



#### **DYNAMIC SCREENING OF AGRICULTURAL CONTAMINANTS IN FRESHWATER ECOSYSTEMS**

### **AS PART OF AMPHIBIAN BIODIVERSITY CONSERVATION**

#### Goessens Tess<sup>1</sup>, Vanhaecke Lynn<sup>2</sup>, Spanoghe Pieter<sup>3</sup>, Lens Luc<sup>4</sup>, Goethals Peter<sup>5</sup>, Martel An<sup>6</sup>, Pasmans Frank<sup>6</sup> and Croubels Siska<sup>1</sup>

<sup>1</sup>DEPARTMENT OF PHARMACOLOGY, TOXICOLOGY AND BIOCHEMISTRY, FACULTY OF VETERINARY MEDICINE, GHENT UNIVERSITY, MERELBEKE, BELGIUM <sup>2</sup> DEPARTMENT OF VETERINARY PUBLIC HEALTH AND FOOD SAFETY, FACULTY OF VETERINARY MEDICINE, GHENT UNIVERSITY, MERELBEKE, BELGIUM <sup>3</sup> DEPARTMENT OF PLANTS AND CROPS, FACULTY OF BIOSCIENCE ENGINEERING, GHENT UNIVERSITY, GHENT, BELGIUM

<sup>4</sup>DEPARTMENT OF BIOLOGY, FACULTY OF SCIENCES, GHENT UNIVERSITY, GHENT, BELGIUM

<sup>5</sup>DEPARTMENT OF ANIMAL SCIENCES AND AQUATIC ECOLOGY, FACULTY OF BIOSCIENCE ENGINEERING, GHENT UNIVERSITY, GENT, BELGIUM <sup>6</sup>DEPARTMENT OF PATHOLOGY, BACTERIOLOGY AND AVIAN DISEASES, FACULTY OF VETERINARY MEDICINE, GHENT UNIVERSITY, MERELBEKE, BELGIUM

# Introduction



In recent years the presence of agricultural contaminants in the aquatic environment has gained more interest. Research has shown negative effects on the fitness of aquatic amphibians and zooplankton as part of the aquatic food web. Furthermore, because most amphibians reside in aquatic habitats during breeding season and because they have a highly permeable skin, these species tend to be more exposed to environmental toxins than other aquatic and terrestrial vertebrates. Additionally, increasing anthropogenic pressure and agricultural pollution is affecting disease dynamics of chytridiomycosis in amphibians. The latter causing major population declines and even global extinction of species. In this study, a variety of a multi-residue analytical methods was applied for the simultaneous detection of pesticides (n=93), antimicrobial drug residues (n=46), mycotoxins (n=21), coccidiostats (n=12), heavy metals (n=8) and anthelmintics (n=3) in pond water resulting from 26 amphibian breeding ponds selected across Flanders, Belgium. Ponds were sampled monthly over a period of 4 months from March until June.

# Objective

#### The overall objective of this study was to assess the level of contamination in amphibian breeding ponds and the general evolution over time.

Table 1: Overview of the 93 pesticides included in the screening method. DDD\* = dichlorodiphenyldichloroethane DDT\* = dichlorodiphenyltrichloroethane DDE\* = dichlorodiphenyldichloroethylene.



**Table 2**: Overview of the 46 antimicrobial drug residues included in the screening<br/>method. \*diketopiperazine = amoxicillin-diketopiperazine-2',5'-dione

| acephate      | chlorpyrifos  | ethoprophos        | lindaan             | pendimethanil        | tebufenozide      | 4-epichlortetracycline | florphenicol    | sarafloxacin         |
|---------------|---------------|--------------------|---------------------|----------------------|-------------------|------------------------|-----------------|----------------------|
| acetamiprid   | chlorthalonil | fenamiphos         | linuron             | pirimicarb           | tebuthiuron       | 4-epioxytetracycline   | flumequine      | sulfachlorpyridazine |
| alachlor      | cyflufenamid  | fenbuconazole      | malathion           | prochloraz           | temephos          | 4-epitetracycline      | furaltadon      | sulfadiazine         |
| aldrin        | cymoxanil     | fenitrothion       | metalaxyl           | profenofos           | terbuthylazine    | cefapirin              | furazolidon     | sulfadimethoxine     |
| amethryn      | cypermethrin  | fenoxycarb         | methiocarb          | propanil             | thiabendazole     | ceftiofur              | lincomycin      | sulfadoxine          |
| azoxystrobine | difenconazole | fenpropimorf       | methomyl            | propiconazole        | thiacloprid       | cefquinome             | marbofloxacin   | sulfamethoxazole     |
| bentazon      | DDD*          | fludioxonil        | methoxychlor        | propoxur             | thiametoxam       | chloramphenicol        | nalidixic acid  | sulfamerazine        |
| bifenthrin    | DDE*          | heptachlorobenzeen | methsulfuron methyl | prosulfocarb         | thifensulfuron    | chlortetracycline      | nifursol        | sulfamethazine       |
| bitertanol    | diazianon     | hexachlorobenzeen  | metribuzin          | pyraclostrobin       | thiodicarb        | ciprofloxacin          | nitrofurantoïn  | sulfathiazole        |
| boscalid      | dieldrin      | hexaconazole       | monocrotophos       | pyrazosulfuron ethyl | thiofanate-methyl | cloxacillin            | norfloxacin     | tiamulin             |
| butachlor     | dimethoate    | hexythiazox        | nicosulfuron        | pyrimethanil         | triademinol       | danofloxacin           | ofloxacin       | tilmicosin           |
| cadusafos     | dimethomorph  | imazalil           | o,p'-DDT*           | spirodiclofen        | triazophos        | difloxacin             | oxacillin       | tetracycline         |
| captan        | diuron        | imidacloprid       | oxamyl              | spiroxamine          | trifloxystrobine  | diketopiperazine*      | oxolinic acid   | trimethoprim         |
| carbaryl      | endosulfan    | iprodione          | p,p'-DDT*           | spinosad A           |                   | doxycycline            | oxytetracycline | tylosin              |
| carbendazim   | endrin        | kresoxim methyl    | parathion           | spinosad D           |                   | enrofloxacin           | penicillin G    |                      |
| carbofuran    | epoxiconazole | lambda-cyhalothrin | penconazole         | tebuconazole         |                   | erythromycin A         | penicillin V    |                      |

