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ABSTRACT 

The work presented in this thesis provides insights into the Drosophila smooth 

septate junction complex Ssk-Mesh that regulates ISC proliferation and tissue 

homeostasis in addition to the well-known barrier function in the epithelial integrity. With 

CRISPR-generated tag knockin alleles of Ssk and Mesh, I characterized the intracellular 

expression pattern of Ssk and Mesh. Ssk and Mesh had low but detectable expression 

in punctate format in the cytoplasm of enteroblasts (EBs). The protein expression profile 

of Ssk and Mesh correlated with their ability to regulate the ISC proliferation even 

though the septate junctions in EBs had not fully formed. Along with further 

differentiation into mature enterocytes (ECs), Ssk and Mesh gradually localized to the 

epithelial apical domain, where they coordinated with other junction proteins, such as 

Tsp2A and Coracle, to form the septate junction. RNAi-conducted genetic assays and 

mutant clonal analyses by knockout mutant alleles of Ssk and mesh further revealed 

that Ssk and Mesh restricted the activity of the transcription coactivator Yki, which 

governs the production of the cytokine Upd3 along the EB-EC differentiation lineage in 

adult midgut. Loss of Ssk or Mesh activated Yki to elevate the upd3 expression and 

thereby to induce the robust ISC proliferation non-autonomously. Although the total 

number of EBs in midgut is much fewer than that of ECs, surprisingly, knockdown Ssk 

or mesh in EBs resulted in a comparable upd3 upregulation and ISC proliferation as 

knockdown their expression in ECs. Leaky midgut caused by knockdown of Ssk or 

mesh in ECs activated the stress-responding mechanisms to repair the damaged 

intestinal epithelium, and was eventually associated with death of animals. The 

reduction of Ssk and Mesh in EBs displayed much milder gut leakage and lower lethality 



 

 

further confirmed that Ssk and Mesh in the two distinct cell types had their own roles in 

governing ISC proliferation.  
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CHAPTER I 
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INTRODUCTION 

Nutrients are vital for survival and health. The digestive system breaks down food into 

the chemical components for the body to absorb the necessary carbohydrates, fat, and 

proteins. The luminal side of the digestive tract is covered with a thin layer of epithelial 

cells for absorption and tissue homeostasis. These epithelial cells in the digestive tract 

are exposed to the risks of chronic inflammation since they encounter continuous irritation 

via daily ingestion of food and pathogens. The intestine is the primary site of nutrient 

absorption in the digestive system. With the physical segmentation and enzymatic activity, 

the intestine coordinates nearby accessory organs to digest ingested foods and absorb 

their breakdown products completely.  

Colorectal cancer (CRC) is the most prevalent cancer type in the digestive tract. 

Excluding skin cancer, CRC in the United States is the third most common cancer 

diagnosed in males and in females. CRC is also the second leading cause of cancer-

related death in both genders, and the expected death of CRC is about 51,000 in 2019 

(https://seer.cancer.gov). Most of the CRC-related death is due to the metastasis of the 

liver (Fleming et al., 2012; Neo et al., 2010). The cost of the treatment is a heavy burden 

for individuals. Depending on the health insurance plan, the average spending from 

patients ranges from 5,000 to 10,000 in the first year. According to the report from the 

American society of cancer, the total care cost per CRC patients was more than 120,000 

in 2016, an expenditure that continues to increase (Mariotto et al., 2011). Although the 

lifetime risk to develop the CRC in males is slightly higher, the death rate has been 

decreasing in both genders for decades due to multiple likely reasons. Cancer screening 

allows early detection of cancers. For CRC, the incorporation of the colonoscopy 
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screening significantly improves the accuracy of diagnosis. The colonoscopy detects and 

removes the polyps much earlier before they develop into cancer, effectively preventing 

the tumorigenesis. 

Anyone can develop CRC. Many factors are associated with the disease progress. 

Some factors are modifiable, such as diet, obesity, tobacco, and alcohol consumption. 

However, modification of these factors is not sufficient to avoid CRC. Those non-

modifiable factors from the familial history of polyps or CRC, genetic predisposition, ethnic 

backgrounds, and inflammatory bowel disease have much higher effects on the 

development of CRC (Simon, 2016). Most colorectal tumors grow slowly and take multiple 

steps. Polyps are benign but precancerous tissues that aggregate cells with abnormal 

growth. The dividing cells in the polyps accumulate sufficient genetic mutations such as 

APC-/-, by which they invade the bowel wall and eventually metastasis to distant sites. On 

average, it takes several years to complete the development from the initiated polyps to 

CRC (Huels and Sansom, 2015). 

Understanding the mechanisms that mediate tissue homeostasis is a potential way 

to block CRC development. The daily shedding of intestinal epithelial cells results in the 

turnover of mature cells in the whole epithelial layer in every 4-5 days. Also, physiological 

reactions, such as peristalsis, need the involvement of endocrines. Therefore, the 

resident intestinal stem cells (ISCs) divide and differentiate to fulfill those demands and 

maintain the tissue integrity as well as the health. How to control the ISCs division and 

the subsequent differentiation is critical to prevent abnormal tissue growth. Studies have 

shown that Wnt/β-catenin signaling is essential for intestinal homeostasis. Apc deletion 

in ISCs induces the formation of adenoma. Clinical reports also reveal more than >90% 
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of CRC patients has the aberrant activation of Wnt/β-catenin signaling (Clevers, 2006). 

There are also reports indicating the crosstalk between the Wnt/β-catenin signaling and 

the Hippo pathway, which is an evolutionally conserved signaling in organ size control 

(Azzolin et al., 2014; Heallen et al., 2011; Imajo et al., 2012). Together, their mutual 

interaction and regulation govern the ISC behaviors to support intestinal tissue 

homeostasis. 
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The Hippo pathway 

1. The core kinases of the Hippo signaling pathway and their conservation.  

Uncontrolled cell proliferation is the primary impression of cancers. The dysregulation of 

the Hippo pathway is common in various human cancers, and YAP/TAZ has been 

identified as a hallmark of cancers (Sasaki et al., 2007; Yu et al., 2015; Zhou et al., 2009). 

Systematic profiling of 9125 tumor samples showed an extensive dysregulation of the 

Hippo pathway components in human cancer types, including colorectal cancer (Kosaka 

et al., 2007). Since the Hippo pathway integrates versatile interior and exterior cues, 

understanding this sophisticated pathway not only helps us to elucidate the manipulation 

from embryonic development till the adult tissue homeostasis, but sheds light on the 

potential targets for the design of cancer drugs. 

(1) The constituents and the identified regulation of the Hippo pathway in 

Drosophila. 

The structure and regulation of the core kinase cascade 

Initiating from the genetic screening in Drosophila, the Hippo pathway has been 

known as an evolutionally conserved mechanism across animal phyla (Sebe-Pedros et 

al., 2012). It participates in diverse physiological functions, such as the lineage 

specification in early embryogenesis, cell fate specification, tissue-resident stem cell 

maintenance, and the tissue regeneration while encountering impairment. This pathway 

is first identified in Drosophila, which controls the organ size by arresting cell proliferation 

and driving apoptosis (Harvey et al., 2003; Huang et al., 2005; Justice et al., 1995; Lai et 

al., 2005; Tapon et al., 2002; Wu et al., 2003; Zhang et al., 2008b). Genetic mosaic 

screening based on overgrowth of homozygous mutant clones identifies the first four 
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tumor suppressors warts (wts), hippo (hpo), salvador (sav), and mob as tumor suppressor 

(mats) (Jia et al., 2003; Justice et al., 1995; Kango-Singh et al., 2002; Lai et al., 2005; 

Pantalacci et al., 2003; Tapon et al., 2002; Udan et al., 2003; Wu et al., 2003; Xu et al., 

1995), which constitute the core kinase cascade. Later on, the identification of the 

transcription co-activator Yorkie (yki) and its DNA-binding partner Scalloped (sd) links the 

kinase cascade and the downstream transcriptional regulations to coordinate cell 

proliferation and cell death (Chen, 1992; Wu et al., 2008). 

 A series of phosphorylation at Serine/Threonine residues is required for the core 

kinase cascade. Hpo-Sav complex phosphorylates and activates the Wts-Mats complex. 

Activated Wts-Mats complex further phosphorylates and inactivates Yki to turn off the 

downstream gene expression (Dong et al., 2007; Huang et al., 2005). Hpo acquires its 

activity by the phosphorylation within its kinase domain. Tao-1, the upstream ste-20 family 

kinase, directly phosphorylates the Thr195 (Boggiano et al., 2011; Poon et al., 2011). 

Besides Tao-1 kinase, Hpo activation requires proper dimerization by its Sav-RASSF-

Hippo (SARAH) domain at the C-terminus. The C-terminal dimerization of Hpo leads to 

the subsequent dimerization at the N-terminus, which is critical for the following inter-

subunit trans-autophosphorylation to acquire Hpo kinase activity (Deng et al., 2013; Jin 

et al., 2012). Sav and RASSF are another two SARAH domain-containing proteins that 

modulate the dimerization and the following autoactivation. Sav dimerizes with Hpo by 

their respective SARAH domains and stabilizes the Hpo homodimer (Aerne et al., 2015; 

Jin et al., 2012). The Hpo-Sav heterotetramer increase the kinase activity of Hpo by trans-

autophosphorylation within the Hpo T-loop (Bae et al., 2017). Moreover, the 
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heterotetramer stabilizes Sav since Hpo antagonizes the E3 ligase Herc4-mediated 

ubiquitination and degradation (Aerne et al., 2015). 

In contrast to Sav, Drosophila RASSF (dRASSF) negatively regulates the Hippo 

pathway. dRASSF competes with Sav for binding to Hpo by its C-terminal SARAH domain. 

The Hpo-dRASSF complex raises the stability of dRASSF and restricts Hpo activity. 

Therefore, Sav and dRASSF modulate the activity of Hpo kinase in the opposite manner 

(Gokhale and Pfleger, 2019; Polesello et al., 2006). The non-structural linker between the 

kinase and C-terminal SARAH domain of Hpo is another site to modulate the Hpo activity. 

Hpo autophosphorylates multiple sites within the linker after the Thr195 is phosphorylated. 

Some phospho-residues become the docking site for Mats recruitment to promote Wts 

phosphorylation (Ni et al., 2015). Conversely, some phosphorylated residues are for the 

negative feedback to restrict Hpo activity. Proteomic and RNAi screening identify the 

Drosophila STRIPAK (dSTRIPAK) PP2A phosphatase complex that binds to the linker 

region of Hpo by its Slamp subunit and dephosphorylates the T195 to inactivate Hpo. 

(Formstecher et al., 2005; Guruharsha et al., 2011). Therefore, Hpo activity is fine-tuned 

by multiple built-in mechanisms. (Ribeiro et al., 2010; Zheng et al., 2017).  

The effector kinase Wts takes sequential phosphorylation before inactivating Yki. Hpo 

phosphorylates Thr1077 within the C-terminal hydrophobic motif of Wts followed by 

autophosphorylation at Ser907 in the activation motif of Wts kinase domain (Chan et al., 

2005). To enhance the phosphorylation, Sav behaves as an adaptor downstream to Hpo, 

interacting with the PPxY-motif of Wts by its WW-domain (Tapon et al., 2002). Sav also 

has been proposed to act upstream to Hpo by recruiting Hpo toward the plasma 

membrane to phosphorylate Wts (Su et al., 2017; Yin et al., 2013). The other adaptor 
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protein within the kinase cascade is Mats (Hergovich, 2011; Ho et al., 2010). Mats 

physically associates with Wts to facilitate Wts-mediated phosphorylation of Yki (Lai et 

al., 2005). The Thr431 and the Mats-binding hydrophobic motif in the non-structural linker 

of Hpo are the docking sites for Mats (Ni et al., 2015). Mats binds to Hpo and enhances 

the kinase cascade by shortening the spatial distance between Hpo and Wts. 

Endogenous Mats is detected at the plasma membrane, where it recruits Wts and 

increases the kinase activity of Wts (Hergovich et al., 2006; Ho et al., 2010). Whether 

being the substrate of Hpo enhances the interaction between Mats and Wts is no entirely 

clear. Some studies suggest that Hpo phosphorylates Thr12 and Thr35 of Mats, enabling 

Mats to interact with the auto-inhibitory region of Wts and promote Wts activation (Wei et 

al., 2007), whereas other proposes Mats conducts the conformational transition of Wts 

before Hpo-mediated phosphorylation (Vrabioiu and Struhl, 2015). 

The requirement of Hpo for Wts activation is context-dependent. Whether Hpo is the 

primary Wts regulator varies according to distinct cell types and upstream inputs. Hpo-

independent activation of Wts/LATS is first revealed in the MST1/2 null mouse embryonic 

fibroblast that had unperturbed phosphorylation of LATS1/2 and YAP regardless of cell 

density (Zhou et al., 2009). Additional reports also show that YAP phosphorylation 

induced by F-actin depolymerization is MST1/2-independent (Yu et al., 2012a; Zhao et 

al., 2012). Recently, the identification of the MAP4K family kinases, which act in parallel 

to Drosophila Hpo and mammalian LATS1/2, solves the puzzle (Li et al., 2014a; Meng et 

al., 2015; Zheng et al., 2015). In Drosophila, Misshapen (Msn, ortholog of mammalian 

MAP4K4/6/7) and Happyhour (Hppy, ortholog of mammalian MAP4K1/2/3/5) function 

redundantly in response to the F-actin cytoskeleton disruption, cell density, and contact 
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inhibition. They directly phosphorylate the Thr1077 of Wts hydrophobic motif to activate 

Wts (Li et al., 2014a; Li et al., 2018; Ma et al., 2019; Zheng et al., 2015).  

The regulation of Yki and its DNA-binding partner Sd 

The Hippo pathway effector Yki is the vital link between the upstream Wts and the 

downstream gene expression related to cell cycle and death. Overexpressed Yki 

recapitulates the phenotypes in tissue outgrowth and compromises apoptosis that are 

caused by the hpo, wts, or sav mutant (Huang et al., 2005). Wts-mediated 

phosphorylation at S168 of Yki (S127 of YAP) induces the interaction with 14-3-3 that 

restricts Yki in the cytoplasm (Dong et al., 2007). Since it has no DNA-binding motif, Yki 

interacts with the Sd transcriptional factor to regulate gene transcription (Goulev et al., 

2008; Wu et al., 2008; Zhang et al., 2008b). Genome-wide chromatin occupancy studies 

reveal a substantial overlap of the DNA-binding sites between the mammalian homolog 

of Yki and Sd, supporting the idea that Sd is the necessary DNA-binding partner of Yki 

(Zanconato et al., 2015; Zhao et al., 2008). Upon the association with Sd, Yki recruits 

multiple chromatin-remodeling complexes, such as the Trr H3K4 methyltransferase and 

SWI/SNF complex, to facilitate gene expression (Oh et al., 2014; Qing et al., 2014; Zhu 

et al., 2015). Conversely, Sd also represses gene expression. Tgi, the Tondu domain-

containing transcriptional corepressor, is identified as the default corepressor. Tgi 

antagonizes Yki-mediated transcription by competing for the same binding site of Sd. In 

the absence of Yki, Sd engages Tgi to display its default repression. The presence of Yki 

replaces Tgi and converts Sd into the transcriptional activator (Guo et al., 2013; Koontz 

et al., 2013). Therefore, Sd performs another layer to modulate the downstream gene 

expression appropriately. 
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Figure A. The activation mechanisms in the Hippo kinase cascade. 

 
 

 

Figure B. Multiple signals are integrated to regulate the Hippo pathway. 

 
  

Zheng & Pan (2019)  

Ref.  Zheng & Pan (2019)  
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 (2) The composition and the modulation of the Hippo signaling pathway are 

conserved in mammalian, but not identical. 

Mammalian kinase cascade MST1/2-LATS1/2 regulation 

After identifying the core components of the Hippo pathway in Drosophila, the 

counterparts of the kinase cascade are soon discovered in the mammalian system. They 

guard cell proliferation and apoptosis to maintain the appropriate organ size during 

development, and prevent tumorigenesis in adulthood (Li et al., 2019; Lu et al., 2010; 

Misra and Irvine, 2018; Zhang and Zhou, 2019). Hence, the Hippo pathway is highly 

conserved from invertebrates to mammals. The kinase cascade requires multiple layers 

of phosphorylation to gain the activity (Chan et al., 2005; Zhang et al., 2008a). Ste20-like 

kinase1/2 (MST1/2; mammalian homolog of Hpo) and the large tumor suppressor 1/2 

(LATS1/2; homolog of Wts) consist the core of the mammalian Hippo pathway. MST1/2 

phosphorylates the hydrophobic motif of LATS1/2, leading to a series of intermolecular 

phosphorylation to activate LATS1/2. The physiological output of the MST1/2-LATS1/2 

cascade restricts the activity of two transcriptional coactivators, Yes-associated protein 

and transcriptional coactivator with PDZ-binding motif (YAP/TAZ, the homolog of Yki) 

(Misra and Irvine, 2018; Moya and Halder, 2019). 

Upon activation by extracellular signals, the threonine residues within the activation 

loop of MST1/2 (Thr183 for MST1 and Thr180 for MST2) are phosphorylated to initiate 

MST1/2 activity. Upstream TAO kinase phosphorylates the activation loop of MST1/2 and 

activates MST1/2 (Boggiano et al., 2011; Pflanz et al., 2015; Poon et al., 2011). The 

scaffold proteins SAV1 (homolog of SAV) assists the homodimerization of MST1/2, which 

helps MST1/2 gain the activity (Glantschnig et al., 2002). MST1/2 partners with SAV1 
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through their respective C-terminal SARAH domain and increases the stability of SAV1. 

The heterodimerization also leads to the phosphorylation of SAV1 to support the 

subsequent LATS1/2 activation (Callus et al., 2006). Two SAV1-MST1/2 heterodimers 

are associated together to form one heterotetramer, in which MST1/2 undergoes trans-

autophosphorylation (Bae et al., 2017). Besides the allosteric activation, SAV1 maintains 

MST1/2 kinase activity by antagonizing the PP2A phosphatase STRIPAK. The linker 

between the kinase domain and the C-terminal SARAH domain of MST1/2 is another 

region to regulate the kinase activity (Bae et al., 2017). Activated MST1/2 

autophosphorylates several threonine and methionine residues of is non-structural linker 

to create the docking sites. The adaptor SLMAP binds to the phosphorylated linker and 

recruits STRIPAK to execute PP2A-mediated dephosphorylation. SAV1 protects the 

MST1/2 activation loop from dephosphorylation by binding to the STRIPAK-PP2A 

catalytic core (Bae et al., 2017). The phosphorylated linker of MST1/2 is the docking site 

for MOB1 (homolog of Mats) as well. After Mst1/2-mediated phosphorylation, MOB1 

undergoes conformational activation and associates with LATS1/2 to assist MST1/2 in 

the recruitment and phosphorylation at the hydrophobic motif of LATS1/2 (T1079 for 

LATS1 and T1041 for LATS2) (Bao et al., 2009; Hergovich et al., 2006; Ni and Luo, 2019; 

Ni et al., 2015; Praskova et al., 2008). Therefore, the effector kinase LATS1/2 acquires 

the ability to modulate YAP/TAZ. 

Although Drosophila RASSF inhibits the binding of Sav to Hpo, mammalian RASSF 

family proteins display controversial roles (Crose et al., 2014; Guo et al., 2007; Hwang et 

al., 2007; Ikeda et al., 2009; Liao et al., 2016; Oh et al., 2006; Song et al., 2012). The 

interaction with membrane-anchored Ras converts the SARAH domain of RASSF1A and 
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RASSF5 toward open status and makes them more accessible to MST1/2, enhancing 

MST1/2 autophosphorylation and LATS1/2 activation (Guo et al., 2007; Hwang et al., 

2007; Liao et al., 2016; Oh et al., 2006). Several reports reveal the tumor-suppressing 

roles of RASSF proteins. Delayed mitosis and defective cytokinesis-induced 

multinucleate aneuploid are cancer hallmarks which are frequently observed in Rassf1a-

deficiency mouse embryo fibroblast (Guo et al., 2007). RASSF3 suppresses tumor growth 

by protecting p53 from ubiquitination although the details need further investigation (Kudo 

et al., 2012). However, not all RASSF family members are tumor suppressors. FOXO1-

elevated RASSF4 has been reported to promote an aggressive skeletal muscle sarcoma 

by suppressing MST1 activity (Crose et al., 2014), and RASSF6 inhibits MST2 in 

mammalian HEK293T cells (Ikeda et al., 2009). As for RASSF2, it regulates osteoblast 

for appropriate bone modeling by inhibiting NF-κB signaling (Song et al., 2012). 

MST1/2-independent activation of LATS1/2 is conserved in mammals (Meng et al., 

2015; Plouffe et al., 2016). Unaltered LATS1/2 activity and YAP phosphorylation are 

discovered in the MST1/2 null mice, suggesting other mechanisms activate LATS1/2 in 

parallel to MST1/2 (Zhou et al., 2009). MAP4K kinases family, as well as TAO kinase, 

directly phosphorylate LATS1/2 at the hydrophobic motif, leading to LATS1/2 activation. 

Noteworthily, the deletion of MST1/2, MAP4K, or TAO kinases alone only partially relieves 

the YAP/TAZ inhibition in mammalian cells (Meng et al., 2015). Combined ablation of all 

three kinases dramatically reduces YAP/TAZ phosphorylation in response to LATS1/2-

activating signals such as serum deprivation and F-actin disassembly, indicating their 

redundant roles upstream to LATS1/2. In adult Drosophila midgut, the MAP4K4 homolog 

Msn in the enteroblasts and the Ste-20 kinase Hpo in enterocytes cooperatively restrict 
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the production of Upd3 cytokine to regulate ISC proliferation. Hence, the relative 

dominance of MST1/2, MAP4K, and TAO kinases in mammal highly depends on the cell 

types and input signals. 

YAP/TAZ/TEAD regulation 

The Hippo pathway inactivates YAP and TAZ by cytoplasmic retention and ubiquitin-

dependent degradation (Luo, 2010; Zhao et al., 2007). LATS1/2 phosphorylates YAP/TAZ 

(Residues S127 of YAP1 and S89 of TAZ) to generate 14-3-3-binding sites. Association 

with 14-3-3 retains YAP/TAZ in the cytoplasm (Garcia and Castano, 1991; Zhao et al., 

2007). The LATS1/2-induced phosphorylation further primes the subsequent casein 

kinase 1 (CK1)-mediated phosphorylation of YAP/TAZ and recruits the SCF E3 ubiquitin 

ligase, eventually leading to the ubiquitination and degradation of YAP/TAZ (Kodaka and 

Hata, 2015; Liu et al., 2010; Zhao et al., 2010).  

YAP and TAZ are transcription coactivators without DNA-binding motifs. Although 

other DNA-binding partners for YAP/TAZ have been identified, TEAD family (TEAD1-4) 

transcription factors are the principal DNA-binding partners that convert the upstream 

signals to various gene expression of cell growth and apoptosis (Lin et al., 2017). The 

TEAD binding-defective YAP fails to induce transcription of YAP target genes, 

recapitulating the YAP knockout mice (Zhao et al., 2008). The deletion of TEAD results 

in the cytoplasmic retention of YAP/TAZ even when they are not phosphorylated (Stein 

et al., 2015; Zanconato et al., 2015). Moreover, chromatin occupancy experiments 

revealed TEAD as the mandatory DNA-binding partner of YAP-mediated growth control. 

