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A B S T R A C T

Introduction: In animal models of non-alcoholic fatty liver disease (NAFLD), assessment of disease severity and
treatment effects of drugs rely on histopathological scoring of liver biopsies. However, little is known about the
sampling variation in liver samples from animal models of NAFLD, even though several histopathological
hallmarks of the disease are known to be affected by sampling variation in patients. The aim of this study was to
assess the sampling variation in multiple paired liver biopsies from three commonly used diet-induced rodent
models of NAFLD.
Methods: Eight male C57BL/6 mice, 8 male Sprague Dawley rats and 16 female Hartley guinea pigs were fed a
NAFLD-inducing high-fat diet for 16 weeks (mice and rats), 20 or 24 weeks (guinea pigs). After the initial diet
period, liver sections were sampled and subsequently assessed by histopathological scoring and biochemical
analyses.
Results: Fibrosis was heterogeneously distributed throughout the liver in mice, manifesting as both intra- and
interlobular statistically significant differences. Hepatic triglyceride content showed interlobular differences in
mice, and both intra- and interlobular differences in guinea pigs (24-week time point) all of which were sta-
tistically significant. Also, hepatic cholesterol content was subject to significant intra-lobular sampling variation
in mice, and hepatic glycogen content differed significantly between lobes in mice and guinea pigs.
Discussion: Dependent on animal model, both histopathological and biochemical end-points differed between
sampling sites in the liver. Based on these findings, we recommend that sample site location is highly stan-
dardized and properly reported in order to minimize potential sampling variation and to optimize reproduci-
bility and meaningful comparisons of preclinical studies of NAFLD.

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) has become one of the
most frequent causes of chronic liver disease in the Western world,
affecting ≈25% of the population and currently ranking as the second
most common aetiology among adults awaiting liver transplantation in
the United States (Wong et al., 2015; Younossi et al., 2011; Younossi
et al., 2016). The main diagnostic hallmark of NAFLD is the deposition

of excess fat in the liver (hepatic steatosis); however, the term “NAFLD”
encompasses several stages of liver disease with increasing pathological
severity (Ipsen, Lykkesfeldt, & Tveden-Nyborg, 2018). Uncomplicated/
simple hepatic steatosis (defined as accumulation of lipid in> 5% of
hepatocytes) represents a relatively benign part of the disease spectrum.
In some individuals, the disease progresses to non-alcoholic steatohe-
patitis (NASH), a condition characterized by coexisting hepatic in-
flammation, hepatocellular injury and increased oxidative stress, where
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fibrosis may or may not be present (Loomba & Sanyal, 2013). In con-
trast to simple hepatic steatosis, NASH is associated with increased
liver- and cardiovascular-related morbidity and mortality, and the ac-
curate diagnosis and staging of NASH is therefore a vital prognostic tool
(Anstee, Targher, & Day, 2013).

At present, histopathologic assessment of percutaneously obtained
liver biopsies is the gold standard in the diagnosis of NASH and hepatic
fibrosis in humans (Kleiner & Bedossa, 2015; Sanyal et al., 2015).
However, the invasive nature of the procedure and the inherent risk
imposed on the patients makes it unsuitable as a screening tool for
population studies. This has prompted a search for alternative diag-
nostic modalities, such as the use of imaging techniques and clinically
relevant surrogate biomarkers (Bedossa & Patel, 2016; Sanyal et al.,
2015). However, no non-invasive diagnostic method has yet been found
equivalent to the histopathologic evaluation of a liver biopsy (Sumida,
Nakajima, & Itoh, 2014; Wieckowska, McCullough, & Feldstein, 2007).

Besides the risk associated with obtaining liver biopsies in general,
the use of small-sample histopathology as primary diagnostic tool has
also been questioned because of the potential risk of sampling variation
(Ratziu et al., 2005). A standard biopsy approximates just 1/50000–1/
65000 of the total mass of the human liver (Bravo, Sheth, & Chopra,
2001) and although guidelines for optimal biopsy size and length are
available (Schiano et al., 2005; Vuppalanchi et al., 2007), it does not
exclude potential measurement errors. Several studies in patients with
NAFLD/NASH and other chronic liver diseases have reported hetero-
geneity in the distribution of histopathologic lesions when biopsies
taken from different parts of the liver were compared (Abdi, Millan, &
Mezey, 1979; Baunsgaard, Sanchez, & Lundborg, 1979; Bedossa,
Dargere, & Paradis, 2003; Janiec, Jacobson, Freeth, Spaulding, &
Blaszyk, 2005; Larson et al., 2007; Merriman et al., 2006; Ratziu et al.,
2005; Regev et al., 2002).

