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Copy number variation (CNV) is a common structural variation pattern of DNA, and it

features a higher mutation rate than single-nucleotide polymorphisms (SNPs) and affects

a larger fragment of genomes. CNV is related with the genesis of complex diseases

and can thus be used as a strategy to identify novel cancer-predisposing markers

or mechanisms. In particular, the frequent deletions of mono-ADP-ribosylhydrolase 2

(MACROD2) locus in human colorectal cancer (CRC) alters DNA repair and the sensitivity

to DNA damage and results in chromosomal instability. The relationship between CNV

and cancer has not been explained. In this study, on the basis of the genome variation

profiling by the SNP array from 651 CRC primary tumors, we computationally analyzed

the CNV data to select crucial SNP sites with the most relevance to three different

states of MACROD2 (heterozygous deletion, homozygous deletion, and normal state),

suggesting that these CNVs may play functional roles in CRC tumorigenesis. Our study

can shed new insights into the genesis of cancer based on CNV, providing reference for

clinical diagnosis, and treatment prognosis of CRC.

Keywords: copy number variation, MACROD2, colorectal cancer, subtype, classification

INTRODUCTION

Copy number variation (CNV) is a common structural variation pattern of DNA; it is defined as
a >1 kb genomic segment with a different copy number compared with the reference genome,
leading to gains, or losses of multiple DNA sites that are either microscopic or submicroscopic
(Redon et al., 2006). CNV features a higher mutation rate than single-nucleotide polymorphisms
(SNPs) and affects a larger fragment of genomes (Zhang et al., 2009). For a large number of CNVs
generated in the human genome, one of the known mechanisms is DNA recombination, which
includes non-allelic homologous recombination and non-homologous end-joining. Recently, a new
mechanism based on DNA error replication has been discovered. Named the “Fork stalling and
switching” model, this mechanism can explain complex-structure CNVs that do not conform to
non-allelic homologous recombination or non-homologous end-joining.

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2019.00407
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2019.00407&domain=pdf&date_stamp=2019-12-19
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tohuangtao@126.com
mailto:cai_yud@126.com
https://doi.org/10.3389/fbioe.2019.00407
https://www.frontiersin.org/articles/10.3389/fbioe.2019.00407/full
http://loop.frontiersin.org/people/866888/overview
http://loop.frontiersin.org/people/857914/overview
http://loop.frontiersin.org/people/552744/overview
http://loop.frontiersin.org/people/844845/overview
http://loop.frontiersin.org/people/846849/overview
http://loop.frontiersin.org/people/326927/overview
http://loop.frontiersin.org/people/576896/overview
http://loop.frontiersin.org/people/773554/overview
http://loop.frontiersin.org/people/552766/overview
http://loop.frontiersin.org/people/103860/overview


Zhang et al. CNV Pattern for Discriminating MACROD2 States

With the development of high-resolution SNP arrays,
identifying large-scale CNVs in thousands of samples has been
possible (Beroukhim et al., 2010). Studies have demonstrated that
CNV is related to the genesis of Mendelian diseases, sporadic
diseases, and susceptibility to complex diseases (Yang et al.,
2008; De Cid et al., 2009; Willer et al., 2009; Sato et al., 2014;
Zhang et al., 2014). CNVs also play a potential role in cancer
risk, and the genome-wide copy number analysis can be used
as a strategy to identify novel cancer-predisposing markers or
mechanisms (Kuiper et al., 2010). Ding et al. (2010) reported that
the genome of primary tumors is diverse and frequently includes
gene rearrangements and copy number variations. Shlien et al.
(2008) used high-density oligonucleotide arrays to compare
the genomes of healthy population and a Li–Fraumeni cancer
predisposition disorder (LFS) cohort and observed that CNV
in the cell adhesion gene mixed-lineage leukemia translocated 4
(MLLT4) is associated with LFS, in which patients always harbor
a germline heterozygous mutation of the tumor suppressor gene
TP53 and experience a high probability of developing early-
stage breast, sarcoma, brain, and other tumors. Scrima et al.
(2012) revealed that 24, 31, and 26% of patients with lung
adenocarcinoma achieved a copy number gain in adenylate
kinase (AK) 1, AK2, and phosphoinositide-3-kinase, catalytic,
alpha polypeptide (PI3KCA), respectively, via fluorescence in
situ hybridization.

