
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Mathematical and Statistical Science Faculty 
Research and Publications 

Mathematical and Statistical Science, 
Department of 

2018 

Characterization of Bimodal Extension of the Generalized Gamma Characterization of Bimodal Extension of the Generalized Gamma 

Distribution Distribution 

Gholamhossein G. Hamedani 

Follow this and additional works at: https://epublications.marquette.edu/math_fac 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/286544065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu/
https://epublications.marquette.edu/math_fac
https://epublications.marquette.edu/math_fac
https://epublications.marquette.edu/math
https://epublications.marquette.edu/math
https://epublications.marquette.edu/math_fac?utm_source=epublications.marquette.edu%2Fmath_fac%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages


International Mathematical Forum, Vol. 13, 2018, no. 4, 201 - 206 
HIKARI Ltd, www.m-hikari.com 

https://doi.org/10.12988/imf.2018.712107 

Characterization of Bimodal Extension of 

the Generalized Gamma Distribution 

G. G. Hamedani 

Department of Mathematics, Statistics and Computer Science 
Marquette University 

Milwaukee, Wisconsin, 53201-1881, USA 

Copyright c
 2018 G. G. Hamedani. This article is distributed under the Creative Com-

mons Attribution License, which permits unrestricted use, distribution, and reproduction in 

any medium, provided the original work is properly cited. 

Abstract 

Cankaya et al. (2015) [1] introduced a bimodal extension of the 
generalized gamma distribution and studied certain properties and ap-
plicability of this distribution. This is a continuous distribution whose 
probability density function is defined via two branches. These types of 
distributions are very interesting but not easy to characterize. In this 
short note we try to present a characterization of this distribution which 
we believe, it may possibly be the only one for this rather complicated 
distribution. 
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1 Introduction 

In designing a stochastic model for a particular modeling problem, an in-
vestigator will be vitally interested to know if their model fits the requirements 
of a specific underlying probability distribution. To this end, the investiga-
tor will rely on the characterizations of the selected distribution. Generally 
speaking, the problem of characterizing a distribution is an important problem 
in various fields and has recently attracted the attention of many researchers. 

https://doi.org/10.12988/imf.2018.712107
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202 G. G. Hamedani 

Consequently, various characterization results have been reported in the liter-
ature. These characterizations have been established in many different direc-
tions. This work deals with a characterization of a six-parameter distribution 
called ”Bimodal Extension of the Generalized Gamma (BEGG) Distribution” 
based on two truncated moments. 

Cankaya et al. (2015) [1] proposed (BEGG) distribution whose probability 
density function (pdf) is given by 

� 
C1(−x)δ1 exp{−C2(−x)αβ }, x < 0 

f (x) = f (α, β, δ0, δ1, η, ε) = , (1) 
C3xδ0 exp{−C4xαβ }, x ≥ 0 

where α, β, δ0, δ1, η, ε are all positive parameters and C1 = δ1+1 
αβ 

2η α (1+ε)δ1 Γ( δ1+1 ) αβ 
1 αβ 1 , C2 = , C3 = and C4 = are normalizing 

ηβ (1+ε)αβ 
2η 

δ0
α 
+1 
(1−ε)δ0 Γ( δ0+1 ηβ (1−ε)αβ 

αβ ) 
constants. 

The characterization presented here requires that the cumulative distribu-
tion function to be twice continuously differentiable. Thus, pdf (1) should be 
differentiable. Clearly the derivative of f (x) exists for x < 0 and x > 0 and 
the left and the right derivatives of f (x) exist at x = 0 and are equal to 0,if 
δ1 > 1 and δ0 > 1, so, under these conditions, f (x) is differentiable on R. 

Our characterization employs a theorem of Glänzel (1987), [2] see Theorem 
1 below . The result, however, holds also when the interval H is not closed. 
Furthermore, it does not require that the cdf have a closed form as it is the 
case with BEGG distribution. 