It is not known if the distribution of NAFLD associated histopatho-
logic lesions also differs between different anatomical parts of the liver
in commonly used animal models of NAFLD. The topic has not received
much attention in the literature and specific information on sampling
methodology in experimental studies describing liver histopathology in
animal models of NAFLD is often lacking or not sufficiently detailed
(Brunt, 2008). In addition to taking essential measures to avoid bias and
type 1 errors (false positives) by randomizing and blinding, sampling
variation should also be considered as a contributor to increased var-
iation and the risk of type 2 errors (false negatives), subsequently
compromising the ability to detect a true difference should it be pre-
sent. If these design-related issues are neglected the reproducibility and
reliability of readouts from experimental studies, in this case in NAFLD/
NASH, are reduced. Recent awareness on the diminished reproduci-
bility of preclinical studies within several fields of research has em-
phasized the need for increased attention as to how to reduce variation
and bias, and improve the validity of reported findings (Baker, 2016;
Begley & Ellis, 2012; Goodman, Fanelli, & Ioannidis, 2016; Prinz,
Schlange, & Asadullah, 2011). The aim of this study was to characterize
sampling variation in commonly evaluated histopathologic and bio-
chemical readouts from diet-induced rodent models of NAFLD. To ex-
plore potential species-differences and increase the general applic-
ability of our findings, three routinely used rodent species (mice, rats
and guinea pigs) were included in the study.

2. Materials and methods

2.1. Animals

Eight male Sprague-Dawley rats were purchased from Charles River
Laboratories (Sulzfeld, Germany), eight male C57BL/6 mice from
Taconic Biosciences (Lille Skensved, Denmark) and 16 female Hartley
guinea pigs from Envigo (Venray, The Netherlands). Animals were ac-
climatized for one week prior to study initiation and were seven to eight
weeks (guinea pigs, mice) or eight to nine weeks (rats) on arrival. Rats

and mice were housed two and ten per cage, respectively. Guinea pigs
were group-housed in a floor pen. All animals had unrestricted access to
non-chlorified, non-acidic tap-water and standard rodent chow (mice
and rats: 1324 Altromin, Brogaarden, Denmark; guinea pigs: standard
chow S9406-S020, Ssniff Spezialdiäten GmbH, Soest, Germany) prior to
study initiation. Temperature in the animal rooms was maintained at
20–25 °C with a light/dark cycle of 12/12 h, air-change 8–15 times/h
and a relative humidity of 30–70%. The study was approved by the
Danish Animal Experiments Inspectorate under the Ministry of Food,
Agriculture and Fisheries and in accordance with European Union di-
rective 2010/63/EU.

2.2. Experimental design

After the acclimatization period, mice and rats were placed on a
high-fat/high-fructose/high-cholesterol diet (NASH; (40% fat, 20%
fructose, 2% cholesterol), D09100301, Research Diets, NJ, USA) for
16weeks (n=8/group) and guinea pigs on a high-fat/high-sucrose/
high-cholesterol diet (HFS; (20% fat, 15% sucrose, 0.35% cholesterol),
S9406-S025, Ssniff Spezialdiäten GmbH, Soest, Germany) for 20 or
24weeks (n= 8/time point) based on the previously confirmed
NAFLD/NASH induction in the models (Ipsen et al., 2016; Ipsen et al.,
2018; Jensen et al., 2018; Trevaskis et al., 2012). Diets were stored at
−20 °C throughout the study period and fresh aliquots thawed twice
weekly to prevent putrefaction. After 16 weeks, mice and rats were
euthanized by exsanguination under isoflurane anesthesia by incision of
the heart. After 20 or 24weeks, guinea pigs were anaesthetized and
euthanized as described previously (Tveden-Nyborg et al., 2016). Im-
mediately following euthanasia livers were excised and the left lateral
lobe (L1), the right medial lobe (L2) and the caudate lobe (L3) were
sampled for histologic and biochemical analyses. Three sampling sites
were chosen in the distal (L1A), middle (L1B) and proximal (L1C)
section of L1, and one sampling site from the middle section of L2 and
L3 to facilitate evaluation of both intra- and interlobular sampling
variation (Fig. 1). The chosen sampling sites correspond to those cur-
rently recommended by RITA (Registry of Industrial Toxicology An-
imal-data) for toxicopathological studies (Ruehl-Fehlert et al., 2003),
with the addition of sample site L1A and L1C to facilitate intralobular
comparison. From each sampling site, two adjacent 0.4 mm slices were
collected and transferred to either 10% Neutral Buffered Formalin
(Hounisen Laboratorieudstyr A/S, Skanderborg, Denmark) or snap-
frozen in liquid nitrogen for biochemical analyses.

Fig. 1. Illustration of the five sampling sites used in the study sampling pro-
tocol. To facilitate assessment of the extent of both intra- and interlobular
sampling variation, the left lateral lobe (L1A-C), the right medial lobe (L2) and
the caudate lobe (L3) were sampled according to current RITA guidelines [24].
From each sampling site, two adjacent liver sections were sampled for histo-
pathological and biochemical analyses.
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2.3. Histology