Evidence has recognized CNV as one of the most important
genomic alterations affecting cancer pathogenesis (Hermsen
et al., 2002), whereas chromosomal instability and allelic
imbalance at certain chromosomal loci play crucial roles in
most sporadic cases of colorectal cancer (CRC) (Zanke et al.,
2007). CRC is the fourth most common cancer and the second
leading cause of cancer death worldwide, with over 1.1 million
new cancer cases and 880,000 deaths estimated in 2018 (Bray
et al., 2018). For better assessment of the progression of
CRC, the Dukes staging system was proposed as a common
classification system for CRC (Dukes, 1932). Four stages of
CRC are defined by such system depended on the degree
of colorectal pathology. Dukes A represents the invasion of
tumor cells into but not through the bowel wall. Patients in
Dukes A stage usually have better outcomes with over 90%
5-year survival. When tumor grows through the muscle layer
of the bowel but not infiltrate into lymph nodes, it will be
identified as Dukes B stage. Dukes C refers to the spread
of cancer to at least one lymph node close to the bowel.
And lastly, widespread metastases of tumor cells in CRC, also
called advanced CRC, indicate the stage of Dukes D. The clear
stage of CRC contributes to the decision making in clinical
treatment, and also provides a detailed description for the
pathology research.

Frequent deletions of the mono-ADP-ribosylhydrolase 2
(MACROD2) locus in human CRC alter DNA repair and
sensitivity to DNA damage and result in chromosomal instability
(Sakthianandeswaren et al., 2018). In addition, MACROD2
deletion in CRC is significantly associated with the extent
of malignancy, indicating that MACROD2 acts as a haploin-
sufficient tumor suppressor, with the loss of function promoting
chromosome instability and thereby driving cancer evolution.

In this study, based on the genomic variation profiling by
SNP array from 651 CRC primary tumors (Sakthianandeswaren
et al., 2018), the log R ratio (LRR) and B allele frequency
data (BAF) of each SNP site were exported using two types of
hybridization probes specific to two types of known alleles (Wang
et al., 2007), and the SNP genotype also can be determined
by the ratios of the hybridization intensities of two types of
probes. The genotype of SNPs located in the region ofMACROD2
was used to represent the genotype state of MACROD2, which
means that the individuals with the loss of both alleles in at
least one SNP site in MACROD2 will be classified into the state
of homozygous deletion, and the deletion of only one allele
indicates the heterozygous deletion status. A wild-type stage
or normal stage refers to no deletion happened in MACROD2.
Following that, each patient was classified into one of the
three states: heterozygous deletion, homozygous deletion, and
normal state in our study. We computationally analyzed the
CNV data to select the crucial SNP sites showing the most
relevance to the four Dukes stages of CRC (A, B, C, and D)
and three different states of MACROD2 (heterozygous deletion,
homozygous deletion, and normal state), suggesting that these
CNVs may play functional roles in CRC tumorigenesis. We
constructed a classifier with high accuracy to group individuals
into the corresponding state categories. This classification model
also provides a meaningful list of genomic loci that perform
important functions in the development and progression of
cancers. To date, the relationship between CNV and cancer has
not been exactly explained. Our study can shed new light on
the genesis of cancer based on CNV, providing reference for the
clinical diagnosis and treatment prognosis of CRC.

MATERIALS AND METHODS

In this study, we first used the minimum redundancy and
maximum relevance (mRMR) method (Peng et al., 2005) to
analyze all features. Irrelevant features were discarded and
the rest features were ranked in a feature list, which was
further fed into the incremental feature selection (IFS) (Liu and
Setiono, 1998) to obtain the optimum features and extract the
classification rules for readable explanation. We adopted the
same computational pipeline to separately analyze four kinds of
carefully organized datasets, including the CRC stage with LRR
or BAF and theMACROD2 status with LRR or BAF.

Datasets
The LRR and BAF data on 651 CRC primary tumors obtained
using the Illumina Human610-Quad v1.0 BeadChip were
downloaded fromGene ExpressionOmnibus under the accession
number GSE115145 (Sakthianandeswaren et al., 2018). The LRR
and BAF were calculated with GenomeStudio (Illumina). The
651 CRC samples can be divided into four stages: 60 stage A
samples, 208 stage B samples, 297 stage C samples, and 86 stage
D samples. Based on MACROD2 status, 441 wild-type samples,
137 heterozygous deletion samples, and 73 homozygous deletion
samples were obtained. Each sample was represented by 620,901
SNP features.
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Feature Selection
As mentioned above, each sample was represented by lots of
SNP features. Clearly, not all of them were highly related
to classification of these samples. Thus, we employed some
powerful feature selection methods to analyze all features. The
analysis procedures included three stages. The first stage was
to exclude irrelevant features; the second one was to sort rest
features; the last stage was to construct optimal classifier with
optimum features and classification rules with the help of IFS
method, support vector machine (SVM) (Corinna Cortes, 1995),
and repeated incremental pruning to produce error reduction
(RIPPER) (Cohen, 1995).

The purpose of the first stage was to exclude irrelevant
features. To this end, all features were evaluated by the mRMR
method. The mRMR method was a mutual information (MI)-
based feature selection method (Peng et al., 2005; Li et al., 2019).
The importance of each feature was evaluated by its MI to class
labels. It is clear that the higher the MI values were, the more
important the features were. After a threshold for MI value was
set, irrelevant features can be excluded.

