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Editor: Kenji Fukumizu

Abstract

We introduce coroICA, confounding-robust independent component analysis, a novel ICA
algorithm which decomposes linearly mixed multivariate observations into independent
components that are corrupted (and rendered dependent) by hidden group-wise stationary
confounding. It extends the ordinary ICA model in a theoretically sound and explicit way
to incorporate group-wise (or environment-wise) confounding. We show that our proposed
general noise model allows to perform ICA in settings where other noisy ICA procedures fail.
Additionally, it can be used for applications with grouped data by adjusting for different
stationary noise within each group. Our proposed noise model has a natural relation to
causality and we explain how it can be applied in the context of causal inference. In
addition to our theoretical framework, we provide an efficient estimation procedure and
prove identifiability of the unmixing matrix under mild assumptions. Finally, we illustrate
the performance and robustness of our method on simulated data, provide audible and
visual examples, and demonstrate the applicability to real-world scenarios by experiments
on publicly available Antarctic ice core data as well as two EEG data sets. We provide
a scikit-learn compatible pip-installable Python package coroICA as well as R and Matlab
implementations accompanied by a documentation at https://sweichwald.de/coroICA/.

Keywords: blind source separation, causal inference, confounding noise, group analysis,
heterogeneous data, independent component analysis, non-stationary signal, robustness

1. Introduction

The analysis of multivariate data is often complicated by high dimensionality and complex
inter-dependences between the observed variables. In order to identify patterns in such
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data it is therefore desirable and often necessary to separate different aspects of the data.
In multivariate statistics, for example, principal component analysis (PCA) is a common
preprocessing step that decomposes the data into orthogonal principle components which
are sorted according to how much variance of the original data each component explains.
There are two important applications of this. Firstly, one can reduce the dimensionality of
the data by projecting it onto the lower dimensional space spanned by the leading principal
components which maximize the explained variance. Secondly, since the principle compo-
nents are orthogonal, they separate in some sense different (uncorrelated) aspects of the
data. In many situations this enables a better interpretation and representation.

Often, however, PCA may not be sufficient to separate the data in a desirable way
due to more complex inter-dependences in the multivariate data (see e.g., Section 1.3.3
in Hyvärinen et al. (2002) for an instructive example). This observation motivates the
development of independent component analysis (ICA), formally introduced in its current
form by Cardoso (1989b) and Comon (1994). ICA is a widely used unsupervised blind source
separation technique that aims at decomposing an observed mixture of independent source
signals. More precisely, assuming that the observed data is a linear mixture of underlying
independent variables, one seeks the unmixing matrix that maximizes the independence
between the signals it extracts. There has been a large amount of research on different types
of ICA procedures and their interpretations, e.g., Bell and Sejnowski (1995, Infomax) who
maximize the entropy, Hyvärinen (1999, fastICA) maximizing the kurtosis or Belouchrani
et al. (1997, SOBI) who propose to minimize time-lagged dependences, to name only some
of the widespread examples.

ICA has applications in many fields, for example in finance (e.g., Back and Weigend,
1997), the study of functional magnetic resonance imaging (fMRI) data (e.g., McKeown
et al., 1998a,b; Calhoun et al., 2003), and notably in the analysis of electroencephalography
(EEG) data (e.g., Makeig et al., 1995, 1997; Delorme and Makeig, 2004). The latter is
motivated by the common assumption that the signals recorded at EEG electrodes are a
(linear) superposition of cortical dipole signals (Nunez and Srinivasan, 2006). Indeed, ICA-
based preprocessing has become the de facto standard for the analysis of EEG data. The
extracted components are interpreted as corresponding to cortical sources (e.g., Ghahremani
et al., 1996; Zhukov et al., 2000; Makeig et al., 2002) or used for artifact removal by dropping
components that are dominated by ocular or muscular activity (e.g., Jung et al., 2000;
Delorme et al., 2007).

In many applications, the data at hand is heterogeneous and parts of the samples can
be grouped by the different settings (or environments) under which the observations were
taken. For example, we can group those samples of a multi-subject EEG recording that
belong to the same subject. For the analysis and interpretation of such data across dif-
ferent groups, it is desirable to extract one set of common features or signals instead of
obtaining individual ICA decompositions for each group of samples separately. Here, we
present a novel, methodologically sound framework that extends the ordinary ICA model,
respects the group structure and is robust by explicitly accounting for group-wise stationary
confounding. More precisely, we consider a model of the form

Xi = A · Si +Hi, (1)
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where i denotes the sample index, A remains fixed across different groups, Si is a vector
of independent source signals and Hi is a vector of stationary confounding noise variables
with fixed covariance within each group (an intuitive example where such a scenario may
be encountered in practice is illustrated in Figure 7). Based on this extension to ordinary
ICA, we construct a method and an easy to implement algorithm to extract one common
set of sources that are robust against confounding within each group and can be used for
across-group analyses. The unmixing also generalizes to previously unseen groups.

1.1. Relation to Existing Work

ICA is well-studied with a tremendous amount of research related to various types of ex-
tensions and relaxations of the ordinary ICA model. In light of this, it is important to
understand where our proposed procedure is positioned and why it is an interesting and
useful extension. Here, we look at ICA research from three perspectives and illustrate how
our proposed coroICA methodology relates to existing work. First off, in Section 1.1.1 we
compare our proposed methodology with other noisy ICA models. In Section 1.1.2, we
review ICA procedures based on approximate joint matrix diagonalization. Finally, in Sec-
tion 1.1.3 we summarize the existing literature on ICA procedures for grouped data and
highlight the differences to coroICA.

1.1.1. Noisy ICA Models

The ordinary ICA model assumes that the observed process X is a linear mixture of indepen-
dent source signals S without a confounding term H. Identifiability of the source signals S
is guaranteed by assumptions on S such as non-Gaussianity or specific time structures. For
coroICA we require—similar to other second-order based methods (cf. Section 1.1.2)—that
the source process S is non-stationary. More precisely, we require that either the variance
or the auto-covariance of S changes across time. An important extension of the ordinary
ICA model is known as noisy ICA (e.g., Moulines et al., 1997) in which the data generating
process is assumed to be an ordinary ICA model with additional additive noise. In general,
this leads to further identifiability issues. These can be resolved by assuming that the ad-
ditive noise is Gaussian and the signal sources non-Gaussian (e.g., Hyvärinen, 1999), which
enables correct identification of the mixing matrix. Another possibility is to assume that
the noise is independent over time, while the source signals are time-dependent1 (e.g., Choi
and Cichocki, 2000b). In contrast, our assumption on the noise term H is much weaker,
since we only require it to be stationary and hence in particular allow for time-dependent
noise in coroICA. As we show in our simulations in Section 4.2.3 this renders our method
robust with respect to confounding noise: coroICA is more robust against time-dependent
noise while remaining competitive in the setting of time-independent noise. We refer to the
book by Hyvärinen et al. (2002) for a review of most of the existing ICA models and the
assumptions required for identifiability.

1. Autocorrelated signals are time-dependent, while the absence of autocorrelation does not necessarily
imply time-independence of the signal. We thus use the terms time-dependence and time-independence
throughout this article.
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1.1.2. ICA based on Approximate Joint Diagonalization

As an extension of PCA, the concept of ICA is naturally connected to the notion of joint
diagonalization of covariance-type matrices. One of the first procedures for ICA was FOBI
introduced by Cardoso (1989a), which aims to jointly diagonalize the covariance matrix and
a fourth order cumulant matrix. Extending on this idea Cardoso and Souloumiac (1993)
introduced the method JADE which improves on FOBI by diagonalizing several different
fourth order cumulant matrices. Unlike FOBI, JADE uses a general joint matrix diagonal-
ization algorithm which is the de facto standard for all modern approaches. In fact, there
is a still-active field that focuses on approximate joint matrix diagonalization, commonly
restricted to positive semi-definite matrices, and often with the purpose of improving ICA
procedures (e.g., Cardoso and Souloumiac, 1996; Ziehe et al., 2004; Tichavsky and Yeredor,
2009; Ablin et al., 2018).

Both JADE and FOBI are based on the assumption that the signals are non-Gaussian.
This ensures that the sources are identifiable given independent and identically distributed
observations. A different stream of ICA research departs from this assumption and instead
assumes that the data are a linear mixture of independent weakly stationary time-series.
This model is often referred to as a second-order source-separation model (SOS). The time
structure in these models allows to identify the sources by jointly diagonalizing the covari-
ance and auto-covariance. The first method developed for this setting is AMUSE by Tong
et al. (1990) who diagonalize the covariance matrix and the auto-covariance matrix for one
fixed lag. The performance of AMUSE is, however, fragile with respect to the exact choice
of the lag, which complicates practical application (Miettinen et al., 2012). Instead of only
using a single lag, Belouchrani et al. (1997) proposed the method SOBI which uses all lags
up to a certain order and jointly diagonalizes all the resulting auto-covariance matrices.
SOBI is to date still one of the most commonly employed ICA methods, in particular in
EEG analysis.

The SOS model is based on the assumption of weak stationarity of the sources which
implies that the signals have fixed variance and auto-covariance structure across time. This
assumption can be dropped and the resulting models are often termed non-stationary source
separation models (NSS). The non-stationarity can be leveraged to boost the performance
of ICA methods in various ways (see Matsuoka et al., 1995; Hyvärinen, 2001; Choi and Ci-
chocki, 2000a,b; Choi et al., 2001; Choi and Cichocki, 2001; Pham and Cardoso, 2001). All
aforementioned methods make use of the non-stationarity by jointly diagonalizing different
sets of covariance or auto-covariance matrices and mainly differ by how they perform the
approximate joint matrix diagonalization. For example, the methods introduced by Choi
and Cichocki (2000a,b); Choi et al. (2001) make use of non-stationarity across sources by
separating the data into blocks and jointly diagonalizing either the covariance matrices,
the auto-covariances or both across all blocks. For our experimental comparisons, we im-
plemented all three of these methods with the slight modification that we use the recent
uwedge approximate joint matrix diagonalization procedure due to Tichavsky and Yeredor
(2009). We denote the resulting three ICA variants as

• choiICA (var): jointly diagonalize blocks of covariances,
• choiICA (TD): jointly diagonalize blocks of auto-covariances,
• choiICA (var & TD): jointly diagonalize blocks of covariances and auto-covariances.
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method signal type allowed noise

choiICA (TD) varying time-dependence time-independent
choiICA (var) varying variance none
choiICA (var & TD) varying variance and time-dependence none
SOBI fixed time-dependence time-independent
fastICA2 non-Gaussian none

coroICA varying time-dependence and/or variance group-wise stationary

Table 1. Important ICA procedures and the signal types they require as well as the noise
they can deal with. coroICA is a confounding-robust ICA variant and is the only method
for which an identifiability result under time-dependent noise is available.

