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Notation

Undirected graphs

G = (V,E) An undirected graph G on node set V with edge set E.

G = (S, T ; E) A bipartite graph with colour classes S and T and edge set E.

V 2 The set of all edges on node set V .

dG(X) The number of edges in G incident to node set X.

dG(X,Y ) The number of edges in G between X − Y and Y − X.

iG(X) The number of edges with both endnodes in X.

dG(X,Y ) The number of edges in G between X ∩ Y and V − (X ∪ Y ).

NG(X) The set of neighbours of node set X.

X∗ = V − (X ∪ NG(X)) for node set X.

ΓG(X) The set of neighbours of X ⊆ S or X ⊆ T in a bipartite graph.

IG(X) The set of edges in G with both endnodes in X.

λG(u, v) The minimum number of edge-disjoint paths between nodes u and v.

Directed graphs

D = (V,A) A directed graph (shortly, digraph) on node set V with edge set A.(
V
2

)
The set of all (directed) edges on node set V .

ρD(X)/δD(X) The number of edges in D entering/leaving node set X.

δD(X,Y ) The number of directed edges in D from X − Y to Y − X.

dD(X,Y ) = δD(X,Y ) + δD(Y,X).

dD(X,Y ) = δD(X ∩ Y, V − (X ∪ Y )) + δD(V − (X ∪ Y ), X ∩ Y ).

Set pairs

K = (K−, K+) A set pair (see Section 1.1).

S = SV The set of all set pairs on node set V .

δF (K) The number of edges in edge set F covering K.

K � L K− ⊆ L− and K+ ⊇ L+.

K ∧ L = (K− ∩ L−, K+ ∪ L+) for dependent set pairs K and L.

K ∨ L = (K− ∪ L−, K+ ∩ L+) for dependent set pairs K and L.

O = OD The set of one-way pairs in the digraph D.

O1 = O1
D The set of strict one-way pairs in the (k − 1)-connected digraph D.

s(K) = |V − (K− ∪ K+)|.
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Miscellaneous

Z+/R+ the set of nonnegative integer/real numbers.

x+ = max{0, x}, for a number x ∈ R.

f(Z) =
∑

z∈Z f(z) for a vector f : V → R and a subset Z ⊆ V .

X + v = X ∪ {v} for X ⊆ V , v ∈ V .

X − v = X − {v} for X ⊆ V , v ∈ V .

X intersects Y X ∩ Y,X − Y, Y − X are all nonempty for X,Y ⊆ V .

X crosses Y X ∩ Y,X − Y, Y − X,V − (X ∪ Y ) are all nonempty for X,Y ⊆ V .

X is an uv̄-set For X ⊆ V , u ∈ X and v /∈ X; used also for more than two nodes.

x ≺ y x � y and x �= y for a partial order �.⋃X =
⋃t

i=1 Xi for a subpartition X = (X1, . . . , Xt).

p(X ) =
∑t

i=1 p(Xi) for p : 2V → R and a subpartition X = (X1, . . . , Xt).
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mention Tamás Király first, his prudence and helpfulness, and his infinite patience in listening

to my ideas and carefully reading almost all of my papers. I am also grateful to my co-authors
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I would like to thank my parents, László Végh and Margit Csatlós, and my sisters, Judit

and Zsuzsi for all their love and support. Finally, I would like to express my greatest thanks to

my love Bori for all the years we have spent together and for her patience during the completion

of this thesis.

1Grant Number 504438
2Grant Numbers K60802, T037547, and TS049788.

vi



Chapter 1

Introduction

The first family of problems considered in the thesis is connectivity augmentation. Given a

graph and a positive integer k, we want to find a minimum number of edges whose addition

results in a k-node-connected or k-edge-connected digraph. Both edge- and node-connectivity

augmentation can be considered in both directed and undirected graphs, which raises four

different questions, revealing essential differences both in terms of difficulty and of applicable

techniques. An important special case is augmenting connectivity by one, that is, when the

input graph is assumed to be already (k − 1)-edge- or node-connected.

A practical motivation is survivable network design. In a network (e.g computer or telecom-

munication network, electric power supply network), it is utterly important to maintain a path

between any two nodes. k-node- or k-edge-connectivity of a graph can be interpreted in terms

of security: the network remains connected even if arbitrary k − 1 nodes or edges are removed

due to attack or failure. In the connectivity augmentation problem, we want to increase the

security of an already existing network by adding new connections. From a practical point of

view, a minimum cost solution is more desireable: adding different edges may have different

costs, and we want to find a minimum cost augmenting edge set. Unfortunately, this problem

is NP-complete even in the simplest cases.

Somewhat surprisingly, the cardinality versions turned out to be polynomial time solvable

in three of the four basic problems. Undirected edge-connectivity augmentation was solved

by Watanabe and Nakamura in 1987 [75], directed edge-connectivity by Frank in 1992 [23],

and directed node-connectivity by Frank and Jordán in 1995 [31]. The complexity of undi-

rected node-connectivity augmentation has been a longstanding open question in combinatorial

optimization.

For both undirected and directed edge-connectivity augmentation, relatively simple min-

max formulae hold. The dual optimum value is given by a partition of the nodes and can be

determined via an essentially greedy algorithm. The key technique here is splitting off: Lovász’

theorem for undirected and Mader’s theorem for directed graphs. In the case of undirected
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edge-connectivity, far-reaching generalizations are made possible by Mader’s powerful splitting

off theorem on preserving local edge-connectivity. Using this theorem, Frank solved local edge-

connectivity augmentation, the problem with possibly different connectivity requirements for

any pair of nodes. Chapter 5 contains new proofs to classical theorems in this field using the

technique of edge-flippings. It also gives partial results towards a generalization, when new

edges may only be added between different classes of a fixed partition of the nodes.

For directed node-connectivity augmentation, the dual optimum cannot be described simply

by partitions. The novel contribution of Frank and Jordán [31] is the introduction of set pairs.

They presented a general abstract theorem (Theorem 1.1) on covering positively crossing super-

modular functions on set pairs. The theorem is applicable, among other problems, to directed

node-connectivity augmentation. Also, the proof is based on the classical uncrossing technique

and it is astonishingly simple. They also gave a polynomial time algorithm for finding an op-

timal solution. However, their algorithm strongly relied on the ellipsoid method, and thus the

question of finding a purely combinatorial algorithm remained open. In Chapter 2 we present

such an algorithm, a joint work with András Frank, for augmenting connectivity by one. As one

of the main results of the thesis, Chapter 4 provides a completely different type of combinatorial

algorithm for the general augmentation problem, a joint result with András Benczúr. It also

gives a new, algorithmic proof of Theorem 1.1.

As already mentioned, the complexity status of undirected node-connectivity augmentation

is still open. In Chapter 3 we prove a min-max formula for the important special case of

augmenting connectivity by one, settling a conjecture of Frank and Jordán from 1994. We also

give combinatorial algorithm for finding an optimal solution.

The second main topic of the thesis is constructive characterization, a certain building

procedure for describing a class of graphs. A classical example is the ear decomposition of

2-connected graphs. Constructive characterizations are also known for higher connectivity,

for example, for k-edge-connected graphs and digraphs. These results are strongly related to

the field of connectivity augmentation, with splitting off being the most important method. In

Chapter 6, we give a constructive characterization of the so called (k, �)-edge-connected digraphs.

This is a joint work with Erika Renáta Kovács and proves a conjecture of András Frank. Our

result gives a common generalization of a number of previously known characterizations, and

naturally fits into the framework defined by splitting off and orientation theorems.

The rest of this chapter is organized as follows. In Sections 1.1-1.4 we exhibit the background

of our results. First, Section 1.1 presents Theorem 1.1 on covering positively crossing super-

modular functions along with its main applications. Section 1.2 gives an overview of previous

connectivity augmentation algorithms. Section 1.3 and Section 1.4 are devoted to the fields of

local edge-connectivity and constructive characterizations, respectively. There is a broad liter-

ature on each of these topics and we do not intend to give comprehensive overviews here, but

2



restrict ourselves to concepts and theorems in direct connection to the results of the thesis.1

The core of the entire thesis is Section 1.5, where we state the main results of each chapter,

sketch the main ideas of the proofs and point out the connections between different chapters.

1.1 The Frank-Jordán Theorem and node-connectivity

augmentation

Let us call K = (K−, K+) a set pair if K− and K+ are disjoint nonempty subsets of the ground

set V . K− is called the tail and K+ the head of K. Let S denote the set of all set pairs. We

say that a (directed) edge xy ∈ V 2 covers the pair K if x ∈ K−, y ∈ K+.2

Two set pairs K = (K−, K+) and L = (L−, L+) are tail-disjoint if K− ∩ L− = ∅, head-

disjoint if K+ ∩ L+ = ∅, and independent if they are either tail- or head-disjoint. This is

equivalent to the property that no edge in V 2 covers both K and L. Two non-independent set

pairs are called dependent. A set F of set pairs is independent if its members are pairwise

independent.

A natural partial order on S can be defined as follows: K � L if K− ⊆ L− and K+ ⊇ L+.

The pairs K and L are comparable if K � L or L � K. Two dependent, but not comparable

pairs are called crossing.

For dependent K and L, let us define the set pairs K ∧ L = (K− ∩ L−, K+ ∪ L+) and

K ∨ L = (K− ∪ L−, K+ ∩ L+). For the partial order �, K ∧ L is the unique greatest common

lower bound and K ∨ L the least common upper bound. Nevertheless, (S,�) is not a lattice

since K ∨ L and K ∧ L are defined only for dependent set pairs.

The non-negative integer valued function p on S is called positively crossing supermod-

ular if

p(K) + p(L) ≤ p(K ∧ L) + p(K ∨ L)

whenever K,L ∈ S, K and L are dependent and p(K), p(L) > 0.

For a multiset F consisting of edges in V 2 and a set pair K ∈ S, let δF (K) denote the number

of edges in F covering K. We say that the edge set F covers the function p if δF (K) ≥ p(K)

for every set pair K ∈ S. Let τp denote the minimum size of an edge set covering p, and let

νp = max{∑K∈F p(K) : F independent}. νp ≤ τp clearly holds, since an edge may cover at

most one member of an independent system. The following theorem states that this in fact

holds with equality:

1We use several well-known results (e.g. Mengers’s and Dilworth’s theorems, the Kőnig-Hall or Berge-Tutte

theorems) without references. For all such theorems we refer the reader to Schrijver’s monography [69].
2By V 2 we denote the set of all directed edges on a ground set V , while

(
V
2

)
stands for the set of all undirected

edges on V .
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Theorem 1.1 (Frank and Jordán, 1995 [31]). Given a ground set V and a positively crossing

supermodular function p on the set pairs, τp = νp.

Before turning to the applications, let us consider the important special case when p takes

values only 0 and 1. Let S1 = {K ∈ S : p(K) = 1}. The supermodularity of p implies that if

K,L ∈ S1 are dependent then K ∧L,K ∨L ∈ S1. A family of set pairs satisfying this property

is called crossing. In fact, we may obtain every crossing family in this form. Given a crossing

family F , the function p defined by p(K) = 1 if K ∈ F and p(K) = 0 if K /∈ F is positively

crossing supermodular. This observation leads to the following corollary of Theorem 1.1. For a

crossing family F , let τ(F) denote the minimum number of edges covering F , and let ν(F) be

the maximum number of pairwise independent members of F .

Theorem 1.2. Given a crossing family F of set pairs, ν(F) = τ(F).

Let us now exhibit some applications of Theorem 1.1, starting with the most prominent one,

directed connectivity augmentation.

1.1.1 Directed connectivity augmentation

We commence by giving the precise definition of k-edge- and node-connectivity. All directed and

undirected graphs in the thesis will be allowed to have parallel edges and loops. By edge set we

will always mean a multiset of edges, even if not mentioned explicitly. A directed graph is called

strongly connected if it contains a directed path between any two nodes. An undirected or

directed graph is called k-node-connected or shortly, k-connected if the number of nodes is

at least k+1, and after the deletion of any subset of at most k−1 nodes, the remaining graph is

still connected if undirected, and strongly connected if directed. Analogously, an undirected or

directed graph is called k-edge-connected, if after the deletion of any at most k−1 edges, the

remaining graph is still (strongly) connected. It is well-known, by versions of Menger’s theorem,

that a graph or digraph is k-node-connected (respectively, k-edge-connected) if and only if there

are k internally node-disjoint (edge-disjoint) paths from each node to every other node (and the

graph has at least k + 1 nodes in the k-node-connected case).

In the directed node-connectivity augmentation problem we are given a digraph D = (V,A)

and a target value k, and we want to add a minimum number of new edges to D to make it

k-connected. A set pair K ∈ S is called a one-way pair if δD(K) = 0, that is, there are no

edges in D covering K. We denote by O = OD the set of one-way pairs. For a set pair K, let

us define s(K) := |V − (K− ∪K+)|. The following simple claim shows that we may restrict our

attention to the one-way pairs:

Claim 1.3 ([31]). D is k-connected if and only if s(K) ≥ k for every K ∈ O.

4



Let us define the function p as follows: p(K) := (k − s(K))+ if K ∈ O, and p(K) := 0 if

K /∈ O. It is easy to verify that p is positively crossing supermodular. By the previous claim,

D + F is k-connected if and only if F covers p. Hence Theorem 1.1 specializes to:

Theorem 1.4. For a digraph D = (V,A), the minimum number of edges whose addition makes

D k-connected equals the maximum value of
∑�

i=1(k−s(Ki)) over pairwise independent one-way

pairs K1, . . . , K�.

Assume now that the digraph D is already (k − 1)-connected, implying s(K) ≥ k − 1 for all

one-way pairs. We call a one-way pair strict if s(K) = k− 1 and denote their set by O1 = O1
D.

The theorem simplifies to the following form:

Theorem 1.5. For a (k − 1)-connected digraph D = (V,A), the minimum number of edges

whose addition makes D k-connected equals the maximum number of pairwise independent strict

one-way pairs.

In Chapter 2, we will also use the following mild generalization of Theorem 1.5. This is also

a simple consequence of Theorem 1.2.

Theorem 1.6. For a (k − 1)-connected digraph D = (V,A), let F ⊆ O1
D be a crossing family

of strict one-way pairs. Then ν(F) = τ(F).

1.1.2 Other applications

Győri’s theorem

Perhaps the most astonishing applications of Theorem 1.1 are Győri’s theorems on generators

of interval systems and on rectangle coverings. Let us start with the first problem: let I be a

finite set of closed intervals in [0, 1]. We say that the set B of closed intervals generates I if

every interval in I is the union of some members of B. (For example, I generates itself.) Given

I, we are interested in the minimum size of a set generating it. For an I ∈ I and an interior

point x ∈ I, we say that (I, x) is a represented interval. Two represented intervals (I, x) and

(J, y) are called independent if I ∩ J does not contain both x and y.

Theorem 1.7 (Győri, 1984 [38]). The minimum size of a generator of a set I equals the

maximum number of pairwise independent represented intervals in I.

This was originally conjectured by Frank in the late seventies and proved by Győri in 1984.

Győri’s original proof was quite sophisticated and the theorem did not show any relations to

other min-max theorems known by that time. Let us now derive this result from Theorem 1.2.

It is clear that [0, 1] can be replaced by a path P = {v1, e1, v2, e2, . . . , et−1, vt} with nodes vi and

edges ei. The intervals correspond to subpaths of P. For a path I = {vh, eh, . . . , ek−1, vk} and
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an edge ei with h ≤ i ≤ k − 1, we may define the set pair KI,ei
= ({vh, . . . , vi}, {vi+1, . . . , vk}).

Finding a system of generators is equivalent to covering the set pairs KI,ei
for every possible

choice of I and ei. It is easy to verify that these set pairs form a crossing system, and two pairs

KI,ei
and KJ,ej

are independent if and only if (I, x) and (J, y) are independent for any interior

points x ∈ ei, y ∈ ej. Theorem 1.1 also easily implies an extension of Theorem 1.7 for intervals

on a circuit instead of intervals in [0, 1]; this generalization could not be obtained from Győri’s

original proof.

The theorem has a nice application in combinatorial geometry. We say that a polygon in

the plane is rectilinear if all edges are vertical and horizontal lines. A rectilinear polygon is

vertically convex if its intersection with every vertical line is an interval. For a rectilinear

polygon R, we say that H is a rectangle cover of R if H is a set of rectangles contained in R

whose union is R. A set P of points in R is called independent if no two points in P can be

covered by a rectangle contained in R.

Theorem 1.8. For a vertically convex rectilinear polygon R, the minimum size of a rectangle

cover of R equals the maximum size of an independent point set in R.

Ktt-free t-factors in bipartite graphs

Given an undirected graph G = (V,E), a natural relaxation of the Hamiltonian cycle problem is

to find a C≤k-free 2-matching, that is, a subgraph with maximum degree 2 containing no cycle

of length at most k. Cornuéjols and Pulleyblank [14] showed this problem to be NP-complete

for k ≥ 5. In his Ph.D. thesis [40], Hartvigsen proposed a solution for the case k = 3. The

case k = 4 is still open along with the other natural question of finding a maximum C4-free

2-matching (possibly containing triangles). Only some partial results are known so far (see [7]

and [8]).

However, the C4-free 2-matching problem turns out to be tractable under the assumption

that G is bipartite. This was solved by Hartvigsen [41, 42] and Király [53]. A generalization of

the problem to maximum Kt,t-free t-matchings was given by Frank [27], who observed that this

can indeed be deduced from Theorem 1.1.

Theorem 1.9 (Frank, 2003 [27]). The maximum size of a Kt,t-free t-matching of a bipartite

graph G = (S, T ; E) equals

min
Z⊆S∪T

(t|Z| + i(V − Z) − ct(Z)), (1.1)

where ct(Z) denotes the number of connected components of (S ∪ T ) − Z which are Kt,t’s.

Let us define a function p on set pairs on V = S ∪ T as follows. If K− ⊆ S, K+ ⊆ T , and G

spans a complete bipartite graph between K− and K+, then let p(K) = (|K−|+ |K+|−2t+1)+

6



if |K−|, |K+| ≥ 2, and p(K) = (|K−| + |K+| − t − 1)+ if |K−| = 1 or |K+| = 1. Let p(K) = 0

in all other cases. It can be verified that this function is positively crossing supermodular, and

if F is an edge set covering p then E − F is a Kt,t-free 2-matching. Moreover, a dual optimal

solution may be transformed to the form (1.1).

A generalization of this problem is if we do not exclude all Kt,t subgraphs, but only a

certain subset of them is forbidden. The above reduction method fails to work, still, Makai [65]

generalized Theorem 1.9 for this setting. To this end, he formulated and proved a nontrivial

generalization of Theorem 1.1 - which is indeed the only nontrivial generalization known so far.

However, this theorem and the other extensions of Theorem 1.9 are beyond the scope of this

thesis.

There is an interesting connection between the matching problems above and undirected

connectivity augmentation. It is easy to see that for k = n − 2 (n = |V |), connectivity aug-

mentation is equivalent to finding a maximum matching in the complement graph of G. For

k = n − 3, the problem is equivalent to finding a maximum C4-free 2-matching. However, for

k < n− 3 the problem corresponding to connectivity augmentation is not Kt,t-free t-matchings,

but t-matchings not containing any complete bipartite graph Ka,b with a+b = t+2. This latter

problem can also be solved in bipartite graphs using Theorem 1.1.

k-elementary bipartite graphs

Let G = (S, T ; E) be a bipartite graph. It is well known by Hall’s theorem that there exists

a matching covering S if and only if |X| ≤ |Γ(X)| holds for every X ⊆ S, where Γ(X) ⊆ T

denotes the set of neighbours of X. G is called elementary bipartite if either |S| = |T | = 1

and E consits of a single edge or |S| = |T | > 1 and the stronger property |X| + 1 ≤ |Γ(X)|
holds for every ∅ �= X � S. This is a well-studied class of graphs, see e.g. [61, Chapter 4].

As a generalization, for k ∈ Z+ we say that the bipartite graph G = (S, T ; E) is k-

elementary (with respect to S) if |X| + k ≤ |Γ(X)| or Γ(X) = T for every ∅ �= X ⊆ S.

(Note that |S| = |T | is not being assumed.) The following problem is an analogue of connec-

tivity augmentation. Given a bipartite graph G = (S, T ; E), add a minimum number of edges

between S and T to get a k-elementary bipartite graph. We say that the set X is legal if

∅ �= X ⊆ S, Γ(X) �= T . Two legal sets X and Y are independent if either X ∩ Y = ∅ or

Γ(X ∪ Y ) = T .

Theorem 1.10. For a bipartite graph G = (S, T ; E), the minimum number of edges between

S and T whose addition makes G elementary bipartite equals the maximum value of
∑t

i=1(k +

|X| − Γ(X)) over pairwise independent legal sets X1, . . . , Xt.

This can easily be derived from Theorem 1.1 by mapping each legal set X to the set pair

KX = (X,T − Γ(X)) with p(KX) = (k + |X| − Γ(X))+ and p(K) = 0 for any other set pair
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K. Clearly, this function is positive crossing supermodular, and the set pairs KX and KY are

independent if and only if the legal sets X and Y are independent.

Connectivity augmentation may be easily reduced to this problem. Given the digraph D =

(V,A) with |V | ≥ k + 1, construct a bipartite graph G = (S, T ; E) by associating two nodes

v′ ∈ S and v′′ ∈ T and an edge v′v′′ ∈ E with each v ∈ V , and furthermore an edge u′v′′ ∈ E

with each edge uv ∈ A. This graph is k-elementary bipartite if and only if D is k-connected. A

similar reduction is possible in the other direction as well, assuming that |S| = |T | and that G

is 0-elementary (that is, it satisfies the Hall-condition). This correspondence will be useful for

the algorithmic aspects of augmenting directed connectivity by one in Chapter 2 and even for

undirected connectivity augmentation in Chapter 3.

Directed edge-connectivity augmentation

Augmenting directed edge-connectivity is considerably easier than node-connectivity, and was

solved in 1992 by Frank [23] via Mader’s directed splitting off theorem (Theorem 1.28). In

Section 1.3 we show that an analogous argument works out for undirected edge-connectivity

augmentation as well.

Let us now formulate the min-max formula and show how it can also be derived from

Theorem 1.1.

Theorem 1.11 (Frank, 1992 [23]). Given a digraph D = (V,A), the minimum number of edges

whose addition makes D k-edge-connected equals the maximum value of

max{
�∑

i=1

(k − ρ(Xi)),
�∑

i=1

(k − δ(Xi))},

over subpartitions {X1, . . . , X�}.

Define a positively crossing supermodular function p on S by giving nonzero values only to

set pairs corresponding to cuts, namely, let p(K) = (k − ρ(K+))+ whenever K− ∪K+ = V and

p(K) = 0 otherwise. Covering p is clearly equivalent to k-edge-connectivity augmentation. The

theorem follows by showing that the complex structure of pairwise independent set pairs breaks

down to the simple dual optimum in Theorem 1.11, established by the next claim.

Claim 1.12. If any two among the sets X1, . . . , X� ⊆ V are disjoint or co-disjoint, then either

they are all pairwise disjoint or all pairwise co-disjoint. (Two sets are called co-disjoint if their

union is V ). �

In Section 6.3 we present Theorem 6.19, a generalization of this theorem for positively cross-

ing supermodular set functions, derivable from Theorem 1.1 (more precisely, from its degree-

prescribed version, which we do not discuss here).
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ST -edge-connectivity augmentation

Whereas Theorem 1.11 can also be obtained by the significantly simpler splitting off technique,

this does not hold for the following generalization of edge-connectivity augmentation. Let

D = (V,A) be a digraph with two (not necessarly disjoint) sets S, T ⊆ V . D is called k-ST -

edge-connected if for any s ∈ S and t ∈ T − s, there are at least k-edge-disjoint paths from

s to t. S = T = V gives k-edge-connectivity, while S = {r0}, T = V − {r0} gives rooted

k-edge-connectivity.

The problem of adding a minimum number of edges to D to make it k-ST -edge-connected is

NP-complete already for k = 1. However, if adding new edges only between S and T is allowed,

the problem becomes polynomially solvable. Define p on S to be positive only on set pairs K

with K− ⊆ S, K+ ⊆ T . On such pairs, let p(K) = max{(k − ρ(X))+ : X ∩ T = K+, S − X =

K−}. This is a positively crossing supermodular function, and its coverings coincide with the

augmenting edge sets consisting of edges from S to T .

We may also give a min-max formula in terms of sets instead of set pairs. Let X be called

an ST -set if X ∩ T �= ∅, S − X �= ∅. Two ST -sets X and Y are called independent if either

X ∩ Y ∩ T = 0 or S ⊆ X ∪ Y .

Theorem 1.13. For a digraph D = (V,A) with S, T ⊆ V , the minimum number of edges from

S to T whose addition makes D k-ST -edge-connected equals the maximum of
∑�

i=1(k−ρ(Xi))
+

over pairwise ST -independent ST -sets X1, . . . , X�.

The reason why this problem is more complicated than edge-connectivity augmentation is

that the structure of ST -independence cannot be simplified to partitions and co-partitions as

in Claim 1.12.

1.2 Previous algorithmic results on connectivity augmen-

tation

For k = 1, the notions of 1-edge- and 1-node-connectivity coincide, both giving connectedness

in the undirected and strongly connectedness in the directed case. Augmenting an undirected

graph to be connected is trivial (and even the minimum cost version is tractable via Kruskal’s

algorithm). The case k = 1 for directed graphs was solved in 1976 by Eswaran and Tarjan [19].

As already mentioned, min-max formulae and polynomial time algorithms for optimal edge-

connectivity augmentation were developed by Watanabe and Nakamura in 1987 [75] for the

undirected and by Frank in 1992 [23] for the directed case; undirected edge-connectivity will be

discussed in Section 1.3.

Concerning directed node-connectivity, even the case k = 2 has not been settled until the

result of Frank and Jordán in 1995 [31]. The algorithm in their paper strongly relied on the
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ellipsoid method, thus finding a combinatorial algorithm remained an open problem. The first

result towards this direction was given by Enni in 1999 [18], by nontrivially extending the

algorithm of Eswaran and Tarjan for 1-ST -edge-connectivity augmentation. For fixed k, Frank

and Jordán themselves gave a combinatorial algorithm in 1999 [32] for directed connectivity

augmentation - that is, the running time is the product of a polynomial of n and an exponential

function of k.

For the 0-1 valued case (Theorem 1.2), two completely different and independent algorithms

were given in 2003 by Frank [26] and Benczúr [4]. However, Frank’s algorithm was not directly

applicable for graph connectivity augmentation. Our joint result with Frank presented in Chap-

ter 2 is an extension of this work. In contrast, the result of Chapter 4 is the extension of the

algorithm of Benczúr.

As shown in the previous section, Győri’s theorem (Theorem 1.7) is also a special case of

Theorem 1.1. Various polynomial time algorithms were given by Franzblau and Kleitman in

1986 [37], by Lubiw in 1990 [62] , by Knuth in 1996 [55], by Frank in 1999 [25] and by Benczúr,

Király and Förster in 1999 [5]. Some fundamental ideas of [26] (and thus of Chapter 2) derive

from [25].

For undirected connectivity augmentation, the situation is radically different. The complex-

ity of the general problem is still unknown; even augmenting by one has been open for a long

time. This problem is settled in Chapter 3 of this thesis. In the same paper [19], Eswaran and

Tarjan also gave an algorithm for augmenting a graph to be 2-connected. Watanabe and Naka-

mura solved the case k = 3 in 1993 [76] while k = 4 was done by Hsu in 2000 [44]. Other solved

special cases include k = n−2, n−3: As mentioned in Section 1.1.2, connectivity augmentation

for k = n− 2 for the graph G is equivalent to finding a maximum matching in the complement

graph of G. Similarly, augmentation by one for k = n − 3 is equivalent to finding a maximum

square-free 2-matching in a subcubic graph, solved recently by Bérczi and Kobayashi [7].

The best previously known result is due to Jackson and Jordán from 2005 [47]. They gave

a polynomial time algorithm for finding an optimal augmentation for any fixed k. The running

time is bounded by O(n5 + f(k)n3), where f(k) is an exponential function of k. They proved

even stronger results for some special classes of graphs: for example, the running time of the

algorithm is a polynomial of n if the minimum degree is at least 2k − 2. An analogous result is

by Liberman and Nutov [59]. They gave a polynomial time algorithm for increasing connectivity

by one under the assumption that there exists a set Z ⊆ V with |Z| = k − 1 so that G − Z

has at least k connected components. (It can be decided in polynomial time whether a graph

contains such a set, see Cheriyan and Thurimella [13].)

It is straightforward to give a 2-approximation for connectivity augmentation by replacing

each edge by two oppositely directed egdes and using that directed node-connectivity can be

augmented optimally. For augmenting connectivity by one, Jordán [49, 50] gave an algorithm

10



finding an augmenting edge set larger than the optimum by at most
⌈

k−2
2

⌉
. Jackson and

Jordán [46] extended this result for general connecitivity augmentation with an additive term of⌈
k(k−1)+4

2

⌉
. A slightly weaker, similar result was established also by Ishii and Nagamochi [45].

(The running times of these algorithms can be bounded by polynomials of n.)

1.3 Undirected edge-connectivity augmentation

The min-max formula on undirected edge-connectivity augmentation is the following.

Theorem 1.14 (Watanabe and Nakamura, 1987 [75]). For a graph G = (V,E) and a connectiv-

ity requirement k ≥ 2, the minimum number of edges whose addition makes G k-edge-connected

equals the maximum of
⌈

1
2

∑�
i=1(k − d(Xi))

⌉
over subpartitions X1, . . . , X� of V .

In contrast with the other basic augmentation problems, here we can also cope with local

edge-connectivity augmentation, that is, we may have a different connectivity requirement

for each pair of nodes: r(u, v) = r(v, u) for the nodes u, v ∈ V . Global edge-connectivity

augmentation will refer to the the case r ≡ k for some k ∈ Z+.

For an undirected graph G = (V,E), let λ(u, v) = λG(u, v) denote the maximum number of

edge-disjoint paths between u and v. By Menger’s theorem, it is well-known that λG(u, v) =

min{dG(X) : X ⊆ V, u ∈ X, v /∈ X}. Given a function r : V ×V → Z+, we say that G = (V,E)

is r-edge-connected if λ(u, v) ≥ r(u, v) for any u, v ∈ V .

F is called an augmenting edge set (for G with respect to r) if G+F is r-edge-connected.

This can be equivalently formulated in terms of cuts: let R(∅) = R(V ) = 0,

R(X) := max{r(u, v) : u ∈ X, v /∈ X} if ∅ �= X � V, (1.2)

and let p(X) := (R(X) − dG(X))+. Then G + F is r-edge-connected if and only if

dF (X) ≥ p(X) for every X ⊆ V. (1.3)

For an arbitrary set function p, we say that the edge set F covers p if (1.3) holds. Frank’s

following theorem gives a min-max formula on the minimum size of an augmenting edge set.

For a partition X = {X1, . . . , X�}, let p(X ) =
∑�

i=1 p(Xi). A set C ⊆ V is called a marginal

set, if R(C) ≤ 1 and d(C) = 0.

Theorem 1.15 (Frank, 1992 [23]). Assume we are given a graph G = (V,E) and the requirement

function r so that G contains no marginal sets. Then the minimum number of edges whose

addition makes G r-edge-connected equals the maximum value of
⌈

1
2
p(X )

⌉
over subpartitions X

of V .
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The max ≤ min direction is clear since we need to add at least p(Xi) = (R(Xi) − d(Xi))
+

new edges for each class Xi of X and a new edge may cover at most two Xi’s. Actually, Frank’s

original theorem is slightly stronger by excluding only marginal components instead of marginal

sets. A connected component C ⊆ V is called a marginal component if R(C) ≤ 1, and

p(U) = 0 for any U � C. However, this original version can be easily derived from Theorem 1.15.

Also, all subsequent theorems where marginal sets are excluded can be strengthened to exclude

only marginal components; we stick to marginal sets for the sake of minor simplifications in

some proofs. The condition excluding marginal sets or components is necessary since a graph

G = (V, ∅) with r ≡ 1 needs at least |V | − 1 new edges, although the dual optimum is
⌈
|V |
2

⌉
.

Nevertheless, even the most general case without any restriction on r can be deduced from

Frank’s original theorem (and thus from Theorem 1.15), see in [23].

The nontrivial direction is proved via Mader’s splitting off theorem, an extremely powerful

tool for edge-connectivity problems. By splitting off edges e = xz and f = zy we mean the

operation of deleting e and f and adding the new edge xy (literally the same definition is used

for digraphs as well, see in Section 1.4). We say that a splitting off is admissible if for any

two nodes u, v ∈ V − z, the local edge-connectivity value λ(u, v) does not decrease. The pair of

edges xz, zy is splittable if splitting off xz and zy is admissible.

Theorem 1.16 (Mader, 1978 [63]). Let G = (V + z, E) be a graph with d(z) �= 3 so that there

is no cut edge incident to z. Then there exist a splittable pair of edges incident to z.

Based on this theorem, Theorem 1.15 can be deduced via the following intermediate theorem.

A V → Z+ function m is called a degree-prescription if m(V ) even. For a degree-prescription

m, an edge set F is called m-prescribed if dF (v) = m(v) for every v ∈ V . Clearly, such an

edge set always exists.

Theorem 1.17 ([23]). Assume we are given a graph G = (V,E) containing no marginal sets,

a requirement function r and a degree-prescription m. Then there exists an m-prescribed edge

set F so that G + F is r-edge-connected if and only if

m(X) ≥ p(X) ∀X ⊆ V. (1.4)

This can be proved by adding a new node z to the graph G, and connecting it to each node

v by m(v) parallel edges. The resulting graph is r-edge-connected in V and has no cut edges

incident to z, hence the iterative application of the splitting off theorem yields the desired F .

By parity adjusting of a function m : V → Z+ we mean the following operation: if m(V )

is odd then we increase m(v) by one for an arbitrary v ∈ V . The following can be proved using

the uncrossing technique (see the detailed argument in Section 5.1.1). If we take an arbitrary m

which is a minimal one satisfying (1.4), and furthermore we apply parity adjusting on m, then

m(V ) will be twice the maximum value in Theorem 1.15. The key property of R we use both

in the proof of Theorem 1.16 and in the uncrossing method is that it is skew supermodular:
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Claim 1.18 ([66],[23]). For any two subsets X,Y ⊆ V , at least one of the following two in-

equalities hold:

R(X) + R(Y ) ≤ R(X ∪ Y ) + R(X ∩ Y ) (1.5a)

R(X) + R(Y ) ≤ R(X − Y ) + R(Y − X) (1.5b)

This easily implies that the function p is also positively skew supermodular, that is, at least

one of the two inequalities hold for p in place of R for any sets X,Y with p(X), p(Y ) > 0. For

the function R, an even stronger property can also be easily verified:

Claim 1.19. If one of (1.5a) and (1.5b) does not hold, then the other is true with equality.

For global edge-connectivity augmentation, Theorem 1.16 was preceded by Lovász’ global

splitting off theorem preserving k-edge-connectivity [60], and Theorem 1.14 was proved based

on this theorem. The splitting off technique is also important in context of directed edge-

connectivity, discussed in Section 1.4.

Positively crossing supermodular functions

One might wonder if Theorem 1.15 extends to a general covering theorem for arbitrary functions

p satisfying certain properties. Unfortunately, the symmetry and positively skew-supermodu-

larity are not enough by themselves: a special case of this problem, local edge-connectivity

augmentation of hypergraphs is NP-complete, see [54].

An abstract extension of Theorem 1.14 on global edge-connectivity augmentation was for-

mulated by Benczúr and Frank in 1999 [6], by replacing k−d(X) with a certain type of function

p(X). Let p : 2V → Z+ be an arbitrary symmetric and positively crossing supermodular func-

tion, that is, p(X) = p(V − X) for any X ⊆ V and

p(X) + p(Y ) ≤ p(X ∪ Y ) + p(X ∩ Y )

holds whenever p(X), p(Y ) > 0 and X and Y are crossing (X ∩ Y , X − Y and Y − X are all

nonempty sets and X ∪ Y �= V ). Note that this also implies

p(X) + p(Y ) ≤ p(X − Y ) + p(Y − X)

if p(X), p(Y ) > 0. Theorem 1.14 does not remain true by simply replacing k − d(X) by p(X)

and using the subpartition bound max
⌈

1
2
p(X )

⌉
. In fact, a new type of obstacle should also

be taken into account. Let us call a partition P = {X1, . . . , Xt} of the node set V p-full if

p(
⋃

i∈I Xi) > 0 holds for any nonempty subset I � {1, 2, . . . , t}. Clearly, at least t− 1 edges are

needed to cover such a p. The maximum cardinality of a p-full partition is called the dimension

of p and is denoted by dim(p). While the definition contains exponentially many conditions,

the following simple lemma shows that p-fullness can be verified effectively:
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Lemma 1.20 ([6]). Assume that for P = {X1, . . . , Xt}, p(X1) = 1 and p(X1 ∪Xi) ≥ 1 for any

i > 0. Then P is p-full.

The theorem is as follows:

Theorem 1.21 (Benczúr and Frank, 1999 [6]). Let p : 2V → Z+ be a symmetric positively

crossing supermodular function. Then the minimum cardinality of an edge set F covering p is

equal to

max{dim(p) − 1, max

⌈
1

2
p(X )

⌉
},

where the second maximum ranges over subpartitions X of V .

An important application of this theorem is global edge-connectivity augmentation of hy-

pergraphs, solved by Bang-Jensen and Jackson in 1999 [3]. Recall that Theorem 1.15 on local

edge-connectivity augmentation was a conseqence of the degree-prescribed Theorem 1.17. Sim-

ilarly, Theorem 1.21 is an easy consequence of the degree-prescribed version.

