unlisted debt instruments it will be inconsequential. Therefore, only 18 variables

were left. A summary of these covariates, split according to the movement class,

can be found in table 3.3.

The training data’s 18 variables are plotted in figure 3.3 in a KNN (k = 41) triplot

with an inner-polybag of αN = 0% and outer-polybag of z × αOUT = 2 × 95%. The

sizes of the inner- and outer-polybags were chosen for optimal visualisation of the

classification area of the triplot. For ease of visualisation the tick marks and labels

of the axes are not shown on the triplot.

The tuning parameters k, αN, and z × αOUT%, can take on various values. If the

choice of k is too small, then the classification region will overfit the training data

and out of sample classification will not perform very well. On the other hand, if k

is too high, then the classification areas will be too rigid. For the application k was

chosen as 41 as it delivered classification regions that were not overly rigid, but

still fit the training data relatively well. The size of the inner-polybag was chosen as

0% as a way to make it easier to introduce the adaptation of the triplot in the next

section. The outer-polybag was chosen sufficiently large to include all data points.

The triplot shows that the data are concentrated in the centre, but also adequately

separated. Furthermore, the axes of only a few variables lie on top of each other,

indicating that the variables are mostly not strongly correlated. The problem with

the triplot, which will be addressed in the following section, is that it is not visually

easily interpretable due to the many axes included. The only method available

for classification on this graph is mathematically solving for the position of a new

sample point and then determining which coloured area it lies in (see Gardner-

Lubbe, 2016).

5 Analysis

While the triplot in figure 3.3 can be used for classification as is, the large number of

variables reduces the attractiveness regarding visual interpretability. One could, for

example, draw four separate triplots where only certain variables are shown. The
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Table 3.3: Summary statistics of all the covariate data used in the analysis. The Shapiro-
Wilk (Shapiro and Wilk, 1965) test for normality was performed on all the marginal distri-
butions and all of the variables were found to be distributed significantly different from the
normal distribution. Additionally, the Mardia (Mardia, 1970) test for multivariate normality
showed that none of the classes are multivariate normally distributed.

Variable Class Mean Std.
Dev

Me-
dian Min Max 25th 75th Skew-

ness
Kur-
tosis

(d.Y_10)2
−1 0.84 1.16 0.38 0.00 5.48 0.08 1.19 2.14 4.51
0 1.08 1.35 0.45 0.00 5.48 0.10 1.54 1.60 1.92
+1 0.78 1.13 0.33 0.00 5.48 0.08 1.05 2.14 4.48

d.(Y-S)_10
−1 0.07 0.33 0.11 −0.84 0.69 −0.15 0.33 −0.63 −0.20
0 0.11 0.40 0.19 −0.84 1.36 −0.11 0.36 −0.48 0.16
+1 0.38 0.32 0.35 −0.84 1.36 0.19 0.54 0.45 1.59

d.Y_max
−1 0.16 0.66 0.10 −1.66 2.15 −0.36 0.56 0.53 0.33
0 0.14 0.78 0.10 −1.66 2.15 −0.45 0.66 0.27 −0.17
+1 0.13 0.84 0.14 −1.66 2.15 −0.44 0.60 0.22 −0.15

d.Slo(5-2)
−1 0.06 0.40 0.01 −0.61 2.05 −0.19 0.31 1.37 4.93
0 0.16 0.51 0.02 −0.64 2.05 −0.13 0.34 1.83 3.85
+1 0.40 0.75 0.11 −0.64 2.05 −0.10 0.84 0.97 −0.34

d.Slo(max-
10)

−1 0.24 0.44 0.30 −1.16 1.00 0.01 0.58 −0.74 0.52
0 0.07 0.45 0.08 −1.16 1.00 −0.21 0.41 −0.27 0.11
+1 0.05 0.29 0.07 −1.16 1.00 −0.17 0.21 −0.07 1.46

d.Cur(DL)
−1 −0.01 0.57 0.01 −2.05 1.65 −0.30 0.38 −0.31 0.74
0 0.11 0.68 0.12 −2.24 2.40 −0.26 0.50 0.01 1.67
+1 0.11 0.96 0.15 −2.24 2.40 −0.41 0.64 −0.14 0.38