The proximal section from each sampling site was embedded in
paraffin after fixation. Sections of 2–4 μm thickness were subsequently
stained with Mayer's Haematoxylin (H&E) or Masson's Trichrome and
used for evaluation of steatosis, lobular inflammation, portal in-
flammation, ballooning (H&E) and fibrosis (Masson's Trichrome).
Histological evaluation was performed in a blinded fashion by two in-
dependent observers, according to the semi-quantitative scoring system
suggested by (Kleiner et al., 2005), with few modifications as follows:
Steatosis grade was evaluated on entire H&E-stained sections and
scored from 0 to 3, where 0:< 5% lipid-containing hepatocytes, 1:
5–33%, 2:> 33%–66% and 3:> 66%. Lobular inflammation was
evaluated by counting the number of inflammatory foci (the observa-
tion of at least 3 inflammatory cells in close proximity) per lobule in
five randomly chosen lobules at 20× magnification and was graded
from 0 to 3, where 0: no foci, 1:< 2 foci, 2: 2–4 foci, 3:> 4 foci. Portal
inflammation was scored as 0: not present, 1: present. The presence of
ballooning hepatocytes was evaluated in five randomly chosen rectan-
gular areas of 0.3 mm2 at fields of 40× magnification in areas with
steatosis and scored as 0: not present, 1: few present (≤4 ballooning
hepatocytes), 2: many present (> 4 ballooning hepatocytes). Lastly,
fibrosis was evaluated on entire sections stained by Masson's Trichrome
and scored from 0 to 4 where 0: not present; 1: perisinusoidal or peri-
portal; 1A: mild, zone 3, perisinusoidal; 1B: moderate, zone 3, perisi-
nusoidal; 1C: portal/periportal; 2: perisinusoidal and portal/periportal;
3: bridging fibrosis; 4: cirrhosis. Fibrosis scores were for data analysis
purposes subsequently translated to a numeric scale from 0 to 6, where
0= 0, 1= 1A, 2=1B, 3=1C, 4=2, 5=3 and 6=4. Following the
completion of the scorings, weighted or unweighted Cohen's Kappa (κ)
index was calculated for each histological parameter to determine inter-
observer variability (McHugh, 2012). κ-values< 0 indicate no agree-
ment; κ =0.01–0.2: None to slight; κ =0.21–0.40: Fair agreement;
κ =0.41–0.60: Moderate agreement; κ =0.61–0.80: Substantial
agreement; and κ =0.81–1.00: Almost perfect agreement.

2.4. Biochemistry

The distal section from each sampling site was snap-frozen in liquid
nitrogen and stored at −80 °C prior to biochemical analyses. The levels
of triglyceride, cholesterol and glycogen were analyzed on homo-
genized tissue from each sampling site as previously described (Jensen
et al., 2018) using a Cobas 6000 c501 instrument (Roche Diagnostics
GmbH, 68206 Mannheim, Germany) according to manufacturer's in-
structions.

2.5. Statistics

Statistical analyses were performed using GraphPad Prism version
8.02 (GraphPad Software Inc., La Jolla, CA, USA). Differences in his-
tologic scores between and within hepatic lobes were analyzed using
Wilcoxon signed-rank tests. Histological data are presented as medians
with ranges (ranges calculated by subtracting the minimum histo-
pathological score from the maximum histopathological score).
Depending on scoring parameter, unweighted and weighted κ-values
were calculated to estimate inter-observer reliability as outlined above.
Due to significant inter-animal variation, biochemical data were nor-
malized prior to analysis (normalization to the mean of all sample sites
within each animal) in order to focus on the intra-animal sampling
variation. After assuring that the assumption of no variance in-
homogeneity was met, normalized data were analyzed by repeated-
measures one-way ANOVA with Tukey's post hoc test for multiple
comparisons. Post hoc tests were performed only when the level of F
reached statistical significance (p < .05). Biochemical data are pre-
sented in graphs showing normalized data and in tables as means with
standard deviations. Retrospective power calculations for detection of
intra- and interlobular differences in steatosis grade and fibrosis stage
were performed using the observed variation of the data set, and a
significance level, α, of 0.05. Calculations of minimal detectable intra-
and interlobular differences for biochemical parameters were per-
formed using the observed variation of the data set; power, β, set at

Table 1
Histopathological readouts. Comparison of histopathological scores from different sampling sites in the liver of mice, rats and guinea pigs after 16–24 weeks on high-
fat diets. Data are presented as medians with ranges (ranges calculated as maximum score – minimum score). Data were analyzed using Wilcoxon signed-rank tests.
Scores designated a and b indicates statistically significant (p < .05) differences compared to sampling site L1A and L1B respectively.

Sampling site Cohens κ

L1A L1B L1C L2 L3

Mice
Steatosis 3 (1) 3 (0) 3 (1) 3 (2) 3 (0) 0.86
Lobular inflammation 1 (2) 1 (2) 1 (2) 0 (1) 1 (3) 0.84
Portal inflammation 0 (1) 0 (1) 0 (1) 0 (1) 0 (0) 0.72
Ballooning 0 (0) 0 (0) 0 (0) 0 (1) 0 (0) −0.03
Fibrosis 4 (4) 4 (3) 1 (2)b 1.5 (4) 1 (4)ab 0.97