The chromatin binding peaks of YAP/TAZ significantly overlap with TEAD binding sites in 

oncogenic growth (Stein et al., 2015; Zanconato et al., 2015). VGLL4 negatively regulates 
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YAP/TAZ transcription activity. Different from its Drosophila ortholog Vg that has one Vg 

domain in the N-terminus, VGLL4 contains two Vg domains in the C-terminus. VGLL4 

directly competes with YAP for binding to TEAD and functions as a default transcription 

repressor. Consistently, the VGLL4-mimicking peptide compromises gastric cancer 

caused by hyperactivated YAP, supporting the antagonistic effect of VGLL4. Several 

chromatin-remodeling complexes associate with YAP/TAZ and control gene expression 

under different contexts, including the bromodomain-containing protein4 (BRD4), Trr-

homolog methyltransferase NcoA6, and SWI/SNF (Chang et al., 2018; Fujisawa et al., 

1987; Oh et al., 2014; Zanconato et al., 2018), suggesting the accessibility of target genes 

is another parameter to influence YAP/TAZ-mediated transcription. 

 

Figure C. The Hippo pathway coordinates multiple signals to regulate the activity 

of YAP/TAZ. 

  

 Zheng & Pan (2019)  
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2. Versatile upstream signals to regulate the Hippo signaling pathway. 

Studies in the past decades have shown that Yki/YAP/TAZ are the primary effectors of 

the Hippo pathway, which employs kinase-mediated phosphorylation to induce 

cytoplasmic retention and degradation of Yki/YAP/TAZ in response to diverse biological 

demands (Misra and Irvine, 2018). These intrinsic and extrinsic signals function through 

peripheral components to modulate the phosphorylation of the kinase cascade. Recent 

genome-wide chromatin immunoprecipitation and expression profiling analysis also 

confirm genes that are targets of the Hippo pathway and regulate cell proliferation and 

death are enriched in both Drosophila and mammals (Galli et al., 2015; Stein et al., 2015; 

Zanconato et al., 2015; Zhao et al., 2008). One class of these target genes encodes 

negative regulators upstream to the kinase cascade and Yki/YAP/TAZ, while another 

class participates in cell migration, organization of extracellular matrix, and assembly of 

F-actin cytoskeleton. Unlike other classic pathways that mostly rely on specific ligand-

receptor pairing, the Hippo pathway is linked to a broad spectrum of both intrinsic and 

extrinsic upstream signals, such as cell polarity, cell-cell contact, mechanical force, and 

metabolism. 

(1) Cell polarity 

The apicobasal polarity is established by the asymmetric distribution of the cellular 

components and maintained through a conserved network among protein complexes. 

The functional interaction between membrane-associated protein complexes divides the 

plasma membrane into the apical and basolateral domains. The shape of the epithelial 

cells depends on the polarity. Loss of the polarity and tissue architecture highly correlate 

with the potential metastasis. Many identified upstream regulators of the Hippo pathway 
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are components of tight junctions, adherens junctions, and apicobasal polarity complexes. 

Therefore, disruption of the cell junction or apicobasal polarity triggers cell outgrowth and 

is a hallmark of the cancerous epithelial tumors. CRB complex (CRB/PATJ/PALS1), PAR 

complex (PAR3/PAR6/aPKC), and Scribble complex (SCRIB/DLG/LGL) are responsible 

for the epithelial polarity and proliferation control. The upstream regulators of the Hippo 

pathway that interact with Crb further provide additional aspects to connect polarity and 

growth control. 

Merlin/NF2, Ex, Kibra 

Merlin (Mer) and Expanded (Ex) are the first two upstream regulators genetically 

linked to the Hippo kinase cascade in Drosophila and act together to regulate cell 

proliferation and differentiation (Hamaratoglu et al., 2006; McCartney et al., 2000). Being 

members of the FERM (4.1, Ezrin, Radxin, and Moesin) family proteins, which crosslink 

actin with the plasma membrane, Mer and Ex act as the linker to recruit other components 

to the plasma membrane (Sato and Sekido, 2018). Inactivation of both Mer and Ex results 

in the comparable overgrowth caused by hpo mutant. Kibra is subsequently identified to 

physically interact with Mer and Ex, forming a complex at the apical domain of epithelial 

cells (Genevet et al., 2010; Yu et al., 2010). Kibra interacts with phospholipids by its C2 

domain and targets partner proteins to the cell membrane (Kremerskothen et al., 2003). 

Indeed, further studies support the importance of the plasma membrane for Hippo 

signaling activation. Mats is activated at the plasma membrane (Ho et al., 2010). 

Tethering MST1 and Msn to the plasma membrane by myristoylation constitutively 

activates their kinase activity (Brooks, 1975; Kaneko et al., 2011; Kline et al., 2018). 

Mechanistically, Mer and Ex physically associate with Hpo-Sav complex and Kibra 
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directly binds to Wts, suggesting that Mer/Ex/Kibra complex cooperatively recruits the 

components of the Hippo kinase cascade toward the apical domain where kinases 

acquire their activity (Genevet et al., 2010; Yu et al., 2010). 

The regulation of the Mer/Ex/Kibra complex on the Hippo pathway is mostly 

conserved in mammals (Cockburn et al., 2013; Petrilli and Fernandez-Valle, 2016; Verma 

et al., 2019). FRMD6, the ortholog of Ex, is an upstream component of the Hippo pathway 

to suppress the progression of hepatocellular carcinoma (Guan et al., 2019). Association 

of mammalian KIBRA with aPKC/Par3 inactivates the Hippo pathway and promotes the 

metastasis of prostate cancer (Zhou et al., 2017). NF2, the homolog of Mer, is identified 

by the development of neurofibromatosis type 2. Extensive studies of NF2 from a variety 

of tissues also present its role in tumor suppression (Petrilli and Fernandez-Valle, 2016). 

Overexpression of NF2 in mammalian cells results in LATS1/2 activation and YAP 

inhibition (Yin et al., 2013). Conditionally deletion of NF2 in mouse liver induces 

hepatocellular carcinoma and cholangiocarcinoma (Benhamouche et al., 2010; Zhang et 

al., 2010). NF2 patients and mice with conditional NF2 knockout in lens epithelium 

frequently have ocular abnormalities such as cataracts derived from hyperplasia in the 

eyes. Conversely, heterozygous deletion of YAP and TAZ largely suppresses the 

hyperplastic phenotype in the liver and eyes (Moon et al., 2018; Zhang et al., 2010). 

Crb/Std/Patj 

The transmembrane protein Crumbs (Crb) is an apical domain determinant that is 

important to organize epithelial polarity and the configuration of adherens junction in 

Drosophila (Tepass, 1996; Wodarz et al., 1995). Loss of Crb causes proliferation, 

whereas overexpression of Crb also leads to overgrowth in both Drosophila and 
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mammals (Chen et al., 2010). Two motifs in its C' terminal intracellular tail make Crb as 

an interface between epithelial polarity and growth. The PDZ-binding motif unites with 

Patj and Stardust (Std) to form the Crb complex, which antagonizes the activity of the 

basolateral Scrib complex. The juxtamembrane FERM-binding motif of Crb affects the 

apical distribution and the abundance of Ex, and allows Crb to be the peripheral regulator 

of the Hippo pathway (Chen et al., 2010; Grzeschik et al., 2010; Ling et al., 2010; 

Robinson et al., 2010). 

Three mammalian Crb homologs have been identified. CRB1 predominantly 

functions during eye development and is related to a group of degenerative diseases of 

the retina, such as retinitis pigmentosa (Bujakowska et al., 2012). CRB2 is associated 

with cystic kidney disease in addition to retina-relevant syndromes. As for CRB3, it is 

found widely expressed in epithelial cells and predominantly localized to the apical and 

subapical domain (Lemmers et al., 2004; Li et al., 2015a). CRB3 knockout mice have 

defects in epithelial morphogenesis and die shortly after birth because of the disorganized 

cytoskeleton and defective junctions (Whiteman et al., 2014). The expression level of 

murine CRB3 negatively corelates with carcinogenesis and migration in epithelial cells 

(Karp et al., 2008; Mao et al., 2017; Varelas et al., 2010b). Loss of CRB3 favors the 

expression of vimentin and reduces the E-cadherin, two features of the epithelial 

mesenchymal transition. These studies suggest that CRB3 can suppress the invasion 

and metastasis. Recent reports also show that CRB3 inhibits tumor growth by either 

working with angiomotin (AMOT)-like protein to promote the Hippo pathway (Varelas et 

al., 2010b) or recruiting KIBRA and FRMD6 to regulate contact inhibition through the 

Hippo pathway (Mao et al., 2017). Together, these studies not only demonstrate the 
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conserved role of CRB3 in the maintenance of epithelial polarity and tumor progression, 

but greatly help in the therapeutic design for cancer. 

Par3/Par6/aPKC 

Par complex, which consists of Par3, Par6, and atypical protein kinase C (aPKC), is 

another apical-localized complex for epithelial polarity. The Crb and Par complex 

cooperatively antagonize the expansion of the Scrib-mediated basolateral domain 

(Martin-Belmonte and Perez-Moreno, 2011). Similar to the Crb complex, Par complex 

modulates the Hippo pathway to control cell growth and apoptosis. Constitutively active 

aPKC mislocalizes Hpo and RASSF and activates the target genes of the Hippo pathway. 

aPKC also acts in concert with Jun N-terminal kinase (JNK) to increase Yki activity during 

the wing development and when adult midgut encounters damages, suggesting a cell 

type- and context-dependent manner (Sun and Irvine, 2011; Xu et al., 2019). Clinical 

studies consistently indicate that increased aPKC expression tightly correlates with higher 

pathological stage and poor patient survival in lung adenocarcinoma (Kim et al., 2019). 

Likewise, abnormal expression of Par3 works with the Hippo pathway to trigger tumor 

formation. Low cell density leads to the translocation of PAR3. Cytoplasmic PAR3 recruits 

the phosphatase PP1A to dephosphorylate LATS1 and promote YAP activity in 

mammalian cells (Sun and Irvine, 2011). Consistently, loss of CRB3 attenuates the Hippo 

pathway and results in the prostatic tumorigenesis and neoplasia (Zhou et al., 2019). 

Interestingly, elevated PAR3 segregates KIBRA from NF2/FRMD6 and forms the 

PAR3/aPKC/KIBRA. This PAR3-mediated restrain of KIBRA also inactivates the Hippo 

pathway and accelerates the metastasis of prostate cancer (Zhou et al., 2017). Together, 
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Mammalian cells have similar polarity machinery of the Par complex to regulate the Hippo 

pathway. 

Scrib/Dlg/Lgl 

Another indispensable group of proteins to establish epithelial polarity is also 

identified in Drosophila. Scribble (Scrib), Disc large (Dlg), and Lethal giant larva (Lgl) 

locate beneath the adherens junctions in epithelial cells (Macara, 2004) and form another 

complex. aPKC-mediated exclusion of Lgl from the apical domain and the association 

between Crb and Par complexes allow the specification of the apical domain. Scribble 

complex, in turn, antagonizes the activity of the apical Crb and aPKC complexes to 

defines the basolateral domain. Mutations in either one disassemble the adherens 

junctions and lead to the spreading of apical marker toward the basolateral domain, 

resulting in disorganized overgrowth of epithelial tissues (Bilder, 2004; Grzeschik et al., 

2007; Macara, 2004).  

Proper localization of Scrib complex components is required for Hippo pathway 

activity in both Drosophila and mammalian. Homozygous mutant of scrib, dlg, or lgl shows 

elevated Yki activity and its target genes expression, which lead to massive overgrowth 

and tumors in Drosophila imaginal discs (Chen et al., 2012a; Grzeschik et al., 2010; Yang 

et al., 2015). Downregulated expression of these components has been reported in 

epithelium-relevant disease (Daulat et al., 2019). Decreased expression of SCRIB is 

found in polycystic kidney disease, and overexpressed SCRIB reduces the cyst formation 

by mediating YAP phosphorylation and nuclear shuttling (Xu et al., 2018). SCRIB 

concurrently modulates the Hippo and MAPK/ERK to repress the expression of YAP1, c-

Myc, and cyclin D1 in liver. Therefore, SCRIB deficiency enhances liver tumor growth 
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(Kapil et al., 2017). The depletion of DLG5 decreases the phosphorylation of MST1/2, 

LATS1/2, and MOB1. Mutant DLG5 and mislocalized SCRIB synergistically compromise 

the Hippo pathway and increase the nuclear YAP ratio, thus enhancing the epithelial-

mesenchymal transition and deteriorating the breast cancer malignancy (Liu et al., 2017). 

Loss of Lgl increases cell proliferation with very limited disrupted polarity, indicating 

Lgl adopts another manner to manage cell proliferation. Hpo is no longer restricted near 

the plasma membrane and disperses into the cytoplasm in lgl mutant clones. 

Cytoplasmic Hpo interacts with RASSF, which replaces Sav binding and reduces Hpo 

kinase activity (Grzeschik et al., 2010). 

Altogether, apicobasal polarity-mediated Hippo signaling for cell growth is 

evolutionary conserved. Besides the regulation of the Hippo pathway, recent proteomic 

studies reveal the negative role of SCRIB in modulating the Wnt/ β-catenin signaling in 

colorectal cancer, suggesting the apicobasal polarity complexes act through a distinct 

molecular pathway to regulate cell growth and physiological health. 

 

Figure D. The components of cell junctions are conserved. 

  

Janssens & Chavrier (2004) 
Ashida et al (2012) 
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 (2) Cell-cell contact: Cytoskeleton and mechanotransduction  

Organ growth coordinates lots of actions to adapt to physical requirements and 

extracellular mechanical cues. Tissue architecture responds to the demands to restricts 

cell growth or exit quiescence. Cell-cell contact at high cell density induces inhibitory 

signals that are adjusted mainly by the Hippo pathway (Gumbiner and Kim, 2014). In 

cultured mammalian cells, LATS kinase is activated in high density to represses YAP/TAZ 

activity. During embryo development, cell-cell contact is critical to fine-tuning YAP/TAZ-

mediated transcription (Nishioka et al., 2009). Increased tight junctions and adherens 

junctions in confluent cells lead to the activation of LATS and YAP/TAZ inactivation. Since 

attachment to the extracellular matrix (ECM) is essential for cell survival and growth, ECM 

stiffness also influences cell spreading. Altered cell geometry and cytoskeleton tension 

regulate the subcellular localization of YAP/TAZ and influence its activity (Aragona et al., 

2013). 

Junction proteins are required for the cell-cell contact inhibition. E-cadherin (E-cad), 

a component of adherens junctions, is reported to perform contact inhibition in the 

cultured mammalian cells along NF-2/KIBRA-LATS axis (Kim et al., 2011). Another 

adherens junction component α-catenin also restricts Yki/YAP activity. In mammals, α-

catenin restricts YAP either through direct binding or inhibiting integrin-mediated 

activation of SRC tyrosine kinase (Li et al., 2016; Schlegelmilch et al., 2011). Drosophila 

α-catenin recruits LIM domain-containing protein Jub to adherens junction, where Jub 

inhibits Wts, to promote wing growth (Rauskolb et al., 2014). Besides the cadherin-

catenin complex, Echinoid (Ed), an immunoglobulin domain-containing adhesion 

molecule, also functions as a tumor suppressor upstream to Hpo-Wts kinase cascade. 
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Different from the cadherin-catenin complex that acts through Mer/Kibra, Ed physically 

interacts and stabilizes Sav at adherens junction (Yue et al., 2012). 

Besides the aforementioned cadherin-mediated adherens junctions, tight junctions 

and focal adhesions are another two types of machinery implicated in mammalian Hippo 

pathway. Multiple Hippo pathway components have been found at the tight junctions and 

they suppress tumorigenesis (Zhao et al., 2011; Zhou et al., 2018). Focal adhesion 

connects cells and their substrate via transmembrane protein integrins. Hyperactive 

YAP/TAZ caused by Integrin-linked kinase (ILK)-mediated suppression of NF2 has been 

identified in breast, prostate, and colon cancer. Furthermore, ErbB2 receptor tyrosine 

kinase activates YAP/TAZ in the presence of ILK to initiate mammary tumors (Serrano et 

al., 2013). When cells attach on fibronectin, focal adhesion kinase (FAK) acts through 

Src-PI3K to inhibit LATS and activate YAP (Kim and Gumbiner, 2015). The shear force 

also uses integrins to modulates YAP activity. JNK-induced inflammation accelerates the 

plaque deposition and deteriorates atherosclerosis. Unidirectional shear force, such as 

blood flow, guides integrin to interact with G-protein Gα13. Integrin-Gα13 together inhibits 

RhoA and compromises YAP-TAZ-induced proinflammatory gene expression (Wang et 

al., 2016). 

Besides binding to integrins, contractile actomyosin also modulates RhoA to 

communicate with the Hippo signaling in fly and mammal. Myosin II is a non-muscle 

myosin responsible for the tension within the actin cytoskeleton. Rho-associated protein 

kinase (ROCK) phosphorylates the light chain of Myosin II and increases the contractility 

(Riento and Ridley, 2003). In Drosophila wing discs, increased ROCK activity results in 

high cytoskeletal tension and brings Jub to associate with α-catenin at the adherens 
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junction where Jub antagonizes Wts (Rauskolb et al., 2014). RhoA also elevates YAP 

activity and the expression of c-Myc to initiate polycystic kidney through RhoA-induced 

abnormal high cytoskeletal tension (Cai et al., 2018). A recent study shows cell spreading 

adopts the small GTPase RAP2 to activate LATS1/2 through RhoA inhibition and 

MAP4K4/6/7 activation, suggesting ECM stiffness executes RhoA-dependent and -

independent mechanism simultaneously to inhibits YAP/TAZ (Meng et al., 2018). 

Spectrin regulates Yki/YAP activity by antagonizing the cytoskeletal tension (Deng et 

al., 2015; Fletcher et al., 2015). Spectrin is an actin crosslinking protein at the 

cytoskeleton-membrane interface. Spectrin-defective cells exhibit significantly high 

cytoskeletal tension, suggesting spectrin modulates non-muscle Myosin II to control 

cortical actomyosin and regulates Yki/YAP activity. Human spectrin regulates the 

subcellular localization of YAP in response to density in human Caco-2 adenocarcinoma 

colon cells (Fletcher et al., 2015). Mutation of the β-spectrin perturbs the basal actin 

filament network and upregulates Yki activity to disrupt the oocyte polarity (Wong et al., 

2015). α- and β-heavy spectrin (α/βH) form the dimer and localize to the epithelial domain 

of the imaginal discs. The β-heavy spectrin binds to Ex and promotes the clustering of 

Crb-Mer-Ex-Kibra complex to antagonize Yki. However, the basolateral α/β spectrin, 

rather than the apical α/βH spectrin, is critical to restrict Yki activity in the Drosophila 

intestinal epithelium and ovarian follicle epithelium (Fletcher et al., 2015). Collectively, 

these studies show the varied dependency of spectrin in distinct tissues and subcellular 

compartments.  

 (3) Metabolites 
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First reported in glucose starvation, energy deficits skew the AMP:ATP ratio and 

activates the energy sensor AMP-activated protein kinase (AMPK) to restore energy 

homeostasis. To retain YAP in the cytoplasm, AMPK phosphorylates AMOTL1 at S793 

to activate LATS1/2. Meanwhile, AMPK directly phosphorylates YAP at multiple serine 

residues to disrupt YAP-TEAD binding (DeRan et al., 2014; Mo et al., 2015; Wang et al., 

2015). In Drosophila, nutrient-sensing liver kinase B1(LKB1)-AMPK cascade functions 

independently of Hpo-Wts to regulate Yki activity during the development of the central 

brain and ventral nerve core (Gailite et al., 2015). The accessibility of nutrients also affects 

Yki activity. The gluconeogenesis-regulating kinases salt-induced kinase 2 and 3 

phosphorylates Sav at Ser413 to promote Yki target gene expression (Wehr et al., 2013). 

Noticeably, mTOR positively regulates YAP activity through inhibiting autophagy in 

perivascular epithelioid cell tumors (Santinon et al., 2016). In fly, Tor inhibition by nutrient 

deprivation keeps Yki away from the promoter of its target genes (Parker and Struhl, 

2015). Therefore, Yki/YAP serves as a nexus that coordinates nutrient availability with 

the genetic program to sustain tissue growth and tumor progression. 

 (4) GPCR is responsible for soluble factors and hormone-mediated Hippo 

signaling. 

Diffusible hormones and growth factors can act through the Hippo pathway to 

participate the cell proliferation and tissue homeostasis. Once ligands pair to their 

corresponding receptors, associated G-protein coupled receptors deliver either activation 

or inhibition signals depending on the subunit constituents of the coupled heterotrimeric 

G protein (Mo et al., 2012; Yu et al., 2013; Yu et al., 2012a). Lysophosphatidic acid (LPA) 

and sphingosine 1-phosphate (S1P) are the first two discovered diffusive hormone 
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molecules. They activate and stabilize YAP/TAZ by acting through their cognate GPCR 

(Miller et al., 2012; Yu et al., 2012a). Gα12/13- and Gαq/11-coupled GPCR lead to the 

activation of the Rho GTPase, which triggers actin polymerization to attenuate LATS1/2 

(Yu et al., 2012a). Activation of YAP/TAZ caused by Gα12/13- coupled thrombin GPCR 

has been reported in human glioblastoma (Mo et al., 2012; Yu et al., 2016). Epinephrine 

performs its physiological function via Gαs-coupled GPCR. Upon stimulation of Gαs-

coupled GPCR, protein kinase A (PKA)-mediated inhibition of the Rho GTPase increases 

LATS1/2 activity, supporting the idea that exercise-induced epinephrine reduces the risks 

of breast cancer development (Dethlefsen et al., 2017; Gabriel et al., 2016). 

 

3. The crosstalk between the Hippo signaling and other pathways to regulate ISCs 

behavior. 

(1) Mammalian intestine 

The intestine is responsible for food uptake, digestion, nutrition absorption, and 

defecation. Recent reports show that GI cancers are one of the major causes of mortality 

worldwide. Colorectal cancer (CRC) has been recognized as the top 3 commonly 

diagnosed cancer, and the fourth leading cause of cancer death worldwide (Bray et al., 

2018; Hirata et al., 2019). CRC is more prevalent in Western countries than in Asian 

countries due to lifestyle, diet variations, and inheritance factors (Deng, 2017). The small 

intestine is the primary site of nutrient absorption and endocrine secretion and is essential 

for the human immune response. The small intestine comprises two connected structures: 

the projected finger-like villi and the crypts, which derive from invaginated epithelium 

around the villi. Since being the front line to encounter environmental challenges via food 
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intake, daily shedding of intestinal epithelial cells drives their continuous renewal every 4-

5 days. All regenerated epithelial cells are from Lgr5+-intestinal stem cells (ISCs), which 

reside at the base of crypts. To maintain the integrity of intestinal inner lining, ISCs give 

rise to transit-amplifying cells that further differentiate and migrate up along the crypt-

villus axis (Crosnier et al., 2006). Crypt-localized Paneth cells and villus-located Goblet 

cells together secrete mucin and antimicrobial substance that form a protective coat on 

the external epithelial surface. Enterocytes, the largest population in the intestine, are 

along the villus and participate in active transepithelial absorption of nutrients from the 

lumen. Enteroendocrine cells also locate in the villus and assist in digestion by regulating 

the secretion of hormones. 