d.Cur(VDM)
−1 −0.27 0.49 −0.24 −1.54 0.75 −0.68 0.10 0.08 −0.52
0 −0.06 0.51 −0.07 −1.54 0.75 −0.49 0.31 −0.27 −0.67
+1 −0.05 0.56 0.07 −1.54 0.75 −0.49 0.38 −0.62 −0.27

d.VolSkew
−1 −0.06 1.41 −0.04 −3.54 2.97 −0.96 0.73 0.13 −0.32
0 −0.22 1.29 −0.26 −3.54 2.97 −1.01 0.39 0.22 0.11
+1 −0.22 1.20 −0.27 −3.54 2.97 −0.77 0.27 0.30 1.13

d.Leading
−1 1.92 13.52 −0.59 −21.30 37.72 −4.39 6.50 1.00 0.89
0 0.91 9.77 −0.36 −21.30 37.72 −2.83 2.82 1.53 4.41
+1 −1.74 9.55 −1.86 −17.18 35.28 −5.82 1.23 1.35 3.47

d.Lagging
−1 1.00 9.79 1.27 −35.77 20.40 −2.43 5.00 −1.04 2.56
0 −1.07 8.00 −0.51 −35.77 20.40 −3.35 3.39 −1.46 4.74
+1 −4.62 10.34 −2.43 −35.77 13.77 −6.12 1.14 −1.40 1.46

Coincident
−1 2.75 3.21 2.78 −12.91 6.92 0.79 5.24 −1.87 6.40
0 0.99 4.13 1.56 −12.91 6.92 0.39 2.95 −1.99 4.16
+1 −2.13 5.53 0.40 −12.91 6.02 −5.81 1.41 −0.96 −0.61

Lagging
−1 −2.48 5.54 −0.89 −22.31 5.24 −3.14 0.60 −1.87 2.99
0 −1.12 5.31 −0.59 −22.31 13.46 −2.00 0.62 −1.53 4.66
+1 −1.18 7.96 −0.60 −22.31 13.46 −3.24 1.12 −0.63 0.80

d.AC
−1 −0.03 0.90 0.00 −4.55 5.34 −0.09 0.12 1.03 21.46
0 −0.04 0.34 0.00 −4.55 1.29 −0.09 0.05 −3.75 45.28
+1 −0.04 0.56 0.00 −4.55 1.29 −0.15 0.14 −5.99 46.63

d.CR
−1 −0.05 0.57 −0.01 −4.48 1.99 −0.13 0.08 −5.33 42.17
0 −0.06 0.44 −0.03 −1.72 1.26 −0.16 0.06 −0.59 4.60
+1 −0.10 0.97 0.03 −4.37 3.32 −0.05 0.16 −2.44 11.91

d.DA
−1 −0.01 0.07 0.00 −0.49 0.22 −0.03 0.01 −2.70 18.57
0 0.01 0.08 0.00 −0.49 0.38 −0.02 0.02 0.45 11.86
+1 0.01 0.06 0.00 −0.10 0.26 −0.02 0.03 1.86 5.81

d.DE
−1 −0.31 0.81 −0.15 −4.27 2.03 −0.55 −0.01 −1.39 5.87
0 −0.07 1.04 −0.05 −4.92 4.57 −0.27 0.16 −0.30 12.15
+1 0.01 0.95 0.03 −2.20 3.26 −0.24 0.36 0.43 3.28

d.IC
−1 −0.01 6.24 0.01 −28.28 31.90 −0.18 0.43 0.19 14.69
0 0.20 9.10 −0.01 −21.03 53.31 −0.89 0.70 3.26 18.02
+1 −2.51 10.34 −0.21 −47.43 53.31 −1.91 0.02 −1.88 14.58

d.Rvol
−1 −4.81 11.31 −2.63 −70.77 24.73 −10.03 1.52 −1.17 4.10
0 −0.40 13.38 −0.21 −70.31 66.71 −6.04 7.72 −1.31 7.23
+1 9.47 22.78 5.51 −56.16 166.62 −1.45 16.76 3.58 21.63
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Figure 3.3: A triplot with underlying k-nearest neighbour classification (k = 41) of the
training set data, together with an outer-polybag of 2 × 95% and 0% inner-polybag. The
dark grey area indicates a decrease in spread, the medium grey area indicates a period of
no significant change in spreads, and the light grey an increase in spreads. By drawing per-
pendicular lines to the various axes, it becomes clear which variables have discriminatory
power with regards to the various classes.
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axes can also easily be shifted parallel and truncated in order to show the centre

of the triplot. These separate triplots with parallel shifted and truncated axes are

subsequently further improved for visual interpretability, as outlined below.

