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1 Introduction

Recently it has been realized that modern methods for amplitude computations at loop level

may provide a powerful new way to compute post-Newtonian and post-Minkowskian expan-

sions in classical general relativity [1–21]. This builds on the observation that the quantum

mechanical scattering matrix for matter interacting gravitationally contains classical pieces

at arbitrarily high order in the loop expansion [22–24] and the fact that the sought-for long-

distance contributions are non-analytic in the exchanged momentum [25–27], thus making

them straightforwardly accessible through unitarity cuts. All needed contributions being

classical, one would not expect it to be necessary to regularize the loops dimensionally.

However, since infrared ‘super-classical’ (see, e.g., ref. [24]) terms appear at intermediate

steps it is nevertheless convenient to use dimensional regularization.

For the scattering of two massive objects at large distances the needed tree-level ampli-

tudes are those of two massive scalars and, at n-loop order, (n+1) on-shell gravitons. Using

the Kawai-Lewellen-Tye (KLT) relations [28–32] these can conveniently be constructed from

the corresponding amplitudes with the (n + 1) gravitons replaced by gluons, amplitudes

that are given in the literature on the basis of recursion relations [33, 34] in four space-time

dimensions, using the spinor-helicity formalism. More recently, Naculich [35, 36] has sug-

gested an alternative and more direct method for the computation of such amplitudes based

on the Cachazo-He-Yuan (CHY) formalism [37, 38] (see also ref. [60]). One advantage of

using the CHY-formalism is that it immediately provides the amplitudes ‘covariantly’, in

terms of general polarization tensors for the gravitons, and hence not restricted to four

space-time dimensions.
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From a practical point of view, it suffices to evaluate amplitudes with two scalar legs

and (n + 1) gluons and subsequently turning them into scalar-graviton amplitudes by

KLT-squaring. This is our approach here. One key point of the present calculation is the

computation of a factorized expression for the amplitudes of two massive scalars coupled to

Yang-Mills theory, expressing them as sums over lower-point amplitudes which are combi-

nations of scalar-gluon amplitudes and pure gluon amplitudes. Each of these has one gluon

leg off-shell and an associated polarization vector of both transverse and longitudinal com-

ponents. In this way, we can iteratively construct amplitudes of an arbitrarily high order.

Crucial for this factorized form is the insight gained from the double-cover version [39–43]

of the CHY-formalism. This double-cover description naturally splits amplitudes into two

lower-point amplitudes, each with one leg off-shell. These vector currents, contracted with

polarization vectors, are glued together by the polarization sum. A subtlety here is the

contribution from longitudinal modes that need to be dealt with carefully. Useful relations

that short-cut the evaluations of some of the color-ordered amplitudes needed for the re-

cursive evaluation of higher n-point amplitudes are provided by simple identities [44–46]

among these partly massive amplitudes.

The outline of this paper is as follows. In sections 2 and 3 we show how to compute

amplitudes with two scalars and n gluons using different methods. In section 4 we briefly

discuss the straightforward application of Kawai-Lewellen-Tye relations to replace the glu-

ons with gravitons. Some technical details and a proof of an important theorem regarding

vanishing longitudinal contributions are provided in appendices.

2 Prelude: two massive scalars and n gluons

We first present a simple way to obtain explicit expressions for the scattering amplitudes of

two massive scalars and n gluons. Since our method is based on the CHY approach, we give

a very brief review of this formalism. We then apply the factorization method developed

in [43] to obtain, up to six-point, analytical expressions for the scattering of gluons where

two of them, suitably defined, are massive. Next, we turn the two massive gluons into

massive scalars, thus providing the scattering amplitudes for two massive scalars and in

principle any number of massless gluons.

2.1 Massive Yang-Mills amplitudes

We start by presenting a simple recursive formula that computes pure Yang-Mills ampli-

tudes with up to three massive gluons. The method we will use was developed by one of

us in a different context [39, 43]. We shall show explicit expressions up to six points but

it is straightforward to extend the method to any higher number of external legs. In the

following, we will denote massive particles with the capital letter “Pα” and the massless

ones with the lower-case letter “ka”. Unless otherwise mentioned we will work under the

assumption of implicit momentum conservation,

K1 +K2 + · · ·+Kn = 0 . (2.1)

– 2 –
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Let us first recall how to extend the CHY approach to the massive case following the method

of Naculich [35, 36]. We have {P1, . . . , Pi} as momenta of the massive particles (P 2
α 6= 0)

and {ki+1, . . . , kn} as momenta the massless gluons (k2
a = 0). A generic momentum vector

is thus KA ∈ {P1, . . . , Pi, ki+1, . . . , kn}. We define as well

PAB...D ≡ KA +KB + · · ·+KD,

PA:A+j ≡ KA +KA+1 + · · ·+KA+j . (2.2)

The modified CHY scattering equations are then given by

SA =
n∑

B=1
B 6=A

2KA ·KB + 2 ∆AB

σAB
= 0 , A = 1, 2, . . . , n , (2.3)

where the matrix ∆AB is still to be determined. In order to guarantee SL(2,C) invariance,

i.e.,
∑n

A=1 σ
m
A SA = 0 for m = 0, 1, 2, the matrix ∆AB must be symmetric, ∆AB = ∆BA,

and it must satisfy the conditions

i∑
β=1
β 6=a

∆αβ +
n∑

b=i+1

∆αb = P 2
α , α = 1, . . . , i,

i∑
β=1

∆aβ +
n∑

b=i+1
b 6=a

∆ab = 0 , a = i+ 1, . . . , n. (2.4)