Rats
Steatosis 3 (1) 3 (1) 3 (1) 2 (1) 3 (1) 0.87
Lobular inflammation 1 (0) 1 (1) 1 (1) 0 (1) 0.5 (2) 0.80
Portal inflammation 0.5 (1) 0 (1) 0.5 (1) 0 (1) 0 (1) 1
Ballooning 0 (1) 0 (1) 0 (0) 0 (0) 0 (1) 0.36
Fibrosis 1 (1) 0.5 (1) 0.5 (1) 0.5 (1) 0 (2) 0.91

Guinea pigs (20weeks)
Steatosis 1 (2) 1 (2) 1 (2) 1 (3) 1 (1) 0.90
Lobular inflammation 0 (1) 0.5 (1) 0 (1) 0 (1) 0 (1) 0.64
Portal inflammation 0 (0) 0 (1) 0 (0) 0 (0) 0 (1) 0.66
Ballooning 0 (1) 0.5 (1) 0 (0) 0 (1) 0 (1) 0.66
Fibrosis 1 (2) 1 (4) 1 (5) 1 (1) 1 (2) 0.95

Guinea pigs (24weeks)
Steatosis 2 (1) 2.5 (1) 3 (0) 3 (1) 3 (1) 0.90
Lobular inflammation 1 (2) 1 (2) 1 (2) 1 (1) 0.5 (3) 0.80
Portal inflammation 0 (0) 0 (1) 0 (1) 0 (1) 0 (1) 0.72
Ballooning 0 (1) 0 (1) 1 (1) 0.5 (1) 1 (1) 0.60
Fibrosis score 3.5 (4) 5 (4) 5 (3) 5 (3) 5 (0) 1
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0.80 and significance level, α, set at 0.05. For all reported data, p-va-
lues< .05 were considered statistically significant.

3. Results

3.1. Effects of diet on liver histology

Histological scores from all sampling sites in each species are pro-
vided in Table 1, with corresponding Cohen's κ-values confirming inter-
observer reliability for histopathological readouts. Liver sections re-
presentative of histopathological changes and lesions from each species
are shown in Fig. 2.

3.1.1. Mice
After 16 weeks on diet, mice developed hepatic steatosis, with a

median steatosis grade of 3 at all 5 sampling sites. Across all evaluated
sections, 2/40 (5%) were scored as grade 1, 3/40 (7.5%) as grade 2 and
35/40 (87.5%) as grade 3, in agreement with a majority of moderate to
severe steatosis (Fig. 2A, Table 1). The steatosis was of mixed macro−/
microvesicular type and involved both zone 1, 2 and 3 at the majority of
the sampling sites. However, in sampling sites with moderate steatosis,
the steatosis was found to originate in zone 3. Modest lobular

inflammation was present, indicated by a median lobular inflammation
score of 1 at all sampling sites, except L2 (median score= 0). Portal
inflammation and ballooning was only observed as occasional findings
(grade 1 in 6/40 (15%) and ballooning in 2/40 (5%)). Importantly, no
intra-individual sampling variation was observed for steatosis, lobular
inflammation, portal inflammation or ballooning in mice. The diet in-
duced variable degrees of fibrosis, indicated by a score≥ 1 in 33/40
(82.5%) of the evaluated sampling sections (Table 1), spanning from
observations of mild (25%) to moderate (17.5%) perisinusoidal fibrosis
and combinations of perisinusoidal/periportal fibrosis (32.5%) to
bridging lesions (7.5%). A predilection for the fibrotic lesions to the
periphery of the parenchyma (subcapsular) was noted, but not quan-
tified. For fibrosis score, intralobular and interlobular sampling varia-
tion was observed, indicated by a higher median score in L1B compared
to L1C (4 vs. 1), and in both L1A and L1B compared to L3 (4 vs. 1,
Table 1). Cohen's κ-values for inter-observer reliability ranged from
substantial to almost perfect agreement for all scored parameters, ex-
cept for ballooning (Table 1).

3.1.2. Rats
Similarly to mice, rats developed hepatic steatosis after 16 weeks,

with a median steatosis score of 3 at all sampling sites, except L2

Fig. 2. Histological images of liver sections from mice, rats and guinea pigs. Row 1: Representative H&E stains of steatosis in mice (A); rats (B); guinea pigs 20weeks
(C) and guinea pigs 24weeks (D). Row 2: Magnification of representative H&E stains showing inflammatory infiltrates (indicated by black arrows) in mice (E), rats
(F); guinea pigs 20 weeks (G) and guinea pigs 24 weeks (H). Row 3: Representative Masson's Trichrome stains of fibrosis (blue staining) in mice (I), rats (J), guinea
pigs 20weeks (K) and guinea pigs 24 weeks (L). Insert in H: Example of ballooning hepatocyte in guinea pig liver (indicated by red arrow). CV: Central Vein; PV:
Portal Vein.
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(median score= 2). Across all evaluated sections 13/40 (32%) were
scored as a grade 2 and 27/40 (67.5%) as a grade 3, indicating devel-
opment of moderate to severe steatosis (Fig. 2B, Table 1). The steatosis
was primarily of the microvesicular type and located in zone 1, with
frequent involvement of zone 2 and occasionally zone 3. Mild lobular
inflammation was present, with 27/40 (67.5%) of all sections scored as
a grade 1, and 1/40 (2.5%) scored as a grade 2. The remaining sections
were evaluated as a grade 0 (12/40 (30%), no inflammatory foci).
Portal inflammation seemed more predominant in rats compared to
mice, with 14/40 (35%) sections scored as grade 1. Ballooning was
rarely observed, with occasional scorings of grade 1 in only 4/40 (10%)
of sample sections evaluated. Fibrosis was not present in 19/40 (47.5%)
sample sections, however, mild, perisinusoidal fibrosis located in zone 3
was observed in 20/40 (50%) sections, while only 1/40 (2.5%) sections
displayed moderate, perisinusoidal zone 3 fibrosis. No significant intra-
individual intralobular or interlobular sampling variation was observed
for steatosis, lobular inflammation, portal inflammation, ballooning or
fibrosis in rats. Cohen's κ-values for inter-observer reliability ranged
from substantial to almost perfect agreement for all scored parameters,
except for ballooning (Table 1).