If one considers any point on any of the axes, a perpendicular line could be drawn

at that specific point identifying all areas on the triplot corresponding to that value

of the variable. This perpendicular line will cross through the triplot classification

region, essentially showing that, for the specific variable’s value, there could be

various outcomes of the indicator. Additionally, some of the perpendicular lines will

not intersect the classification areas of the triplot at all. This is illustrated in figure

3.4 for some values of a specific variable, d.IC.

The KNN triplot is therefore adapted (AKNN triplot) to summarise the classification

areas of each point on the axes through a multi-shaded bar through orthogonally

projecting the outer- and inner-polybags on the variables’ axis. That is, to get an

idea of the wideness of the classification region for the different values of a variable,

the proportion of each class with respect to the intersection of the outer-polybag at

a value is plotted on the variables’ axis. In addition, the predictivity of each variable

is also computed.

This leads to a new method of classification using the triplot. There are four prop-

erties in constructing the AKNN that can be varied, and all combinations of these

will be tested for accuracy. For the implementation discussed in this paper, k was

chosen as 41 for the underlying KNN classification, allowing for sufficiently clear

separation of the classes.

The first two properties are the inner- and outer-polybags. For this implementation

fairly small and large polybags were chosen. The inner-polybags were chosen as 0%

(essentially not including it) and 75% respectively, while the outer-polybags were

chosen as 2 × 95% and 8 × 95%, with the latter being a very large outer polybag

taking up almost all the triplot space (essentially not including the effect of the

outer-polybag in the triplot). The inner- and outer-polybags change the appearance

of the classification region, with the outer-polybag determining the length of each

axis.

The third property, illustrated in figure 3.4, is where the classification regions are

summarised on each axis through drawing a grid on the classification region per-
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Figure 3.4: By only considering one (d.IC) of the 18 axes in figure 3.2 and shifting it
parallel to the right, the above graph is obtained. Additional to the shifted axis, a 7× 7 grid
is drawn perpendicular to the axis. Each of the points on this grid is subsequently classified
according to the classification region. These are then summarised on the axis itself. Here
the ‘count’ type axis is displayed and therefore indicates the number of times each point
on the grid is classified in a class per line, and proportions it as a percentage of the grid
that crosses the outer-polybag (the black dots). The final implementation uses a much finer
grid such that more accurate classification is obtained.
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pendicular to each of the axes. The points on the grid are classified and then

summarised on the axis itself. There are two methods to determine these sum-

marised areas: either consider points inside the outer-polybag region exclusively

or consider the full grid over the outer-polybag region. The first method therefore

considers the number of points per class as proportion of points on that line that

lie within the outer-polybag, while the second considers the number of points per

class as a portion of the number of points on the grid. The latter method allows

for smooth edges of the summarised axes. Note that the inner-polybag would res-

ult in a non-classified area in the middle of the axes as part of both summarised

areas. The values of the summarised axes are ‘scores’ that each value obtains for

each class at each variable, rendering a value between zero and one for each of

the classes. They are multiplied by the predictivity scores of the axes to obtain the

final score used in the calculation. The predictivity of the j-th axis is a measure of

the accuracy of the two-dimensional approximation associated with the j-th original

variable. It is expressed as a proportion of the sum of squares for the prediction

versus the sum of squares for the original observed value. Should the prediction be

100% accurate, the proportion will be one, and the larger the difference between

the predictions and observed values, the smaller the proportion (Gardner-Lubbe

et al., 2008).

This allows for the variables that have better predictivity in the triplot to be alloc-

ated higher weights with regards to classification. The two properties are respect-

ively referred to as the ratio- (R-) and count-type (C-type) scoring properties, where

the R-type always adds to one, and the C-type only counts the number of points on

the grid that touches the classification region.

The last property is the values of the observations that are used in the scoring

process. There are two values which can be used, either the actual (A) values

from the original data, or the values that are displayed on the triplot itself, namely

the predicted (P) values. The predicted values drawn from each axis will intersect

precisely at one point on the triplot, while the actual values will not.