Depending on the type of matrix which is diagonalized, each procedure detects different
types of signals and behaves differently with respect to noise. Choi and Cichocki (2001)
suggest a modification of choiICA (TD) in which instead of auto-covariance matrices, differ-
ences of auto-correlation matrices are diagonalized. The advantage being that it captures
the non-stationarity of a signal more explicitly. Our proposed method similarly aims to use
this type of signal but instead of considering the noise-free case, we explicitly formalize a
model class that generalizes to noisy settings. Furthermore, we provide an identifiability
theorem allowing for group-wise stationary confounding. Such a result has not been proven
for the aforementioned method in the noise-free case. For a detailed description of both
SOS- and NSS-based methods we refer the reader to the review by Nordhausen (2014) and
for recent developments on leveraging non-stationarity for identifiability in non-linear ICA
see Hyvärinen and Morioka (2016).

An exhaustive comparison of all methods is infeasible on the one hand due to the sheer
amount of different models and methods and on the other hand due to the fact that appro-
priately maintained and easy adaptable code—for most methods—simply does not exist.
Therefore, we focus our comparison on the following representative, modern methods that
are most closely related to coroICA: fastICA, SOBI, choiICA (TD), choiICA (var), choi-
ICA (TD & var). The methods and their respective assumptions on the source and noise
characteristics are summarized in Table 1.

1.1.3. ICA Procedures for Grouped Data

Applications in EEG and fMRI have motivated the development of a wide variety of blind
source separation techniques which are capable of dealing with grouped data, e.g., where
groups correspond to different subjects or recording sessions. A short review is given in
Hyvärinen (2013) and a detailed exposition in the context of fMRI data is due to Calhoun
et al. (2003).

Consider we are given m groups {g1, . . . , gm} and observe a corresponding data matrix
Xgi ∈ Rd×ni for each group, where d is the number of observed signals and ni the number
of observations. Using this notation, all existing ICA procedures for grouped data can be
related to one of three underlying models extending the classical mixing model X = A · S.
The first, often also referred to as “temporal concatenation”, assumes that the mixing

2. The fastICA method can be extended to include Gaussian noise (see Hyvärinen, 1999).
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remains equal while the sources are allowed to change across groups leading to data of the
form

(Xg1 , . . . ,Xgm) = A · (Sg1 , . . . ,Sgm) . (2)

The second model, often also referred to as “spatial concatenation”, assumes the sources
remain fixed (n1 = · · · = nm) while the mixing matrices are allowed to change, i.e.,Xg1

...
Xgm

 =

Ag1...
Agm

 · S. (3)

Finally, the third model assumes that both the sources and the mixing remains fixed across
groups which implies that for all k ∈ {1, . . . ,m} it holds that

Xgk = A · S. (4)

In all three settings the baseline approach to ICA is to simply apply a classical ICA to the
corresponding concatenated or averaged data, i.e., to apply the algorithm to the tempo-
rally/spatially concatenated data matrices on the left-hand side of above equations or the
average over groups. These ad-hoc approaches are appealing, since they postulate straight-
forward procedures to solving the problem on grouped data and facilitate interpretability of
the resulting estimates. It is these ad-hoc approaches that are implemented as the default
behavior in toolboxes like the widely used eeglab for EEG analyses (Delorme and Makeig,
2004).

Several procedures have been proposed tailored to specific applications that extend on
these baselines by employing additional assumptions. The most prominent such extensions
are tensorial methods that have found popularity in fMRI analysis. They express the group
index as an additional dimension (the data is thus viewed as a Rd×n×m tensor) and construct
an estimate factorization of the tensor representation. Many of these procedures build on
the so called PARAFAC (parallel factor analysis) model (Harshman, 1970). Recasting the
tensor notation, this model is of the form (3) with Agk = A · Dgk for all groups and for
diagonal matrices Dg1 , . . . , Dgm . As can be seen from this representation, the PARAFAC
model allows the mixing matrices to change across groups while they are constrained to be
the same up to different scaling of the mixing matrix columns (intuitively, across groups the
source dimensions are allowed to project with different strengths onto the observed signal
dimensions). Given that the matrices Dg1 , . . . , Dgm are sufficiently different it is possible
to estimate this model uniquely without further assumptions. However, in the case that
some of these diagonal matrices are equal identifiability is lost. In such cases Beckmann
and Smith (2005) suggest to additionally require that the individual components of the
sources be independent. This is comparable to the case where uncorrelatedness may not be
sufficient for the separation of sources while independence is.

The coroICA procedure also allows for grouped-data but aims at inferring a fixed mixing
matrix A, i.e., a model as given in (2) is considered. In contrast to vanilla concatenation
procedures, our methodology naturally incorporates changes across groups by allowing and
adjusting for different stationary confounding noise in each group. We argue why this
leads to a more robust procedure and also illustrate this in our simulations and real data
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experiments. More generally, our goal is to learn an unmixing which allows to generalize
to new and previously unseen groups; think for example about learning an unmixing based
on several different training subjects and extending it to new so far unseen subjects. Such
tasks can appear in brain-computer interfacing applications and can also be of relevance
more broadly in feature learning for classification tasks where classification models are to
be transferred from one group/domain to another. Since our aim is to learn a fixed mixing
matrix A that is confounding-robust and readily applicable to new groups, coroICA cannot
naturally be compared to models that are based on spatial concatenation (3) or fixed sources
and mixings (4); these methods employ fundamentally different assumptions on the model
underlying the data generating process, the crucial difference being that we allow the sources
and their time courses to change between groups.

1.2. Our Contribution

One strength of our methodology is that it explicates a statistical model that is sensible
for data with group structure and can be estimated efficiently, while being supported by
provable identification results. Furthermore, providing an explicit model with all required
assumptions enables a constructive discussion about the appropriateness of such modeling
decisions in specific application scenarios. The model itself is based on a notion of invariance
against confounding structures from groups, an idea that is also related to invariance prin-
ciples in causality (Haavelmo, 1944; Peters et al., 2016); see also Section 3 for a discussion
on the relation to causality.

We believe that coroICA is a valuable contribution to the ICA literature on the following
grounds:
• We introduce a methodologically sound framework which extends ordinary ICA to

settings with grouped data and confounding noise.
• We prove identifiability of the unmixing matrix under mild assumptions, importantly,

we explicitly allow for time-dependent noise thereby lessening the assumptions re-
quired by existing noisy ICA methods.
• We provide an easy to implement estimation procedure.
• We illustrate the usefulness, robustness, applicability, and limitations of our newly

introduced coroICA algorithm as well as characterize the advantage of coroICA over
existing ICAs: The source separation by coroICA is more stable across groups since it
explicitly accounts for group-wise stationary confounding.
• We provide an open-source scikit-learn compatible ready-to-use Python implemen-

tation available as coroICA from the Python Package Index repository as well as R
and Matlab implementations and an intuitive audible example which is available at
https://sweichwald.de/coroICA/.

2. Methodology

We consider a general noisy ICA model inspired by ideas employed in causality research
(see Section 3). We argue below that it allows to incorporate group structure and en-
ables joint inference on multi-group data in a natural way. For the model description, let
Si = (S1

i , . . . , S
d
i )> ∈ Rd×1 and Hi = (H1

i , . . . ,H
d
i )> ∈ Rd×1 be two independent vector-

valued sequences of random variables where i ∈ {1, . . . , n}. The components S1
i , . . . , S

d
i are
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assumed to be mutually independent for each i while, importantly, we allow for any weakly
stationary noise H. Let A ∈ Rd×d be an invertible matrix. The d-dimensional data process
(Xi)i∈{1,...,n} is generated by the following noisy linear mixing model

Xi = A · Si +Hi, for all i ∈ {1, . . . , n}. (5)

X is a linear combination of source signals S and confounding variables H. In this model,
both S and H are unobserved. One aims at recovering the mixing matrix A as well as true
source signals S from observations of X. Without additional assumptions, the confounding
H makes it impossible to identify the mixing matrix A. Even with additional assumptions
it remains a difficult task (see Section 1.1.1 for an overview of related ICA models). Given
the mixing matrix A it is straightforward to recover the confounded source signals S̃i =
Si +A−1 ·Hi.

Throughout this paper, we denote by X = (X1, . . . , Xn) ∈ Rd×n the observed data
matrix and similarly by S and H the corresponding (unobserved) source and confounding
data matrices. For a finite data sample generated by this model we hence have

X = A · S + H.

In order to distinguish between the confounding H and the source signals S we assume
that the two processes are sufficiently different. This can be achieved by assuming the
existence of a group structure such that the covariance of the confounding H remains
stationary within a group and only changes across groups.

Assumption 1 (group-wise stationary confounding) There exists a collection of m
disjoint groups G = {g1, . . . , gm} with gk ⊆ {1, . . . , n} and ∪mk=1gk = {1, . . . , n} such that
for all g ∈ G the process (Hi)i∈g is weakly stationary.

Under this assumption and given that the source signals change enough within groups, the
mixing matrix A is identifiable (see Section 2.2). Similar to existing ICA methods discussed
in Section 1.1.2, we propose to estimate the mixing matrix A by jointly diagonalizing empir-
ical estimates of dependence matrices. In contrast to existing methods, we explicitly allow
and adjust for the confounding H. The process of finding a matrix V that simultaneously
diagonalizes a set of matrices is known as joint matrix diagonalization and has been studied
extensively (e.g., Ziehe et al., 2004; Tichavsky and Yeredor, 2009). In Section 2.3, we show
how to construct an estimator for V based on approximate joint matrix diagonalization.

The key step in adjusting for the confounding is to make use of the assumption that in
contrast to the signals S the confounding H remains stationary within groups. Depending
on the type of signal in the sources one can consider different sets of matrices. Here, we
distinguish between two types of signals.

Variance signal In case of a variance signal, the variance process of each signal source
Var(Sji ) changes over time. These changes can be detected by examining the covariance
matrix Cov(Xi) over time. For V = A−1 and using (5) it holds for all i ∈ {1, . . . , n} that

V Cov(Xi)V
> = Cov(Si) + V Cov(Hi)V

>.
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Since the source signal components Sji are mutually independent, the covariance matrix
Cov(Si) is diagonal. Moreover, due to Assumption 1 the covariance matrix of the con-
founding H is constant, though not necessarily diagonal, within each group. This implies
for all groups g ∈ G and for all k, l ∈ g that

V (Cov(Xk)− Cov(Xl))V
> = Cov(Sk)− Cov(Sl) (6)

is a diagonal matrix.

Time-dependence signal In case of a time-dependence signal, the time-dependence of
each signal source Sji changes over time, i.e., for fixed τ , Cov(Sji , S

j
i−τ ) changes over time.