3.1.3. Guinea pigs (20 weeks)
After 20 weeks on diet, guinea pigs developed mild hepatic stea-

tosis, indicated by a median steatosis grade of 1 at all 5 sampling sites
(Table 1). Across all evaluated sections, 5/40 (12.5%) were evaluated
as grade 0; 23/40 (57.5%) as grade 1; 11/40 (27.5%) as grade 2 and
only 1/40 (2.5%) liver sections as grade 3. The steatosis was mixed
macro- and microvesicular and originated in zone 3. Lobular in-
flammation was modest, with the majority of sections (26/40, 65%)
evaluated as grade 0 and 14/40 (35%) evaluated as grade 1. Portal
inflammation was observed in only 2/40 (5%) scored sections, whereas
ballooning was present in 8/40 (20%) of sections. The majority of an-
imals displayed some degree of fibrosis, indicated by a median score of
1 at all 5 sampling sites. Across all evaluated sections, 4/40 (10%) was
scored as non-fibrotic, 33/40 (82.5%) scored as mild, or moderate
perisinusoidal zone 3 fibrosis and 3/40 (7.5%) sections evaluated as
bridging fibrosis. No intra-individual sampling variation was seen for
any of the histopathological traits. Cohen's κ-values for inter-observer
reliability ranged from substantial to almost perfect agreement for all
scored parameters.

3.1.4. Guinea pigs (24 weeks)
After 24 weeks on diet, liver pathology in guinea pigs was

markedly progressed compared to the 20-week time point (Table 1).
Hepatic steatosis was present in all animals and characterized as
moderate to severe, indicated by medians ranging from 2 to 3 de-
pending on sampling site. The morphological characteristics and
location of the steatosis was similar to the 20-week time point.
Evaluated across all scored sections, 13/40 (32.5%) were scored as
grade 2, while the majority (27/40; 67.5%) were scored as grade 3.
Lobular inflammation was present at all 5 sampling sites, indicated
by a median score of 1, except L3 where the median score was 0.5.
Across all sections 15/40 (37.5%) was scored as grade 0 (no foci
present); 20/40 (50%) as grade 1; 4/40 (10%) as grade 2 and just 1/
40 (2.5%) as grade 3. Similarly to the 20-week time point, portal
inflammation was a rare finding with only 6/40 (15%) sections re-
ceiving a score of 1. However, ballooning was more commonly
identified compared to the 20-week time point, with 19/40 (47.5%)
of all scored sections receiving a score of 1. The remaining sections
(21/40; 52.5%) did not show ballooning. Fibrosis was extensively
present at the 24-week time point, indicated by median scores of
3.5–5 depending on sampling site. The fibrosis was of varying se-
verity, with 9/40 (22.5%) sections showing evidence of mild to
moderate perisinusoidal fibrosis; however, the majority of scored
sections (31/40; 77.5%) was evaluated as bridging fibrosis. As for the
20-week time point, no sampling variation was detected for any of
the histopathological traits after 24 weeks on diet. Cohen's κ-values
indicated substantial to almost perfect agreement for all traits, ex-
cept for ballooning, where agreement was found to be fair.

3.2. Effects of diet on liver biochemistry

Absolute values of hepatic triglyceride, cholesterol and glycogen
content at euthanasia are shown for each species in Table 2, and Fig. 3
displays the inter- and intralobular sampling variation for each bio-
chemical readout.

3.2.1. Mice
Mean hepatic inter- and intralobular triglyceride levels in mice

ranged between 167.8 and 239.7 μmol/g; cholesterol levels between
24.6 and 32.5 μmol/g; and glycogen levels between 175.9 and
230.1 μmol/g depending on sample site (Table 2). For both hepatic

Table 2
Biochemical readouts. Absolute values of triglyceride, cholesterol and glycogen content from different sampling sites of the liver in mice, rats and guinea pigs after
16–24 weeks on high-fat diets. Data are presented as means with standard deviations. Values designated a, b, c, d, e indicate statistically significant differences
(p < .05)) compared to L1A, L1B, L1C, L2 and L3, respectively. *Statistical analyses were performed on normalized data, not absolute values.

