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Abstract 
The genus Gonatodes is a monophyletic group of small-bodied, diurnal geckos distributed across northern South 
America, Central America, and the Caribbean. We used fragments of three nuclear genes (RAG2, ACM4, and c-
mos) and one mitochondrial gene (16S) to estimate phylogenetic relationships among Amazonian species 
of Gonatodes. We used Penalized Likelihood to estimate timing of diversification in the genus. Most 
cladogenesis occurred in the Oligocene and early Miocene and coincided with a burst of diversification in other 
South American animal groups including mollusks, birds, and mammals. The Oligocene and early Miocene were 
periods dominated by dramatic climate change and Andean orogeny and we suggest that these factors drove 
the burst of cladogenesis in Gonatodes geckos as well as other taxa. A common pattern in Amazonian taxa is a 
biogeographic split between the eastern and western Amazon basin. We observed two clades with this spatial 
distribution, although large differences in timing of divergence between the east–west taxon pairs indicate that 
these divergences were not the result of a common vicariant event. 

Keywords 
Amazon, Partitioned Bayesian analysis, Penalized Likelihood, South America, Sphaerodactylidae 

1. Introduction 
Numerous explanations have been offered for the high levels of biological diversity found in tropical rainforests 
(Moritz et al., 2000). The refuge model (Haffer, 1969) is perhaps the most discussed and most controversial 
model of diversification (Endler, 1982, Bush and Oliveira, 2006). The refuge model states that climate change 
has caused forests to contract to refugia with intervening non-forested habitat restricting gene flow among 
forest-dwelling species. Speciation in this scenario is allopatric. Although the refuge model was developed based 
on Pleistocene temperature fluctuations, climatic variation throughout the Cenozoic could also promote 
diversification (Haffer, 1997). While many of the details of the refuge model have been criticized, the 
generalization that global climatic fluctuations coincide with and even drive changes in tropical biodiversity, 
either increased rates of extinction or bursts of diversification, is still plausible even if the exact mechanisms of 
cladogenesis are unknown (Whinnett et al., 2005, Delsuc et al., 2004). Past efforts by biogeographers to support 
the refuge model have focused on spatial analyses to find common patterns in species’ distributions. 
Concordant spatial patterns among co-distributed taxa were seen as evidence of a common process affecting 
their distribution. In a similar manner, simultaneous cladogenesis across multiple taxa coinciding with periods of 
climate change would support the idea that periods of climatic fluctuations influence rates of diversification. 

Advances in molecular phylogenetics have made it possible to estimate divergence dates from molecular genetic 
data with increasing levels of accuracy (Welch and Bromham, 2005). Molecular dating of phylogenies 
complements paleontological and geological data in studying the relationship between biotic diversification and 
climatic variation (Benner et al., 2002). These new dating techniques have shown that diversification often 
coincides with periods of climatic change in taxa as diverse as salamanders (Zhang et al., 2006), pelagic protists 
(Darling et al., 2004), birds (Tavares et al., 2006), and mammals (Mercer and Roth, 2003). Examples among 
South American mammals are particularly compelling as sloths, armadillos, didelphid marsupials, and 
caviomorph rodents all diversified around the Oligocene–Miocene boundary, a period dominated by dramatic 
climatic change and Andean orogeny (Delsuc et al., 2004, Steiner et al., 2005, Poux et al., 2006). The 
environmental changes driving this burst of diversification in mammals would likely have left their mark on other 
organisms as well. 

Here we examine the timing of diversification in a clade of South American gecko lizards. The 
genus Gonatodes is a monophyletic group of small-bodied, diurnal geckos distributed across northern South 
America, Central America, and the Caribbean (Vanzolini, 1968, Kluge, 1995). Extant members of the genus are 
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abundant in forested areas and are important components of Amazonian lizard communities (Rivero-Blanco, 
1979, Vitt et al., 2000). The Sphaerodactylini, the clade containing Gonatodes and closely related genera, have 
been a part of the South American fauna since the Africa–South America split approximately 95 Ma (Gamble et 
al., 2007), and constituent genera provide an excellent model to examine Neotropical diversification. Our 
objectives are to: (1) use multiple molecular genetic loci to estimate phylogenetic relationships among 
Amazonian species of Gonatodes; (2) use a relaxed molecular clock to estimate timing of cladogenesis 
in Gonatodes; and (3) interpret the timing of Gonatodes diversification in light of prior knowledge regarding 
Amazonian paleo-biogeography, specifically periods of climate change and Andean uplift. 

