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Summary

Fretting occurs when two normal loaded contacting surfaces are

submitted to oscillatory relative movement of small amplitude. De-

pending on service conditions, fretting fatigue may reduce signifi-

cantly the life of a component. The contact interaction between bodies,

non-proportional loading condition, and high stress gradient near con-

tact are some of the characteristics of fretting that imposes difficulty in

the numerical modelling of this phenomenon. Although it is a topic

that has been vastly studied over the past decades, better numerical

models that capture the effect of those main features in the prediction

of fretting fatigue lifetime is still of great interest and is going to be the

xxi
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main focus of this thesis.

As mentioned above, modelling of contact interactions and stresses

are one of the main characteristics of fretting fatigue that brings ex-

tra complexity to numerical analysis of this phenomenon. Generally,

predictions of fretting fatigue initiation lifetime rely on the correct es-

timation of those stresses at contact interface. The accuracy of those

stresses greatly depends on the mesh size at interface. Therefore, aim-

ing to guide researches on their modelling parameters, we proposed a

convergence map for mesh size selection for analysis of fretting fatigue

coupon tests (cylindrical pad and flat specimen configuration). More-

over, we also studied the presence of stress singularity in these condi-

tions and we have found that there is no singularity present. There-

fore, researches should be careful when approximating the subsurface

stresses near contact per analytical expressions that considers singular

stress fields.

When dealing with estimation of crack propagation lifetime, most

work in the literature use linear elastic fracture mechanics (LEFM).

Traditionally, a stepwise methodology is adopted in finite element, in

which each step consists of the analysis of a full loading cycle. Based

on the stresses near the crack tip at each step of the analysis, the crack

is allowed to grow in a direction determined via classical orientation

criteria (such as maximum tangential stress MTS). The main issue here

is that those orientation criteria were developed under the assumption

of proportional loading conditions, which are not valid for the case

of fretting. The non-proportional loading characteristic of this phe-

nomenon poses a difficulty in the analysis and, when it is not taken
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into account, may lead to incorrect crack propagation paths. In this

thesis, we implemented an appropriate orientation criterion for non-

proportional loading (an extension of MTS) and checked its perfor-

mance under fretting conditions. It is important to highlight that in

order to properly make use of this MTS extension, we need to accu-

rately obtain the stress at crack tip for every instant of time in the

loading cycle. Under these conditions, crack faces might be in contact

to each other and the proper modelling of this interaction is, there-

fore, essential. We also implemented an alternative way to account for

crack faces in conventional finite element analysis using the commer-

cial software ABAQUS. Our findings, for both crack propagation path

and life estimates, showed a good agreement with experimental data,

indicating that the non-proportional loading characteristic of fretting

problems should not be neglected.

The high stresses at contact interface affect directly the crack ini-

tiation and the crack propagation phases, as a considerable amount

of plasticity may be present around the contact region. Linear elastic

fracture mechanics may not be the best tool to predict lives in these sit-

uations, since one of its main assumptions is the requirement of very

small plastic zone around crack tip. To circumvent this problem, we

proposed the use of cohesive zone model (CZM). It is a non-linear ap-

proach to model the process zone ahead of the crack tip and its main

feature is that the stresses at this region are limited by the cohesive

strength of the material. Therefore, there is no requirement of limited

size of plasticity around the crack tip.

Firstly, we used monotonic cohesive zone models to study crack
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initiation location and orientation. Our results were comparable with

traditional critical plane approaches and were in good agreement with

experimental data. However, the monotonic cohesive zone models are

unable to capture damage accumulation under cyclic loading and a

direct application of such approach may lead to crack arrest instead

of propagation. To avoid this issue, one alternative is to use cyclic co-

hesive zone model (CCZM), an extension of monotonic cohesive zone

models that allows for modelling a cycle-by-cycle damage accumula-

tion.

We implemented and used cyclic cohesive zone model for predict-

ing fretting fatigue lives. Firstly, we extended the ABAQUS capability

by introducing a damage accumulation law to account for degradation

due to loading and reloading under cyclic conditions. In this work,

we implemented this law by writing user subroutines that allowed the

material properties to change within the analysis. We integrated these

user subroutines with extended finite element method (XFEM) and co-

hesive segments methodology and used them to model failure in a

cycle-by-cycle analysis. The results were verified with literature data,

giving confidence that the implementation is indeed correct. An inter-

esting advantage of this technique is that it is unnecessary to divide

the crack regime into initiation and propagation phases, once cyclic

cohesive models treat the problem in a unified way. Nonetheless, the

main drawback here is that CCZMs are extremely computationally de-

manding and a cycle-by-cycle approach is normally not feasible. To

overcome or at least alleviate this issue, we proposed the use of CCZM

in junction with an extrapolation approach that enabled us to predict

lives in high cycle fatigue without dealing with all the computational
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burden of a cycle-by-cycle analysis.

Based on our simulations, we concluded that our methodology

(cyclic cohesive zones in junction with an extrapolation procedure) is

a great alternative to model fretting problem under conformal contact

(flat pad in contact with a flat specimen). We were able to correctly pre-

dict fretting fatigue lives with a narrower error band than predictions

from classical approaches (continuum damage mechanics in junction

with classical fracture mechanics). In addition, our results had lower

mean squared error when compared with experimental data, evidenc-

ing the robustness of this method.

Finally, the main contribution of this thesis relies on proposing bet-

ter approaches to accurately estimate fretting failure lifetime under

different configurations and accounting for many of its complexities.

Our results indicates that the non-proportional loading characteristic

of fretting is an important factor that should not be neglected in the

analysis. Moreover, the use of XFEM in junction with CCZM for pre-

dicting fretting fatigue lifetime seems to be a promising alternative to

classical approaches.
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Samenvatting

Fretting treedt op wanneer twee normaal belaste

contactoppervlakken onderworpen worden aan een oscillerende re-

latieve beweging met een kleine amplitude. Afhankelijk van de ge-

bruiksomstandigheden kan fretting vermoeiing de levensduur van een

component aanzienlijk verkorten. Hoewel het een onderwerp is dat

in de afgelopen decennia uitgebreid is bestudeerd, is een beter begrip

en voorspelling van fretting vermoeiing nog steeds cruciaal voor veel

technische problemen, wat de belangrijkste focus van dit proefschrift

zal worden.

xxvii
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Numerieke modellering van fretting vermoeiing zorgt voor extra

complexiteit vanwege de belangrijkste kenmerken van dit fenomeen,

zoals contactinteractie en een hoge spanningsgradiënt in de buurt van

deze interactie. Het is belangrijk om te garanderen dat de spanning

op de contactinterface nauwkeurig wordt berekend, omdat dit voor-

spellingen van de start van de levensduur van de fretting vermoei-

ing kan beïnvloeden. We stellen een convergentiekaart voor om on-

derzoek te begeleiden naar de selectie van de maaswijdte voor anal-

yse van testen van de sterkte van fretting vermoeiing coupons (cilin-

drische en vlakke specimenconfiguratie). Bovendien hebben we ook de

aanwezigheid van singulariteit van spanning in deze omstandigheden

bestudeerd en we hebben ontdekt dat er geen singulariteit aanwezig

is. Onderzoekers moeten daarom voorzichtig zijn bij het benaderen

van de subsurface spanning in de buurt van analytische expressies,

rekening houdend met enkelvoudige spanningsvelden.

Wanneer het gaat om het inschatten van de levensduur van fret-

ting vermoeiing, wordt in de meeste literatuur gebruik gemaakt van

lineaire elastische fractuurmechanica (LEFM) om de levensduur van

scheurpropagatie te voorspellen. Traditioneel wordt een stapsgewi-

jze methodologie toegepast in een finiet element, waarbij elke stap

de analyse van een volledige laadcyclus comprimeert. Op basis van

de spanning nabij het scheurpunt in elke stap van de analyse laat

men de scheur groeien in een richting die wordt bepaald via klassieke

oriëntatiecriteria (zoals maximale tangentiële spanning of ’MTS’). Het

belangrijkste probleem hierbij is dat die oriëntatiecriteria werden on-

twikkeld onder de veronderstelling van proportionele laadcondities,

die niet geldig zijn in het geval van fretting. De niet-proportionele
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laadkarakteristiek van dit fenomeen vormt een moeilijkheid in de

analyse en, zoals besproken in de literatuur, hebben veel onderzoekers

die deze klassieke benadering hebben gebruikt, de propagatiepaden

onder fretting niet correct kunnen voorspellen. In dit proefschrift hebben

we een geschikt oriëntatiecriterium geïmplementeerd voor

niet-proportionele belasting (een uitbreiding van MTS) en hebben we

de prestaties gecontroleerd onder omstandigheden van fretting. Een

belangrijk punt hier is dat, om correct gebruik te maken van deze MTS-

uitbreiding, we nauwkeurig de spanning op het scheurpunt moeten

verkrijgen op elk moment van de laadcyclus. Onder deze omstandighe-

den kunnen scheurvlakken in contact komen en de juiste modellering

van deze interactie is daarom essentieel. We hebben ook een alternatief

geïmplementeerd om rekening te houden met scheurvlakken in con-

ventionele eindige elementenanalyse met behulp van de commerciële

software Abaqus. Onze bevindingen (voor zowel propagatiepad als

levensduurschattingen) lieten een goede overeenkomst zien met ex-

perimentele gegevens, wat aangeeft dat de niet-proportionele belast-

ingskarakteristiek van fretting niet mag worden verwaarloosd.

De hoge spanningen op de contactinterface beïnvloeden de

scheurinitiatie en de scheurpropagatiefases rechtstreeks, aangezien een

aanzienlijke hoeveelheid plasticiteit rond de contactregio aanwezig kan

zijn. Lineaire elastische breukmechanica is misschien niet het beste

hulpmiddel om levensduur te voorspellen in deze situaties, omdat één

van de belangrijkste veronderstellingen van deze methodologie de eis

is van een zeer kleine plastisch zone rond het scheurpunt. Om dit

probleem te omzeilen, stellen we het gebruik van cohesieve zonemod-

ellen voor. Dit is een niet-lineaire benadering om de proceszone vóór
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het scheurpunt te modelleren met als belangrijkste kenmerk dat de

spanningen in dit gebied worden beperkt door de cohesiesterkte van

het materiaal. Daarom zijn er geen aannames met betrekking tot de

grootte van deze plastisch zone.

Ten eerste hebben we monotone cohesieve zonemodellen gebruikt

om de locatie en oriëntatie van de scheurinitiatie te bestuderen. Onze

resultaten waren vergelijkbaar met traditionele kritieke vlakke

benaderingen en waren in goede overeenstemming met experimentac-

cumulatie onder cyclische belasting weer te geven en pogingen om het

onder deze omstandigheden te gebruiken kunnen leiden tot scheurar-

rest in plaats van propagatie. Om dit te omzeilen, is het nodig om het

cyclische cohesieve zonemodel (CCZM) te gebruiken, een uitbreiding

van een monotoon cohesief zonemodel dat het mogelijk maakt om de

schade na elke cyclus te modelleren.

We stellen een innovatieve tool voor om levensduur bij fretting ver-

moeiing te voorspellen met behulp van CCZM. Ten eerste hebben we

de Abaqus-capaciteit uitgebreid door een model te introduceren dat

opgebouwde schade bevat door het laden en herladen onder cyclis-

che belasting. In dit werk hebben we dat bereikt door gebruikerssub-

routines te schrijven waardoor de materiaaleigenschappen binnen de

analyse konden veranderen. We hebben deze gebruikerssubroutines

geïntegreerd met de uitgebreide eindige-elementenmethode (XFEM)

en cohesieve segmentmethodologie en deze gebruikt om falen te mod-

elleren in een cyclus-voor-cyclusanalyse. De resultaten zijn geveri-

fieerd met literatuurgegevens, wat vertrouwen geeft dat, zodra cyclisch

samenhangende modellen het probleem op een uniforme manier be-
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handelen, de implementatie inderdaad correct is. Een interessant vo-

ordeel van deze techniek is dat het niet nodig is het scheurregime

te verdelen in initiatie- en propagatiefasen. Deze transitie van ko-

rte naar lange scheuren is niet eenvoudig en kan de voorspellingen

aanzienlijk beïnvloeden. Niettemin is het grootste nadeel hier dat

CCZM’s extreem computationeel veeleisend zijn en dat een cyclus-

per-cyclusbenadering normaal onhaalbaar is. We stellen het gebruik

van CCZM voor met een extrapolatiebenadering die ons in staat stelt

om levensduur te voorspellen in hoge cyclusvermoeiing zonder alle

computationele last van een cyclus-voor-cyclusanalyse.

Op basis van onze simulaties hebben we geconcludeerd dat onze

methodologie (cyclische samenhangende zones gecombineerd met een

extrapolatieprocedure) een alternatief is voor het probleem om fretting

vermoeiing te modelleren bij conform contact (vlak in contact met een

vlak preparaat). We konden de levensduur van fretting vermoeiing

correct voorspellen met een kleinere foutmarge dan voorspellingen uit

klassieke benaderingen (d.i. continuümschademechanica in verbind-

ing met lineaire elastische breukmechanica). Bovendien waren onze

resultaten ook meer gecentraliseerd rond experimentele gegevens, wat

de robuustheid van deze methode aantoont.

Ten slotte is de belangrijkste bijdrage van dit proefschrift gebaseerd

op het voorstellen van betere benaderingen voor het nauwkeurig schat-

ten van de levensduur bij fretting vermoeiing onder verschillende con-

figuraties en rekening houdend met de vele complexiteiten. Onze re-

sultaten geven aan dat de niet-proportionele belastingskarakteristiek

van fretting een belangrijke factor is die niet mag worden verwaar-
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loosd in de analyse. Bovendien lijkt het gebruik van XFEM in combi-

natie met CCZM voor het voorspellen van de levensduur van fretting

vermoeiing een veelbelovend alternatief voor klassieke benaderingen.



1
Introduction

Fretting is a phenomenon that happens when two contacting sur-

faces are normally loaded and subjected to small amplitude oscilla-

tory relative movement. This amplitude generally varies from 5 to

1



Chapter 1. Introduction 2

100 µm (Ding et al., 2004), but it can be as low as, or even below, 1

µm (Vingsbo and Söderberg, 1988b). Due to its cyclic characteristic

and the high stress gradient at vicinity of contact, fretting may lead

to unexpected failure due to fretting fatigue, being responsible for pre-

mature failure of many common mechanical assemblies, such as bolted

joints, shrink fitted shafts and dovetail joints.

Under fretting conditions, the fatigue limit of a material may be

shortened by up to 50% (Jeung et al., 2015, and references therein). It

is known that, in this case, the crack growth phase is significantly dif-

ferent from plain fatigue propagation phase, due to the influence of

contact stress distributions on the crack and vice-versa (Giner et al.,

2008). These stresses at contact interface affects the crack growth, par-

ticularly for crack lengths smaller than the magnitude of the contact

zone dimension and must be taken into account in any analysis of fa-

tigue lifetime (Hills and Nowell, 1994). The contact stresses are easily

computed in numerical methodologies, such as finite element models

with contact algorithms. Therefore, it is not surprising that this tool

has been vastly used to study fretting fatigue.

Finite element method has been used to predict fretting fatigue

lives. As mentioned above, prediction of fretting lives has been of great

interest due to its dramatic impact on fatigue lifetime. In this regard,

the numerical estimate of lives is generally obtained by combining two

different mechanisms: fretting fatigue crack initiation and crack prop-

agation. Depending on the fretting conditions, failure may be mainly

governed by the initiation phase and life estimates may be based only

on this mechanism. On the other hand, propagation phase may be the
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dominant phase and neglecting initiation may lead to reasonable live

estimates. However, neglecting one phase may lead to poor predic-

tions, as shown in the results from Madge et al. (2008). Their study

shows that neglecting effects of wear on crack nucleation and consid-

ering life as purely dominated by propagation of long cracks can lead

to erroneous results.

There has been some effort to combine both phases in life predic-

tions (Hojjati Talemi, 2014; Navarro et al., 2003; Giner et al., 2011a;

Hojjati-Talemi et al., 2014). Navarro et al. (2003) developed a proce-

dure to combine initiation and propagation lives in order to obtain

total failure life. Initiation life were obtained considering McDiarmid

multiaxial fatigue criterion and propagation life were estimated Paris’

law with stress intensity factors computed via analytical expressions.

The results were in agreement with experimental data with reasonable

accuracy, being within a x2 error band. Similar approach has been

used by Giner et al. (2011a), they compare the impact of computing

stress intensity factors via XFEM and via analytical expressions. Their

life estimates were, for the majority of tested cases, in agreement with

experimental data within a x2 error band as well. They argued that

the three cases with estimated lives much smaller than experimental

ones were the cases with smallest pad radius, that causes a smaller

contact region and concentrate the stresses in a smaller region. This

leads to greater initiation life that is not captured by their model. Ho-

jjati Talemi (2014) computed initiation life using continuum damage

mechanics and estimated propagation lives using LEFM and a Paris’

law. Their results showed that initiation and propagation lives were a

considerable percentage of total failure lifetime, showing the necessity
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of accurately modelling both phases. Regarding to lifetime estimates,

their estimates were within a x1.5 error band and in good agreement

with experimental data.

Generally, total life is obtained as the sum of number of cycles to

initiate a crack (initiation phase) and the number of cycle to propagate

this crack until it reaches a critical length (propagation phase). How-

ever, the clear definition of when initiation phase finishes and prop-

agation phase starts is not straightforward and needs to be properly

ensured to guarantee accuracy of lifetime estimates. In the next chap-

ter we aim to discuss different approaches used to study propagation

phase under fretting conditions and their impact on the live estimates.

1.1 Objectives

One of the main objectives of this thesis is accurately estimating

fretting fatigue lives, taking into consideration important characteris-

tics of this phenomenon, such as crack face contact and non-proportional

loading conditions. Although these features increase the complexity of

the analysis, accounting for their effect may lead to substantially better

live predictions.

The contact interactions between crack faces and the non-proportional

nature of the loading conditions are considered in a linear elastic frac-

ture mechanic (LEFM) approach. The stresses around the crack tip are

modified according to the contact status of the crack faces and the non-

proportional characteristic of the loading history is taken into account

by a non-conventional crack orientation criterion.
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The main drawbacks of LEFM are the necessity of separating crack

initiation and propagation phases, the requirement of a small plasticity

zone around the crack tip and also the need of relying on an empirical

law (such as Paris’ Law) to predict crack growth. Cyclic cohesive zone

model (CCZM) comes as an alternative to circumvent those issues. It

is a non-linear methodology that models failure of the process zone

ahead of the crack tip. One of its main features is that the stresses at

the process zone are limited by the cohesive strength of the material,

having no limitations regarding the size of plastic zone around the

crack tip.

In this regard, another important goal of this thesis is the imple-

mentation of cyclic cohesive zones in ABAQUS and its use to predict

fretting fatigue lives.

As additional goals, we also intend to study stress singularity in a

cylindrical pad configuration and propose a map to guide on the se-

lection of adequate mesh sizes for 2-D analysis of a cylindrical pad in

contact with a flat specimen. The use of monotonic cohesive law to pre-

dict crack initiation and orientation is also discussed as an alternative

approach to classical critical plane ones.

1.2 Outline

This thesis is organized in the following way. Firstly, in Chapter

2 a literature review of the main methodologies used throughout this

thesis is presented. We start by introducing fretting phenomena, fol-

lowed by a description of coupon test configurations. Contact mechan-
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ics is briefly discussed and analytical solutions for simple cases are

presented. Next, we introduce some common approaches to estimate

fatigue propagation lives, with emphasis to LEFM and damage mod-

els. Finally, numerical implementations of crack propagation analysis

in conventional finite element, extended finite element and extended

finite element with cohesive segments are also discussed.

Chapter 3 brings attention to the importance of analysing numeri-

cal errors in a finite element analysis of fretting fatigue. If not properly

considered, these errors can have a large impact on the results, espe-

cially for life estimates of crack initiation where an accurate estimate

of the contact stresses is essential. We also performed an analysis of

stress singularity for cases of fretting in cylindrical pad and flat speci-

men configuration. Moreover, we proposed a map to guide researchers

to better design and analyse their numerical studies.

Chapter 4 deals with propagation life estimates of fretting fatigue

for a cylindrical pad in contact with a flat specimen. One of the

main contributions of this study is the estimation of lives consider-

ing non-proportional loading and, therefore, the effect of potential

crack faces contact. This contact interaction has a major impact on

the stress around the crack tip and, therefore, on the estimates us-

ing LEFM. The choice of suitable orientation criterion that accounts for

non-proportional loading allows for the correct crack propagation path

estimation.

In Chapter 5, monotonic cohesive zone model is used to predict

crack initiation location and orientation. Results are compared to clas-

sical critical plane approaches (the Findley (FP) and Fatemi-Socie (FS)
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parametes). The implementation of both cohesive zone model and

critical plane approaches are discussed and the results suggest that

although monotonic cohesive zones are not capable of estimating fret-

ting fatigue lives, they may be a reasonable alternative for predicting

crack initiation and orientation.

Chapter 6 presents a novel approach for estimating fretting fatigue

lives. Fretting phenomenon is modelled using CCZM, that accounts for

damage accumulation during loading and reloading. This models both

crack initiation and propagation in a unified way, making use of a dam-

age accumulation law that is function of the current stress and strain

state of the material. CCZM is implemented in ABAQUS through a

USFLD user subroutine that modifies the material properties during

the finite element analysis. Therefore, CCZM requires a cycle-by-cycle

analysis, which can be computationally demanding. Thus, in order to

estimate fretting lives, an extrapolation procedure is proposed. The

lifetime predictions are considerably better than the ones obtained via

classical approaches, such as continuum damage mechanics in junction

with classic fracture mechanics.

Lastly, in Chapter 7, main conclusions and future work recommen-

dations of the present work are elaborated.
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2
Background

Fretting happens when two contacting surfaces, normally loaded,

are submitted to small amplitude oscillatory relative movement. This

small amplitude means that fretting can be observed in many mechan-

9
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ical assemblies in service conditions where components may be sus-

ceptible to vibration causing alternating sliding movement between

the contacting surfaces. For instance, Johnson and Bill (1974) studied

failure of aircraft engine components due to fretting. They notice that

fretting can happen on fan, compressor, and turbine blade mountings;

also, on splines, rolling element hearing races, and secondary sealing

elements of face type seals. Blade attachment areas (dovetail joints)

of gas turbines are other example that may experience fretting, lead-

ing to stress concentration that promotes ultimate damage due to high

cycle fatigue (Meher-Homji et al., 1998). Depending on service condi-

tions, fretting may reduce significantly the service life of a component

by fatigue (Ding et al., 2007). Laboratory measurements showed that

fretting might reduce the service life by way more than 50% (Hojjati-

Talemi et al., 2014). In this regard, the analysis of stresses at contact is

of great importance for predicting lifetime of components.

Fretting may have major influence on the contacting bodies, lead-

ing to catastrophic failure due to fatigue (known as fretting fatigue),

producing loss of fitting due to wear (fretting wear) or a combination

of both. The types of failures depend primarily on the fretting regime.

Vingsbo and Söderberg (1988a) used a “fretting map” to describe the

behaviour of wear volume and fatigue life as function of slip displace-

ment for different fretting regimes: stick, mixed stick-slip and gross

slip (see Figure 2.1). As it can be seen in Figure 2.1, there is a syn-

ergism between fretting fatigue and fretting wear. Depending on the

service conditions (normal loading and relative displacement between

the surfaces), failure may be mainly due to fatigue or due to wear.
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At stick condition, surfaces are considered to be stuck to each other

and no visible damage is generated. For the same contact pressure,

as the slip displacement increases, fretting is characterized by mixed

stick-slip condition. Here, the fatigue life decreases and the wear rate

is reasonably low. This indicates that the main failure in this regime is

due to fretting fatigue. Damage is characterized by presence of cracks

due to high stresses at boundary of stick-slip zone, but that does not

mean that there is no wear under this circumstances. Plastic deforma-

tion of asperities contributes for formation of wear debris, that due to

the contact conditions are trapped between contacting surfaces in the

slip zone. Those cracks have greater contribution than plastic shearing

of asperities on the damage mechanism. For even higher slip displace-

ments, the regime changes to gross slip condition where a considerable

increase of the wear rate can be noticed. Fretting fatigue is not signif-

icant at this regime, because the cracks nucleated are removed by the

intense amount of wear. The evolution of fretting crushes those debris

into smaller pieces and those pieces roll over the surfaces increasing

wear damage until they are expelled of the contact region.

One possible way to relate the fretting regime in real time mea-

surements would be, as proposed by Harish et al. (2000), the use of

infra-red camera to measure subsurface temperatures near the fretting

contact. Frictional heating due to microslip at the surface and cou-

pled thermoelastic effect from strains in the material create tempera-

ture changes. An area of heating over the whole contact length, due

to frictional heating, is characteristic of gross sliding conditions. For

higher coefficient of frictions and as the fretting regime transition to a

partial slip regime, the temperature changes are more clearly linked to
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Figure 2.1: Fretting map proposed by Vingsbo and Söderberg (1988a)

strain through the coupled thermoelastic effect than through friction

heating.

As discussed in Dobromirski (1992), although it has been reported

that up to 50 variables might impact on the severity of the fretting pro-

cess, it is possible to identify a set of “primary” and “secondary” fret-

ting variables that govern the phenomenon. The “primary” set is com-

posed by the coefficient of friction, slip amplitude and contact pressure.

The “secondary” set are the variables that impact the “primary” set of

variables, causing an indirect impact on fretting. In order to evaluate

the effects of those different variables (surface finishing, coefficient of

friction, normal load, relative slip amplitude, among others) on the

characteristics of fretting, different laboratory tests are generally used,

mainly full scale and coupon laboratory tests. Full-scale tests repli-

cate the real service conditions and components. For instance, Conner

and Nicholas (2006), Golden and Nicholas (2005) and Golden (2009)
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studied the phenomenon considering test set-ups that mimic dovetails

joints. Bolted or riveted lap joints are also common assemblies that

are studied in full scale tests (Ferjaoui et al., 2015; Eriten et al., 2011;

Oskouei and Ibrahim, 2012; Chakherlou et al., 2009).