After irrelevant features were excluded, rest features were
assessed by mRMR method in another way in the second stage.
In detail, rest features were ranked in a feature list in terms of
their relevance to class labels and redundancies to other features.
The feature subset consisting of some top features in the list can
be deemed to be the optimal feature combination with highest
relevance to class labels and lowest redundancies among these
features, which can provide a powerful discrimination. In this
study, we used the mRMR program downloaded from http://
home.penglab.com/proj/mRMR/index.htm. Default parameters
were adopted.

In the third stage, we ran a two-stage IFS with a classification
algorithm to select the optimum features for building the optimal
classifier or construct classification rules. In the first stage, a
series of feature subsets with a step 10 was generated, where
feature subset 1 consists of the top 10 features, feature subset 2
consists of the top 20 features, and so on. Then, for each feature
subset, a classifier was trained on the samples consisting of the
features from the feature subset, and this classifier was evaluated
using 10-fold cross-validation (Kohavi, 1995). An interval [min,
max] with a good performance was determined. In the second
stage, a series of feature subsets within the interval [min, max]
was generated to further select the final optimum features or
construct classification rules. Based on these optimum features,
an optimal classifier can be built.

SVM
SVM attempts to identify a hyper plane with a maximummargin
between two groups of samples, and it has been widely used in
biological data studies (Pan and Shen, 2009; Mirza et al., 2015;
Cai et al., 2018; Chen et al., 2018, 2019; Zhou et al., 2019). In
this work, we used a multi-class SVM with a one vs. rest strategy.
The multi-class SVM consists of multiple binary SVMs, and each
SVM classifies the samples of one class from the rest of the classes.
When predicting the class for a new sample, the SVM predicts
the sample’s label corresponding to the class with the highest

probability. This study adopted the SVM implemented by a tool
“SMO” in Weka.

Rule Learning
To understand how a classification model makes a prediction, we
used rule learning to extract the readable classification rules. A
rule consists of an IF-THEN relationship between features and
output labels, such as IF SNP1 <= 0.7 AND SNP2 >= 1.02;
THEN stage = “A.” In this study, we applied RIPPER (Cohen,
1995), which is implemented by a tool “JRip” in Weka. RIPPER
consists of two stages, including the rule building stage and rule
optimization stage.

SMOTE
As mentioned in the Datasets section, 651 CRC samples were
classified into three or four classes. The sizes of classes varied a
lot. Thus, investigated datasets were imbalanced. For this type of
dataset, the performance of an ordinary classifier is dependent
on the biggest class. To tackle this problem, Synthetic Minority
Over-sampling Technique (SMOTE) (Chawla et al., 2002; Wang
et al., 2018; Zhang et al., 2019) was employed in this study, which
is a oversampling method. This method can produce some new
samples and pour into minority class, thereby making all classes
having equal sizes. In this study, for the BAF/LRR dataset of
CRC stage, new samples were generated by SMOTE for classes
of stages A, B, and D, while new samples were yielded by SMOTE
for classes of heterozygous deletion and homozygous deletion for
BAF/LRR dataset ofMACROD2 status.

In this study, we adopted the SMOTE program implemented
by python, which was downloaded at https://github.com/scikit-
learn-contrib/imbalanced-learn.

RESULTS

In this study, we separately analyzed the four kinds of carefully
organized datasets with a three-stage feature selection method.
Whole procedures are illustrated in Figure 1.

For the first stage, we set the threshold of MI values to
be 0.01; i.e., features receiving the MI values larger than 0.01
were kept. The number of remaining features for BAF/LRR
dataset of CRC stage was 47515/44931, while it was 20839/20973
for BAF/LRR dataset of MACROD2 status. Then, in the
second stage, remaining features in each dataset were ranked
by the mRMR method. Obtained feature lists are provided
in Tables S1–S4. The third stage employed the IFS method
and classification algorithms to extract optimum features and
construct classification rules. The key results are provided in
Tables 1–4.

Results on BAF Dataset of CRC Stage
We first ran the computational pipeline on the first BAF dataset
of CRC stage. Key results are provided in Table 1 and Figure 2.
For the first stage of IFS with a step 10, results are provided
in Table S5 and a curve with Matthews correlation coefficient
(MCC) (Matthews, 1975; Gorodkin, 2004; Zhao et al., 2018, 2019;
Cui and Chen, 2019) as Y-axis and number of features as X-axis
was plot, as shown in Figure 3A. The SVM yielded the highest
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FIGURE 1 | Entire procedures to analyze the log R ratio (LRR) and B allele frequency (BAF) data on colorectal cancer (CRC) primary tumor samples. CRC samples are

classified into four stages; at the same time, they can also be classified into three classes according to their MACROD2 status. For each classification, two datasets

with LRR and BAF, respectively, were constructed. Four datasets were obtained in total, in which single-nucleotide polymorphism (SNP) features were used to

represent each CRC sample. A feature selection procedure, including three stages, was adopted to analyze all SNP features. Finally, an optimal classifier and several

classification rules were accessed for each dataset.