 

Figure E. The structure and the cell lineages of the mammalian intestine. 

 

  
Perdigoto et al (2013) 
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Multiple signaling pathways such as Wnt, Notch, Hedgehog, and EGFR have linked 

to the Hippo pathway and cooperatively regulate ISCs proliferation under different context. 

Among them, the crosstalk between the Wnt signaling and the Hippo pathway has been 

studied most extensively. Both Hippo and Wnt signaling pathways are essential to 

maintain tissue homeostasis and organ size through managing cell proliferation, 

differentiation, and apoptosis-mediated cell death (Fevr et al., 2007; Hong et al., 2016; 

Segditsas and Tomlinson, 2006). Adenomatous polyposis coli (APC), casein kinase Iα 

(CKIα), and Glycogen syn-thase kinase 3β (GSK3β) form a cytoplasmic destructive 

complex. In the absence of Wnt ligands, this complex phosphorylates and retains β-

catenin in the cytoplasm where proteasome mediates the degradation of β-catenin (Pinto 

et al., 2003). When canonical Wnt ligands bind to the transmembrane receptors Frizzled 

and Lrp, β-catenin translocates into the nucleus to interact with LEF/TCF transcription 

factors and activate target genes (Guezguez et al., 2014; Miyoshi, 2017). The 

development and regeneration of the intestinal epithelium require the well-controlled 

canonical Wnt signaling, which participates in ISC proliferation, fate determination, and 

survival (Fevr et al., 2007). Insufficient Wnt/ β-catenin leads to ISCs loss and tissue 

degeneration. 

 Dysfunction of the destructive complex as well as constitutive activation of β-catenin 

leads to aberrant Wnt signaling, which in turn stimulates ISC proliferation and the 

development of polyposis and colon cancer. The most prominent mutation in colon cancer 

is the Apc gene (Krausova and Korinek, 2014; Souris et al., 2019). Not relying on β-

catenin, Wnt-planar cell polarity, Wnt-Ca2+, and Wnt-PKC pathways are categorized in 

non-canonical Wnt signaling (Chien et al., 2009; Luna-Ulloa et al., 2011). The 



 

29 

transmembrane receptor Frizzled either functions alone or cooperatively with tyrosine-

protein kinase receptor ROR2 for Wnt ligands binding. Upon ligands binding, non-

canonical Wnt signaling, acting through small GTPase Rho and Rac or transiently 

promoting the intracellular Ca2+ reservoir, contributes to certain developmental 

processes such as planar cell polarity or cytoskeleton remodeling (Semenov et al., 2007). 

Knockout Wnt5a or ROR2 presents similar developmental defects and perinatal lethality 

(Li et al., 2002; Schwabe et al., 2004; Tai et al., 2009; Yamaguchi et al., 1999) and 

compromised polarity (Nishita et al., 2010). Notably, Wnt dysfunction leads to the 

development of over 80% of human colorectal carcinomas (White et al., 2012). 

With recently emerging evidence, the Hippo pathway and Wnt signaling present 

overlapping functions in mammalian gastrointestinal tumorigenesis, although 

controversial opinions exist. YAP overexpression or MST1/2 deletion leads to increased 

β-catenin transcription activity and downstream target genes (Camargo et al., 2007; 

Chiurillo, 2015; Li et al., 2019; Zhou et al., 2011). Cytoplasmic YAP1/TAZ represses β-

catenin activity by limiting Dishevelled, a positive regulator of Wnt signaling (Barry et al., 

2013; Imajo et al., 2012; Varelas et al., 2010a). YAP1 also can cooperate with the 

destructive complex to phosphorylate β-catenin and retain it in the cytoplasm. The 

crosstalk is bidirectional. Overexpressed YAP caused by loss of functional APC is often 

observed in colon cancer. APC can directly interact with SAV and LATS to restrict YAP 

activity without β-catenin involvement (Cai et al., 2015). When canonical Wnt ligand 

Wnt3a binds to Frizzled/Lrp receptor, both β-catenin and YAP1/TAZ translocate to 

nuclear and gain their transcription activity, suggesting that YAP could be a potential 

downstream target of the Wnt signaling (Park and Jeong, 2015). Consistently, knockdown 



 

30 

β-catenin in colon cancer cells reduced YAP mRNA and protein levels (Konsavage et al., 

2012). Wnt3a stabilize TAZ by protects TAZ from binding to 14-3-3 protein (Byun et al., 

2014). Additionally, non-canonical Wnt signaling promotes YAP/TAZ activity as well. The 

binding of Wnt5a to Frizzled/ROR2 receptors leads to the Gα12/13-mediated activation 

of GPCR, which activates YAP1/TAZ by Rho GTPase-mediated inhibition of LATS1/2 

(Park et al., 2015). 

(2) Drosophila midgut 

Adult stem cells are critical for maintaining tissue homeostasis throughout lifespan. 

The balance between stem cell proliferation, self-renewal and differentiation of progenies 

has to be well controlled. Imbalance among these processes may lead to tumorigenesis 

or tissue degeneration. With comparable epithelial features as the mammalian intestine, 

the adult Drosophila midgut is a powerful genetic tool to dissect the mechanisms that 

govern the intestinal stem cell (ISC)-mediated homeostasis under various context. The 

Drosophila adult midgut consists of a simple monolayer epithelium surrounded by visceral 

muscle, nerve, and the trachea (Miguel-Aliaga et al., 2018). Approximately a thousand 

ISCs are evenly distributed throughout the adult Drosophila midgut epithelium. These 

ISCs are localized at the basal side of the epithelium, underneath a monolayer of 

enterocytes (ECs), which are the major cell type lining the midgut. An ISC undergoes 

asymmetric division to generate a renewed ISC and another daughter cell, which can 

differentiate along the enteroblast (EB)-EC lineage or along the enteroendocrine (preEE-

EE) lineage in response to diverse signals (Guo and Ohlstein, 2015; Micchelli and 

Perrimon, 2006; Micchelli et al., 2011; Ohlstein and Spradling, 2007).  
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Figure F. The Drosophila midgut. 

 

 

Basal activities of multiple conserved signaling are required to coordinate the ISC 

proliferation for the intestinal tissue homeostasis. Escargot plays a pivotal role in 

maintaining the stem cell pool and blocking premature differentiation (Korzelius et al., 

2014; Loza-Coll et al., 2014). Delta/Notch pathway modulates the asymmetric division 

that preserves the ISC pools and generate functional differentiated cells. Canonical Wnt 

signaling from circular viscera muscles and bone morphogenetic protein (BMP) signaling 

from ECs antagonize Notch activation to promotes ISC self-renewal (Lin et al., 2008; Tian 

and Jiang, 2014). Hedgehog (Hh) signaling is negatively mediated by Debra in ISC to 

restrict its proliferation in a minimal requirement level (Li et al., 2014b). Additionally, Hippo 

signaling is required in the precursors to restrain ISC proliferation (Ren et al., 2010). Aging 

has been known a factor that disrupts the balance between JNK signaling and 

Delta/Notch pathway induces ISC mid-differentiation (Biteau et al., 2008). The intestine 

epithelium is constantly exposed to lumen for nutrient absorption and serves as the front 

line to encounter pathogen and toxics along with food ingestion. Dietary infection stresses 

out the EC. Damaged EC as well as the surrounding visceral muscle secrete the IL6-like 
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cytokine, EGFR ligands, and BMP ligand to drive ISC proliferation and accelerate 

differentiation for tissue repair. Epithelial impairment also triggers the expression of Wg 

in undifferentiated EB that stimulates ISC proliferation along c-Myc axis (Cordero et al., 

2012). 

 
Figure G. Epithelial niche and conserved signaling regulate ISC division and cell 

fate to control homeostasis. 

 

 

Ref.  Jiang & Edgar (2011)  
        Navascues et. al (2012) 
        Jiang et al (2016) 
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The Hippo signaling is a conserved signaling pathway to control tissue growth and 

organ size during development (Pan, 2010; Zhang et al., 2009). In adult Drosophila 

midgut, Hippo signaling is known to restrains the ISC proliferation.  A variety of biological 

inputs converge in the effector Yki and then turn into various signals to maintain the tissue 

homeostasis (Karpowicz et al., 2010; Staley and Irvine, 2010). Although Yki has no effect 

on homeostatic ISC renewal`, it is required to execute damaged-induced tissue 

regeneration since knockdown yki in ISC completely blocks damage-induced proliferation. 

Bacterial infection or bleomycin feeding damages the intestinal epithelium. The Hippo 

signaling cooperates with JAK/STAT and EGFR pathway`, responding to the injured 

intestinal epithelium. Yki in ECs conducts the secretion of the cytokine Upd3 and EGFR 

ligands to simulate ISC proliferation. Increased JNK signaling in injured ECs also 

activates Yki to release cytokine and EGFR ligands. However`, Yki inactivation in ECs 

only partially suppress infection- or bleomycin-triggered proliferation`, suggesting the 

existing of other regulators (Ren et al., 2010; Shaw et al., 2010). The identification of 

Misshapen (Msn) partially fills out the missing part (Li et al., 2014a). Biochemical assay 

shows that Msn physically interacts with Wts and phosphorylates Wts. Genetic studies 

further reveal that Msn acts specifically in EBs to inhibit Yki activity and the production of 

Upd3, whereas ECs rely on Hpo. 

Disrupted cell junction is a feature of dying ECs. In adult midgut, reduced expression 

of smooth septate junction proteins induces robust ISC proliferation due to Yki activation. 

To maintain the midgut homeostasis, smooth septate junctions adopt both Hpo-

dependent and -independent manner. Tsp2A-mediated endocytosis of aPKC leads to the 

activation of Hpo in EC (Xu et al., 2019). In contrast, Yki directly interacts with Ssk and 
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Mesh and is restrained in the membrane compartment regardless of Hpo or Wts activity 

(Chapter II). 

  



 

35 

3. Cell Junction 

The epithelium is a continuous sheet of tightly associated cells that cover the external 

surface of the tissue. As a necessary component of metazoa, epithelium forms barriers 

to create and maintain biological compartments in the organism. Contacts between 

adjacent cells are made up of tight junctions (TJs), adherens junctions (AJs), and 

desmosomes. With their unique cellular functions and delicate collaboration, cell 

junctions gather cells together to regulate critical processes for tissue homeostasis, 

including tissue barrier, cell proliferation, and cell migration. 

1. Vertebrate epithelia contain Tight Junctions, Adherens Junctions, and 

Desmosome. 

(1) Tight Junction 

Tight junctions (TJs) are in the apical domains of the lateral membrane and encircle 

the epithelial cells to connect adjacent cells. Therefore, TJs regulates the paracellular 

diffusion of ions and solutes (Pummi et al., 2004). TJs create the fence and gate barrier. 

The fence segregates the apicolateral and basolateral membrane proteins, while the gate 

regulates the paracellular pathway (Zihni et al., 2016). TJs can be sub-categorized into 

the integral and cytoplasmic proteins. Occludin and claudin are tetra-spanning membrane 

proteins with N- and C-termini residing in the cytoplasm, and zonular occludens (ZO 

proteins) are the cytoplasmic adaptor protein. They are the three best-characterized 

components in tight junctions, and the interaction with the cytoskeleton is crucial for the 

organization and integrity of the junctions in the vertebrate epithelium (Runkle and Mu, 

2013; Van Itallie et al., 2017). 
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Occludin 

Occludin, the first identified transmembrane protein of the tight junctions, consists of 

four transmembrane motifs with both N'- and C'- terminal cytoplasmic domains. (Ando-

Akatsuka et al., 1996; Furuse et al., 1993; Rao, 2009). Two extracellular loops and one 

short intracellular loop participate in the barrier formation and the paracellular permeability 

(Fanning et al., 2012). Although the protein structure of occludin is similar to claudin, they 

do not exhibit any sequence similarities. The extracellular loops confer adhesiveness to 

seal adjacent cells and stabilize the whole structure of TJs (Medina et al., 2000; Van Itallie 

and Anderson, 1997). The synthetic homologous peptide against the second extracellular 

loop leads to the formation of multilayered unpolarized cell clusters and a significant 

reduction of the TJ-localized occludin. Phosphorylation at cytoplasmic C'-terminal tail is 

critical for occludin to accumulate at the TJs and form the paracellular barriers (Furuse, 

2010). PKC, CK2, and non-receptor tyrosine kinases c-Yes phosphorylates distinct serine, 

threonine, and tyrosine residues depending on various demands (Andreeva et al., 2001; 

Chen et al., 2002b; Raleigh et al., 2011; Sakakibara et al., 1997). Moreover, mechanical 

force changes cells shape and leads to the reorganization of the F-actin cytoskeleton 

(Ishiyama et al., 2018). To respond to the mechanical force-induced deformation, 

Occludin indirectly interacts with F-actin by associating with the TJs plaque proteins ZO-

1, ZO-2, and ZO-3 (Furuse, 2010).  

Although overexpressed occludin integrates into the TJs successfully, altered 

transepithelial electric resistance and paracellular flux indicate the weaker adhesiveness, 

suggesting its supportive role in TJs assembly (Balda et al., 1996; Realini et al., 1999). 

Consistently, Occludin-deficient epithelial cells have no overtly morphological 
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abnormalities (Saitou et al., 2000). Reduced occludin impairs wound healing ability when 

epithelial cells encounter mechanical stress (Volksdorf et al., 2017). Many chronic 

inflammation-related diseases also highly correlate with the compromised occludin 

expression, including colorectal cancer (Chelakkot et al., 2017; Wang et al., 2013). 

Claudin 

After the identification of occludin, the viable occludin-deficient mice and the 

formation of TJs in occludin-deficient stem cells lead to the discovery of another tetra-

transmembrane protein in TJs (Saitou et al., 2000). Claudins polymerize linearly and form 

the tight junction strands in the apical part of the cell membrane, where strands adhere 

to each other in either homophilic or heterophilic fashion (Günzel and Yu, 2013). Varied 

mixing ratio moderates the permeability of the transepithelial barriers in TJs. Hence, 

Claudins play a crucial role in the formation of the paracellular barrier to control the 

distribution of various solutes (Furuse et al., 1998a; Suzuki et al., 2014; Umeda et al., 

2006). Twenty-seven claudin subtypes have been identified in mammals. They share 

basic structure with some differences in their extracellular regions, accounting for their 

varying roles in growth control in addition to the well-known cell junction (Furuse et al., 

1998b; Mineta et al., 2011; Tamura and Tsukita, 2014; Tsukita et al., 2019).  

Abnormal claudin expression leads to a variety of disease conditions. Impaired 

formation of the paracellular barrier in the claudin knockout mice demonstrates the roles 

in preventing water balance, inflammation, tumorigenesis (Bao et al., 2019; Plissonnier 

et al., 2017; Tamura and Tsukita, 2014; Tanaka et al., 2015). Dehydration and the leakage 

of sweat glands caused by loss of claudin-1 and -3 induce atopic dermatitis (Tokumasu 

et al., 2016; Yamaga et al., 2018). Insufficient claudin-3, 7, and 18 compromise the 
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paracellular barrier along the digestive tract, and have been associated with 

gastrointestinal cancers. Claudin-18 deficiency is known to accelerate the progression of 

gastric cancer (Tanaka et al., 2015). The depletion of claudin-7 initiates the colon 

inflammation due to the increased sensitivity to bacterial products. Claudin-3 knockout 

mice have leaky colonic epithelium and are highly potential to develop invasive 

adenocarcinoma. Excessive IL-6 cytokine and hyperactive Wnt/β-catenin cooperatively 

worsen the malignancy and promote colon cancer. Consistently, reduced claudin-3 

expression highly correlates with poor survival in colorectal cancer patients (Ahmad et al., 

2017). 

The cytoplasmic scaffold proteins that connect claudin and the actin cytoskeleton is 

required for claudin to participate in cellular events. The C-terminal cytoplasmic region of 

claudin interacts with the PDZ domain of ZO protein to regulate epithelial growth and 

morphology (Spadaro et al., 2017). Conformational change of ZO-1 caused by 

actomyosin contractility recruits the transcriptional factor Dbp1 to tight junctions, where 

ZO-1 and claudin together sequester Dbp1 in the cytoplasm. Therefore, Dbp1-mediated 

gene expression and proliferation are suppressed. YAP activation is widespread in 

human tumors and is essential for cancer initiation and progression. Deficiency of claudin-

18 results in the YAP nuclear accumulation, which induces the abnormal overgrowth of 

alveolar cells, and the formation of lung adenocarcinoma (Zhou et al., 2018). Collectively, 

Claudins integrate the paracellular barrier and signaling function of TJs in different 

contexts to establish tissue homeostasis. 

Zona occludens (ZO) 



 

39 

The cytoplasmic plaque of the TJs serves as an interface to convey extracellular 

cues inward the cytoplasm (Zihni et al., 2016). The cytoplasmic plaque contains lots of 

adaptor proteins with several motifs for protein interaction to create an intricate network 

(Van Itallie and Anderson, 2014; Zihni et al., 2016). The membrane-

associated guanylate kinase (MAGUK) family proteins Zona occludens (ZOs) are 

prevalent in the cytoplasmic plaque and consist of ZO-1, ZO-2, and ZO-3 that regulate 

epithelial cell proliferation in response to the cell density (Balda et al., 2003; Haskins et 

al., 1998; Jesaitis and Goodenough, 1994). The conserved domain structure in the N'-

terminal half, comprising three PDZ domains and an SH3 domain followed by a 

guanylate kinase homology (GUK) domain, associates with the transmembrane TJs 

proteins, whereas the C'-terminal part with varying length contacts the actin 

cytoskeleton (Van Itallie et al., 2013). 

PDZ domains-mediated heterodimerization of ZO proteins is essential for the 

membrane recruitment to the TJs. ZO proteins associate with junctional proteins and help 

the polymerization of claudin to form TJ strands, suggesting their role in TJ assembly 

(Fanning and Anderson, 2009; Gumbiner et al., 1991; Haskins et al., 1998; Rodgers et 

al., 2013; Umeda et al., 2006). Knockdown ZO-1 in mammalian MDCK cells results in the 

impaired TJ localization of occludin and claudin. Consequently, this improper TJ 

assembly leads to the expansion of apical actomyosin array as well as the increased 

epithelial permeability (Rodgers et al., 2013). GUK domains guide ZO-1 to bind the 

occludin (Schmidt et al., 2004). Other studies further reveal the SH3 domain blocks the 

gene expression of cell cycle by associating with the Y-box transcription factor ZONAB 

(Balda and Matter, 2000; Tsapara et al., 2006). Varied length and diameter of the 
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microvillus result in irregular apical surface is found in the intestinal epithelium of the ZO-

1 KO mice. This abnormal morphology suggests the essential roles of ZO proteins to 

reorganize the F-actin cytoskeleton (Odenwald et al., 2018). In addition to tissue 

morphology, ZO proteins regulate cell growth by restrain YAP in the cytoplasm. ZO-2 

directly binds to YAP via the first PDZ domain. Knockdown ZO-2 in sparse mammary and 

kidney epithelial cells abrogates the nuclear localization of YAP (Bence et al., 2012; 

Spadaro et al., 2014), indicating ZO proteins as mechanotransducers that connect TJ to 

F-actin and intracellular signaling molecules (Fanning et al., 2012; Karaman and Halder, 

2018). Altogether, each motif has its characters and functions cooperatively to maintain 

junctional integrity and regulate proliferation in a context-dependent manner. 

 

Figure H. Schematic representation of the basic structural components of tight 

junctions and adherens junctions. 
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(2) Adherens Junctions (AJs) 

The epithelium is the most prevalent tissue architecture which covers the organ and 

body surface. Continuous epithelial cells form a sheet to delineate the interior space from 

the exterior environment. Epithelial cells undergo multiple rounds of changes in their cell 

shape, cell-cell interaction, and cell numbers during the development to fit different 

demands. In mammals, adherens junctions (AJs) connect epithelial cells beneath the 

apical TJs and is a prerequisite for TJs formation (Watabe et al., 1994). Together with 

TJs, AJs strengthen the cohesiveness between adjacent cells, critical for epithelial 

integrity and physiological maintenance (Samiei et al., 2019; Shigetomi and Ikenouchi, 

2019). 

The core of AJs is E-cadherin, which form the adhesive homodimer in trans by the 

N'-terminal extracellular domain (Samiei et al., 2019; Takeichi, 2014). E-cadherin-, α-

catenin and nectin-afadin complexes immediately develop into the spot-like AJs in the 

presence of Ca2+. These newly-formed spot-like AJs then fuse and form a continuous 

belt-like structure (Vasioukhin et al., 2000; Yonemura et al., 1995). In addition to the apical 

E-cadherin band, mature epithelial sheets also exhibit a belt-like circumferential actin ring 

that is oriented parallel to the AJs plane. The stability of AJs relies on anchoring E-

cadherin to the underlying circumferential actin ring (Zhang et al., 2005). The cytoplasmic 

part of E-cadherin interacts with p120 catenin and β-catenin, which associate with α-

catenin, to form the E-cadherin-catenin complex at cell-cell boundaries (Laguna, 1984; 

Watabe et al., 1994). Whether α-catenin directly interacts with F-actin remains debatable 

for many years. Recent crystal structure studies reveal the actin-binding protein vinculin 

binds to the modulatory domain of α -catenin, thereby connecting the E-cadherin-catenin 
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complex to the underlying F-actin (Choi et al., 2012; Ishiyama et al., 2013; Peng et al., 

2010; Rangarajan and Izard, 2012).   

How to maintain the structure and integrity of AJs is complicated. Ca2+ is required for 

the rigidity of E-cadherin and initiates the formation of AJs (Gumbiner et al., 1988; Ivanov 

et al., 2004; McMahon, 2000). Cultured cells fail to establish the cell adhesion and turn 

into a rounded shape when Ca2+ is absent (Watabe et al., 1994). The abundance of 

cytosolic p120 catenin prevents the clathrin-dependent endocytosis of E-cadherin (Harris, 

2012a; Xiao et al., 2007). The polymerization of actin filaments is crucial to stabilize AJs. 

The activity of the Rho family of small GTPase, including RhoA, Rac, Cdc42, is a spatial 

and temporal switch to control actin polymerization throughout the development of the 

perijunctional actin ring (Priya et al., 2015). Moreover, RhoA-involved turnover of F-actin 

has been linked to cell growth control and tumor invasion, suggesting a tumor suppressor 

role of AJs (Meng et al., 2018; Qiao et al., 2017). 

 

(3) Desmosome 

Desmosome is an intercellular junction that connects the intermediate filament to the 

cell surface. The primary role of the desmosome in the cell junction is to resist mechanical 

stress. Therefore, it is prominent in the tissues that are subject to strong mechanical force 

such as myocardium and stratified squamous epithelial (Broussard et al., 2015). Besides 

serving as a node where protein components cluster and mediate cell adhesion, 

desmosome also engages in the organization of cytoskeleton, intracellular signaling, and 

developmental patterning to maintain physiological homeostasis (Kottke et al., 2006). 
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Desmosome consists of desmosomal cadherins, armadillo proteins, and plakin family 

of cytolinkers. It is appreciated by the highly electro-dense plasma membrane domain 

that associates with the intermediate filaments network (Garrod et al., 2002b). The spatial 

organization of the desmosome includes the intercellular space with tight cell-cell 

adhesion and the cytoplasmic plaque that transmits the adhesive interaction inwardly to 

the intermediate filaments (McGrath et al., 1999; Zhurinsky et al., 2000). Ca2+ is required 

for desmosome assembly and the post-translational modifications such as 

phosphorylation and proteolysis, which in turn stabilize the structure (Yin and Green, 

2004). 