When proposing numerical tools to predict lives it is important to

verify and improve those tools based on experimental data. As coupon

tests are certainly prone to less error than full-scale components, they

are preferred to validate models in an initial stage of research. In ad-

dition, the controlled environment of a coupon scale test and its sim-

plicity when compared to full-scale test are very interesting from nu-

merical point of view, as these features also simplify the modelling. In

this thesis, the estimation of fretting fatigue lives of coupon tests is of

major interest. These coupon tests consist of pads that are maintained

in contact with a flat specimen through the application of a constant

clamping or normal force F . The specimen is fixed at one end and the

other end is subjected to an oscillatory bulk stress σBulk (an oscilla-

tory load that is applied at one end of the specimen, sometimes also

referred to as axial load σaxial). The typical test configurations can be

divided in three main categories, a, b and c, summarised in Figure 2.2.

The first type does not provide any control of the tangential loading

applied to the contact interface; only the normal load is maintained

through a proving ring. In the second type, the use of compliance

springs provides an alternative to obtain the tangential loading based

on the other loads, i.e., bulk load and normal load. However, it still

does not provide control over the applied tangential load amplitude.

The third type makes use of individual actuators to apply the bulk

stress and tangential loading, providing in this way a full control of
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the applied load.

One of the most common configurations is a cylinder-on-pad, as

illustrated in 2.2(b). In this set-up, two cylindrical pads are maintained

in contact with a flat specimen through the application of a constant

clamping or normal force F . The specimen is fixed at one end and

the other end is subjected to an oscillatory bulk stress σaxial. Upon

application of the bulk stress, the compliance springs transmit an os-

cillatory tangential force Q at the pads. Generally, the tangential load

Q is smaller than the product of the normal load F by the coefficient

of friction µ and the contact is divided into two regions: a stick zone

and a slip region.

For a cylinder-on-plane configuration, the stress and strain field in

the specimen can be analytically estimated by contact mechanics. The

stresses are estimated by a combination of the normal pressure distri-

bution p(x) (due to the normal force F ) and surface traction q(x) (due

to the tangential and bulk loads, Q and σaxial, respectively). These so-

lutions are valid under a series of conditions, such as infinite and ide-

alized bodies, elastic material properties, loading conditions, among

others.

2.1 Contact Mechanics

Contact mechanics studies the interaction between two bodies that

contacts each other in one or more points (Johnson, 1987). It has been

largely discussed in the literature and it dates back to 1880s, in a sem-

inal paper of Heinrich Hertz (Hertz, 1882). Hertz studied the con-
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Figure 2.2: Fretting coupon scale test set-ups: (a) no controlling of slip; (b) indirect
information of slip amplitude, through the compliance spring; (c) full control of the
applied slip (or tangential) load.
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tact between two curved surfaces that deform slightly due to imposed

loads. His work set the foundations for this field and is now known as

the classical or Hertzian contact mechanics. For the reader interested

in a more general approach, in which near Van der Waals or adhesive

interactions are considered, we refer to Bradley (1932) and Johnson

et al. (1971), respectively.

In this Section, we first review the Hertzian approach to deal with

smooth surfaces under normal and tangential loads. Later, we add the

influence of axial loading on the stress distribution at contact interface.

This Section is a review mostly centred around Johnson (1987).

2.1.1 Contact of cylindrical bodies with parallel axes

Consider a two-dimensional (2D) case, in which two smooth cylin-

drical bodies with parallel axes are in contact due to a normal load F .

The first body has a curvature of R1 and the second, R2. The cross sec-

tion of the two cylinders compressed together by F is shown in Figure

2.3. The plane x− y is considered the contact plane and the origin of

the Cartesian coordinate system O(0,0,0) is considered to be the initial

contact line. Due to compression, cylinders 1 and 2 move towards O

by displacements δ1 and δ2, respectively, with δ = δ1 + δ2 defined as

the total approach between the bodies. Due to the contact pressure,

the surface of each cylinder is subjected to a displacement uy1 and uy2.

The elastic deformation of the surfaces results in a contact region of

depth l (cylinder length) and width of 2acont, where acont, as seen in

Figure 2.3, is the semi-contact width. The contact area is rectangular

and equal to 2acont× l.
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Figure 2.3: Schematics showing the contact of two cylinders with parallel axes. (based
on Johnson (1987))

The combined curvature R and the combined modulus of elasticity

E∗ can be defined as:
1
R

= 1
R1

+ 1
R2

(2.1)

and
1
E∗

= 1−ν2
1

E1
+ 1−ν2

2
E2

, (2.2)

where Ei, for i = 1,2 are the Young’s Modulus and νi, for i = 1,2 are

the Poisson’s ratio for the first and second bodies, respectively.

The goal is to obtain the contact pressure distribution p(x) as a

function of the coordinate x, at contact interface. However, to do so,

the following conditions must hold:

1. Surface profiles are smooth, continuous and nonconforming;
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2. Small strains at contact region;

3. Bodies can be approximated as a semi-infinite elastic half-space

near the contact zone;

4. Frictionless contact.

If assumptions 1−4 hold, this problem fits into the Hertzian contact

mechanics theory and closed-form expressions for the contact pressure

are available.

The pressure distribution p(x) is elliptical at a distance x from the

center of the contact zone and given by:

p(x) = pmax

√
1−
(

x

acont

)2
, where pmax =

√
FE∗

lπR
(2.3)

where acont is the semi-contact width, pmax is the maximum contact

pressure at the center of the contact, R is the combined curvature and

E∗ is the combined modulus of elasticity.

Considering that contact should occur only inside the loaded area

and that the pressure must be positive, the semi-contact width acont

and the applied load F are related by

acont = 2
√

FR

lπE∗
, (2.4)

where l is the cylinders length.
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2.2 Fretting Fatigue: Analytical solutions

In this section, we consider the interface of the contact of a cylinder

and a plane under normal load, representing the usual cylinder-on-

plane fretting fatigue test configuration (see Figure 2.2(b)). Firstly, we

present the Hertzian solutions for the pressure distribution. Later, we

consider the effect of combined normal and tangential loads and we

present solutions for the effect of bulk stresses on fretting fatigue con-

ditions.

2.2.1 Hertzian solutions for the pressure distribution

The contact pressure distribution p(x), due to the normal clamping

force F between the pad (cylinder) and specimen (half-plane), can be

calculated analytically using Equation (2.3). The flat specimen can be

considered as a cylinder with an infinitely large radius R1 =∞. The

combined curvature R becomes equal to the radius of the surface of the

pad R2. The elastic deformation of the surfaces results in a rectangular

contact region of area equal to 2acont× l.

For instance, Figure 2.4 illustrates the normalized contact pressure

distribution (from equation (2.3)) as a function of the normalized dis-

tance x/acont for the case of a cylinder in contact with a flat plane.

The subsurface stresses of the plane σx(y) and σy(y), along the x
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Figure 2.4: Contact pressure normalized by the maximum normal pressure pmax in
function of the normalized distance x/acont

and y-directions, respectively, can be written as

σx(y) =−pmax

 1 + 2
(

y
acont

)2

√
1 +
(

y
acont

)2
−2
∣∣∣∣ y

acont

∣∣∣∣
 (2.5)

and

σy(y) = −pmax√
1 +
(

y
acont

)2
. (2.6)

Considering plane strain conditions (null deformation in the z-direction),

the stress in the z-direction (σz(y)) is correlated to the other compo-

nents via the Poisson’s ratio (σz = ν(σx+σy)). Therefore,

σz(y) =−2νpmax

√1 +
(

y

acont

)2
−
∣∣∣∣ y

acont

∣∣∣∣
 . (2.7)
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Figure 2.5: Stress components normalized by the maximum normal pressure pmax in
function of the normalized distance y/acont

As an example, considering the case of Poisson’s ratio equal to 0.3,

the normalized stresses can be plotted in function of the normalized y,

as shown in Figure 2.5.

2.2.2 Solutions for combined normal and tangential loads

When studying fretting, it is necessary to consider not only the

normal loading condition, but also the effect of the tangential frictional

force Q. The Coulomb friction law can be used to model the contact

shear traction q(x) at an arbitrary position x as a function of the normal

contact pressure p(x) and the coefficient of friction µ. If Q is smaller

than the product of µ and the normal load F , the contact region will
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Figure 2.6: Illustration of the components of shear traction distributions

be divided into two different zones: stick and slip, in which the width

of the stick zone is denoted by c. In this case, the contact shear traction

can be seen as combination of two superposed shear tractions q′(x)

and q′′(x), as shown in Figure 2.6.

The complete expression for the shear traction q(x) can be written
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as (Johnson, 1987; Hills and Nowell, 1994):

q(x) =


−µpmax

√
1−
(

x
acont

)2
if c≤ |x| ≤ acont

−µpmax

[√
1−
(

x
acont

)2
− c
acont

√
1−
(
x
c

)2] if |x|< c

(2.8)

with
c

acont
=

√
1− Q

µF
.

2.2.3 Effect of bulk load on contact shear traction

According to Hills and Nowell (1994), the contact shear traction

presented above can be adjusted for the presence of bulk stresses σaxial.

It causes an eccentricity to the solution presented in Section 2.2.2 and,

for the case of negative shear traction, it can be written as:

q(x) =


−µpmax

√
1−
(

x
acont

)2
if c≤ |x| ≤ acont

−µpmax

[√
1−
(

x
acont

)2
− c
acont

√
1−
(
x+e
c

)2] if |x+e|< c

(2.9)

where
c

acont
=

√
1− Q

µF
and e= σaxialacont

4µpmax
.

Figure 2.7 shows a typical normalized shear traction distribution

for fretting fatigue conditions using equation (2.9). Note that based on

this distribution, it is possible to determine the size of the stick and

slip zones and also the peak values of shear stresses.
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Figure 2.7: Typical normalized shear traction distribution at contact interface (Q =
155.165 N, σaxial = 100 MPa, pmax = 185.03 MPa, µ= 0.4 and acont = 0.467 mm)

2.2.4 Effect of bulk load on subsurface stresses

In his literature review, Mutoh (1995) mentioned studies showing

that fretting fatigue crack (which propagates to material final rupture)

originates in the edge of the contact area (x = acont), while small ar-

rested cracks initiated near the maximum shear traction q(x2). Many

other researches (Hills and Nowell, 1994; Namjoshi et al., 2002; Lykins

et al., 2000) also pointed out that the principal crack initiates near the

trailing edge (x= acont). The reason for that may be related to the con-

tribution of the principal stress σxx in the stress state at the contact in-

terface. As discussed by Szolwinski and Farris (1996), studies showed

that the sharp peak in tangential stress σxx,max, at trailing edge of the

contact region, might play a significant role on fretting fatigue crack

initiation.

There are analytical solutions for subsurface elastic stresses σxx as
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Figure 2.8: Typical normalized principal stress σxx distribution at contact interface, ob-
tained from finite element analysis (Q = 155.165 N, σaxial = 100 MPa, pmax = 185.03
MPa, µ= 0.85 and acont = 0.467 mm)

function of x for given normal and tangential loads (F and Q) and co-

efficient of friction µ in the slip zone (Johnson, 1987; Hills and Nowell,

1994; Szolwinski and Farris, 1998). Although the addition of the bulk

stress σaxial brings some extra complexity to the problem, McVeigh

and Farris (1997), based on the work done by McVeigh and Farris

(1997), provided a simplified equation to estimate the maximum peak

stress σxx,max as:

σxx,max = 2pmax

√
µQ

F
+σaxial. (2.10)

It is important to notice that the analytical expression for contact

pressure distribution does not change when adding tangential and

bulk stresses.
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Due to the complexity of the fretting phenomenon, analytical solu-

tions are available only for selective situations. These analytical solu-

tions rely on assumptions that are not satisfied in most cases, such as

semi-infinite elastic half-space near the contact zone and small strains

at contact. In the analytical solution for tangential loading (equation

(2.9)), the superimposing of shear stress due to normal load and due

to fatigue load is a linear approximation and ignores the effect of in-

teraction between both loads. In addition, equation 2.10 is only an

approximation of the maximum stress σxx and may not be represen-

tative for all scenarios. Moreover, the stress field near the contact

region is variable, multiaxial and non-proportional (Tur et al., 2003),

which brings extra complexity to the phenomena. With the advance

of computational power, numerical methodologies have become an in-

teresting alternative to model fretting without relying on these many

assumptions. In this regard, finite element method (FEM) has been

greatly used.

Commercial FEM packages, such as ABAQUS and ANSYS, have

powerful contact algorithms that allow an accurate computation of

contact stresses. Another advantage is that advanced failure analy-

sis (such as crack propagation and initiation) can be integrated to the

modelling, considering the stresses and strains computed by FEM. In

this review, firstly, in Section 2.3, the use of finite element analysis for

studying fretting. Later, in Section 2.4, we briefly present recent ad-

vances in empirical and numerical analysis of failure due to fretting

fatigue.
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2.3 Finite element analysis of fretting contacts

The contact problem in fretting consists in the interaction of two

bodies A and B, as represented in Figure 2.9. Traditionally, a clas-

sical linear elastic problem is considered, assuming that the strains

are given by the first derivative of the deformation. A linear relation

among the components of the stress and strain is also assumed and

an isotropic linear elastic material is generally adopted. In order to

obtain the stresses and strains, the conservation of linear momentum

(equilibrium equation) is solved. The contact between the two bodies

brings extra difficulties to the solution of the problem. For example,

both displacement and contact force are unknown, meaning that the

contact boundary tractions are part of the solution. In terms of contact

algorithm the pad is defined as the master and specimen as slave. Con-

tact also creates extra constraints to the problem. These constraints are

derived from the physical requirements of contact, which can be sum-

marized as follows: no penetration condition; traction condition and

consistency condition.

In fretting scenarios, FE contact algorithms, that incorporate the

conditions mentioned above, allow the computation of stresses at in-

terface of fretted bodies. Since the 1990’s, finite element methodology

with contact algorithm (master-slave algorithm is generally used) has

been vastly used to study fretting (Petiot et al., 1995; McVeigh and Far-

ris, 1997; Lykins et al., 2000; Iyer and Mall, 2001; McColl et al., 2004;

Kim et al., 2011; Shen et al., 2015). The accurate computation of contact

stresses allows for a better understand of fretting phenomenon as well
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Figure 2.9: Domain definition of two bodies in contact

as the development of numerical tools to predict fretting lifetime.

One important factor in the FE analysis of contact problems is the

definition of the coefficient of friction. It is normally taken as a constant

on the model, although it is known that it varies as a function of vari-

ous surface factors. As described by Blau (2001), the frictional behavior

is influenced by many factors such as contact geometry (conformity

of the components, surface roughness and waviness), fluid properties

and flow (lubrication regime, viscosity, temperature and pressure in-

fluence on viscosity, shear thinning effects), lubricant chemistry (for-

mulation of films, oxidation of lubricants), relative motion (reciprocat-
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ing movement, constancy of motion, relative velocity) , applied forces

(magnitude of contact pressure, constancy of loads), debris (character-

istics of third-body particles), temperature (thermal effects on material

and lubricant properties), stiffness and vibrations (contact compliance,

damping of vibrations). Some effort have been made in the literature

to account for some of these variables and their impact in fretting anal-

ysis (Chakherlou et al., 2009; Ghosh et al., 2016; Lehtovaara and Rabb,

2008; Gavrilă and Cretu, 2012; Yue and Wahab, 2017). For instance,

Naboulsi and Nicholas (2003) analysed the impact of considering a

constant Coulomb friction coefficient, developing a Coulomb friction

model based that allows the coefficient of friction (COF) to be function

of both contact pressure and slip magnitude. Their results showed that

a variable coefficient of friction was able to replicate same stress state

scenarios for different contact geometries, which was not able to be

done considering a constant coefficient of friction.

2.4 Failure analysis of fretting fatigue

Stresses and strains obtained by finite element analysis are gen-

erally used to model failure of components under fretting. In order

to understand the main features of fretting fatigue failure, firstly, we

briefly review recent empirical observations of failure behaviour due

to fretting. Later, we focus on numerical procedures aiming to estimate

fretting fatigue crack propagation as well as lifetimes.
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2.4.1 Empirical observations

Empirical observations of fretting fatigue cracks show that cracks

follow a typical behaviour, being characterized by different mecha-

nisms. In the earlier 1970s, Wharton et al. (1973) concluded that due

to the localized action of fretting, crack initiation happens at the sur-

face at very early stages, after only a few thousand fatigue cycles. At

first, crack propagation happens in the region affected by the contact

stresses arising from the fretting in a direction oblique to the surface.

When it grows out of this zone, the crack changes direction and prop-

agates perpendicularly to the bulk alternating stress in the specimen.

Wharton et al. (1973) results show that as the amplitude of bulk load

and slip increase, the combined stresses in the fretting region are con-

siderably raised and the fretting-fatigue limit reduces significantly.

Studying carbon steel samples, Endo and Goto (1976) also con-

cluded that fretting cracks initiate early in life and their growth to a

certain depth is mainly defined by the combination of tangential (con-

tact) stresses and the repeated axial or bulk load. Their results indicate

that shear type cracks are initiated near contact edge and propagate

through a small depth, defined as stage I mode. Thereafter, stage II

begins and the crack grows in a direction oblique to the surface (under

mixed-mode) until it reaches a depth large enough, approximately of

the order of a few grain sizes. After this point, the effect of contact

stresses can be neglected and the direction of propagation becomes

perpendicular to the principal stress of the bulk load. This typical be-

haviour can be summarized in Figure 2.10 and has been also reported

over the past thirty years by other researchers testing different ma-
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terials and fretting conditions (Alic and Hawley, 1979; Switek, 1984;

Faanes, 1995; Szolwinski and Farris, 1998; Navarro et al., 2006; Hojjati-

Talemi et al., 2014; Cardoso et al., 2016).

Figure 2.10: Fretting fatigue cracks behaviour

Stage I cracks are considered to be part of the crack initiation phase.

At this regime, crack growth is affected by many different factors, such

as plasticity, debris and wear, as in Conner et al. (2003), and microstruc-

ture. Metallography and fractography analysis of short cracks (stage I)

done by Nix and Lindley (1988) showed a series of parallel ridges run-

ning in the direction of growth, suggesting a shear mode propagation.

Experiments in aluminium and steel by Sato et al. (1986) showed that

crack growth rate in this stage was considerably higher in comparison

to plain fatigue. Their results also indicate that in this early stage of

propagation, high contact pressures may induce crack closure which

can cause a significant impact on the crack growth rate.
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Numerical models of fretting fatigue failure consider each of these

stages of crack growth (Stage I and Stage II) separately. Modelling

of Stage I cracks characterizes the modelling of crack initiation phase,

while modelling of Stage II cracks is associated to the modelling of

crack propagation regime. Generally, total lifetime is estimated by

combining crack initiation and propagation lifetimes.

2.4.2 Crack initiation lifetime

When dealing with crack initiation, important aspects of the mod-

elling consist in defining the position of crack initiation in the model

and the orientation of the initial crack. The initial crack is tradition-

ally modelled at a fixed location, at the contact edge between pad and

specimen (Noraphaiphipaksa et al., 2016; De Pannemaecker et al., 2016;

Giner et al., 2014), at the location of the most severe stress.

Nevertheless, prediction of crack initiation location can be made by

combining the stress distribution and slip at contact interface. Mutoh

and Xu (2003) proposed that the initial crack should be located at the

point with the most severe stress, in the case of a flat pad in contact

with a flat specimen that is the contact edge. Hojjati-Talemi and Wahab

(2013) used continuum damage mechanics approach to study initia-

tion phase, aiming to predict crack initiation lives and location. They

suggested that initial crack location should correspond to the site of

maximum equivalent multiaxial damage stress in the contact region.

A drawback of this methodology is the lack of sensitivity regarding

changes in axial bulk loading. In a follow up study, Hojjati-Talemi et al.

(2014) extended their methodology considering the location being the
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one that dissipates most energy in one full fretting cycle. Recently, No-

raphaiphipaksa et al. (2017) considered different pad geometries (flat

and cylindrical) and compared the initial location predicted by two ap-

proaches (maximum relative slip amplitude and maximum shear stress

range) with experimental data. They concluded that for flat pads, both

approaches predict crack location in agreement with laboratory tests.

However, for cylindrical pads, the maximum shear stress range method

fails to predict the correct location and the maximum relative slip am-

plitude is recommended.

Although there is no consensus in the literature in which method-

ology is best for predicting crack initiation location, the location that

dissipates more energy in one full fretting cycle seems to be a good

option when dealing with initiation phase. It has been used to pre-

dict crack initiation locations and found to be in good agreement with

experimental data for both pad configurations (flat and cylindrical)

(Hojjati Talemi, 2014).

2.4.3 Crack propagation lifetime

Most works in literature uses LEFM to model long crack propa-

gation phase under fretting conditions (Noraphaiphipaksa et al., 2016;

Giner et al., 2009; Araujo and Nowell, 2002). The applicability of LEFM

methodology requires the pre-existence of a crack of suitable length in

the model, where assumptions of LEFM are satisfied.

Figure 2.11 shows a flow chart of a traditional finite element anal-

ysis of fretting fatigue crack propagation using LEFM. Firstly, a model
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with a predefined crack is analysed, considering the whole cyclic load-

ing condition. For a 2-dimensional analysis (most analyses of fretting

fatigue coupon tests can be simplified considering plane strain condi-

tions), the stresses and strains around the crack tip are used to estimate

stress intensity factors for Mode I (KI ) and Mode II (KII ). The crack

is allowed to grow, in a specific orientation, by a predefined length

ainc. The direction of crack growth is defined considering an orienta-

tion criterion computed by the stress intensity factors. Later, the incre-

mental lifetime is obtained by integrating an empirical crack growth

law, considering the previously calculated values of KI , KII and ainc.

A stepwise procedure is considered. The new model with increased

crack length is analysed and stresses and strains are used to compute

the new values of KI and KII . Again, crack is allowed to grow and

incremental number of cycles is computed. This procedure is repeated

until crack length has reached a critical value. The total lifetime is ob-

tained by adding the incremental values computed in each step of the

analysis.

This stepwise procedure is affected by many factors, such as: how

mode mixity (interaction of contact loads and axial loading in fretting)

impacts the modelling; where the initial crack should be located and

how long it should be; which orientation criterion should be adopted;

the crack growth rate quantification. A brief overview of these param-

eters and their effect on the analysis is given in the next Section.
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Figure 2.11: Analysis of fretting fatigue using LEFM

2.4.4 Parameters that affect LEFM modelling

2.4.4.1 Mode mixity

It is a common approach to consider the crack growth purely in

Mode I condition, ignoring the mixed-mode effect present in fretting

fatigue Stage II cracks. In this approach, crack growth is in a verti-
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cal direction to the contact surface, perpendicular to the applied bulk

stress. For instance, Hattori et al. (1988) used FEM model to obtain

stress distributions at contact interface. Those stresses were later used

together with fracture mechanics concepts to evaluate stress intensity

factors at the crack tip. In their analysis, the fretting crack was ap-

proximated by a crack in the edge of a half plane, perpendicular to

the surface and subjected to point loads. The computed stress inten-

sity factors were compared with threshold stress intensity factors and

adjusted for short crack behaviour. Their numerical results estimated

the influence of mean stress in the fretting fatigue limit, which agreed

well with their experimental results. Hills et al. (1988) also modelled

fretting fatigue cracks as a crack edge of a half plane, perpendicular to

the surface and found that cracks are generally closed and most likely

to propagate in mode II.

Szolwinski and Farris (1996, 1998) also considered the propagation

of an initial crack at edge of contact, perpendicular to the surface, un-

der pure mode I. Their prediction of propagation lives was used to

estimate the initiation live of test samples, by simply subtracting the

total life measured in laboratory to this calculated propagation life.

They also calculated initiation lives using multiaxial fatigue criteria

and compared their predictions with the adjusted experimental data.

Navarro et al. (2003) proposed a procedure for estimating the total

fatigue life in fretting fatigue, combining initiation and propagation

lives and accounting for short-crack growth phase. In this proposed

methodology, they also assumed a vertical initial crack. For estima-

tion of the stress intensity factors (SIFs), they used weighted functions,
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valid for mode I propagation. Hence, they neglected the influence

that the contact stresses may have on the crack. This approach was

also used for Munoz et al. (2007), with reasonable accuracy, in their

approximations of fatigue curves for fretting conditions in aluminum

alloy samples, under spherical contact. In the same line, Golden and

Grandt (2004) proposed a methodology to predict fretting lives con-

sidering only the remote stress range, using a crack propagation anal-

ysis tool combined with contact mechanics software to estimating the

stress at interface. The SIFs were also estimated by a weight function

with a modification to account for a semi-elliptical crack. Their re-

sults showed that the combination of initiation and propagation lives

provided a good estimate of total life.

Following up their research, Giner et al. (2011a) carried out XFEM

analysis of fretting conditions and evaluated the impact of interaction

of contact stresses on the SIFs estimates. Stress intensity factors ob-

tained by weighted functions were under or overestimated in compar-

ison to SIFs numerically calculated by XFEM. They also indicated that

the life predictions obtained by XFEM were generally better than the

ones obtained using weighted functions, pointing in the direction that

the choice of weighted functions might influence the reliability of the

estimation.

