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Abstract: DAF-16, the only forkhead box transcription factors class O (FoxO) homolog in Caenorhabditis
elegans, integrates signals from upstream pathways to elicit transcriptional changes in many genes
involved in aging, development, stress, metabolism, and immunity. The major regulator of DAF-16
activity is the insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway, reduction of
which leads to lifespan extension in worms, flies, mice, and humans. In C. elegans daf-2 mutants,
reduced IIS leads to a heterochronic activation of a dauer survival program during adulthood.
This program includes elevated antioxidant defense and a metabolic shift toward accumulation
of carbohydrates (i.e., trehalose and glycogen) and triglycerides, and activation of the glyoxylate
shunt, which could allow fat-to-carbohydrate conversion. The longevity of daf-2 mutants seems to
be partially supported by endogenous trehalose, a nonreducing disaccharide that mammals cannot
synthesize, which points toward considerable differences in downstream mechanisms by which IIS
regulates aging in distinct groups.
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1. Introduction

Over the past decades, the free-living nematode Caenorhabditis elegans has been developed into a
prominent model organism in aging research. This is primarily due to its short lifespan, the ease of
culturing and experimentation [1], the fully sequenced and well-annotated genome [2,3], and ample
availability of forward and reverse genetic screens [4]. Identification of DAF-16, the C. elegans homolog
of the forkhead box transcription factors class O (FoxO), as one of the key regulators of the aging
process [5–7] prompted massive attention and a wealth of studies aimed at identifying its upstream
regulators, downstream targets and the mechanisms by which it controls aging.

Originally, daf-16 was identified in studies on the genetic basis of dauer formation [8,9]. The dauer
larva is the most specialized diapause stage of C. elegans and it is crucial for survival in the spatially
and temporally restricted microbe-rich patches of rotting plant material, which this worm naturally
inhabits [8–11]. Under adverse conditions, L1/early L2 larvae develop into a dauer, an alternative
L3 stage. Dauer entry is triggered by a continuously secreted dauer (“crowding”) pheromone and
this process is further modulated by temperature and food availability [12,13]. Dauer larvae are
long-lived and considered non-aging (as the post-dauer lifespan is not affected by the time spent in
dauer stage) [14] and highly resistant to various types of stress [15]. When the environment becomes
hospitable again, dauers molt into L4 larvae and development is continued as usual.

2. Identification of DAF-16: The Genetics of Dauer Arrest

Early studies to identify genes regulating dauer arrest characterized two classes of daf (abnormal
dauer formation) mutants: dauer constitutive (daf-c) and dauer defective (daf-d) [8,9]. The daf-16
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mutations were classified as daf-d because these mutants failed to form dauers under dauer-inducing
conditions [8]. daf-2 mutants, on the other hand, were daf-c since they formed dauers even under
favorable conditions [8]. Furthermore, dauer entry in daf-2 mutants was partially or entirely suppressed
by daf-16 mutations [16]. In the same decade, the first single-gene mutation causing lifespan extension
in C. elegans was identified: age-1 (allelic with daf-23) [17–20]. In the early 1990s, mutation in daf-2 was
found to double C. elegans lifespan and this effect required functional daf-16, thus linking the genetics
of dauer formation and longevity [5]. In the years to come, molecular cloning and characterization
showed that daf-2 encodes a receptor tyrosine kinase homolog [21], age-1 a phosphatidyl inositol
3-kinase (PI3K) homolog [20], and daf-16 a FoxO transcription factor [6,7]; all acting together in an
insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway.