These changes lead to changes in the auto-covariance matrices Cov(Xi, Xi−τ ). Analogous
to the variance signal it holds for all i ∈ {τ + 1, . . . , n} that

V Cov(Xi, Xi−τ )V > = Cov(Si, Si−τ ) + V Cov(Hi, Hi−τ )V >.

Since the source signal components Sji are mutually independent, the auto-covariance ma-
trix Cov(Si, Si−τ ) is diagonal and due the stationarity of H (see Assumption 1) the auto-
covariance Cov(Hi, Hi−τ ) is constant within each group. This implies for all groups g ∈ G,
for all k, l ∈ g and for all τ that

V (Cov(Xk, Xk−τ )− Cov(Xl, Xl−τ ))V > = Cov(Sk, Sk−τ )− Cov(Sl, Sl−τ ) (7)

is a diagonal matrix.

For both signal types, we can identify V by simultaneously diagonalizing differences of
(auto-)covariance matrices. Details and identifiability results are given in Section 2.3. The
two signal types considered differ from both, the more classical settings of non-Gaussian
time-independent signals as considered for example by fastICA, and the stationary signals
with fixed time-dependence assumed for SOBI (cf. Table 1). Owing to the non-stationarity
of the signal we can allow for more general forms of noise.

2.1. Motivating Examples

To get a better understanding of our proposed ICA model in (5), we illustrate two different
aspects: the group structure and the noise model.

Noise model coroICA can be viewed as a noisy ICA, where the noise is allowed to be
group-wise non-stationary. This generalizes existing noisy ICA methods, which, to the
best of our knowledge, all assume that the noise is independent over time with various
additional assumptions. The following example illustrates the intuition behind our model
via a toy-application to natural images.

Example 1 (unmixing noisy images) We provide an illustration of how our proposed
method compares to other ICA approaches under the presence of noise. Four images, each
450 × 300 pixels and with three RGB color channels, are used to construct four sources
S1, S2, S3, S4 as follows.3 Every color channel is converted to a one dimensional vector by

3. The images are freely available from Pexels GmbH (2018).
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cutting each image into 15 × 10 equally sized patches (i.e., each patch consists of 30 × 30
pixels) and concatenating the row-wise vectorized patches. This procedure preserves the
local structure of the image. We concatenate the three color channels and consider them
as separate groups for our model. Thus, each of the four sources S1, . . . , S4 consists of
n = 3 · 450 · 300 = 405.000 observations, that is, three groups of 135.000 observations
corresponding to the RGB color channels. Next, we construct locally dependent noise that
differs across color channels. Here, locally dependent means that the added noise is similar
(and dependent) for pixels which are close to each other. This results in four noise processes
H1, . . . ,H4. We combine the sources with the noise and apply a random mixing matrix A
to obtain the following observed data

X = A · S +H.

The recast noisy images S̃ = S + A−1H are illustrated in the first row and the recast
observed mixtures X in the second row of Figure 1. The last three rows are the resulting
reconstructions of three different ICA procedures, coroICA (TD), fastICA and choiICA (TD).
As expected, fastICA as a noise-free ICA method, appears frail to the noise in the images.
While choiICA (TD) is able to adjust for independent noise, it is unable to properly adjust
for the spatial dependence of the noise process and thus leads to undesired reconstruction
results. In contrast, coroICA (TD) is able to recover the noisy images. It is the noise and its
characteristics that break the two competing ICA methods, since all three methods are able
to unmix the images in the noise-free case (not shown here).

The noise model we employ is motivated by recent advances in causality research where
the group-wise stationary noise can be interpreted as unobserved confounding factors in
linear causal feedback models. We describe this in more detail with an explicit example
application to Antarctic ice core data in Section 3.

Group structure A key aspect of our model is that it aims to leverage group-structure
to improve the stability of the umixing under the presence of group-wise confounding.
Here we refer to the following notion of stability: A stable unmixing matrix extracts the
same set of independent sources when applied to the different groups; it is robust against
the confounding that varies across groups and introduces dependences. A standard ICA
method is not able to estimate the correct unmixing V = A−1, if the data generating process
follows our confounded ICA model in (5). These methods extract signals that are not only
corrupted by the group-wise confounding but also are mixtures of the independent sources
and are thus not stable in the aforementioned sense. This is illustrated by the “America’s
Got Talent Duet Problem” (cf. Example 2), an extension and alteration of the classical
“cocktail party problem”.

Example 2 (America’s Got Talent Duet Problem) Consider the problem of evaluat-
ing two singers at a duet audition individually. This requires to listen to the two voices
separately, while the singers perform simultaneously. There are two sound sources in the
audition room (the two singers) and additionally several noise sources which corrupt the
recordings at the two microphones (or the jury member’s two ears). A schematic of such
a setting is illustrated in Supplement B, Figure 12. The additional noise comes from an
audience and two open windows. One can assume that this noise satisfies our Assumption 1
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Figure 1. Images accompanying example 1. The top row shows noisy unmixed images, the
second row shows mixed images, and the last three rows show unmixed and rescaled images
resulting from an application of coroICA (TD), choiICA (TD) and fastICA (cf. Table 1).
Here, only coroICA (TD) is able to correctly unmix the images and recover the original
(noise-corrupted) images.

on a single group. The sound stemming from the audience can be seen as an average of
many sounds, hence remaining approximately stationary over time. Typical sounds from an
open window also satisfy this assumption, for example sound from a river or a busy road.
Our methodology, however, also allows for more complicated settings in which the noise
shifts at known points in times, for example if someone opens or closes a window or starts
mowing the lawn outside. In such cases we use the known time blocks of stationary noise as
groups and apply coroICA (var) on this grouped data. An example with artificial sound data
related to this setting is available at https: // sweichwald. de/ coroICA/ . We show that
coroICA (var) is able to recover useful sound signals with the two voices being separated into
different dimensions and thus allows to listen to them individually. In contrast, existing
ICAs applied to the time concatenated data fail to unmix the two singers.

2.2. Identifiability

Identifiability requires that the source signals S change sufficiently strong within groups.
The precise notion of a strong signal depends on the type of signal. As discussed previously,
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we consider two types of non-stationary signals (i) variance signals and (ii) time-dependence
signals. Depending on the signal type we formalize two slightly different assumptions that
characterize source signals that ensure identifiability. Firstly, in the case of a variance signal,
we have the following assumption.

Assumption 2 (signals with independently changing variance) For each pair of com-
ponents p, q ∈ {1, . . . , d} we require the existence of three (not necessarily unique) groups
g1, g2, g3 ∈ G and three corresponding pairs l1, k1 ∈ g1, l2, k2 ∈ g2 and l3, k3 ∈ g3 such that
the two vectors 

Var
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−Var
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are neither collinear nor equal to zero.

In case of time-dependence signals we have the analogous assumption.

Assumption 3 (signals with independently changing time-dependence) For each
pair of components p, q ∈ {1, . . . , d} we require the existence of three (not necessarily unique)
groups g1, g2, g3 ∈ G and three corresponding pairs l1, k1 ∈ g1, l2, k2 ∈ g2 and l3, k3 ∈ g3 for
which there exists τ ∈ {1, . . . , n} such that the two vectors

Cov
(
Spl1 , S

p
l1−τ

)
− Cov

(
Spk1 , S

p
k1−τ

)
Cov

(
Spl2 , S

p
l2−τ

)
− Cov

(
Spk2 , S

p
k2−τ

)
Cov

(
Spl3 , S

p
l3−τ

)
− Cov

(
Spk3 , S

p
k3−τ

)
 and


Cov

(
Sql1 , S

q
l1−τ

)
− Cov

(
Sqk1 , S

q
k1−τ

)
Cov

(
Sql2 , S

q
l2−τ

)
− Cov

(
Sqk2 , S

q
k2−τ

)
Cov

(
Sql3 , S

q
l3−τ

)
− Cov

(
Sqk3 , S

q
k3−τ

)


are neither collinear nor equal to zero.

Intuitively, these assumptions ensure that the signals are not changing in exact synchrony
across components, which removes degenerate types of signals. In particular, they are
satisfied in the case that the variance or auto-covariance processes change pair-wise inde-
pendently over time. Whenever one of these assumptions is satisfied, the mixing matrix A
is uniquely identifiable.

Theorem 1 (identifiability of the mixing matrix)
Assume the data process (Xi)i∈{1,...,n} satisfies the model in (5) and Assumption 1 holds.
If additionally either Assumption 2 or Assumption 3 is satisfied, then A is unique up to
permutation and rescaling of its columns.

Proof A proof is given in Supplement A.

2.3. Estimation

In order to estimate V from a finite observed sample X ∈ Rd×n, we first partition each
group into subgroups. We then compute the empirical (auto-)covariance matrices on each
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subgroup. Finally, we estimate a matrix that simultaneously diagonalizes the differences of
these empirical (auto-)covariance matrices using an approximate joint matrix diagonaliza-
tion technique. This procedure results in three methods depending on which type of matri-
ces we diagonalize. Similar to our notation for the different versions of choiICAs we denote
these methods by coroICA (var) if we diagonalize differences of covariances, coroICA (TD)
if we diagonalize differences of auto-covariances, and coroICA (var&TD) if we diagonalize
both differences of covariance and auto-covariances.

More precisely, for each group g ∈ G, we first construct a partition Pg consisting of
subsets of g such that each e ∈ Pg satisfies that e ⊆ g and ∪e∈Pge = g. This partition Pg
should be granular enough to capture the changes in the signals described in Assumption 2
or 3. We propose partitioning each group based on a grid such that the separation between
grid points is large enough for a reasonable estimation of the covariance matrix and at the
same time small enough to capture variations in the signals. In our experiments, we observed
robustness with respect to the exact choice; only too small partitions should be avoided since
otherwise the procedure is fragile due to poorly estimated covariance matrices. More details
on the choice of the partition size are given in Remark 2. Depending on whether a variance
or time-dependence signal or a hybrid thereof is considered, we fix time lags T ⊂ N0.

Next, for each group g ∈ G, each distinct pair e, f ∈ Pg, and each τ ∈ T we define the
matrix

Mg,τ
e,f := Ĉovτ (Xe)− Ĉovτ (Xf ),

where Ĉovτ (·) denotes the empirical (auto-)covariance matrix for lag τ and Xe is the data
matrix restricted to the columns corresponding to the subgroup e. Assumption 1 ensures
that VMg,τ

e,f V
> is approximately diagonal. We are therefore interested in finding an invert-

ible matrix V which approximately jointly diagonalizes the matrices in the set

Mall :=
{
Mg,τ
e,f

∣∣ g ∈ G and e, f ∈ Pg and τ ∈ T
}
. (8)

The number of matrices in this set grows quadratically in the number of partitions. This
can lead to large numbers of matrices to be diagonalized. Another option that reduces
the computational load is to compare each partition to its complement, which leads to the
following set of matrices

Mcomp :=
{
Mg,τ
e,ē

∣∣ g ∈ G and e ∈ Pg (with ē := g \ e) and τ ∈ T
}

(9)

or to compare only neighboring partitions as in

Mneighbor :=
{
Mg,τ
e,neighbor(e)

∣∣ g ∈ G and e ∈ Pg and τ ∈ T
}
, (10)

where neighbor(e) is the partition to the right of e.