Although the assumption of pure mode I propagation may seem

reasonable, fretting fatigue tests showed that crack propagates in a di-

rection oblique to the surface, especially at the initial stage I of propa-

gation (Wharton et al., 1973; Endo and Goto, 1976; Conner et al., 2003;

Nix and Lindley, 1988). Therefore, another methodology is to insert
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an inclined crack at a location calculated based on the stresses at con-

tact and then assess its propagation. Faanes (1995) was one the first

researchers to consider an initial inclined crack and attempted to com-

pute the error of considering it in a vertical direction instead of oblique

one. Based on his findings, in most of cases, the assumption of pure

mode I propagation is valid. However, under conditions of high con-

tact pressure, where crack closure may happen, the assumption of pure

mode I may lead to very conservative life estimates. In the same line,

Lamacq et al. (1996) proposed a theoretical approach to analyse crack

propagation direction under fretting conditions, taking into account

the non-proportional loading and mixed mode condition. One of the

conclusions of their study is that depending on the loading conditions,

either mode I or mode II may be dominant. They also show that mode

II, under a spherical contact situation, is mainly due to the interaction

between the two cracks that appear symmetrically in the problem.

Regarding the orientation angle of this initial oblique crack, a com-

mon approach is to introduce the crack in a direction based on ex-

perimental data. Some researches attempted to predict the orientation

angle of this initial oblique crack, mainly based on the stresses near

contact interface. In the work of Mutoh and Xu (2003), the authors

suggest that it should be oriented in the direction of maximum tan-

gential stress, ignoring the initial shear crack type. With respect to the

flat pad/flat specimen contact, Giner et al. (2014) considered an ini-

tial crack at the edge of the contact, oriented in the direction which

minimizes the shear stress range over the fretting cycle at the crack tip.

This leads to two orthogonal planes, from which the one with the max-

imum normal stress range is chosen, because it is the orientation with
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less energy loss due to frictional work. The effect of non-proportional

loading is incorporated in their predictions of location and orientation

by considering how the contact stresses vary over the entire fretting

fatigue cycle .

2.4.4.2 Initial crack length

Fracture mechanics approach for propagation depends upon the

definition of a “crack initiation length”, which separates the initiation

and propagation phases. Most of the work in literature (Madge et al.,

2008; Cardoso et al., 2016) considered this length as the critical mini-

mum crack length for which fracture mechanics could be used. It was

determined by El-Haddad parameter (El Haddad et al., 1979) as:

a0 = 1
π

(
∆Kth
σA

)2
(2.11)

where ∆Kth is the minimum stress intensity factor threshold that gives

rise to crack propagation and σA is the fatigue limit of the material.

As discussed by Navarro et al. (2003), the issue with this approach

is that the “crack initiation length” is arbitrarily chosen from a phe-

nomenological perspective and it is generally kept constant, ignoring

the effect that the size of contact and the gradient of stresses might

have on it.

Noraphaiphipaksa et al. (2013) found out, through a sensitivity

study, that their numerical results were in better agreement with ex-

perimental data when the initial crack length was chosen to be half of

the critical length predicted by El-Haddad parameter.
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2.4.4.3 Propagation direction and orientation criteria

One important point of modelling propagation phase is the def-

inition of propagation direction, which can be done by considering

an orientation criterion. There are several crack propagation direction

criteria available in the literature that are used for proportional mixed-

mode fatigue. A summary on the subject can be found in (Rozumek

and Macha, 2009). Here, we focus on two of the most widely used

criteria: maximum tangential stress (MTS) criterion and maximum en-

ergy release rate (MERR).

The MTS was originally proposed by Erdogan and Sih (1963) in

the early 1960s. It states that crack growth is in the radial direction

θP of greatest tension, i.e., in the direction along which the tangen-

tial stress σθθ is maximized and exceeds a critical value σc (a material

property). Considering the analytical expressions for the stress field

near the crack tip, the tangential stress can be written as function of

the stress intensity factors KI and KII as

σθθ = 1√
2πr

cos
(
θ

2

)[
KIcos

2 θ

2 −
3
2KII sinθ

]

where r and θ are cylindrical coordinates, as represented in Figure

2.12.

Imposing the conditions ∂σθθ/∂θ = 0 and ∂2σθθ/∂θ2 < 0, the direction

of propagation θP can be obtained as function of KI and KII as:

θP = cos−1

3K2
I +

√
K4
I + 8K2

IK
2
II

K2
I + 9K2

II





41 Chapter 2. Background

Figure 2.12: Stresses at a fixed position ahead of crack tip in cylindrical coordinates
(based on (Kuna 2013))

The MERR was introduced independently by Hussain et al. (1974)

and Palaniswamy (1978). It is based on the following hypotheses: crack

will propagate at the crack tip in a radial direction θP along which the

energy release rate G(θ) is maximized. For a co-planar crack growth

under mixed mode, G(θ) can be written as

G(θ) = 1 +κ

8µ (K2
I (θ) +K2

II(θ))

where κ is a function of the Poisson’s ratio and the stress state (plane

stress or plane strain), µ is the shear modulus andKI(θ) andKII(θ) are

the stress intensity factors associated to the new crack tip at a branched

crack from the original crack. Based on the hypothesis of this criterion,
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the propagation direction can be predicted by the solution:


∂G(θ)
∂θ

∣∣∣∣
θ=θP

= 0

∂2G(θ)
∂θ2

∣∣∣∣
θ=θP

≤ 0

As discussed by Lamacq et al. (1996), fretting fatigue problems are

subjected to non-proportional loading, invalidating the application of

those criteria and increasing the complexity for modeling crack prop-

agation phase. Various researchers tried to make use of traditional

LEFM orientation criteria using numerical models, but their fretting

fatigue path predictions were not in agreement with experimental ob-

servations (Hojjati-Talemi et al., 2014; Giner et al., 2014, 2008).

Dubourg and Lamacq (2000) proposed that crack growth direction

is the one with the maximum effective amplitude of tangential stress at

crack tip during the entire load cycle. Their predictions were validated

with experimental data from tests conducted in a fretting wear ma-

chine with pre-stressed specimen. As a conclusion, their work pointed

out the necessity to account for non-proportional loading when esti-

mating propagation paths. Their predictions were in better agreement

with experimental data when using their proposed orientation crite-

rion.

Noraphaiphipaksa et al. (2016) and Noraphaiphipaksa et al. (2013)

used the same methodology proposed by Dubourg and Lamacq (2000),

which states that the propagation direction is going to be defined by

the one with the maximum effective amplitude of tangential stress at
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crack tip. Those stresses are extracted in a circular path centred at the

crack tip with radius r. Noraphaiphipaksa et al. (2013) considered a

sensitivity analysis to study the influence of the results of the analysis

with respect to the radius of this circular path, where the stresses are

extracted. , where the stresses are extracted. Their results were sig-

nificantly affected by the selection of r and they have also compared

the predictions of crack path with experimental data to select an ap-

propriated value of r. They found that, for the case of flat pad/flat

specimen in steel, the radius that provided better accuracy when com-

paring predicted paths with experimental data was equal to half of the

critical smallest crack length. In addition, the results were best when

this critical smallest crack length was also used as length of the initial

propagating crack and as the increment length of the fretting fatigue

crack propagation for every analysis step. They also studied the in-

fluence of stress amplitude on paths. For the same contact pressure,

they concluded that higher stress amplitude led to paths turning into

perpendicular direction to bulk load in an earlier stage. Lives were

calculated with good agreement with experimental data, but not very

accurate estimates were obtained for cases with high stress amplitude.

In these cases, the predictions were higher than the measured lives.

They justified the mismatch by the fact that plasticity zone ahead of

crack tip was neglected in their simulations.

Instead of dealing with stresses at crack tip, another approach is to

define an orientation criterion based on stress intensity factors. Hourlier

et al. (1985) proposed three extensions of the classical MTS criterion for

non-proportional loading, based on the values of mode I stress inten-

sity factor in a branched crack k∗I along the fatigue cycle. The stress
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intensity factor k∗I and k∗II are calculated at the tip of an infinitesimally

small crack segment, branched from an original crack and they can

be expressed as a linear combination of KI and KII (stress intensity

factors at the tip of the original crack), as proposed by Ribeaucourt

et al. (2007). The first extension proposes that the propagation direc-

tion would be the one that maximizes mode I stress intensity factor in

a branched crack, considering the entire loading cycle, i.e., crack prop-

agates in the direction θ that maximizes k∗I (θ). Under proportional

loading, this criterion is the same as the classical MTS. The second ex-

tension considers the direction that maximizes the amplitude of k∗I (θ),

i.e., the orientation that provides maximum difference between k∗I (θ)

for the instant of maximum load and at minimum load, ∆k∗I (θ)max. A

major drawback of both extensions described above is their inability

to account for the effects of mean stresses. In order to solve that, the

third extension proposes that crack propagates in the direction θ that

maximizes the crack growth rate, i. e., (da/dN)max.

Baietto et al. (2013) developed a methodology based on the combi-

nation of experimental data and numerical modelling to predict crack

initiation and propagation. Crack face contact and friction were con-

sidered in their numerical scheme (Baietto et al., 2010). They compared

the extensions of MTS criterion proposed by Hourlier et al. (1985) and

predicted propagation behaviour for 2D and 3D cases. Their results

showed that crack paths could be accurately estimated using either the

second or the third extensions (∆k∗I (θ)max or (da/dN)max). Neverthe-

less, the first extension k∗I,max failed to predict correct paths.
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2.4.4.4 Crack faces contact

It is known that crack faces contact can influence the crack growth

rate. Consequently, it has a direct impact on the life predictions ob-

tained by fracture mechanics, as described in Giner et al. (2011b). In

later works, Giner et al. (2016, 2014) accounted for the effect of crack

faces interaction on the estimation of crack path under fretting condi-

tions, considering a constant coefficient of friction between them. They

proposed an orientation criterion based on the minimization of the

shear stress amplitude at crack tip over the loading cycle stress range,

accounting for non-proportional loading. Considering a flat pad in

contact with a flat specimen configuration, their numerical predictions

of crack propagation path were in agreement with experimental obser-

vations. Their numerical simulations indicated the necessity of consid-

ering crack face contact, especially under compressive bulk stresses,

where mode II plays a significant role in the propagation. Similarly,

Martínez et al. (2017) implemented an XFEM approach to model prop-

agation phase, incorporating the effects of crack closure on their pre-

diction. By doing so, they correctly estimated the propagation path of

a fretting fatigue crack in a Chinese railway axle.

Dealing with fretting in steel samples, Noraphaiphipaksa et al.

(2014) showed that crack opening/closure behaviour of cracks under

fretting may be significant. In a latter study, Noraphaiphipaksa et al.

(2016) conducted experiments and finite element simulations of fret-

ting fatigue of a flat pad in contact with a flat specimen configuration,

aiming to evaluate the impact of crack closure behaviour under those

conditions. Using strain gauges near the crack mouth and the rela-



Chapter 2. Background 46

tionship between those measurements and the applied bulk stresses,

they were able to determine the crack opening load. They were able

to detect experimentally that crack opening may happen under alter-

nating compressive bulk load, due to the influence of contact stress on

the crack behaviour. This idea was further supported by their numer-

ical analysis. They determined numerically the crack opening ratio α

based on the stresses at crack mouth at maximum load σmax and at

opening load σOP :

α= σmax−σOP
σmax

.

The crack opening load was numerically determined as the loading

that caused the stress normal to the crack surface (at 10 µm away from

the crack mouth) to vanish. In their study, they incorporated the crack

opening/closure through a maximum effective stress intensity factor

∆K(max,eff) given by:

∆K(max,eff) = αKmax,

where Kmax is the maximum stress intensity factor obtained by con-

tour integral at the condition of maximum load. This effective stress

was later on used in combination with a fatigue crack growth law to

predict lives under fretting conditions and the results using ∆K(max,eff)

produced estimates in better agreement than using the traditionalKmax.

Recently, Noraphaiphipaksa et al. (2017) used the above methodol-

ogy to study the impact of different pad geometries (flat and cylindri-

cal with two different radii) on live estimates, incorporating the phe-

nomenon of crack opening and closure (considering frictionless con-
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tact between crack faces) and its impact on the fatigue crack growth.

Their predictions of propagation path were in excellent agreement

with experimental observations. However, shorter lives were obtained

for cylindrical contact when compared with flat pad. Regarding to-

tal life estimates, they agreed with experimental observations, being

slightly smaller. Authors argued that this was because they neglected

plasticity-induced crack closure phenomena.

2.4.4.5 Crack growth law

Fracture mechanics has been widely used to predict crack growth

of problems under mode I loading conditions, implying that propaga-

tion is co-planar and perpendicular to the loading direction (Plank and

Kuhn 1999). However, most engineering applications are subjected to

a combination of normal and shear loading (mixed-mode I and II con-

ditions) and a definition of a propagation criterion and crack growth

rate that takes into account this loading scheme is necessary.

Most of crack propagation modelling using fracture mechanics has

been based on Paris’ type fatigue crack growth law. For this type of

law, the relationship between the rate of propagation of a fatigue crack

(da/dN ) and the applied range of stress intensity factor ∆K, related

with the crack and the cyclic loading, can be expressed as:

da

dN
= C (∆K)m ,

where C and m are material constants determined by curve fitting.

The propagation life Np is then obtained by integrating the above
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equation, leading to:

Np =
∫ af

a0

da

C∆Km
(2.12)

where a0 is an assumed initial crack length and af is a critical length,

that can either be the total crack length to failure or the length at which

∆K is equal to Kc, with Kc being the fracture toughness of the speci-

men.

Although fretting fatigue cracks behaviour are influenced by a mixed-

mode conditions, the fatigue crack growth data under pure mode I is

commonly used to predict propagation life (Araujo and Nowell, 2002;

Szolwinski and Farris, 1998; Navarro et al., 2003; Giner et al., 2011a;

Mutoh et al., 2003; Navarro et al., 2008). Generally, in Equation (2.12),

∆K is taken equal to the maximum amplitude of mode I stress inten-

sity factor in a loading cycle:

∆K = ∆Keff = ∆KI,max,

Mutoh and Xu (2003) compared fatigue crack growth curves of a

fretting case and a pure mode I condition. They argued that the pure

mode I growth curve is a satisfactory assumption except for the initial

part of the propagation, where small crack behaviour and mean stress

play a significant role. However, the general fracture path exhibits

a clear region under mixed-mode conditions, which may influence the

reliability of estimates based on pure mode I opening. Therefore, some

researchers incorporated the effect of mixed-mode conditions in their

estimates. For instance, Baietto et al. (2013) introduced the effect of
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loading mixity by replacing ∆K in equation (2.12) by an effective stress

intensity range given by:

∆K = ∆Keff =
√

∆K2
I + b∆K2

II ,

where b is function of the loading mixity and ∆KI and ∆KII are, re-

spectively, the mode I and mode II stress intensity factors ranges com-

puted during the analysis of a full fretting cycle analysed and obtained

by

∆KI =KI,max−KI,min, with KI ≥ 0

∆KII =KII,max−KII,min,

where the subscripts max and min refer to the maximum and mini-

mum values of stress intensity factor for any given fretting cycle, re-

spectively. Madge et al. (2008), Hojjati-Talemi et al. (2014) and Hoj-

jati Talemi (2014) incorporated mixed-mode effects in their predictions

assuming the variable b constant and equal to unity.

Navarro et al. (2003) studied the impact of introducing crack growth

threshold effect ∆Kth on life estimates. They considered the classical

Paris’ law and two of its adjustments. The first one is done by simply

subtracting ∆Kth from ∆K, as:

da

dN
= C (∆K−∆Kth)m ,

and the second one is:

da

dN
= C (∆Km−∆Km

th) ,
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Their results showed that, for tests that failed, the Paris’ Law gives

reasonable estimates, even though it neglects the threshold effect. They

also pointed out the necessity of including short crack effects in the

estimates.

Short cracks can propagate at stress intensity factor ranges below

the threshold ∆Kth and they grow faster than long cracks. This be-

haviour is indeed experimentally observed in aluminium alloys for

cracks whose length is comparable to the size of microstructural fea-

tures and for relative low stress intensity factor ranges (Suresh and

Ritchie, 1984). To account for this behaviour, several researchers used

an approximated form of the stress intensity factor, considering that

(Navarro et al., 2003; Madge et al., 2008; Munoz et al., 2007). In this

methodology, growth of a crack of length (a+a0), where a0 is defined

in equation (2.11) is used to describe the growth of a short crack of

length a. Under this assumption, the effective stress intensity range

adjusted for short crack growth ∆Keff,short is approximated by

∆K = ∆Keff,short = ∆Keff
√
a+a0
a

.

2.4.5 Cohesive zone models

In general, as discussed above, fretting failure is modelled consid-

ering both crack initiation and propagation phases separately. Propa-

gation is normally modelled under LEFM assumptions, that might not

hold for all situations. An alternative approach that is less restrictive

than LEFM is the use of cohesive zone models.
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The cohesive zone model (CZM) deals with the modelling of a non-

linear process zone ahead of the crack tip, not requiring a small-yield

plastic zone size. In addition, CZMs may account for both initiation

and propagation phases in a unified way, therefore, there is no neces-

sity of separating those two regimes.

In fretting fatigue, there has been some effort to use cohesive zone

model. Kim and Yoon (2014) used a bilinear cohesive law with stiff-

ness and fracture energy dependent of the number of cycles for model

fretting fatigue failure. They used a jump cycle scheme to predict to

predict S-N curves. Although their results were in good agreement

with experimental data, with a maximum 20% error, there methodol-

ogy a major drawback of their proposed methodology is that the crack

propagation requires the knowledge of the crack path prior to the anal-

ysis. This is due to the fact that they used interface cohesive elements

between continuum elements that must be located in this pre-defined

path.

A more robust analysis has been proposed by Zhang et al. (2015).

They used XFEM with cyclic cohesive zone models to study the effect

of residual stress on fretting fatigue strength. In their approach, the

cohesive law is embedded into the material properties of the XFEM

element, allowing the crack to propagate in an arbitrary orientation

defined by the stresses ahead of the crack tip. Therefore, their simula-

tion is not restricted to a pre-defined path as in Kim and Yoon (2014).

Their results showed that residual stress tend to enhance fretting fa-

tigue propagation lives, although no attempt to predict total lives nor

comparison with experimental data have been provided.
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In a later paper, Zhang et al. (2016) used the same previous method-

ology to study the influence of tangential force on fretting fatigue.

Their results showed that increasing tangential load leads to an in-

crease of initiation life, change on propagation paths (increase on the

knee depth of the path) and increase in total life. Their analysis was

based on only a few hundred cycles of fretting, which is a rather short

number for high cycle fatigue scenarios. Moreover, they did not aim

on correctly predict lives and their results were not validated with any

experimental data.

2.5 Conclusions

In this chapter, we presented an overview of the main analytical

solutions for computing stress at contact interfaces at bodies subjected

to fretting loadings. Firstly, we showed the classical hertzian solution

for pressure distribution due to contact of two cylindrical bodies un-

der normal loading. Coulomb friction law is used to obtain closed

form solutions for stresses at contact due to the combination of normal

and tangential loading. Finally, the effect of axial loading (present in

fretting conditions) is incorporated and an approximated solution for

obtaining the maximum tangential stress at contact is discussed.

Analytical solutions are restrictive and subjected to many unrealis-

tic assumptions. To circumvent this issue, stresses at contact interface

of bodies under fretting conditions are generally estimated using nu-

merical approaches, such as finite element method. In this regard, we

discussed the main idea behind the contact algorithm in a finite ele-
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ment approach, highlighting the difficulties of modelling such prob-

lem. Another difficulty that will be discussed in the next chapter, is

numerical stability. These are complex problems, that may often lead

to convergence issues and if not properly considered.

In this chapter we also presented a brief review of the most tra-

ditional approaches to model failure under fretting conditions. Most

numerical models of fretting failure are based on LEFM and must rely

on restrictive assumptions, such as small plastic zone ahead of crack

tip and an empirical crack growth law for life predictions. As men-

tioned in the previous section, an interesting option to alleviate those

assumptions is use of cyclic cohesive zone models (CCZM). In Chapter

6, we present this model in detail and discuss its implementation in

ABAQUS. Our main goal is to accurately predict total fretting fatigue

lives and crack propagation paths, validating our methodology with

experimental data.
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3
Convergence study

As discussed in previous chapters, estimating the lifetime of fret-

ting fatigue is of great importance in many industries. It requires,

however, complex modelling, making analytical solutions nearly in-

55
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tractable. Numerical methodologies have, therefore, become the stan-

dard approach to evaluate the stresses at contact as well as to estimate

their impact on fretting fatigue lifetime. One example of a success-

ful numerical methodology is FEM. For instance, McVeigh and Farris

(1997) used finite element analysis to study the influence of the bulk

loading σaxial on the contact stress distributions and compared the

results with analytical approximations. Tsai and Mall (2000) treated

the problem considering the effects of plasticity on the contact stress

distribution for a Titanium material and analysed the impact of plas-

tic deformations on the size of the stick zone and peak stresses. They

concluded that plastic zone started at trailing edge and that the ef-

fects of contact stresses decay rapidly as the distance from the contact

increases.

Numerical methodologies accept a richer characterization of the

model with less strict assumptions as those needed in analytical ap-

proaches. The researcher is allowed to model a wide variety of prob-

lems, with several complexities that resembles what we see in real life.

This gain in applicability, however, comes with a price in higher com-

putational efforts and complex algorithms that may sometimes fail to

converge. As pointed out by Ainsworth and Oden (1997), although

aware of the existence of numerical errors, the analyst is seldom inter-

ested in quantifying them. In fretting fatigue, the quality of a simula-

tion is generally assessed by visual comparison between finite element

results and analytical solutions and rarely some information regarding

the error is provided, as in Tsai and Mall (2000), Iyer and Mall (2001)

and Massingham and Irving (2006). The fretting contact stresses cal-

culations is of significant importance as these stresses impact directly
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on the crack propagation phase. Therefore, estimating errors for those

stresses is of great interest to ensure accurate analysis.

In this chapter we study different element sizes at the contact sur-

face and their influence on the stresses calculated from finite element

analysis (FEA) of fretting fatigue cylinder-on-plane test configuration.

A FE model of a cylindrical pad and flat specimen configuration was

created and stresses at contact interface were monitored and compared

with analytical solutions for different mesh sizes and fretting contact

conditions. A convergence map is proposed in order to provide some

guidance on the selection of the appropriate mesh size for 2D simula-

tions of these type of coupon tests.

Additionally, the existence of stress singularity at the stick-slip zone

in fretting fatigue conditions is studied using FEM, as follows. The

evolution of numerical errors is captured as function of the number of

nodes at contact (proportional to the number of degrees of freedom).

Singularity checks are then performed.

This chapter is organized as follows. Firstly, FE models are con-

structed and discussed in Section 3.1. Results are presented and dis-

cussed in Section 3.2 and followed by a conclusion in Section 3.3.

3.1 Finite Element Model: Cylinder on flat

A parametric 2D finite element model was created in ABAQUS ver-

sion 6.14 and a static analysis of the fretting cycle was performed, aim-

ing to study the model response to different mesh sizes. Three cases
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of coefficient of friction were studied 0.3, 0.85 and 2.0. This range of

coefficient of friction allows the simulation of a wide range of stick slip

ratio sizes c/acont that could happen on reality depending on the loads

and surface conditions. By selecting a range of coefficient of friction

from 0.3 to 2.0, it was possible to obtain c/acont ratios from 0.2 to 0.9.

Therefore, being able to simulate different profiles of shear tractions

without having to vary many parameters in the model, such as the

tangential load and normal load (see equation (2.9)). This allowed us

to study various fretting scenarios and stresses profiles that could hap-

pen in real situations, depending on the combination of normal and

tangential loads, for a fixed coefficient of friction.

Details of the model, such as geometry, material properties, mesh

details, boundary conditions and loading history are presented here.

We first created two FE models, with dimensions and boundary condi-

tions as depicted in Figure 3.1. These models were composed of only

two parts: a pad and a specimen, representing half of the experimental

set-up, due to symmetry. In order to check the influence of different

geometries, the radius of the pad was set to two different values: 50

mm and 10 mm. Both parts were made of aluminium 2420-T3, with

material properties as summarized in Table 3.1. One objective of this

chapter is to verify the presence of stress singularity at contact inter-

face. In order to achieve that, the methodology presented by Sinclair

(2004) has been used, that requires an elastic analysis. Therefore, plas-

ticity effects have been neglected in this study.

Stress analyses were carried out by applying a normal load (F = 543

N) and oscillatory axial and reaction stresses to the specimen, reflect-
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ing a fretting cycle. The master-slave algorithm in ABAQUS was used

Figure 3.1: Details of the dimensions of the two FE fretting fatigue models, loading and
boundary conditions

to describe the contact behaviour and the Lagrange multiplier formu-

lation was used to define the tangential behaviour of the contact pair.

The surface-to-surface and finite sliding options were used to define

the contact interaction.

A 2D quadrilateral, 4-node (bilinear), plane strain, reduced inte-

gration element (CPE4R) was used in both models. CPE4R is a two-

dimensional solid element continuum element with plane strain for-

mulation. It is a first-order quadrilateral isoparametric element and not

a rectangular/square element. Isoparametric interpolation in Abaqus
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E Modulus of Elasticity [GPa] 72.1

ν Poisson’s ratio 0.33

σ0.2 Yield Strength [MPa] 506 ± 9

Table 3.1: Material properties for aluminium 2420-T3 (data from Hojjati Talemi (2014)
and Hojjati-Talemi et al. (2014))

is defined in terms of the isoparametric element coordinates g,h (Fig-

ure 3.2). These are material coordinates that vary from -1 to +1 in an

element.

The interpolation functions are as follows for a first-order quadri-

lateral:

u= 1
4(1−g)(1−h)u1 + 1

4(1+g)(1−h)u2 + 1
4(1+g)(1+h)u3 + 1

4(1−g)(1+h)u4

Figure 3.2: CPE4R element in Abaqus

For the first-order elements the single-point reduced-integration

scheme is based on the “uniform strain formulation”: the strains are

not obtained at the first-order Gauss point but are obtained as the (an-
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alytically calculated) average strain over the element volume.

The choice of reduced integration was mainly due to the high com-

putational cost of the simulations with small mesh size. We have not

considered second-order elements (CPE8 or CPE8R). This is due to

the fact that, when dealing with contact problems, first-order elements

may have improved convergence than second-order. This is because if

one corner and one edge node of the second-order elements are in con-

tact, the interpolation of the displacement of the element edge causes

overlaps Bäker (2018).