Theorem 1.22 ([6]). Let us be given a symmetric positively crossing supermodular function

p : 2V → Z+ and a degree-prescription m. There exists an m-prescribed edge set F covering p

if and only if (1.4) holds and furthermore

m(V ) ≥ dim(p) − 1. (1.6)

A directed counterpart of this theorem is Theorem 6.19. The symmetry of p is not required

in that case, and also no obstacle similar to p-full partitions occur.

Partition-constrained problems

The central problem investigated in Chapter 5 is partition-constrained local edge-connec-

tivity augmentation (PCLECA). Given a partition Q = (Q1, . . . , Qt) of V , an edge is called

Q-legal if its endnodes lie in different classes of Q. Given a requirement function r and a

partition Q, we want to find a minimum cardinality set F consiting of Q-legal edges so that

G + F is r-edge-connected.

For global edge-connectivity (r ≡ k ≥ 2) this problem was solved by Bang-Jensen, Gabow,

Jordán and Szigeti [2]. Given a graph G = (V,E), a partition Q of the nodes and a connectivity

requirement k ≥ 2, let OPT k
Q denote the minimum number of Q-legal edges whose addition

makes G k-edge-connected. Clearly, the problem is equivalent to covering the function p(X) =

(k − d(X))+ by a minimum number of Q-legal edges.

A natural lower bound on this is the one in Theorem 1.14, namely, α(G) = max
⌈

1
2
p(X )

⌉
over subpartitions X of V . For a similar bound for each 1 ≤ j ≤ t, let us call X a j-subpartition,

if X is a subpartition of Qj. Let βj(G) = max p(X ) over j-subpartitions X . Let ΨQ(G) denote

the maximum of α(G) and βj(G) for j = 1, . . . , t. The theorem is the following.
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Theorem 1.23 ([2]). Given an undirected graph G = (V,E), a partition Q of the nodes and

a connectivity requirement k ≥ 2, OPT k
Q = ΨQ(G) if k is even, or k is odd and G contains

neither a C4 nor a C6-configuration. Otherwise, OPT k
Q = ΨQ(G) + 1.

We define only C4-configurations here as we will not need C6-configurations in the sequel.

For subpartitions Z and W , we say that Z is a refinement of W if each class of Z is a subset

of some class of W .

Let {A1, A2, C1, C2} be a partition of V , and for some 1 ≤ h ≤ t, let Z be a h-partition

which is a refinement of {C1, C2}. These form a C4-configuration if they fulfil the following: (i)

p(Z) = ΨQ(G); (ii) dG(C1, C2) = dG(A1, A2) = 0, and (iii) p(Cj) =
∑{p(Z) : Z ∈ Z, Z ⊆ Cj}

for j = 1, 2.

Let us see an example: consider G = (V,E) on the node set V = {a1, c1, a2, c2} and edge

set E = {a1c1, c1a2, a2c2, c2a1} (a square). Let Q = ({a1, a2}, {c1, c2}) and k = 3. At least three

new Q-legal-edges are needed for the augmentation, while ΨQ(G) = 2.

Similarly to the previous theorems, this one was also proved using splitting off techniques,

and a degree-prescribed variation can also be formulated. The proof starts by adding a new

node z and an edge set H incident to z with |H| = ΨQ(G). (By choosing this edge set, the

partition Q should also be taken into account). A pair of edges xz and yz is called Q-legal if

x and y lie in different classes of Q. As long as possible, we split off Q-legal admissible pairs of

edges incident to z. If all edges incident to z can be removed in such pairs then we have found

an optimal Q-legal augmentation. If not, then either we are able to achieve a complete splitting

after undoing one of the previously performed splitting off operations, or the existence of a C4-

or C6-configuration can be verified.

In Chapter 5, we give new proofs of Theorems 1.17 and 1.21 using edge-flippings instead

of splitting off. Furthermore, partial results are presented towards the generalization of Theo-

rem 1.23 to local edge-connectivity augmentation. A common generalization of Theorems 1.21

and 1.23 was given by Bernáth, Grappe and Szigeti [11]. A detailed discussion of these topics

among plenty of new extensions can be found in the recent thesis of Bernáth [9].

1.4 Constructive characterizations

By a constructive characterization of a graph property P we mean a set of operations preserving

property P, so that each graph with property P can be obtained by a sequence of such operations

starting from a small set of basic instances. Such characterizations are often useful for proving

further properties of graphs with property P . The following ear decompositions of 2-connected

and 2-edge-connected graphs are among the first examples of constructive characterizations.

Proposition 1.24. (i) [77] An undirected graph is 2-connected if and only if it can be built

up from a circuit by iteratively adding new paths whose endpoints are distinct old nodes.
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(ii) [60, Problem 6.28] An undirected graph is 2-edge-connected if and only if it can be built up

from a single node by iteratively adding new paths whose endpoints are (possibly coincident)

existing nodes.

In this section, we focus on results related to higher edge-connectivity. Although the ear

decompositions above are almost identical for node- and edge-connectivity, very little is known

on characterizing k-node-connected graphs: there are different constructive characterizations

for k = 3, but none for k ≥ 4. A survey on constructive characterizations in combinatorial

optimization can be found in [57].

An immediate application of Proposition 1.24(ii) is the following. Given an undirected graph

G, we want to find a strongly connected orientation of G. A trivial necessary condition is that

G should be 2-edge-connected. Using the characterization, sufficiency is also straightforward:

when adding a path, let us orient all its edges in the same direction. We will see orientation

results for higher edge-connectivity as well and their relation to constructive characterizations.

For 2k-edge-connected graphs, Lovász proved the following.

Theorem 1.25 (Lovász, 1976 [60, Problem 6.52]). An undirected graph is 2k-edge-connected

if and only if it can be obtained from a single node by iteratively applying the following two

operations:

(i) add a new edge (possibly a loop),

(ii) subdivide k existing edges and identify the subdividing nodes.

It is easy to see the equivalence between the case k = 1 and the ear decomposition in

Proposition 1.24(ii). Mader gave a similar characterization for 2k + 1-edge-connected graphs

[63]. As for the k = 1 case, Theorem 1.25 immediately implies the weak version of Nash-

Williams’ orientation theorem:

Theorem 1.26 (Nash-Williams, 1960 [66]). An undirected graph has a k-edge-connected orien-

tation if and only if it is 2k-edge-connected.

A directed counterpart of Theorem 1.25 is due to Mader:

Theorem 1.27 (Mader, 1982 [64]). A directed graph is k-edge-connected if and only if it can

be obtained from a single node by iteratively applying the following two operations:

(i) add a new edge (possibly a loop),

(ii) subdivide k existing edges and identify the subdividing nodes with a single node z.

In this theorem and in Theorem 1.25 as well, operation (ii) is called pinching k edges

with z. By pinching 0 edges we mean the addition of a node. Note that using Theorem 1.26,

Theorem 1.25 can easily be derived from Theorem 1.27.
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In the proof of Theorem 1.27, an intrinsic tool is another deep theorem of Mader on directed

splitting off. Similarly to undirected graphs, in a digraph G = (V,A), splitting off edges e = xz

and f = zy means the operation of deleting e and f and adding the new edge xy. If ρ(z) = δ(z),

a complete splitting at z is a sequence of splitting off operations of all edges incident to z

and finally removing z. We say that a digraph D = (U + z, A) is k-edge-connected in U if

there are k-edge-disjoint directed paths between any two nodes in U .

Theorem 1.28 (Mader, 1982 [64]). Let D = (U + z, A) be a digraph which is k-edge-connected

in U and ρ(z) = δ(z). Then there exists a complete splitting at z resulting in a k-edge-connected

digraph.

From Theorem 1.27 one may also derive the constructive characterization of rooted k-edge-

connected digraphs (see e.g. [24]). A digraph D = (V,A) is called rooted k-edge-connected

if for a node r0 ∈ V , there are k-edge-disjoint paths from r0 to every node in V − r0. Clearly,

this is equivalent to ρ(X) ≥ k for every X ⊆ V − r0.

Theorem 1.29. A directed graph D = (V,A) is rooted k-edge-connected with a root r0 ∈ V if

and only if it can be obtained from the single node r0 by iteratively applying the following two

operations.

(i) add a new edge (possibly a loop),

(ii) pinch 0 ≤ j ≤ k − 1 edges with a new node z and add k − j new edges with head z.

From this theorem, one may easily derive Edmonds’ classical theorem on disjoint arbores-

cences:

Theorem 1.30 (Edmonds, 1973 [17]). A directed graph D = (V,A) contains k edge disjoint

spanning arborescences with root r0 ∈ V if and only if it is rooted k-edge-connected with root r0.

Similarly to Theorem 1.26, rooted k-edge-connectivity of digraphs also has an undirected

counterpart. An undirected graph is called k-partition-connected if for any partition of the

node set into t ≥ 2 classes,there are at least k(t − 1) edges between different classes of the

partition. Note that this is a property stronger than k-edge-connectivity.

Theorem 1.31 (Frank, 1980 [22]). An undirected graph G = (V,E) has a rooted k-edge-

connected orientation with a root r0 ∈ V if and only if it is k-partition-connected.

From this orientation theorem and Edmonds’ theorem we can easily obtain Tutte’s theorem:

Theorem 1.32 (Tutte, 1961 [71]). An undirected graph contains k edge-disjoint spanning trees

if and only if it is k-partition-connected.

We can also derive the following characterization from Theorems 1.29 and 1.31:
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Theorem 1.33. An undirected graph is k-partition-connected if and only if it can be obtained

from a single node by iteratively applying the following two operations.

(i) add a new edge,

(ii) pinch 0 ≤ j ≤ k − 1 edges with a new node z and add k − j new edges incident to z.

(k, �)-edge-connectivity is a natural common generalization of k-edge-connectivity and root-

ed k-edge-connectivity of digraphs. We say that D = (V,A) is (k, �)-edge-connected for

some integers 0 ≤ � ≤ k and a root node r0 ∈ V , if for each node v �= r0, there exist k

edge-disjoint paths from r0 to v and � edge-disjoint paths from v to r0. Note that (k, k)-edge-

connectivity coincides with k-edge-connectivity, while (k, 0)-edge-connectivity means rooted k-

edge-connectivity. Theorem 1.28 can also be extended to (k, �)-edge-connectivity. We say that

the digraph D = (U + z, A) is (k, �)-edge-connected in U for a root node r0 ∈ U , if for every

node v ∈ U − r0 there are k-edge-disjoint paths from r0 to v and � edge-disjoint paths from v

to r0 in D.

Theorem 1.34 (Frank, 1999 [24]). Let D = (U + z, A) be a digraph (k, �)-edge-connected in U

and ρ(z) = δ(z). Then there exists a complete splitting at z resulting in a (k, �)-edge-connected

graph.

Let us mention that this is still only a special case of Theorem 6.19, which can also be

derived from Theorem 1.1. The analogous concept for undirected graphs is the following. An

undirected graph is called (k, �)-partition connected if for any partition of the nodes into t ≥ 2

classes, there are at least k(t− 1) + � edges connecting distinct classes. The link between these

concepts is the following generalization of Theorem 1.31.

Theorem 1.35 (Frank, 1980 [22]). For integers 0 ≤ � ≤ k, an undirected graph G has a

(k, �)-edge-connected orientation if and only if G is (k, �)-partition connected.

Hence a natural problem arising is the constructive characterization of (k, �)-edge-connected

graphs, solved in Theorem 1.47 of this thesis. Based on Theorem 1.35, this will immediately give

a constructive characterization of (k, �)-parition-connected graphs. Besides � = 0 and � = k,

the following special cases of Theorem 1.47 were known beforehand. � = 1 was shown by Frank

and Szegő [34], and the case � = k − 1 was proved by Frank and Király [33]. Let us exhibit a

nice application of the latter case.

An important open question is the following. Given an undirected graph G = (V,E) and

a subset of nodes T ⊆ V , we call an orientation of G T -odd if the nodes with odd in-degree

are exactly those in T . The question is: for a given node set T , decide whether there exists a

strongly connected T -odd orientation. A trivial necessary condition is that |T | + |E| should be

even, but no necessary and sufficient condition is known. However, we may ask whether there
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is a strongly connected T -odd orientation for every T ⊆ V with |T | + |E| even. This question

can be answered not only for strongly connectedness but for higher connectivity as well:

Theorem 1.36 (Frank and Király, 2002 [33]). For an undirected graph G = (V,E), the following

three properties are equivalent:

(1) G has a k-edge-connected T -odd orientation for every T ⊆ V with |T | + |E| even.

(2) G is (k + 1, k)-partition connected.

(3) G can be built up from a single node by a sequence of (i) adding new edges, and (ii)

pinching k existing edges with a new node z and adding a new edge from an existing node

to z.

At first sight it is neither clear if property (1) is in NP, nor if it is in co-NP. Property (2)

gives a co-NP certificate: given a deficient partition, it is easy to construct a T not admitting a

k-edge-connected T -odd orientation. On the other hand, (3) gives an NP-certificate: using the

construction sequence, it is easy to find a good T -odd orientation for any T with |T |+ |E| odd.

This application has motivated the investigation of (k, k − 1)-partition-connected graphs.
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1.5 Overview of the main results

Chapters 2 and 3 are devoted to the directed and undirected connectivity augmentation problems

are closely related and we outline them side-by-side. Afterwards, the subsequent three chapters

will be discussed separately.

1.5.1 Augmenting directed and undirected connectivity by one

For directed connectivity augmentation by one, the size of an optimal augmenting edge set is

given in Theorem 1.5. Let us now give a min-max formula for undirected connectivity aug-

mentation by one, which was conjectured by Frank and Jordán [30] in 1994. The basic object

analogous to strict one-way pairs will be clumps, a notion corresponding to tight node cuts.

In the (k−1)-connected graph G = (V,E), a subpartition X = (X1, . . . , Xt) of V with t ≥ 2

is called a clump if |V − ⋃
Xi| = k − 1 and d(Xi, Xj) = 0 for any i �= j. The sets Xi are

called the pieces of X while |X| denotes t, the number of pieces. If t = 2 then X is a small

clump, while for t ≥ 3 it is a large clump. (The set V − ⋃
Xi is often called separator in

the literature, and shredder if t ≥ 3.) An edge uv ∈
(

V
2

)
connects X if u and v lie in different

pieces of X. Two clumps are said to be independent if there is no edge uv ∈
(

V
2

)
connecting

both.

A bush B is a set of pairwise distinct small clumps, so that each edge in
(

V
2

)
connects at

most two of them. A shrub is a set consisting of pairwise independent (possibly large) clumps.

For a bush B let def(B) =
⌈
|B|
2

⌉
, and for a shrub S let def(S) =

∑
K∈S(|K| − 1).

A grove is a set consisting of some (possibly zero) bushes and one (possibly empty) shrub, so

that the clumps belonging to different bushes are independent, and a clump belonging to a bush

is independent from all clumps belonging to the shrub. For a grove Π consisting of the shrub

B0 and bushes B1, . . . ,B�, let def(Π) =
∑

i def(Bi). For a (k − 1)-connected graph G = (V,E),

let τ(G) denote the minimum number of edges whose addition makes G k-connected, and let

ν(G) denote the maximum value of def(Π) over all groves Π.

Theorem 1.37. For a (k − 1)-connected graph G = (V,E) with |V | ≥ k + 1, ν(G) = τ(G).

The theorem is illustrated in Figure 1.1. Both Chapters 2 and 3 contain algorithms using

a dual oracle. Assume we are given a subroutine for determining the optimum value ν = τ

along an optimal dual structure. Based on this, the following simple algorithm gives a primal

optimal solution. For an undirected graph G = (V,E), let J =
(

V
2

)
− E denote the edge set of

the complement graph of G. Let us start with computing ν(G). In each step, choose an e ∈ J ,

and remove e from J . If ν(G + e) = ν(G) − 1, then add the edge e to G, otherwise keep the

same G. The same algorithm works for a directed graph D = (V,A), starting with J = V 2 −A.

Note that Theorem 1.37 (in the directed case, Theorem 1.5) ensures the existence of an edge e

with ν(G + e) = ν(G) − 1.
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a1
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b1

b2

b3b4

b5

VA VB

Figure 1.1: Let G be the graph in the figure with the addition of a complete bipartite graph be-

tween VA and VB and let k = 8. G is 7-connected, and it can be made 8-connected by

the addition of the edge set {a1a3, a2a4, a3a5, b3b4, b4b5}. Two clumps ({a1}, {a3, a4})
and ({b3}, {b4}, {b5}) are shown on the figure. A grove Π with def(Π) = 5 con-

sists of the shrub B0 and the bush B1 with B0 = {({b3}, {b4}, {b5})}, and B1 =

{({a1}, {a3, a4}), ({a2}, {a4, a5}), ({a3}, {a5, a1}), ({a4}, {a1, a2}), ({a5}, {a2, a3})}.

For strict one-way pairs, we have already defined the notion of independence and crossing

families; these can be naturally extended to clumps. A major difference is that no natural partial

order may be defined on clumps, however, nestedness can be introduced as a notion analogous

to comparability. In both cases, a cross-free system is a special class of crossing families of pairs

(resp. clumps) so that any two members are either independent or comparable (resp. nested).

A key notion is skeleton: a cross-free system maximal for containement.

Theorems 2.1 and 3.12 state that the maximum dual value over the members of a skeleton is

the same as over all strict one-way pairs (resp. clumps). Once having a skeleton, we will be able

to determine the dual optimum value relatively easily. In the directed case, Dilworth’s theorem

on the maximum size of an antichain in a poset gives the dual optimum. For the undirected case,

instead of Dilworth’s theorem we use Fleiner’s theorem [20] on covering symmetric posets by

symmetric chains. This may be seen as a common generalization of Dilworth’s theorem and the

Berge-Tutte theorem on the maximum size of a matching in a graph. While Dilworth’s theorem

can be derived from the Kőnig-Hall theorem on finding a maximum matching in bipartite graphs,

Fleiner’s theorem may be itself deduced from the Berge-Tutte theorem. The relation between

directed and undirected connectivity augmentation is somewhat analogous, concerning both the

complexity of the min-max formulae and the difficulty of the proofs.

Two proofs will be presented for Theorem 2.1. In Section 2.1 we give a simple, direct proof,

while Section 2.2 contains a more complicated one. In the latter one, we start from an edge

set F covering all strict one-way pairs in a given skeleton. By flipping two edges xy, uv ∈ F
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mean replacing F by F ′ = F − {xy, uv} + {xv, uy}. (We use this definition both in directed

and undirected graphs.) We prove that by a sequence of such operations we can arrive from F

to a covering of all strict one-way pairs, that is, an augmenting edge set for D. The advantage

of this latter proof is fourfold. First, it gives a proof not only for Theorem 2.1 but also for

Theorem 1.5. Second, it enables us to construct an algorithm that calls the dual oracle only

once. Third, it extends to node-induced cost functions as well. Finally, the greatest advantage

is that the argument carries over with only minor changes to the undirected case.

In contrast to the astonishingly simple original proof of Theorem 1.1 and the direct proof of

Theorem 2.1 in Section 2.1, the only method known so far for proving Theorems 1.37 and 3.12

is the adaptation of the argument of Section 2.2. However, I strongly believe that developing

simpler proofs should be possible. In fact, Theorems 1.37 should be seen as a starting point

rather then a final achievement in the area. I insist that it should be generalizable not only

for general connectivity augmentation, but it should also admit a general abstract form anal-

ogous to Theorem 1.1. This generalization should include, among others, rooted connectivity

augmentation and Ktt-free t-matchings (see [8]).

The main algorithmic task for the dual oracle is constructing a skeleton. Although any

maximal cross-free system of strict one-way pairs (resp. clumps) suits, it is not trivial to find

one since the number of strict one-way pairs and clumps may be exponentially large. To tackle

this problem, the notion of stability of cross-free systems is defined in both cases. For stable

cross-free systems, it will be fairly easy to determine whether they are skeletons, and if not, we

will be able to extend them preserving stability. Although the structural properties are quite

analogous, the argument in the undirected case will be significantly more complicated.

1.5.2 General connectivity augmentation

The approach in Chapter 4 for directed connectivity augmentation is completely different from

the one in Chapter 2. This result is an extension of the previous work of Benczúr [4] on

augmenting directed connectivity by one. The present result is applicable not only to directed

connectivity augmentation, but gives a new, algorithmic proof of Theorem 1.1 (similarly, the

result in [4] also worked for the more general Theorem 1.2).

Dilworth’s theorem plays an important role in Chapter 2 since it is used for determining

the maximum number of pairwise independent strict one-way pairs in a skeleton. Although not

applied directly, it serves as a starting point and motivation for the current approach. We give

a more general algorithm that resembles the version of Dilworth’s algorithm described in [21].

The main theorem (Theorem 1.40) is an equivalent reformulation of Theorem 1.1 in terms of

posets, for the problem of covering a certain type of weighted poset by a minimum number of

intervals.

Definition 1.38. Consider a poset (P,�). We say that for a minimal element m and a maximal
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element M , the set {z : m � z � M} is the interval [m,M ]. Let x, y ∈ P be called dependent

if there exists an interval [m,M ] with x, y ∈ [m,M ]; otherwise they are called independent.

We say that (P,�) satisfies the strong interval property if the following hold:

(i) For all dependent x, y ∈ P the operations x ∨ y = min{z : z � x, z � y} and x ∧ y =

max{z : z � x, z � y} are uniquely defined.

(ii) For every interval [m,M ],

x ∧ y ∈ [m,M ] implies x ∈ [m,M ] or y ∈ [m,M ],

and the same holds with x ∧ y replaced by x ∨ y.

The notion of a positively crossing supermodular function p on such a poset is anal-

ogous to the one on set pairs: for all dependent x and y with p(x) > 0 and p(y) > 0 we

require

p(x) + p(y) ≤ p(x ∧ y) + p(x ∨ y).

Consider a multiset of intervals I. We say that I covers the function p or I is a cover of p if

for every x, at least p(x) intervals in I contain x. An element v is called tight if contained in

exactly p(x) intervals in I.

Given the notion of the cover problem for a poset with the strong interval property, we next

show its equivalence to Theorem 1.1. We start with describing the correspondence between set

pairs and poset elements as illustrated in Fig. 1.2. Property (ii) in the definition can be seen as

the abstraction of the simple Lemma 2.2 for set pairs.

Figure 1.2: The correspondence between set pairs and poset elements. The four pairs on the left side

can be covered by one edge, and the corresponding four elements are contained in one

interval.

Claim 1.39. The poset of set pairs (S,�) with the operations ∧,∨ satisfy Definition 1.38. The

set of intervals of this poset is {Iuv : uv ∈ V 2}, where Iuv = {K ∈ S : uv covers K}.
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Let us now formulate our theorem, which is an analogoue of Theorem 1.1 for posets.

Theorem 1.40. For a poset (P ,�) with the strong interval property and a positively crossing

supermodular function p, the minimum number of intervals covering p is equal to the maximum

of the sum of p values of pairwise independent elements of P.

Using Claim 1.39, this theorem implies Theorem 1.1. We will show that the reverse is also

true: this theorem can also be derived from Theorem 1.1.

Our algorithm uses a primal-dual scheme for finding covers of the poset. For an initial

(possibly greedy) cover the algorithm searches for witnesses for the necessity of each element

in the cover. If any two (weighted) witnesses are independent, the solution is optimal. As long

as this is not the case, the witnesses are gradually exchanged by smaller ones. Each witness

change defines an appropriate change in the solution; these changes are finally unwound in a

shortest path manner to obtain a solution of size one less.

The algorithm itself is not very complicated (yet far from simple); however, the proof of cor-

rectness is technically quite involved. When applying it to concerete problems such as directed

connectivity augmentation, we have to be careful since the size of the poset is typically exponen-

tial. The basic steps of the algorithm involve operations as finding the (unique) maximal tight

element of an interval in a certain cover. In Section 4.2 we show that for directed connectivity

augmentation, such oracle calls can be implemented via maximum flow computations.

The algorithm is pseudopolynomial as the size of the initial cover depends on the maximum

value of p, and the size of the cover is increased by only one in each step. Of course, for

connectivity augmentation this does not matter as the maximum value of p is at most k ≤ |V |−1;

however, for ST -edge-connectivity augmentation, p may take arbitrarly large values.3 Hence

developing a strongly polynomial or at least a polynomial time algorithm is still an important

challenge.

1.5.3 Local edge-connectivtiy augmentation

Chapter 5 commences with new proofs of Theorems 1.17 and 1.22. Then we turn to the problem

of partition-constrained local edge-connectivity augmentation (PCLECA). First, an approxi-

mation algorithm is presented for finding an augmenting edge set of Q-legal edges of size at

most the optimum plus rmax, the largest connectivity requirement. Then, for the bipartite case

(that is, if Q consists of two classes) we formulate a conjecture on the minimum size of a Q-

legal augmenting edge set. We only give a partial proof of this conjecture, already extremely

complicated. The completion of the proof and the extension to arbitrary number of partition

classes is left for future research.

3Recall that the definition of k-node-connectivity also imposed k ≤ |V | − 1; no similar restrictions exist for

edge-connectivity and thus we may have an arbitrary requirement k independently from |V |.
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To our best knowledge, all undirected edge-connectivity augmentatition results discussed

in Section 1.3 among their extensions (see e.g. the thesis of Bernáth [9]) were proved via

splitting off techniques. We break this tradition by applying the alternative technique of edge-

flippings. Consider a covering problem of a set function p and a degree-prescription m. Vaguely

speaking, we want to find an m-prescribed edge-set F covering p “as much as possible”. For an

m-prescribed edge set F , let us define the function

qF (X) = p(X) − dF (X).

Let νF = maxX⊆V qF (X). Note that F covers p if and only if νF = 0. We will be interested in

m-prescribed edge sets minimizing νF . Let

FF := {X ⊆ V | qF (X) = νF and ∀U � X : qF (U) < νF}

Let us define a partial order � on the m-prescribed edge sets: F ′ ≺ F if νF ′ < νF , or νF ′ = νF

and |FF ′| < |FF |. We are going to focus on �-minimal m-prescribed edge sets. What we really

use is the local optimality of such an F : with a small elementary change, we cannot get an F ′

from F with F ′ ≺ F .

Recall that for two edges xy, uv ∈ F , by flipping (xy, uv) we mean replacing F by F ′ =

F − {xy, uv} + {xv, uy}. In most proofs, it will be enough to assert that from a given F , we

cannot get an F ′ ≺ F by a single flipping. Consequently, a local search algorithm can be applied

for finding an optimal solution, given that we have oracles for determining the values νF and

|FF |.
It turns out that for Theorems 1.17 and 1.22, a quite weak property of the demand function

p almost suffices. p is called symmetric positively skew supemodular (abbreviated SPSS)

if p is a nonnegative integer-valued function on the ground set V ; p(X) = p(V − X) for every

V ⊆ X, and for every pair X,Y ⊆ V with p(X), p(Y ) > 0, at least one of the following

inequalities hold:

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ), (1.7a)

p(X) + p(Y ) ≤ p(X − Y ) + p(Y − X) (1.7b)

One basic example of such a function is p(X) = (R(X) − d(X))+ for R(X) defined by a local

edge-connectivity requirement, while the other example is a symmetric and positively crossing

supermodular function. Although covering an arbitrary SPSS-function is NP-complete (see

[54]), it is easy to find an edge set almost covering p. Namely, we prove the following.

Theorem 1.41. Let p be an SPSS-function and m a degree-prescription so that (1.4) holds.

For a �-minimal m-prescribed edge set F , νF ≤ 1 holds, or equivalently, dF (X) ≥ p(X)− 1 for

every X ⊆ V .
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Therefore, in both Theorems 1.17 and 1.22 it will be enough to focus on the case ν = 1.

For this, stronger properties of the particular function p are needed. Theorem 1.41 is a folkore

result, appearing in the thesis of Cosh [15], in the papers of Nutov [67] and Bernáth and Király

[12].

Edge-flipping is a classical technique for degree-prescribed problems: see for example, Ha-

kimi’s paper [39] from 1962 or Edmonds’ result [16] from 1964. For digraphs, Frank and Z.

Király [33] applied a similar technique to give a new proof of Theorem 6.19, a generalization of

Theorem 1.28 on directed splitting off.

For Theorem 1.17, we do not claim that edge-flipping leads to a much easier proof. For

Theorem 1.22, the two proofs known by the author are the original one by Benczúr and Frank

[6], and a recent, significantly simpler one by Bernáth [10]. Let us take a degree-prescription m

satisfying (1.4) and add a new node z connected to each node v by m(v) parallel edges. In the

case of Theorem 1.17, an arbitrary sequence of legal splittings was feasible, however, this does

not apply for Theorem 1.22. Benczúr and Frank show the existence of “good” pair of splittable

edges, nevertheless, tremendous technical effort is required to find such a pair. If we cannot

remove all edges incident to z this way, then a p-full partition can be exhibited, showing that

(1.6) did not hold originally. On the contrary, Bernáth proceeds by splitting arbitrary feasible

pairs of edges as long as possible. The drawback of this method is that we are not finished in

the case when no complete splitting exists. It needs to be checked whether we can obtain a

better situation by undoing a previous splitting off, similarly to the method of Bang-Jensen et

al. [2] as sketched after Theorem 1.23.

In contrast, our proof of Theorem 1.22 is quite analogous to that of Theorem 1.17. Consider

a degree-prescription m satisfying (1.4) and choose an m-prescribed edge set F so that we

cannot get an F ′ with F ′ ≺ F by performing a single edge flipping. In both cases, such an F is

optimal: in Theorem 1.17 we can deduce ν = 0 while in Theorem 1.22 ν ≤ 1, and if ν = 1 then

(1.6) does not hold. The proof of ν ≤ 1 is provided by the same Theorem 1.41 in both cases.

My main motivation for applying edge-flippings in the context of undirected covering prob-

lems was the hope that it could be more suitable for the PCLECA problem. Splitting off with

the aforementioned technique of undoing splittings is also a natural way to attack this problem,

and I also started this way. The main difficulty is that, in contrast to global edge-connectivity,

undoing a single splitting off is insufficient. I conjecture that undoing two should be enough;

however, at a certain point the analysis becomes severely complicated. I think that edge-flipping

is more appropriate to tackle this problem. Unfortunately, I could neither complete the proof

with this method, however, I think that the partial results might be of some value.

For both augmentation Theorems 1.15 and 1.21, we had the degree-prescribed versions

Theorems 1.17 and 1.22. Let us now formulate the degree-prescribed version of the PCLECA

problem. For some integer t ≥ 2, let us be given degree sequences m1, . . . , mt : V → Z+, and let
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m =
∑t

i=1 mi. 
m = (m1, . . . , mt) is called a legal degree-prescription if m(V ) is even and

mi(V ) ≤ m(V )

2
for i = 1, . . . , t. (1.8)

The integers {1, . . . , t} will be called colours. Notice that for t = 2, (1.8) is equivalent to

m1(V ) = m2(V ) = 1
2
m(V ). Consider a pair (F, ϕ) consisting of an edge set F equipped with a

mapping ϕ. This maps the endondes of the edges in F to the set of colours so that for xy ∈ F ,

ϕ(xy, x) �= ϕ(xy, y). An edge xy ∈ F with ϕ(xy, x) = i and ϕ(xy, y) = j is called an ij-edge.4

(F, ϕ) is is called an 
m-prescribed legal edge set5 if

|{xy : ϕ(xy, x) = i}| = mi(x) for x ∈ V, i = 1, . . . , t. (1.9)

It can be seen easily that if 
m is a legal degree-prescription, then there exists an 
m-prescribed

legal edge set. Edge-flippings can be naturally defined with taking the mapping ϕ also into

account. The difference is that for xy, uv ∈ F , flipping (xy, uv) is possible only if ϕ(xy, x) �=
ϕ(uv, v), ϕ(xy, y) �= ϕ(uv, u). Nevertheless, at least one of (xy, uv) and (xy, vu) can be flipped.

Given a partition Q = {Q1, . . . , Qt} and a degree-prescription m : V → Z+, we may define

mi(v) = m(v) if v ∈ Qi and mi(v) = 0 otherwise. (Note that this is not always a legal degree-

prescription as (1.8) is not necessarly satisfied.) The model above is slightly more general since

we allow mi(v) = mj(v) > 0 for i �= j. We advise the reader to keep this example in mind in

the sequel; note that here ϕ is uniquely defined by the partition Q.

Given the connectivity requirement function r, we are interested in coverings of the function

p(X) = (R(X)− d(X))+ by 
m-prescribed legal edge sets. (1.4) is a necessary, but not sufficient

condition. For a legal degree-prescription 
m satisfying (1.4), we will be interested in minimizing

νF over 
m-prescribed legal edge sets. The first, relatively simple result we prove in Section 5.2.1

is the following.

Theorem 1.42. Given r and a legal degree-prescription 
m satisfying (1.4), consider an 
m-

prescribed �-minimal F . If νF > 0 then |FF | = 2.

This theorem will enable us to construct a simple approximation algorithm for the PCLECA

problem in Section 5.2.2 with an additive term rmax.

Theorem 1.43. Assume we are given a graph G = (V,E), a partition Q of the nodes and a

connectivity requirement r so that G contains no marginal sets. Then the minimum number of

Q-legal edges whose addition makes G r-edge-connected is at most ΨQ(G) + rmax.

4Denoting the same edge by xy or yx has different meanings, as the one is an ij-edge while the other a

ji-edge. For t = 2, we could also represent F by directed edges.
5We will often omit ϕ and refer only to F as an �m-prescribed legal edge set. Nevertheless, ϕ is always tacitly

included. For example, we speak of ij-edges in F .
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Recently, a weaker version of this theorem was also proved by Lau and Yung [58] (for two

partition classes and 2rmax.)

For t = 2, we formulate conjectures on the optimum value of νF in the degree-prescribed

problem and on the minimum size of a Q-legal augmenting edge set in the augmentation problem.

The dual structure is given by the next sophisticated definition.

Definition 1.44. Consider a partition H = {X∗, Y ∗, C1, C2, . . . , C�} of V . We say that H forms

a hydra with heads X∗, Y ∗ and tentacles Ci if

(i) dG(Ci, Cj) = 0 for every 1 ≤ i < j ≤ �; and

(ii) For any two disjoint index sets ∅ �= I, J ⊆ {1, . . . , �}, (1.5a) holds with equality for

X∗ ∪ (
⋃

i∈I Ci) and X∗ ∪ (
⋃

j∈J Cj), and also for Y ∗ ∪ (
⋃

i∈I Ci) and Y ∗ ∪ (
⋃

j∈J Cj).

Similarly to p-full partitions, although the definition contains exponentially many conditions,

Theorem 5.23 will give an equivalent characterization in terms of the values of r between different

classes of H. This also yields an efficient method to decide whether a partition forms a hydra.

Given a requirement function r, a legal degree-prescription 
m = (m1,m2, . . . , mt) and 1 ≤
h ≤ t, we call a tentacle Ci h-odd if p(Ci ∪ X∗) − p(X∗) + mh(Ci) is odd.6 Let χh denote the

number of h-odd tentacles. Let us define

τh(G, r, 
m,H) =
1

2

(
χh + p(X∗) + p(Y ∗) − m(V ) + mh(

⋃
Ci)

)
.

Let

τ(G, r, 
m) = max{0, t
max
h=1

τh(G, r, 
m,H) : H is a hydra}

The conjecture on the degree-prescribed version of the PCLECA problem is as follows.

Conjecture 1.45. Let us be given a graph G = (V,E) with a connectivity requirement function

r so that G contains no marginal sets. If 
m = (m1,m2) is a legal degree-prescription satisfying

(1.4) and (F, ϕ) is a �-minimal 
m-prescribed legal edge sets, then νF = τ(G, r, 
m).

The corresponding conjecture for the augmentation problem is as follows. Let Q = {Q1, Q2}
be the partition constraint. Let H = (X∗, Y ∗, C1, C2, . . . , C�} be a hydra, and for h ∈ {1, 2}, let

Z be an h-subpartition which is a refinement of {C1, . . . , C�}. (Recall that by an h-subpartition

we mean a subpartition of Qh.) The tentacle Ci is called h-toxic if

p(Ci ∪ X∗) − p(X∗) +
∑

(p(Z) : Z ∈ Z, Z ⊆ Ci)

is odd. Let χ′
h denote the number of h-toxic tentacles. Let us define

τ ′
h(G, r,Z,H) =

1

2
(χ′

h + p(X∗) + p(Y ∗) + p(Z)) .

6In Lemma 5.26 we shall prove that p(Ci ∪ X∗) − p(X∗) = −(p(Ci ∪ Y ∗) − p(Y ∗)), thus the role of X∗ and

Y ∗ is interchangeable.
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c1 c2 c3 c4 c5 c6

x y

Figure 1.3: Let r(x, y) = 8 and r(u, v) = 3 for any other pair. Let Q1 = {x, y} and Q2 = {c1, . . . , c6}
be the partition classes. We have a hydra H with X∗ = {x}, Y ∗ = {y}, Ci = {ci}
for i = 1, . . . , 6. Consider the degree-prescription m1(x) = m1(y) = 3, m2(ci) = 1 for

i = 1, . . . , 6 and mj(u) = 0 otherwise. All components Ci are 2-odd, p(X∗) = p(Y ∗) = 2

and thus τ2(G, r, �m,H) = 2. For the augmentation version, take the 2-subpartition Z
consisting of the singletons {ci}. Then all Ci-s are 2-toxic, and τ ′

2(G, r,Z,H) = 8.

Let τ ′(G, r,Q) denote the maximum of τ ′
h(G, r,Z,H) over all choices of h, H and Z as above.

Recall that ΨQ(G) was defined in Section 1.3 as the maximum of α(G) and βj(G) for j = 1, . . . , t.

Conjecture 1.46. Let us be given a graph G = (V,E) with a connectivity requirement function

r so that G contains no marginal sets and furthermore a partition Q = {Q1, Q2} of V . Then the

minimum size of a Q-legal augmenting edge set equals the maximum of ΨQ(G) and τ ′(G, r,Q).