 

Figure I. Schematic representation of the structural components of Desmosome. 

 

(1) Desmosomal cadherins 

Transmembrane proteins desmoglein (Dsg) and desmocollin (Dsc) are desmosomal 

cadherins, and couple the adjacent cells by trans-interaction (Cheng and Koch, 2004; 

Garrod et al., 2002a). Intracellularly, desmosomal cadherins interact with the armadillo 

Al-Jassar et al (2013) 
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proteins plakophilin (PKP) and plakoglobin (PG) to link the linker desmoplakin (DSP), 

which anchors the intermediate filaments in the desmosomal plaque of epithelial cells 

(Bornslaeger et al., 1996; McGrath et al., 1999; Nekrasova and Green, 2013).  

Mutations of Dsg disrupt the normal differentiation of skin and hair follicle cells, 

leading to defective hair growth and human epidermal diseases (Kato et al., 2015; Kljuic 

et al., 2003; Rickman et al., 1999). Fewer desmosomes and abnormal keratinization are 

found in monilethrix, a hair shaft characterized by beaded hair with periodic changes in 

hair thickness. Dsg4 mutation is associated with Monilethrix. Frameshift-induced 

premature DSG4 loses its affinity to the adaptor plakoglobin and accumulates in the 

endoplasmic reticulum where DSG4 is degraded by proteasome. Therefore, fewer 

desmosomes and abnormal keratinization are found in monilethrix (Kato et al., 2015). 

Depleting the unique region within the C-terminal tail of Dsg1 abrogates the binding to the 

scaffolding protein Erbin, activates Ras-Raf pathway, and obstructs the differentiation of 

keratinocytes (Hammers and Stanley, 2013; Harmon et al., 2013). Dimerization and 

blocked internalization of Dsg2 lead to strong adhesion in the epithelial junctions (Chen 

et al., 2012b). Dsg2 knockout results in mice lethality at the early embryonic stage 

(Eshkind et al., 2002). The interrupted dimerization and accelerated internalization 

caused by either mutation in the unique C-terminal region of Dsg2 or other mutations 

affecting the post-translational modification are highly corelated with cardiomyopathy 

(Chen et al., 2012b; Gehmlich et al., 2010; Gehmlich et al., 2012). DSG3 functions as an 

oncogene to facilitate the growth of head neck cancer by activating the TCF/LEF 

transcription activity (Chen et al., 2013). Anti-sera from patients with autoimmune skin 

disease pemphigus vulgaris (PV) phosphorylates DGS3. Phosphorylated DSG3 then 
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dissociates from the underlying adaptor plakoglobin and activates PKC activity by 

transiently increased Ca2+ concentration (Brown et al., 2014; Gliem et al., 2010). 

Consistently, abnormal epidermal morphogenesis in mice with misexpressed human 

DSG3 also highly correlates with the alteration of β-catenin-mediated LEF/TCF activity. 

Similar to the-cadherin of AJs, the transmembrane-desmosomal cadherins incorporate 

intracellular signaling to modulate cell fate in addition to forming the cell junction. 

(2) Desmosomal armadillo 

Desmosomal armadillo includes plakophilin (PKP) and plakoglobin (PG) that integrate the 

desmosomal cadherins and the cytoskeleton linker desmoplakin (DSP) to interact with 

intermediate filaments and enhance the adhesion (Moccia et al., 2019). 

Plakophilin 

Plakophilin (PKP) is a vertebrate-specific desmosomal armadillo protein of p120CTN-

related family and have diverse roles in biology and clinical pathology (Leick et al., 2019). 

PKP1, 2, and 3 are the isoforms exhibit tissue- and differentiation-dependent patterns 

(Hatzfeld, 2007; Hatzfeld et al., 2014). PKP1 expression is high in the suprabasal layers 

of the desmosome complex and stratified epithelial. PKP2 and 3 are detected in most 

simple and stratified epithelia, except for the cardiomyocytes where the expression of 

PKP2 is exclusive. Being the scaffolds, PKPs interact with both transmembrane 

desmosomal cadherins and DSP in variable extent to promote desmosome assembly, 

maturation, and anchorage to the intermediate filament cytoskeleton (Hatzfeld et al., 

2014). 

Redistribution of DSP is found in both PKP1-/- patient and conditional PKP3 knockout 

mice with reduced epithelial stability but not lethal. In contrast, knockout PKP2, the only 
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PKP existing in cardiomyocytes, leads to embryonic lethality due to heart failure 

(Grossmann et al., 2004). PKP1 and PKP2 are also present in the nucleus, but the 

function is not clear yet. Although PKPs are categorized in desmosomes, they associate 

with AJs protein under certain circumstances. PKP2 can form a mixed junction in 

cardiomyocytes (Pieperhoff et al., 2008). PKP2 also associate with β-catenin to 

upregulate the endogenous β-catenin/TCF ability that is abolished by ectopic E-cadherin 

expression (Chen et al., 2002a). Moreover, E-cadherin and plakoglobin are required for 

PKP3 recruitment to cell borders where PKP3 initiates the desmosome assembly. 

Plakoglobin 

Plakoglobin (PG) is another armadillo family protein in desmosome to enhance 

adhesion. Similar to PKP, the subcellular localization of PG is in the nucleus as well as 

the cytoplasmic desmosome, and PG participates in the regulation of β-catenin/Wnt 

signaling (Aktary and Pasdar, 2012; Lam et al., 2012).  

PG is essential for normal skin physiology. Conditional knockout PG in mouse 

epidermal keratinocytes results in the epidermal cornification, epidermal thickening, and 

exacerbate inflammation (Li et al., 2012). Besides the disturbed structure of desmosome 

and AJs, loss of PG induces the accumulation of β-catenin at the cell-cell junction. As a 

compensational effect, accumulated β-catenin activates the expression of desmosomal 

cadherins by the LEF transcription factor and EDA/NF-kB signaling (Li et al., 2012; Li et 

al., 2011; Tokonzaba et al., 2013). Reduced PG in human keratinocytes activates p38 

MAPK to disconnect the cell adhesion and collapses the keratin network (Spindler et al., 

2014). 



 

47 

PG knockout mice die between E10.5 and birth because of severe cardiac and skin 

defects (Bierkamp et al., 1996). In humans, PG is associated with skin and heart disease 

and some types of cancer. The first reported desmosome-associated cardiocutaneous 

syndrome is from PG mutations (Asimaki et al., 2007). Although two human mutations 

don't show heart defects, they have fragile skin, diffuse palmoplantar keratoderma, and 

wooly hair (Cabral et al., 2010). Another nonsense mutation of PG leads to undetectable 

PG in the skin and fragile congenital skin, but the patients have no apparent cardiac 

dysfunction (Pigors et al., 2011). Since PG is critical for the tissues subject to strong 

mechanical stress such as heart and skin, the discrepancy probably is attributed to the 

level and timing of genetic deletion of PG. Both PG and β-catenin are cadherin-binding 

proteins. Simultaneous ablation of PG and β-catenin in the mouse leads to much more 

extensive collapse of cell junctions, including connexin43-mediated gap junction, and 

sudden cardiac death (Swope et al., 2012), suggesting the indispensable requirement of 

armadillo family protein. 

Desmoplakin (DSP) 

Plakin family organizes the intermediate filaments cytoskeleton and anchor the 

network to the cell membrane (Subramanian et al., 2003). Although the plakin family has 

several members, desmoplakin (DSP) is an indispensable desmosomal component that 

links the transmembrane desmosomal cadherin complex to the intermediate filament 

cytoskeleton, which provides tensile strength (Määttä et al., 2001). DSP-null mouse 

embryos die at E6.5 indicates, indicating the importance of DSP (Gallicano et al., 1998). 

Tissue-specific conditional knockouts later exhibit the requirement for DSP in vascular 

development, epidermal integrity, and cardiac function (Gallicano et al., 2001; Lyon et al., 
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2014; Vasioukhin et al., 2001b; Yang et al., 2006). A wide range of DSP mutations in 

humans is highlighted by severe skin or cardiac defects (Thomason et al., 2010). Patients 

with autosomal dominant mutations in the gene encoding DSP have abnormal 

keratoderma and cardiomyopathy (Getsios et al., 2004). Systematic deletion of DSP or 

mutation in the IF-binding C-terminus leads to an inherited blistering disease due to the 

failed desmosome assembly (Hobbs et al., 2010). Missense mutation leads to 

Carvajal/Naxos syndrome, featured by cardiomyopathy, abnormal thickening of the palm 

skin, and wooly hair (Keller et al., 2012). However, the underlying mechanism to initiating 

the phenotypes remains unclear. 

Desmosome assembly is important for the formation of other cell junctions. Reduced 

expression of DSP in the adult epidermis is associated with the reduced number of AJ, 

suggesting the establishment of desmosome can influence the AJs maturation. Several 

studies further indicate that failed desmosome assembly results in aberrant gap junctions. 

Incomplete formation of the gap junction causes deleterious dysfunction of the heart and 

epidermis, such as arrhythmogenic cardiomyopathy (ACM), an inherited disorder that 

frequently results in deadly arrhythmias (Cohen Barak et al., 2019; Kam et al., 2018; 

Schinner et al., 2019). DSP interacts with the microtubule-associated proteins EB1 to 

modulate microtubular dynamics and delivers connexin43 toward the plasma membrane 

(Patel et al., 2014a; Patel et al., 2014b). Loss of DSP triggers activation of ERK1/2-MAPK 

and phosphorylation of connexin43 to initiate clathrin-mediated internalization, followed 

by lysosomal degradation, to impair gap junction (Kam et al., 2018). Moreover, improper 

electrical coupling problems caused by inadequate connexin are found in DSP-related 

cardiomyopathies (Asimaki et al., 2009; Gomes et al., 2012). 
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Collectively, the components of desmosomes not only perform the adhesiveness to 

strengthen the connection of epithelial cells but incorporate different intracellular signaling 

to regulate cell fate decision during epidermal development and cancer progression. 

 

2. The cell junctions of the invertebrates exhibit comparable functions, but with 

fewer similarities of the molecular composition and spatial arrangement. 

Drosophila melanogaster is a powerful tool to dissect the molecular mechanisms that 

establish and maintain the epithelial polarity. Many vital polarity regulators are studied in 

the fly before or in parallel with their evolutionally conserved counterparts in other 

organisms. Despite the similarity, these conserved regulators of epithelial polarity have 

distinct roles in a tissue-dependent manner.  

The cytoarchitecture of cell junctions in most Drosophila epithelia includes the 

adherens junctions (AJs) and septate junctions (SJs), but desmosome or desmosomal 

proteins have not been identified in fly's epithelia. The AJs of Drosophila epithelium is 

very similar to the mammalian AJs in the structural features, the molecular composition, 

and the adhesive function (Harris, 2012b). The tight junctions of mammals and the 

septate junctions of most invertebrates are the places to establish the paracellular barriers 

(Schulte et al., 2003). Although TJs and SJs exhibit their differences in ultrastructure, 

spatial arrangement, and molecular composition, they share certain similarities that 

enable them to perform polarity and effective permeability control. For example, Crb, as 

well as the Par complex, is the regulator to maintain the shape and polarity 

of Drosophila epithelial. The claudin family proteins Megatrachea, sinuous, and Kune-

Kune present in the SJs of Drosophila epithelia for the barrier integrity (Behr et al., 2003; 
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Nelson et al., 2010). Moreover, both TJs and SJs are composed of cytosolic strands with 

varying amounts in a tissue-dependent manner. The cytosolic multi-stranded composition 

appears to be necessary to block the paracellular flow of substances effectively (Müller, 

2018).  

SJs are characterized by the ladder-like array of the septa, which span 15-20 nm 

intermembrane space of adjacent cells (Yanagihashi et al., 2012). Drosophila contains 

two types of SJs: pleated SJs and smooth SJs. Although both SJs are organized in ladder-

like septa, the zigzag and smooth lines along the cell membrane in tracer-infiltrated 

specimens are pleated SJs and smooth SJs, respectively (Yanagihashi et al., 2012). The 

origins of pleated and smooth SJs are different. Pleated SJs are found in ectodermal 

epithelia such as epidermis, hindgut, and tracheae. In contrast, smooth SJs are in the 

midgut epithelial developed from endoderm (Tepass and Hartenstein, 1994a). Snakeskin 

(Ssk), Mesh, and Tetraspanin 2A (Tsp2A) are three identified smooth SJs-specific 

proteins (Izumi et al., 2016; Izumi et al., 2012; Yanagihashi et al., 2012). In addition to the 

well-known barrier function, they incorporate intracellular signaling to regulate the 

resident ISCs proliferation in response to the environmental demands (Chapter II & (Izumi 

et al., 2019; Xu et al., 2019).  

The spatial arrangement of these junctional proteins in earlier studies from Drosophila 

embryo and exhibits the opposite orientation between the vertebrates and Drosophila. 

SJs locate in the apical region immediately below the AJs along the lateral cell surface of 

adjacent cells while the TJs is apical to the AJ in mammals (Tepass, 2003). However, a 

recent report shows the Drosophila midgut is more like vertebrate epithelia that form 

occluding junctions above the AJs and need integrin adhesion complex for its integrity 
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(Chen et al., 2018a). Conventionally, apical-localized Crb and Par complex and 

basolateral-localized Scrib complex mutually antagonize to define the apical-basal 

polarity and decide the AJs position in most Drosophila epithelia. In the adult midgut, 

these complexes have no effects on the ECs polarity. Instead, ECs polarization in the 

adult midgut, as well as mammalian epithelium, requires the cues from basal integrin-

mediated adhesion (Lee and Streuli, 2014). Talin, encoded by Drosophila rhea, mediates 

the integrin adhesive machinery to establish the EC polarity followed by proper sSJs 

assembly (Lee and Streuli, 2014). Mutation analysis of Mesh and Tsp2A further reveals 

the requirement of proper sSJs formation for newly-born EC to integrate into the midgut 

epithelium (Chen et al., 2018a).  

What drives the difference existed exclusively in adult midgut? One explanation is the 

different origination. The midgut epithelium is from endoderm, while other epithelia are 

derived from ectoderm that originates from the blastoderm. Failed assembly of precursor 

AJs leads to the lack of basolateral polarity in blastoderm and converts the blastoderm 

epithelium into a mesenchymal cell mass during gastrulation (Müller and Wieschaus, 

1996). In contrast, two embryonic endoderm precursors, the anterior and the posterior 

midgut primordia, undergo an epithelial-mesenchymal transition (EMT), migrate, and then 

take a mesenchymal-epithelial transition to regain the epithelial features. The anterior and 

the posterior midgut join together, forming a continuous tube in the late embryo (Campbell 

et al., 2011; Devenport and Brown, 2004; Tepass and Hartenstein, 1994b). Along with 

the development, midgut epithelium does not express polarity genes, such as crb, to 

establish a junctional complex and form apical AJs (Goldberg and Yates, 1990; Tepass 

and Hartenstein, 1994a). 
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The adult midgut progenitors (AMPs) are the beginning to build the adult midgut. 

AMPs initially appearing in the embryonic midgut epithelium among a small number of 

diploid cells are set aside from the midgut primordia. The AMPs form clusters where 

AMPs continuously proliferate in late larval and pupal stages and then generate the adult 

midgut epithelium during metamorphosis. Some AMPs that remain attached to the 

basolateral domain of the adult midgut epithelium turn into intestinal stem cells (ISCs), 

which support the homeostasis of adult midguts (Jiang and Edgar, 2011; Micchelli and 

Perrimon, 2006; Micchelli et al., 2011; Ohlstein and Spradling, 2007).  

In addition to the endogenous mechanisms, the interface that cells contact with ECM 

may be another parameter to influence the epithelial polarity when ISCs undergo 

differentiation in adult midgut. ECM has been known as a crucial factor in mammals to 

regulate the epithelial polarity and morphogenesis through the integrin-mediated 

interaction (Manninen, 2015). Moreover, studies of the suspended multicellular cyst 

demonstrate that cell-cell or cell-substratum contact orient the polarity in the suspended 

multicellular cyst. In suspension culture, MDCK cells form a multicellular cyst, consisting 

of polarized epithelia in which apical domains encounter the growth medium and 

basolateral membranes face toward the central lumen. When the cysts are placed in a 

collagen gel, rapid disassembly and redistribution of the membrane domains by 

endocytosis and endosomal trafficking reverse the polarity without cell dissociation (Wang 

et al., 1990a, b). The deposition of laminin A is vital to drive MET during mammalian 

kidney development (Klein et al., 1988). Hence, basal cues seem superior to the signals 

from the apical domains for polarity establishment in the epithelial cells derived from 

mesenchymal cells or stem cells (Kim et al., 2017). Since adult midgut is originated from 
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endoderm, ISCs might keep the MET characteristics of midgut primordia to respond to 

the environment demands after AMPs undergo metamorphosis. Whether the polarity can 

be established in AMPs during metamorphosis and is inherited by adult midgut ECs 

needs more efforts to elucidate it. 

 

3. The pathways and mechanisms that cell junctions use to regulate cell growth.  

Aberrant polarity and epithelial disorganization are features of cancer development. 

Components that establish the cell polarity are found along the cell junctions. Therefore, 

it is not surprising that loss of cell polarity triggers abnormal cell proliferation (Schimizzi 

et al., 2016). Additionally, contact inhibition and altered tension caused by loss of cell 

junctions also influence cell growth, suggesting mechanotransduction is another 

independent mechanism involved in growth control (Balda et al., 2003; Betanzos et al., 

2004; Brückner and Janshoff, 2018; Huerta et al., 2007; Yu et al., 2012b). 

ZO proteins link TJs transmembrane proteins to the actin cytoskeleton and are 

implicated in regulating cell proliferation and differentiation by interacting with 

transcription regulators and signaling pathways (Domínguez-Calderón et al., 2016; 

González-Mariscal et al., 2014; González-Mariscal et al., 2008; Huerta et al., 2007). In 

mouse embryonic stem cells, ZO-1 regulates the c-Myc expression to mediate the 

proliferation and antagonize differentiation (Xu et al., 2012). The Y-box containing 

transcription factor, ZONAB (ZO-1-associated nucleic acid-binding protein) binds to the 

promoter of the proto-oncogene ErbB-2 and several cell cycle regulators (Balda and 

Matter, 2000). ZONAB has been found in the nucleus and associates with the TJs. 

ZONAB interacts with CDK4 and their nuclear accumulation is required for cell 
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proliferation. Enhanced expression of ZO-1 sequesters ZONAB in the cytoplasm and 

reduces the nuclear accumulation of CDK4 as well as the cyclin D1 expression. The 

mRNA and protein of the DNA replication factor PCNA are diminished as well. Therefore, 

ZO-1/ZONAB can modulate the progression of the cell cycle and DNA replication to 

influence cell growth (Balda et al., 2003; Maga and Hubscher, 2003; Sourisseau et al., 

2006).  

ZO-2 influences cell growth by regulating transcription in parallel to ZO-1/ZONAB axis. 

ZO-2 has been reported to interact with Jun, Fos, and C/EBP and dampens the 

transcription activity of AP-1 site-mediated promoters (Betanzos et al., 2004). ZO-2 also 

associates with SAF-B, a regulator of transcriptome assembly, to slow the rate of cell 

proliferation (Dobrzycka et al., 2006; Townson et al., 2000; Traweger et al., 2003). A 

variety of stimuli initiate cancer development with upregulated cyclin D1 (Albanese et al., 

1995; Quelle et al., 1993; Watanabe et al., 1996). The promoter of cyclin D1 harbors a 

typical E-box. ZO-2 interacts with c-Myc at the E-box, followed by HDAC1 recruitment, to 

inhibit the transcription of cyclin D1 (Huerta et al., 2007). Moreover, ZO-2 engages in 

YAP-mediated cell hypertrophy. Knockdown ZO-2 leads to the nuclear translocation of 

YAP, which in turn activates the Akt/mTOR pathway to increase protein synthesis 

(Domínguez-Calderón et al., 2016). Independent of contact inhibition, ZO-2 stimulates 

LATS-dependent phosphorylation of YAP and relocates YAP from nucleus to cytoplasm 

in confluence culture (Liu et al., 2018). Collectively, ZO-2 modulates the transcription 

activity or direct the spatial distribution of the transcription factors to regulate cell growth. 

AJs-mediated cell-cell adhesion is mainly dependent on anchoring the 

transmembrane E-cadherin molecules to the underlying actin filaments. p120 catenin 
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directly stabilizes and retains E-cadherin at the cell surface by suppressing the 

endocytosis of E-cadherin (Ishiyama and Ikura, 2012; Nanes et al., 2012; Xiao et al., 

2003). β-Catenin binds to the cytoplasmic tail of E-cadherin and is essential for the 

formation of AJs in epithelial cells. α-catenin links E-cadherin/β-catenin to actin filaments 

(Pokutta et al., 2014; Stockinger et al., 2001). In trans homophilic binding of the 

transmembrane E-cadherin leads to cell contact-mediated inhibition through modulating 

several growth inhibitory signals such as the Hippo pathway, RTK, and FAK-Src-PI3K 

kinase signaling (Gumbiner and Kim, 2014; Kim et al., 2011). Dysfunction of E-cadherin 

has been linked to epithelial-related cancer. p120 catenin inhibits NF-kB pathway to 

restrict epithelial hyperproliferation. Abrogated p120 catenin accompanied with altered 

Rho GTPase activity leads to activation of NF-kB without obvious defective barrier 

function and intercellular adhesion (Perez-Moreno et al., 2006; Xie et al., 2018). Besides 

its essential roles in cadherin-mediated adhesion, β-catenin involves in canonical Wnt 

signaling to regulate proliferation in a variety of epithelia-composed tissues, including the 

intestine (Sebio et al., 2014).  

Different from the abovementioned three components, α-catenin is more like a 

mechanosensor that undergoes dynamic conformational change in response to altered 

cytoskeleton tension and thus adjusts the linkage between E-cadherin and actin filaments. 

(Leerberg et al., 2014; Thomas et al., 2013; Yonemura et al., 2010). The deletion of α-

catenin in the developing CNS leads to the expanded cerebral cortex because of the 

abnormal activation of the Hedgehog signaling, which increases the proliferation and 

suppresses apoptosis in the neural progenitors (Lien et al., 2006). Whereas, the neuronal 

differentiation in the α-catenin-null mice is not affected. In epidermal keratinocytes, α-
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catenin inactivates Ras-MAPK-Erk 1/2 pathway to mediate skin development. Ablation of 

α-catenin in keratinocytes results in mildly disrupted apicobasal polarity, decreased 

desmosomes and TJs, and enlarged intercellular space. Moreover, large multinucleated 

keratinocytes and hyperproliferation cause the perturbation of epidermis, resembling 

squamous cell carcinoma (Vasioukhin et al., 2001a). These studies suggest α-catenin 

modulates distinct signaling to control cell growth and survival depending on the cellular 

context. 