Since we are interested in at most up to three massive gluons of momenta {P1, P2, P3}, it

is sufficient to consider only ∆12,∆13,∆23. Therefore, we have the simple conditions

∆12 + ∆13 = P 2
1 ,

∆12 + ∆23 = P 2
2 , (2.5)

∆13 + ∆23 = P 2
3 ,

that have a unique solution given by

∆12 =
P 2

1 + P 2
2 − P 4

3

2
, ∆13 =

P 2
1 − P 2

2 + P 4
3

2
, ∆23 =

−P 2
1 + P 2

2 + P 4
3

2
. (2.6)

When two masses are degenerate, e.g., P 2
1 = P 2

2 6= 0 and P 2
3 = 0, it is straightforward to

see from (2.6) that ∆12 = P 2
1 and ∆13 = ∆23 = 0, which, not surprisingly, is in agreement

with the one-loop scattering equations formulated in refs. [40, 47–49]. On the other hand,

when only one of the legs is massive, e.g. P 2
1 6= 0 and P 2

2 = P 2
3 = 0, then ∆12 = P 2

1 /2,

∆13 = P 2
1 /2 and ∆23 = −P 2

1 /2, i.e., in order to describe one massive particle it is necessary

to use at least three ∆AB parameters.

After having described the massive scattering equations let us now remind that the

CHY prescription for color ordered amplitudes of the scattering of gluons at tree-level is

given by [35–37, 50]

An(P1, . . . , Pi, i+ 1, . . . , n) =

∫
dµn PT(1, 2, . . . , n)× Pf ′Ψn , (2.7)

– 3 –
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where dµn is the usual CHY measure

dµn = (σjkσklσlj)

n∏
A=1

A 6=j,k,l

dσA × (σmrσrsσsm)

n∏
B=1

B 6=m,r,s

δ(SB) , (2.8)

and PT(1, . . . , n) and Pf ′Ψn are the usual Parke-Taylor and reduced Pfaffian factors

PT(1, . . . , n) ≡ 1

σ12σ23 · · ·σn1
, Pf ′Ψn ≡

(−1)A+B

σAB
Pf[(Ψn)ABAB] . (2.9)

The 2n× 2n matrix, Ψn, is defined as

Ψn ≡

(
A −CT

C B

)
, (2.10)

with,

AAB ≡


2KA ·KB + 2 ∆AB

σAB
,

0 ,
BAB ≡


εA · εA
σAB

A 6= B ,

0 A = B ,
(2.11)

and

CAB ≡



√
2 εA ·KB

σAB
, A 6= B ,

−
n∑

C=1
C 6=A

√
2 εA ·KC

σAC
, A = B .

(2.12)

The matrix, (Ψn)ABAB, denotes the reduced matrix obtained by removing the rows and

columns A,B from Ψn, where 1 ≤ A < B ≤ n.

Since we are interested in the case of at most three massive particles of momenta

{P1, P2, P3} we can avoid dealing with the ∆AB-matrix in the scattering equations alto-

gether by choosing the labels {j, k, l} and {m, r, s} in (2.8) to match with the massive ones,

i.e., {j, k, l} = {m, r, s} = {1, 2, 3}.
It is useful to recall that the reduced Pfaffian (Pf ′Ψn = (−1)A+B

σAB
Pf[(Ψn)ABAB]) is inde-

pendent of the choice of A and B, and that the SL(2,C) symmetry is guaranteed by the

transversality of the external polarization vectors, (εC ·KC) = 0. However, we note that

the terms CAA and CBB do not appears in the reduced matrix, (Ψn)ABAB. It follows that the

transversality conditions on εA and εB are not needed to obtain an integrand invariant un-

der the action of SL(2,C) [51]. We can therefore consistently define the integral with these

two legs being off mass-shell and with arbitrary polarization vectors for (εA ·KA) 6= 0 and

(εB ·KB) 6= 0. We now use the double-cover method ref. [43] to obtain compact recursive ex-

pressions for these massive and/or off-shell scattering amplitudes as defined above. The re-

sults clearly reduce to the usual expressions when all external legs are massless and on-shell.

First, let us consider the basic building block of three legs. We take all three particles

to be massive and choose the polarization vectors ε1 and ε2 as not necessarily transverse

– 4 –
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so that we do not impose (ε1 · P1) = 0 = (ε2 · P2). We are going to denote with a bold

source in the amplitude (as in [35–37, 43]), e.g.

An(. . . ,Pα, . . . ,Pβ, . . .) , (2.13)

the rows/columns that are removed from its reduced Pfaffian. In the above amplitude the

reduced Pfaffian is given by, Pf ′Ψn = (−1)α+β

σαβ
Pf[(Ψn)αβαβ]. Particles Pα and Pβ can thus be

off-shell, so that (εα · Pα) 6= 0 and (εβ · Pβ) 6= 0.

Therefore, using the CHY prescription given in (2.7) one has

A3(P1,P2, P3) = (σ12 σ23 σ23)2 PT(1, 2, 3)
(−1)

σ12
Pf


0 − ε1·

√
2P3

σ13
− ε2·

√
2P3

σ23
−C33

ε1·
√

2P3
σ13

0 ε1·ε2
σ12

ε1·ε3
σ13

ε2·
√

2P3
σ23

ε2·ε1
σ21

0 ε2·ε3
σ23

C33
ε3·ε1
σ31

ε3·ε2
σ32

0


=
√

2 {(ε1 · ε2)(ε3 · P1)− (ε2 · ε3)(ε1 · P3) + (ε3 · ε1)(ε2 · P3)} , (2.14)

where we have used

C33 = −
√

2

(
ε3 · P1

σ31
+
ε3 · P2

σ32

)
=
√

2 (ε3 · P1)× σ12

σ31 σ23
, (2.15)

due to the momentum conservation constraint P1 + P2 + P3 = 0 and the transversality

condition (ε3 · P3) = 0. Although the amplitude itself is independent of the choice of

rows/columns that are removed in the Pfaffian, the intermediate expressions do depend on

the choice and we have therefore introduced a notation where we indicate which rows and

columns are removed.