C4-configurations are special hydra-bounds: consider a partition (A1, A2, C1, C2) of V and

a h-partition Z forming a C4-configuration, Then H = (X∗, Y ∗, C1, C2) forms a hydra for

X∗ = A1, Y ∗ = A2 with both C1 and C2 being h-toxic; from the properties in the definition it

follows that τ ′
h(G, r,H,Z) = ΨQ(G) + 1.

It is already nontrivial that τ(G, r, 
m) and τ ′(G, r,Q) are lower bounds on the optimum

values: this will be proved in Section 5.2.4. In Section 5.3, we prove Theorem 5.30, a special

case of Conjecture 1.45 under the assumptions that for the optimal F , νF ≥ 2 and
⋃FF = V .

The proof is quite technical. First, we extract structural properties from the assumption that

we cannot get a better F ′ from F by performing a flipping or a “hexa-flipping”, a sequence of

two edge flippings. This results in a set system containing a set “blocking” the edges of F in

a certain sense. Afterwards, a complicated uncrossing method is applied to transform this set

system into a laminar one, yielding an optimal hydra.

We think that this method should be extendable for proving Conjecture 1.45, however, the

extreme level of complexity and the time and space limitations have forbidden us to give a

complete proof. Finally, in Section 5.3.2, we sketch how Conjecture 1.46 could be derived from

Conjecture 1.45. Also, we think that the conjectures could easily be extended to arbitrary num-

ber of partition classes, by adding another type of lower bound generalizing C6-configurations.

In the global connectivity version [2], the main difficulties are already contained in the case
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t = 2; we believe that the situation here should be similar.

1.5.4 Characterization of (k, �)-edge-connected digraphs

The main result of this chapter is the following constructive characterization of (k, �)-edge-

connected digraphs, conjectured by András Frank ([34], Conjecture 5.6. and [28], Conjecture

5.1):

Theorem 1.47. For 0 ≤ � ≤ k − 1, a directed graph is (k, �)-edge-connected with root r0 ∈ V

if and only if it can be built up from the single node r0 by the following two operations.

(i) add a new edge,

(ii) for some i with � ≤ i ≤ k − 1, pinch i existing edges with a new node z, and add k − i

new edges entering z and leaving existing nodes.

We get the following corollary using Theorem 1.35:

Theorem 1.48. For 0 ≤ � ≤ k−1, an undirected graph is (k, �)-partition-connected if and only

if it can be built up from a single node by the following two operations.

(i) add a new edge,

(ii) for some i with � ≤ i ≤ k − 1, pinch i existing edges with a new node z, and add k − i

new edges between z and some existing nodes.

In Theorem 1.47, it is straightforward that all graphs constructed by operations (i) and (ii)

are (k, �)-edge-connected, the nontrivial part is the opposite direction. Removing an edge is the

reverse of operation (i), hence we may focus our attention to minimally (k, �)-edge-connected

digraphs in the sense that removing any edge would destroy (k, �)-edge-connectivity.

Let us sketch a proof of Theorem 1.27, which is a starting point of our argument (and

corresponds to the special case k = �). If a digraph is not minimally k-edge-connected, we can

leave an edge as the reverse of operation of step (i) and continue by induction. For minimally

k-edge-connected digraphs, the existence of a node z having both in- and out-degree k can be

proved. Then Mader’s directed splitting theorem (Theorem 1.28) can be used since the reverse

of operation (ii) is exactly a complete splitting at a node z with ρ(z) = δ(z). The case � = 0

(Theorem 1.29) can also be proved using an easy consequence of Theorem 1.28.

However, for the cases � = 1 and � = k − 1 of Theorem 1.47 we already need the stronger

splitting result Theorem 1.34. The argument is also significantly more complicated for the

following reason. For � = k and � = 0, it was enough to find a node satisfying certain conditions

on the in- and outdegrees, and one could always perform a complete splitting at such a node.
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However, for � = 1 and � = k − 1 the conditions on the degrees do not suffice and a more

thorough analysis of the structure of minimally (k, �)-edge-connected graphs is needed.

Let us now sketch the proof for � = k − 1 by Frank and Király [33]. Consider a minimally

(k, k − 1)-edge-connected graph. A necessary condition for the reverse of operation (ii) to be

applicable at node z is ρ(z) = k and δ(z) = k − 1. We call such nodes special. If for a special

node z we manage to find an edge uz so that D− uz is (k, k− 1)-edge-connected in U = V − z,

then Theorem 1.34 may be used for D′ = (U + z, A − uz), giving a (k, k − 1)-edge-connected

graph D′′ on U . Then we can get D from D′′ by applying step (ii) with pinching those k − 1

edges with z which were resulted by the splitting off and finally adding the edge uz.

However, not every special node z admits an edge uz as above (and it is already nontrivial

to prove that a special node exists). We use an indirect argument: assume that every edge

xy ∈ A satisfies one of the following conditions. If y is special, then we assume that D − xy is

not (k, k−1)-edge-connected in V −y. If y is not special, we use that D is minimally (k, k−1)-

edge-connected, and thus D − xy is not (k, k − 1)-edge-connected. One can define a notion of

tight sets so that each edge will be “blocked” by a tight set. Then the uncrossing method may

be used for these tight sets to derive a final contradiction.

The proof of Theorem 1.47 is motivated by this argument, but for general �, severe difficulties

arise. Starting from a minimally (k, �)-edge-connected digraph, we call a node z special if

� ≤ δ(z) ≤ k− 1 and ρ(z) = k. This means that according to its in- and out-degree, it might be

the result of operation (ii) in Theorem 1.47. We say that a subset F of edges entering a special

node z is locally admissible at z if G−F is (k, �)-edge-connected in V −z and |F | ≤ k− δ(z).

F is called sufficient at z if |F | = k − δ(z). Once a sufficient locally admissible F is found,

Theorem 1.34 may be applied to G − F and z and the proof finishes as for � = k − 1.

Thus our aim is to find a special node z and a sufficient locally admissible set F at z. It is easy

to characterize the maximal size of a locally admissible set for a given special z, however, this

size may be strictly smaller than k− δ(z). The main difficulty is handling the locally admissible

sets belonging to different special nodes together. The notion of globally admissible edge

sets in Definition 6.3 is introduced for this purpose. For a globally admissible edge set F and

an arbitrary special node z, the subset Fz ⊆ F of edges entering z is locally admissible at z.

However, the converse is not true in the sense that the union of locally admissible edge sets

belonging to different special nodes will not necessarily be globally admissible. We say that a

globally admissible edge set F is sufficient if for some special z, Fz is sufficient; otherwise it is

called insufficient. What we prove is the existence of a sufficient globally admissible edge set.

Unfortunately, it is not true that every maximal globally admissible set is sufficient, as it will

be shown by an example in Section 6.5.

Among other methods, splitting off techniques will be used also in the proof of the existence of

a sufficient globally admissible set. However, even Theorem 1.34 turns out to be too weak for our
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goals. Actually, Theorem 1.34 is a special case of Theorem 6.19 on covering positively crossing

supermodular functions by a digraph. Theorem 6.20 is a further generalization presented in

Section 6.3. It enables us to use a splitting operation preserving a property stronger than

(k, �)-edge-connectivity. The proof relies on edge flippings, used in an analogous manner as in

Chapter 5 for undirected graphs.

The way we handle tight sets also differs from the standard uncrossing methods. A set is

called tight with respect to a globally admissible set F if the inequality concerning this set

in the definition of global admissibility holds with equality. As in the proof for � = k − 1, for

a maximal F there is a tight set “blocking” each edge in E − F . However, it is not possible

to apply the uncrossing method to arbitrary tight sets for an arbitrary globally admissible F .

The intersection and union of two tight sets will be tight only under the assumption that F

is maximal and insufficient. It turns out interestingly that under this assumption, some basic

types of tight sets do not occur at all. This will be discussed in Section 6.4.

Contributions

Chapter 2 is based on a joint paper with András Frank [36], and Chapter 3 is based on the

technical report [73]. The result of Chapter 4 is a joint work with András Benczúr in [74], while

that of Chapter 6 is co-authored by Erika Renáta Kovács [56]. Chapter 5 contains unpublished

material by the author.

Connections between the chapters

Local edge−conn. aug.

Chap. 5

parity

Undir. node−conn. aug. by 1

Chap. 3

method
po

set
s

Dilworth’s theorem Chap. 4

General dir. node−conn. aug.

Chap. 2

Dir. node−conn. aug. by 1

splitting off

edge flippings

Chap. 6

Const. char. for (k,l)−edge−conn.

Figure 1.4: The hypergraph of interconnections.

At this point, the reader might have arrived to the conclusion that the thesis is rather a
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compilation of scarcely related results with the author’s person being the only common denom-

inator. While we cannot completely refute such an opinion by exhibiting one common motif of

the entire thesis, we tried to summarize some less transparent interconnections in Figure 1.4.

The most intimate relationship is indubitably the one between Chapters 2 and 3 on aug-

menting node-connectivity by one. We could adapt the main thoughts and structural elements

of the proof of the directed case to the undirected case, albeit the min-max formulae being

considerably different. In contrast, although Chapters 2 and 4 tackle the same problem, the

methods do not have much in common. Nevertheless, we should mention Dilworth’s theorem,

which is applied in Chapter 2 directly and serves as a motivation for Chapter 4. As a connec-

tion between Chapters 3 and 4, we may exhibit the underlying poset structures. It is of key

importance in both cases that we investigate the abstract poset properties of clumps and set

pairs, respectively.

The occurence of splitting off techniques in both Chapters 5 and 6 is quite natural: it is

a fundamental and efficient method in edge-connectivity problems. Another method, edge-

flipping is applied in various contexts in all but Chapter 4. On the one hand, it can be used as

an alternative of splitting off: for example, in Chapter 5 we present new proofs of Theorems 1.17

and 1.22 using edge-flipping and we apply this technique for the PCLECA problem as well. The

general directed covering result Theorem 6.20 is also proved via edge-flipping. On the other

hand, in the completely different context of directed and undirected connectivity augmentation,

the transformation of a cover of skeleton to a cover of all strict one-way pairs (resp. clumps)

also relies on edge-flippings.

Chapters 3 and 5 share a somewhat odd common feature: parity is involved in both. It was

known beforehand, that undirected node-connectivity augmentation has to do with parity, since

it generalizes maximum matching. However, the emergence of parity might be surprising in the

context of edge-connectivity. In Conjectures 1.45 and 1.46 there are certain odd components,

resembling those in the Berge-Tutte formula. To the extent of my knowledge, parity has not been

involved in such a way in previous edge-connectivity results. More interestingly, we conjecture

that the optimum value described by these formulae can be found by a local search algorithm.
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Chapter 2

Augmenting directed node-connectivity

by one

In this chapter, we give an alternative proof and a combinatorial algorithm for Theorem 1.5,

based on [36], a joint paper with András Frank. We will assume throughout the chapter that

the digraph D = (V,A) is (k − 1)-connected. Let O1 = O1
D denote the set of strict one-way

pairs. Since we are now interested in strict one-way pairs only, we omit “strict” and use only

“one-way pair” for the members of O1. Some definitions and lemmas are formulated for set

pairs; these are valid in the most general setting.

Let us start with some new notion. We have already introduced crossing families of set

pairs in Section 1.1. A family F ⊆ S is called cross-free if any two members of F are either

independent or comparable. Note that, somewhat confusingly, every cross-free family is crossing.

For a set pair K ∈ F , let F ÷ K denote the members of F not crossing K. Similarly, for a

subset K ⊆ F let F ÷ K denote the set of set pairs in F crossing no element of K. Let us call

a cross-free subset F ⊆ O1 a skeleton if O1 ÷F = F . Equivalently, F is a maximal cross-free

subset of O1.

In Section 2.1, we give the description of the Dual Oracle, a subroutine for determining

ν(O1). In Section 2.1.2 we analyze the oracle and the first algorithm, which relies on this

oracle. In Section 2.2, we give a new proof for Theorem 1.6, and sketch a second algorithm.

For this algorithm, we present only the main ideas, and omit the technical details which can be

done similarly as for the first algorithm.

2.1 The Dual Oracle

The following theorem is the essence of the Dual Oracle.

Theorem 2.1. For a skeleton K ⊆ O1 the maximum number of pairwise independent one-way

pairs is equal in K and O1, that is, ν(K) = ν(O1) = ν(D).

35



Clearly, ν(K) ≤ ν(O1) for every K ⊆ O1. The advantage of a cross-free system is that we

can easily determine the maximum number of pairwise independent one-way pairs. This is due

to the fact that whenever it contains two dependent one-way pairs, they are comparable. Thus

considering the partially ordered set (K,�) an antichain consists of pairwise independent pairs.

A maximum antichain in a poset can be easily found by an algorithm for Dilworth’s theorem

stating the equality of the size of a minimum chain cover and a maximum antichain (see e.g. [69,

Vol A., pp. 217-236]). In order to prove Theorem 2.1, we need some elementary propositions.

Lemma 2.2. Let M,N ∈ S be two dependent set pairs. If an edge xy ∈ V 2 covers M ∧ N or

M ∨ N , then it covers at least one of M and N . If it covers both M ∧ N and M ∨ N , then it

covers both M and N . �

Claim 2.3. Let M,N ∈ O1. M− ⊆ N− implies M � N , and M+ ⊆ N+ implies M � N .

Proof. For the first part, assume that M �� N , meaning that M+ �⊇ N+. Although M and

N are not necessarly dependent (M+ ∩ N+ �= ∅ is not assumed), we may consider the set pair

L = (M−,M+ ∪ N+). This is a one-way pair, and since D is (k − 1)-connected, s(L) ≥ k − 1.

However, M is a strict one-way pair, and since M+ ∪ N+ � M+, we get s(L) < s(M) = k − 1,

a contradiction. The second part follows similarly.

Lemma 2.4. For a crossing family F and for any K ∈ O1, the subfamily F ÷ K is crossing.

Proof. Let F ′ = F ÷ K and let M and N be two crossing members of F ′. We have to prove

that neither M ∨ N nor M ∧ N crosses K.

First assume that K is comparable with both M and N . It is not possible that M � K � N

or N � K � M as M and N are not comparable. Therefore either K � M,N or K � M,N .

In the first case, K is smaller than both M ∧N and M ∨N , while in the second case it is larger

than both.

Second, assume that K is independent from both M and N . We claim that both M ∧ N

and M ∨ N are independent from K. Indeed, if an edge xy ∈ V 2 covered both K and M ∧ N

or M ∨ N , then by Lemma 2.2, it would also cover M or N , a contradiction.

In the third case K is independent from one of M and N , say from M , and comparable with

the other, N . If K � N , then K and M can only be tail-disjoint, since M+ ∩ N+ �= ∅ and

K+ ⊇ N+. Now M ∧N is also tail-disjoint from K, and K � M ∨N . Similarly, if K � N , then

K and M should be head-disjoint, thus M ∨N is head-disjoint from K, while K � M ∧N .

Lemma 2.5. (i) Let L1, L2, L3 be one-way pairs with L1 and L2 dependent, L1 ∧ L2 and L3

also dependent, but L2 and L3 independent. Then L+
3 ∩ (L+

1 −L+
2 ) �= ∅ and L−

1 −L−
2 ⊆ L−

3 . (ii)

Let L1, L2, L3 be one-way pairs with L1 and L2 dependent, L1 ∨L2 and L3 also dependent, but

L2 and L3 independent. Then L−
3 ∩ (L−

1 − L−
2 ) �= ∅ and L+

1 − L+
2 ⊆ L+

3 .
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Proof. (i) The dependence of L1 ∧ L2 and L3 implies L−
2 ∩ L−

3 �= ∅, so L2 and L3 can only be

independent if L+
2 ∩ L+

3 = ∅. The first part follows since L+
3 ∩ (L+

1 ∪ L+
2 ) �= ∅ because of the

dependence of L1 ∧ L2 and L3. For the second part, consider the pair N = (L1 ∧ L2) ∨ L3.

N+ = (L+
1 ∪ L+

2 ) ∩ L+
3 = L+

1 ∩ L+
3 , hence N+ ⊆ L+

1 . By Claim 2.3, N− ⊇ L−
1 , implying the

claim. (ii) follows the same way, by exchanging the role of the tails and heads.

Now we are ready to prove Theorem 2.1. The proof is based on the following lemma:

Lemma 2.6. For a crossing system F and K ∈ F we have ν(F) = ν(F ÷ K).

First we show how Theorem 2.1 follows from Lemma 2.6. Let K = {K1, . . . , K�}. First

apply Lemma 2.6 for O1 and K1, then in the ith step for O1 ÷ {K1, . . . Ki−1} and Ki. Note

that O1÷{K1, . . . Ki−1} is a crossing system by applying inductively Lemma 2.4. Thus we have

ν(O1) = ν(O1 ÷ K1) = . . . = ν(O1 ÷K), hence Theorem 2.1 follows by O1 ÷K = K.

Proof of Lemma 2.6. Trivially, ν(F ÷ K) ≤ ν(F). Consider a maximum independent subset

L of F which has the most common members with F ÷ K. For a contradiction, suppose that

L∩ (F ÷K) < ν(F), and choose an element T ∈ L− (F ÷K). By definition, T crosses K. We

claim that either (L \ {T}) ∪ {T ∧ K} or (L \ {T}) ∪ {T ∨ K} is independent. This leads to

contradiction, since the new system intersects F ÷ K in a strictly larger subset than L does.

Suppose that neither (L \ {T}) ∪ {T ∧ K} nor (L \ {T}) ∪ {T ∨ K} is independent. Then

there is an element M ∈ L \ {T} dependent from T ∧ K, and an other element M ′ ∈ L \ {T}
dependent from T ∨ K. If M = M ′, then M is clearly dependent from L, a contradiction.

Assume now M �= M ′. The conditions of Lemma 2.5(i) hold for L1 = K, L2 = T and

L3 = M , and the conditions of (ii) hold for L1 = K, L2 = T and L3 = M ′. We claim that M

and M ′ are dependent. Indeed, K− − L− contains an element of M− ∩ M ′−, while K+ − L+

contains an element of M+ ∩ M ′+.

2.1.1 Constructing a skeleton

A straightforward approach to construct a skeleton of O1 would be a greedy method, that it,

choose one-way pairs arbitrarly, as long as they do not cross any of the previously selected ones.

The difficulty arises from the fact that it is not clear how to decide whether a given cross-free

system is a skeleton or not. (Note that the size of O1 may be exponentially large.) To overcome

this difficulty, we work with special kind of cross-free systems. Let us call a cross-free system

H ⊆ O1 stable if it fulfills the following property:

L crosses some element of H whenever L ∈ O1 −H and ∃K ∈ H : L � K. (2.1)

This means that if H has an element larger than L, then L cannot be added to H. Given

a stable system, the following claim provides a straightforward way to decide whether it is a

skeleton.

37



Claim 2.7. A stable cross-free system is a skeleton if and only if it contains all the maximal

members of O1.

Proof. On the one hand, any skeleton should contain all the maximal one-way pairs in O1 since

a maximal one-way pair cannot cross any other set. On the other hand, for a contradiction,

suppose that a stable system H contains all the maximal members, yet it is not a skeleton.

Choose an L /∈ H with H ∪ {L} cross-free. There is a maximal element K ∈ O1 with L � K.

By our assumption, K ∈ H, contradicting the definition of stability.

Assume we are given a stable cross-free system H which is not a skeleton. In the following,

we investigate how a set K ∈ O1 −H can be found with the property that H ∪ {K} is stable

as well. As H is not a skeleton, there is a maximal element M with M ∈ O1 −H. Let

L1 := {K ∈ H : K � M}; L2 := {K ∈ H : K �� M} (2.2)

We say that a one-way pair L fits the pair (H,M) if (a) L ∈ O1 − H,L � M ; (b) L is

independent from all members of L2 and (c) either K � L or K− ∩ L− = ∅ for every K ∈ L1.

Lemma 2.8. If L is a minimal member of O1 − H fitting (H,M), then H + L is a stable

cross-free system.

This is a straightforward consequence of the following claim.

Claim 2.9. Let L ∈ O1 − H, L � M . The following two properties are equivalent: (i) L fits

(H,M); (ii) H + L is cross-free.

Proof. (i)⇒(ii) is straightforward. For the other direction we have to verify (b) and (c) of the

above definition. By (2.1), either K � L or L and K are independent for every K ∈ H. Assume

now K � L for some K ∈ L2. In this case K � L � M , contradicting the definition of L2.

For (c) we need K− ∩ L− = ∅ if K and L are independent for some K ∈ L1. This follows by

K,L � M , thus K+ ∩ L+ ⊇ M+.

Observe that M itself fits (H,M) ensuring the existence of a one-way pair L satisfying the

conditions of Lemma 2.8. So K = L is an appropriate choice. Such an L can be found using

bipartite matching theory. The description of this subroutine is quite technical and rather

standard, therefore it is postponed to Section 2.4.

2.1.2 Description of the Dual Oracle

Given the above subroutine for constructing a skeleton, we have the following oracle to determine

the value ν(D) = ν(O1) in a (k − 1)-connected digraph on n nodes: we construct a skeleton,

then we apply Dilworth’s theorem. (It is well-known that computing a maximum antichain
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and a minimum chain-decomposition of a partially ordered set can be reduced to a maximum

matching computation in a bipartite graph.) The size of the maximum antichain will give the

value ν(D).

A trivial upper bound on the size of the optimal augmenting edge set – and by Theorem 1.5,

also on the number of pairwise independent sets – is n2. A better bound can be given by

Corollary 4.7 in [31]: there is an augmenting edge set consisting of pairwise node-disjoint circuits

and paths, hence the optimum value is at most n. A chain can also have at most n elements,

thus the cardinality of a skeleton is at most s = n2.

As shown in the Section 2.4, if s is an upper bound on the size of a skeleton, then it can

be constructed in time O(n5 + sn4) = O(n6). Finding a maximum antichain in a poset of size

O(s) can be reduced to finding a maximum matching in a bipartite graph on O(s) nodes and

O(s2) edges. Using the Hopcroft-Karp algorithm [69, Vol A., p. 264] this can be done in O(s2.5)

running time. This gives O(n5) for s = n2, so the total running time of the Dual Oracle is

O(n6).

As already indicated in the Introduction, the Dual Oracle may be used to compute the

optimal augmentation. For this, we need to call the Dual Oracle at most n2 times, thus the

total complexity is O(n8). (For comparison, the running time of the algorithm in Chapter 4 is

O(n7) for the same problem.)

However, the correctness of the present approach does rely on Theorem 1.5. In the next

section we use a more direct approach for finding the optimal augmentation.

2.2 Algorithmic Proof of Theorem 1.6

In this section we give a proof of Theorem 1.6 and sketch another algorithm, which uses the Dual

Oracle only once. After a skeleton K is determined, an augmenting set of K can be transformed

to an augmenting set of the entire O1. More precisely, we will prove the following:

Theorem 2.10. For a crossing system F and a one-way pair K ∈ F , if an edge set F covers

F ÷ K, then there exists an F ′ covering F with |F ′| = |F |, and furthermore ρF ′(v) = ρF (v),

δF ′(v) = δF (v) for every v ∈ V .

We begin with the definition of the elementary augmenting step. Consider a crossing family

F ⊆ O1 and F ⊆ V 2. An edge uv ∈ V 2 −F is bad (with respect to F and F ) if there exists an

L ∈ F covered by uv, but not covered by F . Let W (F ) = WF(F ) denote the set of bad edges.

Consider an augmenting edge set F of F ′ := F ÷ K. For two edges x1y1, x2y2 ∈ F , by

flipping (x1y1, x2y2), we mean replacing F by F ′ = (F − {x1y1, x2y2}) ∪ {x1y2, x2y1}. A

flipping is called improving if F ′ augments a strictly larger subset of F than F does. Note

that this is equivalent to requiring that W (F ′) � W (F ). Since the total number of edges is n2,

we obtain that after at most n2 improving flippings the resulting subset of edges must augment
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the whole F . The following lemma, which is the heart of the proof of Theorem 1.6 and the

algorithm, asserts the existence of an improving flipping.

Lemma 2.11. Let F ⊆ O1 be a crossing family. Let K be a member of F and F an augmenting

edge set of F ′ := F ÷ K. If F does not augment F , then there is an improving flipping.

Proof. Let us choose two (not necessarily distinct) members X and Y of F that are not covered

by F so that X � Y , X is minimal (in the sense that X ′ is covered by F for every X ′ ∈ F , X ′ ≺
X), while Y is maximal in an analogous sense.

Since F does not cover X and Y , we have X,Y ∈ F − F ′, that is, both X and Y cross

K. Therefore X ∧ K ≺ X and Y ∨ K � Y . By the minimality of X, X ∧ K is covered by F ,

that is, there is an edge x1y1 ∈ F covering X ∧ K. Since F does not cover X, we must have

x1 ∈ X− ∩ K− and y1 ∈ K+ − X+. Analogously, there is an edge x2y2 ∈ F covering Y ∨ K for

which x2 ∈ K− − Y −, y2 ∈ Y + ∩ K+.

Let F ′ be the edge set resulting by flipping (x1y1, x2y2). We are going to show that this

flipping is improving. Since X is covered by F ′ but not covered by F , we only have to show

that every member of F covered by F is covered by F ′, as well.

Suppose indirectly that there is a member M of F which is covered by F but not by F ′.

In particular, no element of F − {x1y1, x2y2} covers M . It is not possible that both x1y1 and

x2y2 cover M since then both x1y2 and x2y1 would also cover M , that is, F ′ would cover M .

Therefore there is exactly one element in F covering M and this only element is either x1y1 or

x2y2. Let us assume first that M is covered by x1y1.

Claim 2.12. Y and M are dependent.

Proof. For a contradiction, suppose that Y and M are independent. K∧Y and M are dependent

as x1y1 covers both. Thus we can apply Lemma 2.5(i) with L1 = K,L2 = Y, L3 = M giving

K− − Y − ⊆ M−. This is contradiction since x2 ∈ K− − Y − and x2 /∈ M− as x2y1 does not

cover M .

By the above claim we know that Y ∨ M ∈ F . The assumption that M is not covered

by x1y2 gives y2 ∈ Y + − M+, thus M �� Y , implying Y ∪ M � Y . By the maximality of Y ,

Y ∨ M is covered by an element xy of F and xy is different from both x1y2 and x2y1 since

y1, y2 /∈ (M ∨ Y )+. By Lemma 2.2, xy covers either M or Y . However, xy ∈ F ′ ∩ F and hence

xy covers neither M nor Y , a contradiction.

The case when M is covered only by x2y2 also leads to contradiction by a similar argument

using Lemma 2.5(ii).

Proof of Theorem 1.6. ν ≤ τ is straightforward. The proof of ν ≥ τ is by induction on |F|. If

F is cross-free, applying Dilworth’s theorem to the partially ordered set (F ,⊆), we obtain that

there is a maximum subfamily I of F consisting of pairwise incomparable members and that F
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can be decomposed into γ := |I| chains. Since F is assumed to be cross-free, the members of

I are pairwise independent. Furthermore, it is easy to see that the chain-decomposition of Fs

corresponds to a set F of γ edges covering F . Hence we obtained the required covering F of F
and independent subfamily I of F for which |F | = |I|.

Assume now F contains crossing one-way pairs K and K ′. Let F ′ = F ÷ K, a crossing

system by Lemma 2.4. As K ′ /∈ F ′, we may apply the inductive statement for F ′ giving an

edge set F covering F ′ among |F | pairwise independent one-way pairs. The proof is finished

using Lemma 3.11.

2.2.1 Description of the Algorithm

Our next goal is to transform the inductive proof above into an algorithm, that constructs an

independent subset I of O1 and an covering edge set F of O1 so that |I| = |F |. It consists of

two phases.

In Phase 1 our algorithm uses the Dual Oracle. It determines a skeleton K = {K1, . . . , K�},
and by Dilworth’s theorem it finds a maximum antichain along with a minimum chain-decom-

position. The chain-decomposition of K corresponds to a subset F ′ of edges covering K for which

|F ′| = |I|. The antichain I will be output by the whole algorithm as a maximum cardinality

independent subset of O1.

Phase 2 will terminate by outputting a covering of O1 of cardinality |I|. Let F0 = O1

and Fj := O1 ÷ {K1, . . . , Kj} for each j = 1, . . . , �. From Phase 1, we have F� = K covered.

By Lemma 2.11, when applied to F�−1,F�, K� in place of F ,F ′, K, respectively, we can find an

improving flipping and obtain a revised covering F ′′ of F� which covers a strictly larger subset

of F�−1 as F ′ does. Since the number of bad edges is at most n2 and an improving flipping

reduces this number, after at most n2 improving flippings the resulting covering of F� will cover

F�−1. Then we can iterate this step with F�−2,F�−1, K�−1, . . ., F0,F1, K1, and finally we get a

cover F ′ of O1 = F0. F ′ will be the output of the algorithm as a minimal augmenting edge set

of D.

We have outlined the steps of the algorithm and proved its validity. Phase 1 can be preformed

as described in Section 2.1.1. For the realization of Phase 2, we can use similar techniques.

However, we omit this analysis. Our reason for this is that the analysis is quite technical, and

we could not improve on the running time bound of the Dual Algorithm.
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2.3 Further remarks

2.3.1 Node-induced cost functions

The cost funtion c : A → R is called node-induced if there exists two cost functions c−, c+ :

V → R so that c(uv) = c−(u)+c+(v) for each edge uv ∈ A. Given a node-induced cost function

c, a cover of a skeleton K can be extended to a cover of O1 of the same cost by Theorem 2.10.

Therefore the only task left is to determine a minimum cost cover of a skeleton.

Finding a minimum cardinality cover of a skeleton was an application of Dilworth’s theorem.

As already mentioned, this can be deduced to finding a maximum matching in a bipartite graph.

Analogously, we show that finding a minimum cost cover (for node-induced costs) goes back to

finding a maximum cost matching in a bipartite graph by using the standard reduction.

For the poset (K,�), construct a bipartite graph G = (A,B; E) so that to each element

K ∈ K we have corresponding nodes k′ ∈ A, k′′ ∈ B, and if K � L then k′l′′ ∈ E. Given

a matching M , a chain cover of size n − |M | can be obtained as follows. Starting from an

uncovered node k′
1 ∈ A, if k′′

1 is uncovered by M , then let the singleton chain {K1} correspond

to k′
1. Otherwise, let k′

2 be the node so that k′′
1k

′
2 ∈ M , and define ki+1 so that if k′′

i is covered by

M , then k′′
i k

′′
i+1 ∈ M . This defines a chain K1 � K2 � . . . � K�, and these chains are pairwise

disjoint if starting for different uncovered members of M .

Given the cost functions c− and c+ on V , define w(k′) = minv∈K− c−(v) and w(k′′) =

minv∈K+ c+(v). Observe that minimum cost of an edge covering the chain constructed above

is exactly w(k′
1) + w(k′′

� ). Therefore, if we consider the cost function on E induced by this w,

then a matching M corresponds to a chain cover of cost equal to the total cost of the uncovered

nodes. Hence finding a minimum cost chain cover is equivalent to finding the maximum cost of

a matching, solvable via the Hungarian Method.

2.3.2 Generalization to Theorem 1.2

The proof of Theorem 1.6 given in Section 2.2 can also be extended to a new, algorithmic proof

of the more general Theorem 1.2. Here we give only a brief sketch of this rather technical

argument, detailed in [72, Section 4.4.2].

Unfortunately, Theorem 2.1 is not true in general for arbitrary crossing family F in place

of O1. The main reason is that the innocent-looking Claim 2.3 fails to hold: there might exist

set pairs M �= N with M− ⊆ N−, M+ ⊆ N+. Of course, in such a case one might argue that

N is superfluous since if an edge set covers M , then it automatically covers N . Yet we cannot

simple leave all such pairs N from F as we may end up with a family of set pairs which is not

crossing.

A possible solution is the following. Let us call a pair N slim if no other pair M ∈ F
with M− = N−, M+ � N+ exists. (It is still possible that there is an M with M− � N−,
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M+ = N+.)

We modify the definition of stability so that H is stable if it is cross-free, each element of H
is slim, and instead of (2.1), it satisfies

L is either not slim, or crosses some element of H
whenever L ∈ O1 −H and ∃K ∈ H : L � K.

Given a stable K = {K1, . . . , K�} maximal for containment, so that each set {K1, . . . , Ki},
i = 1, . . . , k is stable, it can be proved that a cover of K can be transformed to a cover of F .

ST -edge-connectivity augmentation by one can be tackled by this approach.

It would be highly desirable to extend these methods for Theorem 1.1, since it could give

a simpler alternative to the currently existing only combinatorial algorithm for directed con-

nectivity augmentation (the one in Chapter 4). Moreover, it could be possibly extendable to a

polynomial time algorithm. (The algorithm in Chapter 4 is pseudopolynomial.) Unfortunately,

we could not find such an extension so far: we do not even have a good idea how skeletons in

S should be defined.

2.4 Implementation via bipartite matching

In this section we present how the subroutine for constructing a skeleton can be implemented

using bipartite matching theory. Given the (k − 1)-connected digraph D = (V,A), let us

construct the bipartite graph B = (V ′, V ′′; H) as follows. With each node v ∈ V associate

nodes v′ ∈ V ′ and v′′ ∈ V ′′ and an edge v′v′′ ∈ H. With each edge uv ∈ V associate an edge

u′v′′ ∈ H. For a set X ⊆ V , we denote by X ′ and X ′′ its images in V ′ and V ′′, respectively.

The (k−1)-connectivity of G implies that B is (k−1)-elementary bipartite, that is, for each

∅ �= X ′ ⊆ V ′, either Γ(X ′) = V ′′ or |Γ(X ′)| ≥ |X ′| + k − 1. (See Section 1.1.2 on k-elementary

bipartite graphs.) We say that X ′ ⊆ V ′ is tight if |Γ(X ′)| = |X ′|+ k − 1 and Γ(X ′) �= V ′′. Let

R denote the set of tight sets. Observe that X ′ ∈ R if and only if X ∈ O1. In this context, we

say that an edge x′y′′ covers the tight set X ′ if x′ ∈ X ′, y′′ ∈ V ′′ − Γ(X ′), or equivalently, if

the edge xy covers the one-way pair X.

Given a function f : V ′ ∪ V ′′ → N we call the set F ⊆ H an f-factor if dF (x) = f(x) for

every x ∈ V ′ ∪ V ′′. Let f(Z) =
∑

x∈Z f(x) for Z ⊆ V ′ ∪ V ′′.

Claim 2.13. Consider a bipartite graph B = (V ′, V ′′; H) and a function f : V ′ ∪ V ′′ → N so

that f(V ′) = f(V ′′) and f(x) = 1 or f(y) = 1 for every xy ∈ H. An f -factor exists if and only

if f(X) ≤ f(Γ(X)) for every X ⊆ V ′.

Proof. An easy consequence of Hall’s theorem, replacing each x ∈ V ′ ∪ V ′′ by f(x) copies. The

condition f(x) = 1 or f(y) = 1 for every xy ∈ H guarantees that at most one copy of the same

edge may be used.

43



First we show how the maximal elements of R can be found; this in turn provides the

maximal elements of O1. Let us consider nodes u′ ∈ V ′, v′′ ∈ V ′′ with u′v′′ /∈ H. A tight set

X ′ ∈ R is called an uv̂-set if u′ ∈ X ′ and v′′ /∈ Γ(X ′′). For an edge u′v′′ /∈ H, consider the

following f . Let f(u′) = f(v′′) = k + 1 and for z ∈ (V ′ − u′) ∪ (V ′′ − v′′), let f(z) = 1. An

f -factor for this f is called a k-uv-factor. If B is a (k − 1)-elementary bipartite graph, then

Claim 2.13 implies the existence of a (k − 1)-uv-factor. Let Fuv denote one of them.

Claim 2.14. If there is a k-uv-factor, then there exists no uv̂-set.

Proof. Assume X ′ is a uv̂-set. As X ′ ∈ R, |Γ(X ′)| = |X ′| + k − 1. Since u′ ∈ X ′, v′′ /∈ Γ(X ′),

we have f(X ′) = |X ′| + k, f(Γ(X ′)) = |X ′| + k − 1, thus no k-uv-factor may exist.

It is easy to see that any two uv̂-sets are dependent and the union and intersection of two uv̂-

sets are uv̂-sets as well. Thus if the set of uv̂-sets is nonempty, then it contains unique minimal

and maximal elements. In what follows we show how these can be found algorithmically. For an

edge set F ⊆ H, we say that the path U = x0y0x1y1 . . . xtyt is an alternating path for F from

x0 to yt, if xi ∈ V ′, yi ∈ V ′′, xiyi ∈ H − F for i = 0, . . . , t, and yixi+1 ∈ F for i = 0, . . . , t − 1.

Under the same conditions we also say that x0y0x1y1 . . . xt is an alternating path for F from x0

to xt.

Claim 2.15. (a) If there exists an alternating path for Fuv from u′ to v′′, then there exists no

uv̂-set. (b) Assume there is no alternating path for Fuv from u′ to v′′; let S1 denote the set of

nodes z ∈ V having an alternating path for Fuv from u′ to z′. Then S ′
1 is the unique minimal

uv̂-set.(c) Assume no alternating path exists for Fuv from u′ to v′′; let S2 denote the set of nodes

z ∈ V having an alternating path for Fuv from z′ to v′′. Then V ′ − S ′
2 is the unique maximal

uv̂-set.