Different mesh sizes were considered at the contact interface and

increased as the distance from the contact region increases. In order to

create a fine mesh at the contact region, the models were partitioned

and the edges were seeded. The values of the mesh at the contact re-

gion varied according to the following list: (20, 10, 5, 2.5, 1.25, 0.625

and 0.3125) µm. Details of the seeding used to generate the mesh and

of the model partition dimensions are shown in Figure 3.3. The par-

tition dimensions depend on the radius of the pad, being calculated

based on the semi-contact width acont, from equation (2.4). An illus-

tration of one of the meshes used in this study is also presented in

Figure 3.3.

Due to the symmetry of the problem, the bottom of the speci-

men (which represents the axial centreline of the specimen) was re-

stricted from vertical movement in the y direction (Uy = 0). The sides

of the pads were restricted from horizontal movement in the x direc-

tion (Ux = 0) and also the MPC tie constraint was used at the top sur-

face of the pad to guarantee that it would not rotate due to the applied
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Figure 3.3: Details of the partition in the models, the edges seeding (element size e varied
from values: 20, 10, 5, 2.5, 1.25, 0.625, 0.3125 µm) and also an illustration of one of the
meshes used in this study.

concentrated load F .

The effect of the compliance spring and tangential load Q were

modelled as a cyclic reaction stress (σreaction). This reaction stress is

obtained as:

σreaction = σaxial−2Q
bt
, (3.1)

where b is the specimen width (b= 10 mm) and t is the specimen thick-

ness (t = 4 mm). The values Q = 155.165 N and σaxial = 100 MPawere

obtained from experimental data (Hojjati-Talemi et al., 2014).

In order to simulate fretting conditions, the fretting cycle was di-

vided into three steps (see Figure 3.4). In the first step, the top pad was

pressed against the specimen surface by a normal load F = 543 N and
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this compressed condition was held constant until the end of the cycle.

Then, both axial and reaction maximum stresses were applied to the

sides of the specimen. Finally, in the third step, both axial and reaction

minimum stresses were applied.

Figure 3.4: Fretting simulation: Loading variation as a function of time.

3.2 Results and Discussion

In order to evaluate the presence of singularity, we adopted the

methodology presented in Sinclair (2004). Accordingly, the element

size in the models was successively halved for a sequence of seven

analyses and the magnitude of maximum stress values was examined.

The following stress components were monitored at the maximum ax-

ial loading condition (end of loading step 2): the contact shear traction

peak at trailing edge q(x1) and at leading edge q(x2) (see Figure 2.7)

and also the peak tangential stress in the x direction σxx,max (see Fig-
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ure 2.8). The influence of the mesh size on the values of the ratios

between stick and slip zones sizes (c/acont) was also considered. The

slip zone size c was obtained by measuring the position in the con-

tact that have non-zero values of slip and the contact width acont was

obtained by the position in the x direction of the edges of the contact

region, both calculated from ABAQUS.

The results of various stress components and for the ratios between

stick and slip zones sizes (c/acont) are presented in Table 3.2, for differ-

ent values of coefficient of friction and different radii of cylindrical pad.

FEA results were also compared with analytical solutions (presented in

Section 2.2). The values of shear traction at trailing and leading edges

seem to converge to the analytical solution for all values of coefficient

of friction. The values of peak tangential stress σxx,max seem to con-

verge, but to a different value than the estimated from equation (2.10).

This is reasonable, since this equation provides only an approximate

value of σxx,max . Note that the non-dimensional parameter (c/acont)

also converged to the analytical solution for all values of coefficient of

friction and pad radius.

To examine convergence in Table 3.2, the relative error between FE

and analytical solutions was considered. We discuss them in detail in

Sections 3.2.1 and 3.2.2.

3.2.1 Influence of mesh size on stress components

In order to analyse the influence of mesh size on the contact shear

traction, the analytical solution was chosen as a reference value. The
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Pad Radius

50mm 10mm 50mm 10mm 50mm 10mm 50mm 10mm

COF Mesh
size [µm]

q(x1) [MPa] q(x2) [MPa] σxx,max [MPa] c/acont

0.3

20 38.81 107.02 53.72 119.93 167.49 208.72 0.167 0.136

10 40.72 108.69 54.11 122.34 182.87 242.57 0.200 0.136

5 41.01 110.40 54.23 123.19 192.96 268.70 0.206 0.174

2.5 41.30 111.21 54.38 124.29 200.09 290.50 0.211 0.207

1.25 41.47 111.44 54.24 124.33 205.33 307.81 0.212 0.211

0.625 41.54 111.97 54.27 124.39 208.99 320.33 0.212 0.212

0.3125 41.57 111.99 54.27 124.44 212.00 329.94 0.211 0.213

Analytical 41.29 112.68 53.99 124.11 208.35 342.28 0.218 0.218

0.85

20 24.89 113.00 112.64 209.21 222.91 279.65 0.702 0.727

10 30.33 142.02 115.31 216.27 254.12 349.91 0.779 0.750

5 33.31 146.77 117.18 226.39 274.64 398.69 0.788 0.779

2.5 36.73 155.01 118.06 230.10 287.93 440.60 0.805 0.799

1.25 37.54 158.98 118.50 233.62 297.38 474.40 0.806 0.804

0.625 38.34 160.91 118.89 234.83 303.26 496.58 0.808 0.808

0.3125 38.80 162.08 119.01 235.81 308.06 513.08 0.808 0.809

Analytical 38.09 163.18 119.20 235.12 283.90 507.82 0.811 0.815

2.0

20 17.53 123.20 165.85 240.56 275.64 322.49 0.893 0.667

10 22.50 162.01 175.64 318.97 336.52 441.20 0.905 0.864

5 28.59 195.58 181.98 327.15 373.08 537.49 0.91 0.895

2.5 41.18 207.99 185.62 347.98 399.72 612.33 0.92 0.911

1.25 44.39 227.64 187.36 357.64 417.17 683.24 0.918 0.917

0.625 45.85 236.01 189.13 362.74 428.46 719.75 0.921 0.92

0.3125 47.72 239.73 189.43 366.06 436.21 750.50 0.921 0.921

Analytical 46.52 242.70 190.72 368.12 382.10 725.56 0.925 0.926

Table 3.2: FEA results and analytical solution for different coefficients of friction, differ-
ent pad radius and different mesh sizes at the contact surface
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relative error between FE and analytical solutions erel,an was calcu-

lated as:

erel,an =
∣∣∣∣φamax−φimaxφamax

∣∣∣∣ , (3.2)

where φimax is the maximum variable output (contact shear stress,

maximum tangential stress or ratio between stick slip zone sizes) in

the ith model and φamax in the analytical solution (see Table 3.2).

Higher coefficient of friction simulates a situation with large gradi-

ents in the stress distribution, as the stick zone increases for the same

size of contact. The relative error between FE and analytical solutions

for the contact shear traction stress component for different coefficients

of friction and pad radius are presented in Figures 3.5 and 3.6. The

results show that the error is decreasing as the mesh size reduces, in-

dependently of the value of the coefficient of friction and pad radius.

Thus, the analysis is converging, even if only slowly, and no singular-

ity was found for any of the tested loading conditions, pad radius and

coefficients of friction.

Moreover, it can also be seen that the rate of convergence is de-

pendent on the coefficient of friction for both cases of pad geometry.

As different values of coefficient of friction represent different loading

conditions (various sizes of stick zone in comparison with the contact

dimension), one might conclude that the rate of convergence of the

solution depends upon the loading condition.

For the smallest coefficient of friction, a relative coarse mesh (around

20 µm) at the contact is sufficient for obtaining reasonable accurate

shear stresses, with relative error smaller than 10% for all cases anal-
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Figure 3.5: Mesh convergence curves for contact shear tractions, for different cases of
coefficient of friction and pad radius equal to 50mm

ysed. For higher coefficients of friction, the rate of convergence reduces

and it is necessary to use finer meshes to guarantee reasonable results.

For instance, for coefficient of friction equal to 2.0, a mesh size of 1.25

µm is enough to guarantee that the relative error on the shear traction

peak is smaller than 10% for all cases analysed. However, for the same

coefficient of friction and a mesh size of 5 µm, the error can increase to

almost 40%, for the contact shear traction peak at leading edge.
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Figure 3.6: Mesh convergence curves for contact shear tractions, for different cases of
coefficient of friction and pad radius equal to 10mm

The dependence of the rate of convergence on the coefficient of fric-

tion can be further investigated by analysing the contact shear traction

at contact interface. As it can be seen in Figures 3.7 and 3.8, for the case

of high coefficient of friction, the contact shear traction distribution has

very sharp peaks at both leading and trailing edges.

This justifies the necessity of a very fine mesh to accurately capture

the very steep stress gradients.
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Figure 3.7: Contact shear traction at contact interface for different mesh sizes and coeffi-
cients of friction

As discussed before, the peak stress σxx,max, seems to converge to

a different value than that estimated from equation (2.10). Therefore,

in order to study the convergence of the results of the FEA, instead of

considering the analytical solution as reference, the maximum stresses

between two subsequent mesh refinements were used to calculate the
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Figure 3.8: Contact shear traction at contact interface for different mesh sizes and coeffi-
cients of friction

relative error erel as:

erel =

∣∣∣∣∣φ(i+1)
max −φimax
φ

(i+1)
max

∣∣∣∣∣ (3.3)

where φimax is the maximum variable output (contact shear stress,

maximum tangential stress or ratio between stick slip zone sizes) in
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the ith model and φ
(i+1)
max in the (i+ 1)th model.

The results of the relative error between two consecutive mesh sizes

for the maximum tangential stress are presented in Figure 3.9. For

a mesh size of 0.625 µm, the relative error is around 5% for all anal-

ysed scenarios and results can be considered satisfactory (Sinclair et al.,

2006). As for the shear traction component, the convergence rate of the

maximum tangential stress depends upon the coefficient of friction.

Again, for the smallest coefficient of friction, the convergence rate is

the highest. This may also be related to the steepest gradient of the

distribution of the tangential stresses at the trailing edge, as shown in

Figure 3.10.

As mentioned in Lee et al. (2000), increasing the pad radius causes a

reduction on the peak contact pressure and increases the contact width.

Therefore, for the same loading conditions, the contact pressure distri-

bution has a steeper gradient for pads with smaller radius. As dis-

cussed by Hills and Nowell (1994) and Johnson (1987), the analytical

distribution of shear stress at contact can be seen as a superposition of

contact pressure distribution and two shear tractions. Thus, it is ex-

pected that the gradient of the distribution of the tangential stresses at

the trailing edge is higher for the model with smaller pad radius. The

smaller contact width for smaller pad radius also implies higher peak

values of tangential stresses in a smaller area (Figure 3.10). Therefore,

for the same loading conditions, a finer mesh is necessary to properly

capture these changes in the model with pad with smaller radius.

It can also be observed in Figure 3.10 that the peak values and,

therefore, the gradient of the distribution of the tangential stresses, is
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Figure 3.9: Mesh convergence curves for the maximum tangential stress, for different
cases of coefficient of friction and pad radius

smaller for low coefficients of friction. Consequently, the convergence

rate, for the model with 10 mm pad radius, is slower than for the model

with 50 mm pad radius, as it can be seen in Figure 3.9. This impact

of geometry on convergence rate is expected, as the smallest radius

implies smaller contact region for the same loading condition. It also

implies higher peaks of tangential stresses in a smaller area. Thus, for

the same level of accuracy, a finer mesh is required in the model with

pad with smaller radius.
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Figure 3.10: Tangential stress at contact interface, results from FEA with mesh size equal
to 0.3125 µm

3.2.2 Convergence map

Aiming to help researchers to easily determine the required ele-

ment size for their finite element analysis for a given stick-slip ratio

and desired accuracy, we produced a “fretting fatigue convergence

map”, depicted in Figure 3.11. This map was constructed by plotting

the stick-slip ratio (c/a) against the element size in the contact zone
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for different numerical accuracies (1%, 2% and 5%) and may be used

as a reference for choosing the element size in FEA of fretting fatigue

(cylinder on plane configuration). This map is limited for 2D analysis

of fretting fatigue considering a cylindrical pad in contact with a flat

specimen.

Figure 3.11: Fretting fatigue convergence map: stick-slip ratio (c/acont) as function of the
element size in the contact zone for different numerical accuracies (1%, 2% and 5%)

3.2.3 Computational cost

The computational cost of the analysis increases considerably as the

mesh size reduces. For instance, Figure 3.12 shows the computational

time as function of the mesh size for the model with pad radius 50

mm. The computational time of the analysis of smallest mesh size

model (0.3125 µm) is around 8 hours running in three cores, using the

following processor: Intel Core i7-5600U CPU @ 2.60GHz with 16GB

of memory RAM.
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Figure 3.12: Computational time as function of the mesh size for the model with pad
radius 50mm

The presented computational time is related to the analysis of only

one fretting fatigue cycle. In Chapters 4 and 6, for instance, it is nec-

essary to run the analysis of a full cycle many times, which increases

the computational cost dramatically. Therefore, the accuracy of the

analysis should be balanced with the computational cost.

3.3 Conclusions

In this chapter, we investigated the presence of singularity in fret-

ting fatigue stresses distributions at contact interface. We considered

different scenarios, with three distinct coefficients of friction in order

to replicate different loading conditions as well as two distinct pad

geometries, one with radius equal to 50 mm and another with radius

equal to 10 mm.

For the considered loading conditions and coefficient of frictions,

we could not find any indications of singularities as the mesh becomes
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smaller; all of our results converged as the mesh size got reduced. We,

in addition, discussed the convergence rate of FEM in the situations

described above. We noticed that this rate also depends on the coef-

ficient of friction, in the sense that higher coefficient of frictions led

to lower rates of convergence. This means that, for a fixed element

size, the level of error in the analysis depends on the loading condi-

tion. Therefore, it is recommended that the analyst performs a mesh

convergence study for each of his/her loading condition of interest, as

it may impact the accuracy of the corresponding results. Considering

all scenarios that we have studied, a choice of element size of 0.625

µmat contact provided the smallest relative error for all variables, be-

ing around or even smaller than 2% (see convergence map above) and

producing satisfactory results.

As discussed in Section 3.2.3, the main issue when considering a

very small mesh size at contact interface is the computational cost of

the simulation. Even though an element size of 0.625 µm provides best

accuracy, for the analysis in the following chapters of this thesis, an

element size of 5 µm is considered. This way a good balance between

accuracy (less than 5% error, as per convergence map proposed in this

chapter) and computational cost (in many situations it is necessary to

run hundreds of cycles and, therefore, an analysis with really small

mesh size becomes infeasible).

A “fretting fatigue convergence map” was also constructed, pro-

viding information on the required element size for a specific stick-slip

ratio and different levels of accuracy.



4
LEFM approach

Fretting fatigue has commonly been modelled by linear elastic frac-

ture mechanics (LEFM) framework (Giner et al., 2009; Noraphaiphipaksa

et al., 2016; Araujo and Nowell, 2002). In LEFM, the lifetime is nor-

77
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mally estimated by integrating an empirical crack growth law that de-

pends on the stress intensity factors (SIF) at crack tip. The computation

of those SIFs are directly affected by the crack path inside the material.

The prediction of crack paths has, therefore, a major impact on the life

estimates. They have been traditionally computed based on an orien-

tation criterion at the crack tip.

Maximum tangential stress (MTS) (Erdogan and Sih, 1963) or “lo-

cal symmetry" (Cotterell and Rice, 1980) are classical LEFM orientation

criteria. They predict crack growth directions with good accuracy un-

der proportional loading conditions, as presented in Boljanović and

Maksimović (2011), Mageed and Pandey (1992), Miranda et al. (2003)

and Richard et al. (2005). However, the applicability of those criteria

for problems under non-proportional loading (for example in fretting

conditions) is questionable and may lead to the prediction of erroneous

crack paths, such as the ones obtained by Hojjati-Talemi et al. (2014);

Giner et al. (2014) and Giner et al. (2008).

Approaches aiming to extend these classical criteria for situations

of non-proportional loading have already been discussed in literature.

Hourlier et al. (1985) proposed an extension of MTS in which the prop-

agation direction is selected as the one that maximizes the amplitude

of mode I stress intensity factor in a branched crack over the loading

cycle. Dubourg and Lamacq (2000) proposed crack growth direction in

which the effective amplitude of tangential stress at crack tip is largest.

It is important to notice that, those non-proportional loading adjust-

ments require knowledge of the stress state at the crack tip for each

time in the loading cycle. Thus, the proper modelling of crack faces in-
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teractions is essential, as crack closure can happen during the fatigue

cycle and it directly affects the stress distribution around the crack tip.

Recently, an attempt to consider crack faces contact on the estima-

tion of crack path under fretting conditions was done by Giner et al.

(2014). They proposed an extension of the “local symmetry” criterion,

in which the propagation direction is obtained as the one that mini-

mizes the shear stress amplitude at an element ahead of the crack tip

over the loading cycle. Considering a flat indenter in contact with a flat

specimen, their numerical results were in agreement with experimental

observations. However, they did not consider life predictions.

In this regard, the main goal of this chapter is to improve numerical

estimates of fretting fatigue crack propagation path as well as life pre-

dictions, using LEFM and considering non-proportional loading con-

dition. There has been some effort in the literature to account for

non-proportional loading in life estimates (Noraphaiphipaksa et al.,

2013). However, their estimates were sensible to the location where

stresses around the crack tip are evaluated. To improve their results,

they calibrate the numerical predictions of crack path with experimen-

tal evidence. In the approach proposed here, we use stress intensity

factors that do not require any knowledge of the crack path before-

hand. In fact, our results showed that the proposed methodology is

capable of accurately predict crack paths, that has not been achieved

before. In summary, our contributions in extending the state-of-the-art

are the implementation of a orientation criterion that accounts for non-

proportional loading and its use in fretting fatigue conditions, which

leads not only to better life predictions by also to correct estimation of
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crack paths.

The chapter is organized in the following way. Firstly, the use of

a local aproach proposed by Giner et al. (2014) is discussed, imple-

mented and reviewed for proportional and non-proportional loading

conditions. Then, this analysis is extended by making use of stress

intensity factors to predict the potential crack growth direction and

propagation lives. For this analysis, details of the crack face interaction

modelling and its effect on the SIFs calculation are presented. Later,

the influence of short crack behaviour in the lives estimates is briefly

explored, followed by discussion of main results and conclusions.

4.1 Minimum shear stress range criterion

The minimum shear stress range criterion was proposed by Giner

et al. (2014). This criterion can be seen as a generalization, for non-

proportional loading conditions, of the “criterion of local symmetry”,

which states that crack growth will be in the direction that causes the

stress intensity factor KII to vanish. In general, for non-proportional

conditions, it is expected that KII will not be zero in any direction and,

therefore, a logical approximation would be to search for a direction

that minimizes the amplitude of KII over the loading cycle, named

here as ∆KII .

Giner et al. (2014) also mention that, in some conditions, obtain-

ing the stress intensity factor KII can be computationally expensive

and also not very accurate. In order to circumvent this problem, they

propose to search for the direction that minimizes the shear stress am-
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plitude ∆τrθ at the crack tip (for an overview of the stresses at crack

tip, please review Figure 2.12). From the two orthogonal planes on

which ∆τrθ is minimized, the propagation direction is chosen as the

plane with the maximum variation of the normal stress ∆σθθ. This is

justified by the fact that, at this plane, less frictional energy will be dis-

sipated (because the shear stress range is minimum) and more energy

would be available for propagating the crack (selection of plane with

highest normal stresses).

Giner et al. (2014) implemented the minimum shear stress range

criterion in a XFEM framework. Here, an adaptation of their criterion

for a conventional FE analysis is done in the following way. Firstly,

a local cylindrical coordinate system (r,θ) is defined at the crack tip

and the stress results from the FE analysis are transformed from the

cartesian (x,y) to this local coordinate system. Then, as showed in Fig-

ure 4.1, a circular path ahead of crack tip of radius R (with R = 0.2a0,

where a0 is the initial crack length) and centered at the crack tip was

created, with θ varying between −90◦ and +90◦. The stresses at this

fixed path are read and stored for each time increment in the loading

cycle. These results are later used to obtain maximum and minimum

envelopes as well as the variation of shear stress τrθ and normal stress

σθθ as function of θ. The propagation angle θP is then defined as the

direction with the minimum ∆τrθ and with the highest value of ∆σθθ.

Figure 4.2 shows a flow chart summarizing the procedure.

A python script is written to post-process the results from the anal-

ysis and to define the propagation angle as discussed above.

The performance of the minimum shear stress range criterion is
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Figure 4.1: Circular path ahead of crack tip

Figure 4.2: Flow chart of the implementation of minimum shear stress range criterion

checked under different conditions: proportional and non-proportional

loadings. For each situation sensitivity analysis is performed to evalu-
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ate how different parameters, such as the path radius R, mesh size at

crack tip and propagation increment length ainc, affect the propagation

path.

The crack propagation is modelled using the conventional FE method

with remeshing technique. The crack is simulated using a “seam” in

ABAQUS, a cut in the model that can freely open during analysis.

As the contact algorithm in ABAQUS provides more accurate results

with linear elements, all models are meshed using a 2D quadrilateral,

4-node (bilinear) elements. Penalty formulation is used to define the

tangential behaviour and a hard contact approach is used to define the

normal behaviour of the contact pair. This decision was made due to

convergence of the contact algorithm. The serrated fracture surfaces

the analysis poses a difficult in the convergence. Penalty formulation

is an unconstrained optimization problem, which is probably easier to

get converged result, although it may lead to solutions that are not of

interest and dependent on the penalty stiffness. Therefore, a careful

selection of penalty stiffness has to be made.

In order to capture singularity, the crack tip was meshed using a

ring of collapsed linear quadrilateral elements. A stepwise analysis

was done and the whole model was re-meshed after advancing the

crack in each increment of crack propagation.

4.1.1 Crack face interaction

The crack face contact may impact the results, especially in cases

under negative cyclic loading ratio. The general contact algorithm in
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ABAQUS is used to define the contact interaction between the crack

faces. A python script is used to select element-based surfaces at the

crack faces and to associate the general contact interaction to those

surfaces. As mentioned above, penalty formulation is used to char-

acterize the tangential behaviour of the crack faces and hard contact

formulation was used for the normal behaviour of the contact pair. A

fixed value of maximum elastic slip, with a 1× 10−4 fraction of char-

acteristic surface dimension, was used in all simulations. This value

was selected considering a balance between accuracy and computation

effort to compute crack face contact interaction. Ideally, a very small

value should be selected, but it increases dramatically the computa-

tional cost of the simulation.

In order to verify the implementation of the crack contact interac-

tion, a crack propagation analysis of a plate with inclined crack under

compression is considered and the results are compared to literature

data. As this condition falls under a proportional loading condition,

the results will be presented in the following section.

4.1.2 Proportional loading

Two numerical predictions of a mixed-mode crack growth in a elas-

tic plane plate, with a slant crack, is performed in ABAQUS. The first

one considered the plate under fatigue load and is used to verify the

performance of the minimum shear stress range criterion to predict

crack propagation under proportional loading conditions. The sec-

ond one, plate under compression, is considered in order to verify the

contact interaction implementation and also the performance of the
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Table 4.1: Model dimension and material properties (data from (Yan, 2010)).

Parameter Value

Crack length, a 7 mm
Plate half-height, H 17.5 mm
Plate half-width, W 17.5 mm
Slant crack angle, α 30

Shear modulus, G 26909 MPa
Poisson’s ratio, ν 0.321

Mean stress, σm 150 MPa
Characteristic of cyclic loading ratio, Rcycle 0.048

criterion to predict propagation under static compression load.

The fatigue model consisted of a plate with a center slant crack, as

shown in Figure 4.3. The dimension and material properties are based

on the model proposed by Yan (2010) and are summarized in Table 4.1.

Figure 4.3: Slant centre crack model under fatigue loading

Each step of the propagation simulation consists in the analysis of a
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full loading cycle, with stress σ applied in three loading steps varying

from maximum, mean and minimum values (obtained from Rcycle and

σm in Table 4.1). For the static analysis, each loading step is divided

into 10 time increments and the solution for each of those increments

is later used in the calculation of the propagation direction.

The propagation path obtained using the minimum shear stress

range criterion was compared with the predicted path using MTS cri-

terion (Yan, 2010) and it is presented in Figure 4.4. Both criteria predict

the same path, implying that the minimum shear stress range criterion

can also be a good choice under proportional mixed-mode conditions.

Figure 4.4: Comparison of predicted crack propagation path with literature data from
(Yan, 2010)
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Figure 4.5(a) and Figure 4.5(b) show results of how the mesh size

influenced the results. As the element size reduces, the stress singular-

ity at crack tip can be more accurately captured and the results tend

to converge to a unique path. In addition, the propagation increment

length ainc has no impact on the path prediction.

Figure 4.5: Results obtained using minimum shear stress range criterion: (a) Sensitivity
check: crack tip mesh size impact on predicted propagation paths, (b) Sensitivity check:
impact of propagation increment length ainc on predicted propagation paths

The model with pure static compression load is shown in Figure

4.6 and it is made of a plate with a center slant crack. The dimen-

sions are also presented in Figure 4.6, where W = 1 m, a= 0.566 m and

θ = 45◦. For comparison and verification of our implementation, the

same as the model proposed by Liu and Borja (2008) was considered
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here: a plane stress condition is assumed and the following elastic ma-

terial properties are adopted: Young’s Modulus E = 10000 MPa and

the Poisson’s ratio ν = 0.30. The crack is fully frictional with a coeffi-

cient of friction µ= 0.10.

Figure 4.6: Slant centre crack model under static compression loading

Firstly, the plate is submitted to a fixed displacement at the top d=

0.05 m and the crack is not allowed to propagate. The results after one

loading step are shown in Figure 4.7 and 4.8. It can be seen that both

displacements in X and Y directions are transferred across the crack

faces and also the magnitude of those displacements are in agreement

with literature data.