2. Materials and methods 
2.1. Taxon sampling 
We sampled 11 of the 20 described Gonatodes species and one undescribed species from Guyana. Our sampling 
included all of the Amazonian Gonatodes except G. tapajonicus and G. alexandermendesi, both of which are 
poorly known and found only at or near their type localities. The genus Lepidoblepharis has been shown to be 
the sister-group to Gonatodes (Gamble et al., 2007) and three species of Lepidoblepharis were used as 
outgroups. Four species of Sphaerodactylus were also included as outgroups, as there are amber-
preserved Sphaerodactylus that can be used as a calibration point for phylogenetic dating. Finally, the Moroccan 
gecko Saurodactylus brossetti was used to root the tree. Saurodactylus is the sister taxon to the five genera of 
New World sphaerodactylid geckos (Gamble et al., 2007). Locality data, museum catalog numbers or field 
numbers, and GenBank accession numbers for sampled taxa are listed in Table 1. 

Table 1. Details of material examined 
Species Specimen ID Locality GenBank 

accession 
numbers 

   

   
16S RAG 2 c-mos ACM4 

Saurodactylus brosseti TG 00082 Morocco EF564006 EF534970 EF534928 EF534885 
Sphaerodactylus 
notatus 

FLMNH 
132440 

Florida, USA X86061 EF564093 EF564067 EF564041 

Sphaerodactylus 
nigropunctatus 

FLMNH 
144010 

Bahamas X86051 EF534953 EF534911 EF534868 

Sphaerodactylus 
elegans 

YPM 14795 Florida, USA X86048 EF534954 EF534912 EF534869 

Sphaerodactylus torrei JB 34 Cuba X86052 EF534955 EF534913 EF534870 
Lepidoblepharis sp. KU 218367 Manabi, Ecuador EF564008 EF534956 EF534914 EF534871 
Lepidoblepharis festae LSUMZ 

12704 
Sucumbios, 
Ecuador 

EF564007 EF564094 EF564068 EF564042 

Lepidoblepharis 
xanthostigma 

MVZ 
171438 

Limon, Costa Rica EF564009 EF534957 EF534915 EF534872 

Lepidoblepharis 
xanthostigma 

USNM 
59912 

Panama EF564010 EF564095 EF564069 EF564043 

Gonatodes albogularis KDQ 512 Costa Rica EF564023 EF564105 EF564079 EF564053 
Gonatodes albogularis KU 289808 El Salvador EF564021 EF534965 EF534923 EF534880 
Gonatodes albogularis MF 10276 Costa Rica EF564022 EF564104 EF564078 EF564052 
Gonatodes albogularis MUHNES 

1493 
El Salvador EF564024 EF564106 EF564080 EF564054 

Gonatodes albogularis MVZ 
204073 

Limon, Costa Rica EF564020 EF564103 EF564077 EF564051 

Gonatodes albogularis USNM 
319194 

Panama EF564019 EF564102 EF564076 EF564050 
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Gonatodes annularis ROM 22961 Northwest, 
Guyana 

EF564036 EF534961 EF534919 EF534876 

Gonatodes annularis No ID 
number 

French Guiana EF564037 EF564115 EF564089 EF564063 

Gonatodes 
caudiscutatus 

KU 218359 Limon, Ecuador EF564011 EF534962 EF534920 EF534877 

Gonatodes ceciliae TG 00039 Trinidad EF564035 EF564114 EF564088 EF564062 
Gonatodes concinnatus LSUMZ 

12688 
Sucumbios, 
Ecuador 

EF564012 EF564096 EF564070 EF564044 

Gonatodes concinnatus MF 19449 Orellana, 
Ecuador 

EF564013 EF564097 EF564071 EF564045 

Gonatodes daudinii JB 38 Union, St. 
Vincent and 
Grenadines 

EF564034 EF534960 EF534918 EF534875 

Gonatodes eladioi CHUNB 
40097 

Pará, Brazil EF564025 EF564107 EF564081 EF564055 

Gonatodes hasemani GRC 6761 Rondônia, Brazil EF564039 EF564117 EF564091 EF564065 
Gonatodes hasemani LSUMZ 