TABLE 1 | Performance of classification models on BAF dataset of CRC stage

with IFS method.

Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules

Highest point Turning point

SVM 0.9653 (35,440) 0.9007 (8,790) 0.9008 (8,797) —

RIPPER 0.2932 (8,500) 0.2692 (2,170) 0.2745 (2,075) 30

*These performances are measured by MCC; numbers of used features are listed

in brackets.

BAF, B allele frequency; CRC, colorectal cancer; IFS, incremental feature selection;

SVM, support vector machine; RIPPER, repeated incremental pruning to produce error

reduction; MCC, Matthews correlation coefficient.

TABLE 2 | Performance of classification models on LRR dataset of CRC stage

with IFS method.

Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules

Highest point Turning point

SVM 0.7542 (20,400) 0.7143 (3,960) 0.7231 (3,967) —

RIPPER 0.3420 (18,530) 0.3417 (3,040) 0.3490 (2,841) 32

*These performances are measured by MCC; numbers of used features are listed

in brackets.

LRR, log R ratio.

MCC value of 0.9653 (Table 1) when the top 35,440 features
were used. Considering this extremely large number, we used
another turning point (top 8,790 features), which still yielded a

TABLE 3 | Performance of classification models on BAF dataset of MACROD2

status with IFS method.

Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules

Highest point Turning point

SVM 0.9683 (5,610) 0.9406 (2,080) 0.9436 (2,064) —

RIPPER 0.3923 (18,460) 0.3677 (5,530) 0.3677 (5,530) 23

*These performances are measured by MCC; numbers of used features are listed

in brackets.

TABLE 4 | Performance of classification models on LRR dataset of MACROD2

status with IFS method.

Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules

Highest point Turning point

SVM 0.9069 (5,540) 0.8759 (1,030) 0.8785 (1,022) —

RIPPER 0.6953 (410) — 0.7385 (306) 17

*These performances are measured by MCC; numbers of used features are listed

in brackets.

high MCC value of 0.9007. Thus, in the second IFS stage, we
ran the same pipeline with the interval [1, 8800] with a step 1.
Results are collected in Table S6, and a curve was also plotted, as
shown in Figure 3B. The best MCC value was 0.9008 when the
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FIGURE 2 | Bar chart to show accuracies on four CRC stages yielded by key support vector machine (SVM) and repeated incremental pruning to produce error

reduction (RIPPER) classifiers on BAF data of CRC stage.

FIGURE 3 | Incremental feature selection (IFS) results on BAF data of CRC stage yielded by SVM and RIPPER. (A) First-stage IFS results on BAF data of CRC stage

yielded by SVM. (B) Second-stage IFS results on BAF data of CRC stage yielded by SVM. (C) First-stage IFS results on BAF data of CRC stage yielded by RIPPER.

(D) Second-stage IFS results on BAF data of CRC stage yielded by RIPPER.

top 8,797 features were used. Accordingly, we built an optimal
SVM classifier with the top 8,797 features.

In addition to SVM, we applied the interpretable rule learning
method RIPPER to evaluate the selected features’ performance in
a rule manner. After running RIPPER on the samples consisting
of features from individual feature subsets with a step 10, we
obtained the performance of RIPPER on different feature subsets,
as shown in Table S5 and Figure 3C. We obtained the best MCC
value of 0.2932 when the top 8,500 features were used. A turning
point was observed (top 2,170 features), yielding an MCC value
of 0.2692. To further select the optimum features, we ran the IFS
with RIPPER within the interval [1, 2,200]. Results are available

in Table S6 and displayed in Figure 3D. We obtained the best
MCC value of 0.2745 when the top 2,075 features were used.

Although RIPPER showed a poorer performance than SVM
in this case, one advantage of RIPPER is that it can generate
classification rules, which help us understand how the model
makes a prediction on a subgroup of samples. Considering these
data, the RIPPER produced 30 classification rules, which are
given in Table S7.

Results on LRR Dataset of CRC Stage
We ran the above same pipeline on the second dataset. Key
results are provided in Table 2 and Figure 4. When running the

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 December 2019 | Volume 7 | Article 407

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Zhang et al. CNV Pattern for Discriminating MACROD2 States

IFS with an SVM on the samples consisting of features from
individual feature subsets, we obtained the best MCC value of
0.7542 when the top 20,400 features were used. We adopted a
smaller turning value (top 3,960 features), which yielded anMCC
value of 0.7143. Then, we ran the second stage of IFS on the
interval [1, 4000] and obtained the best MCC value of 0.7231
when the top 3,967 features were used. These results are given
in Tables S8, S9 and illustrated in Figures 5A,B. Accordingly, an
optimal SVM classifier was built based on the top 3,967 features.