Sampling site

Biochemical parameter* L1A L1B L1C L2 L3

Mice
Triglyceride (μmol/g liver) 239.7 ± 51.7 200.3 ± 53.7 192.3 ± 51.0 167.8 ± 53.5e 192.4 ± 55.4d

Cholesterol (μmol/g liver) 32.5 ± 9.5c 26.0 ± 10.5 24.6 ± 9.6a 26.7 ± 10.5 28.7 ± 11.3
Glycogen (μmol/g liver) 197.8 ± 45.6 210.1 ± 70.7 207.0 ± 65.6 230.1 ± 56.5e 175.9 ± 25.2d

Rats
Triglyceride (μmol/g liver) 72.6 ± 9.4 71.5 ± 14.7 75.2 ± 12.2 71.0 ± 12.4 83.3 ± 16.0
Cholesterol (μmol/g liver) 66.2 ± 20.9 56.5 ± 10.4 53.0 ± 9.8 54.4 ± 5.9 60.4 ± 8.7
Glycogen (μmol/g liver) 200.1 ± 30.7 200.8 ± 24.3 186.6 ± 31.8 218.1 ± 23.0 178.9 ± 38.2

Guinea pigs (20weeks)
Triglyceride (μmol/g liver) 49.2 ± 14.8 49.2 ± 17.0 51.0 ± 10.2 50.9 ± 12.5 57.1 ± 12.9
Cholesterol (μmol/g liver) 32.3 ± 9.3 30.7 ± 11.2 30.3 ± 10.6 29.7 ± 7.1 31.6 ± 8.7
Glycogen (μmol/g liver) 68.4 ± 61.3d 61.5 ± 60.5 58.6 ± 55.4 60.5 ± 57.1a 53.5 ± 51.4

Guinea pigs (24weeks)
Triglyceride (μmol/g liver) 67.4 ± 11.6be 72.5 ± 13.2ae 69.9 ± 10.5 73.1 ± 13.4 79.3 ± 13.2ab

Cholesterol (μmol/g liver) 47.3 ± 8.6 48.5 ± 8.4 48.4 ± 10.3 46.4 ± 7.8 48.7 ± 8.6
Glycogen (μmol/g liver) 39.4 ± 28.2 37.1 ± 26.2 39.6 ± 30.4 34.9 ± 27.9 32.0 ± 25.3
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triglyceride, cholesterol and glycogen content, statistically significant
sampling variation was present. More specifically, triglyceride content
was found to be significantly higher in L3 compared to L2 (Fig. 3A),

cholesterol content was significantly higher in L1A compared to L1C
(Fig. 3B) and lastly, glycogen content was significantly higher in L2
compared to L3 (Fig. 3C).
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Fig. 3. Sampling variation in biochemical parameters in mice, rats and guinea pigs after 16, 20 or 24 weeks on a high-fat diet. Triglyceride-, cholesterol- and glycogen
content affected by sampling variation between and/or within individual lobes at study termination in mice (A-C), guinea pigs at the 20-week time point (D) and
guinea pigs at the 24-week time point (E-F). Data is illustrated graphically as normalized data (normalization to the mean of all sample sites within each animal).
Each circle on the graphs represents a normalized data point from an individual animal within the group. Normalized data were analyzed by repeated-measures one-
way ANOVA with Tukey's post hoc test for multiple comparisons. * indicate statistically significant differences (p < .05).
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3.2.2. Rats
In rats, mean hepatic inter- and intralobular triglyceride levels

ranged between 71.0 and 83.3 μmol/g, cholesterol levels between 53.0
and 66.2 μmol/g and glycogen levels between 178.9 and 218.1 μmol/g
depending on sample site (Table 2). No statistically significant sampling
variation was found for any of the biochemical readouts in rats.

3.2.3. Guinea pigs (20 weeks)
Mean hepatic triglyceride levels ranged between 49.2 and

57.1 μmol/g; cholesterol levels ranged between 29.7 and 32.3 μmol/g
and glycogen levels ranged between 53.5 and 68.4 μmol/g depending
on sampling site (Table 2). Statistically significant sampling variation
was found only for glycogen content, where a higher level was observed
in L1A compared to L2 (Fig. 3D).

3.2.4. Guinea pigs (24 weeks)
Biochemical readouts supported the histological findings and in-

dicated further progression of hepatic steatosis compared to the 20-
week time point, with mean hepatic triglyceride levels ranging between
67.4 and 79.3 μmol/g depending on sample site (Table 2). Similarly,
cholesterol levels were higher and ranged between 46.4 and 48.7 μmol/
g while glycogen levels had decreased and ranged between 32.0 and
39.6 μmol/g. For hepatic triglyceride content, statistically significant
sampling variation (inter- and intralobular) was evident. More specifi-
cally, significantly higher triglyceride levels were found in L3 compared
to both L1A and L1B and in L1B compared to L1A (Fig. 3E). Interlobular
sampling variation in glycogen content was indicated by significantly
higher levels in L1A compared to L3 (Fig. 3F). Cholesterol levels were
not affected by sampling variation.