4 km







## Methods



# Results Field Sampling



| Table 7: Contaminants detected in por | d water during the san | npling campaign of March | untill June 2019. |
|---------------------------------------|------------------------|--------------------------|-------------------|
|---------------------------------------|------------------------|--------------------------|-------------------|

| Class                       | Concentration range (ng mL <sup>-1</sup> ) | Most abundant compound |
|-----------------------------|--------------------------------------------|------------------------|
| Heavy metals                | 0.206-333                                  | zinc                   |
| Antimicrobial drug residues | 0.003-0.422                                | 4-epioxytetracycline   |
| Pesticides                  | 0.002-38.7                                 | terbuthylazine         |
| Mycotoxins                  | 0.001-0.007                                | enniatin B             |
| Coccidiostats               | 0.005-0.029                                | amprolium              |
| Anthelmintics               | 0.003-5.700                                | levamisole             |





Fig. 3: 4-epioxytetracycline detection in pond BRA12 (Brakel, Belgium).



Fig. 1: Sampling locations selected across East Flanders, Belgium including ponds in Zottegem (n=7), Brakel (n=11), Lierde (n=1), Geraardsbergen (n=4), Maarkedal (n=2) and Zwalm (n=1).

Fig. 2: Box-plots of the concentration range (ng mL<sup>-1</sup>) of zinc (a), enniatin B (b) and 4-epixoxytetracycline (c) during the months of March, April, May and June. Within the box plot chart the crosspieces of each box plot represent (from top to the bottom) maximum, upper-quartile, median (black bar), lower-quartile and minimum values.

| <u>General conclusion</u>                                                                                                                                                                                                                  | Contact:                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| A variety of multi-residue analytical methods was applied for the simultaneous detection of pesticides (n=93), antimicrobial drug residues (n=46), mycotoxins (n=21),                                                                      | Tess.Goessens@ugent.be                                                                                                        |
| coccidiostats (n=12) heavy metals (n=8) and anthelmintics (n=3) in pond water resulting from 26 amphibian breeding ponds selected across Flanders, Belgium. Most                                                                           | Siska.Croubels@ugent.be                                                                                                       |
| abundant compounds for each group of contaminants were zinc (C <sub>max</sub> = 333 ng mL <sup>-1</sup> ), terbuthylazine (C <sub>max</sub> = 39 ng mL <sup>-1</sup> ), levamisole (C <sub>max</sub> = 5.7 ng mL <sup>-1</sup> ), 4-       | https://www.ugent.be/di/ftb/en                                                                                                |
| epioxytetracycline (C <sub>max</sub> = 0.4 ng mL <sup>-1</sup> ), amprolium (C <sub>max</sub> = 0.03 ng mL <sup>-1</sup> ) and enniatin B (C <sub>max</sub> = 0.01 ng mL <sup>-1</sup> ). Overall, the concentrations of enniatin B and 4- | Laboratory of Pharmacology and Toxicology (GLP compliant)                                                                     |
| epioxytetracycline were relatively stable during the sampling period. Zinc concentrations were significantly lower in May in comparison with March, April and June: 30                                                                     | Aske suited severals this veccessly is supported by the Cresici Dessevely Fund of Chart Heinewith sweet support               |
| versus 62, 66 and 45 ng mL <sup>-1</sup> , respectively (with a p-value of < 0.05). These findings could be related to a reduced application of pig manure, associated with higher zinc                                                    | ACKNOWLEDGEMENT: THIS RESEARCH IS SUPPORTED BY THE SPECIAL RESEARCH FUND OF GHENT UNIVERSITY GRANT NUMBER<br>BOF16-GOA-O24 O8 |
| concentrations, on the surrounding agricultural fields in combination with higher precipitation in May.                                                                                                                                    |                                                                                                                               |