We consider next a computation with three massive gluons of momenta {P1, P2, P3}
and one massless gluon of momentum {k4}. Using the factorization method described

in [41, 43], this four-point calculation can be expressed in terms of the A3(Pa,Pb, Pc)

building-blocks,

A4(P1, P2,P3, 4)

=
∑
M

[
A3(P εM

34 ,P1, P2)A3(P εM
12 ,P3, 4)

sP34
+
A3(P1,P

εM
23 , 4)A3(P3,P

εM
41 , P2)

s4P1

]

− 2
∑
L

[
A3(P εL

13 ,P2, 4)

sP24
×A3(P εL

24 ,P1, P3)

]
, (2.16)

where the notation P ε
M

i (P ε
L

i ) means the particle with momentum Pi has as polarization

vector εMi (εLi ). The sums over the polarizations are given by the relations∑
M

εM µ
i εM ν

j = ηµν , (2.17)

∑
L

εLµi εLνj =
Pµi P

ν
j

Pi · Pj + P 2
1 − P 2

3

. (2.18)

– 5 –
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The unusual normalization factor of the longitudinal modes is precisely what is needed to

recover the correct four-point amplitude [42, 52]. The polarization vectors of all massive

on-shell legs of course still satisfy εi ·Pi = 0. Using that condition it is easy to see that the

last term in (2.16) evaluates to

− 2
∑
L

[
A3(P εL

13 ,P2, 4)

sP24
×A3(P εL

24 ,P1, P3)

]
= (ε1 · ε3)(ε2 · ε4) . (2.19)

The full four-point amplitude is thus remarkably simple.

Finally, in order to calculate higher-point amplitudes we will also needA4(P1,P2,P3, 4).

Using the BCJ-like identity [44–46],

s4P3 PT(3, 4, 1, 2) + s4P13 PT(3, 1, 4, 2) = 0 ,

it is straightforward to deduce

A4(P1,P2, P3, 4) = −
(

1 +
s4P1

s4P3

)
×A4(P1, P3,P2, 4) . (2.20)

The calculation of higher-point amplitudes with massive gluons now proceeds recursively.

We illustrate a few cases in the appendix.

2.2 Turning massive gluons into scalars

Now, using the prescriptions of Naculich [35, 36] and Cachazo, He, and Yuan [38] we can

compute the amplitudes of interest which also involve massive scalar legs. The basic idea

is to consider the massive gluon theory in one extra dimension (i.e., in D + 1 dimensions)

with “polarizations” and momenta of massive scalars chosen to be

Pµ1 = (~p1, 0), εµ1 = (~0, 1)

Pµn = ( ~pn, 0), εµn = (~0, 1)

}
Massive scalars (P 2

1 = P 2
n = m2) , (2.21)

kµa = ( ~ka, 0), εµa = (~εa, 0)
}

Massless gluons (a = 2, . . . , n− 2, and k2
a = 0) .

In this set-up all external particles satisfy Pi · εi = 0 = ka · εa and, additionally, it is easy to

see that ∆1n = ∆n1 = m2 in Naculich’s notation as a consequence of equation (2.6). The

CHY prescription for the scattering of two massive scalars with n − 2 gluons can thus be

written as

An(1ϕ, 2g, . . . , (n− 1)g, nϕ) =

∫
dµn PT(1, 2, . . . , n)× Pf ′Ψn

∣∣∣
ε1,εn=(~0,1)

, (2.22)

where the massive scattering equations, the reduced Pfaffian and the measure as defined

above. It is useful to note that these ordered amplitudes are invariant under cyclic permu-

tations, i.e.,

An(1, 2, . . . ,Pα, . . . ,Pβ, . . . , n) = An(n, 1, 2, . . . ,Pα, . . . ,Pβ, . . . , n− 1) , (2.23)

and also satisfy

An(1, 2, . . . ,Pα, . . . ,Pβ, . . . , n− 1, n) = (−1)nAn(n, n− 1, . . . ,Pβ, . . . ,Pα, . . . , 2, 1) .

– 6 –
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As a first step we note that when P1 and P2 are associated with scalar legs the three-point

amplitude reads

A3(P1,P2, P3)
∣∣∣
ε1,ε2=(~0,1)

=
√

2 (ε3 · P1) . (2.24)

We illustrate our method by evaluating the four-point function of two massive scalars and

two gluons. Using the above conditions and the cyclicity property (2.23) we immediately

infer this amplitude from eqs. (2.16):

A4(1ϕ,2g,3g,4ϕ) =A4(P4,P1,2,3)
∣∣∣
ε1,ε4=(~0,1)

(2.25)

=
∑
M

[
A3(P εM

23 ,P ϕ
4 ,P

ϕ
1 )A3(P εM

41 ,2,3)

s23
+
A3(P ϕ

4 ,P
εM
12 ,3)A3(2,P εM

34 ,Pϕ1 )

s3P4

]
,

where the superscript (or subscript) “ϕ” refers to one of the massive scalars. We note that

the term (2.19) does not contribute at all, (we shall return to this point later).