Similarly, IFS with RIPPER was also used on this dataset.
All results are provided in Tables S8, S9 and displayed in
Figures 5C,D. We obtained the best MCC value of 0.3420 when
using the top 18,530 features. Of note, when 3,040 features were

used, the performance showed a notable change as a performance
turning point. Thus, in the second stage of IFS, we ran the
RIPPER on the interval [1, 3100] and obtained the best MCC
value of 0.3490 when using the top 2,841 features. The 32 learned
classification rules are given in Table S10.

Results on BAF Dataset of MACROD2
Status
Instead of analyzing the association between the CRC stages and
CNV states, we used the same pipeline to analyze theMACROD2
status associated with particular CNV types. For the BAF dataset
of MACROD2 status, key results are provided in Table 3 and
Figure 6. Results of the first stage of IFS with SVM are available in

FIGURE 4 | Bar chart to show accuracies on four CRC stages yielded by key SVM and RIPPER classifiers on LRR data of CRC stage.

FIGURE 5 | IFS results on LRR data of CRC stage yielded by SVM and RIPPER. (A) First-stage IFS results on LRR data of CRC stage yielded by SVM. (B)

Second-stage IFS results on LRR data of CRC stage yielded by SVM. (C) First-stage IFS results on LRR data of CRC stage yielded by RIPPER. (D) Second-stage IFS

results on LRR data of CRC stage yielded by RIPPER.
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Table S11, and a curve was plotted in Figure 7A.We obtained the
best MCC value of 0.9683 when the top 5,610 features were used.
We detected the turning point 2,080, which yielded an MCC
value of 0.9406. In the second stage of IFS, we ran the SVM on
the interval [1, 2080]. Results are collected in Table S12, and a

curve was plotted in Figure 7B. The best MCC value was 0.9436
when the top 2,064 features were used, which can be used to build
an optimal SVM classifier.

We also ran the IFS with RIPPER on this dataset. The first-

stage results are provided in Table S11. A curve was plotted in

Figure 7C. RIPPER yielded the best MCC value of 0.3923 when

the top 18,460 features were used. We also selected the turning

point 5530 for the second stage of IFS, which yielded an MCC
value of 0.3677. For the second stage of IFS within the interval [1,
5530], results are available in Table S12 and a curve was shown
in Figure 7D. We still obtained the best MCC value of 0.3677
when the top 5,530 features were used. The 23 classification rules
generated by RIPPER are listed in Table S13.

Results on LRR Dataset of MACROD2
Status
We did the similar procedures for the LRR dataset ofMACROD2
status. Key results are provided in Table 4 and Figure 8. For the
first stage of IFS with SVM, results are provided in Table S14 and

FIGURE 6 | Bar chart to show accuracies on three MACROD2 status yielded by key SVM and RIPPER classifiers on BAF data of MACROD2 status.

FIGURE 7 | IFS results on BAF data of MACROD2 status yielded by SVM and RIPPER. (A) First-stage IFS results on BAF data of MACROD2 status yielded by SVM.

(B) Second-stage IFS results on BAF data of MACROD2 status yielded by SVM. (C) First-stage IFS results on BAF data of MACROD2 status yielded by RIPPER. (D)

Second-stage IFS results on BAF data of MACROD2 status yielded by RIPPER.
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a curve was plotted in Figure 9A. We obtained the best MCC
value of 0.9069 when using the top 5,540 features. Similarly, a
smaller turning point 1,030 was used for the second stage of IFS,
because it still yielded a satisfactory MCC value of 0.8759. In
the second stage of IFS, we set the interval [1, 1,100]. Results
are collected in Table S15, and a curve was plotted in Figure 9B.
We obtained the best MCC value of 0.8785 when the top 1,022
features were adopted. The optimal SVM classifier was built using
the top 1,022 features.

We ran the IFS with RIPPER again. Results are provided in
Table S14. A curve was plotted in Figure 9C, from which we
can see that the best MCC value was 0.6953 when the top 410

features were used. Then, we ran the second stage of IFS within
the interval [1, 410]. Results are available in Table S15. A curve
was plotted in Figure 9D. It can be seen that the best MCC value
was 0.7385 when using the top 306 features. Table 5 lists the 17
classification rules generated by RIPPER.

DISCUSSION

On each of four datasets, a group classification rules were
generated by RIPPER. According to the performance of RIPPER
listed in Table 4, rules on the LRR data ofMACROD2 status were

FIGURE 8 | Bar chart to show accuracies on three MACROD2 status yielded by key SVM and RIPPER classifiers on LRR data of MACROD2 status.