Nuclear translocation of YAP is found in the hyperproliferative α-catenin-null 

epidermis. However, YAP activity in the epidermis is not governed by the canonical core 

kinase cascade. Instead, α-catenin forms a tripartite complex with YAP and 14-3-3 and 

cooperates with PP2A phosphatase to control the phosphorylation and activity of YAP 

(Schlegelmilch et al., 2011). Interestingly, knockdown other AJs components such as E-

cadherin does not affect the activity and subcellular localization of YAP, indicating YAP 

activation is not managed by AJs-mediated cell adhesion. Actin-remodeling is a 

parameter to regulate YAP activity (Dasgupta and McCollum, 2019; Kim et al., 2016; Liu 

et al., 2016b; Morikawa et al., 2015). Although both α-catenin and AMOT associate with 

actin, the detailed mechanism remains elusive
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The Ssk-Mesh Complex of Smooth Septate Junction Restricts Yorkie to 

Regulate Intestinal Homeostasis in Drosophila 
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ABSTRACT 

Tight junctions in mammals and septate junctions in insects are essential for epithelial 

tissue integrity. We show here that in the Drosophila intestine, smooth septate junction 

proteins not only provide a barrier function but also serve as a signaling complex to 

regulate tissue growth. During an RNAi screen for genes that regulate intestinal stem cell 

division, we found that loss of two smooth septate junction components, Snakeskin and 

Mesh, caused a hyperproliferation phenotype in the adult midgut. By examining epitope-

tagged endogenous Snakeskin and Mesh, we demonstrate that the two proteins are 

present in cytoplasm of differentiating enteroblasts and in cytoplasm and septate 

junctions of mature enterocytes. In enteroblasts and enterocytes, loss of Snakeskin and 

Mesh causes Yorkie-dependent expression of the JAK-STAT pathway ligand Upd3, which 

in turn promotes proliferation of intestinal stem cells. Snakeskin and Mesh form a complex 

with each other, with other septate junction proteins and with Yorkie. Therefore, the 

Snakeskin-Mesh complex has both barrier and signaling function to maintain stem cell-

mediated tissue homeostasis. 
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Introduction 

The balance between self-renewal of stem cells and differentiation of progeny 

cells has to be maintained precisely, or otherwise may lead to tumor growth or tissue 

degeneration (Clevers et al., 2014; Qin and Zhang, 2017). The adult Drosophila midgut 

has comparable epithelial features and functions as the mammalian intestine, thus the 

midgut is a highly useful genetic model system to dissect intestinal stem cell (ISC)-

mediated homeostasis (Herrera and Bach, 2019; Micchelli and Perrimon, 2006; Ohlstein 

and Spradling, 2006; Zwick et al., 2019).  

Approximately a thousand ISCs are evenly distributed throughout the adult 

Drosophila midgut epithelium (Micchelli and Perrimon, 2006; Ohlstein and Spradling, 

2006). An ISC undergoes asymmetric division to generate a renewed ISC and another 

daughter cell called enteroblast (EB) or pre-enteroendocrine cell (pre-EE), which can 

differentiate to become an enterocyte (EC) for absorption or EE for hormone production, 

respectively (Fig. 1A) (Chen et al., 2018b; Ohlstein and Spradling, 2007; Zeng and Hou, 

2015). The Delta-Notch pathway modulates the ISC asymmetric division, while many 

other conserved pathways including Insulin, JAK-STAT, BMP and Wnt are employed to 

control ISC division and subsequent differentiation along the two lineages (Amcheslavsky 

et al., 2009; Biteau and Jasper, 2011; Chen et al., 2018b; Cordero et al., 2012; Guo and 

Ohlstein, 2015; Jiang et al., 2009; Ohlstein and Spradling, 2007; Tian and Jiang, 2014; 

Xu et al., 2011; Zeng and Hou, 2015). 

We and others recently show that the Ste20 kinases Misshapen (Msn) and 

Happyhour (Hppy) functions similarly as Hippo (Hpo) to regulate the Warts-Yorkie (Wts-

Yki) axis (Karpowicz et al., 2010; Li et al., 2014a; Li et al., 2018; Li et al., 2015b; Meng et 
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al., 2015; Ren et al., 2010; Shaw et al., 2010; Staley and Irvine, 2010; Zheng et al., 2015). 

In adult Drosophila midguts, Msn is expressed rather specifically in ISCs/EBs (Li et al., 

2018), and loss of function of Msn in EBs leads to activation of Yki and Unpaired3 (Upd3) 

to promote ISC division and tissue growth. The physiological function of Msn in EBs is 

modulated by ingested solid food particles that change the mechanical stretching of the 

midgut epithelium (Li et al., 2018). Hpo has a possible parallel mechanosensing function 

in ECs to regulate ISC division during epithelial damage (Karpowicz et al., 2010; Li et al., 

2014a; Li et al., 2015b; Meng et al., 2015; Ren et al., 2010; Shaw et al., 2010; Staley and 

Irvine, 2010; Zheng et al., 2015). Adherens junction proteins have been linked to 

mechanosensing and regulation of Yki (Boggiano and Fehon, 2012; Misra and Irvine, 

2018). How various upstream components including junction proteins regulate the above 

mentioned conserved signaling pathways to modulate intestinal tissue homeostasis is still 

largely unknown (Ma et al., 2019; Meng et al., 2018; Misra and Irvine, 2018; Poon et al., 

2018; Yu and Pan, 2018).  

The intestinal epithelium is an inside-out layer that separates the internal tissue from 

the outside environment, therefore have tight junctions that serve as epithelial barrier 

(Clark and Walker, 2018; Garcia-Hernandez et al., 2017; Harden et al., 2016; 

Vancamelbeke and Vermeire, 2017). Insects have the equivalent septate junctions, and 

in endoderm-derived tissues such as the midgut are called smooth septate junction, while 

in ectoderm-derived tissues such as imaginal discs are called pleated septate junction 

(Furuse and Izumi, 2017). Recent reports have identified conserved components of 

smooth septate junctions in silkworm and Drosophila, including two transmembrane 

proteins called Snakeskin (Ssk) and Mesh (Izumi et al., 2012; Yanagihashi et al., 2012). 
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Ssk and Mesh represent a novel complex of smooth septate junctions in developing 

insect intestines (Furuse and Izumi, 2017; Izumi et al., 2012; Yanagihashi et al., 2012). 

More recent reports have also implicated their functions in adult midgut homeostasis 

(Izumi et al., 2019; Salazar et al., 2018). Here we illustrate the genetic and molecular 

functions of Ssk and Mesh in EBs and ECs of adult Drosophila midguts, involving direct 

regulation of Yki to modulate the expression of Upd3 and thereby ISC division and 

intestinal homeostasis. 
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Result 

Loss of smooth septate junction proteins in EBs leads to ISC proliferation  

Differentiating EBs have been shown to produce multiple growth factors that regulate 

ISC proliferation (Doupe et al., 2018; Izumi et al., 2012; Li et al., 2014a; Li et al., 2018; 

Yanagihashi et al., 2012). Therefore, we used the Su(H)Gbe promoter-Gal4, UAS-GFP; 

tubulin-Gal80ts (abbreviated as Su(H)ts>GFP) temperature-sensitive strain as the driver 

and marker for RNA interference (RNAi) screens in EBs (Fig. 1A). We used 452 UAS-

based transgenic double-stranded RNA strains to target 262 genes including many that 

encode cell adhesion and membrane associated proteins (Table 1). 

The knockdown of msn and Tao produced highly increased number of GFP+ cells by 

initial visual inspection during our screen and served as controls (Fig.1B, C) (Li et al., 

2014a; Li et al., 2018). While knockdown of adherens junction, Hippo signaling and other 

pathways occasionally gave mild increase of GFP+ cells (Table 1), knockdown of many 

septate junction components led to a more noticeable increase (Fig. 1B). The three most 

consistent results were RNAi against Ssk, mesh, and Fasciclin3 (Fas3). Quantification of 

mitotic cell in midguts that mostly represent dividing ISCs by antibody staining for 

phosphorylated-histone3 (p-H3) (Amcheslavsky et al., 2009; Micchelli and Perrimon, 

2006; Ohlstein and Spradling, 2006) showed that multiple Ssk, mesh or Fas3 RNAi lines 

all induced midgut proliferation to a high level (Fig. 1C), consistent with increased number 

of GFP+ precursor cells (Fig. 1D-F). 
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Figure 1. Loss of smooth septate junction proteins in EBs leads to ISC proliferation. 

(A) An illustration of ISC asymmetric division and enteroblast (EB)-enterocyte (EC) 

differentiation lineage in the adult Drosophila midgut. Delta is an ISC marker, Su(H) is 

expressed in EBs, and Myo1A is expressed in ECs. 

(B) A list of genes that when knockdown by Su(H)Gal4 driven RNAi exhibited increased 

number of GFP+ cells. The degree of proliferation is based on visual examination of GFP 

in dissected midguts, and by comparing to the results of the previously known regulator 

Msn. The full list of RNAi lines screened is in Table 1. 

(C) A graph showing the average number of p-H3+ cells per whole midgut after crossing 

with the Su(H)tsGal4 driver, and temperature shifted to 29°C for 5 days to inactivate the 

Gal80ts repressor to allow Gal4 dependent expression of UAS-dsRNA from the indicated 

transgenic lines. The control is UAS-GFP, which is also included in all the RNAi 

experiments. 

(D) A confocal image showing surface view of a midgut from a control fly with the 

Su(H)tsGal4 driver and UAS-GFP transgenes. 

(E) Image of a midgut from a similar cross with an additional UAS-Ssk RNAi transgene. 

(F) Image of a midgut from a similar cross with an additional UAS-mesh RNAi transgene. 

For all images in this figure, green is GFP, blue is DAPI for DNA, arrows indicate some 

of the p-H3 staining in red, scale bars represent 20 μm. For all graphs, error bars are 

standard error of the means (SE), and P values are represented as **< 0.01, ***< 0.001, 

****<0.0001. NS is no significance.  
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We used the CRISPR/Cas9 gene engineering to generate insertion-deletions in Ssk 

or stop codons in mesh (Fig. 2A, B). These CRISPR-generated Ssk and mesh mutants 

were homozygous lethal, similar to the other mutant combinations previously reported 

(Izumi et al., 2012; Yanagihashi et al., 2012). In order to study their functions in adult 

midguts, we used the Mosaic Analysis with Repressible Cell Marker (MARCM) technique 

(Lee and Luo, 2001). The Ssk and mesh mutations were generated on FRT80B or 

FRT82B parental chromosomes, which allow the generation of homozygous mutant 

clones marked with GFP, in otherwise heterozygous animals (Fig. 2C-F). Ssk1 and Ssk4-

3, which contain insertion-deletions in the first and second exons of Ssk, respectively, as 

well as mesh1 were used (Fig. 2A, B). Ten days after initial pulses of heat shock-induced 

FLP-dependent mitotic recombination, the flies were used for quantification of the 

MARCM clone size as the number of GFP+ cells in a cluster. The results show that both 

Ssk and mesh mutants had significant albeit modest increase of clone size when 

compared to those in parental strains, suggesting an increased ISC proliferation (Fig. 2G, 

H). More importantly, we observed that the increase of p-H3+ cells was more obvious 

when more mutant cells were present, and the majority of p- H3+ cells were located 

outside the GFP+ mutant clones (Fig. 2I, J). These results indicate that Ssk and mesh loss 

of function mutant clones increase not only their own proliferation but also the proliferation 

of surrounding wild-type ISCs, thus can act through an ISC-non-autonomous mechanism. 

The quantification of Delta+ ISCs, Prospero+ EEs, and p-H3+ mitotic cells within the clones 

Fig. 3A-G) revealed that there was no significant increase of other cell types. The results 

together suggest that after loss of Ssk or Mesh there is increased proliferation of ISCs 
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and subsequent accumulation of GFP+ EBs and ECs, but not change of cell fate, therefore 

a midgut hyperplasia phenotype.  
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Figure 2. Ssk and mesh loss of function mutant clones increase proliferation 

majorly through an ISC-non-autonomous mechanism.  

(A). Cartoons illustrated the strategies to generate Ssk and mesh mutant fly. For Ssk, two 

guide RNAs target the two restriction sites located on two exons as indicated were 

injected to induce CRISPR-dependent insertion/deletion (indel). Individual F1 flies were 

crossed to balancers and each line was used for genomic DNA isolation and PCR, 

followed by restriction digestion to identify possible mutants. The individual mutant lines 

were confirmed by PCR and sequencing. For mesh, the indicated homologous template 

was used together with the guide RNA, to induce the placement of a STOP codon and 

deletion immediately downstream of the first ATG of mesh. 

(B) List of Ssk and mesh mutant alleles generated by CRISPR, and their mutations and 

predicted stop codons.   
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Figure 2. Ssk and mesh loss of function mutant clones increase proliferation 

majorly through an ISC-non-autonomous mechanism.  

 (C) Image of a MARCM experiment using control FRT80 flies, and the gut was also 

stained for p-H3, shown in red. The arrow indicates a p-H3+ mitotic cell. A representative 

clone with GFP is shown in the enlarged image.  

(D) Image of a similar MARCM experiment using the Ssk1 mutant flies. Arrows indicate 

p-H3+ cells, some of them are inside the clones but many are outside the clones. The 

enlarged image shows an example of both. 

(E) Image of a similar MARCM experiment using control FRT82B flies  

(F) Image of a similar MARCM experiment using the mesh1 mutant flies.  

(K) Quantification of the parental FRT80 alleles and the two different Ssk mutant used for 

MARCM, and individual clone size is the number of GFP+ cells in a cluster. More than 30 

clones were counted in each experiment and the average is plotted as shown.  (L) Similar 

MARCM experiments using the mesh1 mutant and the parental FRT82B alleles.  

(M) Quantification of mitotic cells by p-H3 staining in MARCM guts. Those p-H3+ cells that 

also had GFP were counted as inside the MARCM clones (white portion). Those p-H3+ 

cells that had no GFP were counted as outside the MARCM clones (grey portion).  (N) 

Similar MARCM experiments using the mesh1 mutant and the parental FRT82B alleles to 

quantify p-H3+ cells that are inside or outside the clones.  
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Figure 3. Ssk and mesh mutant neither skew the asymmetric division nor affect the 

differentiation of ISCs. 

(A-B) Quantification of MARCM clone size relative to Delta+ cell staining. Individual clone 

size was defined as the number of GFP+ cells divided by the number of Delta+ ISCs in a 

cluster. More than 30 clones were counted in each experiment. FRT80B and FRT82B 

were the control for Ssk and mesh mutants, respectively. The MARCM clone size of Ssk 

and mesh mutant was increased with statistical significance. 

(C-D) Quantification of the number of Delta+ cells in Ssk or mesh mutant MARCM clones, 

that is co-localization with GFP+ cell clusters. There was no change in average number, 

suggesting loss of Ssk or mesh did not change the ISC asymmetric division. 

(E-F) Quantification of p-H3+ cells within GFP+ Ssk or mesh mutant MARCM clones. 

(G) Quantification of Prospero (Pros) staining as EE marker in mutant clones. The 

average number of Pros+ cells per mesh MARCM clone had no significant change. 
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Yorkie and Upd3 mediate the growth after loss of Ssk or Mesh 

Because loss of Ssk or mesh in EBs leads to an ISC-non-autonomous mechanism 

to increase midgut proliferation, a prediction is that loss of Ssk or mesh causes the 

secretion of a growth factor that can increase ISC proliferation. We evaluated the 

expression of multiple ligands that are known to be important for adult midgut 

homeostasis, by reverse transcription quantitative PCR (RT-qPCR) of total RNA isolated 

from midguts where Ssk RNAi or mesh RNAi was induced by the Su(H)ts> driver. The 

result revealed that the expression of upd3, which encodes a ligand of the JAK-STAT 

pathway, was robustly increased in terms of fold change (FIg. 4A, B). 

A functional test of the requirement of Upd3 was performed by double knockdown 

experiments by using the Su(H)ts> driver and two independent upd3 RNAi constructs. The 

mitotic cell numbers were significantly reduced after upd3 double knockdown (Fig. 4C, 

D). Confocal imaging (Fig. 4E-I) also revealed that in the double RNAi samples, the 

Su(H)ts>driven GFP+ cell number and organization resembled that of wild type guts. It is 

noteworthy that the suppression of mitotic counts in the mesh;upd3 double RNAi 

experiments were only approximately 50% (Fig. 4D), suggesting that loss of mesh may 

also activate other factors, such as Vein, Keren and Spitz of the EGF pathway that 

showed modest fold increases of RNA expression (Fig. 4A, B), or some other factors not 

examined.  
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Figure 4. Upd3 is secreted out to mediate the growth after loss of Ssk or Mesh. 

(A) Quantification of RNA expression of the indicated genes by qPCR of total RNA 

isolated from guts of control (GFP) or Ssk RNAi flies driven by the Su(H)ts-Gal4. Parallel 

PCR reactions using the rp49 primers were used as the reference and the expression of 

each gene was normalized to that of rp49 and set as 1 in control samples (white bars). 

The expression level of each gene in the Ssk RNAi fly guts was normalized to that of rp49 

and then calculated as fold change compared to that in control.  

(B) Similar qPCR quantification of the genes and showing the relative expression in mesh 

RNAi flies comparing to the control.  

(C) The graph shows the average mitotic counts in midguts of flies with the indicated 

control GFP, and Ssk plus upd3 RNAi lines, driven by the Su(H)ts-Gal4. 

(D) Similar experiment showing the mitotic counts of control, and mesh plus upd3 RNAi 

lines.  

(E) A representative confocal image showing surface view of a midgut from control flies 

of the genotype Su(H)ts>GFP. 

(F) A confocal image showing surface view of a midgut from Su(H)ts>GFP,SskRNAi flies. 

The arrows indicate some of the nuclear p-H3+ cells in red. More GFP+ cells also illustrate 

increased proliferation in the midgut. 

(G) A confocal image showing surface view of a midgut from Su(H)ts>SskRNAi,upd3RNAi 

flies.  

(H) A confocal image showing surface view of a midgut from Su(H)ts>meshRNAi flies. 

(I) A confocal image showing surface view of a midgut from Su(H)ts>meshRNAi,upd3RNAi 

flies.   
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Previous reports demonstrate that the expression of upd3 in the adult midgut can be 

regulated by multiple pathways, including the Wts-Yki pathway (Houtz et al., 2017; Li et 

al., 2014a; Li et al., 2018). The kinase Wts phosphorylates and inhibits Yki. When this 

phosphorylation is reduced, Yki is released and acts as a transcriptional coactivator to 

increase the expression of target genes. Therefore, we tested the requirement of Yki by 

using Su(H)ts> to drive the expression of two different yki RNAi strains in EBs. The 

inclusion of yki RNAi highly reduced the expression of upd3 RNA (Fig. 5A, B). The 

suppression of mitotic counts after the inclusion of yki RNAi was very similar to that by 

upd3 RNAi, such that there is almost complete suppression in the Ssk RNAi background 

but only 50% in the mesh RNAi background (compare Fig. 5C, D with Fig. 4C, D). Addition 

of a control UAS-mCherry did not provide such suppression (Fig. 5E). Therefore, in EBs, 

Yki is primarily responsible for the expression of Upd3 after loss of Ssk or Mesh, while 

Upd3 and possibly other factors in turn promote ISC division. 
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Figure 5. Yki regulates the Upd3 expression to control the growth after loss of Ssk 

or Mesh  

(A) Quantification of upd3 RNA expression in adult midguts of the indicated control, Ssk 

and yki RNAi lines. Each qPCR was compared to that of rp49 as internal control and set 

as 1 in the control GFP sample. Other samples were plotted as fold change compared to 

the control. The 29°C incubation was for 3 days.  

(B) Quantification of upd3 RNA expression in adult midguts of the indicated control, mesh 

and yki RNAi lines. The 29 °C incubation was for 4 days. 

(C) Mitotic counts in adult midguts of the indicated control, Ssk and yki RNAi lines after 5 

days of incubation at 29°C driven by the Su(H)tsGal4. The dissected guts were staining 

for p-H3 and counted throughout the whole midgut. The average number is plotted.  

(D) Mitotic counts in adult midguts of the indicated control, mesh and yki RNAi lines. 

(E) Mitotic counts of midguts from flies that contained the Su(H)ts> driven RNAi in single 

or double as indicated. The addition of a control UAS-mCherry RNAi construct was not 

sufficient to cause significant suppression of the proliferation induced by loss of Ssk or 

Mesh. 

  



 

78 

Ssk and Mesh expression and function are initiated in EBs to produce Upd3 for 

ISC proliferation  

EBs are differentiating precursor cells that will mature to become ECs, which as 

shown below have septate junctions to form the epithelial barrier. The strong midgut 

proliferation phenotypes induced by using the EB driver suggest that either Ssk and Mesh 

have a function within EBs or the RNAi effects sustain long enough to affect the function 

later in ECs. To assess these possibilities, we generated alleles that express as Ssk-

Streptavidin Binding Peptide (Sskki-SBP) and Mesh-V5 (Meshki-V5) (Fig. 6A) endogenous 

tagged proteins, with the tags at the C-termini/cytoplasmic domains. High levels of SBP 

and V5 staining were observed in ECs, likely representing apical-lateral smooth septate 

junctions (also see sections below). Nonetheless, we also detected some cytoplasmic 

punctate staining in EBs (Fig. 6B, C, arrow). Phalloidin stains for actin bundles in apical 

brush borders of mature ECs (Fig. 6D-G) and Myo1A>GFP (Fig. 6H-K) labels mature ECs; 

these two EC marker staining were distinct from those smaller EBs that had low but 

detectable cytoplasmic SBP and V5 (Fig. 6D-K, arrow). On the other hand, direct labeling 

of EBs by the Su(H)-promoter-LacZ reporter illustrated the presence of SBP staining in 

these EBs (Fig. 6L, M).  

As shown above, Su(H)ts> driven Ssk or mesh RNAi caused an increased 

proliferation and accumulation of GFP+ cells of various sizes (e.g. see Fig. 1E, F, 4J, L). 

Among those GFP+ cells, we could find some that were of medium size, not yet fully 

integrated with ECs, but had low levels of Phalloidin staining (Fig. 6O, arrow). Moreover, 

most of these Su(H)>GFP marked cells of varying sizes still expressed the EB marker 

Headcase (Hdc) (Fig. 7A-C) (Resende et al., 2017). Therefore, loss of Ssk or Mesh within 
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EBs promotes ISC proliferation to generate more EBs that will continue the differentiation 

into ECs. This is consistent with the increased expression of Upd3, which can activate 

the JAK-STAT pathway to promote ISC proliferation and subsequent differentiation, as 

previously reported (Jiang et al., 2009; Xu et al., 2011; Zhou et al., 2013). In contrast, the 

Ssk or mesh RNAi within ISCs by the Delta-Gal4 driver even for prolonged period did not 

show an increased proliferation phenotype (Fig. 8). To ascertain that the JAK-STAT 

pathway ligand Upd3 is produced within EBs, we crossed a 4 kb upd3 promoter-driven 

lacZ reporter to the Ssk or mesh mutants and performed MARCM (Li et al., 2014a; Zhou 

et al., 2013). The MARCM results showed that 76.6 % of the Ssk mutant GFP+ clones 

(n=141) versus 21.2% of the FRT80 control clones (n=146) also contained β-

galactosidase staining (Fig 9A). Similarly, 83.5% of mesh mutant clones (n=94) versus 

21.1% of the FRT82B control clones (n=57) had β-galactosidase and GFP co-staining 

(Fig 9B). These results demonstrate that the upd3 reporter is expressed largely within the 

mutant cells. Confocal imaging revealed that the β-galactosidase staining in Ssk or mesh 

mutant clones was not obvious in ISCs and early EBs (small cells), but became detectable 

in EBs of medium sizes (arrow in Fig 9D, F). Further staining showed that these medium-

sized upd3-LacZ expressing cells also expressed the EB marker Hdc (Fig 9G). Together, 

we conclude that loss of Ssk or Mesh function is sufficient to initiate the expression of 

Upd3 within EBs.  
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Figure 6. Ssk and Mesh expression and function are initiated in EBs 

(A) CRISPR-induced homologous repair to generate knockin Sskki-SBP and meshki-V5 

tagged alleles. We used 1 guide RNA and a dsDNA plasmid donor. By design, the 

homologous replacement would result in tag-stop, followed by floxed 3XP3 promoter-

driven RFP, to substitute the stop codon of interested genes. The 3XP3-RFP marker that 

facilitated the genetic screening would be flipped out by Cre recombinase and left a short 

linker sequence between tag-stop codon and 3'UTR. 