Remark. Since εµ1 = εµ4 = (~0, 1) the contraction relation for the second term in (2.25),∑
M

(εMP34
· ε1)(εMP12

· V ) = (ε1 · V ) , (2.26)

is non-vanishing only when V µ has a non-zero projection on ε4. Therefore, it is equivalent to

choosing εM µ
P34

= εM µ
P12

= (~0, 1), i.e., the internal lines corresponding to momenta P12 and P34

turn out to be propagating scalars as expected due to current conservation. In other words,

∑
M

A3(P ϕ
4 ,P

εM
12 , 3)A3(2,P εM

34 , Pϕ1 )

s3P4

=
A3(P ϕ

4 ,P
ϕ
12, 3)A3(2,P ϕ

34, P
ϕ
1 )

s3P4

. (2.27)

The same phenomenon occurs for higher n-point amplitudes. Let us now introduce some

convenient notation:

FµνA ≡ K
µ
A ε

ν
A −Kν

A ε
µ
A ,

(V W )ab ≡ V µ
a ηµνW

ν
b , (2.28)

as well as

(V F . . . F W )aA1...Ajb ≡ V
µ
a ηµγ F

γν
A1
ηνσ F

σα
A2
· · · F ρδAj ηδβW

β
b , (2.29)

sA1A2...Aj ≡ (KA1 +KA2 + · · ·+KAj )
2 − (K2

A1
+K2

A2
+ · · ·+K2

Aj ) ,

where V µ
a and W ν

b are two generic vectors. From (2.17) and (2.14) it is straightforward to

compute

∑
M

A3(P εM
23 ,P ϕ

4 , P
ϕ
1 )A3(P εM

41 ,2, 3)

s23
=

2 (εP )21 (εk)32 − 2 (εFP )231

s23
, (2.30)

as well as
A3(P ϕ

4 ,P
ϕ
12, 3)A3(2,P ϕ

34, P
ϕ
1 )

s3P4

= −2(εP )21 (εP )34

sP12
. (2.31)

– 7 –
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The four-point covariant amplitude of two massive scalars and two gluons is thus given by

the simple expression

A4(1ϕ, 2g, 3g, 4ϕ) =
2 (εP )21 (εk)32 − 2 (εFP )231

s23
− 2(εP )21 (εP )34

sP12
. (2.32)

Specializing to four dimensions, this is in agreement with the result found in the literature

on the basis of the spinor-helicity formalism [34].

In an analogous way, the five-point amplitude becomes

A5(1ϕ, 2g, 3g, 4g, 5ϕ) = A5(P5, P1,2, 3, 4)
∣∣∣
ε1,ε5=(~0,1)

= (−1)×
∑
M

[
A3(P εM

4:1 ,2, 3)A4(P ϕ
5 , P

ϕ
1 ,P

εM
23 , 4)

s23
+
A3(P εM

2:4 ,P
ϕ
5 , P

ϕ
1 )A4(P εM

51 ,2, 3, 4)

s234

]

+ (−1)× A3(2,P ϕ
3:5, P

ϕ
1 )×A4(P ϕ

5 ,P
ϕ
12, 3, 4)

s34P5

, (2.33)

where eq. (A.1) has been used. As in the four-point case, the purely longitudinal con-

tributions vanish on account of the orthogonality conditions for the polarization vectors

associated with external scalar legs, (ε1 · ε3) = (ε5 · ε2) = 0. In appendix B, we prove the

vanishing of these longitudinal contributions for any number of external gluons.

Applying the identity (2.17) and using (2.14), (2.16) and (2.20) we finally find an

explicit covariant expression for A5(1ϕ, 2g, 3g, 4g, 5ϕ):

(
1√
2

)
×A5(1ϕ,2g,3g,4g,5ϕ) = (εP )21×

(εε)34 s34−2(εk)34 (εP )45+2(εk)43 (εP )35

sP12 s34

+
(εε)23 (εk)43s23−(εε)34 (εP )21s23−(εε)23 (εP )41 s34−(εF ε)342 s23

s23 s34
+

(εε)34 (εP )21 s4P5

sP12s34

+2(εP )21(εP )45×
(εP )31+(εk)32

sP12 s4P5

+(εP )45×
2(εk)21(εP )32−2(εk)23(εP )31−(εε)23s23

s23 s4P5

+
sP12(εF ε)243+(εε)23 (εk)43 sP12−(εε)34 (εP )21 sP14−(εε)34 (εP )25 sP14+(εε)34 (εP )21 s23

s34 s234

+
(εε)23(εP )41s34

s23s234
− (εε)23 (εP )45 sP12

s23s4P5

+
(εε)34(εP )21−(εε)24(εP )31+(εε)23(εP )41

s234

+
(εε)34(εk)23sP14−(εε)24(εk)32sP14+(εε)23(εk)42sP14−(εε)23(εP )41sP12−(εε)23(εP )45sP12

s23s234

+2× (εP )21(εk)32(εP )45+(εP )25(εP )31(εP )45+(εP )25(εP )31(εk)42+(εP )21(εP )31(εP )45−(1↔ 5)

s34 s234

+2× (εk)23(εP )35(εP )41+(εk)32(εP )45(εP )21−(1↔ 5)

s23s234
. (2.34)

Specializing to four dimensions, this matches the spinor-helicity result provided in [34].