4. Discussion

Liver-lesions are commonly heterogeneously distributed and con-
sequently, accurate staging and grading of NAFLD/NASH based on
small liver-biopsies is a well-known challenge in patients (Sumida et al.,
2014). Although the same may apply to animals, variation between
sampling sites is often not considered in preclinical studies with ex-
perimental NAFLD models. In this study, we investigated sampling
variation in three commonly applied rodent NAFLD models and found
significant intra-individual differences in fibrosis score in mice and in
several hepatic biomarkers in mice and guinea pigs. Rats did not display
significant inter- or intralobular sampling variation. Our findings
highlight that sampling variation may be a relevant concern when
evaluating several commonly used endpoints in liver biopsies, at least
in some rodent models of NAFLD.

With the increasing prevalence of NAFLD and NASH and no cur-
rently approved targeted pharmacological treatment, the need for
preclinical testing of drug candidates is also increasing. Accurate and
reproducible grading of liver fibrosis is of particular interest as it re-
presents a primary diagnostic and prognostic hallmark in progressing
NASH as well as an important treatment target (Chalasani et al., 2012),
in agreement with the many potential anti-fibrotic drugs that are cur-
rently being explored in drug discovery programs (Musso, Cassader, &
Gambino, 2016). Hence, the finding that liver fibrosis is affected by
sampling variation in mice - the predominant species used in preclinical
studies of NAFLD (Hansen et al., 2017) – is important. Moreover, pre-
clinical NAFLD/NASH studies in mice are often challenged by the dif-
ficulty in obtaining an adequate fibrotic response in diet-induced
models within a reasonable time frame. Furthermore, there is often
considerable variability in the hepatic response (Duval et al., 2010;
Farrell et al., 2014; Haczeyni et al., 2017), as also evident in the present
study. Though this variability likely mirrors the severity and onset of
NASH-related pathology reported from clinical settings, it is a concern
that the variation in disease response may conceal treatment effects, for
example in cases of unexpected mild hepatic histopathology (“low-re-
sponders”) in either diet-induced or untreated groups (Hansen et al.,

2017). A proposed strategy to improve this is to collect pre-treatment
liver biopsies (or small cone shaped wedges) from each animal, al-
lowing stratification of animals according to disease stage prior to in-
clusion (Kristiansen et al., 2016). However, pre-treatment liver biopsies
from animals possess the same risk factors as in humans and are also of
limited size (i.e. 50–100mg of liver tissue) (Kristiansen et al., 2016;
Tolbol et al., 2018), constituting a much smaller fraction of total he-
patic tissue than the samples included in our study. Furthermore, if pre-
treatment biopsies are collected from another lobe than the biopsy
collected at termination of the animal, it can potentially complicate
detection of treatment-related effects, simply because fibrosis is het-
erogeneously distributed, as we demonstrate here.

A recent study examined the distribution of liver fibrosis by ex-
tensive image analysis on histological sections from the left lateral and
right medial liver lobes in mice fed a NASH-diet similar to that of the
present study, but for 30 weeks (Clapper et al., 2013). The authors
found that within single liver sections in mice, fibrosis was in fact
heterogeneously distributed, with 6.5-fold greater collagen content in
the first 1mm of the subcapsular parenchyma compared to areas> 3
mm from the section edges. Although we did not quantitatively com-
pare the differences in peripheral and deeper tissue collagen deposition
in single liver sections, we observed a similar trend in our study. The
sampling protocol used by Clapper et al. only included the left lateral
and right medial lobe of the liver and did not find differences in fibrosis
between these two lobes. This is in line with our findings, where sig-
nificant differences in fibrosis score were found only within the left
lateral lobe (L1B vs L1C) and between the left lateral and the caudate
lobe (L1A and L1B vs L3), whereas no significant difference was ob-
served between the right medial lobe (L2) compared to the left lateral
lobe (L1A and L1B). Besides a study that reported no differences in
histopathological scoring criterions between the left lateral and the
right medial lobe in a NAFLD/NASH guinea pig model (Tveden-Nyborg
et al., 2016) there is to our knowledge, no other studies that have
systematically examined intra- and interlobular sampling variation in
rat or guinea pig models of NAFLD/NASH.