(B) Control staining for SBP and V5 around a cell nest using the parental w- fly gut. The 

arrows indicate EBs based on the size.  

(C) Confocal images of staining for SBP and V5 using guts from flies with both the knockin 

alleles crossed together. High level staining appears in circumference of the EC, and low-

level punctate staining is also present in EBs, indicated by arrows. The images in panels 

A and B are single optical sections of 0.2 μm each. 
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Figure 6. Ssk and Mesh expression and function are initiated in EBs. 

(D) Confocal image of longitudinal cross-section of w- control midgut, showing double 

Phalloidin staining in red for F-actin and SBP staining in green. The brush border of ECs 

at the apical side and the smooth muscle at the basal side had high levels of Phalloidin 

staining. The EBs are indicated by arrows and did not show red or green staining. 

(E) Similar double staining using the Sskki-SBP flies. The EB indicated by an arrow showed 

cytoplasmic punctate SBP staining, but not Phalloidin staining. The more apically located 

large ECs were labelled strongly with Phalloidin as well as strong SBP staining at 

junctions and cytoplasmic punctate. 

(F) Similar w- control midgut double stained with Phalloidin in red and V5 in green. 

(G) Similar Meshki-V5 midgut double stained with Phalloidin in red and V5 in green. The 

smaller EB indicated by an arrow also showed cytoplasmic punctate V5 staining. 

(H) Confocal image of control Myo1Ats>GFP midgut, with GFP expressed only in ECs. 

Costaining with SBP did not show any signal in EBs, indicated by arrows. 

(I) Similar staining shows SBP cytoplasmic punctate in an EB of Sskki-SBP that had no GFP, 

indicated by an arrow. 

(J) Similar V5 staining showing no signal in EBs indicated by arrows of control  

(K) Similar V5 staining showing cytoplasmic punctate in an EB from Meshki-V5, which is 

not labelled with GFP. 

(L, M) Images of midgut cells from flies carrying the transgene Su(H)-Gbe-lacZ that is 

used to label EBs. When EBs continue to differentiate and become bigger, Su(H)-Gbe-

lacZ levels become lower (compare the EBs in L and M). Immunostaining showed that 

punctate SBP staining from Sskki-SBP is detectable in cytoplasm of late EBs (arrows in 



 

84 

panel M). Along with EC maturation, Ssk accumulates and localizes at the apical-lateral 

region of ECs to form the smooth septate junction (arrowheads in panel M). 

(N) Confocal image of a gut from control Su(H)ts>GFP strain. The arrow indicates an EB 

that had strong GFP expression and no Phalloidin. 

(O, O') Confocal image of a gut from Ssk RNAi flies. The arrow indicates an EB of medium 

size that had both GFP signal and weak apical Phalloidin staining (white arrow), 

suggesting that it was an EB continuing with its differentiating. 
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Figure 7. Loss of Ssk or Mesh within EBs does not affect the differentiation into 

ECs. 

(A-C) Confocal images showing GFP marked EBs driven by Su(H)ts-Gal4. The inclusion 

of Ssk or mesh RNAi constructs still allowed differentiation of these EBs, as demonstrated 

by the presence of more GFP+ cells, with some of them have medium sizes and still 

retained GFP and the Hdc staining as another EB marker.  
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Figure 8. Loss of Ssk or Mesh within ISCs did not show an increased proliferation 

phenotype. 

The plot shows the mitotic cell counts in midguts, from flies containing Ssk or mesh RNAi 

driven by Deltats-Gal4. No significant increase of proliferation was observed. A warts RNAi 

line was included as a comparison, in which proliferation was increased mildly but 

significantly. 
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Figure 9. Loss of Ssk or Mesh function initiates the expression of Upd3 within EBs. 

(A) Quantification of GFP+ MARCM clones stained for β-galactosidase expressed from 

the 4kb upd3 promoter-lacZ reporter. MARCM clones were induced in control FRT80B or 

Ssk1 mutant flies, both crossed with the lacZ reporter. After recovery for 10 days, guts 

were dissected and stained for β-galactosidase. An individual GFP+ MARCM clone that 

contained at least one β-galactosidase+ cell regardless of cell type was counted as double 

positive. More than 50 GFP+ clones were counted, and the percent that also contained β-

galactosidase is as shown. 

(B) Similar quantification of GFP+ MARCM clones that also stained positive for β- 

galactosidase expressed from the 4kb upd3 promoter-lacZ reporter. MARCM clones were 

induced in control FRT82B or mesh1 mutant flies.  

(C, C', C'') A high magnification confocal image showing a GFP+ MARCM clone from 

FRT80B control flies that also contained the upd3-promoter-LacZ reporter. The staining 

is shown in white in panels C and C’. The staining is shown as green for GFP and red for 

β-galactosidase in panel C’’. 

(D) A similar confocal image showing a GFP+ MARCM clone from Ssk1 mutant flies. The 

arrows indicate EBs with detectable levels of β-galactosidase protein staining, expressing 

upd3. Note that ECs had higher levels of β-galactosidase. 

(E) A confocal image showing a GFP+ MARCM clone from FRT82B control flies that also 

contained the upd3-promoter-LacZ reporter. 

(F) A similar confocal image showing a GFP+ MARCM clone from mesh1 mutant flies. The 

arrows indicate EBs with detectable levels of β-galactosidase, expressing upd3. 

(G, G', G'') Confocal images of a MARCM mutant clone form Ssk1 mutant flies that also 
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contained the upd3-promoter-LacZ reporter. The gut was double stained for Hdc, which 

is expressed in EB cytoplasm. The dotted lines delineate the Ssk mutant EB with 

detectable levels of β-galactosidase and also Hdc staining, indicating that it was a 

differentiating EB expressing upd3.   
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Ssk and Mesh also have functions in ECs to regulate Yorkie-Upd3 and thereby 

ISC proliferation 

Because septate junctions in guts are mainly associated with mature ECs, we 

examined whether Ssk and mesh are similarly required in ECs to regulate ISC 

proliferation, by using the Myo1A-Gal4, UAS-GFP; tubulin-Gal80ts (Myo1Ats>) driver. 

Multiple RNAi lines of Ssk and mesh caused highly increased mitotic counts (Fig 10A). In 

comparison, a Coracle (Cora) RNAi line only caused a moderate increase of proliferation, 

while a Fas3 RNAi line did not result in an increase, suggesting that Ssk and Mesh are 

key components in ECs for non-autonomous regulation of ISC proliferation. There was 

also more small GFP-cells around the Myo1Ats>GFP labeled big ECs (Fig 10B-D), 

illustrating that there was accumulation of precursor cells as a result of increased ISC 

division.  

The knockdown of Ssk or mesh by RNAi in ECs resulted in highly increased 

expression of upd3 (Fig. 10E, F). The fold increase was even higher than that from the 

knockdown of Ssk or mesh in EBs (compare to Fig. 4A, B). This is probably due to the 

fact ECs are the major cell type in the midgut epithelium. The Myo1Ats> driven upd3 RNAi 

suppressed significantly although not completely (40-50%) the ISC proliferation induced 

by Ssk or mesh RNAi (Fig. 10G, H).  
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Figure 10. Ssk and Mesh also have functions in ECs to regulate Upd3 expression 

and thereby ISC proliferation. 

(A) The graph shows the average number of p-H3+ cells per whole midgut from adult flies 

after crossing with the various indicated RNAi lines with the Myo1Ats> driver, and the 

temperature shift was for 3 days. 

(B) Confocal Image of a midgut from a control flies crossed with the Myo1Ats> UAS-GFP. 

All ECs cells are GFP+, and other cells are GFP-. 

(C) Confocal Image of a midgut from a similar cross with an additional UAS-SskRNAi 

transgene. The arrow indicates a p-H3+ staining. 

(D) Confocal Image of a midgut from a similar cross with an additional UAS-meshRNAi 

transgene. The arrows indicate p-H3+ staining. 

(E) Quantification of RNA expression by qPCR of the indicated genes from gut samples 

with the Myo1Ats> driver crossed with control or SskRNAi. The temperature shift was for 3 

days. 

(F) Similar quantification of RNA expression as in panel E, except using the meshRNAi. 

(G) Quantification of p-H3+ cells from whole guts of flies after crossing the Myo1Ats> with 

the indicated single or double Ssk and upd3 RNAi lines. The temperature shift was for 3 

days. 

(H) Similar quantification of p-H3+ cells, except using the meshRNAi. 
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We performed similar suppression experiments in ECs by using the yki RNAi. 

However, if the temperature shift to induce RNAi was carried out for 3 days similar to 

other experiments described above, the mitotic counts remained high in the double RNAi 

samples (Fig. 11A, B). Therefore, we assayed shorter time points. Temperature shift for 

1 day was not sufficient to induce a significant increase of proliferation (Fig. 11G). After 

temperature shift for 2 days, there were sufficient increase of both upd3 expression and 

mitotic counts. Importantly, the inclusion of yki RNAi after 2 days of induction caused 

significant suppression of the upd3 expression and mitotic counts (Fig. 11C-F). Addition 

of a control UAS-mCherry did not provide such suppression (Fig. 11H). These results 

together indicate that, in ECs, Yki is an important regulator of Upd3 production and ISC 

proliferation at the early phase of reducing Ssk or Mesh expression. Prolonged 

knockdown of Ssk or mesh in ECs likely caused a substantial loss of septate junctions, 

followed by lethality (see Fig. 15), and therefore might mobilize additional stress response 

pathways. However, we did not detect an involvement of the JNK pathway (Fig. 12A-D) 

or a substantial cell death (Fig. 12E-H) after 2-3 days of knockdown of Ssk or mesh in 

ECs, suggesting an involvement of other pathways.  
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Figure 11. Yki is responsible to regulate Upd3 expression and thereby ISC 

proliferation at the early phase of loss of Ssk and Mesh. 

 (A, B) Mitotic counts of midguts from flies that contained the Myo1Ats> driven RNAi in 

single or double as indicated. The days of 29 oC temperature shift to induce RNAi in adult 

flies for panels A and B were 3 days. The inclusion of yki RNAi did not suppress the mitotic 

count induced by Ssk (A) or mesh (B) RNAi after 3 days of temperature shift. 

(C) Quantification of upd3 RNA expression by qPCR. Whole guts were obtained from flies 

after crossing the Myo1Ats> with the indicated RNAi lines. Note that the temperature shift 

was shorter, for 2 days. 

(D) Similar quantification of upd3 RNA expression, except using the meshRNAi. 

(E) Quantification of p-H3+ cells from whole guts of flies after crossing the Myo1Ats> with 

the indicated RNAi lines. Note that the temperature shift was for 2 days. 

(F) Similar quantification of p-H3+ cells, except using the meshRNAi. 

(G) Mitotic counts of midguts from flies that contained the Myo1Ats> driven RNAi. 

Temperature shift for 1 day was not sufficient to induce a significant increase of 

proliferation. 

(H) Mitotic counts of midguts from flies that contained the Myo1Ats> driven RNAi in single 

or double as indicated. The addition of a control UAS-mCherry RNAi construct 

was not sufficient to cause significant suppression of the proliferation induced by loss of 

Ssk or Mesh.  
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Figure 12. Knockdown of Ssk or Mesh in ECs does not activate the JNK pathway 

or induce apoptosis. 

(A-B) Quantification of RNA expression by qPCR, of JNK downstream target genes 

Puckered and Kayak in adult midguts of flies containing the indicated SskRNAi , meshRNAi, 

or the constitutively active Hemipterous (HepCA) that activates JNK as a positive control. 

Each qPCR was compared to that of rp49 as internal control and set as 1 in the control 

GFP sample. Other samples were plotted as fold change compared to the control. The 

29oC incubation was for 2 days. 

(C-D) Mitotic counts based on the number of p-H3+ cell per whole midgut. The guts were 

from flies of single or double RNAi of Ssk or mesh, together with JNK, driven by the EC 

driver Myo1Ats>. The 29oC incubation for inducing RNAi was for 3 days. The addition of 

JNK RNAi did not suppress the ISC proliferation. 

 (E-H) Confocal images showing Sytox Orange staining for nucleic acid in cells with 

1017 compromised membranes as a cell death indicator (Akagi et al., 2018). Guts were 

from flies containing the EC driver Myo1Ats> and the SskRNAi , meshRNAi , or a Hid cDNA 

construct as a positive control. The 29oC incubation was for 2 days. Knockdown of Ssk 

or mesh in ECs did not increase the staining when compared to the GFP control, but Hid 

overexpression increased the staining.  
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The Ssk-Mesh complex are required for the co-localization with other junction 

proteins in ECs.  

We used the knockin alleles of Ssk and Mesh to perform a series of experiments to 

investigate whether these two components are critical for septate junction formation in 

ECs. Confocal imaging showed that both endogenous fusion proteins Sskki-SBP and 

Meshki-V5 formed a ring around the membrane of ECs, as well as some cytoplasmic 

punctate staining especially for Mesh (Fig. 13A). Longitudinal cross-section view of this 

staining revealed that the two proteins were colocalized to apical-lateral positions, 

suggesting that they serve to connect neighboring ECs as expected for septate junctions 

(Fig. 13B, arrowheads). Moreover, the two proteins can be co-immunoprecipitated from 

adult gut extracts, suggesting that they are part of the same protein complex (Fig. 13C). 

The localization of Ssk and Mesh at the junctions are dependent on each other, because 

RNAi caused dispersion of immunofluorescent signals from the junctions (Fig. 13D-G). 

The protein composition of smooth septate junction is not entirely known, but previous 

reports illustrate that Ssk, Mesh and Tsp2A are likely components of smooth septate 

junctions in developing Drosophila embryos and larvae (Izumi et al., 2016; Izumi et al., 

2012; Yanagihashi et al., 2012). Recent reports also implicate these three proteins in 

adult midgut homeostasis (Izumi et al., 2019; Salazar et al., 2018; Xu et al., 2019). 

Therefore, we used our knockin alleles to further examine the relationship with Tsp2A, 

and the results showed that the junction localization of Ssk and Mesh were dependent on 

Tsp2A (Fig. 13H-K). We extended our analysis to Cora and Fas3, which are known to 

associate with septate junctions in other epithelial tissues (Boggiano and Fehon, 2012) 

and are involved in adult midgut proliferation to varying degrees (see Fig.1B, 1C, 10A). 
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The staining of Cora and Fas3 matched that of Mesh at the junctions of ECs (Fig. 14A, 

B). Moreover, their localization was largely disrupted after Ssk or mesh RNAi (Fig. 14C-

H). Together, we have established that Ssk and Mesh are localized to and critical for the 

formation of smooth septate junctions in ECs of adult midgut epithelium. 
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Figure 13. Ssk and Mesh are localized to and critical for the formation of smooth 

septate junctions in ECs of adult midgut epithelium 

(A, A', A'') Confocal images of surface view of an adult midgut from flies harboring both 

Sskki- SBP and Meshki-V5. Co-immunostaining was using antibodies for SBP shown in green 

in panel A, and for V5 shown in red in panel A’. The double color together with DAPI is 

shown in A’’. The focal plan of the images was around the apical side of ECs, where the 

smooth septate junctions are expected to locate. Some punctate are also observed in the 

cytosol of ECs. 

(B, B', B'') Confocal images of longitudinal cross-section view of a midgut from flies 

harboring Sskki- SBP and Meshki-V5. The SBP and V5 staining co-localized at presumed 

septate junctions indicated by the arrowheads near the apical side of ECs. The white 

dash line indicates the apical border of the epithelium adjacent to the gut lumen. 

(C) Western blots showing co-immunoprecipitation of the Sskki- SBP and Meshki-V5 proteins, 

using extracts prepared from the w- control, single knockin, and double knockin fly guts. 

The extracts were used for V5 immunoprecipitation and then SBP Western blots, or for 

Western blots directly in the two lower panels as indicated. 

(D) Confocal image of longitudinal cross-section view of SBP staining of gut from control 

flies crossing the Sskki-SBP with the Myo1Ats>GFP. The staining is tightly localized to the 

EC junctions indicated by arrowheads. 

(E) Similar SBP staining except the flies also included the meshRNAi construct, which 

caused disruption of staining at the junctions (open arrowheads). 

(F) Similar V5 staining in control guts. 

(G) Similar V5 staining in guts that also included SskRNAi. 
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(H) Confocal image of surface view of SBP staining in control gut. 

(I) Similar SBP staining except the flies also included the Tsp2ARNAi construct. 

(J) Similar V5 staining in control guts.  

(K) Similar V5 staining except the flies also included the Tsp2ARNAi construct.  
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Figure 14. The Ssk-Mesh complex are required for the co-localization with other 

junction proteins in ECs.  

(A, A', A'') Confocal image of longitudinal cross-section view of gut from the Meshki-V5 fly 

strain stained for V5 and Cora. The arrowheads in A'' indicate colocalization at the apical 

junctions of the two proteins.  

(B, B', B'') Confocal image of surface view of similar gut stained for V5 and Fas3. The 

confocal section is 0.2 μm and the two proteins had almost identical pattern around the 

cell membrane. 

(C, C') Confocal image of surface view of control gut expressing Myo1Ats>GFP and 

stained for Cora. 

(D, D') Similar image showing Cora from membrane junction was dispersed after SskRNAi. 

(E, E') Similar image showing Cora staining was dispersed after meshRNAi. 

(F, F') Confocal image of control gut expressing Myo1Ats>GFP and stained for Fas3. 

(G, G') Similar image showing Fas3 from membrane junction was dispersed after SskRNAi. 

(H, H') Similar image showing Fas3 staining was dispersed after meshRNAi.  
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Loss of Ssk and Mesh in EBs and ECs lead to different degrees of gut leakiness 

and animal viability 

Septate junctions provide the barrier function of the intestinal epithelium and loss of 

barrier function often leads to compromised epithelial integrity, cell stress and reduced 

animal viability (Furuse and Izumi, 2017; Garcia-Hernandez et al., 2017; Harden et al., 

2016; Rera et al., 2012; Resnik-Docampo et al., 2018; Vancamelbeke and Vermeire, 

2017). Because we have found that Ssk and Mesh have functions in both EBs and ECs 

to regulate the Yki-Upd3 axis for midgut homeostasis, we examined how these two cell 

types contribute to gut barrier function and whole animal viability. Previous reports 

showed that leaky guts could lead to the accumulation of a blue dye in the body cavity 

after the dye was fed to flies, termed as Smurf assay (Rera et al., 2012). By this assay, 

we found that after 3 days of Ssk or mesh RNAi when driven by the EB driver led to less 

that 3% of the flies exhibited the Smurf phenotype (Fig. 15A). The number of dead flies 

was also limited and closely correlated with the Smurf phenotype (Fig. 15B). Meanwhile, 

the same experiment using the EC driver caused approximately 10% of flies with Smurf 

phenotype after 3 days, and that increased sharply afterward (Fig. 15C). The lethality 

was closely correlated with the profile of Smurf assay (Fig. 15D). These results are 

consistent with the idea that Ssk and Mesh have essential barrier function in ECs, 

where the disruption of this complex leads to loss of tissue integrity and soon followed 

with lethality. Meanwhile, the loss of Ssk and Mesh in EBs has only minor effects on 

leakiness and viability. Considering the strong ISC proliferation phenotype after loss of 

Ssk and Mesh in EBs, we speculate that the cytoplasmic localization of Ssk and Mesh 
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in these precursor cells is sufficient to regulate other signaling components for intestinal 

homeostasis.   
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Figure 15. Loss of Ssk and Mesh in EBs and ECs lead to different degrees of gut 

leakiness and animal viability. 

(A) Quantification of Smurf flies after feeding with food dye to flies with the indicated 

genotypes. Standard fly medium was mixed with blue dye. Newly eclosed flies were aged 

for 3 days on standard medium under room temperature and 50 flies were placed on dyed 

medium at 29oC . The flies were counted every day. The cumulative percent of Smurf+ 

flies after each day is plotted as shown. The plot is an average of 3 independent 

experiments for each genotype. 

(B) Quantification of viable flies with the indicated genotypes. 50 flies were placed in 

regulate food vials. The food vials were changed and survived flies counted every day. 

The cumulative percent of flies still alive after each day is plotted as shown. The plot is 

an average of 3 independent experiments for each genotype. 

(C) Similar quantification of Smurf flies, using the Myo1Ats-Gal4 driver 

(D) Similar quantification of viable flies, using the Myo1Ats-Gal4 driver.  
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Ssk and Mesh form a complex with and restrict the activity of Yki  

In both EBs and ECs, the function of Yki is required to mediate the expression of 

Upd3, which in turn promotes ISC proliferation. Therefore, we investigated how the Ssk-

Mesh complex regulated Yki activity. At least two upstream Sterile20 kinases, Msn and 

Hpo, can phosphorylate and activate Wts, which in turn phoshorylates and inhibits Yki (Li 

et al., 2014a; Li et al., 2018; Ma et al., 2019; Misra and Irvine, 2018). On phos-tag gels, 

highly phosphorylated Yki exhibited slower mobility and accumulated at the top of the gel. 

The faster moving Yki proteins have lower phosphorylation (Fig. 16A, B, arrow). Ssk or 

mesh RNAi caused reduced Yki phosphorylation, albeit at lower levels compared to that 

caused by wts RNAi (Fig. 16A, B). One explanation is that Wts is a central kinase that 

receives many different upstream signals to regulate Yki, while the Ssk-Mesh complex 

may only represent one of the many upstream events and therefore only partially reduced 

Yki phosphorylation.  

In the adult midgut, Msn is expressed and functions in EBs, while Hpo functions in 

ECs, to regulate Yki and subsequently ISC proliferation (Li et al., 2014a; Li et al., 2018). 

One mechanism that regulates Hpo and Msn activities is through phosphorylation of a 

conserved T194/T187 residue in their kinase domains (Li et al., 2018). We examined the 

phosphorylation of this activation site on transgenic constructs of Msn and Hpo after Ssk 

or mesh RNAi. However, we did not observe any consistent change of this 

phosphorylation (Fig. 17A, B). Therefore, we speculated that Ssk and Mesh might interact 

with a downstream component. Co-IP experiments performed in transfected S2 cells 

showed that Yki could form a complex with Ssk, and in an independent experiment also 

with Mesh (Fig. 16C, D). We further tested the co-transfection of Ssk and Mesh together 
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with Yki in S2 cells but we did not observe a further increase of the co-IP signal. The 

cultured S2 cells probably do not form septate junctions, but the transfection results 

nonetheless demonstrate that Ssk or Mesh when over-expressed in cells can binds 

directly or indirectly to Yki.  
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Figure 16. Ssk and Mesh form a complex with and restrict the activity of Yki. 