Once the observations are scored, their totals for each of the classes, or indicator,

are added and the class with the highest score is assigned to that observation.

In the next subsection the results for the classification using the various methods

are provided and discussed.
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5.1 Comparison of methods

In table 3.4 the various combinations of the AKNN triplot that were tested together

with the normal KNN classification (i.e. the black-box model) and the normal KNN

triplot with polybags (Van der Merwe, 2019b) are given.

The results reveal that the normal KNN on its own is the best performing model.

From the other methods the results are very similar - not only to each other, but

to the full KNN classification model as well. Therefore, for this application, at least,

the properties can be interchanged easily, and similar results will be obtained.

In the next subsection the AKNN-triplots are illustrated. To further aid in the inter-

pretation and understanding of the adapted triplots, a web-based application was

created so that the reader can interact with all the parameters and inputs discussed

in this paper (see figure 3.5).

5.2 Interpretation of the graphs

The illustrated triplots contain both the actual and predicted values for one specific

observation. The inner-polybag was chosen as 0%, and outer-polybag was chosen

as 2 × 95%, with C-type scoring axes used. In figure 3.6, the four different group of

covariates’ AKNN triplots are provided and the variables will be interpreted in the

subsequent sections. Note that, while axes with a low predictivity might not always

be interpreted correctly, the influence on the classification will be negligible, as

their score incorporates the predictivity.

The share type covariates as shown in figure 3.6a will be used to explain the in-

terpretation of the adapted triplot first. Having only two variables allows for the

simultaneous indication of the validation data set and an explanation of the graph’s

interpretation. For all the covariates that will be discussed, one validation observa-

tion is indicated on all the graphs.

The validation sample is plotted in the classification area and the classes can be

distinguished from each other by their shapes. The choice of k equal to 41 also

allowed for sufficient separation of the classes within the triplot.
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Figure 3.6: Adapted KNN (k = 41) triplots with 0% inner- and 2 × 95% outer-polybags,
together with C-type scoring axes. Both the actual (black circle) and predicted (empty
circle) values for a single observation from the validation sample is shown on the various
axes on each graph.
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Next, the two covariates’ axes are positioned exterior to the classification area.

The first covariate is the change in the underlying company’s share price volatility

(d.RVol), and the second covariate is the change in the volatility skew (d.VolSkew).

The predictivity of the axes is indicated in brackets next to their names. The change

in the volatility skew’s axis does not have a high predictivity on the triplot. The

change in the underlying share’s volatility axis on the other hand has a much higher

accuracy. It is very important to note that the number of dimensions of the data

is reduced from 18 to two, therefore it is expected that not all variables will be

displayed equally well. An example of this would be to observe a three-dimensional

plot, with three perpendicular axes, from above - changes in values of the vertical

axes will not be observed in this view while changes in the others will be highly

visible.

The black square in the classification area indicates a single observation from the

validation set. The true value of the observation was a decrease in spread. The

actual and predicted values of the covariates of this observation are indicated on

the axes. The empty circles are the predicted values. They are the values that

are read from the axes if a perpendicular line is drawn from the observation in the

triplot - these will almost always (depending on the size of the outer-polybag) fall

somewhere on the displayed axes.

The black circles indicate the actual covariate values of the observation. From

d.RVol, it is clear that the actual value is close to the predicted value, while the

actual value for d.VolSkew is too far away from the axes to be indicated on the

graph (in fact, the value is −16, which is very far outside the range, approximately

[−1,1], of the axis).

Thus, for the change in the underlying share’s volatility, the actual and predicted

values will have a very similar score allocated to them. In contrast, the actual

value for the change in volatility skew will have no score allocated to it, while the

predicted value will have a mixture between a decrease and increase score alloc-

ated to it. These, however, will be multiplied with a small predictivity value, and

therefore will add little towards the final total score.

Next, all four groups of covariates are discussed in terms of what can be observed

regarding the interaction of the covariates with the classes.

112



CHAPTER 3. CLASSIFYING YIELD SPREAD MOVEMENTS THROUGH TRIPLOTS: A
SOUTH AFRICAN APPLICATION

Share type covariates

Figure 3.6a shows a strong relationship between the increase in the underlying

share’s volatility (d.RVol) and the increase in spreads. However, a decrease in the

volatility could signal either a decrease in spread or have no effect.