We note that this five-point amplitude A5(1ϕ, 2g, 3g, 4g, 5ϕ) can also be computed using

eq. (A.4) so that, alternatively,

A5(1ϕ, 2g, 3g, 4g, 5ϕ) = A5(3, 4,P5, P1, 2)
∣∣∣
ε1,ε5=(~0,1)

. (2.35)
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It is now straightforward to move to any higher number of points, recursively. Using the

result of the appendix we find the six-point amplitude

A6(1ϕ, 2g, 3g, 4g, 5g, 6ϕ) = A6(P6, P1,2, 3, 4, 5)
∣∣∣
ε1,ε6=(~0,1)

(2.36)

=
A3(2,P ϕ

3:6, P
ϕ
1 )A5(P ϕ

6 ,P
ϕ
12, 3, 4, 5)

s345P6

+
∑
M

[
A3(P εM

2:5 ,P
ϕ
6 , P

ϕ
1 )A5(P εM

61 ,2, 3, 4, 5)

s2345

+
A3(P εM

4:1 ,2, 3)A5(P ϕ
6 , P

ϕ
1 ,P

εM
23 , 4, 5)

s23
− A4(P ϕ

6 , P
ϕ
1 ,P

εM
2:4 , 5)A4(P εM

5:1 ,2, 3, 4)

s234

]
.

The longitudinal pieces have again cancelled, leaving a simple sum over intermediate polar-

izations and a very intuitive recursive structure, as shown. Although the explicit evaluation

of this expression is straightforward, the resulting expression is lengthy and we do not re-

produce it here.

3 Kleiss-Kuijf decomposition

While the method described in the previous section is straightforward and immediately

generalizable to any number of gluons n, we wish to point out that an alternative track

based on an expansion with analytically computed BCJ-numerators is of comparable sim-

plicity. The trick is to compute the scattering of two massive scalar fields with massless

gluons (eventually gravitons) by decomposing the reduced Pffafian in terms of a Kleiss-

Kuijf (KK) basis [53] by using the Bern-Carrasco-Johansson (BCJ) numerators [54] for

Yang-Mills theory. This useful technique was developed in1 [50, 55, 56].

Let us recall that our first main goal is to calculate the amplitude

An(1ϕ, 2g, 3g, . . . , (n− 1)g, nϕ) , (3.1)

and in order to avoid dealing with the terms

2P1 · Pn + 2∆1n

σ1n
and

2Pn · P1 + 2∆n1

σn1
,

we remove from the reduced Pfaffian the rows/columns {1, n}. Thus, we are looking for

the following KK expansion

(−1)1+n

σ1n
× Pf

[
(Ψ)1n

1n

]
=

∑
ρ∈Sn−2

N(1,ρ(2,··· ,n−1),n) PT(1, ρ(2, · · · , n− 1), n) , (3.2)

where N(1,ρ(2,··· ,n−1),n) are the BCJ Yang-Mills numerators and Sn−2 is the group of the

(n − 2)! permutations of the set {2, 3, · · · , n − 1}. As argued in [57], since the Pfaffian

Pf
[
(Ψ)1n

1n

]
, is independent of the products P1 · Pn and ∆1n = ∆n1 = P 2

1 the algorithm

1We thank Y. Geyer for sharing us her Mathematica package allowing us to carry out the master BCJ

numerator evaluations in order to rewrite the reduced Pfaffian.
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proposed in ref. [56] can be applied. Therefore, the scattering between two massive scalar

fields with (n-2) gluons can be written as

An(1ϕ, 2g, . . . , nϕ) =
∑

ρ∈Sn−2

mn[12 · · ·n|1ρ(2 · · ·n− 1)n]×N(1,ρ(2,··· ,n−1),n)

∣∣∣
ε1,εn=(~0,1)

, (3.3)

where the BCJ numerators N(1,ρ(2,··· ,n−1),n) can be obtained by the algorithm developed

in [56] and where mn[α|β] is defined by

mn[α1 · · ·αn|β1 · · ·βn] ≡
∫
dµn PT(α1, . . . , αn)× PT(β1, . . . , βn) , (3.4)

with the massive measure dµn as given in (2.8).

To illustrate, let us consider the four-point amplitude A4(1ϕ, 2g, 3g, 4ϕ). From (3.3) we

arrive at

A4(1ϕ, 2g, 3g, 4ϕ) = N(1,2,3,4)

∣∣∣
ε1,ε4=(~0,1)

∫
dµ4 PT(1, 2, 3, 4)× PT(1, 2, 3, 4)

+ N(1,3,2,4)

∣∣∣
ε1,ε4=(~0,1)

∫
dµ4 PT(1, 2, 3, 4)× PT(1, 3, 2, 4) . (3.5)

Now applying the method of ref. [56], the BCJ numerators are readily found to be given by

N(1,2,3,4)

∣∣∣
ε1,ε4=(~0,1)

= −2 (εP )21 (εP )34, N(1,3,2,4)

∣∣∣
ε1,ε4=(~0,1)

= 2 (εP )21(εP )31 + 2 (εFP )231 ,

(3.6)

where we have fixed the reference ordering to be (1, 2, 3, 4). The massive integrals obtained

in (3.5) are straightforward to do using the Λ-algorithm [39]. We find

m4[1234|1234] =

∫
dµ4 PT(1, 2, 3, 4)× PT(1, 2, 3, 4) =

1

sP12
+

1

s23
,

m4[1234|1324] =

∫
dµ4 PT(1, 2, 3, 4)× PT(1, 3, 2, 4) = − 1

s23
. (3.7)

For the four-point amplitude we therefore get

A4(1ϕ, 2g, 3g, 4ϕ) =
−2 (εP )21 (εP )34

sP12
+
−2 (εP )21 (εP )34 − (2 (εP )21(εP )31 + 2 (εFP )231)

s23
,

which agrees with the result we found in equation (2.32).
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Explicit BCJ numerators at five points