3. DAF-16/FoxO Structure and Isoforms

The forkhead box (Fox) gene family encodes transcription factors characterized by a winged-helix
DNA-binding domain (‘forkhead box’) and is evolutionarily conserved in species ranging from yeast
to humans [22,23]. These transcription factors have regulatory roles in a plethora of cellular processes,
such as differentiation, apoptosis, DNA repair, cell cycle arrest, metabolism, stress and immune
response, and longevity [24–26]. In mammals, there are 19 subclasses of Fox transcription factors
(A to S) based on sequence homology [23] and the FoxO subclass contains four members encoded by
distinctive genes: FoxO1 (FKHR), FoxO3 (FKHRL1), FoxO4 (AFX), and FoxO6 [23,27]. In invertebrates,
only one member of the FoxO subfamily has been characterized: DAF-16 in C. elegans [6,7] and dFOXO
in Drosophila melanogaster [28].

In C. elegans, five different DAF-16 isoforms are transcribed from three distinctive promoters of a
single genetic locus: daf-16a1/a2, daf-16b, and daf-16d/f [29–32]. These isoforms differ in their tissue
distribution and function as indicated by multiple studies using transcriptional and translational
reporters, promoter swapping, mutants, and RNA interference (RNAi) [29–31,33,34]. While daf-16a1/a2
and daf-16d/f are expressed in almost all tissues [29–31], daf-16b expression is primarily enriched in the
pharynx, somatic gonad, and neurons [29,31,33], and this distribution is driven by divergence at the
isoforms’ N-termini [31,34]. Furthermore, daf-16a1/a2 and daf-16d/f have dominant roles in controlling
dauer arrest and lifespan [29,31,34], while daf-16b is required for pharynx remodeling during dauer
formation [29,31] and neurite outgrowth during development [33].

To regulate the expression of its targets, DAF-16 binds to a consensus DNA motif TTGTTTAC,
known as the DAF-16 binding element (DBE) [35]. Analysis of the 1 kb region upstream of the
putative DAF-16 targets revealed that the DBE is overrepresented in promoter regions of both Class I
(upregulated in daf-2 mutants) and Class II (downregulated in daf-2 mutants) genes, suggesting that
DAF-16 also functions as a transcriptional repressor [36]. However, by using DamID, Schuster et al. [37]
demonstrated that DAF-16 acts solely as a transcriptional activator of Class I genes through binding
to DBE. A microarray study by Murphy et al. [36] identified a second overrepresented motif: the
GATA-like sequence CTTATCA, later named DAF-16 associated element (DAE) [38]. Rather than
DAF-16, DAE is bound by PQM-1, a transcriptional factor with a key role in controlling the expression
of Class II genes and their downregulation in daf-2 mutants, thus accompanying DAF-16’s role in
IIS-mediated longevity [39].

4. The IIS Pathway: A Central Regulator of DAF-16 Activity

The insulin/IGF-1 signaling pathway is an evolutionarily conserved phosphorylation cascade that
controls growth, metabolism, and reproduction in response to nutrient availability in all eukaryotes.
Moreover, this pathway has a well-established role in regulating aging as reduced IIS leads to lifespan
extension in C. elegans [5,18], D. melanogaster [40,41], and Mus musculus [42,43].

The IIS cascade is activated by binding of insulin-like peptides (ILPs) to the membrane receptor
tyrosine kinase. The C. elegans genome encodes 40 putative ILPs that are largely expressed in
neurons and interneurons [44–46]. However, the differential roles of these peptides are not yet fully
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explored. These ILPs are not generally redundant, rather, they have distinct functions and regulate
each other transcriptionally within a complex signaling network that affects C. elegans development,
stress resistance, and longevity [47]. A recent study functionally characterized all 40 ILPs in vivo,
by creating transgenic lines overexpressing individual peptides pan-neuronally and scoring multiple
phenotypes [48]. The study unraveled functions of 35 ILPs and classified them as agonists, antagonists,
or pleiotropic to IIS. Moreover, eight ILPs were shown to have specific functions (e.g., INS-15, INS-21,
and INS-22 are IIS antagonists with roles in dauer formation, fat accumulation, and lifespan of
L1 arrested larvae, respectively) [48]. D. melanogaster has eight ILPs (DILPs) encoded by distinct
genes [49,50], while in mammals the ILP superfamily contains 10 members of which only insulin,
IGF-1, and IGF-2 are related to C. elegans ILPs and bind to tyrosine kinase receptors [51–55]. In striking
contrast to the number of ILPs, there is only one insulin receptor (IR) in C. elegans—DAF-2. In humans,
on the other hand, there are several tyrosine kinase receptors (IR, IGF-IR, IGF-IIR, and a hybrid insulin
receptor-related receptor—IRR) that bind insulin, IGF-1, and IGF-2 with different affinities to elicit
diverse and complex physiological effects [56].