13618 
Acre, Brazil EF564016 EF564099 EF564073 EF564047 

Gonatodes hasemani LSUMZ 
14058 

Amazonas, Brazil EF564017 EF564100 EF564074 EF564048 

Gonatodes hasemani LSUMZ 
17777 

Rondônia, Brazil EF564018 EF564101 EF564075 EF564049 

Gonatodes hasemani UNIBAN 
1649 

Rondônia, Brazil EF564015 EF534963 EF534921 EF534878 

Gonatodes humeralis CHUNB 
31161 

Pará, Brazil EF564040 EF564118 EF564092 EF564066 

Gonatodes humeralis LSUMZ 
12639 

Sucumbios, 
Ecuador 

EF564030 EF564110 EF564084 EF564058 

Gonatodes humeralis LSUMZ 
14193 

Pará, Brazil EF564031 EF564111 EF564085 EF564059 

Gonatodes humeralis LSUMZ 
14194 

Pará, Brazil EF564029 EF564109 EF564083 EF564057 

Gonatodes humeralis MF 19492 Ecuador EF564027 EF534964 EF534922 EF534879 
Gonatodes humeralis ROM 20520 Guyana EF564038 EF564116 EF564090 EF564064 
Gonatodes humeralis WED 57873 Peru EF564028 EF564108 EF564082 EF564056 
Gonatodes ocellatus TG 00038 Tobago EF564014 EF564098 EF564072 EF564046 
Gonatodes sp. BPN 1303 Imbaimadai, 

Guyana 
EF564026 EF534966 EF534924 EF534881 

Gonatodes vittatus MF 382 Trinidad EF564033 EF564113 EF564087 EF564061 
Gonatodes vittatus TG 00040 Trinidad EF564032 EF564112 EF564086 EF564060 

 

Museum abbreviations follow Leviton et al. (1985) except as follows: TG, Tony Gamble; JB, Jon Boone; BPN, Brice 
Noonan; GRC, Guarino R. Colli; KDQ, Kevin de Queiroz; MF, Mike Forstner; UNIBAN, Universidade Bandeirantes 
de São Paulo; WED, William E. Duellman. 

2.2. DNA sequencing and alignment 
Genomic DNA was extracted from liver, muscle, or tail clips using the DNeasy Blood & Tissue kit (Qiagen). PCR 
was used to amplify a fragment of the mitochondrial ribosomal gene 16S and portions of three nuclear protein-
coding genes, recombination activating gene 2 (RAG2), oocyte maturation factor MOS (c-mos), and 
acetylcholinergic receptor M4 (ACM4 or CHRM4). Primers used for PCR and sequencing are listed in Table 2. PCR 
products were purified using Exonuclease I and Shrimp Alkaline Phosphatase (Hanke and Wink, 1994). 
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Sequencing was performed using Big Dye (Perkin-Elmer) terminator cycle sequencing with an ABI 3730xl at the 
Advanced Genetic Analysis Center, University of Minnesota. Mitochondrial 16S sequences for 
several Sphaerodactylus species were downloaded from GenBank (Table 1). 

Table 2. Primers used for PCR and sequencing 
Primer name Primer sequence (5′–3′) Source 
16S   
 16S-F CTAACCGTGCAAAGGTAGCGTAATCAC This paper 
 16d CTCCGGTCTGAACTCAGATCACGTAG Reeder (1995)    
RAG 2   
 EM1-F TGGAACAGAGTGATYGACTGCAT Gamble et al. (2007) 

 EM1-R ATTTCCCATATCAYTCCCAAACC Gamble et al. (2007) 

 PY1-F CCCTGAGTTTGGATGCTGTACTT Gamble et al. (2007) 

 PY1-R AACTGCCTRTTGTCCCCTGGTAT Gamble et al. (2007)    
C-mos   
 G73 GCGGTAAAGCAGGTGAAGAAA Saint et al. (1998) 
 G74 TGAGCATCCAAAGTCTCCAATC Saint et al. (1998) 
 FU-F TTTGGTTCKGTCTACAAGGCTAC Gamble et al. (2007) 