In a later analysis, the model is again submitted to a compression

displacement of 0.05 m and the crack is now allowed to grow. The

analysis was preformed in six steps of crack increments of 0.04 m each

and the results were compared with the ones provided by Liu and

Borja (2008). As it is shown in Figure 4.9, the minimum shear stress

range criterion seems to capture the crack growth behaviour similarly
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Figure 4.7: Comparison between displacements in X direction: (a) implemented model
and (b) literature data from (Liu and Borja, 2008)

to the prediction from Liu and Borja (2008) with good accuracy.

The previous results imply that the minimum shear stress range

criterion may be a good option to model propagation of diverse prob-

lems under proportional loading conditions. In the following section,

its use under non-proportional loading will be evaluated and some

brief conclusions will be drawn.
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Figure 4.8: Comparison between displacements in Y direction: (a) implemented model
and (b) literature data from (Liu and Borja, 2008)

4.1.3 Non-proportional loading

It is known that under fretting conditions, the stress field near the

contact region is non-proportional, even if the external loads are ap-

plied in a proportional way (Tur et al., 2003; Nowell et al., 2006). In

order to study the performance of the minimum shear stress range cri-
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Figure 4.9: Propagation under static compression load: (a) literature data (Liu and Borja,
2008) and (b) implemented model

terion under non-proportional mixed-mode fatigue, the same elastic

fretting model presented by Giner et al. (2014) is analysed using con-

ventional FE framework. The model details such as geometry, material

properties, boundary conditions and loading history are presented in

Figure 4.10. The model is composed of only two parts: a pad and a
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specimen, which represents a quarter of the experimental set-up, due

to its symmetry. In this set-up, two flat pads are maintained in contact

with a flat specimen through the application of a constant clamping or

normal force F . The specimen is fixed at one end and the other end is

subjected to an oscillatory bulk stress σaxial.

Figure 4.10: Fretting fatigue model details, based on the model from Giner et al. (2008)
(a) Boundary conditions, (b) Cyclic loading steps of one full fretting cycle, (c) Model
dimensions

The master-slave algorithm in ABAQUS is used to describe the con-
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tact and the Lagrange multiplier formulation is used to define the

tangential behaviour of the contact interface between pad and speci-

men, with a coefficient of friction of 0.8. The surface to surface and

finite sliding options were used to define the contact interaction. A 2D

quadrilateral, 4-node (bilinear), plane strain, reduced integration ele-

ment (CPE4R) was used to mesh the model with a ring of collapsed

elements at crack tip.

The initial crack is inserted at the contact edge in the same way as

described by Giner et al. (2014), at an angle of −120◦ with horizontal

x direction and with initial length of 50 µm. An analysis with 15 crack

increments with fixed length ainc equal to 50 µm is then performed.

Each step of the propagation simulation consisted of the analysis of a

full fretting loading cycle. This fretting cycle is divided in five load-

ing steps (see Figure 4.10(b)). In the first loading step, the top pad

was pressed against the specimen surface by a normal load F = 100

N/mm and this compressed condition was held constant until the end

of the cycle. Then, an oscillatory axial stress σaxial =±110 MPa was ap-

plied to the side of the specimen. The contact between the crack faces

was also modelled using the general contact algorithm in ABAQUS

and a coefficient of friction of 0.8 was used at this interface.

Figure 4.11(a) shows experimental data from Giner et al. (2014).

These are, in Figure 4.11(b), compared with the predicted path ob-

tained when using minimum shear stress range criterion and MTS

criteria. In order to extract experimental data from the picture, the

software Web Plot Digitizer (Rohatgi, 2014) was used. One can con-

clude that the predicted path obtained by minimum shear stress range
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criterion is in good agreement with the experimental observations, but

that is not the case for MTS criterion. As also mentioned by Giner et al.

(2014), it is important to notice that the use of MTS criterion simplifies

the problem. For its computation, it is only necessary to consider the

FE results at the instant of maximum σaxial. Nevertheless, for comput-

ing the minimum shear stress range criterion, the entire loading cycle

must be analysed and considered. Therefore, MTS criterion does not

provide correct crack propagation as it neglects the effect that the rest

of the fretting cycle may have on the crack propagation direction.

Figure 4.11: Fretting fatigue crack propagation path: (a) Experimental data from Giner
et al. (2014), (b) Comparison of predicted path using different criteria and experimental
data

The influence of the path radius R, mesh size at crack tip and prop-

agation increment length ainc on the crack path prediction were veri-
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fied. The results are presented in Figure 4.12. It can be noticed that the

path radius and the propagation increment length had no significant

impact on the crack path prediction. However, as expected, the mesh

size at crack tip elements can affect considerably the propagation path.

In order to accurately predict the stress field ahead of the crack tip, it

requires a very fine mesh size at this region. Therefore, only for very

small mesh sizes, the criterion can correctly predict the crack propaga-

tion behaviour. The use of local stresses to predict orientation may not

be the best option, as results may be greatly affected by the element

size (Xu and Yuan, 2009a).

Under proportional loading conditions, the minimum shear stress

range criterion provided the same results as MTS and both of them

seem to correlate well with experimental data. In addition, the min-

imum shear stress range criterion seems to be a good and simple al-

ternative to deal with fatigue problems, not only under proportional,

but also under non-proportional conditions. The performance of mini-

mum shear stress range criterion is also verified for a non-proportional

loading scenario, under fretting fatigue condition. As showed by our

results, this type of problem invalidates the application of conventional

orientation criteria, such as MTS, but the minimum shear stress range

criterion is capable of capturing the main characteristics of the crack

path, providing a prediction that correlates well with experimental

data.

It is also important to mention that the final results depend on

the mesh size at crack tip. It requires a very fine mesh in order to

accurately predict paths using minimum shear stress range criterion
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Figure 4.12: Sensitivity check: (a) crack tip mesh size impact on predicted propagation
paths, (b) influence of different path radius and (c) impact of propagation increment
length ainc on predicted propagation paths

criteria and a mesh refinement study is therefore also recommended.

In the following sections, we will focus on a more robust way of
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predicting crack paths as well as on an alternative approach to estimate

life considering non-proportional loading and crack face contact for

fretting cases.

4.2 Extension of MTS criterion using SIFs

We will make use of the ∆k∗I,max criterion in an attempt to improve

the path and life predictions for a cylindrical pad in contact with a flat

plane, under fretting conditions.

Under LEFM, the FEA of a model with a crack of length a allows

the calculation of stress intensity factors KI and KII at the crack tip

as a function of time t. If we further assume an infinitesimally small

branched crack length (δ), as represented in Figure 4.13, the stress

intensity factors k∗I and k∗II , now calculated at the tip of this crack

segment, can be expressed as a linear combination of KI and KII , as

proposed by Ribeaucourt et al. (2007):

 k
∗
I (θ, t)

k∗II(θ, t)

=

K11(θ) K12(θ)

K21(θ) K22(θ)


KI(t)
KII(t)


where K11(θ), K12(θ), K21(θ) and K22(θ) are analytical functions of

the branched crack orientation angle θ and can be written as (Ribeau-

court et al., 2007):

K11(θ) =
(

1−m
1 +m

)m
2
(

cosθ− 1
2π sinLθ

)
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K12(θ) =
(

1−m
1 +m

)m
2
(
−3

2 sinθ
)

K21(θ) =
(

1−m
1 +m

)m
2
(

1
2 sinθ

)

K22(θ) =
(

1−m
1 +m

)m
2
(

cosθ+ 1
2π sinLθ

)
where m= θ/180 and L= ln

(
1−m
1+m

)
−2
(

m
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)
.

Figure 4.13: Stress intensity factors at a kinked crack from the original crack

The stress intensity factors k∗I and k∗II can be used to predict the

propagation direction under different conditions. Consider first a struc-

ture subjected to mixed-model fatigue under proportional loads. Here,

the ratio KI/KII is kept constant during one loading cycle (Hourlier

et al., 1985) and the propagation direction can be satisfactory predicted

using classical LEFM orientation criteria, such as MTS criterion or “lo-

cal symmetry”. The growth direction obtained by MTS criterion is

equivalent to the one that maximizes k∗I (Hourlier et al., 1985) and, ac-

cording to the “local symmetry” criterion, crack propagation direction

can be obtained by satisfying the condition that k∗II is equal to 0 (Giner

et al., 2016).

For instance, Figure 4.14 shows the definition of the propagation
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criteria for a mixed model proportional loading fatigue case: a block

with an inclined edge crack fixed at one side and subjected to a cyclic

axial load σaxial at the other side. Assuming plane strain conditions,

we first compute both k∗I and k∗II as function of the crack segment

angle θ for different instants (1, 2, 3, 4 and 5) in the loading history.

The propagation angle θP can be obtained by considering the position

the maximizes k∗I (solid round dots in Figure 4.14) or the the position

where k∗II is zero (solid square in Figure 4.14). Note that under these

loading conditions, there is only one solution that satisfies the “local

symmetry” criterion and there is also only one angle that maximizes

k∗I for any time.

Figure 4.14: Stress intensity factor at a kinked crack from the original crack as function
of time and θ, for a mixed mode proportional loading case

Under non-proportional loading, the directions of principal stresses

rotate during the fatigue cycle and so the ratio between the principal

stresses may be a function of time (Dahlin, 2005). Thus, the ratio be-

tween KI and KII may no longer be constant during one loading cycle
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(Madge, 2009), affecting the propagation direction defined by the cri-

teria (MTS and “local symmetry”). In order to exemplify this issue, we

may take a closer look at the variation of the stress intensity factors k∗I

and k∗II as function of time and θ for a fretting fatigue case. As can

be seen in Figure 4.15, the ratio KI/KII creates a time dependency in

the maximum value of k∗I , which means that there are different angles

that maximizes k∗I at different time instants in one cycle. Another no-

ticeable point is that there is more than one value of θ such that k∗II

is zero. Therefore, both the “local symmetry” or MTS criterion are

invalid under this loading condition.

Figure 4.15: Stress intensity factor at a kinked crack from the original crack as function
of time and θ, for a mixed mode non-proportional loading case

The ∆k∗I,max criterion (Hourlier et al., 1985) is an extension of MTS

criterion, it assumes that crack propagates in the direction that max-

imizes the difference between k∗I (θ) at the instant of maximum load

and at minimum load, ∆k∗I,max.
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4.2.1 Accounting for crack face interactions

The applicability of ∆k∗I,max criterion requires that the stress inten-

sity factors at the instant of maximum and minimum load are accu-

rately obtained. At minimum load, the crack faces might be in contact

to each other, affecting the stress distribution around the crack tip,

thus impacting the stress intensity factors at this instant. Therefore,

the models should account for the interaction between these instances.

The crack propagation phase was analysed using the conventional

FE method with re-meshing technique. The crack was simulated using

a “seam” in ABAQUS and the singularity at the crack tip was cap-

tured using a ring of collapsed linear quadrilateral elements. With

assistance of a python script, element-based surfaces were created at

the crack faces and the general contact algorithm was used to define

the contact interaction between them. Penalty formulation was used

to characterize the tangential behaviour of the crack faces and hard

contact formulation was used for the normal behaviour of the contact

pair. A fixed value of maximum elastic slip, with a 1×10−4 fraction of

characteristic surface dimension, was used in all simulations. The co-

efficient of friction between the crack faces µ faces was set to 0.8 (Giner

et al., 2016).

In order to verify whether the crack face interaction was properly

modelled, a simple case of a plate with an edge crack subjected to a

compression load was analysed and the results compared with liter-

ature data. The model dimension and loading details were the same

as the model presented by (Zheng and Luo, 2016). As shown in Fig-
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ure 4.16, the stress at crack faces are in good agreement with literature

data. Moreover, the vertical displacement contour presented in Figure

4.17 shows that the contact between crack faces is properly modelled

as the displacement is transmitted from one crack face to another when

the plate is subjected to compression.

Figure 4.16: Comparison of contact stresses distribution at crack faces from literature
data (Zheng and Luo, 2016) and results from simulation in ABAQUS

The presence of contact stresses at crack faces affect the calculation

of the stress intensity factors. In order to take this into account, KI

and KII were evaluated by the interaction integral M(1,2) between
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Figure 4.17: Vertical displacement distribution from simulation in ABAQUS

two states (1) and (2) of the cracked body (Kuna, 2013):

M (1,2) =
∫
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where σij , εij and ui are stresses, strain and displacement field, respec-

tively, and n is the outward unit normal on the contour, as illustrated

in Figure 4.18. The subscripts (i, j = 1,2) refer to the two in-plane di-

rections x1 and x2. The superscripts refer to the state of the body;

(1) stands for a coupled state of mixed-mode (field variables obtained

from FEA) and (2) is an auxiliary state with field variables defined by

the asymptotic field for pure mode I or II, depending on the stress

intensity factor of interest.

For KI , the state (2) is taken as pure mode I and, in this case, this
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Figure 4.18: Interaction integral

stress intensity factor is related to the interaction integral as:

KI = E
′

2 M (1,modeI)

where E′ is the material constant related to Young’s Modulus E and

the Poisson’s ratio ν:

E
′
=


E

E
1−ν2

For KII , the state (2) is taken as pure mode II:

KI = E
′

2 M (1,modeII)

The first term of the interaction integral (equation (4.1)) was directly

obtained by contour integral output from ABAQUS (requested for 18

contours). The second term was calculated by a numerical approxima-

tion of the line integral at crack faces considering the contact stresses at

this location. Figure 4.19 shows the impact of adjusting the interaction
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integral accounting for contact stress. For this analysis, a simple plane

model with a slant crack, under completed reversed fatigue load is con-

sidered. Each dashed line on the graphs represents a result obtained in

one of the 18 contours. The right hand side plots show results for com-

putation of KI and KII considering only the first term on equation

(4.1). As it can be seen, the values of KI are not zero, once the axial

loading is compression and crack faces are likely to be in contact (time

step between 0.5 and 1). Regarding the computation of KII , it can

be seen that there is not a converged value of KII on this condition.

However, once the second term is added to equation (4.1), the results

(graphs on the left hand side) showed that KI is now contour inde-

pendent for both loading conditions (traction and compression, from

time step 0 to 1) and, under compression, its value is about zero, as it

should. Also, for KII the adjustment causes the values of KII to be

contour independent and converged to a unique value when the crack

is under compression.

In order to verify the stress intensity factors obtained by conven-

tional FEM, they were compared with analytical solution using weight

function (Tada et al., 2000), available for the experimental configuration

of a double edge notch tension (DENT) specimen. The stress intensity

factor KI for a situation under fretting condition can be estimated by

the stress intensity factor in a DENT specimen, if the crack length is

long enough to neglect the effect of contact stresses (Hojjati Talemi,

2014). The results presented in Figure 4.20 showed that, for long cracks,

there is good agreement between analytical solutions and FEM.
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Figure 4.19: Effect of adjusting the contour integral by adding the second term due to
contact stresses

Figure 4.20: Comparison between stress intensity factor KI obtained by analytical ex-
pression (DENT) and for fretting fatigue case (FEM)
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4.2.2 Fretting Fatigue: cylindrical pad

4.2.2.1 Experimental data

Fretting fatigue tests were carried out by Hojjati Talemi (2014) using

two cylindrical pads and a flat dog-bone shaped specimen. Tests are

performed in a dynamic servo hydraulic machine, in which a dog bone

specimen, subjected to oscillatory axial load, is maintained in contact

with two cylindrical pads. These pads are kept pressed against each

side of the flat specimen by a constant clamping force F while the

specimen is fixed at one end and the other end is subjected to a cyclic

bulk stress σaxial (loading ratio 0.1). As a consequence of this set of

loading, the compliance springs transmit an oscillatory tangential force

±Qmax at the pads. The material for both specimens and indenters is

aluminium alloy 2420-T3, with a Young’s modulus of 72.1GPa and a

Poisson’s ratio of 0.33. For further details in the experimental tests,

the reader is referred to Hojjati-Talemi et al. (2014) and Hojjati Talemi

(2014). Table 4.2 shows the different fretting conditions that were tested

(various axial stresses and tangential loads, for the same normal load).

For each condition, the test was performed until final rupture of the

specimen and the total number of cycles up to failure was recorded.

These values are shown in Table 4.2, column “Nf,exp” . After test, the

fractured surfaces of the specimen were inspected and crack paths at

mid surface of the pad (plane strain condition) were recorded.

As discussed by Hojjati-Talemi et al. (2014) and shown in Figure

4.25(a), experimental observations of crack path show that fretting fa-

tigue crack initiates at the edge of the contact between pad and speci-
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Table 4.2: Experimental conditions extracted from (R. Hojjati-Talemi et al., 2014).

Test no. σaxial [MPa] R [mm] F [N] Qmax [N] Nf,exp

FF1 100 50 543 155.165 1407257

FF2 115 50 543 186.25 1105245

FF3 135 50 543 223.7 358082

FF4 135 50 543 195.55 419919

FF5 160 50 543 193.7 245690

FF6 190 50 543 330.15 141890

FF7 205 50 543 322.1 114645

FF8 220 50 543 267.15 99607

FF9 220 50 543 317.845 86647

men, in a direction inwards the contact region. Then, this crack evolves

under a mixed mode condition until reaching a depth from the surface

of approximately the hertzian contact width 2acont (for the tests in Ta-

ble 4.2, acont = 0.467 mm). After this stage, the effects of the high local

stresses, generated by the contact between pad and specimen, become

negligible and the crack propagates in a direction perpendicular to the

applied bulk stress σaxial. This typical path, growing inwards the con-

tact region, have already been observed by various other researchers

(Faanes, 1995; Navarro et al., 2006; Szolwinski and Farris, 1998) under

different fretting conditions. For instance, Wharton et al. (1973) and

Cardoso et al. (2016) showed the same characteristic path for samples

in different materials (brass and steel).

4.2.2.2 Numerical model

A parametric 2D FE model was created in ABAQUS containing two

parts. It consists of a pad and a specimen, with dimensions, boundary
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conditions and mesh details shown in Figure 4.22. The model rep-

resents half of the experimental set-up, due to symmetry about the

centreline of the specimen. The vertical movement in the y direction

(Uy = 0) and rotation around z axis (Rxy = 0) were restricted at the

bottom of the specimen. The sides of the pads were restrained in the

x direction (Ux = 0). Both parts are made of aluminium 2420-T3, with

material properties summarized in Table 4.3. No plasticity effect was

incorporated and the material response was considered elastic. This is

a reasonable assumption for high cycle fatigue, where plastic strains

are very small (Ambrico and Begley, 2000).

Regarding surface deformation at the contact, the elastic surface

deformation is already taken into consideration in the modelling. The

plastic deformation at interface, for the fretting cases analysed here,

can be neglected because of the following. The load required to cause

the first yield of the specimen, assuming the phenomena is represented

by a cylinder in contact with an elastic-plastic semi-infinite half space,

can be predicted by Johnson (1987) and is given as:

PY =
3.2π

(
1−ν2)Rσ2

0.2
E

where R is the pad radius (50 mm), E is the Young’s Modulus (72.1

GPa) and σ0.2 is the yield strength (506 MPa) of the specimen’s ma-

terial. For the experimental tests used here, the applied normal force

per unit of thickness is 135.75 N/mm and the critical load PY is equal

to 1637.25 N/mm. Therefore, the applied normal load is only about

8% of the load necessary to cause yield at the specimen. Even for this

small value of critical load, plasticity may be an important effect at
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Table 4.3: Material properties for aluminium 2420-T3 (Hojjati-Talemi et al., 2014)

E Modulus of Elasticity [GPa] 72.1

ν Poisson’s ratio 0.33

σ0.2 Yield Strength [MPa] 506 ± 9

surface interface, depending on the tangential load Q. To analyse the

impact of Q in the surface plasticity, the study conduct by Ambrico

and Begley (2000) can be used as a reference. The idea is to verify the

influence of load combinations and friction coefficient on the evolution

of plastic strains. The material behaviour is broken down into three

regimes: (i) cyclic plastic straining, in which the material experiences

steady, reversed cyclic plastic strains, (ii) ratcheting, in which the plas-

tic strain magnitude increases continually with load cycling, and (iii)

shakedown, in which plastic strains saturate after a few cycles and sub-

sequent material response is entirely elastic. Making use of one of the

behaviour maps proposed by them and replicated here in Figure 4.21,

it is possible to analyse the impact of tangential load on the surface

plasticity. All the test data used in our study fall in the shakedown

region and the effects of deformation hardening can be neglected.

Figure 4.21: Representation of the experimental fretting fatigue tests used in this study
on a plasticity behaviour map from Ambrico and Begley (2000).
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The contact between pad and specimen was analysed using the

master-slave algorithm with surface to surface interaction and finite

sliding in ABAQUS. The cylindrical surface of the pad was considered

the slave surface and the specimen flat surface was the master. The

tangential behaviour was defined by Lagrange multiplier formulation

and the normal behaviour was modelled by a hard contact. The coeffi-

cient of friction between the pad and specimen was kept constant and

equal to 0.65.

An initial crack with length equal to 50 µm was inserted in the

model at near the edge of the contact. This location was defined based

on the equivalent multiaxial damage stress approach as estimated in

Hojjati-Talemi et al. (2014). This crack has been orientated at β= 40◦, as

illustrated in Figure 4.22. The crack propagation phase was modelled

using the conventional FEA with re-meshing technique, taking into

consideration contact interaction between the crack faces. A stepwise

procedure was performed as follows: a cyclic fretting load was applied

to the model and, from a static analysis, the stress intensity factors KI

and KII were calculated for each time instant of the loading cycle. Us-

ing equation (1), these stress intensity factors were expanded to k∗I and

k∗II as function of time and θ. Then, the propagation direction was de-

termined according to the ∆k∗I,max criterion. The crack was advanced,

during the first 25 increments, by a fixed length increment of 50 µm,

then this length increment was raised to 250 µm, for the remaining

propagation phase. The model was re-meshed after each increment of

crack length. This procedure was repeated until final rupture of the

specimen.
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Figure 4.22: Model information: (a) dimensions of the model, details of cylinder indenter
and flat specimen; (b) loading, boundary conditions and initial crack details; (c) loading
history as function of time steps; (d) mesh details.

After each increment of crack length, the stress intensity factors

were extracted KI and KII via the interaction integral method de-

scribed in Section 4.2.1. The first term of the interaction integral (equa-
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tion (4.1)) was directly obtained by contour integral output from ABAQUS

(requested for 18 contours). The second term was calculated by a nu-

merical approximation of the line integral at crack faces considering

the contact stresses at this location.

The cyclic loads are applied in three steps aiming to simulate a

complete fretting fatigue cycle. The effect of the tangential load Q

was modelled as a cyclic reaction stress σreaction (Hojjati-Talemi et al.,

2014):

σreaction = σaxial−
2Q
bt

where b and t are the specimen width (b= 10 mm) and thickness (t= 4

mm), respectively. The maximum and minimum values of Q and σaxial

are obtained from experimental data. In the first loading step, the

normal load F is applied at the top pad and this compressed condition

is held constant until the end of the cycle. Then, the cyclic load (axial

and reaction stresses) was applied to the sides of the specimen in two

steps, as illustrated in Figure 4.22.

A 2D quadrilateral, 4-node (bilinear), plane strain, reduced inte-

gration element (CPE4R) was used to mesh the model with a ring of

collapsed elements at crack tip. To create a fine mesh at the contact

region, a small element size of about 5 µm was selected at the inter-

face between pad and specimen. The mesh size was then gradually

enlarged as the distance from the contact region was also increased.
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4.2.2.3 Life prediction

The total life Nf,predicted was obtained by adding the initiation life

and the propagation life. The initiation life was predicted in Hojjati-

Talemi et al. (2014), considering a continuum damage mechanics ap-

proach.

The propagation life is calculated as the number of cycles NP nec-

essary to cause a crack growth from an initial length (ai) until a critical

failure length (af ). It can be estimated through a fracture mechanics

approach using a crack growth law. In the present study, we integrate

a Paris’ Law in order to obtain the propagation life:

NP =
∫ af

ai

da

C∆Km
(4.2)

where C = 2.73×10−11 (mm/cycle)/(MPa
√

mm)n and m = 2.6526 are

material constants, obtained from Xiang et al. (2010), ∆K is the stress

intensity factor range and da is the infinitesimally small increment in

crack length. For mixed-mode conditions, we assumed ∆K = ∆Keff ,

which is given by (Liu, 2008):

∆Keff =
√

∆K2
I + ∆K2

II (4.3)

where ∆KI and ∆KII are the stress intensity range at crack tip con-

sidering maximum and minimum fatigue loading conditions.

Figure 4.23 shows a flow chart of the methodology adopted in this

study and it works as follows. The stress analysis allows us to obtain

stress intensity factors as well as the preferential direction of propaga-
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tion θP . A check is then performed to evaluate if the total crack length

has reached a critical value. If not, then the crack is advanced in the

direction θP and the updated model is submitted to a new analysis. If

yes, then the simulation stops, the final crack path is obtained and the

total number of cycles is calculating by adding all incremental num-

ber of cycles calculated by Paris’ law, considering the stored values of

crack length, KI and KII .

Figure 4.23: Flow chart of the methodology adopted in this study

4.2.3 Life estimates and crack path prediction

The stress intensity factors KI and KII were recorded at the load-

ing steps 2 and 3 (at maximum and minimum fatigue load, respec-

tively) and they were expanded in k∗I and k∗II as function of θ. Figure

4.24 shows the variation of these expanded factors for the model with

an initial crack for test configuration FF4. It can be seen that ∆k∗I,max
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criterion predicts an propagation angle θP approximately equal to 22◦,

a direction slightly inwards the contact between pad and specimen,

which is in good agreement with experimental observation. However,

MTS criterion (k∗I,max) predicts an incorrect higher angle of around

50◦, that is somewhat outwards the contact. It is interesting to no-

tice that, to obtain the propagation direction through MTS criterion,

it is only necessary to consider the maximum loading condition, dis-

regarding the impact that the rest of the fatigue cycle might have on

the problem. For proportional loading conditions, the analysis of the

whole cycle leads to the same results as the analysis at maximum load.