FIGURE 9 | IFS results on LRR data of MACROD2 status yielded by SVM and RIPPER. (A) First-stage IFS results on LRR data of MACROD2 status yielded by SVM.

(B) Second-stage IFS results on LRR data of MACROD2 status yielded by SVM. (C) First-stage IFS results on LRR data of MACROD2 status yielded by RIPPER. (D)

Second-stage IFS results on LRR data of MACROD2 status yielded by RIPPER.
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TABLE 5 | Classification rules on dataset of MACROD2 status with LRR.

Index Condition Result Supporta% Accuracyb%

1 rs353149 <= −0.3811

rs6034087 <= −0.2724

Homozygous

deletion

5.84 92.11

2 rs445945 <= −0.3040

rs6712905 >= 0.1367

rs377954 <= −0.3691

Homozygous

deletion

3.23 90.48

3 rs6135314 <= −0.5109

rs6685801 <= −0.0057

rs2900712 <= −0.0619

rs9444675 <= 0.1020

Homozygous

deletion

4.61 93.33

4 rs6135362 <= −0.2468

rs2100272 >= 0.1398

rs700029 <= 0.0035

Homozygous

deletion

1.84 91.67

5 rs6110500 <= −0.2528

rs10500528 <= −0.0094

Homozygous

deletion

7.37 83.33

6 rs6079537 <= −0.2319

rs2900712 <= −0.0981

rs6043173 >= −0.0832

Homozygous

deletion

0.92 100.00

7 rs9355387 <= −0.2856

rs11905979 <= −0.3878

Homozygous

deletion

1.84 91.67

8 rs199305 <= −0.4455

rs377201 >= −0.2189

Homozygous

deletion

0.77 100.00

9 rs6135314 >= −0.0746

rs1998086 >= 0.0340

rs381053 >= −0.0576

Wild-type 35.48 98.70

10 rs1475531 >= −0.0454

rs365516 >= 0.0220

Wild-type 31.80 96.14

11 rs2423866 >= −0.1223

rs385770 >= −0.0670

rs7241111 >= −0.1500

Wild-type 24.42 98.11

12 rs449849 >= −0.0559

rs716316 >= −0.0107

rs5904713 >= −0.1428

Wild-type 27.80 97.24

13 rs1327323 <= −0.2719

rs6135269 <= −0.1044

Wild-type 6.76 75.00

14 rs353149 >= −0.0059

rs13011654 >= 0.0742

rs445945 <= 0.067

Wild-type 5.07 96.97

15 rs6034046 >= −0.015

rs6135314 >= −0.0323

rs6034011 <= 0.0668

Wild-type 19.05 95.16

16 rs6043173 >= 0.131

rs449849 >= −0.0689

Wild-type 23.81 94.84

17 Others Heterozygous

deletion

20.28 85.61

aThe support of a rule is the percentage of samples satisfying the rule.
bThe accuracy of a rule is the proportion of the corrected classified samples among

samples satisfying the rule.

with the highest performance (MCC= 0.7385). Thus, we mainly
discussed these rules, which are listed in Table 5. Each rule can
cover some CRC samples and give high accuracies.

Given that the status of MACROD2 is significantly relevant
to the intestinal tumorigenesis and plays a crucial role in cancer
development (Sakthianandeswaren et al., 2018), our classifiers
are expected to be prognostic indicators for evaluating the
malignancy of intestinal tumor. On LRR data, 17 decision rules
were generated by RIPPER, which can distinguish the three status

of MACROD2 with LRR with a classification accuracy of 0.7385.
Depending on the CNV profiles of selected loci, predicting
whether a heterozygous, or homozygous depletion ofMACROD2
exists in CRC patients is possible. To validate the reliability of
these rules, we examined existing experimental evidence through
a literature review.

We focused on the 17 decision rules and a few top-ranked
features on data of MACROD2 status with LRR. Such rules and
features described specific CNV characteristics contributing to
the identification of MACROD2 status and CRC classification,
indicating their crucial roles in cancer development. Especially,
several top-ranked features showed strong biological and
biomedical relevance with MACROD2, indicating that they also
play relevant functions in cancer progression.

Among the 17 rules, 8 rules could identify the homozygous
deletion ofMACROD2, and the other 8 decision rules can identify
the normal non-depletion status of MACROD2. The last one
indicates the heterozygous deletion, whichmeans that if the CNV
profiles in patients failed to meet any criteria of the other 16
rules, they were predicted to carry the heterozygous deletion
ofMACROD2.