 FU-R AGGGAACATCCAAAGTCTCCAAT Gamble et al. (2007)    
ACM4   
 tg-F CAAGCCTGAGAGCAARAAGG Gamble et al. (2007) 

 tg-R ACYTGACTCCTGGCAATGCT Gamble et al. (2007) 

 int-F TTTYCTGAAGAGCCCTCTGGTC This paper 
 int-R CAAATTTCCTGGCAACATTRGC This paper 

 

Sequences were edited and assembled with Sequencher 4.2 (Gene Codes Corporation) and aligned using T-
Coffee (Notredame et al., 2000). Sequences from protein-coding genes were translated to amino acids using 
MacClade 4.08 (Maddison and Maddison, 1992) to confirm alignment and gap placement. Secondary structure 
of aligned 16S sequences was calculated using Vienna RNA secondary structure prediction software (Hofacker et 
al., 2002, http://www.rna.tbi.univie.ac.at/cgi-bin/alifold.cgi) with Gonatodes albogularis (MF 10276) as the 
model. Some regions of the 16S gene were excluded because of difficulty in assessing homology. 

2.3. Phylogenetic reconstruction 
We conducted maximum parsimony analysis in PAUP∗ 4.0b10 (Swofford, 2001) using heuristic search, starting 
with stepwise addition trees with 100 random addition replicates, and tree-bisection–reconnection branch 
swapping. Multistate characters were treated as polymorphism and gaps as missing data. Relative support for 
nodes was evaluated using 1000 bootstrap replicates (Felsenstein, 1985). 

Bayesian phylogenetic analyses were conducted using MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2001). 
Analyses began with a random starting tree, were run for 2,000,000 generations, and sampled every 100 
generations with default search parameters. Burn in was determined using the program Tracer 1.3 (A. Rambaut 
and A. Drummond, Univ. Oxford, UK; http://www.evolve.zoo.ox.ac.uk/beast). Post burn-in samples were used to 
estimate the posterior probability values, branch lengths, and topology. The Akaike Information Criterion (AIC) 
was used to select the best-fit model of nucleotide substitution for each data partition, as implemented in 
MrModeltest 2.2 (Nylander, 2004). 

Datasets were combined for all phylogenetic analyses and Bayes factors were used to determine the most 
appropriate partitioning scheme for the Bayesian analysis to ensure that the model was not over- or under-
parameterized (Nylander et al., 2004, Brandley et al., 2005). Bayes factors were computed as the difference 
between the harmonic mean likelihoods of the more complex partitioning strategy (T0) and the simpler 
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partitioning strategy (T1) (Nylander et al., 2004, Brandley et al., 2005). We considered hypotheses with 2 ln 
Bayes factors with a value >10 as very strongly supported (Kass and Raftery, 1995). Five different data 
partitioning strategies were examined, P1—all data combined (1 partition); P2—data partitioned by nuclear or 
mitochondrial genome (2 partitions); P3—data partitioned by gene (4 partitions); P4—data partitioned by codon 
for each gene individually plus 16S (10 partitions); and P5—data partitioned by codon for each gene individually 
plus 16S partitioned by stem or loop structure (11 partitions). A final Bayesian analysis was run, using the best-fit 
partitioning strategy, for 10,000,000 generations with other parameters as described above to ensure 
convergence. 

2.4. Divergence date estimates 
We tested the best-fit partitioned Bayes topology for departure from a molecular clock using the likelihood ratio 
test as implemented in PAUP∗. Absolute ages of nodes can be estimated directly if a phylogeny is clock-like but 
non-clock-like phylogenies require a rate-smoothing approach to dating nodes. We also estimated divergence 
times using Penalized Likelihood (PL) (Sanderson, 1997) with TN algorithm as implemented in the program r8s 
(Sanderson, 2003). We used the cross-validation method in r8s to determine the optimal level of rate-smoothing 
of the PL analyses with smoothing parameters varying from 1 to 1 × 109. To estimate 95% confidence intervals of 
divergence time estimates we constructed 100 bootstrap datasets of the combined data using the seqboot 
module in PHYLIP 3.6 (Felsenstein, 1993). Branch lengths were estimated from each bootstrapped dataset on 
the best-fit, partitioned Bayesian phylogeny using PAUP∗ 4.0b10 (Swofford, 2001). We performed PL on each of 
these datasets and summarized the node statistics using the profile command in r8s. The amber 
preserved Sphaerodactylus sp. (Kluge, 1995) and S. dommeli (Böhme, 1984) were used to fix the node 
containing S. elegans and its sister clade to 23 Ma (Grimaldi, 1995) in the r8s analysis. A fixed date was used for 
this calibration as r8s analyses require at least one node have an upper and lower bound. We pruned taxa from 
the PL analysis in instances where more than one individual per species had been included. Pruning was 
necessary since r8s requires non-zero branch lengths leading to all taxa and some of the branches leading to 
redundant terminal taxa had zero branch lengths. 