However, this is not the case for fretting fatigue and, to correctly pre-

dict the propagation direction, it is essential to consider the whole

loading cycle.

Figure 4.25 shows the comparison between the experimental path

and the predicted propagation path after 20 crack length increments

for test configuration FF1. It can be seen that the propagation path

obtained by the ∆k∗I,max criterion using conventional FEA and taking

into account crack face interactions is in good agreement with the ex-

perimental observations. The predicted crack evolves under the mixed-

mode condition, growing inwards the contact region, up to a depth of

around 1 mm (about two times the Hertzian semi-contact width acont)

and then it propagates in a direction approximately perpendicular to

the axial stress. This propagation behaviour has also been observed

for the other loading cases (FF2-FF9) analysed. In addition, this path

characteristic is in agreement with experimental observations. Figure

4.25 1 also presents the prediction using MTS criterion with a propa-

1Reprinted from Tribology International, Vol 76, Hojjati-Talemi, R., Wahab, M. A.,
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Figure 4.24: Predicted angle for initial propagation increment of test FF4 (crack length
of 50 µm oriented at β = 40◦ at near the edge of the contact between pad and specimen)

gation path that advances outwards the contact region, contradicting

experimental data. Thus, this criterion is not recommended for fretting

conditions with cylindrical pad configuration.

Mode mixity and stress intensity factors as function of time along

De Pauw, J., De Baets, P., Prediction of fretting fatigue crack initiation and propaga-
tion lifetime for cylindrical contact configuration, Pages 73-91, Copyright (2014), with
permission from Elsevier.
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Figure 4.25: Propagation path for test FF1: (a) experimental observation , data from (R.
Hojjati-Talemi et al., 2014); (b) Predicted path considering MTS and ∆k∗I,max criteria

the loading cycle are shown in Figure 4.26, for test FF4 at different

crack growth increments. After 1 crack length increment, it is notice-

able that the mode-mixity ratio is greater than one during more than

half of the loading cycle, indicating that Mode-II plays an important
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role at the beginning of crack propagation. It is also clear that during

the initial step of crack propagation, the crack faces are in contact for

approximately half of the loading cycle (KI = 0 at this condition). This

is explained by the fact that, at this stage, the stress state around the

crack is largely influenced by the contact between the pad and speci-

men, promoting crack face interaction. As the crack evolves, this im-

pact is reduced and the crack growth is mainly promoted by the axial

stresses. After 25 crack length increments, the values of mode mixity

are lower than one during almost the entire loading cycle, indicating

a predominant Mode-I growth. Also, it is interesting to notice that, at

this stage, there is no crack faces interaction, as KI is greater than zero

during the whole cycle.

The results presented above have been obtained assuming the coef-

ficient of friction (CoF) between crack faces is 0.8. However, to study

the influence of the CoF at crack faces on the predictions, an analysis

considering a much smaller value of CoF = 0.2 at crack faces was also

performed. As it can be seen in Figure 4.27, the CoF at crack faces

does not have a significant influence on the predicted paths. As ex-

pected, as the coefficient of friction between the crack faces is reduced,

the influence of Mode-II on the path is also reduced and the propaga-

tion gets closer to a vertical path (pure Mode-I growth). Although we

can observe this tendency on the paths, the impact of CoFs on them

is still very minor, with the maximum difference in x coordinates be-

tween both paths being smaller than 5% of the heztian semi-contact

with (∆xmax/acont = 0.048). This is because the presence of kinks along

the crack faces avoids any sliding and reduces the contact between the

faces. Similarly to what is discussed in Giner et al. (2014), this numer-
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Figure 4.26: Evolution of mode mixity as function of time along the loading cycle, for
test FF4: (a) after 1 crack length increment and (b) after 25 crack length increments

ical effect is believed to represent the restriction in movement caused

by asperities and irregularities along the crack faces.

For all experimental tests, modelled in this study, the ratio between
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Figure 4.27: Crack propagation path for different CoF at crack faces for test FF1

stick and slip zone was about 0.8 to 0.9, creating a high stress gradient

at the edge of the contact. The presence of crack greatly affects these

stresses and the relative movement in the slip zones. This effect has

been accounted for in our simulations and, as an illustrative example,

the slip amplitude is plotted as function of the normalized contact

width for test case FF2 under different crack length increments. As

it can be seen in Figure 4.28, as the crack grows, the relative movement

in the left side of the crack is reduced. As discussed in Giner et al.

(2009), this is explained by the fact that, as the crack grows, it becomes

difficult to transmit the bulk stresses to this region, due to the loss of

stiffness caused by the presence of the crack.

The propagation life was estimated by inserting an initial crack near
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Figure 4.28: Slip distribution at contact interface as function of normalized distance x/a
for different crack length increments

the contact edge and propagating it considering the ∆k∗I,max criterion,

as discussed above. Figure 4.29 shows the ratio between predicted

propagation life and total experimental life for different test conditions.

About 40% to 50% of the total life was spent in the crack propagation,

illustrating the necessity of correctly predicting this phase in order to

obtain a precise estimation of the total life.

Combining the initiation life (Hojjati-Talemi et al., 2014) and propa-

gation life, the total life can be estimated. As shown in Figure 4.30, the

predictions are in good agreement with observed experimental lives,

being distributed around the centre line and being inside a band of

±50%. These estimates indicated that a correct modelling of the prop-

agation phase, considering crack face contact and using an orientation

criterion that accounts for non-proportional loading, leads to, not only

accurately estimation of crack path, but also decent life prediction.
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Figure 4.29: Percentage of life spent in propagation (Np/Nf,experimental)

Figure 4.30: Predicted fretting fatigue total lifetime versus experimental data from the
literature (Hojjati-Talemi et al., 2014)
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4.2.4 Effect of short crack behaviour

Even though the results obtained in Section 4.2.3 are reasonable

predictions of fretting fatigue lives, their estimates rely on a Paris

crack growth law for long cracks. According to the literature (Krupp,

2007), the transition from short to long crack behaviour happens when

the crack length is greater than a few grain diameters. However, for

the material considered here, the grain size is considerably large and

around 252 ± 118 µm (De Pauw, 2016), which invalidates the analysis

assumption of long crack behaviour.

The aim of this section is to study and analyse the effect of short

crack behaviour on the estimates of fretting fatigue crack propagation

lives for cylindrical pad configuration. The total life, up to complete

failure Nf,predicted, is computed by adding the initiation life of a crack

of length 50 µm with the propagation life from this initial crack until

final rupture of the specimen. For initiation life, as discussed before,

we will use the predictions from Hojjati-Talemi et al. (2014), which use

continuum damage mechanics.

The propagation life was predicted using a Fracture Mechanics ap-

proach, integrating a fatigue crack growth law with adjustment for

short crack growth behaviour. The results in Section 4.2.3 were com-

puted considering a simple Paris’ law crack growth model (Equation

4.2). As discussed by Navarro et al. (2006), this is a simplified approach

that does not take into consideration the short crack behaviour nor the

crack growth threshold. In order to account for both, the model pro-

posed by Navarro et al. (2006) will be used and will be named here as
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“Paris’ Law with adjustment for short cracks”. It represents the fact

that the fatigue threshold for short cracks is lower than for long cracks

and can be written as:

NP =
∫ af

ai

da

C
(

∆Kn
eff −

(
∆Kth

√
a

a+a0

)n) (4.4)

where ∆Kth is the fatigue crack threshold, a is the crack length and a0

is the El Haddad’s parameter, given by:

a0 = 1
π

(
∆Keff
σf

)2

and σf is the plain fatigue limit of the material.

For our analysis, we assumed a mixed-mode condition and we con-

sidered that the effective stress intensity factor range ∆Keff is given

by equation (4.3)

The total life was obtained by adding the initiation life and prop-

agation life. As shown in Figure 4.31, the predictions for both cases

(with and without short crack adjustment) are in agreement with ex-

perimental data. The predicted values well distributed around the cen-

tre line and within a band of ±50% of the experimental ones.

Based on the results presented in Figure 4.31, it can be observed

that although the simple Paris growth law does not model the effect

of short cracks, it still provides good predictions. Navarro et al. (2006)

explains this behaviour as follows. It is known that for high stresses

(in our case, tests FF3 to FF9), the crack growth rate for short cracks is

much higher than for long cracks with the same stress intensity factor.
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Figure 4.31: Total lifetime: prediction versus experimental data (Hojjati-Talemi et al.,
2014), for crack growth laws with and without adjustment for short cracks

In this way, Paris law without short crack adjustment would provide

a better estimative of the reality. However, for longer lives (tests FF1

and FF2), the short crack growth rate may reduce as crack grows and

an adjustment may impact the results. Figure 4.32 shows the differ-

ence in propagation life predictions of both models and exemplify the

discussion above.

In order to compare the accuracy of both life prediction techniques

(with and without adjustment for short crack behaviour), the statisti-

cal method described in (Bhatti and Wahab, 2017a) and Navarro et al.

(2008) is considered here. The normalized mean x̄ and the normalized

standard deviation SDx were computed considering the experimental
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Figure 4.32: Percentage of propagation life (Np/Nf,experimental), for both crack growth
laws.

lifetime N i
f,experimental and the predicted one N i

f,predicted for each test

case i. The are computed by the following equations:

αi = log
N i
f,predicted

N i
f,experimental

(4.5)

ᾱ= 1
n

n∑
i=1

αi (4.6)

SDα =

√√√√ 1
n−1

n∑
i=1

(αi− ᾱ)2 (4.7)

x̄= 10ᾱ (4.8)

SDx = 10SDα (4.9)
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Table 4.4: Comparison of accuracy of both life predictions

Model x̄ SDx

Paris Law 0.985 1.246

Adjustment for short crack behaviour 1.027 1.249

where n is the total number of test configurations. The normalized

mean x̄ and the normalized standard deviation SDx are used as mea-

surements to access how far the predicted results are with respect to

the experimental ones. The closer to 1 those normalized values are,

the better is the prediction. A comparison between both propagation

laws used in this study is shown in Table 4.4. The results are very sim-

ilar to each other, with the average predictions considering short crack

behaviour being slightly higher than the ones without adjustment.

Although the results may imply that the effect of microstructure on

the fretting fatigue predictions is small, this may not be the general

conclusion. It is important to note that we only analysed the impact

of short cracks on the crack growth law and some important phenom-

ena have been ignored. For instance, those models do not take into

consideration that the size of grains, their orientation and boundaries

may influence the crack behaviour. In addition, the anisotropic elastic

behaviour inside grain in metal alloy can affect the short crack propa-

gation phase.

4.2.5 Computational cost

The complete analysis of crack propagation using LEFM and the

extended MTS orientation criterion (∆k∗I,max) takes around few hours
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running in three cores, using the following processor: Intel Core i7-

5600U CPU @ 2.60GHz with 16GB of memory RAM. For instance, for

test case FF9, the total analysis would take 4 hours and 52 minutes in

CPU time.

4.3 Conclusions

In this study, we predicted crack propagation paths for fretting fa-

tigue specimen in contact with cylindrical pad. It is known that un-

der this conditions, traditional LEFM orientation criteria are not valid.

Thus, to obtain good predictions, the ∆k∗I,max criterion was used.

For all tests considered here, the axial loading is not fully reversed.

The low axial load ratio (R = 0.1) associated with the high stresses

caused by the contact between pad and specimen is sufficient to cause

crack faces to interact with each other. This interaction is of great

importance at the initial stage of propagation where a Mode-II plays an

important role. Therefore, a proper modelling of the contact between

them is essential to predict the crack propagation path and accurately

estimate the propagation life.

The path propagation predictions considered here have been per-

formed numerically using conventional FEM including a formulation

that allows for crack face contact. The numerical results are in good

agreement with the experimental observations, indicating the impor-

tance of choosing an appropriate orientation criteria and considering

possible crack face interactions.
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5
Monotonic Cohesive Zone

Model

As discussed in Chapter 4, finite element methods combined with

linear elastic fracture mechanics can predict the life of components

131
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under fretting conditions with reasonable accuracy. However, they re-

quire assumptions and simplifications that may no longer be plausible

for cases where there is considerable amount of fretting. For instance,

as there may be high stresses at contact interface, plasticity around the

crack tip could play a significant role and linear elastic fracture me-

chanics theory may no longer be valid. Moreover, life estimates often

rely heavily on empirical models for the crack growth law, which may

not be adequate for non-proportional loading conditions, a common

characteristic of fretting fatigue problems. A more robust alternative

that does not rely on the assumptions above is to consider failure using

cohesive zone model (CZM)

In this chapter, we focus on the crack initiation phase. At this stage,

it is important to correctly predict the crack initiation location and ori-

entation, which is often achieved by using critical plane approaches.

The use of CZM as an alternative approach to accurately estimate those

parameters is investigated in this chapter. CZM as well as two of its

common initiation criteria, namely quadratic traction-separation crite-

rion and maximum nominal stress criterion, are used to study crack

initiation location and orientation under fretting conditions. Our re-

sults are compared with the traditional critical plane approaches and

with experimental data.

The use of cohesive zones to simulate fretting phenomenon has

been restricted to only few papers in the literature (Zhang et al., 2016,

2015; Kim and Yoon, 2014), discussed in detail in Section 2.4.5. To

the best of our knowledge, the work presented in this thesis is the

first attempt in the literature to accurately predict crack propagation
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paths and estimate total fretting fatigue failure lives using cohesive

zone models. The present chapter deals with the use of a CZM (bilin-

ear traction-separation law) to predict crack initiation location and ori-

entation. We consider two fretting experimental configurations, with

flat and cylindrical pads. Here, only the initiation point of the cohe-

sive zone is considered and the accumulation of damage during load-

ing/unloading in a fatigue cycle is ignored. This assumption simplifies

the analysis, but at the expense of inhibiting the application of CZM for

life predictions. This prediction would require a cycle-by-cycle analy-

sis, with or without a time acceleration procedure, in conjunction with

a damage evolution law. This will be the focus of the next chapter.

This chapter is divided in the following sections. Firstly, a brief de-

scription of the implementation and modelling of cohesive zone dam-

age initiation is done. In order to verify the accuracy of the results

obtained using CZM, they are compared to traditional critical plane

approaches. Two classical critical plane damage parameters have been

used in this comparison: the Findley (FP) and Fatemi-Socie (FS) pa-

rameters. Details of the implementation required to compute those

parameters is presented followed by details of the FE models used in

this study and a discussion of the main results.

5.1 Initiation criteria

CZM is an alternative methodology to assess damage and failure

of materials with or without cracks. In comparison with LEFM, co-

hesive zone models eliminate the stress singularity at crack tip and
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account for non-linear material behaviour at this region. When com-

pared with continuum damage mechanics, CZM may be understood

as a damage model that considers failure only by the material separa-

tion and not by its deformation (Kuna and Roth, 2015). CZMs were

developed back in the 60’s with the introduction of Dugdale’s strip

model (Dugdale, 1960). Over the last 40 years, many models have been

proposed for different materials and analysis. Brocks et al. (2003) pre-

sented a detailed literature review on the topic, discussing the most

common models and presenting different applications for CZMs. Park

and Paulino (2011) published another literature review, focusing on a

critical discussion of the different models and their applicability.

As discussed by Kuna and Roth (2015), CZM was developed to

replicate the fracture process in front of a crack tip and its basic idea

is to describe the entire fracture process in a thin cohesive region. The

material behaviour inside this region follows a local law, based on the

traction and separations at the cohesive zone surfaces. This constitu-

tive law creates a more realistic description of the stress at crack tip,

removing the stress singularity from LEFM (Roth et al., 2014). Figure

5.1(a) shows a representation of CZM. It can be seen that damage starts

once the tractions reach a cohesive strength parameter (Tmax) or sep-

aration reaches δ0. This defines two regimes characteristic of cohesive

models: a reversible state from which there is no damage accumulated

and a softening region, where the local material cohesive strength is

reduced. Complete failure happens when cohesive strength reduces

to zero or once separation reaches a critical value δf . Note that, as

elucidated by Roth et al. (2014), to model failure using CZM, there is

no necessity to have a predefined crack in the model. CZM allows a
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unique way to model crack initiation, propagation and final failure.

Figure 5.1: Cohesive zone model: (a) representation of its use for modelling of fracture;
(b) bilinear model

Even though the cohesive strength Tmax, the critical separation δf

and, therefore, the area under the traction-separation law (fracture en-

ergy G) are material dependent, the shape of the traction-separation

constitutive law is independent on the material. As discussed in Brocks

et al. (2003), this is explained by the fact that cohesive model is a phe-
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nomenological approach and, as a consequence, there is no physical

evidence on which form of distribution the cohesive law should take.

Many different shapes have been proposed in the literature. For in-

stance: polynomial function (Tvergaard, 1990), exponential (Needle-

man, 1990), bilinear function (Geubelle and Baylor, 1998), among oth-

ers. For simplicity, in this thesis, a bilinear traction-separation law is

adopted and it is represented in Figure 5.1(b). The initial material re-

sponse is presumed to be linear until a damage initiation criterion (ini-

tiation point) is fulfilled. After that, degradation of the material starts

and damage follows a linear softening evolution law until complete

failure.

The CZM was incorporated in our simulations of fretting

phenomenon by using ABAQUS XFEM with cohesive segments mod-

ule, as presented in Figure 5.2. Initially, a stress analysis of the un-

damaged material, subjected to some load and boundary conditions,

is performed. The stress/strain obtained at the centroid of the XFEM

elements, at each loading increment, is then used to compute a dam-

age function. Once this damage function reaches a value of one (within

some tolerance), a crack is introduced in the model, crossing one entire

element. The tolerance is a parameter defined by the user. The smaller

the tolerance the higher the computational cost. In our simulations,

we have used the default value in Abaqus, which is ±0.05. To check

the impact of this tolerance on the results, we have also done the same

analysis with a smaller tolerance of ±0.025 and have obtained the same

crack initiation locations and orientation.

The cohesive tractions and separations at the crack faces are used
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to model the degradation and eventual failure of the enriched ele-

ment. The initial crack location and direction can be directly for-

mulated by the user, considering a user defined initiation criterion,

programmed by the UDMGINI subroutine in ABAQUS. For further

details, the reader is referred to the ABAQUS documentation Version

(2013).

Figure 5.2: Behaviour of the XFEM with cohesive segments model in ABAQUS

The crack initiation is assumed to happen at the start of the degra-

dation of the cohesive response of the enriched element. This process

of degradation starts when the stresses and strains in the material meet

a specified initiation criterion. This criterion can be written as a nor-

malized function of the stresses and strains, with respect to the critical

cohesive strength of the material (Tmax). We denoted it as “damage

initiation criterion”. A crack initiates in the model when this damage

criterion reaches a value of 1 with some tolerance.

For mixed mode conditions, as in the fretting fatigue case, the crit-

ical cohesive strength of the material Tmax can be expressed as two

material properties: the cohesive strength of the material under mode I

condition (tn,c) and the tangential cohesive strength of the material un-

der pure mode II condition (ts,c). Their values can be estimated based

on laboratory tests using fracture specimens for each failure mode (I or
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II) individually and correlating the fracture toughness, area under the

graph Γ0 in the traction-separation curve, and the critical separation

δf .

A reasonable estimate of tn,c and ts,c depends on the fracture mech-

anism. For instance, it is known that the fracture of brittle materials in-

volves very little plasticity. Therefore, a reasonable assumption would

be that tn,c is roughly one order of magnitude of the Young’s Mod-

ulus of the material (Mei et al., 2010). For ductile materials, such as

aluminium alloys, the fracture process involves large plasticity, being

characterized by the nucleation, growth and coalescence of voids ahead

of crack tip. For this case, tn,c may be approximately equal or of the

same order of magnitude of the ultimate strength of the material (Kim

and Yoon, 2014; De-Andrés et al., 1999). Regarding the tangential co-

hesive strength of the material under pure mode II condition (ts,c), for

ductile materials, its value can be approximated considering the Tresca

criterion as ts,c = 0.5tn,c, as described in Xu and Yuan (2009a). Con-

sidering this reasoning, tn,c was assumed equal to the ultimate tensile

stress σu and ts,c = 0.5σu.

As mixed mode condition is an important feature of fretting fatigue

failure, it is expected that a combination of normal and shear tractions

may impact the crack initiation orientation and location. Thus, two

stress-based damage initiation criteria commonly used for the cohesive

model (Lopresto et al., 2017) are considered: the quadratic traction-

separation and the maximum nominal stress criteria. These criteria

have been previously applied in fatigue and delamination problems

(Mei et al., 2010; Kim et al., 2011; Xu and Yuan, 2009b).
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As discussed by Mei et al. (2010), under mixed mode conditions,

an approach to account for the effect of mode mixity is to consider

the initiation criterion as a quadratic combination of normal and shear

tractions. The quadratic traction-separation criterion, herein defined

by the damage variable f1, reflects a quadratic ratio between the max-

imum values in time of the normal tractions tn,θ and tangential trac-

tions ts,θ acting in a potential crack plane oriented at an angle θ (see

Figure 5.3). This damage variable can be written as:

f1 =

√{
〈tn,θ〉
tn,c

}2
+
{
〈ts,θ〉
ts,c

}2
(5.1)

where, tn,c is the cohesive strength of the material under mode I con-

dition and ts,c is the tangential cohesive strength of the material under

pure mode II condition. Here, it is assumed that compressive tractions

do not promote damage, therefore, 〈tn,θ〉= tn,θ if tn,θ > 0 and 〈tn,θ〉= 0

otherwise.

Figure 5.3: Scheme of the UDMGINI subroutine for the two implemented damage crite-
ria for a single element

In contrast, the maximum nominal stress criterion does not con-
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sider any interaction between normal and tangential tractions. Here,

this damage initiation criterion is represented by the variable f2 and

can be obtained by:

f2 = max
{
〈tn,θ〉
tn,c

,
〈ts,θ〉
ts,c

}
. (5.2)

The implementation of these two criteria was done using the user

defined subroutine UDMGINI in ABAQUS. This subroutine allows the

user to define not only the damage criteria, but also the crack initiation

orientation. Figure 5.3 shows a scheme of the subroutine used in this

study. Firstly, for each loading increment, the normal traction tn,θ and

tangential traction ts,θ as function of the potential crack orientation

θ are obtained based on the stresses at the centroid of each element.

These tractions are later used to compute the damage variables f1 and

f2 for each element as function of the angle θ. This process is repeated

for all loading increments in one fretting cycle. The element in which

the global maximum value of damage parameters is obtained defines

the critical location for crack initiation. The angle θP , at which the

damage is maximized, is selected as the potential crack initiation ori-

entation.

5.2 Fretting fatigue initiation model

For this study, FE models were created in ABAQUS representing

the laboratory test set-up for fretting fatigue. The models consisted of

two parts: a pad and a specimen. Two pad configurations were consid-
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ered, a flat indenter and a cylindrical one. Both models, with flat and

cylindrical pads, replicate only half of the experimental set-up, due to

symmetry of the test. This symmetry was modelled by the restriction

of the vertical movement in the y direction and rotation around the

z-axis at the bottom surface of the specimen. In order to avoid rigid

body movement of the pads, the displacement in x direction at both

sides of them were also restrained. Details of the boundary conditions

are depicted in Figures 5.4 and 5.5.

The master-slave algorithm with surface to surface interaction and

finite sliding was used for modelling the contact between pad and

specimen. The tangential behaviour was modelled using a Lagrange

multiplier formulation and the normal behaviour by a hard contact.

The coefficient of friction between the cylindrical pad and specimen

was kept constant and equal to 0.65, as per experimental data from

Hojjati-Talemi et al. (2014), and for the case of flat indenter it was kept

equal to 0.8, measured in Sabsabi et al. (2011).

For both types of pads, the specimen is subject to an oscillatory

axial stress σaxial and the pads are subjected to normal contact load

F . The only difference between these pad configurations, in terms of

loading, is the presence of compliance springs (for the case of cylindri-

cal pads) that generates an oscillatory tangential load Q, as discussed

below. The cyclic loads are applied in three steps aiming to simulate

a complete fretting fatigue cycle. The normal load F is applied at the

top pad in the first step and this loading condition is kept constant

until the end of the fretting cycle. Then, the cyclic axial load is applied

to the sides of the specimen in two steps, i.e. the maximum axial load
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Figure 5.4: Model details for the cylindrical pad configuration: dimensions, boundary
conditions, loading history

followed by the minimum one, as illustrated in Figures 5.4 and 5.5.

The cylindrical pads are secured during experiment through com-

pliance springs that generate an oscillatory tangential load Q at the

interface between pad and specimen. Its effect was considered as a

cyclic reaction stress σreaction, as in Hojjati Talemi (2014).

The analyses were done considering a linear elastic material re-
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Figure 5.5: Model details for the flat pad configuration: dimensions, boundary condi-
tions, loading history

sponse. For the flat indenter, loading conditions and material proper-

ties (aluminium 7075-T6) are the same as in the experiments conducted

by Sabsabi et al. (2011). The tests were performed in a stress ratio of

-1.0 for the axial load σaxial. For the cylindrical pad, they replicate

tests from Hojjati-Talemi et al. (2014), performed in samples from alu-

minium 2420-T3. During the experiments, a stress ratio of 0.1 for the

axial load σaxial and a -1.0 for the tangential load Q were adopted.

In both test configurations, pads and specimen are made of the



Chapter 5. Monotonic Cohesive Zone Model 144

same material with the same properties. For the cohesive parameters,

the cohesive strength of the material tn,c was assumed equal to the

ultimate tensile stress σu, similarly to Kim and Yoon (2014).

Regarding the mesh, a 2D quadrilateral, 4-node (bilinear), plane

strain, full integration element (CPE4) was used to discretize the model.

For analysis considering the cohesive zone behaviour, a region of the

model near the trailing edge has been meshed with a structured mesh

of CPE4 enriched elements (XFEM with cohesive segments modelling).