The task of jointly diagonalizing a set of matrices is a well-studied topic in the literature
and is referred to as approximate joint matrix diagonalization. Many solutions have been
proposed for different assumptions made on the matrices to be diagonalized. In this paper,
we use the uwedge algorithm4 introduced by Tichavsky and Yeredor (2009). The basic idea

4. As a byproduct of our work, we are able to provide a new stable open-source Python/R/Matlab imple-
mentation of the uwedge algorithm which is also included in our respective coroICA packages.
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behind uwedge is to find a minimizer of a proxy for the loss function

`(V ) =
∑

M∈M∗

∑
k 6=l

[
VMV >

]2
k,l

 ,

over the set of invertible matrices, where in our case M∗ ∈ {Mall,Mcomp,Mneighboring}.
The full estimation procedure based on the set Mneighbouring defined in (9) is made

explicit in the pseudo code in Algorithm 1 (where ApproximateJointDiagonalizer stands for
a general approximate joint diagonalizer; here we use uwedge).

Remark 2 (choosing the partition and the lags) Whenever there is no obvious par-
tition of the data, we propose to partition the data into equally sized blocks with a fixed
partition size. The decision on how to choose a partition size should be driven by type of
non-stationary signal one expects and the dimensionality of the data. For example, in the
case of a variance signal the partition should be fine enough to capture areas of high and
low variance, while at the same time being coarse enough to allow for sufficiently good es-
timates of the covariance matrices. That said, for applications to real data sets the signals
are often of various length implying that there is a whole range of partition sizes which all
work well. In cases with few data points, it can then be useful to consider several grids with
different partition sizes and diagonalize across all resulting differences simultaneously. This
somewhat removes the dependence of the results on the exact choice of a partition size and
increases the power of the procedure. We employ this approach in Section 3.1. In general,
the lags T should be chosen as T = {0}, T ⊂ N, or T ⊂ N0, depending on whether a vari-
ance signal, time-dependence signal, or a hybrid thereof is considered. For time-dependence
signal, we recommend to determine up to which time-lag the autocorrelation of the observed
signals has sufficiently decayed, and use all lags up to that point.

2.4. Assessing the Quality of Recovered Sources

Assessing the quality of the recovered sources in an ICA setting is an inherently difficult task,
as is typical for unsupervised learning procedures. The unidentifiable scale and ordering of
the sources as well as the unclear choice of a performance measure render this task difficult.
Provided that ground truth is known, several scores have been proposed, most notably the
Amari measure introduced by Amari et al. (1995) and the minimum distance (MD) index
due to Ilmonen et al. (2010). Here, we use the MD index, which is defined as

MD(V̂ , A) =
1√
p− 1

inf
C∈C
‖CV̂ A− Id‖,

where the set C consists of matrices for which each row and column has exactly one nonzero
element. Intuitively, this score measures how close V̂ A is to a rescaled and permuted version
of the identity matrix. One appealing property of this score is that it can be computed
efficiently by solving a linear sum assignment problem. In contrast to the Amari measure,
the MD index is affine invariant and has desirable theoretical properties (see Ilmonen et al.,
2010).
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Algorithm 1: coroICA

input : data matrix X
group index G (user selected)
group-wise partition (Pg)g∈G (user selected)
lags T ⊂ N0 (user selected)

initialize empty list M
for g ∈ G do

for e ∈ Pg do
for τ ∈ T do

append Ĉovτ (Xe)− Ĉovτ (Xneighbour(e)) to list M
end

end

end

V̂ ← ApproximateJointDiagonalizer(M)
Ŝ← V̂X
output: unmixing matrix V̂

sources Ŝ

We require a different performance measure for our real data experiments where the
true unmixing matrix is unknown. Here, we check whether the desired independence (after
adjustment for the constant confounding) is achieved by computing the following covariance
instability score (CIS) matrix. It measures the instability of the covariance structure of the
unmixed sources Ŝ and is defined for a each groups g ∈ G and a corresponding partition Pg
(see Section 2.3) by

CIS(Ŝ,Pg) :=
1

|Pg|
∑
e∈Pg

 Ĉov(Ŝe)− Ĉov(Ŝneighbour(e))

σ̂
Ŝg
· σ̂>

Ŝg

2

,

where σ̂
Ŝ
∈ Rd×1 is the empirical standard deviation of Ŝ and the fraction is taken element-

wise. The CIS matrix is approximately diagonal whenever Ŝ can be written as the sum of
independent source signals S and confounding H with fixed covariance. This is condensed
into one scalar that reflects how stable the sources’ covariance structure is by averaging the
off-diagonals of the CIS matrix

MCIS(Ŝ,Pg)2 :=
1

d(d− 1)

d∑
i,j=1
i 6=j

[
CIS(Ŝ,Pg)

]
i,j
.

The differences taken in the CIS score extract the variance signals such that the mean co-
variance instability score (MCIS) can be understood as a measure of independence between
the recovered variance signal processes. High values of MCIS imply strong dependences
beyond stationary confounding between the signals. Low values imply weak dependences.
MCIS is a reasonable score whenever there is a variance signal (as described in Section 2)
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in sources and is a sensible evaluation metric of ICA procedures in such cases. In case of
time-dependence signal (as described in Section 2), one can define an analogous score based
on the auto-covariances. Here, we restrict ourselves to the variance signal case as for all our
applications this appeared to constitute the dominant part of the signal.

In case of variance signals the MCIS appears natural and appropriate as independence
measure: It measures how well the individual variance signals (and hence the relevant
information) are separated. To get a better intuition, let A = (a1, . . . , ad) ∈ Rd×d denote the
mixing and V = (v1, . . . , vd)

> ∈ Rd×d the corresponding unmixing matrix (i.e., V = A−1,
ai are columns of A and vi are rows of V ). Then it holds that,

Cov(Xi)v
>
j = ACov(Si)A

>v>j + Cov(Hi)v
>
j

= ACov(Si)e
>
j +ACov(Hi)e

>
j

= aj Var(Sji ) +ACov(Hi)e
>
j (11)

Under our group-wise stationary confounding assumption (Assumption 1) this implies that
within all groups g ∈ G, it holds for all l, k ∈ g that

(Cov(Xl)− Cov(Xk)) v
>
j = aj

(
Var(Sjl )−Var(Sjk)

)
. (12)

This equation holds also in the confounding-free case and it reflects the contribution of the
signal (in terms of variance signal) of the j-th recovered source Sj to the the variance signal
in all components of the observed multivariate data X.

While in the population case the equality in (12) is satisfied exactly, this is no longer
the case when the (un-)mixing matrix is estimated on finite data. Consider two subsets
e, f ∈ g for some group g ∈ G, then using the notation from Section 2.3 and denoting by v̂j
and âj the estimates of vj and aj , respectively, it holds that

Mg
e,f v̂

>
j =

[
Ĉov(Xe)− Ĉov(Xf )

]
v̂>j

= Â
[
Ĉov(Ŝe)− Ĉov(Ŝf )

]
Â>v̂>j

= Â
[
Ĉov(Ŝe)− Ĉov(Ŝf )

]
e>j

≈ âj(Var(Sje)−Var(Sjf )). (13)

The approximation is close only if the empirical estimate V̂ correctly unmixes the j-th
source. Essentially, MCIS measures the extent to which this approximation holds true
for all components simultaneously across the subsets specified by the partition Pg. It
is also possible to consider individual components by assessing how closely the following
proportionality is satisfied ∑

M∈M∗
sign(v̂jMv̂>j )Mv̂>j ∝ âj . (14)

In EEG experiments, this can also be assessed visually by comparing the topographic maps
corresponding to columns of A with so-called activation maps corresponding to the left-hand
side in (14). More details on this are provided in Section 4.3.3.
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3. Causal Perspective

Our underlying noisy ICA model (5) and the assumption on the noise (Assumption 1) are
motivated by causal structure learning scenarios. ICA is closely linked to the problem of
identifying structural causal models (SCMs) (see Pearl, 2009; Imbens and Rubin, 2015;
Peters et al., 2017). Shimizu et al. (2006) were the first to make this connection explicit
and used ICA to infer causal structures. To make this more precise consider the following
linear SCM

Xi = B ·Xi + S̃i, (15)

where Xi are observed covariates and S̃i are noise terms. An SCM induces a corresponding
causal graph over the involved variables by drawing an edge from variables on the right-hand
side to the one on the left-hand side of (15). Moreover, we can define noise interventions
(Pearl, 2009) by allowing the distributions of the noise terms S̃i to change for different i. In
the language of ICA, this means that the signals S̃i encode the different interventions (over
time) on the noise variables. Assuming that the matrix Id−B is invertible, we can rewrite
(15) as

Xi = (Id−B)−1S̃i,

which can be viewed as an ICA model with mixing matrix A = (Id−B)−1. Instead of
taking the noise term S̃i as independent noise sources one can also consider S̃i = Si + Hi.
In that case the linear SCM in (15) describes a causal model between the observed variables
Xi in which hidden confounding is allowed. This is illustrated in Figure 2, which depicts a
3 variable SCM with feedback loops and confounding. Learning a causal model as in (15)
with ICA is generally done by performing the following two steps.

(i) (ICA) The matrix (Id−B) is inferred by ICA up to an undefined scale and permuta-
tion of its rows by using an appropriate ICA procedure. This step is often infeasible
in the presence of confounding H since existing ICA methods only allow noise under
restrictive assumptions (cf. Table 1).

(ii) (identify B) There are essentially two assumptions that one can make in order for this
to work. The first is to assume the underlying causal model has an acyclic structure
as in Shimizu et al. (2006). In such cases the matrix B needs to be permuted to an
upper triangular matrix. The second option is to allow for feedback loops in the causal
model but restrict the types of feedback to exclude infinite loops as in Hoyer et al.
(2008) and Rothenhäusler et al. (2015).