Proof. (a) Let U be an alternating path for Fuv from u′ to v′′. Then FΔU is a k-uv-factor so

by Claim 2.14, no uv̂-set exists. (b) Let Z ′ be an arbitrary uv̂-set. For every x′ ∈ Z ′ − u′,

Γ(Z ′) contains a unique y′′ with x′y′′ ∈ Fuv. The number of y′′ ∈ V ′′ with u′y′′ ∈ Fuv is exactly

k, and all of them are contained in Γ(Z ′). These are |Z ′| + k − 1 different elements of Γ(Z ′),

and since Z ′ ∈ R, Γ(Z ′) has no elements other than these. This easily implies that Z ′ contains

every x′ ∈ V ′ for which there is an alternating path for Fuv from u′ to x′, showing S ′
1 ⊆ Z ′. It is

left to prove that S ′
1 ∈ R. From the definition of S ′

1, it follows that for every y′′ ∈ Γ(S ′
1), there

exists an x′ ∈ S ′
1 with x′y′′ ∈ Fuv, proving Γ(S ′

1) = |S ′
1| + k − 1. The proof of (c) follows the

same lines.

For the initialization of the algorithm, we determine the edge sets Fuv by a single max-flow

computation for every u′ ∈ V ′, v′′ ∈ V ′′, u′v′′ /∈ H. By Claim 2.15, the maximal uv̂-sets can

be found by a breadth-first search. The maximal ones among them correspond to the maximal
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elements of O1 (note that the maximal uv̂-set might be contained in some other xŷ-set). We

will use the sets Fuv also in the later steps of the algorithm.

Up to this point, all results will be applicable almost word for word for undirected augmen-

tation in Section 3.5. The next part will also follow roughly the same lines, but there will be

certain differences according to the different notion of stability in the two cases.

To implement the basic step of the algorithm, consider a stable cross-free system H which is

not a skeleton, a maximal element M ∈ O1 −H and L1, L2 as defined by (2.2). Our task is to

find a K fitting (H,M) and minimal subject to this property. Let T be the set of the maximal

elements of L1.

Claim 2.16. T consists of pairwise tail-disjoint one-way pairs.

Proof. Let T1, T2 ∈ T . As they are maximal, they cannot be comparable, thus either T−
1 ∩T−

2 = ∅
or T+

1 ∩ T+
2 = ∅. The latter is excluded since T1, T2 � M implies T+

1 ∩ T+
2 ⊇ M+.

Let us construct B1 = (V ′, V ′′; H1) from B by adding some new edges as follows. For each

K ∈ L2, add the edge x′y′′ ∈ H1 for every x ∈ K−, y ∈ K+. Furthermore, let x′y′′ ∈ H1

whenever T ∈ T , x ∈ T−, y ∈ V ′′ − T+.

Claim 2.17. Let L ∈ O1 − H, L � M . Then L fits (H,M) if and only if L′ is a tight set in

B1.

Proof. Clearly, L′ is tight in B1 if and only if L′ ∈ R and there is no new edge x′y′′ ∈ H1 − H

with x′ ∈ L′ and y′′ ∈ V ′′ − Γ(L′).

L fits (H,M) if it is independent from all elements of L2, and for arbitrary T ∈ T , either

T− ∩L− = ∅ or T− � L−. If it satisfies these properties, no new edge in H1 −H covers L′, thus

L′ is tight also in B1. For the other direction, if L is dependent from some K ∈ L2, then there

exists x ∈ K−∩L−, y ∈ K+ ∩L+ with x′y′′ ∈ H1 covering L′. If for some T ∈ T , T would cross

L, then by Claim 2.3, L+ − T+ �= ∅, thus there exist x ∈ T− ∩L−, y ∈ L+ − T+ with x′y′′ ∈ H1

covering L.

To find an L as in Lemma 2.8, we need to add some further edges to B1 to ensure that

L ∈ O1 −H. (Note that the elements of T are all tight in B1.) Let Q ⊆ M− be an arbitrary

(not necessarily tight) set. Let Z(Q) denote the unique minimal K satisfying the following

property:

K ∈ O1, Q− ⊆ K−, and K fits (H,M). (2.3)

We will determine Z(Q) for different sets Q in order to find an appropriate L. Z(Q) is well-

defined since M itself satisfies (2.3); and if K and K ′ satisfy (2.3), then K and K ′ are dependent

and it is easy to see that K ∩K ′ also satisfies (2.3). The next claim gives an easy algorithm for

finding Z(Q) for a given Z.
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Claim 2.18. Fix some u ∈ Q, v ∈ M+. Let B2 denote the graph obtained from B1 by adding

all edges u′y′′ with y′′ ∈ Γ(Q′). Let S denote the set of nodes z ∈ V for which there exists an

alternating path for Fuv from u′ to z′. Then Z(Q) = S.

Proof. As M ′ is an uv̂-set in B2, applying Claim 2.15(a) for B2 instead of B, we get that B2

contains no alternating path for Fuv from u′ to v′′. By Claim 2.15(b), S ′ is the unique minimal

uv̂-set in B2. The new edges in B2 ensure that Γ(S ∪ Q) = Γ(S), thus Q ⊆ S is an easy

consequence of Claim 2.3. By Claim 2.17, S is the unique minimal set satisfying (2.3), thus

Z(Q) = S.

Let W denote the union of the tails of the elements of T . First, we shall find a one-way pair

L1 fitting (H,M) and L−
1 − W �= ∅. Let us compute the set Z({u}) for any u ∈ M− − W . By

Claim 2.18, this can be done by a single breadth-first search. An arbitrary minimal element of

the set {Z({u}) : u ∈ M− − W} is an appropriate choice for L1.

Thus L1 can be found by |M− − W | = O(n) breadth-first searches. Now either L1 is itself

a minimal set fitting (H,M), or there exists an L2 with L−
2 ⊆ W ∩ L−

1 , also fitting (H,M).

This is impossible if T � L1 holds for at most one T ∈ T , and thus L1 is a minimal set fitting

(H,M) in this case.

Assume now T � L1 holds for at least two different T ∈ T . In order to obtain L2, let us

compute Z(T−
i ∪ T−

j ) for any Ti, Tj ∈ T , Ti �= Tj, Ti, Tj ≺ L1. Choosing a minimal one among

these gives a minimal L2 fitting (H,M). This can be done by performing O(n2) breadth-first

searches.

As L2 fits (H,M) and is minimal subject to this property, L := L2 is an appropriate choice.

Complexity

In order to construct a skeleton, first we need n2 Max Flow computations for the maximal

members and the auxiliary graphs. The running time of adding a member to a stable cross-free

system is dominated by O(n2) breadth first searches. Thus if s is an upper bound on the size of

a skeleton, then we can find one in O(n5+sn4) time by using an O(n3) maximum flow algorithm

and an O(n2) breadth first search algorithm. .
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Chapter 3

Undirected node-connectivity

augmentation

This chapter is devoted to the proof of Theorem 1.37. As indicated in the introduction, both

the proof and the algorithm are closely related to those in Section 2 for directed connectivity

augmentation. In Section 3.1, we define some basic concepts concerning relations of clumps

and families of clumps. A main difference between the directed and undirected case is that the

clumps admit no natural partial order. Still, we will introduce the notion of nestedness, an

analogoue of comparability. Two clumps are said to be crossing if they are neither independent

nor nested. We will also be able to “uncross” such clumps, by referring to meets and joins

of certain strict one-way pairs. Crossing and cross-free families and skeletons of clumps will

correspond naturally to those of strict one-way pairs. A new type of difficulty is encountered

due to large clumps. Fortunately, it turns out that large clumps are nested with every other

clump they are dependent from.

Section 3.2 contains the proof of Theorem 1.37, using an argument analogous to the one in

Section 2.2. The algorithm for constructing a skeleton is discussed in Section 3.3, resembling the

one in Section 2.1.1. Finally, in Section 3.4 we solve the minimum cost version for node-induced

cost functions, and discuss further possible generalizations and extensions as well.

3.1 Preliminaries

First we give a brief motivation of concepts related to clumps. In a (k − 1)-connected graph G,

we may have sets B � V with |B| = k−1, so that V −B has t ≥ 2 connected components. The

components of V −B form a clump. Moreover, any partition of the components to at least two

classes also forms a clump, since in the definition, the pieces are not required to be connected. In

order to make G k-connected, we need to add at least t− 1 edges between different components

of V − B. For t = 2, an arbitrary edge between the two components suffices, however the
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situation is more complicated for t ≥ 3. In this case, the set B is often called a shredder in

the literature.

For a clump X = (X1, X2, . . . , Xt), let NX = V − ⋃
i Xi. X is called basic if all pieces Xi

are connected. The clump Y is derived from the basic clump X if each piece of Y is the union

of some pieces of X. By D(X) we mean the set of all clumps derived from X, while D2(X) is

used for the set of small clumps derived from X. Let C denote the set of all basic clumps. For

a set F ⊆ C, D(F) denotes the union of the sets D(X) with X ∈ F . The clumps being in the

same D(X) can easily be characterized (see e.g. [49, 50, 59]):

Claim 3.1. (i) Two clumps X and Y are derived from the same basic clump if and only if

NX = NY . (ii) If two basic clumps X and Y have a piece in common, then X = Y . �

For a clump X and an edge set F , let F/X be the graph obtained from (V, F ) by deleting NX

and shrinking the components Xi to single nodes. Let cF (X) denote the number of connected

components of F/X. F covers X if F/X is connected, that is, cF (X) = 1. To cover X, we

need at least |X| − 1 edges of F between different components of X. If X is a small clump,

then F covers X if and only if F connects X. We say that F covers (resp. connects) H ⊆ D(C)

if it covers (resp. connects) all clumps in H. Clearly, F is an augmenting edge set if and only

if it covers D(C). The following simple claim shows that in order to cover a set F of clumps, it

suffices to connect every small clump derived from the members of F .

Claim 3.2. For an edge set F ⊆
(

V
2

)
and F ⊆ C, the following three statements are equivalent:

(i) F covers F ; (ii) F covers D(F); and (iii) F connects D2(F). �

We have already defined when two clumps are independent: if no edge in
(

V
2

)
connects both.

Two clumps are dependent, if they are not independent.

We say that two clumps X = (X1, . . . , Xt) and Y = (Y1, . . . , Yh) are nested if X = Y or

there exist indices 1 ≤ a ≤ t and 1 ≤ b ≤ h so that Yi � Xa for every i �= b and Xj � Yb for every

j �= a. We call Xa the dominant piece of X with respect to Y , and Yb the dominant piece

of Y w.r.t X. The following important lemma shows that a large basic clump is automatically

nested with any other basic clump (see also in [59]).

Lemma 3.3. Assume X is a large basic clump, and Y is an arbitrary basic clump. If X and

Y are dependent then X and Y are nested.

To prove this, first we need two simple claims.

Claim 3.4. For the basic clumps X = (X1, . . . , Xt) and Y = (Y1, . . . , Yh), Xi ∩NY = ∅ implies

Xi ⊆ Yj for some 1 ≤ j ≤ h. �

Claim 3.5. Let X = (X1, . . . , Xt) and Y = (Y1, . . . , Yh) be two different clumps both basic or

both small. If Xs � Yb for some 1 ≤ s ≤ t, 1 ≤ b ≤ h, then X and Y are nested with Yb being

the dominant piece of Y w.r.t X.
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Figure 3.1: The nested clumps X = (X1, X2, X3) and Y = (Y1, Y2, Y3, Y4) with dominant pieces X1

and Y1.

Proof. Consider an � �= b. Xs ⊆ Yb implies d(Xs, Y�) = 0, thus Y� ∩NX = ∅. Hence Y� ⊆ Xa for

some a �= s follows either by Claim 3.4 or by t = 2. We claim that this a is always the same

independently from the choice of �. Indeed, assume that for some �′ /∈ {b, �}, Y�′ ⊆ Xa′ with

a′ �= a.

The same argument applied with changing the role of X and Y (by making use of Y� ⊆ Xa)

shows that Xa′ ⊆ Yj for some j, giving Y�′ ⊆ Yj, a contradiction. Xi ⊆ Yb for i �= a can be

proved by changing the role of X and Y again. Thus X and Y are nested with dominant pieces

Xa and Yb.

Proof of Lemma 3.3. The dependence implies X1 ∩ Y1 �= ∅, X2 ∩ Y2 �= ∅ by possibly changing

the indices. Let xi = |NY ∩Xi|, yi = |NX ∩ Yi|, n0 = |NX ∩NY |. Then k − 1 ≤ |N(X1 ∩ Y1)| ≤
n0+x1+y1. Since k−1 = |NY | = n0+

∑
i yi this implies

∑
i�=1 yi ≤ x1 and similarly

∑
i�=1 xi ≤ y1.

The same argument for X2 ∩ Y2 gives
∑

i�=2 yi ≤ x2 and
∑

i�=2 xi ≤ y2.

Thus we have xi = yi = 0 for i ≥ 3. This gives X3 ∩ NY = ∅ and hence X3 ⊆ Yi for some i

by Claim 3.4. The nestedness of X and Y follows by the previous claim.

Beyond the close analogy between the argument of Chapter 2 and the present one, strict one-

way pairs will also be directly applied. We will simply use “one-way pair” meaning strict one-way

pair in the rest of this chapter. For each small clump X = (X1, X2), the two corresponding

one-way pairs (X1, X2) and (X2, X1) are called the orientations of X. By the orientations of

a large clump X we mean all orientations of the small clumps in D2(X). For a one-way pair

K = (K−, K+), its reverse is
←−
K = (K+, K−), and K denotes the corresponding small clump

(note that K =
←−
K ).

The relation between covering in the directed and undirected sense is the following. If an

undirected edge uv connects a small clump X, then the directed edge uv covers exactly one of

its two orientations (in the directed sense).
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Take two dependent small clumps X = (X1, X2) and Y = (Y1, Y2). We say that their

orientations LX and LY are compatible if they are dependent one-way pairs. Clearly, any two

dependent one-way pairs admit compatible orientations, and if LX and LY are compatible, then

so are
←−
LX and

←−
LY . X and Y are said to be simply dependent if for an orientation LX of X,

there is exactly one compatible orientation LY of Y , and strongly dependent if both possible

choices of LY are compatible with LX . (Note that the definition is indedepent of the choice

of the orientation LX). X and Y are strongly dependent if and only if Xi ∩ Yj �= ∅ for every

i = 1, 2, j = 1, 2. The following claim is easy to see.

Y1

X1

Y1

X1 X2

Y2

X2

Y2

(a) (b)

Figure 3.2: Simply dependent one-way pairs (a), and strongly dependent ones (b).

Claim 3.6. Two small clumps X and Y are nested if and only if for some orientations KX and

KY , KX � KY . �

We are ready to define uncrossing of basic clumps. By uncrossing the dependent one-way

pairs K and L we mean replacing them by K ∧L and K ∨L (which coincide with K and L if K

and L are comparable). For dependent basic clumps X and Y , we define a set Υ(X,Y ) consisting

of two or four pairwise nested clumps in the analogous sense. If X and Y are nested, then let

Υ(X,Y ) = {X,Y }. By Lemma 3.3, this is always the case if one of X and Y is large. For the

small basic clumps X and Y , consider some compatible orientations LX and LY . If X and Y

are simply dependent then let Υ(X,Y ) = {LX ∧ LY , LX ∨ LY }. (Altough there are two possible

choices for LX and LY , the set Υ(X,Y ) will be the same.) If they are strongly dependent, then

LX is also compatible
←−
LY . In this case let Υ(X,Y ) = {LX ∧ LY , LX ∨ LY , LX ∧←−

LY , LX ∨←−
LY }.

It is easy to see that the clumps in Υ(X,Y ) are nested with X and Y and with each other in

both cases. We will need the following submodular-type property, corresponding to Lemma 2.2:

Claim 3.7. For dependent basic clumps X,Y , if an edge uv connects a clump in Υ(X,Y ) then

it connects at least one of X and Y . �
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We say that two clumps are crossing if they are dependent but not nested. Again by

Lemma 3.3, two basic clumps may be crossing only if both are small. A subset F ⊆ C is

called crossing if for any two dependent clumps X,Y ∈ F , Υ(X,Y ) ⊆ D(F). (The reason for

assuming containment in D(F) instead of F is that Υ(X,Y ) might contain non-basic clumps.)

Note that C itself is crossing. For a crossing system F and a clump K ∈ F , let F ÷ K denote

the set of clumps in F independent from or nested with K. Similarly, for a subset K ⊆ F ,

F ÷K denotes the set of clumps in F not crossing any clump in K. An F ⊆ C is cross-free if

it contains no crossing clumps, that is, any two dependent clumps in F are nested. (Note that

a cross-free system is crossing as well.) A cross-free K is called a skeleton of F if it is maximal

cross-free in F , that is, F ÷K = K. By Lemma 3.3, a skeleton of C should contain every large

clump. Let us now prove the counterpart of Lemma 2.4:

Lemma 3.8. For a crossing system F ⊆ C and K ∈ F , F ÷ K is also a crossing system.

Proof. Let F ′ = F÷K. If K is large then F ′ = F by Lemma 3.3, therefore K is assumed being

small in the sequel. Let us fix an orientation LK of K. Take crossing basic clumps X,Y ∈ F ′.

Again by Lemma 3.3, if a clump in Υ(X,Y ) is not basic, then it is automatically in D(F ′). We

consider all possible cases as follows.

(I) Both are nested with K. Choose orientations LX and LY compatible with LK (but not

necessarly with each other). (a) If LX � LK � LY or LY � LK � LX , then X and Y are nested

by Claim 3.6. (b) Let LX , LY � LK . If LX and LY are dependent, then LX ∧ LY , LX ∨ LY �
LK . If LX and

←−
LY are dependent, then LX ∧←−

LY � LK and
←−
LK � LX ∨←−

LY . These arguments

show Υ(X,Y ) ⊆ D(F ′). (c) In the case of LX , LY � LK , the claim follows analogously.

(II) Both X and Y are independent from K. By Claim 3.7, all clumps in Υ(X,Y ) are

independent from K.

(III) One of them, say X is nested with K, and the other, Y is independent from K. Let

LX be an orientation of X compatible with LK and LY an orientation of Y compatible with

LX . By symmetry, we may assume LX � LK . Now LX ∧LY � LK , and we show that LX ∨ LY

is independent from K. LY being an arbitrary orientation compatible with LX , these again

imply Υ(X,Y ) ⊆ D(F ′). LY and LK are independent, but L−
K ∩ L−

Y �= ∅, thus L+
K ∩ L+

Y = ∅,
hence the one-way pairs LX ∨LY and LK are independent. We also need to show that

←−−−−−
LX ∨ LY

and LK are independent. Indeed, their dependence would imply L+
Y ∩ L−

K �= ∅, L−
Y ∩ L+

K �= ∅,
contradicting the independence of K and Y .

Finally, the sequence K1, K2, . . . , K� of clumps is called a chain if they admit orientations

L1, L2, . . . , L� with L1 � L2 � . . . � L�. If u ∈ L−
1 , v ∈ L+

� then the edge uv connects all

members of the chain.

51



3.2 The proof of Theorem 1.37

For a crossing system F ⊆ C, let τ(F) denote the minimum cardinality of an edge set covering

F . Let ν(F) denote the maximum of def(Π) over groves consisting of a shrub and bushes of

clumps in D(F). First, we give the proof of the following slight generalization of Theorem 1.37

based on two lemmas proved in the following subsections (cf. Theorem 1.6).

Theorem 3.9. For a crossing system F ⊆ C, ν(F) = τ(F).

The two lemmas are these:

Lemma 3.10. For a cross-free system F , ν(F) = τ(F).

Lemma 3.11. For a cross-free system F , if an edge set F covers F ÷ K, then there exists an

F ′ covering F with |F ′| = |F |, and furthermore dF ′(v) = dF (v) for every v ∈ V .

For the directed case in Chapter 2, the claim analogous to Lemma 3.10 was straightforward

by Dilworth’s theorem, while Lemma 3.11 is word-by-word the same as Theorem 2.10. Also,

Theorem 3.9 derives from the lemmas the same way as Theorem 1.6.

The following theorem may be seen as a reformulation of this proof, however, it will be

more convenient for the aim of the algorithm and to handle the minimum cost version for node

induced cost functions.

Theorem 3.12. For a crossing system F ⊆ C and a skeleton K of F , ν(K) = ν(F). Fur-

thermore, if an edge set F covers the skeleton K of F , then there exists an F ′ covering F with

|F ′| = |F | and dF ′(v) = dF (v) for every v ∈ V .

Proof. Let K = {K1, . . . , K�}. For i = 1, . . . , �, let Fi = F ÷ {K1, . . . , Ki}. Lemma 3.8 implies

that Fi is a crossing system as well. F� = K since K is a skeleton. By Lemma 3.10, K admits

a cover F� with |F�| = τ(K) = ν(K). Applying Lemma 3.11 inductively for Fi−1, Ki and Fi

for i = �, � − 1, . . . , 1, we get a cover Fi−1 of Fi−1 with |Fi−1| = |F�|. Finally, F0 is a cover of

F = F0, hence ν(F) ≤ |F0| = |F�| = ν(K), implying the first part of the theorem. The identity

of the degree sequences follows by the second part of Lemma 3.11.

3.2.1 Covering cross-free systems

This section is devoted to the proof of Lemma 3.10. The analogous statement in the case of

directed connectivity augmentation simply follows by Dilworth’ theorem, which is a well-known

consequence of the Kőnig-Hall theorem on the size of a maximum matching in a bipartite graph.

In contrast, Lemma 3.10 is deduced from Fleiner’s theorem, which is proved via a reduction to

the Berge-Tutte theorem on maximum matchings in general graphs.

We need the following notion to formulate Fleiner’s theorem. A triple P = (U,�,M) is

called a symmetric poset if (U,�) is a finite poset and M a perfect matching on U with the
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property that u � v and uu′, vv′ ∈ M implies u′ � v′. The edges of M will be called matches.

A subset {u1v1, . . . , ukvk} ⊆ M is called a symmetric chain if u1 � u2 � . . . � uk (and thus

v1 � v2 � . . . � vk). The symmetric chains S1, S2, . . . , St cover P if M =
⋃

Si.

A set L = {L1, L2 . . . , L�} of disjoint subsets of M forms a legal subpartition if uv ∈ Li,

u′v′ ∈ Lj, u � u′ yields i = j, and no symmetric chain of length three is contained in any Li.

The value of L is val(L) =
∑

i

⌈
|Li|
2

⌉
.

Theorem 3.13 (Fleiner, [20]). Let P = (U,�,M) be a symmetric poset. The minimum number

of symmetric chains covering P is equal to the maximum value of a legal subpartition of P .

Note that the max ≤ min direction follows easily since a symmetric chain may contain at

most two matches belonging to one class of a legal subpartition. This theorem gives a common

generalization of Dilworth’s theorem and of the well-known min-max formula on the minimum

size edge cover of a graph (a theorem equivalent to the Berge-Tutte formula).

First we show that Lemma 3.10 is a straigthforward consequence if F contains only small

clumps. Consider the cross-free family F of clumps, and let U be the set of all orientations of

one-way pairs in F . The matches in M consist of the two orientations of the same clump, while

� is the usual partial order on one-way pairs. A symmetric chain corresponds to a chain of

clumps. Since all clumps in a chain can be connected by a single edge, a symmetric chain cover

gives a cover of F of the same size. On the other hand, a legal subpartition yields a grove with

a shrub and bushes consisting of the clumps corresponding to the one-way pairs in Li.

Let us now turn to the general case when F may contain large clumps as well. For an

arbitrary set A ⊆ V , let A∗ = V − (A ∪ N(A)). An edge set F semi-covers the clump

X = (X1, . . . , Xt) if F contains at least |X| − 1 edges connecting X, and furthermore each

clump (Xi, X
∗
i ) is connected for i = 1, . . . , t. (Note that X∗

i =
⋃

j �=i Xj.) F semi-covers F if it

semi-covers every X ∈ F . Although a semi-cover is not necessarly a cover, the following lemma

shows that it can be transformed into a cover of the same size.

Lemma 3.14. If F is a semi-cover of F , then there exists an edge set H covering F with

|F | = |H| and dH(v) = dF (v) for every v ∈ V .

Proof. We are done if F covers all clumps in F . Otherwise, consider a clump X ∈ F semi-

covered but not covered. X is large, since semi-covered small clumps are automatically covered.

Since X is connected by at least |X|−1 edges of F , there is an edge e = x1y1 ∈ F connecting X

with cF (X) = cF−e(X). Each (Xi, X
∗
i ) is connected, hence we may consider an edge x2y2 ∈ F

connecting X with x2y2 being in a component of F/X different from the one containing x1y1.

Let F ′ = F −{x1y1, x2y2}+{x1y2, x2y1} denote the flipping of x1y1 and x2y2. Clearly, cF ′(X) =

cF (X) − 1. We show that cF ′(Y ) ≤ cF (Y ) for every Y ∈ F − X, hence by a sequence of such

steps we finally arrive at an H covering F .
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Indeed, assume cF ′(Y ) > cF (Y ) for some Y ∈ F . X and Y are dependent since at least one

of x1y1 and x2y2 connects both. By Lemma 3.3, X and Y are nested; let Xa and Yb denote their

dominant pieces. The nodes x1, y1, x2, y2 lie in four different pieces of X and thus at least three

of them are contained in Yb. Consequently, cF ′(Y ) = cF (Y ) yields a contradiction.

In what follows, we show how a semi-cover F of F can be found based on a reduction to

Fleiner’s theorem. For a basic clump X = (X1, . . . , Xt), let uX
i = (Xi, X

∗
i ), vX

i = (X∗
i , Xi) and

UX = {uX
i , vX

i : i = 1, . . . , t}. Let U =
⋃

X∈F UX . We say that the members of UX are of type

X. Let the matching M consist of the matches uX
i vX

i ; such a match is called an X-match.

If X is small (t = 2), then uX
1 = vX

2 and vX
1 = uX

2 , thus |UX | = 2. If X is large, then

|UX | = 2t. In this case, let uX
1 and vX

1 be called the special one-way pairs w.r.t X. uX
1 vX

1

is called a special match. Note that it matters here, which piece of X is denoted by X1

(arbitrarily chosen though). Let the partial order �′ on U be defined as follows. If x and y are

one-way pairs of different type, then let x �′ y if and only if x � y for the standard partial

order � on one-way pairs. If x and y are both of type X for a large clump X, then let x � y if

either x = uX
1 , y = vX

i , or x = uX
i , y = vX

1 for some i > 1. In other words, �′ is the same as �
except that x and y are uncomparable whenever x and y are of the same type X, and neither

of them is special.

Claim 3.15. P = (U,�′,M) is a symmetric poset.

Proof. The only nontrivial property to verify is the transitivity of �′: x �′ y and y �′ z implies

x �′ z. This follows by the transitivity of � unless x and z are different one-way pairs of the

same type X, and neither of them is special. Thus X is a large clump and by possibly changing

the indices, assume x = uX
2 , z = vX

3 . y could be of type X only if it were special, excluded by

x = uX
2 �� uX

1 and z = vX
3 �� vX

1 . Hence y is of a different type Y .

Assume first y = uY
i for some i. Now X2 ⊆ Yi ⊆ X∗

3 thus NX ∩ Yi = ∅, giving by Claim 3.4

Yi ⊆ Xj for some j �= 3. Consequently, X2 = Yi, a contradiction as it would lead to X = Y by

Claim 3.1. Next, assume y = vY
i . X3 ⊆ Yi ⊆ X∗

2 gives a contradiction the same way.

The following simple claim establishes the connection between dependency of clumps and

comparability in P .

Claim 3.16. In a cross-free system F , the clumps X,Y ∈ F are dependent if and only if for

arbitrary i, j, uX
i is comparable with either uY

j or vY
j . �

Consider a symmetric chain cover S1, . . . , St and a legal subpartition L = {L1, L2, . . . , L�}
with val(L) = t. Let us choose L so that � is maximal, and subject to this,

⋃�
i=1 Li contains the

maximum number special matches. A symmetric chain Si naturally corresponds to a chain of

the clumps (Xj, X
∗
j ) for uX

j vX
j ∈ Si. These can be covered by a single edge; hence a symmetric

chain cover corresponds to an edge set F of the same size. A symmetric chain may contain both
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uX
j vX

j and uX
j′ v

X
j′ for j �= j′ only if j = 1 or j′ = 1. Consequently, F is a semi-cover as there are

at least |X| − 1 different edges in F connecting X, and all (Xj, X
∗
j )’s are connected.

It is left to show that L can be transformed to a grove Π with def(Π) = val(L). For a clump

X, let B(X) denote the set of indices j with uX
j vX

j ∈ ⋃
i Li. Most efforts are needed to ensure

that the bushes consit of small clumps; allowing large clumps would enable a simpler argument.

Claim 3.17. For any clump X, the X-matches corresponding to B(X) are either all contained

in the same Li or are all singleton Li’s. 1 ∈ B(X) always gives the first alternative.

Proof. There is nothing to prove for |X| = 2, so let us assume |X| ≥ 3. As L is chosen with

� maximal, if uX
j vX

j ∈ Li with |Li| > 1, then there is an uY
h vY

h ∈ Li with uY
h comparable with

either uX
j or vX

j . If Y �= X, then Claim 3.16 gives that uY
h is also comparable with uX

j′ or vX
j′

for any j′ ∈ B(X). If Y = X then either j = 1 or h = 1 follows, implying uj′vj′ ∈ Li for every

j′ ∈ B(X). This argument also shows that 1 ∈ B(X) leads to the first alternative.

Let β(X) = i in the first alternative if Li is not a singleton, and β(X) = 0 in the second

alternative. Let I denote the set of indices for which Li is a singleton. Take a clump X with

β(X) = i > 0 (and thus i /∈ I). Let us say that a piece Xj is a dominant piece of X, if

for some Y �= X with β(Y ) = i, Xj is the dominant piece of X w.r.t. Y . Let U(X) denote

the set of the indices of the dominant pieces of X; note that the set U(X) − B(X) is possibly

nonempty.

Claim 3.18. If β(X) = i > 0, then |B(X)| ≥ 2 implies |B(X) ∩ U(X)| = ∅.

Proof. First assume B(X) ∩ U(X) �= ∅ and |U(X)| ≥ 2. Consider a j ∈ B(X) ∩ U(X) and a

j′ ∈ U(X) − {j}, say, Xj is the dominant piece of X w.r.t. Y and Xj′ the one w.r.t. Y ′ with

β(Y ) = β(Y ′) = i. It is easy to see that Li contains a symmetric chain of lenght three consisting

of a Y -match, uX
j vX

j and a Y ′-match.

Thus B(X)∩U(X) �= ∅ implies |U(X)| = 1. Let U(X) = {j}. Assume again that Xj is the

dominant piece of X w.r.t. Y with β(Y ) = i. We claim that 1 /∈ B(X). Indeed, if 1 ∈ B(X)

and j �= 1, then a Y -match, uX
j vX

j and vX
1 uX

1 would form a symmetric chain in Li. If j = 1,

then a Y -match, uX
1 vX

1 and vX
h uX

h forms a symmetric chain for arbitrary h ∈ B(X) − {1}.
Let us replace Li by L′

i = Li − {uX
j vX

j } + {uX
1 vX

1 }. By Claim 3.16, any element of L′
i is

incomparable to any element of Lh for h �= i. It is easy to verify that L′
i does not contain any

symmetric chain of length three given that Li did not contain any. This is a contradiction as L
was chosen containing the maximal possible number of special matches.

Let us construct the grove Π as follows. For any X with β(X) = 0, B(X) �= ∅, let X̃ ∈ D(X)

denote the clump consisting of pieces Xi with i ∈ B(X) and the piece
⋃

j /∈B(X) Xj. The latter

set is nonempty since 1 /∈ B(X) by Claim 3.17, thus |X̃| − 1 = |B(X)|. Define the shrub as

B0 = {X̃ : β(X) = 0}. For i /∈ I, let Bi = {(Xj, X
∗
j ) : uX

j vX
j ∈ Li}. The following easy claim

completes the proof.
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Claim 3.19. Π is a grove with def(B0) = |I| and def(Bi) =
⌈
|Li|
2

⌉
if i /∈ I.

Proof. Since the elements of different Li’s are pairwise incomparable, Claim 3.16 implies that

clumps in different bushes are independent from each other and from those in B0. Assume an

edge uv ∈
(

V
2

)
covers three clumps in some Bi. If these three clumps were derived from different

basic clumps, then Li would contain a symmetric chain of length three. Thus we need to have

two clumps derived from the same basic clump X: uv covers (Xj, X
∗
j ), (Xj′ , X

∗
j′) and (Yh, Y

∗
h )

for β(X) = β(Y ) = i. This is also impossible since either Xj or Xj′ would need to be the

dominant piece of X w.r.t Y , a contradiction to Claim 3.18.

3.2.2 The proof of Lemma 3.11.

First we need the following lemmas.

Lemma 3.20. Assume that for three small clumps X = (X1, X2), Y = (Y1, Y2), Z = (Z1, Z2),

all four sets X1 ∩ Y1 ∩ Z1, X1 ∩ Y2 ∩ Z2, X2 ∩ Y1 ∩ Z2, X2 ∩ Y2 ∩ Z1 are nonempty. Then all of

X, Y and Z are derived from the same basic clump (and thus none of them is basic itself).

Proof. Let Xc = NX , Yc = NY , Zc = NZ . By As for a sequence s of three literals each 1,2 or c,

we mean the intersection of the corresponding sets. For example, A12c = X1 ∩ Y2 ∩ Zc.

The conditions mean that the sets A111, A122, A212, A221 are nonempty. V − (A111 ∪
N(A111)) �= ∅ as there is no edge between A111 and X2, thus |N(A111)| ≥ k − 1 as G is

(k − 1)-connected. This implies

k − 1 ≤ |Ac11 ∪ A1c1 ∪ A11c ∪ A1cc ∪ Ac1c ∪ Acc1 ∪ Accc| (3.1)

as N(A111) is a subset of the set on the RHS. Let us take the sum of these types of inequalities

for all A111, A122, A212, A221. This gives 4(k − 1) ≤ S1 + 2S2 + 4|Accc|, where S1 is the sum of

the cardinalities of the sets having exactly one c in their indices, while S2 is the same for two

c’s.

On the other hand, |Xc| = |Yc| = |Zc| = k − 1. This gives 3(k − 1) = S1 + 2S2 + 3|Accc|.
These together imply S1 = S2 = 0, |Accc| = k − 1. We are done by Claim 3.1 since NX = NY =

NZ = Accc.

Proof of Lemma 3.11. Let F ′ = F ÷K. If K is large then F ′ = F by Lemma 3.3, therefore K

will be assumed to be small with an orientation LK .

If F covers F ′ but not F , then by Claim 3.2 there exists a small clump X ∈ D2(F)−D2(F ′)

not connected by F , thus X and K are crossing. Choose X with the orientation LX compatible

with LK so that LX is minimal to these properties w.r.t. � (that is, there exists no other

uncovered X ′ with orientation LX′ compatible with LK so that LX′ ≺ LX .) Choose Y not

connected by F with LX � LY , and LY maximal in the analogous sense (X = Y is allowed).
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LX ∧ LK and LY ∨ LK are nested with LK and thus connected by edges x1y1, x2y2 ∈ F with

x1 ∈ L−
X ∩ L−

K , y2 ∈ L+
Y ∩ L+

K . As X and Y are not connected, y1 ∈ L+
K − L+

X , x2 ∈ L−
K − L−

Y

follows. Let F ′ = F − {x1y1, x2y2} + {x1y2, x2y1} denote the flipping of x1y1 and x2y2. F ′

connects X and Y , and we shall prove that F ′ connects all small clumps in D2(F) connected by

F . Hence after a finite number of such operations all small clumps in D2(F) will be connected,

so by Claim 3.2, F will be covered.

For a contradiction, assume there is a small clump S connected by F but not by F ′. (S is

not necessarly basic.) No edge in F ∩ F ′ may connect S, hence either exactly one of x1y1 and

x2y2 connect it, or if both then x1 and y2 are in the same piece and y1 and x2 in the other piece

of S. In this latter case, K and S are strongly dependent.

(I) First, assume that only x1y1 connects S, and choose the orientation LS with x1 ∈ L−
S ,

y1 ∈ L+
S . We claim that LS and LY are also dependent. Indeed, if they are independent,

then Lemma 2.5(i) is applicable for L1 = LK , L2 = LY , L3 = LS, since LK ∧ LY and LS are

dependent because x1y1 connects both. This gives x2 ∈ L−
K − L−

Y ⊆ L−
S , that is, x2y1 connects

S, a contradiction.

Hence we may consider the one-way pair LS ∨ LY . LS ∨ LY is strictly larger than LY , as if

LS � LY held, then S would be connected by x1y2. By the maximal choice of LY , LS ∨ LY is

connected by some edge f ∈ F . By Claim 3.7, f also connects S or Y , implying f = x1y1. This

is a contradiction as x1 ∈ L−
S ∪ L−

Y and y1 /∈ L+
S ∩ L+

Y .

(II) If x2y2 is the only edge connecting S, we may use the same argument by exchanging ∨
and ∧, X and Y , “minimal” and “maximal” everywhere and applying Lemma 2.5(ii) instead of

(i).

(III) Finally, if both x1y1 and x2y2 cover S, let LS be chosen with x1, y2 ∈ L−
S , y1, x2 ∈ L+

S .

The argument in (I) may be applied with the only difference that at the end f = x2y2 is also

possible. This gives x2 ∈ L+
Y ∩L+

S , thus x2 ∈ L+
X . Analogously, the argument in (II) applies for

←−
LS, and we get y1 ∈ L−

X ∩ L+
S , thus y1 ∈ L−

X .

Now the clumps K, S and X satisfy the condition in Lemma 3.20, witnessed by nodes

x1, x2, y2, y1. This contradicts the assumption that K was a basic clump.