Theorem 1. Let (Ω, F , P) be a given probability space and let H = [d, e] 
be an interval for some d < e (d = −∞, e = ∞ might as well be allowed) . 
Let X : Ω → H be a continuous random variable with the distribution function 
F and let q1 and q2 be two real functions defined on H such that 

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] ξ (x) , x ∈ H, 

is defined with some real function η. Assume that q1, q2 ∈ C1 (H), ξ ∈ C2 (H) 
and F is twice continuously differentiable and strictly monotone function on 
the set H. Finally, assume that the equation ξq1 = q2 has no real solution in 
the interior of H. Then F is uniquely determined by the functions q1, q2 and 
ξ , particularly 



203 Characterization of bimodal extension ... 

Z x 

F (x) = C 
a 

���� ξ0 (u) 
ξ (u) q1 (u) − q2 (u) 

���� exp (−s (u)) du , 

ξ0 0 = q1 where the function s is a solution of the differential equation s
and C is the normalization constant, such that 

H dF = 1. 

We like to mention that this kind of characterization based on the ratio 
of truncated moments is stable in the sense of weak convergence (see, Glänzel 
1990), [3] in particular, let us assume that there is a sequence {Xn} of random 
variables with distribution functions {Fn} such that the functions q1n , q2n 

and ξn (n ∈ N) satisfy the conditions of Theorem 1 and let q1n → q1 , 

R 

q2n → q2 for some continuously differentiable real functions q1 and q2 . Let, 
finally, X be a random variable with distribution F . Under the condition 
that q1n (X) and q2n (X) are uniformly integrable and the family {Fn} is 
relatively compact, the sequence Xn converges to X in distribution if and 
only if ξn converges to ξ , where 

E [q2 (X) | X ≥ x] 
ξ (x) = . 

E [q1 (X) | X ≥ x] 

This stability theorem makes sure that the convergence of distribution func-
tions is reflected by corresponding convergence of the functions q1 , q2 and ξ , 
respectively. It guarantees, for instance, the ’convergence’ of characterization 
of the Wald distribution to that of the Lévy-Smirnov distribution if α →∞ , 
as was pointed out in Glänzel and Hamedani (2001) [4]. 

A further consequence of the stability property of Theorem 1 is the ap-
plication of this theorem to special tasks in statistical practice such as the 
estimation of the parameters of discrete distributions. For such purpose, the 
functions q1, q2 and, specially, ξ should be as simple as possible. Since 
the function triplet is not uniquely determined it is often possible to choose 
ξ as a linear function. Therefore, it is worth analyzing some special cases 
which helps to find new characterizations reflecting the relationship between 
individual continuous univariate distributions and appropriate in other areas 
of statistics. 

In some cases, one can take q1 (x) ≡ 1, which reduces the condition of 
Theorem 1 to E [q2 (X) | X ≥ x] = ξ (x) , x ∈ H. We, however, believe 
that employing three functions q1 , q2 and ξ will enhance the domain of 
applicability of Theorem 1. 

ξ q1 − q2 
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2 Characterizations based on two truncated moments 

This section deals with the characterization of the EBGG distribution based 
on the ratio of two truncated moments. 

Proposition 1. Let X : Ω → R be a continuous random variable and let 

� 
(δ1+1) 

exp{−(−x)δ1+1+C2(−x)αβ }, x < 0 
C1 q1 (x) = (δ0+1) δ0+1+C4xαβ }, , 

exp{−x x ≥ 0 
C3 

and � 
2(δ1+1) 

exp{−2(−x)δ1+1+C2(−x)αβ }, x < 0 
q2 (x) = C1 . 2(δ0+1) 

exp{−2xδ0+1+C4xαβ }, x ≥ 0 
C3 

Then, the random variable X has pdf (1) , for δ1 > 1 , δ0 > 1 and αβ > 1, if 
and only if the function ξ defined in Theorem 1 is of the form 

ξ (x) = 

⎧ ⎪⎨ ⎪⎩
2−exp{−2(−x)δ1+1} 

, x < 0 
2−exp{−(−x)δ1+1} 
exp{−xδ0+1}, . 

x ≥ 0 

Proof. As mentioned in the Introduction, the conditions δ1 > 1 , δ0 > 1 
are required to assure the differentiability of the pdf (1). We need to show 
that q1, q2 ∈ C1 (R) and ξ ∈ C2 (R) . Clearly q1 (x) is differentiable for x < 0 
and x > 0. The left and the right derivatives of q1 (x) exist at x = 0 and will 
be equal to 0 if αβ > 1. Similarly, q2 (x) is differentiable on R. Observe that 
ξ ∈ C2 (R) if δ1 > 1 , δ0 > 1. 