When performing step (i) there are two important modeling assumptions that are made
when selecting the ICA procedure: (a) the type of allowed signals (types of interventions)
and (b) the type of allowed confounding. For the classic ICA setting with non-Gaussian
source signals and no noise this translates to the class of linear non-Gaussian models, such
as Linear Non-Gaussian Acyclic Models (LiNGAMs) introduced by Shimizu et al. (2006).
While such models are a sensible choice in a purely observational setting (i.e., no samples
from interventional settings) they are somewhat misspecified in terms of (a) when data from
different interventional settings or time-continuous intervention shifts are observed (see Re-
mark 3). In those settings, it is more natural to use ICA methods that are tailored to
sequential shifts as for example choiICA or coroICA. Moreover, most common ICA methods
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S1 S2
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H1 H2

X1 ← b1,2X
2 + S1 +H1

X2 ← b2,1X
1 + b2,3X

3 + S2 +H2

X3 ← b3,1X
1 + S3 +H1 +H2

Figure 2. Illustration of an SCM with (including colored nodes H1, H2) and without
(excluding colored nodes) confounding.

consider noise-free mixing, which from a causal perspective implies that no hidden confound-
ing is allowed. While noisy ICA weakens this assumption, existing methods only allow for
time-independent or even iid noise, which again greatly restricts the type of confounding.
In contrast, our proposed coroICA allows for any type of block-wise stationary confounding,
hence greatly increasing the class of causal models which can be inferred. This is attractive
for causal modeling as it is a priori unknown whether hidden confounding exists. There-
fore, our proposed procedure allows for robust causal inference under general confounding
settings. In Section 3.1, we illustrate a potential application to climate science and how the
choice of ICA can have a strong impact on the estimates of the causal parameters.

Remark 3 (relation between interventions and non-stationarity) A causal model
does not only describe the observational distribution but also the behavior of the data generat-
ing model under all of the allowed interventions. Here, we restrict the allowed interventions
to distribution shifts in the source signals, that either change the distribution block-wise
(e.g., abruptly changing environmental conditions) or continuously (e.g., continuous shifts
in the environmental conditions). Any such shifts are by definition synonymous with the
process Si being non-stationary. In our proposed causal model (15) the non-stationarity
of the signal therefore corresponds to shifts in the environmental conditions which can be
utilized, using coroICA, to infer the underlying causal structure. From this perspective, the
causal inference procedure we propose here is a method based on interventional data rather
than plainly observational data, while the interventions are not exactly known.

3.1. Application to Climate Science

To motivate the foregoing causal model we consider a prominent example from climate sci-
ence: the causal relationship between carbon dioxide concentration (CO2) and temperature
(T). More precisely, we consider Antarctic ice core data that consists of temperature and
carbon dioxide measurements of the past 800’000 years due to Bereiter et al. (2015, carbon
dioxide) and Jouzel et al. (2007, temperature). We combined both temperature and carbon
dioxide data and recorded measurements every 500 years by a cubic interpolation of the
raw data. The data is shown in Figure 3 (right). Oversimplifying, one can model this data
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as an SCM with time-lags as follows(
log(CO2)t

Tt

)
=

(
0 β
α 0

)
︸ ︷︷ ︸

=B0

(
log(CO2)t

Tt

)
+

p∑
k=1

Bk

(
log(CO2)t−k

Tt−k

)
+ S̃t, (16)

where S̃t = St + Ht with St component-wise independent non-stationary source signals
and Ht a stationary confounding process. Vector-valued linear time-series models of this
type are referred to as structural auto regressive models (SVARs) (see e.g., Lütkepohl,
2005). They have been previously analyzed in the confounding free-case by Hyvärinen
et al. (2010), using an ICA based causal inference approach. A graphical representation of
such a model is shown in Supplement B.2, Figure 13. In this example, we can think of the
source signals St as being two independent summaries of important factors that affect both
temperature and carbon dioxide and vary over time, e.g., environmental catastrophes like
volcano eruptions and large wildfires, sunspot activity or ice-coverage. These variations can
be considered as changing environmental conditions or interventions (see Remark 3). On
the other hand the stationary confounding process Ht can be thought of as factors which
affect both temperature and carbon dioxide in a constant fashion over time, for example
this could be effects due the shifts in the earth’s rotation axis.

Assuming that this was the true underlying causal model, we could use it to predict what
happens under interventions. From a climate science perspective an interesting intervention
is given by doubling the concentration of CO2 and determining the resulting instantaneous
(faster than 1000 years) effect on the temperature. This effect is commonly referred to as
equilibrium climate sensitivity (ECS) due to CO2 which is loosely defined as the change in
degrees temperature associated with a doubling of the concentration of carbon dioxide in the
earth’s atmosphere. In the fifth assessment report of the United Nations Intergovernmental
Panel on Climate Change it has been stated that ”there is high confidence that ECS is
extremely unlikely less than 1 ◦C and medium confidence that the ECS is likely between
1.5 ◦C and 4.5 ◦C and very unlikely greater than 6 ◦C” (Intergovernmental Panel on Climate
Change, 2014, Chapter 10). Since the measurement frequency in our model is quite low
(500 years) and we model the logarithm of carbon dioxide the ECS corresponds to

ECS = log(2)α.

Estimating the model in (16) can be done by first fitting a vector auto-regressive model of
the time lags using OLS resulting in a vector of residuals

Rt =

(
log(CO2)t

Tt

)
−

(
̂log(CO2)t
T̂t.

)

Then, one can apply the two-step causal inference procedure described in Section 3 to

Rt = B0Rt + S̃t.

Since we are in a two-dimensional setting, step (ii) (i.e., identifying the causal parameters
α and β from the estimated mixing matrix) only requires to assume that feedback loops
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Figure 3. (left) Estimated equilibrium climate sensitivity (ECS) for different ICAs depend-
ing on the number of lags included into the SVAR model. The light gray and dark gray
overlay indicate likely and very likely value ranges, respectively, for the true value of climate
sensitivity as per the fifth assessment report of the United Nations Intergovernmental Panel
on Climate Change (cf. Section 3.1). The differences across procedures illustrate that the
choice of ICA has a large effect on the estimation. (right) Interpolated time-series data,
which we model with an SVAR model.

do not blow-up, which translates into B0 having spectral norm less than one. Given that
the signal is sufficiently strong (i.e., there are sufficient interventions on both CO2 and T ),
it is possible to recover the causal parameters by trying both potential permutations of
the sources with subsequent scaling and assessing whether the aforementioned condition is
satisfied.

We applied this procedure based on coroICA (var) to the data in order to estimate climate
sensitivity and compared it with results obtained when using fastICA or choiICA (var).
The results are given in Figure 3. We believe the results illustrate two important aspects.
Firstly, the choice of the lags has a strong effect on the estimation of the causal effect
parameters, particularly for boundary cases. If it is chosen too small the remaining time-
dependence in the data can obscure the signal. If it is chosen too big part of the signal starts
being removed. Choosing an appropriate number of lags is therefore crucial. One option
would be to apply an information criterion (AIC or BIC) for this. Secondly, the results
illustrate that the choice of ICA has a large impact on the estimated causal effect parameters.
More specifically, both the assumed signal as well as the assumed confounding have an
impact on the estimation. Compare the results between fastICA (non-Gaussian signal)
and choiICA/coroICA (variance signal) for the former and observe the differences between
fastICA/choiICA (no confounding) and coroICA (adjusted for stationary confounding) for
the latter. The choice of the ICA algorithm should therefore be driven by the assumptions
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(both on signal type and confounding) one is willing to employ on the underlying model.
Considering a variance signal and adjusting for confounding, coroICA appears to lead to
estimates of equilibrium climate sensitivity that are more closely in line with the highly
likely bands previously identified by the United Nations Intergovernmental Panel on Climate
Change. This observation is only indicative as all three methods yield highly variable results
and also the panel’s highly likely band rests on certain assumptions that may become refuted
at some later point. coroICA can be considered a conservative choice if no assumptions on
confounding can be made, while noise-free methods may outperform if indeed there were
no confounding factors.

4. Experiments

In this section, we analyze empirical properties of coroICA. To this end, we first illustrate the
performance of coroICA as compared to time-concatenated versions of (noisy) ICA variants
on simulated data with and without confounding. We also compare on real data and outline
potential benefits of using our method when analyzing multi-subject EEG data.

4.1. Competing Methods

In all of our numerical experiments, we apply coroICA as outlined in Algorithm 1, where we
partition each group based on equally spaced grids and run a fixed number of 10 · 103 itera-
tions of the uwedge approximate joint diagonalizer. Unless specified otherwise, coroICA
refers to coroICA (var) (i.e., the variance signal based version) and we explicitly write
coroICA (var), coroICA (TD) and coroICA (var&TD) whenever appropriate to avoid confu-
sion. We compare with all of the methods in Table 1. Since no Python implementation was
publicly available, we implemented the choiICAs and SOBI methods ourselves also based
on a fixed number of 10 · 103 iterations of the uwedge approximate joint diagonalizer. For
fastICA we use the implementation from the scikit-learn Python library due to Pedregosa
et al. (2011) and use the default parameters.

For the simulation experiments in Section 4.2, we also compare to random projections
of the sources, where the unmixing matrix is simply sampled with iid standard normal
entries. The idea of this comparison is to give a baseline of the unmixing problem and
enhance intuition about the scores’ behavior. In order to illustrate the variance in this
method, we generally sample 100 random projections and show the results for each of
them. A random mixing does not lead to interpretable sources, thus we do not compare
with random projections in the EEG experiments in Section 4.3.

4.2. Simulations

In this section, we investigate empirical properties of coroICA in well-controlled simulated
scenarios. First off, we show that we can recover the correct mixing matrix given that the
data is generated according to our model (5) and Assumptions 1 and 2 hold, while the other
ICAs necessarily fall short in this setting (cf. Section 4.2.1). Moreover, in Section 4.2.2 we
show that even in the absence of any confounding (i.e., when the data follows the ordinary
ICA model and H ≡ 0 in our model) we remain competitive with all competing ICAs.
Finally, in Section 4.2.3 we analyze the performance of coroICA for various types of signals
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and noise settings. Our first two simulation experiments are based on block-wise shifting
variance signals, which we describe in Data Set 1 and our third simulation experiment is
based on GARCH type models described in Data Set 2.

4.2.1. Dependence on Confounding Strength

For this simulation experiment, we sample data according to Data Set 1 and choose to
simulate n = 105 (dimension d = 22) samples fromm = 10 groups where each group contains
n/m = 104 observations. Within each group, we select a random partition consisting of
|Pg| = 10 subsets while ensuring that these have the same size on average. We fix the signal
strength to c1 = 1 and consider the behavior of coroICA (trained on half of the groups
with an equally spaced grid of 10 partitions per group) for different confounding strengths
c1 = {0.125, 0.25, 0.5, 1, 1.5, 2, 2.5, 3}. The results for 1000 repetitions are shown in Figure 4.
To allow for a fair comparison we take the same partition size for choiICA (var).

Data Set 1: Block-wise shifting variance signals

For our simulations we select m equally sized groups G := {g1, . . . , gm} of the data
points {1, . . . , n} and for each group g ∈ G construct a partition Pg. Then, we sample
a model of the form

Xi = A · (Si + C ·Hi) ,

where the values on the right-hand side are sampled as follows:

• A,C ∈ Rd×d are sampled with iid entries from N (0, 1) and N (0, 1
d), respectively.