Rules for Homozygous Deletion
In the eight rules identifying the homozygous deletion of
MACROD2 (see first eight rules in Table 5), 21 criteria involving
20 SNP sites were located in different regions of six genes.
Notably, 12 of these SNP sites were located in the genomic
regions of MACROD2, and the LRR of specific regions near
these SNP sites featured a low value, which is naturally and
logically consistent given that the CNV loss in MACROD2 leads
to homozygous deletion. Thus, our analysis actually highlights
the potential core roles of specific SNP sites, suggesting its
capability to identify the overall state ofMACROD2 based on the
CNV conditions of a few loci. In detail, the 12 SNPs (rs353149,
rs6034087, rs445945, rs377954, rs6135314, rs6135362, rs6110500,
rs6079537, rs6043173, rs11905979, rs199305, and rs377201)
were distributed in different locations of the intron regions of
MACROD2 and displayed strong relevance to the overall status
of MACROD2. By the detection of CNV in these selected loci
markers, we can identify the deletion state of MACROD2 in
patients. We will find the corresponding therapy methods for
the treatment targets in the future. Further research about these
incompletely elucidated SNP sites may reveal the mechanisms
of tumor development at the genomic level. The biological and
biomedical significance of several SNPs is summarized below.

The SNP site rs6685801 located in chr1:3547887 required
a low value of LRR to identify the homozygous deletion of
MACROD2 in our decision rules. This position is in the intron
region of multiple EGF-like-domains 6 (MEGF6) gene, which
was reported to play a critical role in cell adhesion and involved
in many disorders of neural system development (Sunnerhagen
et al., 1993). Recent publications have confirmed that MEFG6
can promote the epithelia-to-mesenchymal transition in CRC
metastasis (Hu et al., 2018). This gene is also significantly
upregulated in tumor tissue and results in the poor survival of
a colon adenocarcinoma cohort. MEGF6 can also accelerate the
cell growth and inhibit apoptosis in CRC as demonstrated by the
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experiment in vitro. All these results suggest that MEGF6 may
serve as an oncogene, and its overexpression may contribute to
the tumorigenesis in CRC patients. We inferred that the copy
number loss in this specific intron region caused the upregulated
expression of MEGF6 as it may perform inhibitory effects on
transcription. Thus, the low LRR of the SNP site rs6685801
can indicate the severe extent of CRC, consistent with the
homozygous deletion state ofMACROD2.

Another important SNP site rs9444675, which displayed
strong relevance to the status of MACROD2 in our classifier,
is located in the intron region of gamma-aminobutyric
acid receptor subunit rho-1 (GABRR1). GABRR1, also called
GABA(A) receptor, is a member of the rho subunit family and
acts as the receptor of major inhibitory neurotransmitters in the
mammalian brain (Cutting et al., 1992). A recent study has shown
that GABRR1 is significantly upregulated by the transcriptome
of chemokine (C-X-C motif) ligand 1-(CXCL1) treated colon
cancer cells (Hsu et al., 2018). Further analysis via bioinformatics
methods reported that high expression of GABRR1 showed
a significant correlation with reduced overall survival rates,
suggesting the crucial role of GABRR1 in the progression
of colon cancer. In addition, another research reported the
upregulation of GABRR1 in cancer cohorts compared with the
controls with regard to gene expression profiles of medullary
thyroid carcinoma (Oczko-Wojciechowska et al., 2006). These
pieces of evidences support the decision rule that copy number
loss of specific region located in GABRR1 will lead to the
upregulation of GABRR1 and contribute to the carcinogenesis
of CRC, resulting in the similar consequence as the homozygous
deletion state ofMACROD2.

One important criterion identified in the decision rules
suggests the high value of LRR near the specific SNP site
rs2100272. This site is located in the intron regions of VWA3B,
which showed a tendency toward malignancy development.
VWA3B encodes an intracellular protein thought to function in
transcription, DNA repair, and membrane transport (Kawarai
et al., 2016; Huttlin et al., 2017), playing a role similar to
MACROD2, which was reported to influence DNA repair
and sensitivity to DNA damage and result in chromosome
instability (Sakthianandeswaren et al., 2018). In the patients of
bladder urothelial carcinoma, evident copy number alterations
were observed in the 2q12 regions in which the VWA3B was
mapped (E. Pontes et al., 2013), in line with the suggestion
that VWA3B plays a crucial role in bladder carcinogenesis.
In addition, VWA3B is significantly differentially expressed in
tongue squamous cell carcinoma samples at the transcriptome
level (Song et al., 2019). These results confirm our decision
rules, which indicate that the copy number gain of the specific
regions near rs2100272 will alter the expression of VWA3B and
contribute to the development of certain cancers including CRC.

Another criterion was found in the experimental findings, and
it required a low LRR near the SNP site rs700029 to identify
the homozygous deletion state of MACROD2. This SNP site is
located in chr1:81805339 and was mapped in the intron region
of adhesion G protein-coupled receptor L2 (ADGRL2), which
encodes a member of the latrophilin subfamily of G-protein
coupled receptors. ADGRL2 functions as a p53 target gene and

regulator of neuronal exocytosis (Hamann et al., 2015). Recent
research has shown the low expression level of ADGRL2 in
genomic sequencing analyses of both gastric cancer and colon
cancer cell lines due to the hypermethylation of CpG islands
within the gene (Jeon et al., 2016). ADGRL2 is also associated
with lung squamous cell carcinoma and may serve as the
diagnostic marker for small cell lung cancer (Huang et al., 2018).
The rules that require the copy number loss of specific intron
region in ADGRL2 may result in the alteration of expression
profile and lead to the development of CRC.