3. Results 
3.1. Phylogeny 
We excluded 83 sites from the aligned 16S dataset due to gaps and difficulties assessing homology (an 
annotated data matrix is available from the corresponding author). Sequence alignment was unambiguous for 
protein-coding genes, but there were insertion/deletion (indel) events in c-mos and ACM4. The 12 bp deletion 
in c-mos at position 231 in G. annularis, G. hasemani, and Gonatodes sp. is a synapomorphy for that clade. 
Similarly, a 3 bp insertion at position 150 of ACM4 is a synapomorphy for the clade containing G. 
albogularis and G. vittatus. 

Parsimony analysis recovered 2608 most parsimonious trees (tree length = 988, Consistency Index = 0.617, 
Retention Index = 0.807). A 50% majority-rule consensus of the most-parsimonious trees produced a topology 
that was congruent with the partitioned Bayesian topology. The best-fit partitioning strategy for the Bayesian 
analysis, as determined by Bayes factors, was the most parameter-rich model that included 11 partitions, data 
partitioned by codon for each gene individually, plus 16S partitioned by stem and loop structure. Sequence 
length and model parameters for each partition are listed in Table 3. Bayesian tree topology and branch support 
values are shown in Fig. 1. We recovered a sister-group relationship between Lepidoblepharis and Gonatodes. 
Within Gonatodes, most clades received posterior probabilities greater than 0.95, while only clades with 
Bayesian posterior probabilities of 1.00 received significant parsimony bootstrap support. 
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Table 3. Estimated models of sequence evolution and total number of characters for each data partition used in 
the Bayesian phylogenetic analyses 

Partition Model # of characters in partition 
All data GTR+I+Γ 1584 
nDNA GTR+Γ 1203 
RAG 2 HKY+Γ 365 
c-mos GTR+Γ 384 
ACM4 HKY+Γ 453 
16S GTR+I+Γ 475 
RAG 2 1st codon GTR+Γ 121 
RAG 2 2nd codon HKY+I 122 
RAG 2 3rd codon HKY+Γ 122 
c-mos 1st codon HKY+I 128 
c-mos 2nd codon HKY+I 128 
c-mos 3rd codon GTR+I 127 
ACM4 1st codon HKY+I 151 
ACM4 2nd codon HKY+I 151 
ACM4 3rd codon SYM+I 151 
16S stems SYM+Γ 167 
16S loops GTR+I+Γ 308 

 
Fig. 1. Partitioned Bayesian phylogeny of Gonatodes geckos and outgroups. Numbers above nodes indicate 
Bayesian posterior probabilities while black squares indicate nodes with parsimony bootstrap support >70. 

3.2. Divergence date estimates 
The likelihood ratio test rejected the molecular clock for this data (−2 ln Λ = 59.25, df = 37, P = 0.012). Because 
the phylogeny departed from a molecular clock, we relied on the PL method with TN algorithm to estimate 
dates of divergence. Cross-validation analyses indicated several appropriate smoothing parameters and we used 
a smoothing parameter of 100,000 for these data. 