• For each g ∈ G the variables Hi ∈ Rd are sampled from N (0, σ2
g Idd), where the

σ2
g are sampled iid from Unif(0.1, b1).

• For each g ∈ G and e ∈ Pg the variables Si ∈ Rd are sampled from N (0, η2
e Idd),

where the η2
e are sampled iid from Unif(0.1, b2).

The parameters b1 and b2 are selected in such a way that the expected confounding
strength c1 = E(σ2

g) and variance signal strength c2 := E(|η2
e − η2

f |) are as dictated by
the respective experiment. Due to the uniform distribution this reduces to

b1 = 2c1 − 0.1 and b2 = 3c2 + 0.1.

The results indicate that in terms of the MD index the competitors all become worse
as the confounding strength increases. All competing ICAs systematically estimate an
incorrect unmixing matrix. coroICA on the other hand only shows a very small loss in
precision as confounding increases; the small loss is expected due to the decreasing signal
to noise ratio. In terms of MCIS, the behavior is analogous but slightly less well resolved;
with increasing confounding strength the unmixing estimation of all competing ICAs is
systematically biased resulting in bad separation of sources and high MCIS scores both
out-of-sample and in-sample.
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Figure 4. Results of the simulation experiment described in Section 4.2.1. Plot shows per-
formance measures (MD: small implies close to truth; MCIS: small implies stable) for fixed
signal strength and various confounding strengths. The difference between the competing
ICAs and coroICA is more prominent for higher confounding strengths where the estimates
of the competing ICAs are increasingly different from the true unmixing matrix and the
sources become increasingly unstable.

4.2.2. Efficiency in Absence of Group Confounding

For this simulation experiment, we sample data according to Data Set 1 and choose to
simulate n = 2 · 104 (dimension d = 22) samples from m = 10 groups where each group
contains n/m = 2 · 103 observations. Within each group, we then select a random par-
tition consisting of |Pg| = 10 subsets while ensuring that these have the same size on
average. This time, to illustrate performance in the absence of confounding, we fix the
confounding strengths c1 = 0 and consider the behavior of coroICA (applied to half of the
groups with an equally spaced grid of 10 partitions per group) for different signal strengths
c2 = {0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4}. The results for 1000 repetitions are shown
in Figure 5. Again, choiICA (var) is applied with the same partition size.

The results indicate that overall coroICA performs competitive in the confounding-free
case. In particular, there is no drastic negative hit on the performance of coroICA as
compared to choiICA (var) in settings where the data follows the ordinary ICA model. The
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Figure 5. Results of the simulation experiment described in Section 4.2.2. Plot shows
performance measures (MD: small implies close to truth; MCIS: small implies stability)
for data generated without confounding and for various signal strengths. These results are
reassuring, as they indicate that when applied to data that follows the ordinary ICA model,
coroICA still performs competitive to competing ICAs even though it allows for a richer
model class.

slight advantage compared to fastICA in this setting is due to the signal type which favors
ICA methods that focus on variance signals.

4.2.3. Comparison with Other Noisy ICA Procedures

To get a better understanding of how our proposed ICA performs for different signal and
noise types, we compare it on simulated data as described in Data Set 2. We illustrate
the different behavior with respect to the different types of signal by applying all three of
our proposed coroICA procedures (coroICA (var), coroICA (TD) and coroICA (var&TD)) and
compare them to the corresponding choiICA variants which do not adjust for confounding
(choiICA (var), choiICA (TD) and choiICA (var & TD)). While all coroICA procedures can
deal with any type of stationary noise, choiICA (TD) only works for time-independent
noise and choiICA (var) and choiICA (var & TD) cannot handle any type of noise at all (see
Table 1). Additionally, we also compare with fastICA to assess its performance in the
various noise settings. The results are depicted in Figure 6.
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Data Set 2: GARCH simulation

For this simulation we consider different settings of the confounded mixing model

Xt = ASt +Ht.

More precisely, we consider the following three different GARCH type signals: (i) chang-
ing variance, (ii) changing time-dependence, and (iii) both changing variance and chang-
ing time-dependence. For each of these signal types we consider two types of confound-
ing (noise) terms: (a) time-independent and (b) time-dependent auto-regressive noise.
For both we construct d independent processes H̃1, . . . , H̃d and then combine them
with a random mixing matrix C as follows

Ht = C · H̃t.

Full details are given in Supplement B.3.
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Figure 6. Results of the simulation experiment described in Section 4.2.3 and Data Set 2.
Plots show performance (MD: small implies close to truth) for data generated with auto-
regressive (AR) or iid noise and for var, TD, and var & TD signal as described in Data Set 2.
coroICA (var&TD) is able to estimate the correct mixing in all of the considered settings,
while others break whenever the more restrictive signal/noise assumptions are not met.

In all settings the most general method coroICA (var&TD) is able to estimate the correct
mixing. The two signal specific methods coroICA (TD) and coroICA (var) are also able to
accurately estimate the mixing in settings where a corresponding signal exists. It is also
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worth noting that they slightly outperform coroICA (var&TD) in these settings. In contrast,
when comparing with the choiICA variants, coroICA is in general able to outperform the
corresponding method. Only in the setting of a changing time-dependence with time-
independent noise, choiICA (TD) is able to slightly outperform coroICA (TD).

4.2.4. Summary of the Performance of coroICA

In summary, coroICA performs well on a larger model class consisting of both the group-wise
confounded as well as the confounding-free case. An advantage over all competing ICAs
is gained in confounded settings (as shown in Section 4.2.1) while there is at most a small
disadvantage in the unconfounded case (cf. Section 4.2.2). This suggests that whenever the
data is expected to contain at least small amounts of stationary noise or confounding, one
may be better off using coroICA as the richer model class will guard against wrong results.
The results in Section 4.2.3 further underline the robustness of our proposed method to
various types of noise (and signals) for which other methods break. Again, even in settings
that satisfy the assumptions of the more tailored methods coroICA remains competitive.

4.3. EEG Experiments

ICA is often applied in the analysis of EEG data. Here, we illustrate the potential benefit
and use of coroICA for this. Specifically, we consider a multi-subject EEG experiment as
depicted in Figure 7. The goal is to find a single mixing matrix that separates the sources
simultaneously on all subjects. Our proposed model allows that the EEG recordings for
each subject have a different but stationary noise term H. We illustrate the applicability

subject a

Xa = ASa +Ha

S1
a

S2
a

S3
a

X1
a X2

a X3
a

H1
a H2

a H3
a

subject b
Xb = ASb +Hb

S1
b

S2
b

S3
b

X1
b X2

b X3
b

H1
b H2

b H3
b

· · ·

coroICA(Xa, Xb, ...) ≈ A

Figure 7. Illustration of a multi-subject EEG recording. For each subject, EEG signals X
are recorded which are assumed to be corrupted by subject-specific (but stationary) noise
terms H. The goal is to recover a single mixing matrix A that separates signals well across
all subjects.
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of our method to this setting based on two publicly available EEG data sets.

Data Set 3: CovertAttention data

This data set is due to Treder et al. (2011) and consists of EEG recordings of 8 subjects
performing multiple trials of covertly shifting visual attention to one out of 6 cued
directions. The data set contains recordings of

• 8 subjects,

• for each subject there exist 6 runs with 100 trials,

• each recording consists of 60 EEG channels recorded at 1000 Hz sampling fre-
quency, while we work with the publicly available data that is downsampled to
200 Hz.

Since visual inspection of the data revealed data segments with huge artifacts and
details about how the publicly available data was preprocessed was unavailable to us,
we removed outliers and high-pass filtered the data at 0.5 Hz. In particular, along each
dimension we set those values to the median along its dimension that deviate more
than 10 times the median absolute distance from this median. We further preprocess
the data by re-referencing to common average reference (car) and projecting onto the
orthogonal complement of the null component. For our unmixing estimations, we use
the entire data, i.e., including intertrial breaks.

For classification experiments (cf. Section 4.3.2) we use, in line with Treder et al.
(2011), the 8–12 Hz bandpass-filtered data during the 500–2000 ms window of each trial,
and use the log-variance as bandpower feature (Lotte et al., 2018). The classification
analysis is restricted to valid trials (approximately 311 per subject) with the desired
target latency as described in Treder et al. (2011).

Results on the CovertAttention Data Set 3 are presented here, while the results of the
analogous experiments on the BCICompIV2a Data Set 4 are deferred to Supplement C.
For both data sets, we compare the recovered sources of coroICA with those recovered by
competing ICA methods. Since ground truth is unknown we report comparisons based on
the following three criteria:

stability and independence
We use MCIS (cf. Section 2.4) to assess the stability and independence of the recovered
sources both in- and out-of-sample.

classification accuracy
For both data sets there is label information available that associates certain time
windows of the EEG recordings with the task the subjects were performing at that
time. Based on the recovered sources, we build a classification pipeline relying on
feature extraction and classification techniques that are common in the field (Lotte
et al., 2018). The achieved classification accuracy serves as a proxy of how informative
and suitable the extracted signals are.
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topographies
For a qualitative assessment, we inspect the topographic maps of the extracted sources,
as well as the corresponding power spectra and a raw time-series chunk. This is used to
illustrate that the sources recovered by coroICA do not appear random or implausible
for EEG recordings and are qualitatively similar to what is expected from other ICAs.
Furthermore, we provide an overview over all components achieved on Data Set 3 by
SOBI, fastICA, and coroICA in the Supplementary Section D, where components are
well resolved when the corresponding topographic map and activation map are close
to each other (cf. Section 2.4).

4.3.1. Stability and Independence

We aim to probe stability not only in-sample but also verify the expected increase in stability
when applying the unmixing matrix to data of new unseen subjects, i.e., to new groups of
samples with different confounding specific to that subject. In order to assess stability and
independence of the recovered sources in terms of the MCIS both in- and out-of-sample and
for different amounts of training samples, we proceed by repeatedly splitting the data into
a training and a test data set. More precisely, we construct all possible splits into training
and test subjects for any given number of training subjects. For each pair of training and
test set, we fit an unmixing matrix using coroICA and all competing methods described in
Section 4.1. We then compute the MCIS on the training and test data for each method
separately and collect the results of each training-test split for each number of training
subjects.

Results obtained on the CovertAttention data set (with equally spaced partitions of ≈15
seconds length) are given in Figure 8 and the results for the BCICompIV2a data set (with
equally spaced partitions of ≈15 seconds length) are shown in Supplement C.1, Figure 14.
For both data sets the results are qualitatively similar and support the claim that the
unmixing obtained by coroICA is more stable when transferred to new unseen subjects.
While for the competing ICAs the instability on held-out subjects does not follow a clear
decreasing trend with increasing number of training subjects, coroICA can successfully make
use of additional training subjects to learn a more stable unmixing matrix.