In humans with NAFLD/NASH and other chronic liver diseases, both
fibrosis and other key histopathological features have been shown to be
heterogeneously distributed (Abdi et al., 1979; Baunsgaard et al., 1979;
Bedossa et al., 2003; Goldstein, Hastah, Galan, & Gordon, 2005; Janiec
et al., 2005; Larson et al., 2007; Merriman et al., 2006; Ratziu et al.,
2005; Regev et al., 2002). In a study examining single liver biopsies
from 46 NASH-patients and 52 Hepatitis C Virus-affected patients,
significant regional differences in fibrosis severity were present within
the same biopsy, with a predilection of the lesions for the deeper par-
enchyma when compared to parenchyma closer to the capsule
(Goldstein et al., 2005). Furthermore, studies evaluating paired liver
biopsies confirm that NASH-related fibrosis is subject to sampling var-
iation (Merriman et al., 2006; Ratziu et al., 2005). In one study, paired
needle biopsies from the left and right lobe of the liver were examined
in 41 obese patients with suspected NAFLD. Here, agreement in stea-
tosis stage was good (κ =0.88), while ballooning and lobular in-
flammation showed only fair agreement between liver lobes (κ =0.20
and κ =0.32 respectively), and sampling variation resulted in erro-
neous diagnosis of NASH and fibrosis in> 30% of cases (Merriman
et al., 2006). Likewise, Ratziu et al. performed paired needle liver
biopsies from different anatomical sites in the right liver lobe of 51
patients with suspected NAFLD. While agreement on steatosis score was
relatively high between samples (78% of patients received the same
steatosis score in both needle biopsies), there were inconsistencies of at
least one category of fibrotic stage from paired samples in 41% of the
patients. Furthermore, 35% of the patients diagnosed with bridging
fibrosis in one sample, showed only mild or no fibrosis in the second
(Ratziu et al., 2005). In contrast, another study performed on paired
needle biopsies from the left and right lobe in 43 morbidly obese pa-
tients undergoing bariatric surgery showed excellent agreement be-
tween paired samples for both steatosis (κ =0.91), ballooning
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(κ =0.73) and fibrosis (κ =0.96) (Larson et al., 2007). One possible
explanation for the discrepancy between these studies is the size and
diameter of the obtained biopsy specimens, known to be an important
factor in controlling sampling variation (Goldstein et al., 2005). The
cause of heterogeneous distribution of liver fibrosis has been proposed
to be caused by differences in sinusoidal blood levels of oxygens and
antioxidants between and within different hepatic lobes (Ekataksin &
Kaneda, 1999; Goldstein et al., 2005; Krogsgaard, Gluud, Henriksen, &
Christoffersen, 1985; Takahashi, 1970). We suspect that these physio-
logical factors are also likely to affect the distribution of fibrosis in
animal models of the disease.

It is generally believed that steatosis, inflammation and ballooning
precede the development of fibrosis (Cobbina & Akhlaghi, 2017) and
these early lesions could therefore potentially also display a hetero-
geneous pattern of distribution. However, none of these histopatholo-
gical endpoints displayed significant differences between sampling sites
in our study. We cannot rule out that these features could be affected
under different dietary regimens or by use of animals of different
strains, ages, gender or disease progression state.

Another factor that might compromise the ability to detect differ-
ences in histopathological readouts between different sampling sites is
the semi-quantitative nature of the grading and scoring system which
could potentially mask minor albeit clinically relevant differences.
Biochemical analysis revealed that hepatic lipid content was subject to
sampling variation in both mice and guinea pigs, even though the dif-
ferences were apparently too subtle to be detected histologically. Our
ability to detect sampling variation in the biochemical readouts sup-
ports the importance of identifying quantitative surrogate markers for
hepatic fibrosis, ballooning and inflammation (Bedossa & Patel, 2016).
Once validated, such markers may provide a more accurate diagnosis,
enable continued evaluation of disease progression/regression and thus
identify smaller, yet potentially clinically relevant treatment effects in
patients.

In order to estimate the reliability of our findings, we retro-
spectively calculated the statistical power for detecting intra- and in-
terlobular differences of 1 in steatosis grade as well as differences of 1
or 2 stages in fibrosis score in all species (Table 3). Power calculations
for lobular inflammation, portal inflammation and ballooning were not
performed due to the limited occurrence of these histopathological
traits in the study, and the modest inter-observer agreement for the
majority of the ballooning scores. Despite the relatively modest sample
sizes used in this study, these calculations returned a high power
(power > 80%) for detecting differences of 1 and 2 stages in fibrosis
score in guinea pigs (24 weeks), and for all species and time points for
detecting a 2-stage difference (power > 90%). The statistical power for
detecting differences in steatosis grade in mice and rats were also re-
latively high, but only modest for guinea pigs. We also calculated the
minimal differences in hepatic triglyceride content this study design
would enable us to detect. As seen in Table 3, the chosen sample sizes
did allow for detection of relatively subtle differences (± 9–21% de-
pendent on species) in hepatic triglyceride content, if such differences

existed. The results of the power analysis indicate that for most end-
points, the outcome variation was overall comparable between species.
This increases the likelihood that the differences found between sample
sites reflect sampling variation rather than species-specific variation in
the biological endpoints.

5. Conclusion

The present study shows that liver fibrosis is heterogeneously dis-
tributed in a diet-induced mouse model of NASH, and that differences
between sampling sites occur for biochemical readouts from both mice
and guinea pigs. Liver biopsies from rats were apparently subject to less
sampling variation. Even though statistically significant sampling var-
iation was not observed for several of the assessed parameters, our
findings still underline the importance of standardization of sampling
site location when obtaining liver biopsies from experimental NASH-
models, to minimize the risk of particularly type 2 errors and to facil-
itate meaningful comparisons of outcomes between independent ex-
perimental studies.
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