Upon insulin-like ligand binding, the C. elegans DAF-2 receptor auto-phosphorylates, which
results in the recruitment and activation of the p110 catalytic subunit of PI3K/AGE-1 [20]. AGE-1
catalyzes conversion of phosphatidylinositol 4,5-bisphosphate (PIP2) into phosphatidylinositol
3,4,5-trisphosphate (PIP3) [57]. In humans, the p110 catalytic subunit is recruited to the membrane by
PI3K adaptor subunits that bind to the phosphotyrosines of the insulin receptor substrate (IRS) scaffold
proteins [58]. The C. elegans genome encodes the IRS and PI3K adapter unit homologs, ist-1 and aap-1,
respectively [59]. However, aap-1 and ist-1 are deemed dispensable for AGE-1/p110 catalytic subunit
activation by DAF-2, at least in a wild-type background [59]. Elevated levels of PIP3 result in activation
of the 3-phosphoinositide-dependent kinase-1 homolog PDK-1 [60], which, in turn, phosphorylates and
activates the Akt/PKB homologs AKT-1 and AKT-2 [61] and the serum- and glucocorticoid-inducible
kinase SGK-1 [62]. In mammals, both AKT and SGK can inhibit FoxO3A by phosphorylation but
differ in preference for regulatory sites [63,64]. In C. elegans, the regulatory role of SGK-1 is less
clear. While SGK-1 phosphorylates DAF-16 in vitro [62], it does not influence DAF-16 subcellular
localization in vivo, but probably exerts its regulatory function by affecting other proteins that interact
with DAF-16 [65]. Phosphorylation of DAF-16 by AKT-1 and AKT-2 promotes its sequestration in
cytoplasm through the association with 14-3-3 scaffold proteins PAR-5 and FTT-2 [66,67]. Under the
conditions of reduced IIS due to stress or mutations in daf-2 or any of the pathway kinases, DAF-16
translocates into the nucleus where it modulates transcription of its targets [36,38,68,69].

5. IIS-Independent Regulation of DAF-16 Activity

To fulfill its diverse roles, DAF-16 integrates signals from multiple upstream pathways that act
in parallel to IIS. c-Jun N-terminal kinase JNK-1, a member of the mitogen-activated protein kinase
(MAPK) family, and CST-1, a Ste20-like kinase 1 (MST1) homolog, directly phosphorylate DAF-16,
leading to its nuclear translocation and activation in response to heat and oxidative stress [70,71].
Furthermore, overexpression of both jnk-1 and cst-1 results in a daf-16-dependent lifespan extension [70,71].
Another kinase that activates DAF-16 via direct phosphorylation is the AMP-activated protein kinase
(AMPK) [72]. AMPK was shown to phosphorylate DAF-16 in vitro at least at six different residues,
but it does not increase its nuclear translocation [72,73]. In turn, DAF-16 is a direct transcriptional
activator of aakg-4, which encodes the regulatory γ subunit of AMPK, thus suggesting the existence
of a positive feedback loop that further activates DAF-16 and the expression of its target genes [73].
This notion is additionally supported by the upregulation of aakg-4 in daf-2 mutants and lifespan
shortening of daf-2 due to aakg-4 RNAi or mutation [73]. The nutrient-sensing target of rapamycin
(TOR) signaling pathway also converges on DAF-16. More specifically, genetic inhibition of TORC1
leads to increased transcription of daf-16 and the nuclear translocation of a single DAF-16 isoform,
DAF-16d/f, resulting in lifespan extension [74]. In addition to DAF-16, this longevity phenotype also
requires activation of SKN-1 [74]. Under the conditions of intermittent fasting, however, TORC1
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promotes DAF-16 nuclear translocation and activation of its target genes in a LET-363/TOR- and
RHEB-1-dependent manner [75]. Finally, removal of germline cells results in nuclear translocation
and activation of DAF-16 in the intestine and this is facilitated by kri-1, which codes for an intestinal
ankyrin-repeat protein [76], and the microRNA mir-71 [77].