Due to the characteristics and low signal-to-noise ratio in EEG recordings, the evaluation
based on the absolute MCIS score is less well resolved than what we have seen in the
simulations before. For this reason we additionally provide a more focused evaluation by
considering the MCIS fraction: the fraction of the MCIS achieved on a subject by the
respective competitor method divided by the MCIS achieved on that subject by coroICA
when trained on the same subjects. Thus, this score compares MCIS on a per subject basis,
where values greater than 1 indicate that the respective competing ICA method performed
worse than coroICA. Figure 9 shows the results on the CovertAttention Data Set 3 confirming
that coroICA can successfully incorporate more training subjects to derive a better unmixing
of signals.

4.3.2. Classification based on Recovered Sources

While the results in the previous section indicate that coroICA can lead to more stable
separations of sources in EEG than the competing methods, in scenarios with an unknown
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Figure 8. Experimental results for comparing the stability of sources (MCIS: small implies
stable) trained on different numbers of training subjects (cf. Section 4.3.1), here on the
CovertAttention Data Set 3, demonstrating that coroICA, in contrast to the competing ICA
methods, can successfully incorporate more training subjects to learn more stable unmixing
matrices when applied to new unseen subjects.

ground truth the stability of the recovered sources cannot serve as the sole determining
criterion for assessing the quality of recovered sources. In addition to asking whether the
recovered sources are stable and independent variance signals, we hence also need to in-
vestigate whether the sources extracted by coroICA are in fact reasonable or meaningful.
In the “America’s Got Talent Duet Problem” (cf. Example 2) this means that each of the
recovered sources should only contain the voice of one (independent) singer (plus some
confounding noise that is not the other singer). For EEG data, this assessment is not as
easy. Here, we approach this problem from two angles: (a) in this section we show that the
recovered sources are informative and suitable for common EEG classification pipelines, (b)
in Section 4.3.3 we qualitatively assess the extracted sources based on their power spectra
and topographic maps.

In both data sets there are labeled trials, i.e., segments of data during which the subject
covertly shifts attention to one of six cues (cf. Data Set 3) or performs one of four motor
imagery tasks (cf. Data Set 4). Based on these, one can try to predict the trial label
given the trial EEG data. To mimic a situation where the sources are transferred from
other subjects, we assess the informativeness of the extracted sources in a leave-k-subjects-
out fashion as follows. We estimate an unmixing matrix on data from all but k subjects,
compute bandpower features for each extracted signal and for each trial (as described in
Data Set 3 and Data Set 4), and on top of those we train an ensemble of 200 bootstrapped
shrinkage linear discriminant analysis classifiers where each is boosted by a random forest
classifier on the wrongly classified trials. This pipeline (signal unmixing, bandpower-feature
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Figure 9. Experimental results for comparing the stability of sources of the competing
methods relative to the stability obtained by coroICA (MCIS fraction: above 1 implies less
stable than coroICA) trained on different numbers of training subjects (cf. Section 4.3.1),
here on the CovertAttention Data Set 3, demonstrating that coroICA can successfully in-
corporate more training subjects to learn more stable unmixing matrices when applied to
new unseen subjects.

computation, trained ensemble classifier), is then used to predict the trials on the k held-out
subjects.

The results are reported in Figure 10 and Supplement C.2, Figure 16 which show for
each number of training subjects, the accuracies achieved on the respective held-out sub-
jects when using the unmixing obtained on the remaining subjects by either coroICA or
one of the competitor methods. The results on both data sets support the claim that the
sources recovered by coroICA are not only stable but in addition also capture meaningful
aspects of the data that enable competitive classification accuracies in fully-out-of-sample
classification. The mean improvement in classification accuracy of coroICA over the other
methods increases with increasing number of training subjects. This behavior is expected
since it is difficult to disambiguate signal from subject-specific confounding for few train-
ing subjects, while coroICA is expected to learn an unmixing which better adjusts for the
confounding with more training subjects.

It is worth noting that these classification results depend heavily on the employed clas-
sification pipeline subsequent to the source separation. Here, our goal is only to show that
coroICA does indeed separate the data into informative sources. In practice, and when only
classification accuracy matters, one might also consider using a label-informed source sep-
aration (Dähne et al., 2014), employ common spatial patterns (Koles et al., 1990) or use
decoding techniques based on Riemannian geometry (Barachant et al., 2012).
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Figure 10. Classification accuracies on held-out subjects (cf. Section 4.3.2), here on the
CovertAttention Data Set 3. Gray regions indicate a 95% confidence interval of random
guessing accuracies.

4.3.3. Topographic Maps

The components that coroICA extracts from EEG signals are stable (cf. Section 4.3.1) and
meaningful in the sense that they contain information that enables classification of trial
labels, which is a common task in EEG studies (cf. Section 4.3.2). In this section, we
complement the assessment of the recovered sources by demonstrating that the results
obtained by coroICA lead to topographies, activation maps, power spectra and raw time-
series that are similar to what is commonly obtained during routine ICA analyses of EEG
data when the plausibility and nature of ICA components is to be judged.

Topographies are common in the EEG literature to depict the relative projection strength
of extracted sources to the scalp sensors. More precisely, the column-vector aj of A = V −1

that specifies the mixing of the j-th source component is visualized as follows. A sketched
top view of the head is overlayed with a heatmap where the value at each electrodes’ position
is given by the corresponding entry in aj . These topographies are indicative of the nature
of the extracted sources, for example the dipolarity of source topographies is a criterion
invoked to identify cortical sources (Delorme et al., 2012) or the topographies reveal that
the source mainly picks up changes in the electromagnetic field induced by eye movements.
Another way to visualize an extracted source is an activation map, which is commonly ob-
tained by depicting the vector Ĉov(X)v>j (where vj is j-th row of unmixing matrix V ) and
shows for each electrode how the signal observed at that electrode covaries with the signal
extracted by vj (Haufe et al., 2014). Besides inspecting the raw time-series data, another
criterion invoked to separate cortical from muscular components is the log power spectrum.
For example, a monotonic increase in spectral power starting at around 20 Hz is understood
to indicate muscular activity (Goncharova et al., 2003) and peaks in typical EEG frequency
ranges are used to identify brain-related components.5.

5. These are commonly employed criteria which are also advised in the eeglab tutorial (Delorme and Makeig,
2004, https://sccn.ucsd.edu/wiki/Chapter_09:_Decomposing_Data_Using_ICA) and the neurophys-
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Figure 11. Visualization of exemplary EEG components recovered on the CovertAttention
Data Set 3. On the left the topographies of three components are shown where the mixing
matrix is the inverse of the unmixing matrix obtained by SOBI (ASOBI), the unmixing
matrix obtained by fastICA (AfastICA) and that of coroICA (var) (AcoroICA). On the right
we depict, for a randomly chosen subject, the activation maps (cf. Section 4.3.3 and 2.4), the
log power spectra, and randomly chosen chunks of the raw time-series data corresponding
to the respective coroICA (var) components. Components extracted by coroICA (var) are
qualitatively similar to those of the commonly employed ICA procedures; see Section 4.3.3
for details.

In Figure 11, we depict the aforementioned criteria for three exemplary components
extracted by coroICA on the CovertAttention Data Set 3. Following the discussion in Sec-
tion 2.4 we show the activation maps as

DiffX(v>j ) =
∑
M∈M∗

sign(vjMv>j )Mv>j ,

which captures variance changing signal and allows to asses the quality of a recovered
source by comparison to the topographic map aj (cf. Equation 2.4). Here, the idea is to
demonstrate that coroICA components are qualitatively similar to components extracted by
commonly employed SOBI-ICA or fastICA. Therefore, we choose to display one example of
an ocular component (2nd where the topography is indicative of eye movement), a cortical
component (7th where the dipolar topography, the typical frequency peak at around 8–
12 Hz, and the amplitude modulation visible in the raw time-series are indicative of the

iological biomarker toolbox wiki (Hardstone et al., 2012, https://www.nbtwiki.net/doku.php?id=

tutorial:how_to_use_ica_to_remove_artifacts).
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cortical nature), and an artifactual component (51st where the irregular topography and
the high frequency components indicate an artifact). For comparison, we additionally show
for each component the topographies of the components extracted by SOBI-ICA or fastICA
by matching the recovered source which most strongly correlates with the one extracted
by coroICA. The components extracted by coroICA closely resemble the results one would
obtain from a commonly employed ICA analysis on EEG data.

For completeness, we provide an overview over all components extracted on Data Set 3
by SOBI, fastICA, and coroICA (var) in the Supplementary Section D. Components are well
resolved when the corresponding topographic map and activation map are close to each
other (cf. Section 2.4), which, by visual inspection, appears to be more often the case for
coroICA than for the competing methods.

5. Conclusion

In this paper, we propose a method for recovering independent sources corrupted by group-
wise stationary confounding. It extends ordinary ICA to an easily interpretable model,
which we believe is relevant for many practical problems as is demonstrated in Section 3.1
for climate data and Section 4.3 for EEG data. We give explicit assumptions under which
the sources are identifiable in the population case (cf. Section 2.2). Moreover, we introduce
a straightforward algorithm for estimating the sources based on the well-understood concept
of approximate joint matrix diagonalization. As illustrated in the simulations in Section 4.2,
this estimation procedure performs competitive even for data from an ordinary ICA model,
while additionally being robust and able to adjust for group-wise stationary confounding.
For real data, we show that the coroICA model indeed performs reasonably on EEG data
and leads to improvements in comparison to commonly employed approaches, while at the
same time preserving an enhanced interpretation of the recovered sources.
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Supplementary material

The supplementary material consists of the following appendices.

A Identifiability Proof

B Complementary Material

C EEG Experiments on Data Set 4

D All Topographies on Data Set 3

Appendix A. Identifiability Proof

The proof is based on Theorem 1 from Kleinsteuber and Shen (2013). For completeness, we
introduce some of the notation therein and state their result with adapted notation to ease
following our proof of Theorem 1. We begin by defining the empirical correlation between
two vectors v,w ∈ Rd as

Ĉorr(v,w) :=

{
v>w
‖v‖‖w‖ , if v 6= 0 and w 6= 0,

1, otherwise.

Moreover, for a collection of (d × d)-real diagonal matrices {Z1, . . . , Zm}, we define the
following collinearity measure

ρ(Z1, . . . , Zm) := max
1≤k<l≤d

|Ĉorr(zk, zl)|, (17)

where zj := (z1(j) . . . , zm(j)) and zi(j) is the j-th diagonal element of the matrix Zi.
Using this notation we can state the uniqueness result due to Kleinsteuber and Shen (2013,
Theorem 1) as follows.