For this study, the contact interactions between crack faces are ne-

glected as we are dealing with monotonic cohesive zone models that

assume that the crack is opened during the whole fatigue cycle. Crack

face interactions are indeed important and are considered in the cyclic

cohesive zone model (presented in Chapter 6).

To guarantee that the model is able to correctly capture the stresses

distributions at the contact between pad and specimen, a small element

size at this interface (about 5 µm) was selected, based on previous

convergence study detailed in Chapter 3. This element size was kept

constant in the region modelled with enriched elements. The element

size was then progressively increased far away from the contact and

the XFEM region. Figures 5.6 and 5.7 show the mesh details for each

of the models, with flat pad and cylindrical pad.

5.3 Critical plane approaches

According to critical plane approaches, the cracks nucleate and

grow on specific planes, known as critical planes (Szolwinski and Far-
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Figure 5.6: Mesh details of model with flat pad

ris, 1998; Lykins et al., 2001a; Araujo and Nowell, 2002; Bhatti and Wa-

hab, 2017b; Bhatti et al., 2018). These planes are assumed to be max-

imum shear stress or strain planes, maximum tensile stress or strain

planes or any combination of these, using influence factors. For our

case, Findley (FP) and Fatemi-Socie (FS) parameters are employed to

determine the crack initiation location and orientation. According to

Findley parameter (FP), the crack initiates on a plane where the com-

bination of maximum shear stress amplitude and maximum normal

stress are maximum (Findley, 1959; Findley et al., 1956). This plane

where the FP reaches its maximum value is denominated as critical
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Figure 5.7: Mesh details of model with cylindrical pad

plane. Findley parameter is based on stresses and can be expressed as:

FP = ∆τmax
2 +kσmaxn

where, ∆τmax/2 and σmaxn are the maximum shear stress amplitude and

maximum normal stress on critical plane. The material constant k acts

as an influence factor to the normal stress component. It can be deter-

mined using fatigue limits in tension and torsion of the material. Here,

the value of k is determined as 0.16 using the experimental data from

the literature (Fatemi et al., 2005; Sabsabi et al., 2011).

Fatemi and Socie performed multiaxial fatigue tests and proposed
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a parameter that is suitable for material and loading conditions, which

produce shear mode failure (Fatemi and Socie, 1988). They observed

that, 90◦ phase difference induces additional cyclic hardening and can

cause significant fatigue damage in low cycle fatigue. The parameter

(FS) incorporates non-proportional loading and mean stress effects and

is based on shear strain and normal stress. It can be written as

FS = ∆γmax
2

(
1 +k

σmaxn

σy

)

where, ∆γmax/2 and σmaxn are the maximum shear strain amplitude and

maximum normal stress (in the plane of maximum shear strain range),

respectively.

The FP and FS damage parameters include both shear and normal

effects for crack initiation. The first part of these models incorporates

shear effects, while the second includes normal effects with the appli-

cation of influence factors. The influence factor determines the con-

tribution of normal stress or strain in crack initiation and depends on

material static and fatigue properties.

At first sight, the selection of FP and FS parameters may seem con-

tradictory to the study and conclusions of Chapter 4, which indicated

that minimum shear stress range orientation criterion should be used

to predict fretting crack growth direction. However, in the present

chapter we are interested in modelling crack initiation, and therefore,

dealing with stage I cracks. As discussed in Section 2.4.1, empirical

observation of stage I cracks showed a series of parallel ridges run-

ning in the direction of growth, indicating a shear mode propagation

which is in line with the choice of parameters (FP and FS). In Chap-
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ter 4, the main focus was the propagation of a long crack (hence the

use of LEFM) and only stage II crack propagation has been consid-

ered. Experimental observations of stage II cracks shows that initially

they grow under mixed-mode until crack reaches a depth large enough

where the effect of contact stresses can be neglected and the direc-

tion of propagation becomes approximately perpendicular to the axial

load. Therefore, under this condition of stage II crack growth, min-

imum shear stress range could be a good choice of orientation crite-

rion. In summary, it is important to clarify that we are dealing with

two different crack growth mechanisms: stage I growth, mainly dom-

inated by shear stresses (present chapter), and stage II growth, mainly

dominated by minimum shear stress range or, equivalently, maximum

normal stress range (Chapter 4).

The results of the contact problem are used to compute damage pa-

rameters. The stresses and strains are stored for each load increment

of the complete loading cycle. To find the highest value of the damage

parameter and orientation of the critical plane, the stresses and strains

are retrieved for the nodes at the contact interface from −a to a, using a

Matlab code. The code first reads the shear stresses and strains, for the

node located at the contact edge (x=−a), at maximum and minimum

load during the cycle. The normal stress is taken at maximum loading

condition, as it gives maximum normal stress during the cycle. By ap-

plying Mohr’s circle transformation, the stresses are evaluated at the

rotated planes from θ = −90◦ to 90◦ (using the same reference frame

as shown in Figure 5.3) with increments of 1◦. For each increment of

plane, shear stress and strain range and normal stress are calculated to

give a value of FS and FP parameters. For this node, values of com-
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puted damage parameters are compared and the angle with the high-

est value of damage parameter is stored as local critical angle and local

critical point. Using the same procedure, the local damage parameter

is computed for all other nodes at the contact interface. Then all local

damage parameters are compared to find the maximum value of the

damage parameter. The corresponding node and angle are stored as

damage initiation location and critical plane. For detailed description

on determination of stress or strain ranges and flow chart, readers are

referred to Bhatti and Wahab (2017a, 2018).

5.4 Verification of monotonic CZM

Generally, in fretting fatigue conditions, multiple cracks initiate at

the contact interface. However, only one crack propagates to cause the

failure. As discussed in the previous chapters, several researchers have

found this location experimentally to be near the trailing edge of the

contact.

For both flat and cylindrical pad cases, the damage initiation vari-

ables f1 and f2, computed via XFEM with cohesive zone models in

junction with the UDMGINI subroutine, showed its maximum value

near the trailing edge. Figure 5.8 shows the distribution of those dam-

age parameters in the specimen, for the case of a flat indenter (test 1 of

Sabsabi et al. (2011)). Both parameters had their maximum value in a

very local region at approximately the trailing edge of the contact, due

to the high stress concentration present in this configuration.

Although the maximum of both parameters is about at the same
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Figure 5.8: Damage initiation criteria distribution along the specimen, for test 1 of Sab-
sabi et al. (2011) (a) f1 and (b) f2 parameter.

location, their distribution with respect to the depth of the specimen is

very different. For the damage initiation criterion f1, this distribution

of damage suggests that the most probable direction of crack growth

is oblique and inwards the contact region, which is not the case for

f2. This difference can be justified by the influence of shear stresses

in each of those parameters, as noted by equations 5.1 and 5.2. For

the damage variable f1, shear stresses play a significant role leading to

a probable mixed mode condition for propagation, which is also ver-

ified in experimental tests (Szolwinski and Farris, 1998; Faanes, 1995;

Navarro et al., 2006). Based on that, one may conclude that this dam-

age variable f1 captured better the behaviour of specimens under those
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fretting conditions when compared with f2. Therefore, the quadratic

traction-separation criterion seems to be an appropriate choice of initi-

ation criterion for fretting conditions.

Figure 5.9 shows the distribution of the damage variables for a

cylindrical pad configuration. Those parameters are more smoothly

distributed below the contact region, while for flat contacts, the dam-

age is highly concentrated at the edge of the contact. This can be

explained by the fact that, though there is a stress concentration on the

cylindrical pad configuration, due to the geometry of the problem, it

is not as significant as in the case of flat contacts. It is also important

to notice that, also for the case of cylindrical pads, both parameters

had their maximum value near the edge of the contact. Considering

that the crack would initiate at the location of maximum damage, the

results, for all tested cases with cylindrical pad (FF1 to FF9), showed

initiation locations around 0.95 to 0.98 times the contact semi-width

a, which is very close to the contact edge. Those predictions are in

agreement with other numerical techniques, such as continuum dam-

age mechanics (Hojjati-Talemi et al., 2014) and the experimental data

mentioned above.

Regarding the crack initiation orientation, the values of the damage

variables obtained in one fretting cycle are used. The element in the

model with the highest damage parameters f1 and f2 over the load-

ing cycle is selected and the variation of those values of damage f1

and f2 with the potential angle of propagation are used for the se-

lection of the probable crack initiation orientation. Figure 5.11 shows

the variation of f1 and f2 for the case of cylindrical pads, for test FF9.
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Figure 5.9: Damage initiation variables distribution along the specimen, for test FF1 from
Hojjati-Talemi et al. (2014): (a) f1 and (b) f2 parameter.

Similar profiles were observed for other tested cases (FF1 to FF8). The

damage parameter f1 had its peak values at two shear planes, leading

to two potential directions of crack growth: +30◦± 5◦ or −30◦± 5◦.

The results agree well with experimental results from literature, with

those angles being measured with respect to the normal to the contact

surface. Lykins et al. (2001b) have shown experimentally the initia-

tion angles to be −40◦,−45◦ and −39◦ whereas Namjoshi et al. (2002)

observed either at −45◦ or +45◦ with a variation of ±15◦. Hojjati-

Talemi et al. (2014) found the initiation angles between −35◦ to −45◦

for the aluminium alloy and Almajali (2006) found the initiation angle

for Titanium alloy at 41◦. Those results are summarized in Figure 5.10.

For orientation of the critical plane, researchers (Lykins et al., 2001b;
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Namjoshi et al., 2002) have shown experimentally that the initiation

process is mainly controlled by maximum shear stress. These max-

imum shear stress planes exist on both sides of the principal plane.

Therefore, both the planes have potential to initiate damage in these

directions. Depending upon the microstructure of the material during

the experiment, the crack may take any preferred direction closer to

maximum shear plane. Therefore, crack near the surface in first few

grains can occur either inwards or outwards direction, with reference

to the contact edge.

For the damage parameter f2, the peak values lead to one poten-

tial propagation direction, perpendicular to the contact surface and

perpendicular to the axial loading. This expected result comes from

the fact that the stress state is nearly uni-axial at the contact edge.

Therefore, the shear stress has minor impact on the calculation of this

parameter and fracture is mainly dominated for normal stresses. For

fretting fatigue, these orientation predictions (0◦±5◦) are not accurate.

Figure 5.12 presents the variation of the damage variable f1 and

f2 as function of the probable crack orientation angle, for the case

of flat pads, for test 3. Similar to the case of cylindrical pads, the

damage parameter f1 had its peak values at two shear planes. For flat

pad configuration, the two possible orientations of crack initiation are

slightly higher than those for cylindrical pads: +40◦±5◦ or −40◦±5◦.

In addition, the parameter f2 also predicts two potential orientations:

+45◦±5◦ or −45◦±5◦.

The previous results were also compared with critical plane ap-

proaches. Using those approaches, the initiation location and orien-
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Figure 5.10: Summary of experimental data, exemplifying the crack initiation angle mea-
sured by different researchers.

tation can be predicted. Figure 5.13(a) and Figure 5.14(a) show the

variation of the damage parameter at the contact interface using FP

and FS parameters. The results are computed at the instant of maxi-

mum axial stress applied during the loading cycle. It is observed that

regardless of the pad geometry for both cases, highest value of the pa-

rameter is achieved at x/acont = 1. Hence, good correlation is observed

with experimental observations. Although both parameters showed
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Figure 5.11: Variation of damage parameters with angles (at a point of maximum dam-
age during a cycle): (a) f1 and (b) f2, for cylindrical pad (test FF9 of Hojjati-Talemi et al.
(2014))

almost same initiation location, some variation in damage profile can

be seen within the stick zone.

It is widely accepted that Stage I growth occurs due to reversal of

shear stress to form a slip band. With the increased intensity of stress

reversal, there are more chances to form a slip band (Hills and Nowell,

1994). Therefore, dislocations along persistent slip bands cause crack
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Figure 5.12: Variation of damage parameters with angles (at a point of maximum dam-
age during a cycle): (a) f1 and (b) f2, for flat pad (test 3 of Sabsabi et al. (2011))

initiation along plane of maximum shear stress or close to it. Since

there are, hypothetically, two possible shearing planes at ±45◦ for each

element, the crack may take any preferred orientation depending upon

crystallographic orientation. Figure 5.13(b) and Figure 5.14(b) shows

the variation of damage parameter with different orientation angles

and reinforce this hypothesis. The maximum damage parameter at

the initiation site showed two peaks near the shear planes for both

the cases. The numerical results showed the orientation angle is either
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Figure 5.13: Variation of FP and FS (a) at contact interface and (b) with angles at the
location of maximum damage (x= a), for test 1 of Sabsabi et al. (2011)

−45◦±5◦ or +35◦±5◦.

Analogous to the cohesive zone damage initiation criterion f1, the

critical plane approaches also predicted the critical angles for flat pad

case to be slightly higher than for cylindrical pad. Findley (1959) also

observed that the critical plane orientation varies with maximum stress

and with combined stress state. He showed that for test with zero

mean stress, critical plane varied from 45◦ to 21◦ for range of k from 0
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Figure 5.14: (a) Variation of FP and FS (a) at contact interface and (b) with angles at the
location of maximum damage (x= a), for test 1 of Hojjati-Talemi et al. (2014)

to 1.1. Furthermore, its orientation was found a few degrees from the

maximum shear plane for small values of k and a few degrees from the

principal plane for large k. The change in material parameter k affects

the initial crack orientation as it influences the contribution of normal

stress to the damage parameter.
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5.5 Conclusions

CZM in combination with the XFEM has been used to predict crack

initiation location and orientation in fretting fatigue using cylindrical

and flat pads. The predictions were made through a user subroutine

UDMGINI, where two common stress based initiation criteria, namely

quadratic traction-separation and maximum nominal stress, were com-

puted. The behaviour of each of those criteria and the accuracy of their

predictions were compared with experimental data and traditional crit-

ical plane approaches. For the critical plane approaches, two damage

parameters FS and FP were considered. Our results showed that CZM

with a quadratic traction-separation criterion (f1 parameter) can accu-

rately predict both the crack initiation location and the orientation for

both pad conditions. The results agreed with experimental data and

with traditional approaches (continuum damage mechanics and crit-

ical plane approaches). On the other hand, although the maximum

nominal stress criterion (f2 parameter) predicted correct crack initia-

tion locations, it was not possible to obtain satisfactory results for ori-

entation angles, especially for the cylindrical pad cases. Therefore, care

should be taken while using this criterion under fretting conditions.

It is important to notice that the focus of this chapter is on the crack

initiation location and orientation predictions. For life predictions, it is

necessary to adjust the cohesive model, in order to account for damage

accumulation, during loading and unloading, in each fretting cycle.

This is the focus of the next chapter.
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6
Cyclic Cohesive Zone

Model

In the previous chapter, we discussed the applicability of mono-

tonic cohesive zone models to predict crack initiation location and ori-

161
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entation for fretting problems. One of the main drawbacks is the in-

ability to predict lifetime. As discussed in Chapter 5, the modelling of

crack propagation of fatigue scenarios using monotonic cohesive mod-

els have led to crack arrest, which is not a representation of reality. In

this regard, the main goal of this chapter is to provide fretting fatigue

life predictions considering a cyclic cohesive zone model, based on a

traction-separation law with a bilinear form, for coupon tests with a

flat pad and a flat specimen. A damage evolution law accounting for

the damage accumulation due to loading and reloading in a fatigue

cycle was incorporated to the cohesive model, allowing the simulation

of a cycle-by-cycle failure. To minimize the computational cost of this

modelling, an extrapolation of the results of the analysis is proposed.

This chapter focuses on estimating fretting fatigue life using CCZM.

Firstly, the CCZM is discussed in Section 6.1 and its implementation

in ABAQUS is treated in Section 6.2. Life estimation of a simple case,

pure shear fatigue of a patch test, is studied and the results are com-

pared with literature data in Section 6.2.1. In Section 6.3, the fretting

fatigue case is analysed as well as model details and boundary condi-

tions are presented. Fretting fatigue life estimates are compared with

traditional approaches and experimental data in Section 6.4. Finally,

conclusions are briefly explored.

6.1 Cyclic Cohesive Zone

The monotonic CZMs are mainly used to predict failure under

monotonic increasing loading conditions and are not capable to model



163 Chapter 6. Cyclic Cohesive Zone Model

the main features of fatigue. A characteristic of these models is that,

under cyclic loading, the unloading and subsequent reloading follows

the same path in a traction-separation diagram. Therefore, as dis-

cussed by Liu et al. (2013), the process zone ultimately stabilizes with-

out additional damage, leading to crack arrest and shakedown under

cyclic conditions.

As discussed by Ural et al. (2009), a cyclic degradation of the peak

cohesive strength and also a distinction between the unloading and

subsequent reloading paths are essential for simulating crack growth

and avoid crack arrest. CCZMs are further developments of mono-

tonic CZMs, they allow for damage accumulation during unloading

and reloading conditions and are an interesting alternative to model

fatigue problems. CCZMs consider the effect of a damage evolution

law in the traction-separation behaviour of a cohesive model by mak-

ing the cohesive strength Tmax as a function of the current accumu-

lated damage variable D and the initial cohesive strength Tmax,0, that

is,

Tmax = Tmax,0(1−D). (6.1)

A damage evolution law models the variation of the damage vari-

able D as function of time. This incremental damage Ḋ (derivative

of accumulated damage with respect to time) is also function of the

effective tractions and separations at the cohesive surfaces, i.e., Ḋ =

D(T,∆,D). This damage evolution law Ḋ allows the cohesive prop-

erties to evolve during the simulation. In this way, it is possible to

implement degradation of those properties and capture finite lives un-

der cyclic loading conditions.
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Figure 6.1 represents the traction-separation law for a cyclic cohe-

sive zone model. As it can be seen, the traction-separation curve is now

function of damage state and the maximum value of traction that a ma-

terial can resist depends upon the value of damage. In addition, the

loading-reloading paths may differ, accounting for damage accumula-

tion on this cyclic process. In addition, the loading and subsequent

reloading may follow different paths in a traction-separation diagram.

This difference in paths produces an irreversible damage accumula-

tion that can be used to model interesting dissipative mechanisms for

metals under fatigue conditions, such as crystallographic slip and fric-

tional interactions between asperities (Liu et al., 2013; Nguyen et al.,

2001).

Figure 6.1: Cyclic cohesive zone model: traction-separation curve

In this thesis, the damage evolution law proposed by Roe and Sieg-

mund (2003) is used. It is based on common damage mechanics prin-

ciples:

1. the cohesive strength is inversely proportional to the accumu-

lated damage;

2. the monotonic cohesive zone traction-separation curve delimits
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an upper bound, being an envelope for all possible states;

3. the local damage endurance defines a lower bound;

4. once a deformation measure is greater than a critical value, dam-

age starts to accumulate;

5. the increment of damage is related to the increment of deforma-

tion weighted by load level.

These requirements can be summarized in the following damage

evolution equation:

Ḋ = |∆̇|∆Σ

[
T

Tmax
−

σf
Tmax,0

]
H(∆−∆0) (6.2)

where Ḋ is the derivative of the damage D with respect to time t, σf

is the fatigue endurance limit, ∆Σ is the accumulated cohesive length

and T and ∆ are the effective tractions and effective separation, re-

spectively. Note that to be able to compute damage accumulation in

a cycle, two new parameters are required: σf and ∆Σ. Moreover, the

Heaviside step function H(∆−∆0) is used to delimit the reversible

and irreversible regimes of the constitutive law. If separation is smaller

than the critical value ∆0, then the Heaviside function is zero, there is

no accumulation of damage and the model behaves elasticly. Other-

wise, the Heaviside function is equal to one, damage is accumulated

and the material starts to degrade.

Winter (2009) proposed an implementation of the model developed

by Roe and Siegmund (2003), he considers the behaviour of the mate-

rial being a combination of two parts: (1) an undamaged continuum
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with an arbitrary material law connected by (2) a cohesive interface

with its own cohesive properties and traction-separation curve (cohe-

sive stiffness K of the reversible part of the traction-separation curve,

cohesive strength and critical separation). In this implementation, the

accumulated cohesive length ∆Σ is adopted as five times the critical

separation ∆0.

A different approach is adopted in our study. The cohesive ele-

ments are considered embedded in the description of the extended

finite elements, which contain not only the damage of the cohesive

surfaces but also its continuum properties. To be able to incorporate

a damage evolution law in ABAQUS, instead of effective tractions and

effective separation, element stresses and strains obtained from XFEM

are used. In ABAQUS XFEM with cohesive segments methodology,

the elastic material behaviour characterizes the reversible region of the

cohesive law. Therefore, there is no need to explicitly use a Heaviside

function to describe both regimes. Consequently, equation (6.2) may

been re-written as:

Ḋ = |ε̇|
εΣ

[
σeff
Tmax

−
σf

Tmax,0

]
(6.3)

where ε̇ is the incremental strain at the cohesive surfaces, σeff is the ef-

fective stress acting on the cohesive surface and εΣ is the accumulated

cyclic strain. The incremental strain is:

ε̇= εt−εt−1 (6.4)

where εt is the element effective strain at a time t and εt−1 is the
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effective strain at a previous time increment t−1.

As pointed out by Liu et al. (2013), mixed mode conditions may be

incorporated to the cohesive model by considering an effective separa-

tion, given by a combination of the normal and tangential separation at

the cohesive surface. In this case, unloading occurs when this effective

separation decreases, even if separation in one direction (tangential or

normal) increases. The effective separation can be translated in the

effective strain for a XFEM with cohesive segments approach. The ef-

fective strain ε is given by a composition of normal εn and tangential

εt strains obtained at the cohesive surface:

ε=
√
ε2
n+ε2

t (6.5)

The effective traction σeff is a combination of the normal and tan-

gential traction at the cohesive surface and may also be translated by

the effective stresses acting on the cohesive surface. It is given as:

σeff =
√
σ2
n+σ2

t (6.6)

where σn is the normal stress and σt is the tangential stress acting on

the cohesive surfaces.

The accumulated cyclic strain εΣ can be correlated with the accu-

mulated cohesive length ∆Σ, considering the cohesive parameters of

the cohesive interface proposed by Winter (2009):

εΣ = K

E
∆Σ (6.7)
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where K is the cohesive stiffness, E is the Young’s Modulus and ∆Σ

is accumulated cohesive length, typically adopted as five times the

critical separation ∆0.

The cyclic damage law developed by Roe and Siegmund (2003) has

been used successfully to predict fatigue failure at interface of differ-

ent materials (Roe and Siegmund, 2003; Wang and Siegmund, 2005).

Their methodology has been used to study fatigue failure in metals, in

special for fretting cases.Zhang et al. (2015, 2016) have used it in their

fretting fatigue analysis, however they have not validated their results

with any experimental data. To the best of our knowledge, our work

is the first attempt to accurately predict fretting fatigue total lifetime

using cyclic cohesive zone models with an extrapolation procedure.

6.2 ABAQUS implementation

The damage evolution law is implemented in the ABAQUS model,

by using the user subroutine USDFLD to interpolate the material prop-

erties (that is, cohesive strength Tmax and the fracture energy G) ac-

cording to the damage parameter obtained through equation (6.3). Fig-

ure 6.2 shows the flow chart summarizing the procedure adopted in

this work. Firstly, the undamaged material properties, initial cohesive

strength Tmax,0 and fracture energy G, are stored. During the first

increment of loading, the damage D, instantaneous maximum cohe-

sive strength Tmax and incremental strain ε̇ are initialized. Then, the

effective stresses and strain are computed (equations (6.5) and (6.6))

at the potential crack propagation angle. This angle is obtained via
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UDMGINI subroutine as described below.

Once the effective stresses and strains are calculated, the effective

incremental ε̇ strain is obtained considering the effective strains at a

previous time increment (equation (6.4)). Next, the increment of dam-

age is computed by equation (6.3) and the accumulated damage D at

the end of the loading increment is obtained by integrating equation

(6.3) over time. This value of damage D is used to interpolate the ma-

terial properties Tmax and G during the analysis. In this way, for the

next loading increment, the material properties are going to be reduced

according to the level of damage in the structure.

This procedure is repeated for all loading increments of the anal-

ysis. Firstly, a check is performed to verify if the current loading in-

crement is the first loading increment or not. If it is the first one, the

variables D, Tmax and ε̇ are initialized, as described above. If it is not,

then a second check is performed to verify if the accumulated dam-

age D has reached 1. If yes, no further damage is allowed to happen

and the instantaneous maximum cohesive strength in the element is

set to zero. If damage D has not reached 1, the values of effective

stresses and strains, incremental strain and accumulated damage are

computed for the current loading increment. Again, this damage vari-

able is used to reduce the instantaneous material properties through

equation (6.1) before the calculation of stresses and strains in a next

loading increment.

An user subroutine UDMGINI was written to compute the poten-

tial propagation angle. This angle is defined as the one that provides

the absolute maximum normal stress σn over the time. For each time
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Figure 6.2: Flow chart: USDFLD user subroutine implementation

increment, the normal stress σn is calculated for a series of angles θ,

varying from −90◦ to +90◦ with 1◦ increment at the element ahead of

the crack tip. If there is no crack in the model, this angle is calculated

at the element in which the damage variable D is maximum. The max-

imum value of σn and its respective angle θ is stored for each loading

increment. Once the damage variable D reaches 1 at the element, a

crack is created and its oriented in the direction in which the value of

σn is maximum.

Figure 6.3 shows a representation of the python code written to

read the model input file of one complete cycle loading. It contains de-

tails of geometry, mesh details and material properties, using RESTART

option. The flow chart of such implementation is represented in Fig-

ure 6.3. Firstly, the input files of one loading cycle is generated and

submitted together with the two subroutines USDFLD and UDMGINI

for analysis in ABAQUS. After simulation of one cycle is complete, the

python code extract the results and analyses of the crack length and
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damage in the model. If there is a crack and its length is greater than

a critical value ac, the simulation stops. Otherwise, if no crack has ini-

tiated or an existent crack has not grown, another input file containing

loading conditions for the next 100 cycles is created and submitted for

analysis. If a crack has initiated in the model (first element has been

cracked) or an existent crack has increased in size by one element, then

the number of cycles and crack length are stored in a text file, before

running the next 100 cycles. The simulation is terminated once the

crack length reaches ac = 150 µm. The analysis was performed cycle-

by-cycle, with each input file considering the loading of 100 cycles. The

selection of 100 cycles was made to reduce the size of odb files while

keeping the time increment of the analysis sufficient small.