6. Identification of DAF-16 Targets

In order to uncover underlying molecular mechanisms of C. elegans IIS mutant longevity, several
approaches have been used with the aim to first identify DAF-16 transcriptional targets (reviewed
in [78]). Bioinformatic approach by Lee et al. [79] identified 17 orthologs in C. elegans and D. melanogaster
that contained the consensus DBE within 1 kb of their promoters. Subsequent functional analysis of
these candidates in C. elegans by RNAi revealed that they regulate longevity, dauer formation, and
fat storage [79]. Likewise, initial transcriptomic studies based on expression microarrays and serial
analysis of gene expression (SAGE) identified DAF-16-dependent upregulation of genes involved
in metabolism, cellular stress, and antimicrobial response [36,38,80,81]. A subset of these genes was
functionally assayed for lifespan phenotypes by RNAi, and despite the fact that the vast majority had
a significant effect, not a single treatment completely abolished the longevity of daf-2 mutants like
daf-16 RNAi, pointing toward a complex network of multiple effector genes to regulate aging [36].
In subsequent studies, chromatin immunoprecipitation (chIP) [82–84] and DamID [37] were performed
to distinguish between direct and indirect targets of DAF-16. Oh et al. identified 88 putative targets
that had at least one DAF-16 binding site in their promoter region using chIP on non-synchronized
cultures of daf-2 worms [82]. A DamID approach detected 65 ‘high-confidence’ targets, i.e., genes that
are targets of DAF-16 and are regulated by IIS, which were also enriched for Class I genes identified in
the previous microarray study [37]. Many of the differentially expressed DAF-16 targets identified in
daf-2 mutants by genome-wide studies are shared with the transcriptome of dauer larvae [38,68,85].
These observations are supported by multiple proteomic [86–90] and metabolomic [91,92] studies,
which also highlighted the extensive remodeling of metabolism in daf-2 mutants, reminiscent of
hypometabolic dauers. This is not surprising given that dauers are also long-lived and supports the
idea that daf-2 mutants could potentially rely on the heterochronically activated dauer survival program
for their longevity assurance. In line with this is the discovery that the TGF-β signaling pathway
regulates both longevity and dauer formation and this occurs partially through interactions with IIS
and changes in DAF-16 cellular localization [93]. Further evidence that supports the notion that daf-2
are “adult dauers” is that, at 20 ◦C, adults of the Class 2 daf-2(e1370) mutant show mild dauer-like
characteristics, such as body darkening, gonad shrinkage, and early-life decline in spontaneous
movement [94–96]. On the contrary, Ewald et al. have demonstrated that the lifespan extension due
to reduced IIS can be independent of the dauer program [95]. This is the case when daf-2(e1370) are
grown at 15 ◦C or the daf-2 RNAi is performed at 15, 20, or 25 ◦C, all of which are the conditions where
dauer-like traits are absent and require SKN-1 for lifespan extension [95]. Thus, the requirement of the
heterochronically activated dauer program for daf-2 longevity appears to be context-dependent. In the
following sections, we will discuss aspects of dauer physiology manifested in daf-2 mutants and their
importance for daf-2 longevity.