3.3 The Algorithm

As outlined in Section 1.5, the algorithm will be a simple iterative application of a subroutine

determining the dual optimum ν(G). Theorem 3.12 shows that ν(G) = ν(K) for an arbitrary

skeleton K. Given a skeleton K, ν(K) can be determined based on Fleiner’s theorem: Theo-

rem 3.13 admits a (linear time) reduction to maximum matching in general graphs, as described

in Section 3.3.2. As in Chapter 2, the naiv greedy approach fails due to the possibly exponen-

tial size of C. The solution will be again the notion of stability, however, significantly more

complicated than in Section 2.1.1.

57



3.3.1 Constructing a skeleton

Let us first introduce some new notation concerning pieces. If the set B ⊆ V is a piece of the

basic clump X, then let B� denote X. Let Q be the set of all (connected) pieces of all basic

clumps, whereas Q1 the set of all (not necessarly connected) pieces of all clumps. For a subset

A ⊆ Q, A� is the set of corresponding basic clumps (e.g. Q� = C).

As for the directed case, now we define stability. A cross-free set of H ⊆ C is stable if it

fulfills the following:

U crosses some element of H whenever U ∈ C −H and ∃K,K ′ ∈ H : K,U,K ′ forms a chain.

The following simple claim will be used for handling chains of length three.

Claim 3.21. For pieces B1, B2, B3 ∈ Q1, if (i) B1 ⊆ B2 ⊆ B3 or (ii) B1 ⊆ B2 and B3 ⊆ B∗
2 ,

then the corresponding clumps B�
1, B

�
2, B

�
3 form a chain. �

Clearly, H = ∅ is stable, and every skeleton is stable as well. Let M ⊆ Q denote the set

of the pieces minimal for inclusion. Based on the following claim (an analogue of Claim 2.7),

we will be able to determine when a stable cross-free system is a skeleton. The subroutine for

finding the elements of M will be given in Section 3.5 among other technical details of the

algorithm.

Claim 3.22. The stable cross-free system H ⊆ C is a skeleton if and only if M� ⊆ H.

Proof. On the one hand, every skeleton should contain M�. Indeed, consider an M ∈ M. M �

cannot cross any X ∈ C, as Υ(X,M �) would contain a clump with a piece being a proper subset

of M .

On the other hand, assume H is not a skeleton even though M� ⊆ H. Hence there exists

a clump U = (U1, . . . Ut) ∈ C − H, not crossing any element of H. Consider minimal pieces

M1 ⊆ U1, M2 ⊆ U2. Then M �
1, U,M �

2 forms a chain by Claim 3.21(ii), contradicting the

stability.

Assume H is a stable cross-free system, but not a skeleton. In the following, we show how

H can be extended to a stable cross-free system larger by one. By the above claim, there is an

M ∈ M with M � ∈ C −H. Let

L1 := {X ∈ H : X and M � are nested}, L2 := {X ∈ H : X and M � are independent} (3.2)

Claim 3.23. If L1 = ∅, then H + M � is a stable cross-free system.

Proof. Indeed, assume that for some U ∈ C − H and K ∈ H, H + U is cross-free, although

K,U,M � forms a chain. Now K and M are dependent and thus nested, a contradiction.
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In the sequel we assume L1 �= ∅. The key concept of the algorithm will be “fitting”: as

in the directed case, we shall define when a piece Z ∈ Q fits the pair (H,M). However, the

definition is significantly more complicated, therefore we formulate the main lemma in advance

(cf. Lemma 2.8):

Lemma 3.24. Let C be a minimal member of Q−⋃H fitting (H,M). Then H+C� is a stable

cross-free system.

There exists a C satisfying the conditions of this lemma, as according to the definition, the

pieces of M � different from M (that is, the connected components of M∗) fit (H,M). Such a C

can be found using standard bipartite matching theory similarly as in Chapter 2; the technical

details are postponed to Section 3.5.

The minimality of M implies that for any X ∈ L1, the dominant piece of M � w.r.t. X is

a connected component of M∗. One simple notion before giving the definition of fitting is the

following. For pieces B,C ∈ Q, we say that B supports C if B ⊆ C ⊆ M∗. B ∈ Q supports

Y ∈ C if B supports some piece of Y ; X ∈ C supports B ∈ Q if a piece of X supports B.

Definition 3.25. The piece C ∈ Q fits the pair (H,M) if

(a) C� ∈ C −H, C ⊆ M∗.

(b) There exists a W ∈ L1 supporting C.

(c) Consider a clump X ∈ L1 with dominant piece Xa w. r. t. M �, and another piece Xi with

i �= a. Then either Xi � C or Xi ∩ C = ∅, and if Xa ∩ C �= ∅ then Xi ∩ C∗ = ∅.

(d) C� is independent from every X ∈ L2.

The proof of Lemma 3.24 is based on the following claim:

Claim 3.26. Let C ∈ Q − ⋃H, C ⊆ M∗ supported by some W ∈ L1. The following two

properties are equivalent: (i) C fits (H,M); (ii) H + C� is cross-free.

Proof. First we show that (i) implies (ii). C� is independent from all pairs in L2. Consider

an X ∈ L1. C� and X cannot cross by Lemma 3.3 whenever X or C� is large, thus let us

assume they both are small basic clumps, X = (X1, X2) with X2 being the dominant piece of

X w.r.t. M �. If X and C� are dependent, then X1 ∩C �= ∅ or X2 ∩C �= ∅. In the first case, (c)

implies X1 � C hence nestedness follows by Claim 3.5. So let us assume X1 ∩ C = ∅. By the

dependency, X1 ∩ C∗ �= ∅, contradicting X2 ∩ C �= ∅ by the second part of (c).

Next, we show that (ii) implies (i). (a) and (b) are included among the conditions. For (c),

consider an X ∈ L1 with dominant piece Xa w.r.t. M and another piece Xi, i �= a. Notice that

Xi ⊆ M∗. If X and C� are independent, then Xi ∩C = ∅ as otherwise an edge between Xi ∩C

and M would connect both. If they are dependent so that the dominant side of X w.r.t. C� is
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different from Xi, then Xi � C or Xi ∩ C = ∅ follows. Finally, if the dominant side is Xi, then

C cannot be the dominant side of C� w.r.t. X (as it would imply M ⊆ Xa ⊆ C), thus C � Xi.

Now W,C�, X forms a chain by Claim 3.21(i), a contradiction to the stability of H.

Assume next Xa ∩C �= ∅ and Xi ∩C∗ �= ∅. X and C� are again dependent and thus nested,

and as above, the dominant side of X cannot be Xi. C cannot be the dominant side of C� as

Xi ⊆ C would contradict Xi ∩ C∗ �= ∅. Hence C ⊆ X∗
i . We get a contradiction again because

of the chain W,C�, X.

Finally for (d), assume C� and X ∈ L2 are dependent. C cannot be the dominant piece of

C� w.r.t. X as it would yield X ∈ L1. Consequently, Xi ⊆ C∗ for a non-dominant piece Xi of

X w.r.t C�, and thus by Claim 3.21(ii), W,C�, X forms a chain, a contradiction to stability.

Proof of Lemma 3.24. Using Claim 3.26, it is left to show that no chain C�, U,K may exist with

K ∈ H, U ∈ C − (H+C�) so that H+C� +U is cross-free. Indeed, if such a chain existed, then

C� and K would be dependent and thus nested. Let C ′ be the dominant piece of C� w.r.t. K.

If C ′ �= C then by Claim 3.21(ii), W,C�, K is a chain, contradicting the stability of H. (W is

the clump supporting C ensured by (b).)

If C ′ = C, then for some pieces U1 of U and K1 of K, K1 � U1 � C. Now U1 ∈ Q − ⋃H,

U1 ⊆ M∗ and K supports U1. By making use of Claim 3.26, U1 fits (H,M), a contradiction to

the minimal choice of C.

3.3.2 Description of the Dual Oracle

To determine the value of ν(G), we first construct a skeleton K as described above. For K, we

apply the reduction to Theorem 3.13 as in Section 3.2.1. As already mentioned, a minimal chain

decomposition along with maximal legal subpartition of a symmetric poset P = (U,�,M) may

be found via a reduction to finding a maximum matching. For the sake of completeness and

also because it will be needed for the minimum cost version, we include this reduction. Define

the graph C = (U,H) with uv′ ∈ H if and only if u ≺ v and vv′ ∈ M for some v ∈ U .

It is easy to see that the set {m1,m2, . . . , m�} ⊆ M is a symmetric chain if and only if

there exists edges e1, . . . , e�−1 ∈ H such that m1e1m2e2 . . . mk−1ek−1mk is a path, called an M -

alternating path. The transitivity of � ensures that M ∪ H contains no M -alternating cycles.

Let N ⊆ H be a matching in C. Then the components of M ∪ N are M -alternating paths,

each containing exactly two nodes not covered by N . Hence finding a maximum matching in

H is equivalent to finding a minimum chain cover in P . The running time of the most efficient

maximum matching algorithm for a graph on n1 nodes with m1 edges is O(
√

n1m1) [69, Vol I,

p. 423].

Let us now give upper bounds on |K| and on |U |. Jordán [49, 50] showed that the size of

the optimal augmenting edge set is at most max(b(G) − 1,
⌈

t(G)
2

⌉
) +

⌈
k−2
2

⌉
. Here b(G) is the

maximum size of a clump, while t(G) is the maximum number of pairwise disjoint sets in Q.
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Since b(G) ≤ n − (k − 1), t(G) ≤ n, it follows that n is an upper bound on the size of an

augmenting edge set. In a skeleton K, the set of clumps connected by an edge xy forms a chain.

Since the size of a chain can also be bounded by n, we may conclude
∑

X∈K(|K| − 1) ≤ n2 and

thus |K| ≤ n2. Using the running time estimation in Section 3.5, this gives a bound O(kn5) on

finding K.

In Section 3.2.1 the minimum semi-cover of K is reduced to a minimum symmetric chain

cover of a poset P = (U,�,M) with |U | = O(n2), since there are 2|X| nodes in U corresponding

the clump |X|. Hence the running time of the matching algorithm may be bounded by O(n5).

As indicated in the introduction, at most
(

n
2

)
calls of the Dual Oracle enable us to compute an

optimal augmentation. This gives a total running time O(kn7).

As in [36], another algorithm can be constructed which calls the dual oracle only once. First,

let us find a skeleton K = {K1, . . . , K�} with a cover F and a grove Π of K with def(Π) = |F |.
Then we iteratively apply sequences of flipping operations as in Lemma 3.11 for Fi−1 = C ÷
{K1, . . . , Ki−1} and Ki for i = �, �− 1, . . . , 1 resulting finally in a cover F ′ of C with |F | = |F ′|.
For each i it can be easily seen that after O(n2) flippings we get a cover of Fi−1, thus O(n4)

improving flipping suffice. The realization of a flipping step can be done using similar techniques

as in Section 3.5. We omit this analysis as it is highly technical and we could not get a better

running time estimation as for the previous algorithm.

3.4 Further remarks

3.4.1 Node-induced cost functions

In this section, we show that the minimum cost version is also solvable for node-induced cost

functions. c′ : E → R is a node-induced cost function if there exists a c : V → R so that

c′(uv) = c(u) + c(v) for every uv ∈ E. By the second part of Theorem 3.12, for a skeleton K
and a node-induced cost function c′, the minimum c′-cost of a cover of C is the same as that of

K. Hence it is enough to construct a subroutine for determining the minimum cost νc′(K) of a

cover of K. A minimum cost augmenting edge set can be found by iteratively calling this dual

oracle.

Furthermore, by Lemma 3.14, νc′(K) equals the minimum cost of a semi-cover of K. Finding a

minimum-cost semi-cover can be easily done based on the following weighted version of Fleiner’s

theorem, which reduces to maximum cost matching in general graphs.

Given a symmetric poset P = (U,�,M) and a cost function w : U → R, let us define the

cost of the symmetric chain S = {u1v1, . . . , u�v�} ⊆ M with u1 � . . . � u�, v1 � . . . � v� by

w(S) = w(u�) + w(v1). Our aim is now to find a chain cover of minimum total cost.

Consider the reduction to the matching problem in Section 3.3.2. For a matching N ⊆ H

of C, the components of M ∪ N are M -alternating paths each corresponding to a symmetric
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chain. The alternating path corresponding to the chain S is v1u1v2u2 . . . v�u�, hence the cost

of the two nodes not covered by N equals the cost of the chain. Consequently, the cost of a

symmetric chain cover equals the total cost of the nodes not covered by N . Hence minimizing

the cost of a symmetric chain cover is equivalent to finding a maximum cost matching. Note

that here we need a maximum cost matching only for node induced cost functions, although

this can be found for arbitrary cost functions.

To find a minimum cost semi-cover of K, we construct the symmetric poset P = (U,�′,M)

as in Section 3.2.1. For a one-way pair u = (u−, u+) ∈ U , let w(u) = minx∈u+ c(x). We claim

that finding a minimum cost symmetric chain cover for this w is equivalent to finding a minimum

cost semi-cover of K.

Indeed, there is a one-to-one correspondence between chains consisting of clumps of the

form (Xi, X
∗
i ) and the symmetric chains of U (with the restriction that a chain may not contain

both (Xi, X
∗
i ), (Xj, X

∗
j ) for i, j > 1). A chain K1, K2, . . . , K� of clumps with orientations

L1 � L2 � . . . � L� can be covered by any edge between L−
1 and L+

� , thus the minimum cost

of an edge covering it is w(L�) + w(
←−
L1) with w defined as above. Hence a minimum c-cost of a

semi-cover in K equals the minimum w-cost of a symmetric chain cover of P .

3.4.2 Degree sequences

What can we say about the degree sequences of the augmenting edge sets? It is well-known that

in a graph G with some cost function on the edges, the sets of nodes covered by a minimum

cost matching form the bases of a matroid. A natural generalization of matroid bases are base

polytopes (see e.g. [69, Vol II, p. 767]).

For undirected edge-connectivity augmentation, the degree sequences of the augmenting edge

sets form a base polytope, and the same holds for the in- and out-degree sequences for directed

edge-connectivity augmentation (see e.g. [23]). This is also true in case of directed node-

connectivity augmentation [31]. Moreover, all these results can be generalized for node-induced

cost functions: the degree (resp. in- and out-degree) sequences of minimum cost augmenting

edge sets form a base polytope. Hence a natural conjecture is the following:

Conjecture 3.27. Given a (k − 1)-connected graph G and a node-induced cost function, the

degree sequences of minimum cost augmenting edge sets form a base polytope.

This was essentially proved by Szabó proved in his master’s thesis [70] for k = n − 2. His

result holds even without the assumption that the graph is (k − 1)-connected, indicating that

the conjecture might hold for arbitrary graphs as well.
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3.4.3 Abstract generalizations

In this section, we discuss possible generalizations and extension of the above results. A nat-

ural question is whether it is possible to give a generalization of Theorem 1.37 for abstract

structures, in the sense as Theorem 1.2 generalizes Theorem 1.6 from strict one-way pairs in

a (k − 1)-connected graph to arbitrary crossing systems of set pairs. Indeed, it would be pos-

sible to formulate such an abstract theorem for describing coverings of a systems C of “basic

clumps”, where under basic clump we simply mean a subpartition of a set satisfying certain

properties. However, it is not easy to extract the abstract properties C needs to fulfill so that

the argument carry over. In particular, we need to ensure Claim 3.1, Lemma 3.3, Claims 3.4

and 3.5, Lemma 3.20 and Lemma 2.5 (for set pairs arising from orientations of clumps). It may

be verified that whenever C satisfies these, all other proofs carry over; for the algorithm we also

need a good representation of C.

Since the argument is already quite abstract and complicated, and we could not find a short

and nice list of properties that ensure all these claims, we did not formulate such an abstract

theorem in order to avoid the addition of a new level of complexity. Furthermore, we believe

that there should be a relatively simple abstract generalization of Theorem 1.37, which does not

rely on all claims listed above. For comparison, the argument given in Chapter 2 for proving

Theorem 1.6 strongly relies on properties of F which hold only if F is a crossing family of strict

one-way pairs of a (k − 1)-connected digraph (e.g. Claim 2.3, Lemma 2.5). Nevertheless, the

more general Theorem 1.2 is true for arbitrary crossing families of set pairs, and admits a much

simpler proof. (Recall that in Section 2.3.2 we also gave an extension of the “skeleton-proof” of

Theorem 1.6 to that of Theorem 1.2 by introducing slim one-way pairs. Such an extension of

Theorem 1.37 might also be possible, however, we would prefer a simpler type of argument.)

A natural application of such an abstract theorem would be rooted connectivity augmenta-

tion. Given a graph or digraph with designated node r0 ∈ V , it is called rooted k-connected if

there are at least k internally disjoint (directed) paths between r0 and any other node. Similarly,

a digraph is rooted k-edge-connected with root r0 if there are at most k − 1 edge-disjoint

directed path from r0 to any other node. One may ask the augmentation questions for rooted

connectivity as well. It turns out that for digraphs, the minimum cost versions of rooted k-

connectivity and rooted k-edge-connectivity augmentation are both solvable in polynomial time

(see Frank and Tardos [35] and Frank [29]): both problems can be formulated via matroid

intersection (although the reduction of the node-connectivity version is far from trivial).

In contrast, for undirected graphs the minimum cost version of rooted k-connectivity aug-

mentation is NP-complete: Hamiltonian cycle reduces to it even for k = 2 and 0-1 costs. The

minimum cardinality version of augmenting rooted connectivity by one was studied by Nutov

[68], who gave a an algorithm finding an augmenting edge set of size at most opt+min(opt, k)/2.

An important difference between minimum cardinality directed and undirected rooted con-
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nectivity augmentation is that while in the directed case there is an optimal augmenting edge

set consiting only of edges outgoing from r0, in the undirected case it may contain edges not

incident to r0. An example is V = {r0, x, y, a}, E = {r0x, r0y, xa, ya} (a rectangle). For k = 3,

F = {xy, r0a} is an optimal augmenting set, but there is no augmenting set of size two of edges

incident to r0.

We believe that a min-max formula and a polynomial time algorithm for finding an optimal

solution could be given by extending the method of this chapter. However, it is not completely

straightforward how clumps should be defined in this setting. At this point, we leave this

question open, since we believe that it will be an easy consequence of a later general abstract

theorem.

3.4.4 General connectivity augmentation

In what follows, we give an argument showing that there is no straigthforward way of generalizing

Theorem 1.37 for general connectivity augmentation. By ”straightforward”, we would mean a

relation analoguous to the one between Theorems 1.2 and 1.1: in the first one, the dual optimum

is the maximum number of pairwise independent members of a crossing system of set pairs,

while in the latter one, we are interested the maximum p-sum over pairwise independent set

pairs. Hence a possible approach for general undirected connectivity augmentation would be

the following. Let a clump be a subpartition X = (X1, . . . , X�) of V with d(Xi, Xj) = 0 (we

do not assume |NX | = k − 1), and let p(X) be a lower bound on the number of edges needed

to cover X. There are multiple possible candidates for p(X) and we do not commit to any of

them, but work only with the natural assumption that (�) p(X) = max(0, k − |NX |) whenever

|X| = 2; and p(X) = 0 whenever |NX | ≥ k. A natural conjecture is the following: the minimum

size of an augmenting edge set equals the maximum deficiency of a grove, where in the definition

of deficiency, each term |X| − 1 is replaced by p(X).

We show by an example that this conjecture fails even if (�) is the only assumption on p(X).

Let G = (V,E) be the complement of the graph on Figure 3.3 and let k = 9. For a node z ∈ V ,

let Zz = ({z}, {z}∗). The only basic clumps in G with |NX | < 9 are Za, Zb, Zu1
, Zu2

, Zv1
, Zv2

,

({u1, u2}, {u3}, {u4}), ({v1, v2}, {v3}, {v4}) and ({a, c}, {b, d}). {u1u4, u2u3, v1v4, v2v3, ab, ad, bc}
is an augmenting edge set of size 7, while a grove of value 6 is the one consisting of two bushes

B1 = {Zu1
, Zu2

, Zu3
, Zu4

, ({a}, {u1, u2, d})} and B2 = {Zv1
, Zv2

, Zv3
, Zv4

, ({b}, {v1, v2, c})}.
We show that neither an augmenting edge set of size 6, nor a grove of value 7 exists. On the

one hand, assume an augmenting edge set F exists with |F | = 6. Then F can be partitioned

into F = F1 ∪ F2 with |F1| = |F2| = 3, F1 covering B1 and F2 overing B2. However, we need at

least two edges to cover Za and two to cover Zb, and these can only be contained in F1 and F2,

respectively. If ad ∈ F1, then F1 cannot contain any of au1 and au2 as otherwise at least one of

Zu3
and Zu4

would remain uncovered. Hence ad /∈ F1, and similarly bc /∈ F2. ab, cd /∈ F as they
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Figure 3.3: Example concerning general connectivity augmentation.

do not cover any of B1 and B2, thus ({a, c}, {b, d}) remains uncovered.

On the other hand, assume a grove of value 7 exists. We claim that it should contain

({a, c}, {b, d}), and two clumps of the form ({a}, A) and ({b}, B) with b ∈ A and a ∈ B. This is

clearly a contradiction as they cannot be simultaneously contained in a grove, since the edge ab

connects all three of them. It can easily be checked that if we do not require ({a, c}, {b, d}) to

be covered, then the remaining clumps may all be covered by six edges. The same holds unless

we require all clumps of the form ({a}, A) with b ∈ A and all clumps of ({b}, B) with a ∈ B to

be covered. Consequently, every grove of value 7 should contain such clumps.

3.5 Implementation via bipartite matching

In this section we present how the subroutine for constructing a skeleton can be implemented

using bipartite matching theory. The argument follows the same lines as the one in Section 2.4;

we adopt the terminology, notation and multiple fundamental claims proved there. Before

starting the reduction to bipartite graphs, let us prove a simple claim concerning pieces. This

is an analogue of Claim 2.3.

Claim 3.28. For a piece Y ∈ Q1 and an arbitrary set X ⊆ V , if X∗ ⊇ Y ∗, then X ⊆ Y .

Proof. Indeed, assume X is not a subset of Y , thus |X ∪ Y | > |Y |. The condition gives

(X ∪ Y )∗ = Y ∗, and hence |N(X ∪ Y )| < |N(Y )| = k − 1, contradicting that G is (k − 1)-

connected.

Given the (k − 1)-connected graph G = (V,E), let us construct the bipartite graph B =

(V ′, V ′′; H) as follows. With each node v ∈ V associate nodes v′ ∈ V ′ and v′′ ∈ V ′′ and an
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edge v′v′′ ∈ H. With each edge uv ∈ E associate two edges v′u′′, u′v′′ ∈ H. For a set X ⊆ V ,

we denote by X ′ and X ′′ its images in V ′ and V ′′, respectively. The (k − 1)-connectivity of G

implies that B is a (k− 1)-elementary bipartite graph. For a set X ⊆ V , X ′ is tight if and only

if X ∈ Q1. (Recall that in Section 2.4 we called a set X ′ ⊆ V ′ tight if |Γ(X ′) = |X ′| + k − 1

and Γ(X ′) �= V ′′.)

First we need to find the set M of minimal pieces. This is done by computing the edge

set Fuv (the (k − 1)-uv-factor) by a single max-flow computation for every u, v ∈ V , uv /∈ E.

By Claim 2.15, the minimal uv̂-sets can be found by a breadth-first search. The minimal ones

among these will give the elements of M.

Consider now a stable cross-free H which is not complete, a minimal element M ∈ M−⋃H
and L1, L2 as defined by (3.2). If L1 = ∅ then we are done by Claim 3.23, hence in the sequel

we assume L1 �= ∅.
By Lemma 3.24, our task is to find a minimal C fitting (H,M). Let T be the set of the

maximal ones among those pieces of the clumps in L1 which are subsets of M∗.

Claim 3.29. T consists of pairwise disjoint sets.

Proof. Consider clumps X,Y ∈ L1 with pieces X1, Y1 ∈ T . If X and Y are independent then

X1 ∩ Y1 = ∅ as otherwise an edge between X1 ∩ Y1 and M would connect both. If they are

dependent, then we show that the dominant side Xi of X w.r.t Y is different from X1. Indeed,

if Xi = X1, then the dominant side of Y w.r.t. X should be Yj �= Y1 as otherwise M ⊆ Y1 would

follow. Hence Y1 � X1, a contradiction to the maximality of Y1. Similarly, the dominant side

of Y w.r.t. X may not be Y1. Hence Y1 ⊆ X∗, thus X1 ∩ Y1 = ∅.

Let us construct the bipartite graph B1 = (V ′, V ′′; H1) from B by adding some new edges as

follows. (1) For each X ∈ L2, let x′y′′, y′x′′ ∈ H1 for every xy connecting X. (2) Let x′y′′ ∈ H1

whenever T ∈ T , x ∈ T and y ∈ T ∪N(T ). (3) For each X ∈ L1 with dominant piece Xa w.r.t.

M �, let x′y′′ ∈ H1 for every x ∈ Xa, y ∈ X∗
a .

Claim 3.30. Let C ∈ Q − ⋃H, C ⊆ M∗, supported by some W ∈ H. C fits (H,M) if and

only if C ′ is tight in B1.

Proof. C ′ ⊆ V ′ is tight in B1 if and only if it is tight in B and there is no edge in x′y′′ ∈ H1−H

with x′ ∈ C ′, y′ ∈ V ′′ − Γ(C ′) (or equivalently, xy connects the clump (C,C∗)).

Assume C fits (H,M). Property (d) forbids that any x′y′′ ∈ H1 − H of the first type cover

C ′, while (c) forbids any x′y′′ of the second or third type to cover C ′. For the other direction,

properties (a) and (b) follow by the conditions. For (d), if C were dependent with some X ∈ L2,

then a new edge of the first type would cover C ′. For (c), if C ∩ Xi �= ∅, Xi − C �= ∅ for some

X ∈ L1 with a piece Xi � M∗, then consider a T ∈ T with Xi ⊆ T . C − T �= ∅ as otherwise

W,C�, T � would contradict stability. By Claim 3.28, C∗ ∩ (T ∪N(T )) �= ∅, hence a new edge of
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the second type coverss C ′. Finally, if Xa is the dominant piece of X w.r.t. M � and Xa∩C �= ∅,
Xi ∩ C∗ �= ∅, then there is a new edge of the third type covering C ′.

To find a C as in Lemma 3.24, we need to add some further edges to B1. Indeed, we need

to ensure that C ∈ Q − ⋃H and furthermore that C is supported by some W ∈ L1. Consider

now a W ∈ L1 with a piece W1 ∈ T and a connected set Q with W1 � Q ⊆ M∗. Let Z(Q)

denote the unique minimal X satisfying the following property:

X ∈ Q, Q ⊆ X, and X fits (H,M). (3.3)

We will determine Z(Q) for different sets Q in order to find K. As in the directed case, it is

easy to see that Z(Q) is well-defined. The next claim gives an easy algorithm for finding Z(Q)

for a given Q.

Claim 3.31. Fix some u ∈ Q, v ∈ M . Let B2 denote the graph obtained from B2 by adding

all edges u′y′′ with y ∈ Q ∪ N(Q). Let S denote the set of nodes z for which there exists an

alternating path for Fuv from u′ to z′. Then Z(Q) = S.

Proof. As M∗ is an uv̂-set in B2, applying Claim 2.15(a) for B2 instead of B, we get that B2

contains no alternating path for Fuv between u′ and v′′. By Claim 2.15(b), S is the unique

minimal uv-piece in B2. Γ(S ′ ∪ Q′) = Γ(S ′) thus Q ∪ N(Q) = S ∪ N(S) because of the new

edges in B2, hence by Claim 3.28, Q ⊆ S. By making use of Claim 3.30, S is the unique minimal

set satisfying (3.3), thus Z(Q) = S.

Consider now a clump W = (W1,W2, . . . , Wh) ∈ L1 with W1 ∈ T . We want to find a ZW

fitting (H,M) supported by W1. For each q ∈ NW ∩ M∗, let us compute Z(Q) for Q = W + q.

Let CW denote a minimal set among these. A Z(Q) can be found by a single breadth-first search,

thus we need at most k − 1 breadth-first searches. We may compute such a CW for all possible

choices of W , and a minimal among these gives a minimal C fitting (H,M). Therefore the

running time may be bounded by (k − 1)n breadth-first searches since by Claim 3.29, |T | ≤ n.

Somewhat surprisingly, this better compared to the directed case, where we needed n2 breadth

first searches. The reason is that here we could take advantage of the fact that all pieces in

a basic clump are connected and therefore consider only Q = W + q for q ∈ NW ∩ M∗. In

contrast, the tail or a head of a one-way pair may contain a directed cut and therefore we had

to examine a larger set of Q’s.

Complexity

To find a skeleton system first we need n2 Max Flow computations to determine the minimal

pieces and the auxiliary graphs. The running time for extending the stable cross-free system

by one member is dominated by (k − 1)n breadth first searches. Thus if s is an upper bound
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on the size of a skeleton, then we can determine one in O(n5 + skn3) running time by using an

O(n3) maximum flow algorithm and an O(n2) breadth first search algorithm.
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Chapter 4

General directed node-connectivity

augmentation

The results in this chapter were published in [74], a joint paper with András Benczúr jr. We have

defined posets with the strong interval property and formulated Theorem 1.40 in Section 1.5.2.

Let us start with the proof of Claim 1.39.

Proof of Claim 1.39. Property (i) of Definition 1.38 follows directly by the properties of set

union, intersection and containment. The relation between intervals and subfamilies defined by

pairs of nodes is straightforward since the minimal elements of S are the set pairs of the form

({u}, V −u) and the maximal ones are of the form (V −v, {v}). To prove Property (ii), consider

an edge xy with [m,M ] = Ixy. (1.7) is a consequence of Lemma 2.2.

We have already seen that Theorem 1.1 follows from Theorem 1.40. Let us now show that

the reverse implication also holds and hence they are equivalent. Given a poset (P ,�) with

the strong interval property, let us define a representative element ϕ(x) for every minimal or

maximal element x. For a ∈ P, let us define the pair Ψ(a) = (a−, a+) so that

a− = {ϕ(m) : m � a, m ∈ P minimal}; a+ = {ϕ(M) : M � a, M ∈ P maximal}.

It is easy to show that the function Ψ is a homomorphism for ∨, ∧ and �. Let us define

p′(K) := max{p(a) : Ψ(a) = K} where p′(K) = 0 if there exists no a ∈ P with Ψ(a) = K. It

is easy to verify that this is positively crossing supermodular. Hence applying Theorem 1.1 for

p′ on the set pairs implies Theorem 1.40.

Let us now show some basic properties of the tight elements.

Lemma 4.1. If x and y are two dependent tight elements with p(x) > 0, p(y) > 0, then both

x ∨ y and x ∧ y are tight.
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Proof. Let g(x) denote the number of intervals covering element x. By the strong interval

property all intervals that cover x ∨ y or x ∧ y also cover x or y and if they cover both, then

they cover all four, hence g(x) + g(y) ≥ g(x ∨ y) + g(x ∧ y). The proof is complete by

g(x ∨ y) + g(x ∧ y) ≥ p(x ∨ y) + p(x ∧ y) ≥
≥ p(x) + p(y) = g(x) + g(y) ≥ g(x ∨ y) + g(x ∧ y) (4.1)

implying equality everywhere. Here the first inequality follows since we have a cover; the second

is the definition of crossing supermodularity; and the equality follows by the tightness of x and

y.

The following easy corollary will be used throughout the paper:

Corollary 4.2. For a cover I, every I ∈ I has a unique minimal and a unique maximal tight

element.

Lemma 4.3. If x and y are two dependent tight elements with p(x) > 0, p(y) > 0, and the

interval [m,M ] ∈ I contains x, then it contains at least one of x∨ y and x∧ y; or equivalently,

y � M or m � y.

Proof. Recall that by the proof of Lemma 4.1 we have equality everywhere in (4.1); the last

inequality hence turns to g(x) + g(y) = g(x ∨ y) + g(x ∧ y). By the strong interval property all

intervals that cover x ∨ y or x ∧ y also cover x or y and if they cover both, then they cover all

four. Hence the above equality implies the claim.

4.1 The algorithm

We give a brief overview of our algorithm for the 0–1 valued case (Theorem 1.2) first. The algo-

rithm starts out with a (possible greedy) interval cover I = {I1, . . . , Ir}. In Algorithm Push-

down-Reduce we maintain a tight element ui ∈ Ii for each interval Ii as a witness for the

necessity of Ii in the cover. As long as the set of witnesses are non-independent, in Proce-

dure Pushdown we replace certain ui by smaller elements. By such steps we aim to arrive in

an independent system of witnesses. If witnesses are indeed pairwise independent, they form

a dual solution with the same value as the primal cover solution, thus showing both primal

and dual optimality. Otherwise in Procedure Pushdown the Procedure Reduce is called, a

procedure that exchanges interval endpoints so that we get an interval cover of size one less.

In order to handle weighted posets, technically we need to consider multisets of intervals and

witnesses in our algorithm. We assume I = {I1, . . . , Ir} may contain the same interval more

than once and the same may happen to the set of witnesses. The next lemma shows that if the

witnesses are pairwise independent as a weighted set instead of a multiset, then the solution is

optimal.

70



Lemma 4.4. Consider a cover I = {I1, . . . , Ir} and a tight element ui ∈ Ii for every i. If for

every i, j, ui and uj are either independent or ui = uj, then the elements {u1, ..., ur} give a dual

optimal solution, and hence I is an optimal cover.

Proof. It suffices to show that if for a poset element y there exists an i with y = ui, then there

exist exactly p(y) such intervals Ij with y = uj. Since y = ui is tight, there are exactly p(y)

intervals Ij with y ∈ Ij. Consider such an uj now: ui and uj are either independent or ui = uj,

but the first case is impossible since both of them are covered by Ij. Hence uj = ui for all p(y)

values of j.

Algorithm Pushdown-Reduce(I)

for j = 1, ..., r do

if Ij has no tight elements then

return reduced cover {Ii : i = 1, ..., j − 1, j + 1, ..., r}
u

(1)
j ← maximal tight element of Ij

t ← 1

do

for j = 1, ..., r do

u
(t+1)
j ← Pushdown(j, t, I)

t ← t + 1

while exist j such that u
(t)
j < u

(t−1)
j

return dual optimal solution {u(t)
1 , ..., u

(t)
r }

Procedure Pushdown(j, t, I)

U ← {x : mj � x � u
(t)
j , x tight and ∀i = 1, . . . , r, u

(t)
i may not push x down}

if U = ∅ then

t∗ ← t;

return Reduce(j, t∗, I)

else return the maximal x ∈ U

4.1.1 The Pushdown step

Our Algorithm Pushdown-Reduce (see box) tries to push witnesses down along their intervals

in iterations t = 1, 2, . . . until they satisfy the requirements of Lemma 4.4; witnesses are
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Figure 4.1: Different cases when u may push v down. By Lemma 4.3 mi � v, and there are three

possible cases: (a) mj �� u � Mj , (b) mj � u �� Mj , and (c) mj � u � Mj

superscripted by the iteration value (t). Initial witnesses u
(1)
j are maximum tight; their existence

follows by Corollary 4.2.

Given two intervals Ii = [mi,Mi] and Ij = [mj,Mj] and two tight elements u ∈ Ii and v ∈ Ij,

we say that u may push v down with respect to Ii if u and v are dependent and v �� Mi.

In the case set U of Procedure Pushdown (see box) is nonempty we will push v down, i.e.

replace it by the maximal element of U strictly below v. Notice that the definition depends on

the choice of the interval Ii with u ∈ Ii; it is possible that v may push u down with respect to

certain Ii and not with others. In the following, when it is clear from the context, we will omit

mentioning Ii. Different scenarios when u may push v down are shown in Figure 4.1.

In what follows we motivate which element replaces a given v when v gets pushed down.

When selecting u
(t+1)
j , our aim is to replace u

(t)
j by the maximal such tight element x ∈ Ij which

satisfies x � u
(t)
j and no u

(t)
i may push x down. As the motivation of pushing u

(t)
j down by u

(t)
i

we give the following claim as a relatively easy consequence of Lemma 4.9; we omit the proof as

it is not used elsewhere. If u
(t)
i may push u

(t)
j down, then for all subsequent t′ > t of the while

loop of Algorithm Pushdown-Reduce if the witnesses u
(t′)
j and u

(t′)
i are dependent then they

must be equal. This will be the main reason why all non-equal dependent pairs of witnesses

gradually disappear from the system.

While the above motivation considers the dual solution, namely it shows that the set of

witnesses will satisfy the optimality requirements, we may also give a primal motivation of

pushing v down by u. If u is maximum tight in Ii, then we may hope that by replacing [mi,Mi]

by [mi,Mj] we still get a cover. In the examples of Figure 4.1 this holds for cases (a) and (c).

In this cover v is contained in the new interval while it was not contained in the old, thus it

may be replaced by a smaller witness.

However, this argument fails for case (b) since u /∈ [mi,Mj] and the actual proof of correct-

ness will use a slightly more complicated argument. In the case of increasing connectivity by
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one (see [4]), the only possible scenario was (a). This is the main reason why the analysis is

significantly harder for the general case. While the argument for replacing [mi,Mi] by [mi,Mj]

fails, we still push v down and proceed with the algorithm. Then we use a backward analysis

as in [4]; in the weighted case it turns out that, while this fails to hold in general, if a particular

interval exchange is performed corresponding to a pushdown step, then the exchange is valid

and in particular we have u � Mj. We prove this later in Lemma 4.12.

The next properties of elements that one may push the other down are required both for

the definition of the algorithm and later for the proof of correctness.

Lemma 4.5. If u, u′ ∈ Ii and v ∈ Ij are tight with u′ � u and u may push v down, then u′ may

also push v down.

Proof. We only have to show that u′ and v are dependent. v �� Mi, since u may push v down.

Now by Lemma 4.3 we have mi � v. Hence the dependence of u′ and v follows: a common

lower bound is mi and a common upper bound is u ∨ v.