This method easily generalizes. For two massive scalar legs and three gluons we need to

evaluate

A5(1ϕ, 2g, 3g, 4g, 5ϕ) =
∑
ρ∈S3

m5[12345|1ρ(234)5]×N(1,ρ(2,3,4),5)

∣∣∣
ε1,ε5=(~0,1)

. (3.8)

The six BCJ-numerators N(1,ρ(2,3,4),5)

∣∣∣
ε1,ε5=(~0,1)

are given by(
1√
2

)
N(1,2,3,4,5)

∣∣∣
ε1,ε5=(~0,1)

=−2(εP )21 (εP )45 [(εP )31+(εk)32] , (3.9)(
1√
2

)
N(1,4,2,3,5)

∣∣∣
ε1,ε5=(~0,1)

=−2(εP )25 (εP )41 [(εP )21+(εk)24]−(εε)34(εP )21sP14

+(εε)24(εP )35sP14 ,(
1√
2

)
N(1,3,4,2,5)

∣∣∣
ε1,ε5=(~0,1)

= 2(εP )25(εP )31 [(εk)42+(εP )45]+(εε)23 [(εk)42+(εP )45]sP13

−(εε)43(εk)24sP13−(εε)24(εP )31sP134

−(εε)24 [(εk)32+(εP )35]sP13 ,(
1√
2

)
N(1,2,4,3,5)

∣∣∣
ε1,ε5=(~0,1)

=−2(εP )21(εP )35 [(εP )41+(εk)42]−(εε)34(εP )21(sP14+s24) ,(
1√
2

)
N(1,3,2,4,5)

∣∣∣
ε1,ε5=(~0,1)

=−2(εP )31(εP )45 [(εP )21+(εk)23]+(εε)23(εP )45sP13 ,(
1√
2

)
N(1,4,3,2,5)

∣∣∣
ε1,ε5=(~0,1)

= 2(εP )41(εP )25 [(εk)32+(εP )35]−(εε)34 [(εP )21+(εk)23]sP14

+(εε)24 [(εk)32+(εP )35]sP14−(εε)23 [(εk)42+(εP )45]sP14

−(εε)23(εP )41sP134 ,

where we have fixed the reference ordering to be (1, 2, 3, 4, 5).

Using again the Λ-algorithm [39], it is straightforward to compute, with two massive

legs,

m5[12345|12345] =
1

s234 s34
+

1

sP12 s34
+

1

s23 s4P5

+
1

s4P5 sP12
+

1

s23 s234
, (3.10)

m5[12345|14235] = − 1

s23 s234
,

m5[12345|13425] = − 1

s234 s34
,

m5[12345|12435] = − 1

s234 s34
− 1

sP12 s34
,

m5[12345|13245] = − 1

s23 s4P5

− 1

s23 s234
,

m5[12345|14325] =
1

s234 s34
+

1

s23 s234
.

After substituting eqs. (3.9) and (3.10) into (3.8) one can check that the result matches

the one given in eq. (2.34).

This method does have the drawback for n large that the number of BCJ numerators

grow in a factorial way. For instance, to compute the six and seven-point amplitudes one

needs to calculate 4! = 24 and 5! = 120 numerators, respectively.
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4 Two massive scalars and gravitons

In the previous sections, we have shown different methods for efficient evaluation of scat-

tering amplitudes of two massive scalar fields and (n − 2) gluons. Staying within the

CHY-framework as in section 2, one could similarly express the amplitude of the scattering

among two massive scalars (ϕ) and gravitons (ha) through [50, 58, 59],

Mn(2ϕ, (n− 2)h) =

∫
dµn Pf ′Ψn

∣∣∣
ε1,εn=(~0,1)

× Pf ′Ψn

∣∣∣
ε1,εn=(~0,1)

, (4.1)

where the gravitons are identified as, hµνa ≡ εµaενa and using the same massive measure

defined in (2.8). Similarly, one can use a KK-decomposition analogous to what we explained

above for the case of gluons in (3.3), and write

Mn(2ϕ, (n− 2)h) =
∑

ρ∈Sn−2
δ∈Sn−2

N(1,ρ,n)

∣∣∣
ε1,εn=(~0,1)

×mn[1 ρn|1 δ n]×N(1,δ,n)

∣∣∣
ε1,εn=(~0,1)

. (4.2)

However, by using the Kawai-Lewellen-Tye (KLT) [28] relations at the amplitude level, it

seems much more straightforward to find the scattering between two massive scalar and

(n− 2) gravitons by use of the momentum kernel [30–32], i.e,

Mn(2ϕ, (n− 2)h) = (−1)n−3
∑

α∈Sn−3
β∈Sn−3

An(1ϕ, αg, (n− 1)g, nϕ)× S[α|β]k1

×An(nϕ, (n− 1)g, βg, 1ϕ) . (4.3)

Here An is an amplitude of two massive scalars and (n−2) gluons as defined in (2.22), and

the momentum kernel S[α|β] is

S[i1, . . . , ik|j1, . . . , jk]k1 ≡
k∏
t=1

(
sit1 +

k∑
q>t

Θ(it, iq)sit,iq

)
, (4.4)

where Θ is the step function. For instance, for the four-point amplitude we immediately

get

M4(2ϕ, 2h) = A4(1ϕ, 3g, 2g, 4ϕ)× S[3|2]×A4(1ϕ, 2g, 3g, 4ϕ) , (4.5)

where S[3|2] = −s23, thus using the result found in (2.32), one has

M4(2ϕ, 2h) =

[
2 (εP )31(εk)23 sP13 − 2 (εFP )321 sP13 − 2 (εP )31(εP )24 s23

sP13 s23

]
× (−s23)