7. DAF-16-Mediated Enhanced Stress Resistance in Long-Lived daf-2 Mutants

In C. elegans, reduced IIS confers extension of lifespan as well as elevated resistance to various
types of stress, including heat [97], oxidative [98,99], UV [100], osmotic [101], hypoxic [102,103], and
heavy metal [104] stress. Likewise, long-lived IIS mutants also show increased resistance to bacterial
pathogens [105], reduced bacterial colonization, and enhanced clearance of pathogenic bacteria [106].
This wide range of stress responses is mediated by joint activity of DAF-16 with transcription factors
such as HSF-1 [107,108], SKN-1 [109–111], SMK-1 [112] and, with regards to innate immunity, the p38
MAPK pathway [113]. Could increase in stress resistance be the key mechanism of IIS mutant
longevity given the correlation between these two phenotypes? Concordant with this idea, numerous
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studies have demonstrated upregulation of superoxide dismutases (SODs), catalases, and glutathione
S-transferases in long-lived IIS mutants [36,80,98,114,115]. However, both double deletion of sod-2 and
sod-3 (mitochondrial) [116] and sod-1 and sod-5 (cytosolic) [117] render IIS mutants sensitive to oxidative
stress but do not abolish their longevity. Deletion of sod-4 (extracellular) even further extends daf-2
lifespan [117]. Moreover, a quintuple mutant with a complete loss of SOD activity has a normal lifespan
despite being increasingly sensitive not only to oxidative but also osmotic, heat, and cold stress [118].
Finally, a recent study has shown a similar effect in daf-2 worms: complete lack of SOD activity
fully suppresses resistance to oxidative and heat stress but has a negligible effect on longevity [119].
Altogether these results imply that stress resistance and longevity can be experimentally uncoupled
and that elevated activity of antioxidant enzymes is dispensable for daf-2 longevity. If not supporting
longevity, what could possibly be the role of increased antioxidant defense? Taking into consideration
C. elegans ecology, high antioxidant activity in dauers is crucial for the survival of anhydrobiosis and
rehydration, which are accompanied by high levels of reactive oxygen species [120]. In daf-2 mutants
that do not naturally undergo these cycles of anhydrobiotic survival, elevated antioxidant levels could
potentially be only an integral part of the heterochronically activated dauer program that is unrelated
to lifespan extension.

8. The Metabolism in daf-2 Mutants is Extensively Remodeled

In addition to elevated stress resistance, another aspect of dauer physiology is reiterated in
daf-2 mutants: a massive restructuring of intermediary metabolism [86,89,91] (Figure 1). In dauers,
nonessential and energy-costly metabolic functions, such as feeding, growth, and reproduction, are
suppressed [121], and all the internal energy stores are used for long-term structural maintenance and
stress resistance [122]. Prior to dauer formation, young larvae accumulate triglycerides as intestinal
and hypodermal lipid droplets [123], an energy reserve that can be consumed in a slow and strictly
controlled manner to ensure survival of extended periods without food [123,124]. Additionally, dauers
accumulate glycogen, which could serve as a readily available short-term energy source for locomotion
and nictation, especially in the first weeks after dauer formation when they are highly motile [122].
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Similarly, daf-2 mutants have large lipid [7,21,89,125] and glycogen stores [89,126] in their
intestine and hypodermis, as shown by different histological, biochemical, and ultrastructural studies.