Lemma 4.6. Suppose u ∈ Ii, v ∈ Ij, v′ ∈ Ih are tight elements and v and v′ are dependent. If

u may push v ∨ v′ down, then it may also push either v or v′ down.

Proof. Since u may push v ∨ v′ down, we have v ∨ v′ �� Mi, hence mi � v ∨ v′ by Lemma 4.3.

By the strong interval property either mi � v or mi � v′. By symmetry let us consider the

first case; in this case v and u are also dependent since their common lower bound is mi and

their common upper bound is u ∨ (v ∨ v′). If v �� Mi, then u may push v down. Suppose now

mi � v � Mi. Since u may push v ∨ v′ down, we have v ∨ v′ �� Mi and thus v′ �� Mi. Then by

applying Lemma 4.3 for v, v′ and [mi,Mi] it follows that mi � v′, hence u and v′ are dependent.

Finally by v′ �� Mi we get that u may push v′ down.

The actual change of a witness u
(t)
j is performed in Procedure Pushdown (see box). We

select all tight elements x ∈ Ij, x � u
(t)
j into a set U that cannot be pushed down with elements

u
(t)
i . If U is nonempty, we next show that it has a unique maximal element; we use this element

as the new witness u
(t+1)
j .

Lemma 4.7. In Procedure Pushdown either U = ∅ or else it has a unique maximal element.

Proof. It suffices to show that if x, x′ ∈ V , then so is x ∨ x′ ∈ V . Obviously, x ∨ x′ is tight and

mj � x∨x′ � u
(t)
j . Suppose now that some u

(t)
i may push x∨x′ down. By Lemma 4.6, u

(t)
i may

push either x or x′ down, contradicting x, x′ ∈ U .

If we find no dependent pair of witnesses such that one may push the other down, then

we will show that the witnesses are pairwise independent or equal and thus the solution is

optimal. As long as we find pairs such that one may push the other down, in the main loop of

Algorithm Pushdown-Reduce we record a possible interval endpoint change by pushing one

witness lower in its interval; these changes are then unwound to a smaller cover as shown in

Section 4.1.3.
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4.1.2 Proof for termination without Reduce

We turn to the first key step in proving the correctness: we show that if the algorithm terminates

without calling Procedure Reduce, then u
(t)
i are pairwise independent or equal; in other words,

if none of them may be pushed down by another, then the solution is optimal.

Theorem 4.8. If the algorithm terminates without calling Procedure Reduce, then u
(t)
i and

u
(t)
j dependent implies u

(t)
i = u

(t)
j .

The theorem is an immediate consequence of the next lemma. To see, notice that if the

algorithm terminates without calling Procedure Reduce, then in a last iteration the while

condition of Algorithm Pushdown-Reduce fails. However then there are no pairs i and j

such that u
(t)
i may push u

(t)
j down.

Lemma 4.9. Assume that t1 ≤ t2, and u
(t2)
i and u

(t1)
j are dependent, and u

(t1)
j may not push

u
(t2)
i down. Then u

(t2)
i � u

(t1)
j .

This lemma is used not only for proving Theorem 4.8 but also in showing the correctness of

Procedure Reduce in Section 4.1.3 via the next immediate corollary.

Corollary 4.10. If u
(t)
j and u

(t+1)
i are dependent, then u

(t+1)
i � u

(t)
j .

In the proof of Lemma 4.9 we need to characterize elements that cause witness uj move

below a certain tight element y. Assume that for some tight y ∈ Ij and t we have y �� u
(t)
j .

Since u
(1)
j is maximal tight, we may select the unique t0 with y � u

(t0)
j but y �� u

(t0+1)
j . In

step Pushdown(j, t0, I) we must have an u
(t0)
d that may push y down. We will use this in the

following special case:

Lemma 4.11. Assume that z is tight and dependent from u
(t)
j . Assume furthermore that z �� u

(t)
j

and z � Mj. Then there exists t0 < t and d such that u
(t0)
d may push u

(t)
j ∨ z down. In addition,

u
(t0)
d may also push z down.

Proof. We apply the above observations for y = u
(t)
j ∨ z ∈ Ij. Since y is tight, y � u

(1)
j . And

since z �� u
(t)
j , we get y = u

(t)
j ∨ z �� u

(t)
j . We select t0 with y � u

(t0)
j but y �� u

(t0+1)
j ; then in

step Pushdown(j, t0, I) we must have an u
(t0)
d that may push y down.

For the second part of the claim observe that by Lemma 4.6, u
(t0)
d may push either u

(t)
j or z

down. The first choice is impossible, since then u
(t−1)
d could also push u

(t)
j down by Lemma 4.5,

and t − 1 ≥ t0. This latter contradicts the choice of u
(t)
j as the maximum tight element that

may not be pushed down in Pushdown(j, t − 1, I).

Proof of Lemma 4.9. u
(t2)
i � Mj, since u

(t1)
j may not push u

(t2)
i down. If u

(t2)
i �� u

(t1)
j , then the

conditions of Lemma 4.11 hold with z = u
(t2)
i and t = t1. Thus we have some t0 < t1 and d such
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Figure 4.2: Procedure Reduce called with t∗ = 1. The two upright intervals are the original ones

with their tight elements shaded. These two intervals will be replaced by the single bold

interval. The new interval contains all tight elements of the old ones since u
(1)
j2

� Mj1 by

Lemma 4.12. Remember that the intervals need not to be disjoint.

that u
(t0)
d may push z = u

(t2)
i down. But then u

(t2−1)
d may also push u

(t2)
i down by Lemma 4.5.

This latter contradicts the choice of u
(t2)
i as the maximum tight element that may not be pushed

down in Pushdown(i, t2 − 1, I).

4.1.3 The Reduce step

So far we have proved that if Reduce is not called, then the initial primal solution is optimal and

the algorithm finds a dual optimum proof of this fact. Now we turn to the second scenario when

Procedure Reduce is called; in this case the solution is not optimal, since Procedure Reduce

is called from Procedure Pushdown when U = ∅. This means u
(t)
j /∈ U and thus there exists

an i such that u
(t)
i may push u

(t)
j down.

Procedure Reduce is called when one witness disappears from the dual solution. In this

case we unwind the steps to find a cover of size one less in Procedure Reduce based on interval

exchanges at certain pairs of tight poset elements.

To illustrate the idea of Procedure Reduce, first we discuss the simplest case t∗ = 1; the

general case will then be reduced to this case by a special induction. We summarize Pro-

cedure Reduce-OneStep for this particular scenario with steps shown in Figure 4.2. Since

t∗ = 1, we have some 1 ≤ j1 ≤ k such that Procedure Reduce is called within Procedure Push-
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Procedure Reduce-OneStep(j, I)

j1 ← j;

q ← minimal tight element in [mj1 ,Mj1 ]

j2 ← minimum value � �= j1 such that u
(1)
� may push q down

return reduced cover {[mi,Mi] : 1 ≤ i ≤ r, i �= j1, j2} ∪ {[mj2 ,Mj1 ]}.

down(j1, 1, I). This means that

U = {x : mj1 � x � u
(1)
j1

, x tight and ∀� = 1, . . . , r, u
(1)
� may not push x down}

is empty. By Corollary 4.2, [mj1 ,Mj1 ] has a unique minimal tight element q; since q /∈ U , we

must have some � = j2 such that u
(1)
� may push q down. Given an ordering over the intervals,

the algorithm selects j2 as the minimal such � and returns a reduced interval system

I − [mj1 ,Mj1 ] − [mj2 ,Mj2 ] + [mj2 ,Mj1 ]. (4.2)

In the proof of case t∗ = 1 we use the following general lemma for h = j1, � = j2, u = u
(1)
j2

.

Lemma 4.12. Let q be the minimal tight element of Ih. If u ∈ I� may push q down, then

u � Mh. Furthermore for all tight v ∈ Ih we have that u may push v down with respect to I�.

Proof. Suppose by contradiction that u �� Mh. Since u and q are dependent, by Lemma 4.3,

u∧q ∈ Ih. Since q is the minimal tight in Ih, we have q � u∧q, hence q � u � M�, contradicting

that u may push q down. For the second part of the claim, consider a tight element v ∈ Ih.

Elements u and v are dependent, since common lower and upper bounds are u ∧ q and Mh,

respectively. By q � v and q �� M� the required v �� M� follows.

Lemma 4.13. If t∗ = 1, Procedure Reduce-OneStep(j1, I) returns an interval cover.

Proof. It suffices to show that [mj2 ,Mj1 ] contains all tight elements of both [mj1 ,Mj1 ] and

[mj2 ,Mj2 ]; furthermore there is no common tight element in [mj1 ,Mj1 ] and [mj2 ,Mj2 ]. In this

case we may replace the intervals [mj1 ,Mj1 ] and [mj2 ,Mj2 ] by [mj2 ,Mj1 ] since if a tight element

is contained by exactly one of [mj1 ,Mj1 ] and [mj2 ,Mj2 ] then it is contained by the new interval

and containment by both is excluded.

To prove, first let x ∈ [mj2 ,Mj2 ] be tight; x ≤ u
(1)
j2

by maximality. When applying

Lemma 4.12 for h = j1, � = j2, u = u
(1)
j2

, we get u
(1)
j2

� Mj1 . This implies mj2 � x � u
(1)
j2

� Mj1 ,

as required.

Next let x ∈ [mj1 ,Mj1 ] be tight; q � x for the minimal tight q of [mj1 ,Mj1 ]. By Lemma 4.3,

mj2 � q, thus we get mj2 � q � x � Mj1 as required.

Finally assume that a common tight element x ∈ [mj1 ,Mj1 ]∩ [mj2 ,Mj2 ] exists; now q � x �
Mj2 , contradicting the fact that u

(1)
j2

may push q down.
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Procedure Reduce(j, t∗, I)

j1 ← j;

for t = t∗, ..., 1 do

s ← t∗ + 1 − t

q ← minimal tight element in [mjs
,Mjs

]

js+1 ← minimum value � �= js such that u
(t)
� may push q down

mjs
← mjs+1

return reduced cover {[mi,Mi] : 1 ≤ i ≤ r, i �= jt∗+1}.

Our aim in Procedure Reduce (see box) is to repeatedly pick an interval [mjs
,Mjs

] and try

to find another interval [mjs+1
,Mjs+1

] such that if we replace [mjs
,Mjs

] by [mjs+1
,Mjs

], then after

the switch the minimum tight element of [mjs+1
,Mjs+1

] increases. We ensure this by defining

js+1 ← minimum value � �= js such that u
(t)
� may push q down,

where q is the minimum tight element of [mjs
,Mjs

] after the interval changes and t = t∗ +1− s.

Applying Lemma 4.12 for h = js, � = js+1, u = u
(t)
js+1

we get u
(t)
js+1

� Mjs
. Thus when replacing

[mjs
,Mjs

] by [mjs+1
,Mjs

], the tight elements x in [mjs+1
,Mjs+1

] with x ≤ u
(t)
js+1

will no longer be

tight after the switch. The overall idea is seen in Figure 4.3.

While the first step of the procedure is well-defined since we call Procedure Reduce exactly

when the minimal tight q ∈ Ij for j = j1 is pushed down by certain other u
(t∗)
� , the existence of

such an � is by no means obvious for all the other iterations of the main loop as switches among

the intervals could completely rearrange the set of the tight elements.

The existence of all further � in Procedure Reduce as well as the correctness of the algorithm

is proved by “rewinding” the algorithm after the first iteration of Procedure Reduce and

showing that each step is repeated identical up to iteration t∗−1. The intuition behind rewinding

is based on the resemblance of Procedure Reduce to an augmenting path algorithm. In this

terminology, instead of directly proving augmenting path properties we use a special induction

by executing the main loop of the procedure step by step and after each iteration rewinding the

main algorithm. In the analogy of network flow algorithms, this may correspond to analyzing

an augmenting path algorithm by choosing path edges starting at the source, changing the flow

along this edge to a preflow, and at each step proving that the remaining path augments the

flow.

The key Theorem below will show, by induction on the value t∗ of t at the termination of the

main loop of Algorithm Pushdown-Reduce, that the intermediate modified interval sets are

covers for t∗, t∗− 1, . . . , 1. Finally when applied for t∗ = 1 we get that Procedure Reduce finds

an interval cover of size one less than before by Lemma 4.13. This completes the correctness

analysis of Procedure Reduce. Before stating the Theorem, we define the intermediate modified

77



mj1
mj2

mj3

Mj1
Mj2

Mj3

u
(1)
j2u

(1)
j3

x
q

u
(2)
j1

u
(2)
j2

Figure 4.3: Procedure Reduce called with t∗ = 2. The three upright intervals are the original ones

with their tight elements shaded. The original three intervals will be replaced by the two

bold intervals using the marked witnesses. Note that the two new intervals contain all

tight elements of the old ones. While the number of intervals covering certain non-tight

elements (x in the example) may decrease, we prove that they remain covered. Note that

the original intervals are not necessarly disjoint.

interval set I ′ and show it is a cover.

Lemma 4.14. Let

I ′ = I − [mj1 ,Mj1 ] + [mj2 ,Mj1 ]. (4.3)

be the set of intervals after the first iteration of Procedure Reduce. Then I ′ is a cover.

Proof. Since u
(1)
j2

may push q down, q �≤ Mj2 , thus by Claim 4.3, mj2 � q and so [mj2 ,Mj1 ]

contains all tight elements of [mj1 ,Mj1 ].

Theorem 4.15. For t∗ > 1, Algorithm Pushdown-Reduce performs the exact same steps

with inputs I and I ′ of Lemma 4.14 until iteration t∗ − 1 when Reduce(j2, t
∗ − 1, I ′) is called.

Hence compared to I, the main loop of Algorithm Pushdown-Reduce terminates one step

earlier with t = t∗ − 1 when run with I ′.

To prove Theorem 4.15 now we define elements that are no longer tight and elements that

become tight in the new cover:

Lemma 4.16. Let

Z1 = {x tight in I and x not tight in I ′},
Z2 = {x not tight in I and x tight in I ′}.
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Then

Z1 ⊆ {x : x ∈ [mj2 ,Mj1 ], x �� mj1} (4.4)

Z2 ⊆ {x : x ∈ [mj1 ,Mj1 ], x �� mj2}. (4.5)

Hence the same elements are tight in Ij1 for I as in [mj2 ,Mj1 ] for I ′.

Proof. We get I ′ from I by removing [mj1 ,Mj1 ] and adding [mj2 ,Mj1 ] instead. Hence the

elements of Z1 should be contained in the latter but not in the former, and similarly the

elements of Z2 should be in the former but not in the latter interval.

Next we show that the algorithm proceeds identical for I and I ′ for t < t∗. The proof is

based on the fact that the key elements used in defining u
(t)
i do not belong to Z1 ∪ Z2.

Lemma 4.17. Let u
′(t)
i denote elements selected by Algorithm Pushdown-Reduce with input

I ′ with the convention that u
′(t)
j1

belongs to the modified interval I ′
j1

= [mj2 ,Mj1 ]. Then for all

t < t∗, we have u
(t)
i = u

′(t)
i .

Proof. By induction on t ≤ t∗ − 1, we will show u
′(t)
i = u

(t)
i . We prove the inductive hypothesis

in three steps: we show for i = 1, . . . , r that

(i) u
(t)
i /∈ Z1;

(ii) u
′(t)
i exists; and

(iii) u
′(t)
i /∈ Z2

The above three statements imply u
′(t)
i = u

(t)
i as follows. For t = 1, the maximal tight elements

are identical for i �= j1 by (i) and (iii), since u
′(1)
i tight in I implies u

′(1)
i � u

(1)
i and we have the

opposite inequality when exchanging the role of the two elements. Also u
′(1)
j1

= u
(1)
j1

, since by

Lemma 4.16, the tight elements of Ij1 in I are the same as the tight elements of I ′
j1

in I ′. For

general t by induction on the step of defining u
′(t)
i , one can observe that element u

(t)
i belongs to

the set U of Procedure Pushdown(i− 1, t, I ′) and the same holds when exchanging the role of

u
′(t)
i and u

(t)
i . Thus the two elements must be equal.

Now we prove (i–iii). First of all for i = j1 the tight elements of Ij1 in I are the same as

those of I ′
j1

in I ′ by Lemma 4.16, yielding (i–iii). Hence we assume i �= j1 next.

Proof of (i). Assume u
(t)
i ∈ Z1. By Lemma 4.16, mj2 � u

(t)
i � Mj1 and mj1 �� u

(t)
i .

Furthermore, since mj2 � u
(t∗)
j1

� u
(t+1)
j1

� Mj1 we have u
(t)
i and u

(t+1)
j1

dependent. Using

Corollary 4.10, u
(t+1)
j1

� u
(t)
i , thus mj1 � u

(t)
i , a contradiction.

Proof of (ii). We show that u
′(t)
i exists and mi � u

(t)
i � u

′(t)
i . We proved above that u

(t)
i /∈ Z1

and hence u
(t)
i remains tight in I ′. This immediately gives the result for t = 1. And for t > 1

we use the consequence of the inductive hypothesis that u
(t−1)
h = u

′(t−1)
h for all h. This yields

u
(t)
i ∈ U for Pushdown(i, t − 1, I ′) that in turn implies that u

′(t)
i exists and u

(t)
i � u

′(t)
i .
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Proof of (iii). Assume u
′(t)
i ∈ Z2. By Lemma 4.16, mj1 � u

′(t)
i � Mj1 , thus u

′(t)
i and u

(t+1)
j1

are dependent. Observe furthermore u
(t+1)
j1

is also tight in I ′. Hence by applying Lemma 4.3

for I ′, we get that either u
(t+1)
j1

� Mi or mi � u
(t+1)
j1

. In both cases we derive a contradiction

with the definition of u
(t+1)
j1

in Procedure Pushdown(j1, t, I) by showing that certain u
(t)
d may

push u
(t+1)
j1

down.

Case I: u
(t+1)
j1

� Mi. By Lemma 4.16, we also get mj2 �� u
′(t)
i , which in turn implies

u
(t+1)
j1

�� u
′(t)
i , since mj2 � u

(t+1)
j1

. Because u
(t+1)
j1

is tight in I ′ and u
(t+1)
j1

� Mi, we may apply

Lemma 4.11 for I ′, u
′(t)
i and z = u

(t+1)
j1

. By the Lemma there exists t0 < t and 1 ≤ d ≤ r such

that the element u
′(t0)
d may push u

(t+1)
j1

down. By induction u
(t0)
d = u

′(t0)
d , and by Lemma 4.5,

u
(t)
d may also push u

(t+1)
j1

down.

Case II: mi � u
(t+1)
j1

and u
(t+1)
j1

�� Mi. As we have seen above, mi � u
(t)
i � u

′(t)
i . Thus

u
(t+1)
j1

and u
(t)
i are dependent since their common lower and upper bounds are mi and Mj1 ,

respectively. Hence in this case we have d = i: element u
(t)
i may push u

(t+1)
j1

down. The proof

is complete.

We complete the proof of Theorem 4.15 by the following lemma.

Lemma 4.18. When run with input I ′, Procedure Reduce is called in iteration t∗ − 1 with

j = j2.

Proof. By Lemma 4.17, Procedure Reduce cannot be called for I ′ before iteration t∗− 1. Two

things are left to prove: (i) in iteration t∗−1, Reduce(h, t∗−1, I ′) is not called for any h < j2;

and (ii) Reduce(j2, t
∗ − 1, I ′) is called.

To prove (i), assume by contradiction that Reduce(h, t∗ − 1, I ′) is called for some h < j2,

or equivalently, U = ∅ in Procedure(h, t∗ − 1, I ′). We show that u
(t∗)
h ∈ Z1. Indeed, by

Lemma 4.17, u
(t∗−1)
h = u

′(t∗−1)
h for all h. Since no u

(t∗−1)
h may push u

(t∗)
j2

down, this yields that if

u
(t∗)
h /∈ Z1, then u

(t∗)
h ∈ U , contradicting the assumption U = ∅.

By Lemma 4.16, mj2 � u
(t∗)
h � Mj1 , thus q and u

(t∗)
h are dependent. Element u

(t∗)
h may not

push q down, because it would contradict the fact that � = j2 is minimal in a fixed ordering of

the intervals so that u
(t∗)
� may push q down. This means that q � Mh. In addition, q �� u

(t∗)
h ,

since mj1 � q and mj1 �� u
(t∗)
h by u

(t∗)
h ∈ Z1. We can apply Lemma 4.11 for u

(t∗)
h and z = q,

which implies the existence of some t0 < t∗ and 1 ≤ d ≤ r so that u
(t0)
d may push q down. By

the second part of Lemma 4.12, u
(t0)
d may also push u

(t0+1)
j1

down, a contradiction.

For (ii), suppose for a contradiction that u
′(t∗)
j2

exists. Since u
′(t∗)
j2

� mj2 , by Lemma 4.16,

u
′(t∗)
j2

/∈ Z2, hence u
′(t∗)
j2

is also tight in I. We use again that by Lemma 4.17, u
(t∗−1)
h = u

′(t∗−1)
h

for all h. This yields u
′(t∗)
j2

∈ U for Pushdown(j2, t
∗ − 1, I), implying u

′(t∗)
j2

� u
(t∗)
j2

. By making

use of Lemma 4.12, u
′(t∗)
j2

� u
(t∗)
j2

� Mj1 .

We claim that u
′(t∗)
j2

∈ Z1, contradicting the fact that u
′(t∗)
j2

is tight in I ′. As mj2 � u
′(t∗)
j2

�
Mj1 and u

′(t∗)
j2

is tight in I, all we need to show is mj1 �� u
′(t∗)
j2

. Assume mj1 � u
′(t∗)
j2

; this implies

80



mj1 � u
′(t∗)
j2

� Mj1 , thus q � u
(t∗)
j2

as q is the minimal tight element of [mj1 ,Mj1 ] in I. In this case

u
(t∗)
j2

may not push q down, contradicting the selection of j2 in Procedure Reduce(j, t∗, I).

4.2 Application for directed connectivity augmentation

In this section we give a reformulation of the above general algorithm which is applicable for the

problem of directed node connectivity augmentation. The main difficulty is that we typically

have an exponential size poset implicitly given as a set of (directed) cuts. We may either

select an appropriate poset representation or implement the steps of the algorithm with direct

reference to the underlying graph problem. We follow the second approach. We will show how

all non trival steps of the algorithm can be reduced to determining maximal tight elements in

certain interval covers, which can be implemented as a sequence of BFS computations using

some initial flow computations.

The key step in implementing Procedure Pushdown for the underlying graph problems is

the following reformulation of the main algorithm. We replace Procedure Pushdown by an

iterative method Procedure Alternate-Pushdown (see box) that selects a strictly descending

sequence of tight elements y0 > y1 > . . . > y� with y0 = u
(t)
j and y� = u

(t+1)
j or terminates by

Procedure Reduce(j, t∗, I). In the implementation for graph augmentation problems it is key

to notice that in a single iteration of Procedure Alternate-Pushdown we only consider

elements that may be pushed down by u
(t)
i for a single value of i.

Procedure Alternate-Pushdown(j, t, I)

y0 ← u
(t)
j ; h ← 0;

while exists i such that u
(t)
i may push yh down do

Uh ← {x : mj � x � yh, x tight and u
(t)
i may not push x down}

if Uh = ∅ then

t∗ ← t;

return Reduce(j, t∗, I)

else

yh+1 ← maximal x ∈ Uh;

h ← h + 1

return yh

Lemma 4.19. Procedures Pushdown and Alternate-Pushdown return the same output.

Proof. It follows straightforward from Lemma 4.6 that if Uh �= ∅, then it has a unique maximal

element, hence yh for h ≥ 1 is well defined.
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If Procedure Alternate-Pushdown terminates by returning y�, then y� ∈ U for U as in

Procedure Pushdown. Thus y� � u
(t+1)
j . This shows that if Procedure Pushdown terminates

by calling Procedure Reduce, then so does Procedure Alternate-Pushdown.

Consider now the case when U �= ∅ in Procedure Pushdown. We show that yh � u
(t+1)
j for

each h ≥ 0. By contradiction, choose the smallest h with yh �� u
(t+1)
j ; thus yh−1 � yh ∨ u

(t+1)
j �

yh. By the definition of Uh−1, u
(t)
i may push yh∨u

(t+1)
j down for some i. Using Lemma 4.6 again

it may push either yh or u
(t+1)
j down, both leading to contradiction. Now we can conclude that

if Procedure Alternate-Pushdown terminates by returning yh, then both yh � u
(t+1)
j and

yh � u
(t+1)
j hold, thus they are equal.

To compute yh, consider the set of intervals Jj,i = I − [mi,Mi] + [mi,Mj] with i as in

Procedure Alternate-Pushdown. While Jj,i is not necessarily a cover of the entire poset,

the following lemmas still hold:

Lemma 4.20. All x ∈ Uh are tight in Jj,i.

Proof. Notice x is either contained in both intervals [mi,Mi] and [mi,Mj] or in neither of them:

if mi � x, then x and u
(t)
i are dependent because mi is a common lower and u

(t)
i ∨ yh a common

upper bound. Hence x � Mi, since u
(t)
i may not push x down.

Lemma 4.21. Suppose u
(t)
i may push yh down. The set of intervals Jj,i covers all elements of

Ij; furthermore yh+1 = yh ∧ Q, where Q is the maximal tight element of Ij in Jj,i.

Proof. For all x ∈ Ij, we have x ∈ [mi,Mj] if x ∈ [mi,Mi], hence the number of intervals

covering x cannot be less in Jj,i than in I, thus Jj,i covers all elements of Ij.

For the second part we first show that if Ij has any tight elements for Jj,i, then there is a

unique maximal among them. We cannot apply Lemma 4.1 directly since Jj,i is not a cover,

but the claim holds for any x, y ∈ Ii, since x, y, x ∨ y and x ∧ y are all covered by Jj,i. Hence

the existence of the unique maximal tight element follows. Since any element of Ii is covered in

Jj,i by at least as many intervals as in I, Q is also tight in I.

Finally we let z = yh ∧ Q and show z = yh+1. Notice that z is tight in I as it is an

intersection of two tight elements in I. As yh+1 � yh and yh is tight in Jj,i by Lemma 4.20, we

get yh+1 � Q and thus yh+1 � yh ∧ Q = z. For z � yh+1 we have to prove that u
(t)
i may not

push z down. Indeed, suppose that u
(t)
i may push z down. Then mi � z �� Mi, hence by z � Q

follows Q ∈ [mi,Mj]. As Q is tight in Jj,i, this implies that Q ∈ [mi,Mi], thus z � Q � Mi, a

contradiction.

By the lemma, the basic step of Procedure Alternate-Pushdown consists of computing

the maximum tight element of an interval for certain set of covering intervals. Furthermore,

at the beginning of the algorithm u
(1)
j is the maximum tight element of Ij. Now we turn our

attention to the implementation of the steps of the algorithm for connectivity augmentation.
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We use the reduction of node connectivity augmentation to poset covering as Claim 1.39: the

minimal elements correspond to set pairs having a singleton tail and all the other nodes as

head; maximal elements are found by exchanging the role of tails and heads. For each interval

I = [mi,Mi] ∈ I we augment the graph by an edge siti with si corresponding to mi and ti

corresponding to Mi as in the above reduction. If I covers all poset elements in [mi,Mi], then

the minimum si–ti cut in the augmented graph has value at least k.

Algorithm Pushdown-Reduce(I) will first be applied for a greedy cover I (for example,

including all possible intervals), and then subsequently for covers of decreasing cardinality, until

we finally reach an optimal cover. We initialize Pushdown-Reduce(I) by computing |I|
maximum flows, one corresponding to each interval in I. For interval [mj,Mj] we compute a

maximum sj–tj flow. Since I is a cover, the maximum flow value is at least k. If the sj–tj

flow value is more than k, then [mj,Mj] contains no tight elements thus can be removed from

the cover and the iteration Pushdown-Reduce(I) is finished. Otherwise u
(1)
j is the set pair

corresponding to the value k cut with maximal tail that can be obtained by a breadth-first

search from tj on the graph obtainded from the standard auxiliary graph in the Ford-Fulkerson

algorithm by reverting the edges.

Lemma 4.22. Consider the task of finding the maximum tight element of an interval Ij =

[mj,Mj] for certain set of intervals Jj,i (as for example in Procedure Alternate-Pushdown)

that cover Ij. Using the maximum sj–tj flow computed at the initialization for Ij, this step

requires O(1) breadth-first search (BFS) computations.

Proof. Consider the maximum sj–tj flow computed at the initialization. We add an edge sitj

to the graph and remove the edge siti. If the flow contains the removed edge, then we remove

the single flow path containing it. We augment the resulting flow to a maximum flow by a

single BFS computation. By another BFS starting from tj we either obtain the maximum tight

element or deduce that there are no tight elements and Procedure Reduce can be called.

For implementing Reduce, we need to find minimal tight elements of certain intervals and a

sequence of changes in the interval cover by adding an interval and removing another. The first

step can be performed by a BFS computation from the corresponding si; for the second step

we need to update the flows corresponding to the intervals [mj,Mj] ∈ I. For each [mj,Mj] in

iteration s, we consider the maximum sj–tj flow, add an edge sjs+1
tjs

to the graph and remove

the edge sjs
tjs

. Again, if the flow contains the removed edge, then we remove the single flow

path containing it, an augment the flow by a BFS computation.

4.2.1 Running times

To estimate the running time we need bounds for the number of intervals j and the length of a

longest chain � in the poset. At the initialization of Pushdown-Reduce we perform j max-flow
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computations; then the dominating steps are finding elements yh in Procedure Alternate-

Pushdown. Since computing meets ∨ and intersections ∧ of elements as well as checking

whether u ∈ Ii may push v down can be done in O(1) time, this step is dominated by O(1) BFS

computations by Lemma 4.22.

Between two calls to Procedure Reduce the total number of iterations in all calls to

Alternate-Pushdown that compute certain yh can be bounded by j · �, since in each step we

find a strictly smaller element of certain interval. This totals to O(j · �) BFS computations. For

an iteration of Reduce, we also have to do O(j · �) BFS computations. The total number of

calls to Algorithm Pushdown-Reduce is bounded by j since the number of intervals decreases

in each iteration. Hence we have O(j2) maximum flow and O(j2 · �) BFS computations.

For the node-connectivity augmentation problem � = O(n), and j = O(n2) since adding a

complete digraph surely gives an (n− 1)-connected digraph. Thus by the above estimations the

running time is dominated by O(n5) BFS computations and O(n4) Max Flow Computations.

As a BFS can be computed in time O(n2) and a Max Flow in time O(n3), the total running

time can be bounded by O(n7).

4.3 Further remarks

While we have outlined only the implementation of the algorithm for directed connectivity aug-

mentation, it can be done similarly for other applications, for example, ST -edge-connectivity

augmentation. The existence of a strongly polynomial, or even polynomial combinatorial al-

gorithm, however, remains open. This latter application demonstrates its importance as by

ST -edge-connectivity we may have arbitrarily large connectivity requirement k.

One may wonder of how strong the generalizational power of the interval covering prob-

lem. Two algorithmically equivalent problems, Dilworth’s chain cover and bipartite matching,

are special cases of interval covers; our algorithm generalizes the standard augmenting path

matching algorithm. One may ask whether the network flow problem as different algorithmic

generalization of matchings could also fit into our framework. We might also hope that ideas

such as capacity scaling, distance labeling and preflows [1] that give polynomial algorithms for

network flows can be used in the construction of a polynomial algorithm for the interval covering

problem.

Finally one may be interested in the efficiency of our algorithm for the particular problems

that can be handled. Here particular implementations and good oracle choices are needed.

We may want to reduce the number of mincut computations needed by polynomial size poset

representations. One might also be able to give improvements in the sense of the Hopcroft–Karp

matching algorithm [43].
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Chapter 5

Local edge-connectivity augmentation

5.1 Coverings without partition constrains

5.1.1 From degree-prescription to augmentation

As indicated in Section 1.3, the augmentation Theorem 1.15 can easily be derived from the

degree-prescribed Theorem 1.17. We include the argument here, since it is a starting point to

similar deductions for the PCLECA problem. Only the SPSS-property of p is used and hence

the deduction of Theorem 1.21 from Theorem 1.22 will be essentially the same.

Consider an arbitrary minimal vector m′ : V → Z+ satisfying (1.4). (That is, (1.4) gets

violated if we decrease m′(v) by one for any v ∈ V with m′(v) > 0.) Let m be the result of

the parity adjusting of m′. Theorem 1.15 follows from Theorem 1.17 by showing that for some

subpartition X of V , m′(V ) = p(X ) and hence m(V ) = 2
⌈

1
2
p(X )

⌉
.

In this context, a set X ⊆ V is called tight (with respect to m′) if m′(X) = p(X). A node

v ∈ V is positive if m′(v) > 0. The minimality of m′ means that each positive v is contained

in a tight set. Let X be a collection of tight sets so that for every positive v, there exists an

X ∈ X with v ∈ X. Choose X with
∑

X∈X |X| minimal. We claim that X is a subpartition of

V . This completes the proof as it implies m′(V ) = p(X ).

By the minimality, X may not contain X and Y with X ⊆ Y . Assume X,Y ∈ X are

intersecting. (1.7a) implies that X ∩ Y and X ∪ Y are also tight, while (1.7b) gives that X − Y

and Y −X are tight and m′(X ∩ Y ) = 0. Let us replace X and Y by X ∪ Y in the first and by

X − Y and Y − X in the second case; both contradict the minimal choice of X .

5.1.2 Covering symmetric positively skew supermodular functions

We shall prove Theorem 1.41 in this section. We usually omit the index F and use ν = νF ,

q = qF , F = FF etc. whenever clear from the context. The following is a well-known simple
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property of the degree function1.

Claim 5.1. In a graph G = (V,E), the degree function d satisfies the following for any X,Y ⊆
V :

d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X,Y ),

d(X) + d(Y ) = d(X − Y ) + d(Y − X) + 2d(X,Y )

�

Together with the SPSS-property of p we get the following claim. (Recall the definition

qF (X) = p(X) − dF (X).)

Claim 5.2. For any X,Y ⊆ V , with p(X), p(Y ) > 0, at least one of the following inequalities

hold:

q(X) + q(Y ) ≤ q(X ∩ Y ) + q(X ∪ Y ) − 2dF (X,Y ), (5.1a)

q(X) + q(Y ) ≤ q(X − Y ) + q(Y − X) − 2dF (X,Y ) (5.1b)

�

When applying this claim, we usually omit checking p(X), p(Y ) > 0, but this will always be

easy to verify. An easy consequence is the following.

Claim 5.3. If q(X) = q(Y ) = ν, then either q(X ∩ Y ) = q(X ∪ Y ) = ν or q(X − Y ) =

q(Y −X) = ν. In addition, dF (X,Y ) = 0 in the first and dF (X,Y ) = 0 in the second alternative.

Consequently, F is a subpartition of V . �

The next simple lemma describes the change in the values of qF when a flipping is performed.

Lemma 5.4. Consider a set Z ⊆ V . By flipping (xy, uv), qF (Z) either remains unchanged or

it increases or decreases by 2. It decreases by 2 if and only if both Z and V − Z span exactly

one of the two edges xy and uv. It inccreases by two if both Z and V − Z span exactly one of

the two edges xv and yu. �

We are now ready to prove Theorem 1.41. For a contradiction, assume ν ≥ 2. |F| ≥ 2

follows by the symmetry of p. Choose two sets X,Y ∈ F , disjoint by Claim 5.3. (1.4) implies

the existence of two edges xy ∈ IF (X), uv ∈ IF (Y ) (IF (X) is the set of edges xy ∈ F with

x, y ∈ F ). At this point, xy and uv are chosen arbitrarly; in the later part of the proof their

choice we will be further specified.

Let F1 and F2 be the result of flipping (xy, uv) and (xy, vu), respectively. We claim that

either F1 ≺ F or F2 ≺ F , leading to a contradiction.

1Its directed counterpart is Claim 6.8.
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Claim 5.5. There exists no set Z with q(Z) ≥ ν − 1 crossing both X and Y .

Proof. Assume for a contradiction that such a set exists. If (5.1a) held for X an Z, then

q(X ∩ Z) + q(X ∪ Z) ≥ 2ν − 1. However, q(X ∩ Z) ≤ ν − 1 by the minimal choice of X and

hence q(X ∪ Z) = ν. Now Claim 5.3 yields a contradiction for X ∪ Z and Y . If (5.1b) held for

X and Z, then similarly, q(Z − X) = ν and we get a contradiction for Z − X and Y .

We call a set Z ⊆ V stable if it does not contain a subset U ⊆ Z with q(U) = ν. The

�-minimal choice of F implies that either νF1
> νF or νF1

= νF and |FF1
| ≥ |FF |. This enables

us to derive an extremely useful structural property.

Lemma 5.6. For xy ∈ IF (X), uv ∈ IF (Y ), there exists a unique minimal stable xvyu-set2Zxv

and a unique minimal stable xvyu-set Zyu with q(Zxv) = q(Zyu) = ν − 2, Zxv ∩ Zyu = ∅.
Furthermore, either (a) q(Zxv ∩X) = q(Zxv ∪X) = ν − 1, dF (Zxv, X) = 0 or (b) q(Zxv −X) =

q(X − Zxv) = ν − 1, dF (Zxv, X) = 0; analogous properties hold by changing the role of X and

Y and also that of Zxv and Zyu.