Theorem 4 (Kleinsteuber and Shen (2013, Theorem 1)) Let Di ∈ Rd×d, for i ∈
{1, . . . ,m} be diagonal, and let M ∈ Rd×d be an invertible matrix so that M>DiM is
diagonal as well. Then M is essentially, up to scaling and permutation of its columns,
unique if and only if ρ(D1, . . . , Dm) < 1.

Using this result we prove Theorem 1.

Proof The theorem is proven by the correct invocation of Theorem 4. We first define the
unmixing matrix V := A−1 and introduce the sets of matrices

Dvar := {V (Cov(Xk)− Cov(Xl))V
> | g ∈ G and k, l ∈ g}.

and

DTD := {V (Cov(Xk, Xk−τ )− Cov(Xl, Xl−τ ))V > | g ∈ G and k, l ∈ g}.
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Due to the assumed ICA model and Assumption 1, all matrices in the sets Dvar and DTD

are diagonal (cf. (6) and (7)). Moreover, for g ∈ G and k, l ∈ g it holds that

V (Cov(Xk)− Cov(Xl))V
>

= Cov(Sk)− Cov(Sl)

= diag(Var(S1
k)−Var(S1

l ), . . . ,Var(Sdk)−Var(Sdl ))

and

V (Cov(Xk, Xk−τ )− Cov(Xl, Xl−τ ))V >

= Cov(Sk, Sk−τ )− Cov(Sl, Sl−τ )

= diag(Cov(S1
k , S

1
k−τ )− Cov(S1

l , S
1
l−τ ), . . . ,Cov(Sdk , S

d
k−τ )− Cov(Sdl , S

d
l−τ )).

Next, we define for all j ∈ {1, . . . , d} the vectors

zj =

((
Var(Sjk)−Var(Sjl )

)
k,l∈g

)
g∈G

or zj =

((
Cov(Sjk, S

j
k−τ )− Cov(Sjl , S

j
l−τ )

)
k,l∈g

)
g∈G

,

depending on whether a variance signal or time-dependence signal is being considered,
respectively. Then, Assumption 2 or Assumption 3 implies for all distinct pairs p, q ∈
{1, . . . , d} that

|Ĉorr(zp, zq)| =
|zp · zq|
‖zp‖‖zq‖

< 1.

Hence, for either D = Dvar or D = DTD it holds that ρ(D) < 1, where ρ is defined in (17).
Since the identity matrix satisfies that IdD Id> is diagonal for all D ∈ D, we can invoke
Theorem 4 to conclude that any matrix M ∈ Rd×d for which MDM> is diagonal for all
D ∈ D, is equal to the identity matrix up to scaling and permutation of its columns. Next,
we consider the two signal types separately.

• variance signal: If there is a variance signal that satisfies Assumption 2, assume
there exists an invertible matrix Ã such that for all g ∈ G and all k, l ∈ g it holds that

Ã−1(Cov(Xk)− Cov(Xl))(Ã
−1)> = Cov(Sk)− Cov(Sl).

Then, it also holds that

(V Ã) (Cov(Sk)− Cov(Sl))︸ ︷︷ ︸
∈Dvar

(V Ã)> = V (Cov(Xk)− Cov(Xl))V
>,

which is diagonal.

• time-dependence signal: If there is a time-dependence signal that satisfies As-
sumption 3, assume there exists an invertible matrix Ã such that for all g ∈ G and all
k, l ∈ g it holds that

Ã−1(Cov(Xk, Xk−τ ))− Cov(Xl, Xl−τ ))(Ã−1)> = Cov(Sk, Sk−τ )− Cov(Sl, Sl−τ ).
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Then, it also holds that

(V Ã) (Cov(Sk, Sk−τ )− Cov(Sl, Sl−τ ))︸ ︷︷ ︸
DTD

(V Ã)> = V (Cov(Xk, Xk−τ ))−Cov(Xl, Xl−τ ))V >,

which is diagonal.

Using the above reasoning, either of the two cases—depending on whether Assumption 2
or 3 holds—shows that V Ã is equal to the identity matrix up to permutation and rescaling
of its columns. Moreover, this implies that Ã is equal to A up to scaling and permutation
of its columns. This completes the proof of Theorem 1.
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Appendix B. Complementary Material

B.1. America’s Got Talent

Singer 1

Singer 2

Mic 1

Mic 2

Audience

Window 1

Window 2

Figure 12. Schematic of the “America’s Got Talent Duet Problem” described in Example 2.
The sound from the windows and audience is taken to be confounding noise which has fixed
covariance structure over given time blocks. The challenge is to recover the sound signals
from the individual singers given the recordings of the two microphones.
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B.2. Causality Example

log(CO2)t

Tt

S̃1
t

S̃2
t

log(CO2)t−1

Tt−1

S̃1
t−1

S̃2
t−1

log(CO2)t−2

Tt−2

S̃1
t−2

S̃2
t−2

αβαβαβ

Figure 13. Graphical representation of the causal feedback model between carbon dioxide
(CO2) and temperature (T). The dashed line corresponds to stationary confounding.

B.3. Simulations

The GARCH model that we simulate from in Section 4.2.3 is specified as follows. We
simulate sources S1, . . . , Sd from the following GARCH-type model

σ2
i = a1 + a2 · (Sji−1)2 + a3 · σ2

i−1

Sji = b1S
j
i−1 + · · ·+ bpS

j
i−p + σiεi,

where the εi are independent and standard normal. Moreover, the noise terms H1, . . . ,Hd

are assumed to be either given by the following AR-process

Hj
i = c1H

j
i−1 + · · ·+ cqH

j
i−q + νi,

where νi are independent standard normal, q is uniformly distributed on {1, . . . , 10} and ci
independent N

(
0, 1/(i+ 1)2

)
or simply as iid N (0, 1) random variables. The final data is

then constructed according to the following equation

Xi = A · Si + H̃i,

where H̃i = ACHi and A,C ∈ Rd×d are sampled with iid entries from N (0, 1) and N (0, 1
d),

respectively. To illustrate, the effect of the signal type we consider the following three
settings.
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• Setting 1 (time-independent with changing variance)
Set a = (0.005, 0.026, 0.97) such that the variance changes over time and p = 0 to
ensure time-independent signals. Based on these settings we sample n = 200000
observations.

• Setting 2 (varying time-dependence structure with constant variance)
Set a = (1, 0, 0) such that the variance is fixed to 1. Then, sample p 100 times
uniformly from {1, . . . , 10} and bi independent from N

(
0, 1/(i+ 1)2

)
and simulate

2000 observations for each of the 100 parameter settings, leading to a total of n =
200000 observations.

• Setting 3 (varying time-dependence structure with changing variance)
Set a = (0.005, 0.026, 0.97) such that the variance changes over time. Then, we sample
p 100 times uniformly from {1, . . . , 10} and bi independent from N

(
0, 1/(i+ 1)2

)
and

simulate 2000 observations for each of the 100 parameter settings, leading to a total
of n = 200000 observations.
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Appendix C. EEG Experiments on Data Set 4

Analogous to Sections 4.3.1 and 4.3.2 we conducted experiments on the BCICompIV2a
Data Set 4, the results of which are presented in the subsequent sections.

Data Set 4: BCICompIV2a data

This data set is due to Tangermann et al. (2012, Section 5) and consists of EEG
recordings of 9 subjects performing multiple trials of 4 different motor imagery tasks.
The data set contains recordings of

• 9 subjects, each recorded on 2 different days,

• for each subject and day there exist 6 runs with 48 trials,

• each recording consists of 22 EEG channels recorded at 250 Hz sampling fre-
quency,

• and is bandpass filtered between 0.5 and 100 Hz and is 50 Hz notch filtered.

For our analysis we only use the trial-data, i.e., the concatenated segments of seconds
3–6 of each trial (corresponding to the motor imagery part of the trials (Tangermann
et al., 2012)). We further preprocess the data by re-referencing to common average
reference (car) and projecting onto the orthogonal complement of the null component.

As features for classification experiments (cf. Section 4.3.2) on this data set we
use bandpower in the 8–30 Hz band as measured by the log-variance of the 8–30 Hz
bandpass-filtered trial data (Lotte et al., 2018).
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C.1. Stability and Independence
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Figure 14. Experimental results for comparing the stability of sources (MCIS: small implies
stable) trained on different numbers of training subjects (cf. Section 4.3.1), here on the
BCICompIV2a Data Set 4, demonstrating that coroICA, in contrast to the competing ICA
methods, can successfully incorporate more training subjects to learn more stable unmixing
matrices when applied to new unseen subjects.
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Figure 15. Experimental results for comparing the stability of sources of competitors relative
to the stability obtained by coroICA (MCIS fraction: > 1 implies less stable than coroICA)
trained on different numbers of training subjects (cf. Section 4.3.1), here on the BCICom-
pIV2a Data Set 4, demonstrating that coroICA can successfully incorporate more training
subjects to learn more stable unmixing matrices when applied to new unseen subjects.
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C.2. Classification based on Recovered Sources
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Figure 16. Classification accuracies on held-out subjects (cf. Section 4.3.2), here on the
BCICompIV2a Data Set 4. Gray regions indicate a 95% confidence interval of random
guessing accuracies.
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Appendix D. All Topographies and Activation Maps on Data Set 3

DiffX(V ⊤
SOBI) ASOBI DiffX(V ⊤

SOBI) ASOBI DiffX(V ⊤
SOBI) ASOBI DiffX(V ⊤

SOBI) ASOBI

Figure 17. Activation maps (left of each pair of columns) and topographies (right of each
pair of columns) of 59 components extracted by SOBI on the CovertAttention Data Set 3.
For components that are well resolved, both should look similar (cf. Section 2.4 and 4.3.3).
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Pfister∗, Weichwald∗, Bühlmann, and Schölkopf

DiffX(V ⊤
fastICA) AfastICA DiffX(V ⊤

fastICA) AfastICA DiffX(V ⊤
fastICA) AfastICA DiffX(V ⊤

fastICA) AfastICA

Figure 18. Activation maps (left of each pair of columns) and topographies (right of each
pair of columns) of 59 components extracted by fastICA on the CovertAttention Data Set 3.
For components that are well resolved, both should look similar (cf. Section 2.4 and 4.3.3).
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DiffX(V ⊤
coroICA) AcoroICA DiffX(V ⊤

coroICA) AcoroICA DiffX(V ⊤
coroICA) AcoroICA DiffX(V ⊤

coroICA) AcoroICA

Figure 19. Activation maps (left of each pair of columns) and topographies (right of each pair
of columns) of 59 components extracted by coroICA (var) on the CovertAttention Data Set 3.
For components that are well resolved, both should look similar (cf. Section 2.4 and 4.3.3).

45



Pfister∗, Weichwald∗, Bühlmann, and Schölkopf
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