Cells 2020, 9, 109 6 of 15

Transmission electron microscopy (TEM) images also indicate higher amounts of glycogen in daf-2
body-wall muscles [89]. Furthermore, daf-2 mutants show increase in de novo fatty acid synthesis,
as demonstrated by a 13C isotope-labeling approach, and this effect is entirely dependent on DAF-16
activity [127]. This finding appears to be in contrast with upregulation of many genes involved in
β-oxidation in daf-2 worms at protein level [89]. Namely, fatty acid β-oxidation is inhibited by high
concentrations of malonyl-CoA coming from increased fatty acid synthesis. These discrepancies could
be explained by the different stages of worms used in the isotope-labeling and proteomic studies,
i.e., late L4 larval stage and day 2 adults, respectively [89,127]. Indeed, age-dependent changes in
lipid content in daf-2 mutants point toward a metabolic switch from lipogenesis during development
and early adulthood (up to day 2) to tightly controlled lipolysis throughout the remaining life [89],
reminiscent of non-feeding dauer larvae [123,124]. Concordant with this notion is also the reduced
level of the fatty acid synthase homolog FASN-1 in adult daf-2 worms [89]. However, it is crucial to
highlight that the described increase in lipid synthesis and storage refers to mutants in a canonical allele
daf-2(e1370) [7,89,125,127] and that certain alternative lifespan-extending alleles such as e1368 and m577
show no such phenotype [127], suggesting that the bulk increase in lipid content per se is not directly
correlated with longevity in IIS daf-2 mutants. On the other hand, altering lipid composition toward
increase in unsaturated fatty acids could potentially play a role. Consistent with this, IIS longevity
mutants show DAF-16-dependent upregulation of fatty acid desaturase FAT-7 [36] and elevated levels
of monounsaturated fatty acids (MUFAs) [92,128,129] as well as MUFA-rich triglycerides [129].

Glycogen is essential for survival of acute hyperosmotic stress in C. elegans as a readily available
reservoir for the production of glycerol in a pathway mediated by AMPK [130]. Its protective role
was also demonstrated in daf-2 mutants in conditions of osmotic stress and anoxia [126,131]. Lifespan
effects of glycogen in worms fed on standard and glucose-rich diet were evaluated by knocking down
genes involved in glycogen synthesis and breakdown, i.e., glycogen synthase (gsy-1) and glycogen
phosphorylase (pyg-1) [132]. gsy-1 knockdown depletes glycogen reserves, however, it causes only
a negligible effect on daf-2 longevity on both diets [132]. pyg-1 RNAi results in a further increase in
glycogen content in daf-2 worms (relative to controls without a knockdown), however, this treatment
drastically shortens lifespan only on a high glucose diet, suggesting that accumulating excess glucose
in form of glycogen in these conditions accelerates aging [132]. These observations were recently
confirmed in a study that has also demonstrated that reduction of gsy-1 leads to a metabolic shift
toward an increase in stored trehalose, which is crucial for alleviating detrimental effects of high
dietary glucose in both wild type and daf-2 worms [133]. Moreover, this beneficent effect of trehalose
requires the functional DAF-16d/f isoform [133]. The role of glycogen in daf-2 physiology is not
entirely clear. It appears that these worms live even slightly longer when glycogen is depleted by
gsy-1 knockdown [133] (in contrast with [132]), yet, GSY-1 is one of the most upregulated proteins
in daf-2 mutants, in agreement with the large glycogen accumulations observed in these worms [89].
It is plausible that accumulation of this sugar is a result of the activated dauer program with the sole
purpose of protection against stress.

Another sugar that could possibly be the main player in daf-2 longevity is the nonreducing
disaccharide trehalose. It is a major circulating sugar in insects, where it is used as an energy
source for fueling glycolysis [134] and its protective role against desiccation [135,136], heat [137], and
osmotic [101,138] stress is shown in diverse organisms. In C. elegans and the anhydrobiotic nematode
Aphelenchus avenae, there are two trehalose phosphate synthase genes, tps-1 and tps-2, responsible
for synthesis of trehalose [139,140]. These genes are the downstream targets of daf-2/daf-16 signaling
and are highly upregulated in dauers and daf-2 mutants [36,80,89], in accordance with increased
trehalose levels in these worms [91,101,141]. In dauer larvae, trehalose is essential for survival
of extreme desiccation [135]. Furthermore, this effect requires a fully active glyoxylate cycle that
allows utilization of fat as a major carbon source for trehalose synthesis [142]. C. elegans has a single
protein with two enzymatic functions (isocitrate lyase and malate synthase) that is responsible for the
glyoxylate shunt reactions [143] and exists in two isoforms: ICL-1 (GEI-7) and the poorly characterized
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C08F11.14 [126,142]. ICL-1 is expressed in mitochondria and it catalyzes conversion of isocitrate and
acetyl-CoA into glyoxylate and succinate and subsequent conversion of glyoxylate into malate. While
succinate can further fuel the tricarboxylic acid (TCA) cycle, malate can be converted into oxaloacetate
and used for the gluconeogenesis to generate trehalose [142,144]. Certainly, impairment of ICL-1
function results in a severe impediment of dauer desiccation tolerance due to a reduced amount of
trehalose in these worms [142]. Likewise, RNAi knockdown of icl-1 shortens lifespan in the daf-2
mutants mu150 and e1370, by up to ~23% and ~27%, respectively, probably by a similar mechanism [145].
These observations are supported by heavy upregulation of icl-1 in dauers [68,142,146] and daf-2
mutants [36,89,145] and a recent metabolic model that predicts greater production of trehalose from
fatty acids by activated glyoxylate cycle in microaerobic conditions [147]. Finally, simultaneous RNAi
knockdown of tps-1 and tps-2 shortens lifespan in daf-2 mutants, also indicating that the endogenous
trehalose is at least partially responsible for daf-2 longevity [141].