(A) Western blots using an antibody for endogenous Yki. Guts were dissected from flies 

with the tubulinGal4 ubiquitous driver and the indicated RNAi lines. Extracts were 

prepared and resolved on a Phos-tag gel for the upper panel, or regular SDS gel for the 

middle and lower panels. An Yki antibody was used for the upper and middle blots, and 

a tubulin antibody was used for the lower blot. The red arrow in the upper panel indicates 

the Yki protein that had the highest mobility, representing the lowest phosphorylation. 

(B) A similar Phos-tag gel for Yki, except that mesh RNAi flies were used. 

(C) Co-immunoprecipitation of Mesh and Yki in transfected S2 cells using the tagged 

protein expression constructs as indicated. The UAS expression constructs were co-

transfected with ActinGal4 as the driver. The resulting extracts were used for 

immunoprecipitation by HA antibody, and blotted for V5 or HA. The lysates were also 

used for blots as expression control in lower panels. The red arrows indicate the expected 

size of full-length Mesh protein. The red arrowheads indicate the expected size of a 

truncate Mesh due to a protease cleavage site, as previously described (Izumi et al., 

2012).  

(D) A similar co-immunoprecipitation of Ssk and Yki in transfected S2 cells.  
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Figure 17. Phosphorylation of Msn and Hpo was not affected after knockdown of 

Ssk or mesh. 

(A) Western blots using an antibody recognizes the phosphorylated threonine residue 

T194 of Msn, to evaluate whether Ssk and Mesh act through Ste20 kinases upstream of 

Yki. 10 midguts from each genotype as indicated were lysed in SDS sample buffer and 

boiled for 10minutes at 100oC. Proteins were subjected to SDS-PAGE, followed by 

Western blotting by the rabbit anti-pT194. The flies contained the transgenic UAS-HA 

Msn768K61R, which contained the first 768 a.a. with K to R mutation at a.a. 61 of Msn, as 

the target for phosphorylation (Li et al., 2018). 

(B) Similar Western blot using the same antibody that recognizes phosphorylated T187 

of Hpo. The flies contained the transgenic UAS-Flag-Hpo full length as the target for 

phosphorylation. 
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Figure 18. Ssk and Mesh restrict Yki activity to mediate Upd3 expression and 

thereby ISC proliferation along EB-EC differentiation. 

A model illustrating the function of smooth septate junction proteins, Ssk and Mesh, in 

adult Drosophila midgut EBs and ECs. The expression of Ssk and Mesh are initiated in 

differentiating EBs and gradually incorporated into the smooth septate junction at the 

apical lateral side of mature ECs. In addition to their barrier function, Ssk and Mesh also 

form a complex with Yki, in the cytoplasm or at membrane. This may spatially facilitate 

Yki phosphorylation and inhibition by upstream kinases Wts, Msn or Hpo, or may restrict 

the mobilization of Yki, thereby provides a negative regulation of Yki. Change of septate 

junction-Yki interaction by mechanical stretching or by tissue damage may allow Yki to 

become more active to increase Upd3 expression and cause a change of midgut 

homeostasis.  
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DISCUSSION 

We have used knockin and knockout alleles of Ssk and Mesh to demonstrate their 

functions in both EBs and ECs to regulate ISC proliferation. Their functions in both cell 

types are to restrict the transcription factor Yki, which when active can stimulate the 

expression of Upd3 for the JAK-STAT pathway to promote midgut growth (Fig. 18). Ssk 

and Mesh have low but detectable expression in cytoplasm of EBs, while that in ECs are 

mainly in septate junctions but also some cytoplasmic localization. Multiple lines of 

evidence suggest that the Ssk and Mesh expression in EBs is of functional importance. 

First, the EB driver Su(H)> has expression in fewer cells when compared to the Myo1A> 

driver but still can cause comparable Upd3 expression and proliferation phenotypes. 

Second, mutant Ssk and mesh MARCM clones have detectable upd3-promoter-LacZ 

reporter expression in late EBs, in addition to that in mature ECs. Third, the Su(H)> Ssk 

or mesh RNAi had very minor Smurf and lethality phenotype, suggesting that the EB RNAi 

effects do not linger into mature ECs, but yet can cause strong proliferation phenotype.  

When EBs continue to mature into ECs, most of the Ssk and Mesh proteins are 

incorporated into septate junctions, together with other proteins such as Tsp2A, Fas3 and 

Cora. Loss of function of septate junction proteins in ECs lead to drastic outcomes 

including leaky gut, lethality and stress response pathways including Yki and Upd3. 

Recent reports have expanded the Hpo/Mst pathway to include Msn and Hppy, as well 

as their mammalian homologues MAP4K1-7 (Li et al., 2014a; Li et al., 2015b; Meng et al., 

2015; Poon et al., 2018; Zheng et al., 2015). Many membrane-associated proteins such 

as cadherin-like protein FAT, adherens junction protein a-Catenin and tight junction 

protein Angiomotin are involved in the Hpo/Mst pathway by regulating upstream 
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components (Dai et al., 2013; Fletcher et al., 2018; Han et al., 2018; Mana-Capelli and 

McCollum, 2018; Mana-Capelli et al., 2014; Meng et al., 2018; Su et al., 2017; Yu and 

Pan, 2018; Zhao et al., 2011). Our results presented in this report, however, suggest that 

smooth septate junctions may act as a signaling platform by directly binding to Yki. Ssk 

and Mesh are expressed much higher in guts than in other tissues. That may be the 

reason why previous protein interaction screens conducted in S2 cells had not identified 

the Yki complex with Ssk or Mesh (Kwon et al., 2013; Yu and Pan, 2018). A recent report 

shows that another smooth septate junction component Tsp2A regulates midgut 

homeostasis through aPKC-Hpo pathway, possibly involving endosomal trafficking (Xu et 

al., 2019). We also observed that Ssk and Mesh had detectable expression in cytoplasmic 

punctate (see Fig. 6B-O, 13, and 14), rather similar to that shown for Tsp2A (Xu et al., 

2019). However, Tsp2A can act in the whole ISC-EB-EC lineage (Xu et al., 2019), while 

we did not observe a function of Ssk and Mesh in early EBs. Therefore, it is possible that 

Mesh, Ssk and Tsp2A can form a complex and are components of the smooth septate 

junction but each may also have independent functions.  

Disruption of paracellular junctions in adult midgut leads to epithelial disorganization 

along the digestive track (Resnik-Docampo et al., 2018). Loss of tissue integrity initiates 

damage/stress signals that may also activate other pathways, such as the loss of 

tricellular junction protein Gliotactin leads to activation of the JNK pathway in EC to 

stimulate ISC proliferation (Resnik-Docampo et al., 2017). Prolonged RNAi of Ssk and 

mesh especially in ECs lead to leaky guts and lethality, consistent with loss of septate 

junction integrity. The depletion of Yki alone after longer RNAi of Ssk or mesh in ECs, 

however, is not sufficient to suppress all the phenotypes, suggesting that such stress may 
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stimulate multiple downstream response pathways. However, we show that the JNK 

pathway is not active and cell death is not extensive after loss of Ssk or Mesh. Gut 

leakage may drive inflammation and trigger systematic immune response contributed by 

hemocytes, which in turn trigger ISC division indirectly (Chakrabarti et al., 2016). Further 

investigation will provide a more complete picture of how different pathways are involved.
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MATERIALS AND METHODS 

Drosophila stocks and genetics 

 The strains w1118 and UAS-mCD8GFP in the w1118 background were used as wild-

type stocks to cross with various Gal4 for control experiments. The transgenic RNAi fly 

stocks for the screening of potential regulators that are involved in adult midgut 

homeostasis were obtained from VDRC or Bloomington (TRiP) stock center. The 

transgenic RNAi fly stocks used for experiments described in this report for targeting the 

specific genes include: Ssk (VDRC105193 as RNAi1, VDRC11906 as RNAi2), mesh 

(VDRC108297 as RNAi1, VDRC6867 as RNAi2), upd3 (TRiP28575 as RNAi1, 

TRiP32859 as RNAi2), yki (TRiP31965 as RNAi1, UAS-Yki-RNAi-N as RNAi2). The driver 

lines esg-Gal4, Su(H)Gal4, and Myo1AGal4 were as described (Jiang et al., 2009; 

Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006; Zeng et al., 2010). The 

Su(H)Gal4 line on the 2nd chromosome was used for all experiments. For RNAi 

experiments, the final cross and progeny were maintained at room temperature and 

shifted to 29°C for 2-5 days for Myo1AGal4 and Su(H)Gal4 as specified in the figures. 

The 4 kb upd3 promoter-lacZ (upd3-lacZ) fly was a kind gift from Hervé Agaisse (Zhou et 

al., 2013).  

Generation of Ssk and mesh mutant and knockin tag alleles  

CRISPR/Cas9-mediated genome editing by non-homologous end joining (NHEJ) 

using two nearby guide RNAs was applied to generate the Ssk mutants. To construct the 

guide RNA (gRNA) expression vectors for Ssk exon 1 and exon 2, complementary 

oligonucleotides of the target sequences with 4-bp overhangs on both ends (exon1: 5’- 

cttcGAATAGAGCGTACAGTCTCCA-3’ and 5’-aaacTGGAGACTGTAGGCTCTATTC; 
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exon2: 5’-cttcGAATCCAACCATGACGCCTG-3’ and 5’-

aaacCAGGCGTCATGGTTGGATTC-3’) were annealed to generate a double-strand DNA, 

and cloned into the guide RNA expression plasmid pDCC6, digested by BbsI (Thermo 

Scientific), followed by transformation, colony PCR selection and sequencing 

(Gokcezade et al., 2014). gRNA expression plasmids accompanied with Cas9 expression 

plasmid were injected into the FRT80B host. Surviving F0 flies were individually crossed 

with w1118 to examine their fertility. Individual F1 flies from each cross was mated to the 

balancer stock w-; Sp/Cyo; TM2a/TM3. After eclosion of the F2 adults, individual flies 

were used for genomic DNA isolation, restriction enzyme digestion as indicated in Supp 

Fig. 2A, and finally confirmed by sequencing. A total of 6 different indel alleles were 

obtained (Fig. 2B). All indel alleles generated reading frame shift and created premature 

stop codon except for FRT80B, Ssk6, in which one glycine residue in exon2 was in-frame 

deleted.  

The mesh mutant was generated by CRISPR/Cas9-mediated genome editing by 

homology-dependent repair (HDR) using 1 guide RNA and a dsDNA plasmid donor. By 

design, the homologous replacement would result in a 53-nucleotide fragment deletion, 

124 to 176 nucleotides downstream from ATG, and be replaced by the knock-in stop 

cassette with 3 frames stop codons, followed by floxed 3XP3 promoter-driven RFP. The 

3XP3-RFP marker that facilitated the genetic screening would be flipped out by mating 

with y1 w67c23 P{Crey}1b; D*/TM3, Sb1 (Bloomington stock #851). This mutant was 

generated on the FRT82B chromosome. Similar CRISPR/Cas9-mediated genome editing 

by HDR strategies were used to generate the Ssk-SBP and Mesh-V5 knock in tag alleles 
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(Fig. 6A). All these Ssk and mesh mutant and knockin tag designs and injections were 

contracted to and conducted by WellGenetics (Taipei, Taiwan).  

MARCM clonal analysis  

Mutant clones in adult midguts were generated by mitotic recombination using Mosaic 

Analysis with a Repressible Cell Marker (MARCM) (Lee and Luo, 2001). y, w, hsFLP, tub- 

Gal4, UAS-nlsGFP/FM7; FRT80B tubGal80/TM3, Sb1 and y, w, hsFLP, tub-Gal4, UAS- 

nlsGFP/FM7; FRT82B tubGal80/TM3 were flippase providing strains and were crossed 

with CRISPR-generated FRT-Ssk and -mesh mutants. All crosses were set up and 

maintained at room temperature. To induce mutant clones, approximately 3-day old flies 

were heat shocked at 37°C for 50 minutes, performed once each day for 2 consecutive 

days, and returned to 18°C in between. The flies were then kept at 18°C for one more 

day and then incubated at room temperature for additional 5-10 days before gut 

dissection for analysis.  

Immunostaining and fluorescent microscopy  

Female flies were used for gut dissection due to the bigger size. The entire 

gastrointestinal tracks were pulled out and fixed with 1XPBS plus 4% Formaldehyde 

(Polysciences) for 2 hours under room temperature, except for Delta staining, for which 

the fixation time was 40 minutes. The following rinses, washes, and incubations with 

primary and secondary antibodies were in the 1X PBS containing 0.5% BSA and 0.1% 

Triton-X100. The following primary antibodies were used: mouse anti-Delta (1:100; 

DSHB), mouse anti-Pros  (1:50; DSHB), mouse anti-Cora (1:50; DSHB), mouse anti-Fas3 

(1:50; DSHB), mouse anti- Hdc (1:3; DSHB), mouse anti-beta Galactosidase (1:100, 

DSHB), rabbit anti-phospho- Histone 3 (1:3000, Abcam), mouse anti-V5 (Invitrogen; 
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1:2000), mouse anti-SBP (Santa Cruz; 1:1000) and rabbit anti-HA (Cell Signaling 

Technology; 1:2000). Goat anti-mouse IgG 19 conjugated to Alexa 488, 568 and 633 

(Invitrogen) and Goat anti-rabbit IgG conjugated to Alexa 488 and 555 (Invitrogen) were 

used as the secondary antibodies with 1:2000 dilution. DAPI (Vectorshied, Vector Lab) 

was used at 1.5 μg/ml. Images were taken by Nikon Spinning Disk confocal microscope 

and Zeiss LSM 700 confocal microscope. Real-time PCR Total RNA was extracted from 

10 female guts using TRI Reagent (Sigma-Aldrich) and synthesized cDNA with iScript 

cDNA synthesis kit (Bio-Rad). qPCR was carried by iTaq Universal SYBR Green 

Supermix (Bio-Rad) and acquired by iQ5 System (Bio-Rad). The sequences of primers 

for growth factor detection have been listed in previous reports (Ren et al., 2010). The 

RT-qPCR was performed in triplicate from each of at least two independent biological 

samples. The ribosomal-protein 49 (rp49) gene was used as the internal control for 

normalization of cycle number.  

Smurf assay 

 Standard fly medium was mixed with blue dye (FD&C Blue #1, SPS Alfachem) at a 

concentration of 2.5% (wt/vol). Newly eclosed flies were aged for 3 days on standard 

medium under room temperature and placed on dyed medium at 29°C. The flies were 

counted and transfer to new vial every day. A fly was counted as Smurf+ when there was 

blue color visibly appeared in the abdomen outside of the digestive tract.  

Tissue culture, transfection, and Co-Immunoprecipitation  

Drosophila S2 cells were culture in Schneider's medium (Gibco) supplemented with 

10% fetal bovine serum (FBS) at room temperature. Plasmids were transfected into S2 

cells in 6-well culture plate with Effectene transfection reagent (Qiagen) 3 days prior to 
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sample collection. Cells were lysed with lysis buffer (500mM Tris-HCl, 150mM NaCl, 1mM 

EDTA, 1% TritonX-100), plus protease inhibitor and phosphatase inhibitor cocktail 

(Sigma). Lysates were incubated with mouse anti-HA coated magnetic beads (Thermo 

Fisher Scientific) at 4°C overnight to precipitate the complex. Beads were washed 5 times 

using 1.2 ml lysis buffer without inhibitors before heating to dissociate the protein complex 

from beads. Immunocomplex and S2 cell lysate were separated on SDS-PAGE, 

transferred to PVDF membrane, and analyzed by Western blotting. 

Phos-tag Gel and Western blot  

To confirm the physical interaction of Ssk and Mesh in adult Drosophila midgut, the 

knockin tag alleles were crossed together and 200 midguts were harvested from each 

genotype, and w- is the control. Fly midguts were mixed with lysis buffer (500mM Tris-

HCl, 150mM NaCl, 1mM EDTA, 1% TritonX-100) containing protease and phosphatase 

inhibitor, homogenized using pestle, and incubated in 4 °C overnight. Mouse anti-V5 

antibody (MBL international) was used for immunoprecipitation. The subsequent Western 

blot was analyzed by rabbit anti-V5 (Sigma; 1:2000) or mouse anti-SBP (Santa Cruz; 

1:1000).  

To detect Ssk and Mesh-regulated phosphorylation of Yki, 10 female guts were 

dissected and mixed with 100 μl 2X SDS sample buffer and boiled for 10 minutes at 100°C. 

Proteins were subjected to SDS-PAGE electrophoresis containing Phos-TagTM (Wako 

Pure Chemical Industries Ltd.) to separate phosphorylated isoforms of Yki. The proteins 

on SDS gel were then transferred to PVDF membrane. The membrane was incubated 

with 5% dry milk (Bio-Rad) for background blocking and subsequently incubated with 

rabbit anti-Yki (1:500) overnight at 4°C, followed by incubation with horseradish 
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peroxidase (HRP)-conjugated secondary antibodies, and detected with enhanced 

chemiluminescence (Thermo Fisher). The Yki antisera were generous gifts from Drs. DJ 

Pan (UT Southwestern) and Lei Zhang (Shanghai Institutes for Biological Sciences).   

SYTOX orange nucleic acid staining  

Dissected guts were incubated with SYTOX Orange Nucleic Acid Stain (Invitrogen: 1 

μM) and Hoechst 33342 (Invitrogen: 10 μg/ml) in pre-cold 1X PBS for 10 minutes at room 

temperature. Samples were quickly rinsed with 1X PBS twice, then mounted with 1X PBS 

and immediately analyzed by Nikon Spinning Disk confocal microscope. 
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Table 1.  
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DISCUSION 

The work presented in this thesis points out another role of the smooth septate 

junctions in Drosophila midgut besides their well-known paracellular barrier function. Ssk 

and Mesh, two major smooth septate junction proteins, regulate Yki activity to control the 

production of growth factor Upd3, therefore governing ISC proliferation. Ssk and Mesh 

physically interact with Yki and the modulation of Yki activity is probably independent of 

the upstream kinases, suggesting that Ssk and Mesh might create a platform where 

membrane-recruited kinases, such as Wts, phosphorylates and inactivates Yki in the 

smooth septate junctions. In the following sections, I'll discuss some relevant issues and 

other possible experiments to elaborate this project and further implication.

 

1. What lies between septate junction proteins and the effector Yki to govern the 

production of Upd3? 

Loss of Ssk or Mesh activates Yki to elevate the secretion of Upd3 from EBs and ECs. 

Yki mediates the target gene expression, and its activity is negatively correlated with its 

phosphorylated extent. Recent studies have identified Msn and Hppy, the homologs of 

mammalian MAP4K1-7, act in parallel with the canonical ste-20 kinases Hpo/MST to 

regulate the activity of Yki/YAP/TAZ (Li et al., 2014a; Li et al., 2018; Meng et al., 2015; 

Zheng et al., 2015). ECs comprise 90% of the total cell population in the adult midgut and 

encounter various irritants via ingestion. Hpo is probably an important responder in ECs 

to mediate the stress signal stimulation of expression of growth factors or cytokines that 

stimulate ISC proliferation and speed up the differentiation to repair the damaged 

intestinal epithelium (Jiang et al., 2011; Jiang et al., 2009). Msn, instead of Hpo, functions 



 

132 

exclusively in EBs along the Wts-Yki axis to regulate the production of Upd3 and ISC 

proliferation (Li et al., 2014a; Li et al., 2018). Phosphorylation of the threonine residue 

194 in the kinase domain of Msn is required to activate the kinase activity. However, the 

T194 residue of Msn and equivalent residue in Hpo remains unphosphorylated when Ssk 

or Mesh are knockdown, suggesting Msn and Hpo might not be the kinase to restrict Yki 

activity. Although Hppy phosphorylates Yki in the ectoderm-derived wing discs (Zheng et 

al., 2015), whether Hppy is the upstream kinase of Yki in adult midgut is unknown. Knock 

down of Hppy in midgut did not show an overproliferation phenotype. 

Wts directly phosphorylates Yki and is the converging point of various upstream 

inputs (Li et al., 2014a; Li et al., 2018; Zheng et al., 2015). The T1077 in the hydrophobic 

motif of Wts is the kinase activity indicator and is recognized by a phospho-specific 

antibody p-Wts. However, we were not able to obtain positive signal using this antibody 

in the midgut samples. In addition to the constituent cells, adult midgut contains a variety 

of substances in the lumen, including food, digestive enzymes, protective chitinous 

peritrophic matrix, and commensal microbiota. These substances may increase 

background noise that can't be removed completely and may block the detection of p-Wts 

is when applying to the midgut samples. 

Apical membrane recruitment of the upstream kinase promotes the phosphorylation 

of Wts/LATS (Hergovich et al., 2005; Hergovich et al., 2006; Yu et al., 2010; Yue et al., 

2012). Spatial organization of Wts at the plasma membrane positively regulates the Yki 

phosphorylation regardless of the intrinsic Hpo activity (Yin et al., 2013), suggesting the 

apical-localized Ssk and Mesh perhaps create a compartment for Wts. Further studies 

are required to investigate if Wts physically interacts with Ssk and Mesh in the midgut. 
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Immunoprecipitation followed by mass spectrometry can identify what membrane 

components interact with Wts. Alternatively, it is worthy to examine if reducing Ssk and 

Mesh will lead to compromised phosphorylation at the T1077 of Wts in vitro, although 

S2 cells cannot fully represent the midgut 

Continual renewal of the membrane is a requirement to maintain epithelial integrity. 

Proper endocytosis protects the epithelia from dysplasia (D'Agostino et al., 2019; Nie et 

al., 2019). Endocytosis controls the turnover as well as the abundance of the 

transmembrane proteins and membrane-associated components. Most internalized 

membrane proteins undergo dynamic recycling and then return to the plasma membrane, 

while some are delivered to the late endosomes and ultimately degraded in the lysosomes 

(Maxfield and McGraw, 2004). A recent report shows that another smooth septate 

junction component Tsp2A incorporates endocytosis to regulate ISC proliferation through 

the aPKC-Hpo axis (Xu et al., 2019). Consistently, our tag-knockin alleles show that 

endogenous Ssk and Mesh present detectable punctate in the cytoplasm besides their 

apical junction localization. However, single-cell RNA-seq reveals that Tsp2A expression 

is detectable throughout the ISC-EB-EC lineage, whereas Ssk and Mesh initiate their 

function to regulate the production of Upd3 in the late EBs. Therefore, Ssk, Mesh, and 

Tsp2A may adopt distinct mechanisms to regulate ISC proliferation even though they form 

a complex to construct the smooth septate junction in adult midgut ECs. 

2. Not just glue, the smooth septate junctions serve as a signaling transduction 

center. 

Cell-cell junctions seal adjacent cells and block leakage to maintain the epithelial 

integrity and tissue homeostasis. Besides the glue function, many components that are 
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involved in the cell adhesion work together to define the epithelial polarity (Garcia et al., 

2018). Emerging evidence shows that cell-cell junctions indirectly regulate cell 

proliferation by sequestering transcription factors at the plasma membrane (Balda et al., 

2003; Cochella and Green, 2004; Kavanagh et al., 2006; Oka et al., 2010; Spadaro et al., 

2014; Thomas et al., 2018). In mammalian tight junctions, cytoplasmic ZO-1 restricts the 

nuclear translocation of ZONAB that regulates the transcription of CDK4 and cyclin D1 

(Balda et al., 2003; Kavanagh et al., 2006). ZO-2 retains YAP in the cytoplasm to turn off 

the downstream transcription as well (Oka et al., 2010; Spadaro et al., 2014; Thomas et 

al., 2018). β-catenin, which comprises the adherens junction, is a transcription factor 

downstream to the Wnt signaling in regulating cell proliferation and is well-known to 

accelerate the progression of colon cancer (Cochella and Green, 2004; Vogelstein et al., 

2013).   