Dates were largely concordant with a recent analysis of the entire Sphaerodactylidae derived from a non-
parametric-rate-smoothing analysis (Gamble et al., 2007), which used as calibration points the 
amber Sphaerodactylus and fossil Euleptes as a minimum age constraints and two fixed-age constraints related 
to vicariant events in central Asia for the gecko genus Teratoscincus (Gamble et al., 2007). Gamble et al. 
(2007) for example, recovered divergence dates for the Lepidoblepharis/Gonatodes split at 68 Ma, the 
divergence of G. caudiscutatus from the remaining Gonatodes at 34 Ma, and G. daudinii from G. albogularis at 
26 Ma. Our analyses recovered dates for those same divergences at 64, 35, and 23 Ma, respectively. Most 
cladogenesis in Gonatodes occurred in the Oligocene and early Miocene (Table 4 and Fig. 2). 

Table 4. Estimated ages (in millions of years) and width of the corresponding 95% confidence intervals for all 
nodes, obtained using Penalized Likelihood 

Node Age CI 
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A 69.7 12.3 
B 64.0 11.7 
C 42.0 8.4 
D 35.0 6.8 
E 30.0 4.8 
F 32.0 6.4 
G 30.0 5.6 
H 28.0 5.8 
I 29.0 6.1 
J 26.0 5.6 
K 23.0 0.0 
L 27.0 4.4 
M 23.0 4.7 
N 18.0 3.9 
O 21.0 4.3 
P 13.0 3.0 
Q 10.0 2.5 
R 3.8 0.4 
S 2.7 1.1 
T 1.9 0.8 

Node labels are shown in Fig. 2. 

 
Fig. 2. Chronogram of the partitioned Bayesian phylogeny of Gonatodes geckos and outgroups generated using 
Penalized Likelihood. Approximate divergence dates are indicated along the x-axis. Gray bars indicate the 95% 
confidence intervals calculated from the bootstrap analysis. Actual dates and confidence intervals are listed 
in Table 4. The black circle represents the fixed-age node calibrated using the amber-preserved Sphaerodactylus. 
Vertical gray bar indicates the timing of central Andean uplift approximately 19–27 Ma (Marshall and Sempere, 
1993). The black curve represents oxygen isotope data taken from sea sediments (from Zachos et al., 2001, 
reprinted with permission from AAAS), which can be interpreted as a proxy for ocean temperature where higher 
δ18 O% values correlate with lower ocean temperatures. 
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4. Discussion 
4.1. Phylogeny 
Our results provide the first comprehensive analysis of Gonatodes relationships. Within Gonatodes, we 
corroborate the evolutionary relationships of several previously hypothesized taxonomic groups. These include 
clustering of G. albogularis + G. vittatus as well as the G. ceciliae + G. ocellatus grouping based on osteological 
data (Rivero-Blanco, 1979). 

This is the first published phylogeny for a widespread and common lizard genus such as Gonatodes. Behavioral 
and vision studies (Marcellini, 1977, Ellingson et al., 1995) have exploited the sexual dimorphism and the 
colorful nature of male Gonatodes, and several species have been the focus of ecological research (Sexton and 
Turner, 1972, Duellman, 1978, Vitt et al., 1997, Vitt et al., 2000, Fuenmayor and Molina, 2004, Rojas-Runjiac and 
Fuenmayor, 2006, Fuenmayor et al., 2006). We hope that our analyses provide a scaffold for future research on 
the evolutionary biology of this fascinating group of lizards. 

4.2. Divergence date estimates and diversification 
Lepidoblepharis and Gonatodes diverged in the early Paleocene although the contemporary diversity 
in Gonatodes has its origins in the late Eocene and Oligocene, a period characterized by significant global cooling 
and drying (Flynn and Wyss, 1998). The late Eocene and Oligocene saw a dramatic increase in the size of 
Antarctic ice sheets, lower sea levels, and changes in ocean currents as South America, Antarctica, and Australia 
separated, creating a continuous ocean current around Antarctica (Zachos et al., 2001). All of these changes 
initiated considerable transformations in terrestrial ecosystems. Three cladogenic events in Gonatodes coincided 
with this period of cooling, (1) divergence of G. caudiscutatus + G. eladioi from the remaining Gonatodes; (2) 
divergence of the clade comprised of G. hasemani + G. annularis + Gonatodes sp.; and (3) the split between 
the G. concinnatus + G. humeralis + G. ocellatus + G. ceciliae clade and the clade composed of G. albogularis + G. 
vittatus + G. daudinii. Three of the four clades resulting from these three divergences contain extant Amazonian 
species. The fourth clade, containing G. albogularis + G. vittatus + G. daudinii, consists of species restricted to 
northern South America, Central America, and the Antilles. 