The protective role of trehalose is ascribed to the preservation of membrane organization through
maintaining native packaging of lipids, prevention of protein denaturation, and aggregation and
clearance of formed aggregates through induction of autophagy [89,120,133,135,148,149]. Moreover,
trehalose was shown to jointly act with a group of intrinsically disordered proteins (late embryogenesis
abundant, LEA) to exert its protective function both in vitro and in vivo [148]. There is only one
LEA homolog in the C. elegans genome, encoded by lea-1, and it is essential for dauer desiccation
tolerance [120]. Not surprisingly, lea-1 is shown to be upregulated in daf-2 worms, yet again pointing
toward the heterochronic activation of the dauer survival program in these mutants [86,89]. Considering
the importance of trehalose for longevity and its role in alleviating detrimental effects of glucose-rich
diet in C. elegans [133,141,145], it would be interesting to explore the tissue dependency of these effects
and the mechanisms of trehalose transport between different tissues.

The described restructuring of intermediary metabolism in long-lived daf-2 mutants is an
evolutionarily conserved strategy of small organisms with restricted mobility, such as fungi [150],
some plants [151], and invertebrates [135,152], to survive desiccation. This tolerance relies heavily
on mechanisms that are absent in vertebrates (e.g., trehalose synthesis, glyoxylate shunt activation,
LEA proteins) and that, at least partially, contribute to daf-2 longevity. Even though the FoxO
transcription factors have been linked to human longevity, the underlying mechanisms by which this
is achieved could differ substantially between worms and humans due to differences in the details
of their physiology, organismal complexity, and environmental challenges these organisms face in
nature [153,154].

9. Conclusions

The C. elegans FoxO homolog DAF-16 is the main output of IIS with a central role in regulating
aging, which is an evolutionarily conserved function. However, DAF-16-mediated changes in daf-2
mutants are reminiscent of the hypometabolic dauer larvae and the longevity of these worms seems
to rely, at least in part, on mechanisms that are not present in humans, such as synthesis of trehalose
and activation of the glyoxylate cycle. Furthermore, it appears that certain aspects of daf-2 physiology
are a consequence of a heterochronically activated dauer program with a role in stress resistance,
but not longevity. On the other hand, the discovery of DAF-16 in C. elegans and its conserved role
in aging across metazoans stemmed from studies on the genetics of dauer arrest. In addition to
dauer formation, IIS also regulates many other aspects of C. elegans physiology (e.g., metabolism,
autophagy, proteostasis), which have been linked to aging and diseases. Moreover, IIS-mediated
longevity in daf-2 mutants can also be achieved independently of a genetic dauer program, in a
SKN-1-dependent manner [95]. Finally, certain single nucleotide polymorphisms in the DAF-16
ortholog, FoxO3A, have been associated with human longevity [155]. Taken together, these findings
suggest that uncovering more details of IIS-mediated longevity in C. elegans could provide potentially
valuable targets for treatment of aging and age-related diseases in humans.
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