Many cell junction proteins, such as the apical-localized Crb and Par complex, 

cadherin-like Fat, tight junction-associated AMOT, and the adherens junction α-Catenin, 

are involved in the Hippo pathway (Chen et al., 2010; Grzeschik et al., 2010; Mana-Capelli 

and McCollum, 2018; Mana-Capelli et al., 2014; Matakatsu and Blair, 2012; Rauskolb et 

al., 2014; Robinson et al., 2010; Sarpal et al., 2019). Co-immunoprecipitation results of 

this project show a direct binding of Yki to Ssk and Mesh. Our preliminary mass 

spectrometry results also indicate a direct interaction between endogenous Yki and Mesh. 

Thus, this study suggests that the smooth septate junction may function as a signaling 

platform where Yki is restricted.  Ssk and Mesh have almost exclusive expression in the 

adult midgut than in other tissues. The substantially low expression in other tissues may 

be the reason why earlier mass spectrometry-based protein interaction screening that 
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overexpressed Yki as the bait in cultured S2 cells does not reveal the Yki-Ssk-Mesh 

complex (Kwon et al., 2013). 

3. Two are not enough. Bicellular and tricellular junctions cooperatively strength 

the structure and integrity of the epithelia. 

Epithelial sheets cover the surfaces of many tissue and organs in multicellular 

organisms and create specialized compartments for the regulation of fluid and solutes. 

Cells rearrange and pack themselves two-dimensionally to build up the epithelial sheets. 

The immunostaining and the Smurf assay presented in Chapter II demonstrate that 

epithelial cells are polarized and form apical cell junctions to seal neighboring cells. In 

addition to the bicellular junction that connects two adjacent cells, the tricellular junction 

is present at the point where three cells meet. Tricellular junctions, as well as bicellular 

junctions, are seals to control permeability. The intercellular space among the three cells 

is connected by regularly spaced, vertically stacked triangular diaphragms (Higashi and 

Miller, 2017). Tricellular junctions consist of tricellular AJs (tAJs) and tricellular SJs (tSJs) 

in invertebrates. Not surprisingly, components of tricellular junctions also exhibit critical 

biological roles in cell division orientation, regulation of cell proliferation, and ionic barrier 

formation. 

The adherens junctions (AJs) are geometrically superior to the septate junctions (SJs) 

in invertebrates (Baldi et al., 2011). tAJs are thought to be the points encountering high 

tension at the vertices. Sidekick (Sdk) is the only identified component of tAJs and acts 

to resolve cell rearrangement. Sdk is detected at the tricellular corner much earlier than 

other tSJ proteins, suggesting the formation of tAJs is before that of tSJs (Letizia et al., 

2019; Uechi and Kuranaga, 2019). Bicellular AJs are involved in the initiation and the 
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following maintenance of tAJs. E-cadherin is required for the localization of Sdk since 

depletion of E-cadherin disrupts the localization of Sdk to tAJs. Canoe (Cno), the 

Drosophila Afadin homolog at the bicellular AJs takes over the maintenance of the tAJs. 

Although Cno is not necessary for the initial localization of Sdk, loss of Cno reduces the 

enrichment of Sdk at tAJs in late embryo and wing disc development. 

Gliotactin (Gli), Anakonda (Aka), and M6 are three identified components of the tSJs 

in Drosophila. Gli, a cholinesterase-like transmembrane protein, is first noticed by its 

necessary to form the glial-based blood-nerve barrier and maintain neurons functions 

(Auld et al., 1995). Additionally, loss of Gli in the adult midgut exhibits aging-related 

phenotypes, including the ISC proliferation and mis-differentiated ECs (Resnik-Docampo 

et al., 2017). With the unusual tripartite repeat structure in its extracellular domain, Aka 

supports the formation of tricellular junctions by self-assembly. Additionally, the 

expression of Aka and M6 is necessary for the proper localization of Gli at the tricellular 

junction (Byri et al., 2015; Dunn et al., 2018). Mutation of Nrx or Cora, the component of 

bicellular SJs, leads to the widespread distribution of Gli toward the basal domain. 

Therefore, the existence of the bicellular SJs is required for the vertex-localized tSJ 

components. Although the formation of the bicellular junctions is not affected by Gli, the 

maturation is compromised when Gli is mutated. (Schulte et al., 2003). 

Similar to Drosophila, there are limited tricellular junction components that have been 

identified in mammalian. Tricellulin (TRIC) is the first categorized molecule of mammalian 

tTJs. Later, lipolysis-stimulated lipoprotein receptor (LSR) is found that recruits TRIC to 

the tTJs through the interaction between their cytoplasmic domains (Kurth et al., 2011). 

Defective TRIC and LSR impair the structure of tTJs and cause the degeneration of 
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cochlear hair cells in the inner ear, leading to progressive hearing loss (Kamitani et al., 

2015; Kim et al., 2015). In addition to their barrier function, tTJs are involved in the 

progression of a variety of epithelial-related tumors (Kohno et al., 2019; Korompay et al., 

2012; Kyuno et al., 2019; Masuda et al., 2010; Reaves et al., 2014; Sartori et al., 2016; 

Somoracz et al., 2014). Low expression of both TRIC and LSR is highly correlated with 

the malignancy and is an indicator of poor prognosis (Key, 2007; Reaves et al., 2014; 

Somoracz et al., 2014). Suppressed expression of TRIC is related to Snail transcription 

factor-induced epithelial-mesenchymal-transition in human gastric carcinoma (Masuda et 

al., 2010). Reintroduced LSR inhibits the epithelial-mesenchymal-transition phenotype 

and the migration of breast cancer cells (Reaves et al., 2014). These tTJs may act through 

polarity and Hippo/YAP pathway to modulate the production of growth factor, therefore 

suppressing abnormal proliferation and the subsequent migration. LSR colocalize with 

TRIC, AMOT, NF2, and YAP at the tTJS. Analysis of the endometrial carcinoma reveals 

that LSR misexpresses along the lateral plasma membrane. Knockdown LSR in the 

endometrial cancer-derived cell line decreases the expression of AMOT and NF2 and 

leads to the nuclear translocation of YAP1. YAP1 drives the expression of TEAD1 and 

AREG, a ligand of EGFR, to enhance cell migration and invasion. Consistently, loss of 

LSR accelerates the tumor progression by elevated AREG in human pancreatic cancer. 

Although TRIC colocalizes with LSR and is correlated with tumor malignancy and 

prognosis, the underlying mechanism is not clear yet. 

Collectively, mammalian tight junctions and invertebrate septate junctions share 

conserved features to govern tissue homeostasis. They form the barrier to protect 
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epithelial integrity and suppress tumor progression by restricting cell proliferation as well 

as preventing epithelial-mesenchymal-transition.  

4. The roles of septate/tight junction proteins in ISC proliferation and tissue 

homeostasis. 

Since the primary purpose of cell junctions is to maintain epithelial integrity, epithelial 

cells initiate a variety of signaling to compensate for the loss when the connections are 

about to fall apart. ISC proliferation and the leakage of midgut are the most prominent 

phenotypes when the junctional proteins are gone.  

The Smurf assay as shown in chapter II indicates that the impaired epithelial integrity 

and stem cell proliferation are concomitant. The bicellular SJs proteins Ssk and Mesh in 

late EBs and ECs sense the initial disconnection and lead to kinase-independent Yki 

activation. Tsp2A, expressing along the ISC-EC lineage, cooperates with endocytosis to 

modulate Yki via aPKC-Hpo pathway in parallel (Xu et al., 2019). Meanwhile, depletion 

of Ssk, Mesh, or Tsp2A in ECs activates the MAP kinases (Izumi et al., 2019). Activated 

Yki and MAP kinases together mediate the production of cytokine Upd3 and growth 

factors to stimulate ISC proliferation in response to the impaired epithelial integrity (Jiang 

et al., 2011; Jiang et al., 2009; Jiang et al., 2016). Also, knockdown Gli in ECs triggers 

ISC proliferation in young flies as well (Resnik-Docampo et al., 2017). Therefore, the 

proper expression level of the septate junction proteins is essential for tissue homeostasis. 

Although Gli also mediates ISC proliferation, it acts through the JNK signaling instead 

of the Yki mechanism mentioned above (Resnik-Docampo et al., 2017). One explanation 

is the different subcategories of the septate junction components. Gli belongs to the tSJs 

that localize to the tricellular corner, whereas Ssk, Mesh, and Tsp2A are bicellular SJs 
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that connect lateral cells. Alternatively, the damages caused by the depletion of tSJs are 

more destructive than that of bicellular SJs. Temperature shift to conduct SskRNAi or 

meshRNAi for two days is sufficient to induce ISC proliferation by Yki-mediated production 

of Upd3 without overt alternation of the midgut morphology. The prolonged knockdown of 

Ssk or mesh in EC results in a substantial loss of the septate junction, followed by lethality. 

Accumulation of delaminated ECs and significant reduction of midgut length indicate the 

severe midgut destruction. The nearly collapsed midgut probably leads to systematic 

inflammation, which activates multiple signaling simultaneously to mend the impaired 

tissue. Hence, reduced JNK activity alone is not sufficient to suppress the robust ISC 

proliferation caused by extensive depletion of the bicellular SJs components even though 

the phenotype recapitulates GliRNAi. 

Many studies have revealed that junctional proteins are involved in regulating 

Yki/YAP activity. These proteins bind to Yki/YAP at cell junction to block their nuclear 

translocation and activity (Karaman and Halder, 2018). F-actin filament is essential to 

stabilize the cell junction by associating with the cytoplasmic adaptor proteins and 

remodel itself in response to physiological demands such as protrusion and detachment. 

Many studies implicate the actin cytoskeleton as a regulator of Yki/YAP activity (Alegot et 

al., 2019; Fernandez et al., 2011; Fletcher et al., 2015; Kim et al., 2013; Richardson, 2011; 

Yu and Guan, 2013; Zhao et al., 2012). The core kinases of the Hippo pathway are well 

known that they dominantly control the subcellular localization and activity of Yki/YAP. 

Several studies have reported that actin influences YAP independently of Wts/LATS 

(Chan et al., 2011; Driscoll et al., 2015; Elosegui-Artola et al., 2017). Ssk and Mesh may 

function as the angiomotin (AMOT), which suppresses YAP/TAZ activity by tethering 
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YAP/TAZ to tight junctions regardless of their phosphorylation status, where AIP4/Itch 

ubiquitin E3 ligase degrades YAP/TAZ (Chan et al., 2011). Alternatively, the altered cell 

shape and delamination caused by knockdown Ssk or Mesh in ECs probably stretch the 

nuclear pore via F-actin remodeling to facilitate Yki nuclear transport. Therefore, the 

smooth septate junction proteins, Ssk and Mesh, present in Chapter II bypass the 

canonical Hippo pathway to regulate Yki activity and ISC proliferation in adult midgut. 

The mammalian tight junctions are functionally analogous to the invertebrate septate 

junctions. Disrupted TJ barrier function is frequently found in Inflammatory Bowel 

Syndrome (IBD), the chronic inflammation of the digestive tract, including ulcerative colitis 

and Crohn's disease. Chronic inflammation is believed to promote tumorigenesis and is 

the third risk factor to initiate colorectal cancer in patients suffering from IBD (Itzkowitz 

and Yio, 2004; Kim and Chang, 2014; Ullman and Itzkowitz, 2011). ZO-1 is tightly 

associated with IBD. Incomplete formation of TJs due to lack of claudin results in the 

altered expression level and mislocalization of ZO-1, ultimately leading to the disrupted 

barrier and intestinal inflammation (Gassler et al., 2001; Poritz et al., 2007).  

Besides the barrier function to maintain the tissue homeostasis, TJs sequester 

specific transcription factors at the plasma membrane to regulate ISCs indirectly. Nuclear 

translocation of ZONAB is tightly correlated with increased proliferation in the intestinal 

epithelium of ethanol-fed mice. Consistently, nuclear accumulation of ZONAB is a 

common feature in adenomas of chronic alcoholics (Pannequin et al., 2007). Moreover, 

ZONAB, together with symplekin, negatively regulates the differentiation of goblet cells 

by suppressing the expression of AML1/Runx1 transcription factor (Buchert et al., 2009). 

YAP is another transcription factor that can be regulated by TJs and involved in the 
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intestinal homeostasis (Hong et al., 2016; Ma et al., 2019). ZO-2 is required for YAP 

nuclear import (Spadaro et al., 2014). AMOT at the mammalian tight junction sequesters 

the nuclear translocation of YAP by binding to YAP directly, therefore regulating YAP 

activity in response to the cell-cell contact signals (Chan et al., 2011). Alternatively, AMOT 

interacts with and activates NF2 to stimulate LATS1/2 kinase activity, thus inhibiting YAP 

activity by LATS-mediated phosphorylation (Hirate and Sasaki, 2014; Li et al., 2015c).  In 

summary, mammalian TJs and insect septate junctions share conserved roles in the 

formation of paracellular barrier and regulating ISC proliferation to govern the intestine 

homeostasis. 

5. Ssk and Mesh exhibit conserved functions in the insecta, but their vertebrate 

counterparts are multifaceted. 

The smooth septate junctions have conserved expression patterns and functions 

across the Insecta. Larval mosquito regulates the transcript abundance of Ssk and mesh 

to adjust the midgut epithelial integrity in response to altered environmental salt levels 

(Jonusaite et al., 2017). Double-stranded RNA diet feeding against the expression 

of dvssj1, the Ssk homolog of the corn rootworm, impairs the barrier function of the 

midgut and results in larval mortality, suggesting dsRNA targeting smooth septate 

junctions is a potentially practical approach for corn rootworm control (Hu et al., 2016; Hu 

et al., 2019). However, Ssk homologs are conserved only within the insecta species. 

Although there is no homolog of Ssk identified in the vertebrate, claudins may be the 

functional analog of Ssk. Drosophila Ssk is an integral membrane protein with four 

transmembrane domains. Protein analysis further reveals that Ssk consists of four 

hydrophobic transmembrane, two short extracellular loops, the N- and C-terminal 
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cytoplasmic domains, and a cytoplasmic turn (Günzel and Yu, 2013; Yanagihashi et al., 

2012). The overall structure and protein size are comparable to claudins, which is the 

tetra-transmembrane protein of mammalian tight junction. Indeed, most members of the 

claudin family are detectable along the digestive tract, and emerging evidence indicates 

their importance in the intestinal integrity and the progression of colorectal cancer (Lu et 

al., 2013). Hyperactive Wnt signaling is known as the primary cause of colorectal cancer. 

It leads to the expression of claudin-1 along the β-Catenin-TCF/LEF axis, suggesting 

claudin-1 is one of the critical factors involved in colorectal cancer progression (Miwa et 

al., 2001). Consistently, mRNA and protein levels of the claudin-1 in colorectal cancer 

tissue are elevated (Huo et al., 2009). Immunostaining further reveals that claudin-1 is 

weakly detected at the apicolateral membrane of noncancerous epithelial tissue, whereas 

it is strongly expressesed at the cell-cell boundaries and in the cytoplasm of cancer cells 

(Miwa et al., 2001). Besides claudin-1, the expression of other members, such as claudin-

2, 3, 4, 7, also increases in the colorectal carcinoma (Aung et al., 2006; Darido et al., 

2008; Mees et al., 2009), but claudin-8 is downregulated in the adenoma (Galamb et al., 

2010). The discrepancy in expression among claudins may function as the potential 

marker for the diagnosis. 

According to the similarity of the extracellular domains, SUSD2 is recognized as the 

vertebrate homolog of Mesh (Kisaalita and Robinson, 2012). SUSD2 belongs to the type 

I transmembrane proteins that harbor several functional domains, including somatomedin 

B, AMOP, von Willebrand factor type D, and sushi domains and is considered as an 

adhesion molecule. Indeed, expressing SUSD2 in HeLa cells induces the cell aggregation. 

Meanwhile, expression of SUSD2 inactivates Akt to induces apoptosis and reverses the 
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tumorigenic phenotype. Therefore, SUSD2 functions as a tumor suppressor (Sugahara 

et al., 2007a; Sugahara et al., 2007b). Extensive studies from a variety of cancer types 

derived from endoderm- or mesoderm-originated tissues, such as intestine, lung, renal, 

liver, and ovary, further corroborates its tumor suppressor role (Cheng et al., 2016; Liu et 

al., 2016a; Pan et al., 2014; Sheets et al., 2016; Zhang et al., 2017). Reduced SUSD2 in 

the tumor-derived cancel cell lines interferes with the cell cycle by regulating cyclin D1 

and CDK6 to drive overproliferation. Meanwhile, SUSD2 has inverse relationship with 

mesenchymal proteins, including well-known Twist-1, N-cad, and Snail-1, suggesting 

SUSD2 has roles in impeding epithelial-mesenchymal-transition, migration, and invasion. 

In consistent with in vitro assays, reduced expression of mRNA and protein of SUSD2 is 

frequently observed in tumor tissues and highly correlates with advanced clinical stage 

and poor prognosis. 

Conversely, SUSD2 in breast cancer behaves as an enhancer. Elevated expression 

of SUSD2 is found in pathological breast lesions as well as in lobular and ductal 

carcinoma. SUSD2 is required for the cancer cell surface expression of Galectin-1, which 

leads to the apoptosis of Jurkat T cells. Moreover, SUSD2 recruits tumor-associated 

macrophages to the tumor microenvironment for tumor angiogenesis. With immune 

evasion and enhanced angiogenesis, SUSD2 in breast cancer promotes the metastasis 

and worsens the clinical stage (Hultgren et al., 2017; Watson et al., 2013). Different from 

the tissues mentioned above, human breast comprises parenchyma and underlying 

stroma. Most prevalent ductal and lobular carcinomas belong to parenchyma, which 

derives from ectoderm (Javed and Lteif, 2013). The different origination of breast tissue 

perhaps is the reason why SUSD2 exhibits an opposite role in breast cancer. 
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6. Future direction & prospective application 

Septate junction components are known to maintain the epithelial integrity and tissue 

homeostasis. In this project, we reveal their other roles in regulating ISC proliferation by 

coupling with Yki-Upd3. Although genetic assays show that Yki acts downstream of Ssk 

and Mesh to regulate Upd3 expression, reduced upd3 expression alone is not sufficient 

to completely suppress ISC proliferation. We noticed that the expression of EGFR ligands 

mildly but significantly increases when Ssk or mesh.is knockdown, suggesting Upd3 is 

the major but not the only mechanism to stimulate ISCs proliferation. RNA-seq can be 

used here to further explore other possibility. After RNA-seq, we can evaluate if the 

increased p-H3 counts caused by loss of Ssk or Mesh is suppressed when  

the expression of both upd3 and the identified targets are knockdown. We also found the 

extent of ISC proliferation are different between Ssk and mesh. Whether they function in 

the same pathway or act in parallel to regulate ISC proliferation, double RNAi knockdown 

or MARCM mutant clonal analysis of Ssk and mesh double mutant can distinguish the 

two possibilities. If the upd3 expression and the quantification of p-H3 have no increase 

in double RNAi or mutant combination, Ssk and Mesh are in the same pathway and 

functionally equivalent.  

Healthy epithelial cells are physically coupled together by specialized cell junctions 

that seal the paracellular pathway and maintain cellular cohesion. Environmental stress 

results in cell death that associates with impaired cell junctions and breakdown of plasma 

membrane integrity, leading to inflammatory response and subsequent regenerative 

proliferation. Cell junction proteins comprise cell junctions and cell-cell adhesion, but not 

all components are directly involved in ISC proliferation (Fig 10A-D). We examine the 
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expression of JNK effectors and exclude the possibility that ISC proliferation caused by 

loss of Ssk and Mesh is the death-triggered compensation (Fig.12A, B). Injured plasma 

membrane is an indicator of cell death and can be evaluated by Sytox Orange dye that 

stains nucleic acid in cell with compromised membrane. However, the membrane integrity 

appears to have mild defects (Fig.12E-H). Because Sytox orange dye is not compatible 

with fixed tissue, the mild expression detected in the nucleic acid perhaps is from the 

rapid proteolytic degradation of unfixed midgut. TUNEL assay and anti-Dcp1 that directly 

detect fragmented DNA and effector caspase-1 can be used in fixed tissue and are more 

suitable for cell death analysis.  

Epithelium covers the tissue surface creates a specialized compartment for various 

physiological demands. How to properly maintain the integrity is vital for health. In this 

work, the tag-knockin alleles of Ssk and Mesh show the cytoplasmic punctate in addition 

to the apicolateral expression, suggesting the involvement of the endosomal trafficking. 

Endosomal trafficking is required for the intestinal epithelium renewal. Dysfunction of 

internalization or recycling leads to the ISC proliferation and tumorigenesis (D'Agostino 

et al., 2019; Nie et al., 2019; Xu et al., 2019). Many signaling pathways rely on the binding 

between ligands and the membrane-anchored receptors to initiate downstream events. 

Whether Ssk and Mesh and their mammalian counterparts associate with these 

membrane receptors and bring them to degradation through continuous endosomal 

trafficking might be another direction to explore how junction proteins are involved in 

growth signals. 

Loss of epithelial barrier increases the permeability and induces inflammation in the 

gut. Chronic inflammation is the cause to initiate colorectal cancer. Therefore, integral 
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tight junctions are a critical factor in preventing the inflammation and ameliorate the tumor 

progression. Treatment of anti-TNF antibodies successfully compromises the 

inflammation and restores intestinal wellness. Accompanied with oncogenic signals such 

as Ras, loss of the tight junction proteins accelerates the metastasis and invasion (Dunn 

et al., 2018). Whether enhancement of the tight junctions in the tissues that are ready to 

develop into cancer can slow the progression and retain the cancerous tissue in situ 

needs more effort to investigate. 

However, strengthened cell junctions might raise another caveat. Aged intestinal 

epithelial cells have age-onset barrier dysfunction and microbial dysbiosis that activates 

JNK signaling to induce ISC proliferation. These age-induced phenotypes can be 

reversed by increased the expression of the junction proteins and suppressing JNK. 

There is limited understanding about whether the aged epithelial cells with enhanced cell 

junctions fully restore their functions, including the polarity and the formation of 

specialized compartments for signaling crosstalk. Also, strengthened cell junctions 

perhaps prolong the epithelial turnover frequency. It is not clear yet if cells turn on aging-

relevant signaling to disturb the overall tissue wellness even though they have young, 

intact cell junctions. Overall, our study provides insights into the important roles of Ssk 

and Mesh as part of septate junctions in normal growth and disease progression.  
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Figure I.  

 

Model 1. Ssk-Mesh tethers Yki to the smooth septate junction and shortens the spatial 

distance to the upstream kinases. 

 

Model 2. In addition to the foundation of the septate junctions, Ssk-Mesh establishes 

the docking platform for kinases and Yki, enhancing the phosphorylation and 

inactivation of Yki  

Possible 1 
Possible 2 
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