As already mentioned in the previous section, the change in volatility skew (d.VolSkew)

does not have a high predictivity in the graph. It shows that an increase in the co-

variate results in a decrease in spread, and a decrease in the covariate results in

either an upward or stable movement of spreads.

From this it can be inferred that an increase in the underlying share’s volatility has a

stronger negative effect on spreads than the potential positive effect of a decrease.

Financial ratio type covariates

For the financial ratio type covariates shown in figure 3.6b, it can be seen that

change in debt over equity (d.DE) and debt over assets (d.DA) have a similar type

of profile. It shows that a decrease in spreads and decrease in variable are related,

but the increase of the variable is split between the increase of spreads and stable

states.

A decrease in the interest cover ratio (d.IC) increases the spreads, while a decrease

in this covariate mostly signals a stable state.

The asset over capital (d.AC) and current ratio (d.CR) has almost no predictivity on

the triplot, and therefore will not be discussed.

Given the above, it can be concluded that the weakening of the interest cover ratio

of a firm has a stronger negative effect on spreads than an increase would impact

positively. Furthermore, the decrease of debt to assets and debt to equity has a

stronger positive effect on spreads than the converse. It is further noted that most

of these ratios did not have a very high predictivity on the triplot.

113



CHAPTER 3. CLASSIFYING YIELD SPREAD MOVEMENTS THROUGH TRIPLOTS: A
SOUTH AFRICAN APPLICATION

Interest rate and Liquidity type covariates

For the interest rate type covariates, shown in figure 3.6c, seven variables were

included, one of which was the quadratic movement in the change in the 10-year

yield. As this term was used to account for non-linear movements it will not be

discussed in more detail. Additionally, the change in the maximum available yield

term was also included, but had a predictivity of 0% and will also not be discussed

in more detail.

The change in curvatures, d.Cur(DL) and d.Cur(VDM) have the same profile. It

shows that a decrease in the curvature results in either a decrease or increase in

the spreads. On the other hand, an increase in the curvature either results in an

increase in spreads or the stable state. This indicates that the spread is not as

sensitive to small changes in curvature as it would be to larger changes, in either

direction.

Two variables are included for the change in slope. The first is the slope between the

maximum available point and the 10-year point (d.Slo(max-10)), the second is the

slope between the five- and two-year points (d.Slo(5-2)), which can be interpreted

as the long- and medium-term slopes, respectively. An increase in the medium-term

slope results in an increase in spreads, while a decrease in slope is shared between

a decrease in spread and the stable state. An increase in the long-term slope results

in either a decrease or increase in spreads, while a decrease in the long-term slope

results in either an increase in spreads or the stable state. These distinct effects

on the change in slopes support the initial hypothesis that the change in slope can

have various impacts on the change in spreads, but it can also therefore be seen

that changes in medium- and long-term slopes have divergent impacts on spread

changes.

Finally, the change in the difference between the 10-year yield and swap rates (d.(Y-

S)_10) is considered. As this difference widens, the spread increases; if it narrows,

the spread either stays stable or decreases. This indicates that the widening of the

difference between the yield and swap rates have a stronger negative effect on the

spreads than the positive effect of a narrowing.
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Economic type covariates

Finally, the economic type covariates are discussed. Two of which have the same

profile and have relatively high predictivity percentages. The level of the lagging

index indicates that a lower level signals either a decrease or increase in spreads,

while a higher level signals either an increase or stable spreads.

The profile for the other covariates shows that their decrease results in an in-

crease of spreads, while an increase in the covariates either results in a decrease of

spreads or a stable state. This implies that negative changes in economic indicators

have a stronger negative effect on spreads than the corresponding positive effects

of positive changes in economic indicators.

5.3 Comparison to other literature

Collin-Dufresn et al. (2001, Table X) found that increases in volatility smirk, differ-

ence between swap and yield curves, and slopes (10-year minus two-year yields)

resulted in increases in yield spreads. If d.Slo(5-2) is chosen as a proxy for the slope,

and d(Y-S)_10 as the inverse of the difference between the swap and yield curve,

then similar results were obtained for d.Slo(5-2), but different effects for d.VolSkew

and d.(Y-S)_10. This could be due to the low predictivity of d.VolSkew on the trip-

lots, and because there are two possible interpretations of d.(Y-S)_10 as discussed

earlier.