×
[

2 (εP )21(εk)32 sP12 − 2 (εFP )231 sP12 − 2 (εP )21(εP )34 s23

sP12 s23

]
= − [2 (εP )24(εP )31sP12 + 2 (εP )21(εP )34s2P4 + (εε)23sP12s2P4 ]2

sP12 s23 s2P4

,

which is the correct 4-point amplitude. Higher order amplitudes follow by KLT-squaring

analogously.
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5 Conclusion

We have presented different methods to compute the tree-level scattering amplitudes of

two massive scalars and an in principle arbitrary number of gravitons in D-dimensions.

These are the tree-level amplitudes needed to obtain the classical two-body scattering of

two massive objects without spin in general relativity through the use of unitarity. The

most economical method appears to be the one based on a new set of recursive relations

that can be derived from the so-called Λ-algorithm (or double cover) in the CHY-formalism.

In this method one first defines an extension of scattering amplitudes where one external

leg is taken off-shell (defining, effectively, a current in the case of Yang-Mills theory) and

then glues off-shell legs together by an appropriate polarization sum. We have proven

a particular simplification in comparison to the pure Yang-Mills case when the amplitude

contains two massive scalar legs: a sum over longitudinal polarizations cancels exactly. The

resulting amplitude relations for two massive scalars and any number of on-shell gluons

thus becomes surprisingly simple.

Although a similar technique can be used to compute amplitudes of two massive scalars

with an arbitrary number of gravitons we have found it economical to simply use KLT-

squaring in order to obtain these. Again, they are then provided in D-dimensions and with

arbitrary polarization tensors.

We have checked our general recursive formula up to six points with existing expressions

in the literature for the case D = 4, always finding complete agreement. An interesting

observation is the possibility of establishing a new on-shell set of recursion relations for

these amplitudes based on BCFW-recursion combined with the double-cover analysis of

the Λ-algorithm. This will be discussed elsewhere.
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A Higher-point Yang-Mills amplitudes with massive legs

Here we present details of the main ingredients that go into the computation of

the massive five-point gluon amplitudes: A5(P1, P2,P3, 4, 5), A5(P1, 2,P3, P4, 5) and

A5(P1,P2, P3, 4, 5).

Using the method developed in [43], the factorization decomposition of A5(P1, P2,P3,

4, 5) becomes

A5(P1, P2,P3, 4, 5) = (−1)×
∑
M

{
A3(P εM

5:2 ,P3, 4)×A4(P1, P2,P
εM
34 , 5)

sP34

+
A3(P εM

3:5 ,P1, P2)×A4(P εM
12 ,P3, 4, 5)

sP345
+
A3(P3,P

εM
4:1 , P2)×A4(P1,P

εM
23 , 4, 5)

s45P1

}

+ 2
∑
L

{
A3(P εL

513,P2, 4)

sP24
×A4(P1, P3,P

εL

24 , 5) +
A4(P εL

13 ,P2, 4, 5)

sP245

× A3(P εL

245,P1, P3)

}
, (A.1)

where we have written A5(P1, P2,P3, 4, 5) in terms of the smaller amplitudes, A3(Pa,Pb,

Pc), A4(Pa, Pb,Pc, d) and A4(Pa,Pb, Pc, d). As in the four-point case, we must use the

identities in (2.17) and (2.18).

It is straightforward to find the longitudinal contributions,

− 2
∑
L

[
A3(P εL

513,P2, 4)

sP24
×A4(P1, P3,P

εL

24 , 5)

]

= −
√

2 (ε2 · ε4)× s5P13(ε1 · F5 · ε3) + 2(ε1 · ε3)(P1 · F5 · P3)

s5P13 sP15
, (A.2)

and

− 2
∑
L

[
A4(P εL

13 ,P2, 4, 5)

sP245
×A3(P εL

245,P1, P3)

]

= −
√

2 (ε1 · ε3)× s5P24 (ε2 · F5 · ε4) + 2(ε2 · ε4)(P2 · F5 · k4)

s5P24 s45
. (A.3)

Similarly, the amplitude A5(P1, 2,P3, P4, 5) is factorized according to

A5(P1, 2,P3, P4, 5) = (−1)×
∑
M

{
A3(P εM

5:2 ,P3, P4)×A4(P1, 2,P
εM
34 , 5)

sP3P4 + 2 ∆34
+

A3(P εM
3:5 ,P1, 2)×A4(P εM

12 ,P3, P4, 5)

sP3P45 + 2 ∆34
+
A3(P3,P

εM
4:1 , 2)×A4(P1,P

εM
23 , P4, 5)

sP45P1 + 2 ∆14

}

+ 2
∑
L

{
A3(P εL

513,2, P4)

s2P4 + 2 ∆14 + 2 ∆34
A4(P1, P3,P

εL

24 , 5)+
A4(P εL

13 ,2, P4, 5)

s2P45 + 2 ∆14 + 2 ∆34

×A3(P εL

245,P1, P3)

}
, (A.4)
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where we have used (2.6), namely

∆13 =
P 2

1 + P 2
3 − P 2

4

2
, ∆14 =

P 2
1 − P 2

3 + P 2
4

2
, ∆34 =

−P 2
1 + P 2

3 + P 2
4

2
. (A.5)

We also recall that ∆14+∆34 = P 2
4 . It is now straightforward to verify that the longitudinal

contributions in (A.4) are identical to the one evaluated above, i.e.,

−2
∑
L

[
A3(P εL

513,2, P4)

sP42 + 2 ∆14 + 2 ∆34
× A4(P1, P3,P

εL

24 , 5)

]
= (A.2)

and

−2
∑
L

[
A4(P εL

13 ,2, P4, 5)

sP425 + 2 ∆14 + 2 ∆34
× A3(P εL

245,P1, P3)

]
= (A.3).