Figure 6.3: Flow chart: python script
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6.2.1 Verification: Pure reversible shear fatigue

In order to verify the implementation of the cyclic cohesive model,

the results of damage evolution of an element subjected to purely

reversible shear stress is compared with literature data from Winter

(2009). The model consisted of one XFEM element of unit size dimen-

sions. Plane stress conditions were assumed. Loading and boundary

conditions are summarized in Figure 6.4.

Figure 6.4: Low cycle fatigue model: pure reversible shear stress condition

In this model, the material properties used in the ABAQUS model

(XFEM with cohesive segments in junction with a damage evolution

law) were: Tmax,0 = 20000 MPa, Elastic modulus E = 106 MPa, Fatigue

endurance σf = 0.0, strain at failure εf = 0.1, effective cyclic strain

εΣ = 2εf . A bilinear shaped cohesive law is assumed between tractions

and separations on the potential cohesive zone.

Firstly, a complete six loading cycles analysis was done using the

already available implementation in ABAQUS (XFEM with cohesive

elements). It is important to notice that this implementation considers

a monotonic CZM in junction with a XFEM methodology, details in

ABAQUS documentation Version (2013). As previously discussed, it
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is expected that monotonic cohesive models are not able to predict

damage accumulation under cyclic conditions and, therefore, are not a

good option to model fatigue. We also used our implementation of a

cyclic cohesive zone and ran the same analysis.

The results comparing these two methodologies are presented in

Figure 6.5. The monotonic cohesive law is indeed unable to capture the

cyclic damage accumulation, and the behaviour simulated is purely

elastic. In our CCZM implementation, the cohesive strength of the

material reduced as the damage variable increased, and the model was

able to predict damage accumulation due to a cyclic loading condition.

The results of damage accumulation as function of number of cycles

were compared with literature data from Winter (2009) and are shown

in Figure 6.6. Our implementation agrees well with literature data,

showing that it is able to correctly predict the evolution of damage in

the element and the total number of cycles to failure.

6.3 Fretting fatigue crack propagation

The same experimental set-up presented by Sabsabi et al. (2011) and

Hojjati-Talemi et al. (2013) is considered in this section. In this coupon

configuration, two flat pads are kept in contact to a flat specimen due

to a normal load F . The specimen is, then, subjected to fatigue load

completely reversible (R = −1) fatigue loading σaxial, as represented

in Figure 6.7(a). The pad dimensions are: H = 10 mm, J = 10 mmand

out of plane thickness equal to 5 mm. The symmetry of the problem

allow us to model only half of the set-up, as shown in Figure 6.7(b).
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Figure 6.5: Comparison between responses of a monotonic and cyclic cohesive zone
model

This has been modelled by restricting the half-width surface of the

specimen to move in the x direction and also to rotate around the z-

axis. The following boundary conditions at the pad were applied: both

sides were restricted to move in y direction and contact interaction

between pad and specimen was established. Regarding dimensions,
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Figure 6.6: Comparison between our implementation and literature data

the specimen model had length L= 20 mm, half width B = 5 mm and

out of plane thickness equal to 5 mm.

Figure 6.7: Model details: (a) experimental test set-up; (b) loading and boundary condi-
tions
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The contact between both parts (pad and specimen) was defined

using finite sliding with a surface to surface interaction. The contact

between crack faces was also modelled using a surface to surface in-

teraction. For both cases, the master-slave algorithm was used with

tangential behaviour modelled using a Penalty method with slip toler-

ance equal to 0.01 and the default hard contact was chosen to define

the normal behaviour. A constant value of 0.8 (Sabsabi et al., 2011)

was selected as the coefficient of friction between crack faces and also

between pad and specimen.

Firstly, a normal load F was applied and kept constant throughout

the analysis. Then, the cyclic axial loading condition was applied in

N loading steps of 100 sinusoidal cycles each, as shown in Figure 6.8.

If no element in the model was cracked during the first 100 cycles,

another input file containing loading conditions for the next 100 cycles

was created and submitted for analysis. However, if one element was

cracked, then the number of cycles and accumulated crack length were

stored in a text file, before running the next 100 cycles. This procedure

was repeated until total crack length is equal to 150 µm.

A linear elastic material response with material properties of alu-

minium 7075-T6 were the same as in the experiments conducted by

Sabsabi et al. (2011), with Young’s Modulus equal to 72 GPa and Pois-

son’s ratio equal to 0.33. The fretting tests were performed in a stress

ratio of -1.0 for the axial load (σaxial). For completeness, the loading

conditions and number of cycles to failure of the tests analysed in this

study are summarized in Table 6.1.

For the cohesive parameters, a bilinear traction-separation curve is
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Figure 6.8: Loading conditions

assumed. The material initial cohesive strength Tmax,0 is considered

equal to material’s ultimate tensile stress σu (572 MPa in Sabsabi et al.

(2011)), as used by Kim and Yoon (2014). The fracture energy, area

below the traction-separation curve, is estimated based on the fracture

toughness (20 MPa m1/2 (Committee, 1990)). As the area underneath

the traction-separation curve is given by the fracture energy G, the

critical separation can be estimated as ∆f = 0.018 mm.

The cyclic behaviour requires the definition of two additional pa-

rameters σf and εΣ. The value of σf is taken to be equal to 166

MPa (Sabsabi et al., 2011). The cohesive stiffness is estimated based

on the length of the XFEM elements (l = 5 µm, the number of possi-

ble crack paths n = 20 (number of interface cohesive elements among

continuum elements in a discrete approach, such as the one in Winter

(2009)) and material Young’s modulus E, with K = nE/l = 28.8× 106
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Table 6.1: Loading conditions from experiment

Test F [N] σaxial [MPa] Nf [cycles]

5 2000 190 12,509

6 4000 110 92,259

7 4000 130 47,714

8 4000 150 32,905

9 4000 170 27,391

10 4000 190 9,590

11 8000 110 82,549

12 8000 130 43,567

13 8000 150 25,872

14 8000 170 23,046

15 8000 190 8,760

MPa/mm (Winter, 2009). The accumulated cohesive length is taken as

∆Σ = 2∆f = 0.036 mm (Winter, 2009). Therefore, as per equation (6.7),

the accumulated cyclic strain εΣ is taken as approximately 14.4.

Regarding the mesh, a 2D quadrilateral, 4-node (bilinear), plane

strain, reduced integration element (CPE4R) was considered. To model

the cohesive behaviour, a structured mesh of CPE4R enriched elements

(XFEM with cohesive segments) has been used to discretize a small

area of the model, close by the trailing edge of the contact. In ad-

dition, the fillet of radius equal to 10 µm, as per pad experimental

dimensions in Sabsabi et al. (2011), is added to the pad to avoid un-

realistic stress concentrations at this region. To guarantee accuracy

of the model, we selected an element size of about 5 µm at the con-

tact interface (Hojjati-Talemi et al., 2013). This element size was main-

tained constant throughout the area discretized with XFEM enriched

elements. This size of elements was then gradually raised remote from
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the trailing edge and the enriched region, as it can be seen in Figure

6.9.

Figure 6.9: Mesh details and dimensions of the region meshed with XFEM with cohesive
segments

6.4 Verification of CCZM

A cycle by cycle procedure is extremely computationally demand-

ing. To reduce this computational burden and be able to get reasonable

estimates for total fretting fatigue lives, an extrapolation procedure has

been adopted. Firstly, a cycle-by-cycle analysis until the crack length is
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equal to 150 µm (equal to several times the grain size of this material,

which is between 10 to 30 µm (Sabsabi, 2010)) is performed. Once this

analysis is completed, the crack length as function of number cycles

is stored in a text file. Then, for values of crack length greater than

75 µm, the relationship between crack length and number of cycles is

assumed to follow a power law. This assumption is based on fitting

of experimental data of crack growth law of longer cracks (Carpinteri

and Paggi, 2009), whose length is relatively larger than the microstruc-

tural dimension of the grain size (Lankford, 1985). By fitting the data

already obtained from the cycle-by-cycle analysis, an extrapolation is

performed and the number of cycles up to complete failure is esti-

mated.

The following power law is used:

a=ANm (6.8)

where a is the crack length, N the number of cycles and A and m

constants of the regression model.

Taking the natural logarithm from both sides of equation (6.8), the

power law regression is simplified by a simple linear regression as

the relation between crack length and number of cycles becomes lin-

earised:

ln(a) = ln(A) +mln(N) (6.9)

Therefore, it is only necessary to fit a linear model to the stored

data, reducing the necessity of excessively many points to accurately

estimate the parameters A and m. To reduce the computational bur-
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den of the simulations, crack growth was simulated until crack length

reached a critical value and six data points (crack length versus num-

ber of cycles) were used to fit the linear model.

Figure 6.10 presents the relation between crack length and number

of cycles for the fretting fatigue analysis using XFEM with cyclic cohe-

sive models. Two distinct regimes can be observed. The first regime

deals with short cracks, where the relationship is definitely not linear

in a natural logarithm scale. The second regime is related to longer

cracks, with length greater than than 75 µm, and it presents a linear re-

lationship between crack length and number of cycles in a natural-log

scale. This evidences the robustness of cyclic cohesive zones to predict

both crack growth regimes (initiation and propagation) in a unified

way, as there is no necessity of separating those regimes prior to the

start of the analysis.

It is known that the crack growth rate is influenced by many factors,

such as microstructures of materials, components size and geometry,

loading conditions, environments, and temperatures, as discussed in

Tanaka (1974). Therefore, the clear definition of a short crack and long

crack regime is not straightforward. A threshold of 75 µm was chosen

to guarantee that all analysed cases were in long crack regime.

The coefficients m (slope), ln(A) (intercept) and coefficient of de-

termination R2 (which measures how close the data are to the fitted

regression line) of the linear regression are presented in Table 6.2. As

it can be verified by the coefficient of determination R2, the linear rela-

tionship is very reasonable. These parameters A and m are used in an

extrapolation of the linear model for crack length equal to half of the
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Figure 6.10: Logarithm of crack length as function of logarithm of number of cycles for
different test cases

specimen’s length B (until total failure of the specimen). Therefore,

these extrapolations are used to estimate the total lifetime.

The estimated total life is obtained by extrapolating the linear re-

lationship presented in equation (6.9) for the complete failure of the

specimen. The estimated lifetime values are compared with observed

experimental lives and the results are presented in Figure 6.11. It can

be observed that the estimates are well distributed around the centre

line and are within a scatter band of ×1.5. These estimates indicates

accuracy of CCZMs to predict fretting fatigue lives.

Crack propagation paths were obtained by considering the crack

orientation criteria described in Section 6.2. The direction of propa-
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Table 6.2: Parameters of the regression models

m ln(A) R2

Flat15 0.777466 1.326006 0.9989

Flat14 0.724829 1.23443 0.9915

Flat13 0.756474 0.906993 0.9795

Flat12 0.732927 0.661731 0.9715

Flat11 0.754247 0.174267 0.9691

Flat9 0.748441 1.026225 0.9969

Flat6 0.751541 0.037798 0.9959

Figure 6.11: Fretting fatigue predicted life versus experimental total lifetime

gation was selected as the one that maximizes the normal stress σn.

For all analysed cases, paths were approximately perpendicular to the

applied bulk stress. This is a reasonable path and has also been consid-

ered in previous numerical analysis (Hojjati-Talemi et al., 2013). Fig-
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ure 6.12 shows contours of von Mises stress for test No. 15 at differ-

ent number of cycles, for maximum loading condition (crack is fully

opened).

Figure 6.12: Crack path for test No. 15 at different number of cycles.

Results of lifetime are also compared with a traditional approach.

The initiation lifetime is estimated using the continuum damage me-

chanics (CDM) methodology proposed in Hojjati-Talemi et al. (2013)

and the propagation lifetime is estimated considering classical fracture

mechanics. The total lifetime for this traditional approach (CDM +

fracture mechanics) is obtained by adding the initiation and propaga-

tion lives.
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Table 6.3: Propagation lifetime estimated from fracture mechanics approach

Test No. NP

Test 15 8627

Test 14 11536

Test 13 16000

Test 12 23254

Test 11 35981

Test 9 11536

Test 6 35981

Calibration tests

Test No. NP

Test 5 8627

Test 8 16000

Test 10 8627

Test 7 23254

For the propagation life, the crack is assumed to propagate per-

pendicularly to the bulk stress and analytical expressions for a double

notch DENT specimen from Tada et al. (2000) is used to estimate the

stress intensity factor of the long crack. For these calculations, the

effect of contact stresses are neglected, and the cracked specimen is

assumed to be represented by a double notched specimen under alter-

nated bulk stress loading condition. Propagation phase is considered

to happen when crack length is between 75 µm to complete failure

(crack length equal to 5 mm). The lifetime is obtained by integrating

the Paris’ Law, with constants described in Hojjati-Talemi et al. (2013).

Table 6.3 shows the estimated propagation lives for all analysed test

scenarios.
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For details of the implementation of CDM methodology to predict

initiation lifetime, the reader is refer to Hojjati Talemi (2014), Hojjati-

Talemi et al. (2014) and Hojjati-Talemi et al. (2013). As described in

Hojjati-Talemi et al. (2014), the damage parameters A and β are esti-

mated using a set of calibration tests (here we used tests numbers 5, 7,

8 and 10). A non-linear minimization procedure is performed in order

to minimize the root mean square error between the calibration tests

and the experimental initiation lifetime of those set of tests. The initi-

ation lifetime Ni is obtained from the integral of the damage equation,

replicated here for completeness:

Ni =
R−βv

(
σ
−(m+2β)
eq,max −σ−(m+2β)

eq,min

)
A(m+ 2β+ 2)

where m is the hardening exponent (m= 10, as in Hojjati-Talemi et al.

(2013)), A and β are the damage parameters, Rv , σeq,min and σeq,max

are the mean triaxiality function, the mean equivalent stress at mini-

mum load and the mean equivalent stress at maximum load, respec-

tively. The values of Rv , σeq,min and σeq,max are calculated from the

finite element analysis of a full fretting cycle. They are obtained from

averaging the stresses in the specimen, around the contact edge in a

semi-circular region of radius 56 µm (Hojjati-Talemi et al., 2013). From

the non-linear procedure described above, we obtained ln(A) =−63.09

and β = 0.015.

Table 6.4 shows the estimated initiation lifetime Ni for all analysed

cases and the values of Rv , σeq,min and σeq,max obtained from finite

element.
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Table 6.4: Initiation lifetime estimated from continuum damage mechanics approach

σeq,min σeq,max Rv Ni

Test15 1684.7 291.8 1.056 133

Test14 1538.0 282.0 1.057 11510

Test13 1365.2 274.2 1.058 9872

Test12 1175.0 268.5 1.057 20313

Test11 934.1 259.2 1.058 46568

Test9 1504.4 199.3 1.045 15855

Test6 979.2 155.1 1.057 56278

Figure 6.13 shows a comparison between the estimates of each

method. It can be noted that the estimates of XFEM in junction with

cyclic cohesive zone models have smaller error when compared with

experimental data than estimates from CDM with classical fracture me-

chanics.

Even though a visual improvement is already noticeable, in order to

compare the accuracy of both life prediction techniques, the statistical

parameter proposed in Hojjati-Talemi et al. (2013) is considered. The

root relative squared error (RRSE) is a normalized measurement that

allows to quantify how far the predicted results are with respect to

the experimental ones. RRSE is a measure of the overall error of the

estimated values and its computed as:

RRSE =

√√√√√ ∑n
i=1 (N i

e−N i
o)

2∑n
i=1

(
N i
e− 1

n

∑n
j=1N

j
o

)2

where N i
e is the estimated total lifetime for each test i, N i

o is the ob-

served experimental lifetime for each test i, and n is the total number of

analysed tests. The closer to 0 this normalized error is, the better is the
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Figure 6.13: Comparison between estimated lifetime obtained by XFEM with CCZM
methodology and CDM with fracture mechanics approach

Table 6.5: Root relative squared error

XFEM with CCZM CDM with LEFM [27]

RRSE 0.32 0.92

prediction. A comparison between both approaches, CDM+fracture

mechanics and XFEM+CCZM, is shown in Table 6.5. The XFEM+CCZM

seems to be a good approach for dealing with prediction of lives under

fretting fatigue for a flat on flat test configuration.
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6.5 Input parameters and their influence on re-

sults

As per equation 6.3, the damage law is basically defined by the

folowing input parametes: Tmax,0, σf and εΣ. Assuming an isotropic

material, the cohesive strength Tmax,0 is defined by the ultimate tensile

strength of the material, that can be easily measured in laboratory. The

higher the fatigue endurance σf , the longer the predict life (as per

equation 6.3), as an increase in σf causes a decrease on the incremental

damage. A correct prediction of this parameter is, therefore, of great

importance for the model.

The incremental cyclic damage is inversely proportional to The ac-

cumulated cyclic strain εΣ. This parameter is estimated based on the

fracture energy. Therefore, it is expected that the fracture energy would

play a strong hole on the prediction. The analysis was performed es-

timating the fracture energy (area below the traction-separation curve)

based on the fracture toughness KIc (20 MPa m1/2). To check the im-

pact of the he fracture energy on the analysis, the a value of fracture

toughness KIc equal to 40 MPa m1/2 has been also simulated.

Figure 6.14 shows the results of both analysis. Based on a extrapo-

lation of the linear curve, the total failure was computed for both cases.

For the case with KIc equal to 20 MPa m1/2, the total life was 10395

cycles. In addition, for KIc equal to 40 MPa m1/2, the total lifetime was

32291 cycles. Therefore, a double on the fracture energy would result

in life predictions that are 3.5 times longer. This shows the necessity of
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Figure 6.14: Crack length versus number of cycles, in log scale, for different fracture
energies.

correctly specifying the εΣ parameter of the cohesive model in order

to guarantee the accuracy of the predictions. It is important to notice,

however, that the experimental determination of fracture energy is not

straightforward, especially for mixed mode conditions.

6.6 Computational cost

The complete analysis of crack initiation and propagation up to a

crack length of 150 µm using XFEM with cyclic cohesive zone models

takes about 30 hours, using the following processor: Intel Core i7-

5600U CPU @ 2.60GHz with 16GB of memory RAM. For instance, for

test case number 15, the total analysis would take 27 hours and 33

minutes in CPU time.

It is interesting to make a comparison between the computational

time considering LEFM to model propagation and the failure analy-
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sis using XFEM with CCZM. As discussed in Section 4.2.5, the total

failure analysis (crack growth until complete rupture of the specimen)

considering LEFM would take only a few hours, while, as described

above, the CCZM analysis of crack growth up to only 150 µmwould

take more than a day, using the same computer. This enormous differ-

ence is expected, as LEFM is dealing with a linear analysis problem,

while CCZM threat the process zone ahead of the crack tip in a non-

linear way.

To analyse a crack growth until complete rupture of the specimen

(crack length of about 5 mm) in a cycle-by-cycle procedure, it would

take an infeasible amount of time. Therefore, we emphasise the neces-

sity of an extrapolation of the results in order to predict total lifetime.

6.7 Conclusions

Estimates of fretting fatigue lives have been computed by consider-

ing CCZMs. The lifetime predictions were obtained through an extrap-

olation of the results obtained from this XFEM with cohesive segments

analysis. In order to accurately model the damage accumulation due

to cyclic loading, a user subroutine USDFLD has been proposed. This

allowed the material properties to change during the analysis, accord-

ingly to the level of damage computed based on stress and strains in

the XFEM element. Once the damage level reached one, the element

was cracked. The number of cycles and the crack length were stored

in a text file for further post-processing.

Two regimes have been observed when analysing the curves of
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crack length as function of the number of cycles. For short cracks, the

growth is non-linear in a natural-log scale, whereas for longer cracks

(longer than 75 µm) the behaviour is linear. Therefore, linear curves

have been fitted using the longer crack growth data from the analy-

sis. An extrapolation of this linear relationship has been performed in

order to predict life to complete failure.

Results of the simulations have been compared with traditional ap-

proaches and with experimental data. Scatter plots of lifetime esti-

mates versus experimental data showed that predictions from CCZM

were in a narrower error band than predictions obtained by traditional

approaches. The root relative squared error of CCZM approach was

also considerably smaller than the one from traditional approaches.

This implies that CCZM provides an accurate alternative for predict-

ing fretting lives, for flat on flat coupon tests configuration.

To the best of our knowledge, there has no effort in the literature

to accurately predict fretting fatigue lives and crack propagation path

using cyclic cohesive zone. Our work is the first one that provides a

methodology with an extrapolation procedure that allows computa-

tion of fretting lives under high cycle fatigue. Our results have been

validated with experimental data, which has not been done previously

in the literature.



7
Conclusion and Future

Work

In this thesis we have evaluated alternatives for numerical mod-

elling of failure from fretting fatigue. This phenomenon brings extra

193
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complexity to modelling due to its non-proportional loading charac-

teristic and the high stresses at contact interface, causing material non-

linearities to play a significant role on failure. Throughout this thesis

we have tackled those difficulties, providing solutions to incorporate

their effects on the numerical model.

7.1 Conclusions

Firstly, the traditional numerical model of fretting coupon tests is

presented for a cylindrical pad in contact with a flat specimen. Chapter

3 provides a study of the impact of numerical errors on the estimate

of stresses at contact interface. This is of main importance once those

stresses are normally used to predict crack initiation lives and loca-

tion. A map is proposed to guide researches on the adequate choice

of finite element size in their models. Additionally, a study of stress

singularities is performed, showing that no crack singularity is found

for this fretting test configuration. This implies that the use of fracture

mechanics analogies to study the stress around the contact may not be

suitable for this configuration.

Fretting fatigue lives are normally estimated as a sum of crack initi-

ation life and a crack propagation up to total failure. Initiation lives are

commonly estimated using continuum damage mechanics and crack

propagation lives are obtained considering a crack propagation law in

combination with classical linear elastic fracture mechanics. However,

traditional crack orientation criteria from LEFM (such as maximum

tangential stress criterion) were developed for proportional loading
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conditions, which is not the case in fretting scenarios. In order to

circumvent this issue, in Chapter 4, we implemented an extension of

MTS criterion that accounts for non-proportional loading conditions.

To correctly use this criterion, stresses at crack tip needed to be com-

puted for every instant of the loading cycle. This poses another issue

on the modelling, as crack faces may be in contact during the loading

cycle and this interaction affects directly the stress at crack tip. There-

fore, we have created an python script that allowed as to consider the

effect of crack face contact in our 2D simulations using conventional

finite element. The results of Chapter 4 showed that the extension of

MTS criterion was able to accurately predict crack propagation paths

and propagation lives.

A major limitation of LEFM to predict fretting fatigue lives is that it

requires a very small plasticity zone around the crack tip, which may

not be the case, specially in fretting cases due to the high stresses at

contact interface. Additionally, live predictions often rely on classical

crack growth empirical laws (such as Paris’ Law) that may not be ap-

plicable to non-proportional loading scenarios. Cohesive zone models

come as an alternative to deal with failure without these assumptions.

In Chapter 5, we have used monotonic cohesive zone models to

predict crack initiation location and orientation. The results have been

compared with experimental data and classical critical plane approaches.

Monotonic cohesive zone models seems to be a good alternative for

modelling the phenomenon, however it can not be used to predict lives

in a cyclic loading condition. To solve this issue, in Chapter 6, we have

implemented cyclic cohesive zone models in Abaqus and used it to
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predict lives of fretting fatigue coupon tests (flat pad in contact with

a flat specimen). Initiation and propagation phases are modelled to-

gether and there is no need to separate these two regimes, as in most

traditional approaches. Our results showed a very good agreement

with experiments, being well centred around experimental data and

in a narrower error band that traditional predictions tools (continuum

damage mechanics in junction with LEFM).

7.2 Recommendations for future work

Our focus in this thesis was the modelling and estimation of fret-

ting fatigue lives, considering complex aspects of this phenomenon.

Even though the results obtained in Chapter 6 showed a good advance

in comparison with traditional approaches, there is still room for im-

provement.

In Chapter 4, the numerical predictions of fretting fatigue lives con-

sidering the behaviour of short cracks on the crack growth law were

briefly explored. Based on the results obtained, there was no signifi-

cant difference between predictions ignoring the effect of short cracks

and the ones accounting for it. Although the results may imply that the

effect of microstructure on the fretting fatigue predictions is small, this

may not be the general conclusion. It is important to note that we only

analysed the impact of short cracks on the crack growth law and some

important phenomena have been ignored. For instance, those models

do not take into consideration that the size of grains, their orientation

and boundaries may influence the crack behaviour. In addition, the
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anisotropic elastic behaviour inside grain in metal alloy can affect the

short crack propagation phase. These points need to be considered, as

they might greatly affect the numerical predictions.

Although numerical results obtained in Chapter 4 matched well

with empirical observations, the effect of mean stresses had been ne-

glected and it may impact on the results.

As showed in Chapter 4, the use of crack orientation criterion that

accounts for non-proportional loading condition allows for correct path

predictions. In Chapter 6, a simple maximum tangential stress crite-

rion crack orientation has been used and a better approach should be

developed.

Additionally, in order to predict fretting lives using cohesive zone

models, an extrapolation procedure was necessary due to the compu-

tational burden of this methodology. Would be interesting to actually

model a cycle-by-cycle analysis of a full fracture under fretting condi-

tions. In this way, we could gather information of when Paris’ Law is

a good alternative and in what conditions it should be avoided. More-

over, a significant insight of the non-proportional loading impact in the

lives could also be verified.

Finally, we have considered only laboratory configurations and fur-

ther studies dealing with real scale structures are needed in order to

improve the prediction capability of the proposed approaches in this

thesis.
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