We also identified a critical SNP site rs9355387 located in the
intron region of gene Parkin RBR E3 ubiquitin protein ligase
(PRKN), which according to the rules indicates the homozygous
deletion state of MACROD2. The gene PRKN, best known as
PARK2, is a key component of a multiprotein E3 ubiquitin
ligase complex, whichmediates the targeting of substrate proteins
for proteasomal degradation. Mutations occurring in this gene
cause Parkinson’s disease (Oczkowska et al., 2013). The loss of
PRKN at both the DNA copy number and mRNA expression
levels contributes to cancer progression via redox-mediated
inactivation of phosphatase and tensin homolog (PTEN) (Gupta
et al., 2017). The depletion of PRKN also enhanced pancreatic
tumorigenesis in KRAS-driven engineered mouse models based
on its role in mediating the degradation of mitochondrial iron
importers (Kang et al., 2019), implying that PRKN can be a
potential target for pancreatic cancer therapy. These results
highlight the crucial role of PRKN in cancer progression and
confirm our predicted rules, indicating that the loss of copy
number near rs9355387 would be an indicator of severe status
of cancer.

Rules for Wild-Type
The eight rules for identifying the non-deletion or wild-type
status of MACROD2 included 21 criteria with 19 SNP sites, 15
of which are located in the intron regions of MACROD2. The
LRR of these specific regions requires a high value opposite
that of the homozygous deletion state. Among the 15 SNP
sites located in MACROD2 and with built non-deletion status,
4 SNPs (rs6135314, rs353149, rs445945, and rs6043173) have
been applied in the identification of the homozygous deletion
state of MACROD2 with relatively low values as mentioned
before. The other 11 SNP sites (rs1998086, rs381053, rs1475531,
rs365516, rs2423866, rs385770, rs449849, rs716316, rs6135269,
rs6034046, and rs6034011) showed different distributions in
varying locations in the intron regions ofMACROD2, displaying
a significant correlation with the overall state of MACROD2 and
implying that these selected loci may play unexplained functional
roles in regulating DNA replication. The candidate SNP sites
identified by our prediction model can be applied as biomarkers
for the pathologic evaluation of CRC, given that the state of
MACROD2 has been confirmed to be a significant signal in
intestinal cancers.

The copy number loss of the regions near the SNP site
rs1327323 can indicate the non-deletion state of MACROD2
in one decision rule. This site is located in chr13:52296316
and mapped in the intron regions of transmembrane
phosphoinositide 3-phosphatase and tensin homolog 2
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pseudogene 2 (TPTE2P2), which is considered a putative
promoter in human genome (Kimura et al., 2006). By the
whole-exome sequencing analysis of 42 tumor–normal paired
samples, highly frequent sites of increased copy number were
found in the specific position of chromosome arm 13q (Corraliza
Márquez, 2014), the gains in which have been associated with
a poor prognosis and metastasis in CRC (Leary et al., 2008).
TPTE2P2 is present in the segments with copy number loss,
suggesting that it probably facilitates defect in tumorigenesis.
Another publication also reported TPTE2P2 as one of the key
genes identified in gastric cancers (Zeng et al., 2018), implying
its crucial role in certain cancers. We inferred that the copy
number gain in the specific intron region of TPTE2P2 results
in the progression of CRC, and the loss of copy number in our
decision rules identifies the normal status ofMACROD2 and the
absence of CRC.

Some SNP sites (rs5904713 and rs13011654) are located in the
intron regions of the non-coding RNA gene or the intergenic
regions in our decision rules. They have not been reported in
current research literature but show strong relevance to the
progression of CRC at the CNV level, implying their potential
roles in the regulation of oncogenes.

Numerous top-ranked features display the significant
relevance to the classification of three status of MACROD2,
most of which are located in the intron regions of MACROD2.
Coincident with the relevant information and our inferred
decision rules, the CNVs in MACROD2 resulted in the direct
altered states (e.g., cancer). In addition, our approach provides an
effective method to evaluate the malignancy extent by detecting
a few biomarkers (e.g., SNP sites) rather than conducting an
overall detailed analysis of the large gene MACROD2, which is
more than two million base pairs in size. In summary, our study
has proposed for the first time that specific SNP sites can be
applied as biomarkers in cancer diagnosis, and further research
on these sites will shed light on the molecular mechanism on
how these specific DNA regions contribute to the progression
of CRC.
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