Now, suppose the random variable X has pdf (1), then for x < 0, 

Z 0 o n 
δ1 δ1+1 (1 − F (x)) E [q1 (x) | X ≥ x] = (δ1 + 1) (−u) exp − (−u) du+ Z ∞ 

x � 
δ0 δ0+1 (δ0 + 1) u exp −u du 

0 o n 
= 2 − exp − (−x)δ1+1 , 

and o n 
(1 − F (x)) E [q2 (x) | X ≥ x] = 2 − exp −2 (−x)δ1+1 . 



	
	

	

	

205 Characterization of bimodal extension ... 

Further, 

⎧ ⎪⎨ − 2 
⎫ ⎪⎬ 

n � 
2 − exp − (−x)

o�2 
δ1+1 

ξ (x) q1 (x) − q2 (x) = q1 (x) < 0. o n ⎪⎩ ⎪⎭ 

� 

2 − exp − (−x)δ1+1 

For x ≥ 0 , 

Z ∞ 
δ0 −u δ0+1 (1 − F (x)) E [q1 (x) | X ≥ x] = (δ0 + 1) (−u) du exp 

x � 
−x δ0+1 = exp 

and � 
(1 − F (x)) E [q2 (x) | X ≥ x] = exp −2x δ0+1 . 

Further 

� 
ξ (x) q1 (x) − q2 (x) = −q1 (x) exp −x δ0+1 < 0. 

Conversely, if ξ is of the above form, then ,after some computations and 
arrangement of terms, we arrive at 

ξ0 (x) q1 (x) 
s 0 (x) = = 

ξ (x) q1 (x) − q2 (x) 

⎧ ⎪⎨ ⎪⎩ 

(δ1+1)(−x)δ1 exp{−(−x)δ1+1} 
, x < 0 

2−exp{−(−x)δ1+1} 
(δ0+1) xδ0 , x ≥ 0 

, 

and consequently � 
− log[2−exp{−(−x)δ1+1}], x < 0 

s (x) = δ0+1 . 
x , x ≥ 0 

Now, according to Theorem 1, X has density (1) . 

Corollary 1. Let X : R be a continuous random variable and let q1 (x) 
be as in Proposition 1. The random variable X has pdf (1) , for δ1 > 1 , 
δ0 > 1 and αβ > 1, if and only if there exist functions q2 and ξ defined in 
Theorem 1 satisfying the following differential equation 
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⎧ ⎪⎨ ⎪⎩ 

(δ1+1)(−x)δ1 exp{−(−x)δ1+1} 
, x < 0 

2−exp{−(−x)δ1+1} ξ0 (x) q1 (x) 
ξ (x) q1 (x) − q2 (x) 

= . 
(δ0+1) xδ0 , x ≥ 0 

Corollary 2. The general solution of the differential equation in Corollary 
1 is 

⎧ R δ1 exp 
� 

δ +1 − −( ) 1 x 
⎡ ⎤ 
− (δ1 + 1) (−x) × −1 ⎣ 

⎪⎪⎪⎨ ⎪⎪⎪⎩ 

[2−exp{−(−x)δ1+1}] ⎦, x < 0 
(q1 (x))

−1 q2 (x) dx + D1 
ξ (x) = R , 

exp{xδ0+1}[− (δ0+1)xδ0 (q1(x))
−1 q2(x)dx+D2], x ≥ 0 

where D1 and D2 are constants. We like to point out that one set of functions 
satisfying the above differential equation is given in Proposition 1 with D1 = 
D2 = 0. Clearly, there are other triplets (q1, q2, ξ) which satisfy conditions of 
Theorem1. 
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