The results presented in Avramov et al. (2007, Table 6) show that increases in

the long-term slope (30-year minus 10-year yields), and expansionary economic

cycles resulted in decreases in spreads. This is similar to the results obtained for

d.Slo(max-10) and Coincident.

Chen et al. (2007, Table VI, Columns 4 and 10) found that decreases in inequity

volatility and term slope (10-year minus two-year yields) resulted in increases in

yield spreads. No significant coefficients were found for pre-tax interest coverage

and long-term debt to assets. The effects of the change in term slope are similar

to that found in this research. The difference in d.RVol may be due to the authors

finding inconsistent statistical evidence regarding equity volatility.
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The effects of the change in equity volatility and short-term slope (10-year minus

two-year yields) that was reported in Radier et al. (2016, Table 4, Panel A) corres-

pond to the effects reported in this research.

6 Discussion and conclusion

In this paper a visual interpretation and classification methodology was proposed to

determine whether an increase, decrease, or no change in spreads have occurred

for unlisted debt instruments given observed market conditions. This was done

through a new visually interpretable adapted KNN triplot which not only allows for

a new classification methodology, but also for interpretation of the sensitivities of

the various covariates. The adapted KNN triplot also allowed for new insights into

the determinants of spread changes not considered in previous research.

This method can be applied to various other classification problems where visual

interpretation is an important aspect and traditional black-box techniques are not

sufficient to explain why certain classifications occur.

An interesting finding with regards to the covariates was noted, where it was seen

that by incorporating a ‘stable’ class, some movements in the covariates have

stronger negative or positive impact with regards to spread movements than the

alternate direction of change.

While this methodology was applied to South African data, it has international ap-

plication, offering ample future research potential.

Other areas for further research include the automatic parallel shifting of axes (cur-

rently these need to be adjusted manually), and the expansion of the research to

include more classes.

A web-based application was built supplementary to this paper to provide additional

clarity as to how the various properties and inputs affect the analysis on the adap-

ted triplot. The link and code for the Shiny web-based application that was built

in R can be found at https://doi.org/10.5281/zenodo.3565978 (Van der Merwe,

2019a). A screenshot is provided in figure 3.5.
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APPENDICES

A The South African composite business cycle

indicator’s components

Below follow the various components of the South African composite business cycle

indicator. They were obtained from the South African Reserve Bank on 9 April 2019.

A.1 Components of the Composite Leading Business Cycle

Indicator:

� Net balance of manufacturers observing an increase in the average number of

hours worked per factory worker: Bureau of Economic Research (half weight)

� Job advertisement space in the Sunday Times newspaper: Percentage change

over 12 months

� Net balance of manufacturers observing an increase in the volume of orders

received: Bureau of Economic Research (half weight)

� Opinion survey of business confidence: Bureau of Economic Research

� Number of residential building plans passed: Flats, townhouses and houses

larger than 80m2

� Number of new passenger vehicles sold: Percentage change over 12 months

� Gross operating surplus as a percentage of gross domestic product

� Interest rate spread: 10-year government bonds minus 91-day Treasury bills

� Real M1 money supply: six-month smoothed growth rate

� Index of commodity prices in US dollar for a basket of South Africa’s export

commodities

� Composite leading business cycle indicator of South Africa’s major trading-

partner countries: Percentage change over 12 months
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A.2 Components of the Composite Coincident Business Cycle

Indicator (Equal weights):

� Gross value added at constant prices, excluding agriculture, forestry and fish-

ing

� Employment in the total formal non-agricultural sector

� Value of retail and new vehicle sales at constant prices

� Industrial production index (comprising the physical volumes of mining, man-

ufacturing and electricity production)

� Utilisation of production capacity in manufacturing

A.3 Components of the Composite Lagging Business Cycle

Indicator (Equal weights):

� Value of non-residential buildings completed at constant prices

� Ratio of gross fixed capital formation in machinery and equipment to final

consumption expenditure on goods by households

� Ratio of inventories to sales in manufacturing and trade

� Nominal labour cost per unit of production in the manufacturing sector: Per-

centage change over 12 months

� Predominant prime overdraft rate of banks

� Ratio of consumer instalment sale credit to disposable income of households
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