The Oligocene–Miocene boundary contains most of the remaining cladogenesis in our analyses. From 19 to 
27 Ma South America was dominated by the uplift of the Andes (Marshall and Sempere, 1993, Gregory-
Wodzicki, 2000). Vicariance due to Andean uplift is the most obvious manifestation of this impact. Our dataset 
contains two taxon pairs found on opposite sides of the Andes, G. caudiscutatus found west of the Andes, and G. 
eladioi from the Amazon basin east of the Andes; and the two Lepidoblepharis species from Ecuador, 
with Lepidoblepharis sp. found west of the Andes and L. festae from east of the Andes. Both of these splits 
occurred during or slightly prior to this period of Andean uplift. Oligocene–Miocene orogeny in western South 
America also significantly influenced climate on the continent by forming the largest atmospheric circulation 
barrier in the southern hemisphere (Lenters and Cook, 1995). This created a rain shadow on the western side of 
South America (Marshall and Sempere, 1993) and changed river drainage patterns (Wesselingh and Salo, 2006). 
It is likely that these indirect environmental effects influenced the Oligocene—early Miocene cladogenic events 
in our phylogeny. 

A recurring theme in Amazonian biogeography is a biogeographic split between the eastern and western 
Amazon basin. This east–west pattern has been observed in many biogeographic studies based on species 
distributions of butterflies (Hall and Harvey, 2002), lizards (Avila-Pires, 1995), frogs (Ron, 2000), birds (Bates et 
al., 1998), and primates (da Silva and Oren, 1996). A similar pattern has also been observed in molecular 
phylogenetic studies of lizards (Glor et al., 2001, Kronauer et al., 2005), frogs (Simula et al., 2003), mammals (da 
Silva and Patton, 1993), and birds (Eberhard and Bermingham, 2005). Glor et al. (2001) found that east–west 
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taxon pairs of Anolis lizards exhibited temporal discordance, as determined by the level of mitochondrial DNA 
sequence divergence, indicating that congruent biogeographic patterns were not the result of common vicariant 
events. We also observed a similar pattern of temporal discordance with east–west taxon pairs. The divergence 
between the western Amazonian Gonatodes hasemani and the eastern Amazonian clade containing G. annularis 
+ Gonatodes sp. occurred approximately 23 Ma, while the timing of divergence between eastern and western 
Amazonian G. humeralis occurred much more recently, approximately 1.9 Ma. These examples highlight the 
importance of including a temporal aspect to biogeographic studies. Examining solely spatial patterns, while 
informative, could be misleading where taxon pairs share broadly concordant distributions but diverged at 
different times. 

The majority of Gonatodes diversification in the Oligocene and early Miocene coincides with the timing of 
diversification in several other South American animal groups. Other taxa with bursts of diversification during 
this period include mollusks (Wesselingh and Salo, 2006), leptodactylid frogs (Heyer and Maxson, 1982), 
didelphid marsupials (Steiner et al., 2005), macaws and conures (Tavares et al., 2006), sloths and armadillos 
(Delsuc et al., 2004), and caviomorph rodents (Poux et al., 2006). Possible causes of diversification across such a 
wide range of taxa during the late Oligocene and early Miocene include forest fragmentation (Haffer, 
1969, Haffer, 1997), changing river drainage patterns and oceanic incursions (Flynn and Wyss, 1998, Wesselingh 
and Salo, 2006), or niche diversification (Schluter, 2000). Regardless of the precise mechanisms, the Oligocene 
and early Miocene is a vitally important period in the development of South America’s biological diversity. 
Tertiary divergences in these and other taxa also show that Pleistocene climate change (sensu Haffer, 1969) 
seems to have had little influence on major patterns of Amazonian diversification. 

Our results confirm that climate change and orogeny during the Tertiary played an important role in the 
diversification of the South American fauna, including Gonatodes geckos. Future work that includes greater 
taxonomic sampling within Gonatodes as well as other genera of South American sphaerodactylid gecko genera 
(e.g. Coleodactylus, Lepidoblepharis, and Pseudogonatodes) would provide an additional test of the Tertiary 
diversification hypothesis. 
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