Proof. Lemma 5.4 and Claim 5.5 together imply νF1
≤ νF . Assume now νF1

= νF = ν but

|FF1
| ≥ |FF |. X,Y /∈ FF1

, hence |FF1
− FF | ≥ 2. This may only happen if there exist two

disjoint stable sets Zxv and Zyu with q(Zxv) = q(Zyu) = ν − 2, and Zxv is an xvyu-set while

Zyu is a xvyu-set. To see that a unique minimal Zxv can be choosen, assume Z and Z ′ are two

stable xvyu sets with q(Z) = q(Z ′) = ν − 2. It suffices to show q(Z ∩Z ′) = ν − 2. (5.1b) cannot

hold for Z and Z ′ as it would give q(Z −Z ′) = q(Z ′ −Z) = ν, contradicting the stability. Thus

(5.1a) gives q(Z ∩ Z ′) + q(Z ∪ Z ′) ≥ 2ν − 4. Claim 5.5 implies that both terms are at most

ν − 2, hence q(Z ∩ Z ′) = ν − 2. The rest of the claim follows similarly, using Claim 5.2 for X

and Zxv.

The same argument for flipping (xy, vu) instead of (xy, uv) shows the existence of the sets

Zxu, Zyv with analogous properties. This is an abuse of notation as the set Zxv depends not

only on the nodes x and v but on the edges xy and uv; however, this should always be clear

from the context. Claims 5.2 and 5.5 imply:

Claim 5.7. At least one of the following alternatives hold:

(a) q(Zxu ∩ Zxv) = q(Zxu ∪ Zxv) = ν − 1, dF (Zxu, Zxv) = 1, Y ⊆ ZxuΔZxv;

(b) q(Zxu − Zxv) = q(Zxv − Zxu) = ν − 1, dF (Zxu, Zxv) = 1, (ZxuΔZxv) ∩ X = ∅.

There are analogue alternatives for Zyu and Zyv. �

2By an xy-set we mean a set containing x and not containing y. We also use this notation for multiple nodes,

for example, an xvyu-set contains x and v and does not contain y and u.
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Lemma 5.8. There exist subsets X0 ⊆ X, Y0 ⊆ Y with qF (X0) = qF (Y0) = ν − 1 and X0, Y0

minimal subject to these properties. Furthermore, if T is stable, q(T ) = ν − 1, X0 − T and

X0 ∩ T are nonempty, then X0 ∪ T ⊇ X. The same holds for X0 and X replaced by Y0 and Y .

Proof. By Lemma 5.6, either q(X ∩Zxv) = ν − 1 or q(X −Zxv) = ν − 1, implying the existence

of X0. For the second part, T −X0 �= ∅ by the minimality of X0; (5.1b) cannot hold for X0 and

T since q(X0 − T ) ≤ ν − 2 also by the minimality and q(T −X0) ≤ ν − 1 by the stability of T .

Thus (5.1a) holds. Again, q(X0 ∩ T ) ≤ ν − 2 by the minimality of X0 and hence q(X0 ∪ T ) ≥ ν

implying X0 ∪ T ⊇ X.

Since ν − 1 > 0, (1.4) enables us to choose the edges xy, uv with the stronger property

xy ∈ IF (X0), uv ∈ IF (Y0). Take alternative (b) in Claim 5.7. Then Zxu − Zxv and Zxv − Zxu

fulfill the conditions on T in Lemma 5.8 for Y , giving that the nonempty set Y −Y0 is contained

in both, a contradiction as these sets are disjoint. Thus alternative (a) holds for Zxu, Zxv and

similarly for Zyu, Zyv. Now Zxu ∩ Zxv and Zyu ∩ Zyv fulfill the conditions on T and hence both

contain X − X0, a contradiction again (they are disjoint as Zxu and Zyv have already been

disjoint.) The proof of Theorem 1.41 is now complete.

5.1.3 New proof of Theorem 1.17

For p(X) = (R(X)−dG(X))+, we have the following slightly stronger version of Claim 5.2, with

dG+F instead of dF :

Claim 5.9. For any X,Y ⊆ V with p(X), p(Y ) > 0, at least one of the following inequalities

hold:

q(X) + q(Y ) ≤ q(X ∩ Y ) + q(X ∪ Y ) − 2dG+F (X,Y ), (5.2a)

q(X) + q(Y ) ≤ q(X − Y ) + q(Y − X) − 2dG+F (X,Y ) (5.2b)

Besides this, the only specific property of R we use is

R(X ∪ Y ) ≤ max{R(X), R(Y )} for any disjoint sets X,Y ⊆ V, (5.3)

straightforward from the definition of R.3 In fact, (5.3) will solely be used to prove Lemma 5.10.

To prove Theorem 1.17, choose a �-minimal m-prescribed edge-set F ; νF ≤ 1 by Theo-

rem 1.41. We are done if νF = 0, therefore the only remaining case is νF = 1.

Let us adapt the notation of the proof of Theorem 1.41. The argument of the proof fails for

ν = 1 since although X0 and Y0 exist, IF (X0) or IF (Y0) might be empty. Instead, we will use

the following connectivity property:

3Actually, this property is valid for arbitrary (not necessarly disjoint) sets X and Y . In fact, if we require it

for arbitrary sets, it will itself imply not only that R is skew-supermodular but also that it arises in the form

(1.2) from a connectivity requirement function r. On the other hand, given a function R which is symmetric,

skew-supermodular and satisfies (5.3), it does not follow that R arises in the form (1.2).

88



Lemma 5.10. If ν = 1, then there exists no ∅ �= U � X such that dG(U,X − U) = 0 and

dF (U,X − U) ≤ 1. The same holds for Y .

Proof. Suppose, contrary to our claim, that such a set U existed. R(X) ≤ max{R(U), R(X−U)}
by (5.3). By symmetry, assume R(X) ≤ R(U). Also, dG+F (U) ≤ dG+F (X) − dG+F (X −
U, V − X) + 1. By the minimal choice of X, q(U) < q(X) = R(X) − dG+F (X), implying

dG+F (X −U, V −X) = 0, hence dG(X −U) = 0. ν = 1 yields R(X −U) ≤ 1, contradicting the

assumption that there are no marginal sets.

In Claim 5.7, we can also write dG+F instead of dF because of the stronger Claim 5.9. Taking

alternative (a), the disjoint sets Zxu −Zxv and Zxv −Zxu cover Y and the only edge connecting

them is uv, a contradiction to Lemma 5.10. In alternative (b), xy is the only edge connecting

X ∩ (Zxu ∩Zxv) and X − (Zxu ∩Zxv), a contradiction again to Lemma 5.10. This completes the

proof of Theorem 1.17.

5.1.4 New proof of Theorem 1.22

Assume now p is symmetric and positively crossing supermodular. Thus for crossing X,Y with

p(X), p(Y ) > 0, both (5.1a) and (5.1b), and also both alternatives in Lemma 5.6 and Claim 5.7

hold. We assume that (1.4) holds, but do not assume (1.6). Theorem 1.22 is an immediate

consequence of the following:

Theorem 5.11. Let F be a �-minimal m-prescribed edge set. Either νF = 0, or νF = 1 and

the following hold:

(i) FF forms a partition of V .

(ii) dim(p) − 1 ≥ |FF | + |F |.

(iii) There exists an edge set H covering p with |H| = |FF | + |F |.

We will need the following slight generalization of Lemma 1.20:

Lemma 5.12. Let P = {X1, . . . , Xt} be a subpartition of V so that p(
⋃t

i=1 Xi) = 0, p(X1) = 1

and p(X1 ∪ Xj) > 0 for any j = 2, . . . , t. Then P is a p-full partition.

Proof. Assume first P is not a partition, that is, V − ⋃t
i=1 Xi �= ∅. By induction on |I|, we

prove that p(
⋃

i∈I Xi) > 0 for any 1 ∈ I ⊆ {1, . . . , t}. This will give a contradiction for

I = {1, . . . , t}. By the assumption, the claim is true for |I| ≤ 2. For some z ∈ I − {1},
let A = X1 ∪ Xz and B =

⋃
i∈I−z Xi. Now A and B are crossing and p(A), p(B) > 0, hence

p(A)+p(B) ≤ p(A∪B)+p(A∩B). The claim follows as the LHS is at least 2, while p(A∩B) = 1

and A ∪ B =
⋃

i∈I Xi.

We have proved that
⋃t

i=1 Xi = V . The same argument is still applicable for every 1 ∈ I �

{1, . . . , t}. Using the symmetry of p, we get that P is p-full.

89



Proof of Theorem 5.11. νF ≤ 1 follows by Theorem 1.41; from now on, assume νF = 1. Let us

use the notation of the proof of Theorem 1.41: let X,Y ∈ FF , xy ∈ IF (X), uv ∈ IF (Y ), Zxv,

Zyu, Zxu, Zyv as in Lemma 5.6.

Lemma 5.13. (i) For each edge xy ∈ IF (X), there exist a unique maximal x̄y-set Dxy ⊆ X

and a unique maximal xȳ-set Dyx ⊆ X with q(Dxy) = q(Dyx) = 0. Moreover, Dxy ∩Dyx =

∅, Dxy ∪ Dyx = X. Analogous sets exists for edges in IF (Y ).

(ii) For xy ∈ IF (X) and uv ∈ IF (Y ), we have Zxv = Dyx ∪ Duv.

(iii) For xy ∈ IF (X), the unique edge between Dxy and Dyx is xy. Furthermore, dF (X) = 0.

(iv) For xy, x′y′ ∈ IF (X), the sets Dxy and Dx′y′ are either disjoint or one contains the other

or their union is X.

Proof. (i) For an arbitrary uv ∈ IF (Y ), consider the set Zxv. Both alternatives in Lemma 5.6

hold and thus q(X ∩ Zxv) = q(X − Zxv) = 0. The existence of the unique maximal sets Dxy

and Dyx easily follows by (5.1a). Also, (5.1a) would give a contradiction if Dxy ∩ Dyx �= ∅.
Dxy ∪ Dyx = X follows by X − Zxv ⊆ Dxy, X ∩ Zxv ⊆ Dyx. We have equality for both because

of Dxy ∩ Dyx = ∅.
(ii) By the above argument, we already have Zxv ∩ X = Dyx, Zxv ∩ Y = Duv. Assume

for a contradiction that U = Zxv − (X ∪ Y ) �= ∅. From Lemma 5.6, we obtain q(Zxv − X) =

q(Zxv − Y ) = 0. These two sets are crossing since U �= ∅. (5.1a) gives 0 ≤ q(Zxv) + q(U) and

thus 1 ≤ q(U), a contradiction since Zxv is stable.

(iii) Alternative (b) in Claim 5.7 gives the first part. The second part follows from (5.1b)

applied for X and each of Zxv, Zxu, Zyv and Zyu for an arbitrary uv ∈ IF (Y ).

(iv) can be derived easily using (5.1a) and (5.1b) for the sets Dxy, Dxy, Dx′y′ and Dy′x′ .

These arguments work for all possible choices of X, Y , xy and uv. This enables us to derive

the following nice structure. Let W1, . . . , W� be the members of FF . Then each Wi admits a

partition Wi = {W 1
i , . . . , W si

i } satisfying the following:

• dF (Wi) = 0 for i = 1, . . . , �.

• The edges in IF (Wi) are between different classes of Wi, and IF (Wi) forms a spanning

tree Ti if we contract the members of Wi to single nodes.

• For an uv ∈ IF (Wi), the sets Duv and Dvu are the unions of the members of Wi corre-

sponding to the connected components of Ti − uv containing v and u, respectively.

Let P =
⋃�

i=1 Wi. We claim that for some choice of X1 ∈ P, P fulfils the conditions in

Lemma 5.12. This immediately implies (i) and (ii) of the theorem. (iii) can be proved by

induction: for some i �= j, choose an arbitrary x ∈ Wi and v ∈ Wj, increase m(x) and m(v) by
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1 and add the edge xv to F . Clearly, if |FF | > 2 then it decreases by 1, and if |FF | = 2 then

νF reduces to 0.

Let X1 correspond to a leaf x in T1; we may assume X1 = W 1
1 = Dyx for xy ∈ IF (W1). Since

q(Dyx) = 0 and dF (Dyx) = 1, it follows that p(X1) = 1. We need to prove p(X1 ∪ W j
i ) > 0 for

any 1 ≤ i ≤ �, 1 ≤ j ≤ si.

First, consider the case i > 1. If W j
i corresponds to a leaf in Ti, then W j

i = Duv for some

uv ∈ IF (Wi) and X1 ∪ W j
i = Zxv. We are done since q(Zxv) = −1 and dF (Zxw) = 2. Next,

assume that W j
i is not a leaf. Let uv ∈ IF (W ) be one of the edges entering W j

i . Then Duv � W j
i .

Let F ′ = {u′v′ ∈ IF (Duv), u′ ∈ W j
i − {v}}. Clearly, Duv = W j

i ∪
(⋃

u′v′∈F ′ Du′v′

)
.

Let A = Dxy ∪
(⋃

u′v′∈F ′ Du′v′

)
. This is the union of the sets Zyv′ for u′v′ ∈ F ′. Recall that

p(Dxy) = p(Zyv′) = 1 for each u′v′. As in the proof of Lemma 5.12, the iterative application

of (1.7a) for these sets gives p(A) ≥ 1. Now (1.7b) for A and Zxv = Dyx ∪ Duv gives 2 ≤
p(A) + p(Zxv) ≤ p(A−Zxv) + p(Zxv −A) = 1 + p(Zxv −A), since A−Zxv = Dxy. We are done

since Zxv − A = X1 ∪ W j
i , the set we are interested in.

It remains to prove p(X1 ∪W j
1 ) > 0 for 2 ≤ j ≤ s1. Assume W 1

2 corresponds to a leaf in T2,

W 1
2 = Duv. Now p(X1 ∪W 1

2 ) = 1, since X1 ∪W 1
2 = Zxv, and p(W j

1 ∪W 1
2 ) ≥ 1 can be proved the

same way as above. Then 2 ≤ p(X1∪W 1
2 )+p(W j

1 ∪W 1
2 ) ≤ p(W 1

2 )+p(X1∪W j
1 ∪W 1

2 ) and hence

p(B) ≥ 1 for B = X1∪W j
1 ∪W 1

2 . Note that p(W2) = 1, since q(W2) = 1, dF (W2) = 0. Applying

(1.7b) for B and W2 we get 2 ≤ p(B)+p(W2) ≤ p(B−W2)+p(W2−B) = p(X1∪W j
1 )+p(Dvu).

We are done since p(Dvu) = 1.

5.2 Basic results on partition-constrained local edge-con-

nectivity augmentation

5.2.1 Proof of Theorem 1.42

Let (F, ϕ) be an 
m-prescribed legal edge set. For edges xy, uv ∈ F , the pair (xy, uv) is flippable

if xy is an ij-edge and uv is an i′j′-edge with i �= j′, j �= i′. In this case, flipping (xy, uv) with

ϕ′(xv, x) = i, ϕ′(xv, v) = j′, ϕ′(yu, y) = j, ϕ′(yu, u) = i′ gives another 
m-prescribed legal edge

set (F ′, ϕ′). Notice that for two edges xy, uv ∈ F , at least one of (xy, uv) and (xy, vu) is a

flippable pair.

Let us adapt the notation and results of Section 5.1 on covering SPSS-functions. Assume

νF > 0. The symmetry of p yields |FF | ≥ 2. By way of contradiction, assume |FF | ≥ 3. Let

X,Y and W be three different (and thus disjoint) members of FF . By (1.4), there exist flippable

edges xy ∈ IF (X), uv ∈ IF (Y ).

If (xy, uv) is flippable, then Lemma 5.6 remains also valid in the current context. Lemma 5.8

is also applicable, as its proof used only the existence of a flippable edge pair and the SPSS-
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property. We also need the following simple observation:

Claim 5.14. There exists no set Z with q(Z) ≥ ν − 2 crossing all three sets X,Y and W .

Proof. By Claim 5.2, q(Z ′) ≥ ν − 1 for either Z ′ = Z ∪ W or Z ′ = Z − W . This contradicts

Claim 5.5.

A different argument is given for ν ≥ 2 and ν = 1.

The case ν ≥ 2

For an edge xy ∈ IF (X), we say that the endnode y is heavy if there exists an xy-set D ⊆ X

with q(D) = ν − 1. An endnode is light if it is not heavy. Heavy and light endnodes of edges

in IF (Y ) and in IF (W ) can be defined in an analogous way.

Claim 5.15. If y is a heavy endnode of the edge xy ∈ IF (X), then there exists a unique maximal

xy-set Dxy ⊆ X with q(Dxy) = ν − 1. The analogous statement holds for edges in IF (Y ) and in

IF (W ).

Proof. Assume D and D′ are two xy-sets with D,D′ ⊆ X and q(D) = q(D′) = ν − 1. We claim

that q(D ∪D′) = ν − 1, implying the existence of a unique maximal Dxy. Indeed, if (5.2b) held

for D and D′ then q(D − D′) = q(D′ − D) = ν would follow, contradicting the fact that both

are subsets of X.

Lemma 5.16. For an edge xy ∈ IF (X), if the endnode x is light, then y is heavy. Furthermore,

if x is light and (xy, uv) is flippable for some uv ∈ IF (Y ), then v is a heavy endnode of uv.

Also, Zxv ∩ X = X − Dxy and q(Zxv − X) = ν − 1.

Proof. Consider an edge uv ∈ IF (Y ) with (xy, uv) flippable. Alternative (a) in Lemma 5.6 is

excluded since x is light, hence q(Zxv − X) = q(X − Zxv) = ν − 1. Now D = X − Zxv is an

xy-set with q(D) = ν − 1, implying that y is heavy. To see that v is also heavy, apply Claim 5.9

for Z ′ = Zxv − X and Y . (5.2b) cannot hold for Z ′ and Y . Indeed, q(Z ′ − Y ) ≤ ν − 1 because

Z ′ is stable, and q(Y −Z ′) ≤ ν − 1 by the minimality of Y . (5.2a) yields q(Y ∩Z ′) = ν − 1 and

hence v is heavy.

It is left to show that Zxv ∩ X = X − Dxy. On the one hand, X − Zxv ⊆ Dxy by the

maximality of Dxy. On the other hand, assume that Zxv ∩ Dxy �= ∅. (5.2a) cannot hold for Zxv

and Dxy as dF (Zxv, Dxy) ≥ 1 and thus we would have q(Zxv ∩ Dxy) + q(Dxy ∪ Zxu) ≥ 2ν − 1.

a contradiction. Hence (5.2b) applies, giving q(Zxv − Dxy) = ν − 2, contradicting the minimal

choice of Zxv.

Fix X0 ⊆ X be as in Lemma 5.8.

Lemma 5.17. For every edge xy ∈ IF (X0), exactly one of the two endnodes is heavy.
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Proof. According to the previous lemma, we only have to show that x and y cannot be both

heavy. Indeed, assume D is an xy-set and D′ is an xy-set with q(D) = q(D′) = ν−1, D,D′ ⊆ X,

and both of them are choosen minimal to these properties. If D and D′ are not disjoint, then

they are crossing. Now (5.2b) would give that D−D′ and D′−D are smaller sets with the same

properties, while in the case of (5.2a), we have the contradictory q(D ∪ D′) + q(D ∩ D′) ≥ 2ν.

However, the second part of Lemma 5.8 implies that X − X0 is a subset of both D and D′,

giving a contradiction.

Fix an xy ∈ IF (X0) with heavy endnode y so that Dxy is maximal. Let A = X−Dxy. Again

by Lemma 5.8, A ⊆ X0, and q(A) ≤ ν − 2, since x is the light endnode of xy (and also by the

minimality of X0).

Claim 5.18. IF (A) = ∅.

Proof. Indeed, assume that there exists an edge x′y′ ∈ IF (A) with heavy endnode y′ and

consider the sets Dxy and Dx′y′ . None of them is contained in the other because of y′ /∈ Dxy

and the maximal choice of Dxy. If (5.2b) held, then q(Dxy − Dx′y′) = q(Dxy − Dx′y′) = ν − 1,

a contradiction: by Lemma 5.8, both must be subsets of X0. In the case of (5.2a), we have

q(Dxy ∩Dx′y′) = q(Dxy ∪Dx′y′) = ν − 1, since Dxy ∪Dx′y′ ⊆ X − x′. Now Dxy ∪Dx′y′ is a larger

x′y′ set, contradicting the maximality of Dx′y′ .

Choose arbitrary edges uv ∈ IF (Y ), wz ∈ IF (W ) so that (xy, uv) and (xy, wz) are both

flippable. Let Z = Zxv and Z ′ = Zxz. Claim 5.14 implies Z ∩ W = Z ′ ∩ Y = ∅ and thus

Z − Z ′, Z ′ − Z �= ∅.

Lemma 5.19. xy is the only edge in G + F incident to A.

Together with Claim 5.18, this will immediately lead to a contradiction. Indeed, m(A) = 1

because of IF (A) = ∅. Now dG(A) = 0 and (1.4) give R(A) ≤ 1, hence A is a marginal set.

Proof. We already know by Lemma 5.16 that Z ∩X = Z ′∩X = A and q(Z −A) = q(Z ′−A) =

ν − 1. We shall prove Z ∩ Z ′ = A. It suffices to verify that Z ∩ (Z ′ − A) = ∅. Indeed, assume

they intersected. If (5.2a) held for Z and Z ′−A, then q(Z∩(Z ′−A))+q(Z∪(Z ′−A)) ≥ 2ν−3.

This is a contradiction since the first term is at most ν−1 by the stability of Z, while the second

is at most ν − 3 by Claim 5.14. On the other hand, (5.2b) would give q(Z − (Z ′ −A)) = ν − 2,

a contradiction to the minimality of Z.

Hence A is the intersection of any two of the three sets X, Z and Z ′. (5.2b) holds for any

two of them, since (5.2a) is excluded by q(A) ≤ ν − 2 and q(Z ∪ Z ′) ≤ ν − 3. (5.2b) gives

dG+F (Z,X) = dG+F (Z ′, X) = 0, dG+F (Z,Z ′) = 1, leading to the desired conclusion.

93



The case ν = 1

We will again use the connectivity property Lemma 5.10 as in the proof of Theorem 1.17. The

next claim can be proved similarly.

Claim 5.20. If ν = 1 and Z is a stable set with q(Z) = −1, then Z is connected in G + F . �

Consider edges xy ∈ IF (X), uv ∈ IF (Y ) and wz ∈ IF (W ) so that (xy, uv) and (xy, wz)

are flippable. Let us investigate the three sets X, Z = Zxv and Z ′ = Zxz, pairwise crossing by

Claim 5.14.

If (5.2b) held for X and Z, then q(X − Z) = q(Z − X) = 0, dG+F (X,Z) = 0. As in the

proof of Lemma 5.19, it can be seen that Z ′ is disjoint from both Z − X and X − Z. We get

a contradiction to Claim 5.20, since dG+F (Z ′ ∩ X,Z ′ − X) = 0. Consequently, (5.2a) can be

applied, giving q(X ∪ Z) = 0. Let A = X ∪ Z.

The same argument leads to q(B) = 0 for B = X ∪Zyu. Assume now (5.2a) holds for A and

B. dG+F (A,B) ≥ 1 because of the edge uv; hence q(A∩B) = q(A∪B) = 1 and dG+F (A,B) = 1

follows, giving Y ⊆ A ∪ B. Since the sets Zxv and Zyu are disjoint, A ∩ B = X and thus

Y ⊆ AΔB, giving a contradiction to Lemma 5.10 when applied for Y , as uv is a cut edge of Y .

On the other hand, (5.2b) for A and B gives q(A − B) = q(B − A) = 0, dG+F (A,B) = 0.

Again, we can prove using the minimality of Z ′ and Claim 5.14 that Z ′ is disjoint from both A−B

and B−A, and we get a contradiction again to Claim 5.20 because of dG+F (Z ′∩X,Z ′−X) = 0.

5.2.2 Approximating with an additive error rmax

In this section we shall prove Theorem 1.43. The key is the following simple corollary of

Theorem 1.42. We say that a partition Q = (Q1, . . . , Qt) of V and a legal degree-prescription


m = (m1, . . . , mt) are compatible if mi(v) = 0 whenever v /∈ Qi.

Lemma 5.21. Assume we have a partition Q = (Q1, . . . , Qt) of V with a compatible legal

degree-prescription 
m = (m1, . . . , mt) satisfying (1.4). Let F -be an 
m-prescribed edge set. Then

there exists a Q-legal augmenting edge set H with |H| = 1
2
m(V ) + νF . Given 
m, we can find

such an H in polynomial time.

Proof. We may assume that F is �-minimal. The proof is by induction on νF . If νF = 0 then

H = F is a Q-legal augmenting edge set because of the compatibility. If νF > 0, then |FF | = 2

by Theorem 1.42;. Let FF = {X,Y }. (1.4) yields two different colours i and j among two nodes

x ∈ X, v ∈ Y with mi(x),mj(v) > 0. Let us increase mi(x) and mj(v) by one; let 
m′ denote

the resulting degree-prescription (which is clearly legal) and let F ′ = F +xv. Now νF ′ = νF − 1

and 
m′ is also compatible with Q. Hence by induction, we have a Q-legal augmenting edge set

of size 1
2
m′(V ) + νF ′ = 1

2
m(V ) + νF , which is the desired conclusion.

94



From the algorithmic point of view, all we use from the extreme choice of F is that there is

no improving flipping. This can be checked by a flow computation for each pair of edges of F ,

and the set system FF can also be determined via flow computations.

We do not estimate the running times as one can certainly gain a lot by careful implemen-

tations; this is beyond the scope of this chapter. Let us now turn to the proof of Theorem 1.43.

We shall construct a legal degree-prescription 
m compatible with Q so that m(V ) = 2ΨQ(G).

Then the theorem will follow by the previous lemma, since rmax is a trivial upper bound on νF .

First, let us choose a minimal m′ satisfying (1.4) as in Section 5.1.1, regardless to the

partition Q. Let m′
i(v) = m′(v) if v ∈ Qi and 0 otherwise. If (1.8) holds for m′, then we are

done: consider the m we get from m′ by parity adjusting. Clearly, m(V ) = α(G).

Otherwise, there is exactly one j with m′
j(V ) > m′(V )

2
. We need the following simple claim

(recall that a set X is called tight if m′(X) = p(X) and v ∈ V is positive if m′(v) > 0.)

Claim 5.22. If m′ is minimal, then for each positive v there exists a unique minimal tight set

Xv containing v. If u ∈ Xv − v, then the following m′′ also satisfies (1.4): m′′(u) := m′(u) + 1,

m′′(v) := m′(v) − 1, and m′′(z) := m′(z) otherwise. �

Consider now a positive v ∈ Qj. If Xv−Qj �= ∅ then by the above claim, we can modify m′ so

that m′
j(V ) decreases by one. Let us iterate this procedure as long as possible. Either we arrive

at an m′ with m′
j(V ) = m′(V )

2
and thus (1.8) is satisfied, or at a certain point, no more such

modification is possible. Hence m′
j(V ) > m′(V )

2
and Xv ⊆ Qj for every positive v ∈ Qj. Using

the uncrossing argument as in Section 5.1.1, we get a subpartition X of Qj with p(X ) = m′
j(V ).

Afterwards, let us increase m′(z) on an arbitrary node z ∈ V − Qj by 2m′
j(V ) − m(V ). The

resulting m is a legal degree-prescription with m(V ) = βj(G), as required.

5.2.3 Hydrae and medusae

For a partition H, let RH = maxZ∈H R(Z). Our aim is now to find a good characterization in

order to decide whether a partition H = {X∗, Y ∗, C1, . . . , C�} forms a hydra with heads X∗ and

Y ∗. Let ξ = min{R(X∗), R(Y ∗)}, Ξ = max{R(X∗), R(Y ∗)}. Let GH denote the graph on the

node set {vX∗ , vY ∗ , vC1
, . . . , vC�

} corresponding to the members of H, and let vZvZ′ be an edge

if R(Z,Z ′) ≥ ξ for Z,Z ′ ∈ H.

Theorem 5.23. H = {X∗, Y ∗, C1, . . . , C�} with dG(Ci, Cj) = 0 for every 1 ≤ i < j ≤ � forms a

hydra if and only if the following hold: RH = Ξ, and there is a path in GH connecting vX∗ and

vY ∗. Furthermore, if ξ < Ξ then there is a unique Ca with R(Ca) = Ξ, and R(Ci, Cj) ≤ ξ for

every 1 ≤ i < j ≤ �.

Proof. Wlog. assume R(X∗) = Ξ, R(Y ∗) = ξ. Let us show the necessity of the conditions first.

RH > Ξ means that for some i, j, RH = R(Ci, Cj) > Ξ. Now (1.5a) cannot hold for X∗∪Ci and
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X∗ ∪ Cj. Next, assume there is no path in GH between vX∗ and vY ∗ . Let I denote the set of

those indices i for which vCi
can be reached from vX∗ , and let J = {1, . . . , �} − I. Then (1.5a)

cannot hold with equality for Z = X∗ ∪ (
⋃

i∈I Ci) and Z ′ = X∗ ∪ (
⋃

j∈J Cj), since R(Z) < ξ,

R(Z ′) = Ξ, but R(Z ∩ Z ′) = Ξ and R(Z ∪ Z ′) = ξ.

In the case of ξ < Ξ, assume first R(Ci, Cj) > ξ for some i �= j. Now (1.5a) cannot hold for

Z = Y ∗∪Ci and Z ′ = Y ∗∪Cj. Indeed, it is easy to see that R(Z∪Z ′) ≤ max{R(Z), R(Z ′)}, and

min{R(Z), R(Z ′)} > R(Z∩Z ′). Assume next that there are multiple indices i with R(X∗, Ci) =

Ξ. Let I and J be the partition of such indices into two nonempty sets. For Z = X∗∪ (
⋃

i∈I Ci)

and Z ′ = X∗∪(
⋃

j∈J Cj), we get a contradiction since R(Z) = R(Z ′) = R(Z∩Z ′) = Ξ, although

R(Z ∪ Z ′) < Ξ.

Sufficiency is straightforward if Ξ = ξ since the path in GH between vX∗ and vY ∗ guarantees

R(X∗∪ (
⋃

i∈I Ci)) = R(Y ∗∪ (
⋃

i∈I Ci)) = Ξ for arbitrary I ⊆ {1, . . . , �}. It is also easy to verify

the definition for ξ < Ξ using the path in GH and the uniqueness of Ca. This is left to the

reader.

In the rest of this section, we list some useful properties of hydrae, needed for proving the

max ≤ min direction of the conjectures and Theorem 5.30. H = {X∗, Y ∗, C1, . . . , C�} will

always denote a hydra with heads X∗ and Y ∗. The following two lemmas can be proved by a

simple induction based on the properties in Definition 1.44.

Lemma 5.24. For a subset I ⊆ {1, . . . , �},

p(X∗ ∪ (
⋃
i∈I

Ci)) − p(X∗) =
∑
i∈I

(p(X∗ ∪ Ci) − p(X∗)),

and the same holds for X∗ substituted by Y ∗. �

Let us fix a colour h. We say that an edge xy ∈ V 2 is a ordinary edge w.r.t. H and h, if

mh(x) > 0 and mi(y) > 0, for some i �= h and furthermore, x and y are in one of the following

three configurations: (a) x ∈ X∗, y ∈ Y ∗; (b) x ∈ Y ∗, y ∈ X∗; or (c) x ∈ ⋃
Ci and y ∈ X∗∪Y ∗.

Lemma 5.25. (i) Let xy ∈ V 2 be a ordinary edge. Consider the graph G′ = G + xy and the

degree-prescription 
m′ with m′
h(x) = mh(x) − 1, m′

i(y) = mi(y) − 1 and m′
j(z) = mj(z)

otherwise. A tentacle Ci is h-odd for G′, 
m′, p′ if and only if it is h-odd for G, 
m, p.4

(ii) H′ = {X∗, Y ∗, C1 ∪ C2, C3, . . . , C�} is also a hydra.

(iii) H′ = {X∗ ∪ C1, Y
∗, C2, . . . , C�} is also a hydra. Moreover, a tentacle Ci is h-odd in H′ if

and only if it is h-odd in H.

�

4Note that p is also dependent from G.
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Unlike the previous two, the next lemma is not a direct consequence of the definition,

however, follows easily from the structural characterization, Theorem 5.23.

Lemma 5.26. For any tentacle Ci, p(Ci ∪ X∗) + p(Ci ∪ Y ∗) = p(X∗) + p(Y ∗). �

An important consequence of this lemma is that Ci is h-odd if and only if p(Ci ∪ Y ∗) −
p(Y ∗) + mh(Ci) is odd, that is, X∗ can be replaced by Y ∗ in the definition of h-odd tentacles.

In the next definition we define the subclass of hydrae, which plays a central role in the

proof of Theorem 5.30.

Definition 5.27. The partition H = {X∗, Y ∗, C1, . . . , C�} forms a medusa in G with heads

X∗, Y ∗ and tentacles Ci if

(i) dG(Ci, Cj) = 0 for every 1 ≤ i < j ≤ �; and

(ii) R(Ci) < ξ = min{R(X∗), R(Y ∗)} for at least � − 1 different values of i ∈ {1, . . . , �}.

Theorem 5.23 immediately implies that all medusae are hydrae. Indeed, if R(Ci) < ξ holds

for every tentacle Ci, then R(X∗, Y ∗) = Ξ = ξ. If there is a single exceptional tentacle Ca, then

either GH contains the edge vX∗vY ∗ or the path vX∗vCa
vY ∗ . Notice that the underlying partition

of a C4-configuration forms a hydra, however, not a medusa.

We give another, equivalent characterization of medusae. Let H = {X∗, Y ∗, C1, . . . , C�} be

a partition of V . For 1 ≤ i, j ≤ �, i �= j, we say that Z,Z ′ is a separating pair for i and j if

both sets are unions of some components of H; furthermore, Ci ⊆ Z ∩ Z ′, Cj ∩ (Z ∪ Z ′) = ∅,
X∗ ⊆ Z−Z ′ and Y ∗ ⊆ Z ′−Z. For 1 ≤ t ≤ �, we say that the separating pair Z, Z ′ is coherent

with t if either Ct ⊆ (Z ∩ Z ′) or Ct ∩ (Z ∪ Z ′) = ∅. (Note that Z and Z ′ is always coherent

with i and j.)

Lemma 5.28. Let H = {X∗, Y ∗, C1, . . . , C�} be a partition with dG(Ci, Cj) = 0 for every

1 ≤ i < j ≤ �. H forms a medusa with heads X∗ and Y ∗ if any only if for any 1 ≤ i, j, t ≤ �,

i �= j, there exists a separating pair Z, Z ′ for i and j coherent with t, so that (1.5a) does not

hold for Z and Z ′.

Proof. If H is a medusa, then Z = X∗ ∪ Ci and Z ′ = Y ∗ ∪ Ci is a separating pair for i and

any j �= i, coherent with t for any 1 ≤ t ≤ �. For the other direction, let us use Ξ and ξ as

before. We shall first prove R(Ci, Cj) < Ξ for any i �= j. By way of contradiction, assume

RH = R(Ci, Cj) for some i �= j. Then (1.5a) clearly holds for any pair Z,Z ′ separating i and

j. We also get a contradiction if there existed i �= j with R(Ci) = R(Cj) = Ξ (and thus

R(Ci, X
∗ ∪ Y ∗) = R(Cj, X

∗ ∪ Y ∗) = Ξ). In the case of ξ = Ξ it already follows that H is a

medusa.
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If ξ < Ξ then wlog. assume Ξ = R(X∗, Ca). By the argument above, there is a unique such

a. Let ξ′ be the second largest connectivity value between different classes of H (ξ ≤ ξ′). It

suffices to prove that ξ′ may occur only between Y ∗ and X∗ or between Y ∗ and Ca.

Indeed, if ξ′ = R(Ci, Cj), we show that (1.5a) holds for any pair Z,Z ′ separating i and j,

coherent with a. If Ca ⊆ Z∩Z ′, then R(Z)+R(Z ′) = Ξ+ξ′, R(Z∩Z ′) = Ξ and R(Z∪Z ′) = ξ′.

If Ca ∩ (Z ∪ Z ′) = ∅, then R(Z) = R(Z ∪ Z ′) = Ξ and R(Z ′) = R(Z ∩ Z ′) = ξ′. Finally, if

ξ′ = R(Ci, X
∗ ∪ Y ∗) for i �= a, then we get a contradiction for any pair Z, Z ′ separating i and

a.

5.2.4 max ≤ min in Conjectures 1.45 and 1.46

max ≤ min in Conjecture 1.45 is established by the following lemma:

Lemma 5.29. Let us be given a hydra H = {X∗, Y ∗, C1, . . . , C�}, a legal degree-prescription


m = (m1, . . . , mt), a fixed 1 ≤ h ≤ t, and an arbitrary 
m-prescribed legal edge set (F, ϕ). Then

νF ≥ τh(G, r, 
m,H).

Note that (1.4) is not being assumed.

Proof. The proof is by induction on m(V ). First, we shall prove that if 
m ≡ 0, then the

maximum value of p is at least τh(G, r, 0,H). (This maximum value equals νF for F = ∅, the

unique 
m-prescribed legal edge-set.) For an h-odd tentacle Ci, p(X∗ ∪ Ci) − p(X∗) is odd. Let

I = {i : p(X∗∪Ci)−p(X∗) > 0} and J = {1, . . . , �}−I. By Lemma 5.26, p(Y ∗∪Cj)−p(Y ∗) ≥ 0

for every j ∈ J . Furthermore, if Cj is h-odd, then we have strong inequality here. The number of

such indices is at least χh−|I|. Let X = X∗∪(
⋃

i∈I Ci) and Y = Y ∗∪(
⋃

i∈J Cj). By Lemma 5.24,

p(X)− p(X∗) ≥ |I| and p(Y )− p(Y ∗) ≥ χh −|I|. Y = V −X and thus p(X) = p(Y ). Therefore

τh(G, r, 
m,H) =
1

2
(χh + p(X∗) + p(Y ∗)) ≤ 1

2
(p(X) + p(Y )) = p(X) ≤ ν∅,

proving the claim.

Next, assume 
m �≡ ∅, and let uv ∈ F be an arbitrary edge. Let a = ϕ(uv, u) and b = ϕ(uv, v).