Finally, we are able to expand the amplitude, A5(P1,P2, P3, P4, 5), in terms of

the two previous ones, A5(Pa, Pb,Pc, d, e) and A5(Pa, b,Pc, Pd, , e). Using the BCJ-like

identity [44, 45],

sP345 PT(3, 4, 5, 1, 2) + (sP345 + sP15) PT(3, 4, 1, 5, 2) + (sP345 + sP1P45) PT(3, 1, 4, 5, 2) = 0,

the amplitude, A5(P1,P2, P3, 4, 5), turns into

A5(P1,P2, P3, 4, 5)

= −
(

1 +
sP1P45

sP345

)
A5(P2, P3,P1, 4, 5)−

(
1 +

sP126

sP345

)
A5(P1, 5,P2, P3, 4). (A.6)

Finally, let us show how to compute the six-point amplitude, A6(P1, P2,P3, 4, 5, 6).

The factorization decomposition of A6(P1, P2,P3, 4, 5, 6) is given by

A6(P1, P2,P3, 4, 5, 6) =
∑
M

{
A3(P3,P

εM
4:1 , P2)×A5(P1,P

εM
23 , 4, 5, 6)

s456P1

+
A3(P εM

3:6 ,P1, P2)×A5(P εM
12 ,P3, 4, 5, 6)

sP3456
+
A3(P εM

5:2 ,P3, 4)×A5(P1, P2,P
εM
34 , 5, 6)

sP34

−A4(P1, P2,P
εM
3:5 , 6)×A4(P εM

6:2 ,P3, 4, 5)

sP345

}

− 2
∑
L

{
A3(P εL

3:6,P1, P2)×A5(P εL
12 ,P3, 4, 5, 6)

sP3456
+
A3(P εL

5:2,P3, 4)×A5(P1, P2,P
εL
34 , 5, 6)

sP34

−A4(P1, P2,P
εL
3:5, 6)×A4(P εL

6:2,P3, 4, 5)

sP345

}∣∣∣∣∣ 2↔3
(εα·PA)=−(εα·PĀ)
(εα·Pα)=0

, (A.7)

where 2 ↔ 3 means the changing of the two labels, α = 1, 3 and PĀ is the complement

of PA (by the momentum conservation condition, PA + PĀ = 0). For example, PA is

given by P2456, P24 and P245 in the last three term in (A.7), respectively, therefore, PĀ is

P13, P1356 and P136. Additionally, the identities in (2.17) and (2.18) must be used in the

above factorization expansion.
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B Longitudinal contributions

As we have observed in all special cases worked out in this paper, the longitudinal contri-

butions to the factorized amplitudes with massive scalars always vanish identically. In this

section we prove this important fact in all generality.

Let us consider a Yang-Mills n-point amplitude with up to three massive legs

An(Pn, P1,P2, 3, . . . , n − 1). Applying the factorization method, a generic longitudinal

contribution is given by

∑
L

A(n−i)+2(Pn, P2,P
εL
134...i, i+ 1, . . . , n− 1)×Ai(P εL

i+1...n2,P1, 3, 4, . . . , i)

sP134...i
, (B.1)

where the two amplitudes are sewn together by the rule

∑
L

εLµi εLνj =
Pµi P

ν
j

Pi · Pj + P 2
n − P 2

2

. (B.2)

We can now show the following:

Under the condition ε1 = εn = (~0, 1), the amplitudes, A(n−i)+2(Pn, P2,P
εL
134...i, i +

1, . . . , n− 1) and Ai(P
εL
i+1...n2,P1, 3, 4, . . . , i) vanish identically.

The proof of this proposition is straightforward.

Let us consider the amplitude, Ai(P
εL
i+1...n2,P1, 3, 4, . . . , i). From the notation intro-

duced in the main text, it is clear that the reduced matrix
[
(Ψi)

Pi+1...n2P1

Pi+1...n2P1

]
, has a row

(column) given by the vector(
ε1·k2
σ12

, · · · , ε1·kiσ1i
,
ε1·εLi+1...n2

σ1Pi+1...n2
, 0, ε1·ε2σ12

, · · · , ε1·εiσ1i

)∣∣∣
ε1,εn=(~0,1)

=
(

0, · · · , 0,
ε1·εLi+1...n2

σ1Pi+1...n2
, 0, · · · , 0

)
.

Since εLi+1...n2 is proportional to Pi+1...n2 = ki+1 + · · ·+ kn + P2 it follows that

ε1 · εLi+1...n2

σ1Pi+1...n2

∝ ε1 · Pi+1...n2

σ1Pi+1...n2

= 0,

using that (ε1 · ki) = 0. Therefore, Ai(P
εL
i+1...n2,P1, 3, 4, . . . , i) vanishes trivially for, ε1 =

εn = (~0, 1). The essential property that makes these contributions vanish is the fact

that the polarization vectors associated with what become massive scalars live in a higher

dimensional space with no overlap with the momenta of the D-dimensional space.

The same argument works for A(n−i)+2(Pn, P2,P
εL
134...i, i+ 1, . . . , n− 1).
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