We apply induction for G′ = G+uv, F ′ = F −uv and 
m′, where 
m′ arises from 
m by decreasing

ma(u) and mb(v) by one. Let H′ = H unless u and v lie in different tentacles. If u ∈ Ci,

v ∈ Cj for i �= j, then let us replace the tentacles Ci and Cj by Ci ∪ Cj. We shall prove

τh(G, r, 
m,H) ≤ τh(G
′, r, 
m′,H′). implying the claim.

It is a routine to check this for any possible configuration of uv and H. For example, if uv is

a ordinary edge w.r.t. to H and 
m, then we may apply Lemma 5.25(i). Let us now analyze the

least trivial case when u ∈ Ci, v ∈ Cj for i �= j, and both Ci and Cj are h-odd in H. If h ∈ {a, b}
then Ci ∪ Cj is h-odd in H′, hence χh decreases by 1. However, the term mh(

⋃
Ci) − m(V )

increases by one; all other terms are left unchanged. On the other hand, if h /∈ {a, b}, then
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Ci ∪ Cj is not h-odd in H′, thus χh decreases by two, but mh(
⋃

Ci) − m(V ) inreases also by

two. We leave it to the reader to verify the remaining cases.

We will also use this lemma for the max ≤ min direction of Conjecture 1.46. Let F be an

arbitrary legal augmenting edge set. Since Z is an h-subpartition, F contains at least p(Z) edges

incident to the classes of Z. Let F1 ⊆ F be an arbitrary subset of such edges with |F1| = p(Z);

let F2 = F − F1. Clearly, νF1
≤ |F2|.

Let us define 
m as follows. Let m(v) = dF1
(v) for v ∈ V , and let mi(v) = m(v) if v ∈ Qi and

mi(v) = 0 otherwise. In particular,
∑

(p(Z) : Z ∈ Z, Z ⊆ Ci) = mh(Ci) for arbitrary tentacle

Ci, hence Ci is h-odd if and only if it is h-toxic. Also, p(Z) = mh(
⋃

Ci). These observations

yield

τ ′
h(G, r,H,Z) = τh(G, r, 
m,H) +

1

2
m(V ).

Since 1
2
m(V ) = |F1|, by Lemma 5.29 we obtain

τ ′
h(G, r,H,Z) ≤ νF1

+ |F1| ≤ |F2| + |F1| = |F |.

5.3 Towards proving the conjectures

In this section, we shall prove Conjecture 1.45 in a special setting.

Theorem 5.30. Let (F, ϕ) be a �-minimal 
m = (m1,m2)-prescribed legal edge set as in Con-

jecture 1.45. If νF ≥ 2 and
⋃FF = V , then νF = τ(G, r, 
m). Moreover, there is a medusa H

giving the optimum value.

As we have already seen (e.g. in Section 5.2.1), the cases ν = 1 and ν ≥ 2 are of different

nature. We investigate here only the case ν ≥ 2. We already know |FF | = 2 by Theorem 1.42.

As before, let X and Y denote its two members. Hence the assumption of the theorem is

X ∪ Y = V . An important consequence is that q(Z) = ν implies Z = X or Z = Y .

The proof relies on the results of Section 5.2.1. So far, the only way of using the extreme

choice of F has been that no improving flipping exists. Another operation will also be needed

here. By hexa-flipping (xy, uv, wz) for three 12-edges xy, uv, wz ∈ F , we mean replacing F

by F ′ = F −{xy, uv, wz}+{xv, uz, wy}, where the new edges are defined as 12-edges. Actually,

this is a sequence of two flippings: flipping xy and uv first, then flipping uy and zw, yet it is

easier to handle these two flippings together. The next simple lemma describes the changes in

the values of qF by a hexa-flipping.

Lemma 5.31. Consider a set Z ⊆ V . By hexa-flipping (xy, vu, zw), qF (Z) either remains

unchanged or it increases or decreases by 2. It increases by 2 if and only if Z intersects the

set {x, y, u, v, w, z} in one of the following six sets or in the complement of one: {x, v}, {u, z},
{w, y}, {x, v, w}, {x, v, z}, {u, z, x}. �
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We do not formulate the analogous characterization for the sets with qF (Z) decreasing since

we will not need it. Let us call a set Z with qF ′(Z) = qF (Z) + 2 an increasing set (w.r.t. the

hexa-flipping).

Consider the minimal sets X0 ⊆ X, Y0 ⊆ Y with q(X0) = q(Y0) = ν − 1 as in Lemma 5.85,

and choose 12-edges xy ∈ IF (X0), uv ∈ IF (Y0). By Lemma 5.17, exactly one of the two endnodes

of xy is light; wlog. assume this is x. By Lemma 5.16, the 2-coloured endnode of each edge in

IF (Y ) is heavy. This holds in particular for uv, and by changing the role of X and Y we can

conclude that the 2-coloured endnode of all edges in IF (X) ∪ IF (Y ) is heavy.

Our aim is to construct a hydra H with τ1(G, r, 
m,H) = νF . For this, further investigation

of the structure of the edge set F is needed. We start by formulating a sequence of lemmas

which together provide the construction; the proofs are postponed.

First, we extend the results of Section 5.2.1 and prove, in particular, that the 1-coloured

endnode of all edges in IF (X)∪ IF (Y ) is light. For every 12-edge xy ∈ IF (X)∪ IF (Y ), consider

the xy-set Dxy as in Claim 5.15. Let Axy = X − Dxy if xy ∈ IF (X), and Axy = Y − Dxy if

xy ∈ IF (Y ). Recall that a set Z ⊆ V has been called stable if there exists no U ⊆ Z with

q(U) = ν. Accordingly, we call a set Z ⊆ V steady, if it has no subset U with q(U) ≥ ν − 1.

In the next lemma, we prove, among other structural properties, that all sets Axy are steady

(in fact, we assert a slightly stronger property).

Lemma 5.32. (i) Let xy ∈ IF (X) be an arbitrary 12-edge. Then x is a light and y a heavy

endnode of xy. The set Axy is steady, moreover, there exists no set Z ⊆ V with q(Z) =

ν−1, y /∈ Z and Z∩Axy �= ∅. For an arbitrary 12-edge uv ∈ IF (Y ), we have Zxv∩X = Axy

and q(Duv ∪ Axy) = ν − 2.

(ii) If wz ∈ IF (Axy) is an 12-edge, then Awz ⊆ Axy, q(Dxy∪Awz) = ν−2 and dG+F (Awz, Axy−
Awz) = 1.

(iii) For 12-edges xy, wz ∈ IF (X) we have dG+F (Axy, Awz) = 0.

(iv) If wz ∈ F is an 12-edge with z ∈ Axy, then w ∈ Axy.

Analogous statements hold when exchanging the role of X and Y .

If the set systems A0 = {Axy : xy ∈ IF (X)} and B0 = {Axy : xy ∈ IF (Y )} were laminar,

then we would already be ready to construct an optimal hydra H. Unfortunately, this is not

necessarly true, and thus these set systems are needed to be uncrossed. The uncrossing has

to be done very carefully as we shall keep the valuable structural properties asserted in the

previous lemma. This motivates the following definitions.

Assume U, T ⊆ X are steady sets with q(X − T ) = q(X − U) = ν − 1 and T � U . We say

that T is a descendant of U if q(T ∪ (X − U)) = ν − 2, dG+F (T, U − T ) = 1 and there is a

5Recall from Section 5.2.1 that this lemma is also valid in the context of the PCLECA problem.
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(unique) 12-edge wz ∈ F from T to U − T . For example, if xy, wz ∈ IF (X) are 12-edges with

wz ∈ IF (Axy), then Lemma 5.32(ii) states that Awz is a descendant of Axy.

We say that a set system A′ blocks the 12-edge xy ∈ IF (X) if A′ contains an xy-set.

Analogously, A′ blocks the edge set F ′ ⊆ IF (X) if it blocks each edge in F ′.

Definition 5.33. For a set F ′ ⊆ IF (X) of 12-edges and a set system A′ of subsets of X, we

say that A′ is a witness system for F ′ if the following hold.

(a) A′ is laminar, and for every A ∈ A′, A is a steady set, q(X −A) = ν−1, dF (A,X −A) > 0.

(b) A′ blocks F ′.

(c) For each non-maximal A ∈ A′, let U ∈ A′ −A be the smallest set containing A. Then A is

a descendant of U .

Descendants and witness systems for subsets of IF (Y ) can be defined analogously. Let A′

and B′ be arbitrary sets of subsets of X and Y , respectively. A′ and B′ are called linked if

q(A ∪ (Y − B)) = ν − 2 holds for every A ∈ A, B ∈ B. (5.4)

Lemma 5.34. There exist linked witness systems A, B for IF (X) and IF (Y ), respectively.

YX

Figure 5.1: Illustration of Lemma 5.34. The sets in X form a witness system A and those in Y

form B. The 1- and 2-endnodes of edges in F are denoted by circles and rectangles,

respectively.
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Consider now the witness systems A and B as in the previous lemma. Let CX denote the

underlying subpartition of A, that is, CX contains the minimal members of A, and for each

non-minimal member A ∈ A, let CX contain C = A − ⋃{A′ : A′ ∈ A, A′ � A}. Let us say that

A is the corresponding member for C in A. Let TX =
⋃ CX =

⋃A, and X∗ = X − TX .

Define CY , T Y and Y ∗ the analogous way from B. Let C = CX ∪ CY , and let us denote its

members by C = {C1, . . . , C�}. The next lemma completes the proof of Theorem 5.30.

Lemma 5.35. The partition H = {X∗, Y ∗, C1, . . . , C�} forms a medusa with heads X∗ and Y ∗

and tentacles Ci. Moreover, τ1(G, r, 
m,H) = νF .

5.3.1 Proofs of the Lemmas

Proof of Lemma 5.32. (i) It is enough to prove that Axy is a steady set. Indeed, if Z were a set

as in the conditions, then Z ∩ Y = ∅ by Claim 5.5. Assume Z ∩ Dxy �= ∅; we claim that (5.2a)

cannot hold for Z and Dxy. Indeed, from x ∈ Z we would obtain q(Z ∪Dxy)+ q(Z ∩Dxy) ≥ 2ν,

while if x /∈ Z then q(Z ∪Dxy) ≥ ν − 1 gives a contradiction to the maximality of Dxy. On the

other hand, from (5.2b) we get U = Z − Dxy ⊆ Axy with q(U) = ν − 1.

Assume now X0 ⊆ Axy is a minimal set with q(X0) = ν − 1. Since ν ≥ 2, there exists

an 12-edge wz ∈ IF (X0). Let us choose this with Dwz maximal, or equivalently, Awz minimal.

By Lemma 5.8, Awz ⊆ X0. Choose a minimal Y0 ⊆ Y with q(Y0) = ν − 1, and let uv ∈
IF (Y0) be an arbitrary 12-edge. By Lemma 5.17, w and u are light endnodes of wz and uv,

respectively. Consider the hexa-flipping of (xy, uv, wz). This decreases q(X) and q(Y ) by 2;

hence by the extreme choice of F , there exists an increasing set Z with q(Z) ≥ ν − 2. Let

T = {x, y, u, v, w, z} ∩ Z. By possibly complementing Z, we get that T is one of the six sets in

Lemma 5.31. Assume Z is chosen minimal.

(I) T is one of {x, v}, {x, v, w} and {x, v, z}. If (5.2a) held for X and Z, then q(X∪Z) = ν−1.

This is a contradiction since u is the light endnode of uv and V −(X∪Z) ⊆ Y is a uv-set.

However, (5.2b) gives q(X − Z) = ν − 1, a contradiction to the maximality of Dxy, since

X − Z is an xy-set containing at least one of w and z.

(II) T = {u, z} or T = {u, z, x}. Since u is the light endnode of uv, (5.2a) cannot hold for Y

and Z, thus we may apply (5.2b), yielding q(Z−Y ) = ν−1. This contradicts Lemma 5.8

since z ∈ X0 ∩ (Z − Y ) and y ∈ X − (X0 ∪ (Z − Y )).

(III) T = {w, y}. Let us consider the three sets X0, Z and Z ′ = Zvw. We use an argument

similar to the one in the proof of Lemma 5.19. By the minimal choice of Awz, Claim 5.18

is applicable, and thus IF (Awz) = 0. We shall prove that (5.2a) does not hold for any

two of the three sets X0, Z and Z ′, and the intersection of any two of them is Awz. These

easily imply that Awz is a marginal set. The proof is illustrated in Figure 5.2.
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Figure 5.2: Illustration of the proof of Lemma 5.32(i) for T = {w, y}.

First, consider X0 and Z ′. By Lemma 5.16, Z ′∩X = Awz; this implies Z ′∩X0 = Awz and

y /∈ Z ′. By the minimality of X0, q(Z ′∩X0) ≤ ν−2; and by Claim 5.5, q(X0∪Z ′) ≤ ν−2,

hence (5.2a) cannot hold for Z ′ and X0. Next, we show that (5.2a) cannot hold for X0

and Z either. q(Z ∩ X0) ≤ ν − 2 again by the minimal choice of X0. If x ∈ X0, then

q(Z ∪ X0) ≥ ν + 1 since dF (Z,X0) ≥ 1, yielding a contradiction. If x /∈ X0, then we get

q(Z ∪ X0) = ν − 1 and Z ∪ X0 is an xy-set, contradicting the maximality of Dxy.

Finally, assume (5.2a) were true for Z and Z ′. We claim that q(Z ∩ Z ′) ≤ ν − 2. This is

trivial by Claim 5.5 if (Z∩Z ′)∩Y �= ∅. On the other hand, if Z∩Z ′ ⊆ X, then this follows

by Lemma 5.8, since u ∈ X0 ∩ (Z ∩ Z ′) and y ∈ X − (X0 ∪ (Z ∩ Z ′)). Consequently,

q(W ) = ν − 2 for W = Z ∪ Z ′ and x /∈ W . (This follows since x ∈ W would imply

dF (Z,Z ′) ≥ 1, yielding q(W ) = ν.) A similar argument to the one above for X0 and Z

shows that (5.2a) cannot hold for X0 and W . However, (5.2b) gives q(W − X0) ≥ ν − 1,

a contradiction to Claim 5.5 since v, y ∈ W −X0. It may also be easily verified that Awz

is the intersection of any two of the sets X0, Z and Z ′; we leave this to the reader.

For the rest, X ∩Zxv = Axy follows by Lemma 5.16. If Duv and Zxv are crossing, then (5.2b)

cannot hold for Duv and Zxv, while (5.2a) gives q(Duv ∪ Zxv) = ν − 2.

(ii) We start by proving Awz ⊆ Axy, or equivalently, Dwz ⊇ Dxy. Assume Dwz and Dxy are

crossing (Dwz ⊆ Dxy is excluded by z ∈ Dwz −Dxy). (5.2b) gives a contradiction, since part (i)
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implies q(Dwz − Dxy) ≤ ν − 2. (5.2a) is also impossible, since Dxy ∪ Dwz is a wz-set, and thus

the maximality of Dwz implies q(Dxy ∪ Dwz) ≤ ν − 2.

As in the proof of part (i), let us choose an 12-edge uv ∈ IF (Y ); we already know that its

light endnode is u. Consider the hexa-flipping of (xy, uv, wz). We get a set Z with q(Z) ≥ ν−2

and with six possible sets T as in the first part. Case (I) is settled by an identical argument.

In the case (II), the existence of the set Z − Y with q(Z − Y ) = ν − 1, y /∈ Z − Y and

(Z −Y )∩Axy �= ∅ gives a contradiction to part (i). Let us now turn to case (III); assume again

Z is chosen minimal.

We claim that Z ⊆ X. Indeed, if Z and X were crossing and (5.2a) held, then q(Z ∩ X) ≤
ν − 3 by the minimality of Z, leading to contradiction. If (5.2b) held, then q(X − Z) ≤ ν − 2

by part (i) and thus q(Z − X) = ν, a contradiction again.

Consider the set Z ′ = Zvw. By part (i), Z ′ ∩ X = Awz ⊆ Axy, thus Z ′ and Z are crossing.

We claim that (5.2b) must hold for Z and Z ′. For a contradiction, assume (5.2a) held for them.

Then q(Z ∩Z ′) ≤ ν−2 by part (i), and thus q(W ) = ν−2 for W = Z ∪Z ′, furthermore, x /∈ Z ′

(as x ∈ Z ′ would give dF (Z,Z ′) ≥ 1). (5.2a) for X and W is impossible since it would give

q(V − (X ∪ W )) = ν − 1, a contradiction as it is an uv-subset of Y , and u is the light endnode

of uv. On the other hand, (5.2b) implies q(X − W ) = ν − 1, a contradiction as x is the light

endnode of xy.

For Z and Z ′, (5.2b) gives q(Z − Z ′) = q(Z ′ − Z) = ν − 1, dG+F (Z,Z ′) = 1. Part (i)

and the maximal choice of Dxy implies that Z − Z ′ ⊆ Dxy and Z ∩ Z ′ = Awz. This yields

dG+F (Awz, Axy −Awz) = 1, as required. Also, (5.2b) cannot hold for Dxy and Z; hence q(Dxy ∪
Z) = ν − 2. The proof is complete since Dxy ∪ Awz = Dxy ∪ Z.

(iii) is a trivial consequence of Claim 5.9 for Dxy and Dwz and the steadiness of Axy and

Awz.

(iv) For a contradiction, assume that w ∈ Dxy or w ∈ Y . The first case contradicts part (i):

although w is the light endnode of wz, Dxy is a wz-set with q(Dxy) = ν − 1. Hence w ∈ Y ; let

uv ∈ IF (Y ) be an arbitrary 12-edge, and consider the hexa-flipping (xy, uv, wz). There must

be an increasing set Z as in the proofs of (i) and (ii), and we examine the same cases (I)-(III).

In each case, q(Z) = ν − 2 as q(Z) = ν − 1 is excluded by Claim 5.5; let us choose Z minimal.

(I) Z is a minimal (and stable) xvuy-set with q(Z) = ν − 2 and thus Z = Zxv. By part (i),

Zxv ∩ X = Axy and hence z ∈ Z. Consequently, w /∈ Z. (5.2b) is impossible for Z and

Y because x is a light endnode of xy. (5.2a) cannot hold either, since dG+F (Z, Y ) ≥ 1

because of the edge wz.

(II) Since u is the light endnode of uv, we get q(Z − Y ) = ν − 1 by (5.2b). This contradicts

part (i) since Z − Y intersects Axy and y /∈ Z − Y .
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(III) For X and Z, (5.2a) is impossible since dG+F (X,Z) ≥ 1. On the other hand, (5.2b)

cannot hold either since x is the light endnode of xy.

Some prerequisites are needed to prove Lemma 5.34. W ⊆ X is called a witness set

for X if there exists sets Ax1y1
, . . . , Axδyδ

∈ A0 (with δ ≥ 1) so that
⋃w

i=1 Axiyi
= W , and

(
⋃j−1

i=1 Axiyi
) ∩ Axjyj

�= ∅ for j = 2, . . . , δ. Ax1y1
, . . . , Axδyδ

is called a construction sequence

for W . Note that witness sets are exactly the node sets of connected subhypergraphs of the

hypergraph (X,A0). Witness sets for Y are defined analogously.

Lemma 5.36. (i) Every witness set W for X is steady, q(X − W ) = ν − 1 and dF (W,X −
W ) > 0.

(ii) If wz ∈ IF (W ), then wz ∈ IF (Axiyi
) for some member of the construction sequence.

(iii) If W and W ′ are two witness sets for X, then dG+F (W,W ′) = 0. If A is a witness set for

X and B is a witness set for Y , then they satisfy (5.4).

Proof. (i) Consider a construction sequence for W as in the definition. If δ = 1, then we are

done by Lemma 5.32(i). Assume now δ > 1. By induction, W ′ =
⋃δ−1

i=1 Axiyi
is a steady set

with q(X − W ′) = ν − 1. Let A = Axδyδ
, D = X − A = Dxδyδ

. We may assume that D

and X − W ′ are crossing, as otherwise W = W ′ or W = A or we get a contradiction to the

stability of A and W ′. The stability also excludes (5.2b) for X − W ′ and D. (5.2a) implies

q(D∪ (X −W ′)) = q(D∩ (X −W ′)) = ν − 1, dG+F (A,W ′) = 0. Since X −W = D∩ (X −W ′),

it remains to prove the steadiness of W .

Indeed, assume there is a set U ⊆ W with q(U) = ν − 1. As W ′ and A are steady, both

sets U ∩ (W ′ − A) and U ∩ (A − W ′) are nonempty. (5.2b) cannot hold for U and D, since

q(U − D) ≤ ν − 2 by the stability of A. (5.2a) implies U ∪ D = X, dG+F (U,D) = 0. These,

together with dG+F (A,W ′) = 0 yield xδ ∈ A ∩ W ′, yδ ∈ W ′ − A. By the induction hypothesis,

xδyδ ∈ IF (Axiyi
) for some i < δ. Then, by Lemma 5.32(ii), A ⊆ Axiyi

⊆ W , a contradiction.

(ii) follows by dG+F (A,W ′) = 0 and the inductional hypothesis. The first part of (iii) is

immediate by Lemma 5.32(iii). For the second part, if A = Axy and B = Auv for 12-edges

xy ∈ IF (X), uv ∈ IF (Y ), then Lemma 5.32(i) proves (5.4). For larger witness sets, it can be

verified easily by induction as in part (i).

Let us now prove further useful properties of witness sets. The next claim is straightforward

by the definition of Dxy.

Claim 5.37. If for an 12-edge xy ∈ IF (X), W is a witness set and also an xy-set, then

Axy ⊆ W . �
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Lemma 5.38. Let U , T and W be three witness sets for X. Assume that T is a descendant of

U , and let wz ∈ F be the unique 12-edge from T to U − T .

(i) If T ∩ W �= ∅ and z /∈ W , then U ∩ W ⊆ T . Consequently, T ∪ W is a descendant of

U ∪ W .

(ii) If T is also a descendant of W or T ∩ W = ∅, then T is a descendant of U ∪ W .

(iii) If W ∈ A0, then T is always a descendant of U ∪W whenever the condition in part (i) is

not met.

Proof. (i) Consider the sets Z = T ∪ (X − U) and D = X − W . q(Z) = ν − 2 as T is a

descendant of U , and q(D) = ν − 1 by Lemma 5.36(i). For Z and D, (5.2b) is impossible

because of q(Z−D), q(D−Z) ≤ ν−2, as Z−D and D−Z are nonempty subsets of the steady

sets W and U , respectively. (The nonemptiness follows since T ∩W ⊆ Z −D and z ∈ D − Z.)

(5.2a) yields q(D∩Z)+q(D∪Z)−2dG+F (D,Z) ≥ 2ν−3. The proof is illustrated in Figure 5.3.
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Figure 5.3: Illustration of the proof of Lemma 5.38(i); the sets Z and D are vertically and horizontally

striped, respectively.

If q(D ∪ Z) = ν, then D ∪ Z = X, or equivalently, U ∩ W ⊆ T , as required. This is always

the case if w ∈ W as it implies dG+F (D,Z) ≥ 1.

Let us assume q(D∪Z) ≤ ν−1, and thus w ∈ T −W and q(D∩Z) ≥ ν−2. Let Z ′ = D∩Z

and D′ = X − T . Note that w ∈ Z ′. For Z ′ and D′, (5.2b) is again impossible: Z ′ − D′

and D′ − Z ′ are subsets of the steady sets T and U ∪ W , respectively. Thus (5.2a) must hold.

dG+F (Z ′, D′) ≥ 1 because of the edge wz. Consequently, q(Z ′ ∩ D′) + q(Z ′ ∪ D′) ≥ 2ν − 1, a

contradiction as both are proper subsets of X.

The last part follows since we have just proved (U ∪ W ) − (T ∪ W ) = U − T . Since

dG+F (U,W ) = 0 by Lemma 5.36(iii), this also implies that wz is the only edge in G + F

between T ∪ W and (U ∪ W ) − (T ∪ W ).
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(ii) Consider the sets T ∪ (X − U) and T ∪ (X − W ) if T is also a descendant of W ; and

T ∪ (X −U) and X −W in case of T ∩W = ∅. In both cases, (5.2b) is excluded by steadiness,

while (5.2a) yields q(T ∪ (X − (U ∪W ))) = ν − 2. (Notice that q(T ∪ (X − (U ∪W ))) ≥ ν − 1 is

impossible since w is the light endnode of wz. q(T ∪ (X − (U ∩ W ))) ≤ ν − 2 similarly follows

in the first case.) dG+F (T, (U ∪ W ) − T ) = 1 is trivial in the first case, whereas it follows by

Lemma 5.36(iii) in the second case.

(iii) Let W = Axy for some xy ∈ IF (X). Using part (ii), it remains to investigate the case

when T ∩W �= ∅ and z ∈ W . By Lemma 5.32(iv), w ∈ W , whereas part (ii) of the same lemma

implies that Awz is a descendant of W . Furthermore, Awz ⊆ T by Claim 5.37. Let us apply

part (i) for W,Awz and T in place of U, T and W, respectively. We get W ∩ T = Awz and that

T = T ∪Awz is a descendant of W ∪T . Now we may apply part (ii) for U , T and W ∪T , leading

to the desired conclusion.

Corollary 5.39. For any Axy ∈ A0, the set system U = {Awz : wz ∈ IF (Axy)} is laminar.

Consequently, if W is a witness set whose construction sequence consists of sets in U , then

W ∈ U .

Proof. Indeed, assume T = Awz and W = Aw′z′ are crossing sets with wz,w′z′ ∈ IF (Axy), both

descendants of U = Axy. z ∈ W is impossible as Lemma 5.32(iv) and (ii) would imply T ⊆ W ,

and thus Lemma 5.38(i) is applicable, yielding W ⊆ T , a contradiction again.

Let us now define an ordering A1, A2, . . . , Aγ of the elements A0 among auxiliary witness

sets W1, . . . , Wγ (γ = |A0|). Let A1 be an arbitrary minimal element of A0 and let W1 = A1.

In step i ≥ 2, let R = A0 − {Aj : j < i}, that is, the sets which have not yet been indexed.

Assume first that there exists an A ∈ R with A ∩ Wi−1 �= ∅. Let us choose such an A minimal

for containment, and subject to this, |A − Wi−1| minimal. Let Ai = A, Wi = Wi−1 ∪ Ai. If

A ∩ Wi−1 = ∅ for every A ∈ R, then let Ai be an arbitrary minimal element of R and let

Wi = Ai.

Notice that in this ordering, the connected components of the hypergraph (X,A0) will be

the maximal Wi’s, and their building sequences are “continuous” subsets of {1, . . . , γ}.

Proof of Lemma 5.34. Let Fi = {xy ∈ IF (X) : Axy = Aj for some j ≤ i}. Note that Fγ =

IF (X). In what follows, we construct a witness system Ai for Fi consisting of witness sets,

providing a witness system Aγ for IF (X). A witness system for IF (Y ) can be constructed

similarly. Since both consist of witness sets, they are automatically linked by Lemma 5.36(iii),

and thus the claim follows.

The members of Ai will be witness sets whose construction sequences contain only the sets

A1, . . . , Ai. Furthermore, it will be obvious from the construction that Ai contains all maximal

such witness sets (in particular, Wi.) Note that, by the indexing rule, Wi−1 will be the only
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maximal member of Ai−1 intersecting Ai. Let A1 = {A1}. For some i ≥ 2, assume we have

already constructed Ai−1.

(I) If Ai ∩ Wi−1 = ∅ or Wi−1 ⊆ Ai, then let Ai = Ai−1 ∪ {Ai}. This clearly satisfies the

conditions. Note that if Wi−1 ⊆ Ai then Corollary 5.39 implies that Wi−1 ⊆ {A1, . . . , Ai−1} and

thus all these sets are descendants of Ai.

(II) Assume next Ai ⊆ Wi−1. If Ai−1 blocks the entire edge set Fi, then let Ai = Ai−1.

Otherwise, there exists an 12-edge xy ∈ Fi − Fi−1 not blocked by Ai−1 but only by Ai = Axy.

We shall prove that Ai = Ai−1 ∪ {Ai} satisfies the conditions.

xy ∈ IF (Wi−1), hence by Lemma 5.36(ii), xy ∈ IF (Aj) for some j < i. By Lemma 5.32(ii),

Ai is a descendant of Aj. The selection rule in step j implies Ai ∩Wj−1 = ∅ and Aj −Wj−1 �= ∅.
We claim that Wi = Wj. Indeed, Ai ⊆ Wj, and thus chosing A� with A� − W�−1 �= ∅ in step

j < � < i contradicts the selection rule, as Ai − W�−1 = ∅. On the other hand, for j < � < i,

either A�∩Wj−1 = ∅ or A�−Wj−1 = Aj −Wj−1, as otherwise we would have had a better choice

in step j. Together with Corollary 5.39, these guarantee the laminarity of Ai.

It is left to prove (c) in Defintion 5.33. Let C be the smallest member of Ai containing Ai.

Clearly, C = Aj ∪ W for some witness set W ⊆ Wj−1. Lemma 5.38(ii) for U = Aj, T = Ai

and W gives that Ai is a descendant of C. Next, assume Ai is the smallest set in Ai containing

some T ∈ Ai. Again, Corollary 5.39 ensures that this is only possible if T = A� for some � < i,

and A� is a descendant of Ai by Lemma 5.32(ii).

(III) Finally, assume Ai and Wi−1 are crossing. For an 12-edge xy ∈ F , Ai = Axy implies

y /∈ Wi−1 as otherwise Lemma 5.32(iv) and (ii) would give Ai ⊆ Wi−1. Consequently, xy is also

blocked by Wi = Wi−1 ∪Ai. Let T ⊆ Ai−1 denote the set of the largest proper subsets of Wi−1.

Note that T forms a subpartition of Wi−1, and according to (c) in Defintion 5.33, all members

of T are descendants of Wi−1. We distinguish three cases. In each of them, we assume that the

conditions of the previous case(s) are not met.

(IIIa) There is an 12-edge wz ∈ Fi−1 with w ∈ Ai ∩ Wi−1, z ∈ Ai − Wi−1. By Claim 5.37,

Awz ⊆ Wi−1. The conditions in Lemma 5.38(i) are met for Ai, Awz and Wi−1 in place of U, T

and W , thus Wi−1 = Wi−1 ∪ Awz is a descendant of Wi. Consequently, Ai = Ai−1 ∪ {Wi} is an

appropriate choice.

(IIIb) There is a B ∈ T with B∩Ai �= ∅ and z /∈ Ai, where wz ∈ Fi−1 is the unique 12-edge

between B and Wi−1 − B. The conditions in Lemma 5.38(i) hold for Wi−1, B and Ai, hence

Wi−1 ∩ Ai ⊆ B and Ai ∪ B is a descendant of Wi. This also implies that all sets in T − B are

disjoint from Ai and hence by Lemma 5.38(ii), they are all descendants of Wi. As the condition

in (IIIa) is not met, all edges in Fi−1 blocked by Wi−1 are also blocked by Wi, and those blocked

by B are also blocked by Ai ∪ B. Now Ai = (Ai−1 − {Wi−1, B}) ∪ {Wi, Ai ∪ B} is a witness

system for Fi.

(IIIc) Otherwise, Lemma 5.38(iii) yields that all members of T are descendants of Wi.

Setting Ai = (Ai−1 − {Wi−1}) ∪ {Wi} satisfies the conditions.
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So far, we used only Claim 1.18 on the skew supermodularity of R. In the proof of

Lemma 5.35 we will however need the stronger Claim 1.19 stating that if (1.5a) or (1.5b)

does not hold, then the other holds with equality. Consequently, (5.2a) and (5.2b) have the

same property. This will be needed to prove the next claim.

Claim 5.40. If H1, . . . , Hδ are disjoint members of A, then q(X − ⋃δ
i=1 Hi) = ν − δ and

q(
⋃δ

i=1 Hi) < ν − δ. The same hold for Y and B. �

Proof. We prove the two claims together by induction on δ. For δ = 1 these follow by

Lemma 5.36(i); assume we have already proved them for 1, . . . , δ − 1. Consider the sets

D = X −⋃δ−1
i=1 Hi and D′ = X −Hδ. By induction, q(D) = ν − δ + 1 and q(D′) = ν − 1. (5.2b)

cannot hold since D−D′ =
⋃δ−1

i=1 Hi, D′−D = Hδ, and thus by induction q(D−D′) < ν−δ +1

and q(D′ − D) < ν − 1. Hence (5.2a) holds with equality. Now q(D ∪ D′) = ν as D ∪ D′ = X,

yielding the first part of the claim.

For the second part, let Z =
⋃δ

i=1 Hi. Assume for a contradiction that q(Z) ≥ ν − δ.

Lemma 5.36(i) and (iii) together imply dF (Z,D′) ≥ 1. If (5.2a) held for Z and D′ then we get

a contradiction since q(Z ∪ D′) = ν and q(Z ∩ D′) < ν − δ + 1 by the induction hypothesis.

On the other hand, (5.2b) is also impossible since Z − D′ = X − ⋃δ
i=1 Hi and D′ − Z = Hδ.

q(D′ − Z) < ν − 1 and we have just proved in the first part that q(Z − D) = ν − δ.

Proof of Lemma 5.35. We use Lemma 5.28 to verify that H is a medusa. For any 1 ≤ i, j, t ≤ �,

i �= j, we construct a separating pair Z,Z ′ for i and j coherent with t, so that (5.2a) does not

hold for them, and dG(Z,Z ′) = 0. Note that this also implies dG(Ci, Cj) = 0 and hence the

conditions of the lemma are satisfied. Let A,A′ and B be the corresponding members of A or

B for Ci, Cj and Ct, respectively.

We start by showing the existence of a separating pair (regardless to t). (I) First, if Ci ∈ CX ,

Cj ∈ CY , then let Z = X, Z ′ = A ∪ (Y − A′). q(Z) = ν and q(Z ′) = ν − 2 since A and B
are linked. (5.2a) would contradict the steadiness of A; in the case of (5.2b), dG+F (Z,Z ′) = 0

follows since q(Z − Z ′) + q(Z ′ − Z) ≤ 2ν − 2.

(II) Let us now assume that Ci and Cj are both in CX or both in CY ; wlog. consider CX .

(IIa) If A and A′ are disjoint, then let Z = Y ∪ A, Z ′ = X − A′. q(Z) = q(Z ′) = ν − 1 (notice

that Z = V − (X−A)), and the same argument works as in the first case. (IIb) If A ⊆ A′, then

we may assume that A is a descendant of A′ (otherwise, we replace A by the largest set A′′ with

A � A′′ � A′). For Z = A∪ (X −A′) and Z ′ = Y ∪A we have q(Z) = ν − 2 and q(Z ′) = ν − 1.

(5.2a) is impossible since q(Z ∩ Z ′) ≤ ν − 2 because of Z ∩ Z ′ = A, and q(Z ∪ Z ′) ≥ ν − 2 as

V − (Z ∪ Z ′) is a subset of the steady set A′. From (5.2b) we get dG+F (Z,Z ′) ≤ 1. However,

we know that there exists an 12-edge wz ∈ IF (A′) from A to A′ − A, hence dG(Z,Z ′) = 0.

(IIc) The argument is the same for the case A′ ⊆ A by changing the role of A and A′ and

complementing the sets Z and Z ′. (Hence we set Z = (A − A′) ∪ Y and Z ′ = X − A′.)
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We need a separating pair with the stronger property of being consitent with t. Let us

reconsidert the cases above. (I) In the construction above, A ⊆ Z ∩ Z ′ and A′ ∩ (Z ∪ Z ′) = ∅.
Hence if B ⊆ A, then any pair separating i and j is automatically consistent with t. Also, if

A ⊆ B, then a pair separating t and j also separates i and j, and is consitent with t. By similar

arguments, we are also done if B ⊆ A′ or A′ ⊆ B. The remaining case is when B is disjoint

from both A and A′. If B ⊆ Z − Z ′ = X − A, then let Ẑ = X − B. If B ⊆ Z ′ − Z = Y − A′,

then let Ẑ = X ∪ B. In both cases, q(Ẑ) = ν − 1 and it can be verified easily that Ẑ, Z ′ is an

appropriate choice.

(IIa) Again, the nontrivial cases is when B is disjoint from both A and A′. If B ⊆ Y then

let Ẑ = A ∪ (Y − B), Ẑ ′ = Z ′ and if B ⊆ X, then let Ẑ = Z and Ẑ ′ = X − (A ∪ B). It is easy

to show that Ẑ, Ẑ ′ is a good pair in both cases, however, Claim 5.40 is needed for the proof.

In the case (IIb), we have to investigate B ⊆ Y and B ⊆ X − A′. Let Ẑ ′ = A ∪ (Y − B)

in the first while Ẑ ′ = A ∪ B ∪ Y in the second case and Ẑ = Z in both cases. It is left to

the reader to verify, using Claim 5.40, that Ẑ, Ẑ ′ is a good pair. (IIc) can be again handled

similarly.

Having proved that H is a medusa, we shall verify τ1(G, r, 
m,H) = ν. Let AM and BM

denote the set of the maximal components of A and B, respectively; let |AM | = s and |BM | = t.

Furthermore, let F1 ⊆ F be the set of ordinary edges w.r.t. H and h = 1 (as defined before

Lemma 5.25). Let F2 = F − F1. Let G′ = G + F1, and let 
m′ denote the “degree vector” of F2,

that is, (1.9) holds for 
m′ and (F2, ϕ).

Notice that IF (X∗) = IF (Y ∗) = IF (Ci) = ∅ for each Ci ∈ C, and there are exists no 12-edge

xy ∈ F with x ∈ X∗∪Y ∗, y ∈ ⋃ C = TX∪TY . The edges in F2 are exactly those in F connecting

two tentacles in CX or two in CY . Therefore, m(V )−m1(
⋃ C) = m(X∗) + m(Y ∗) + m2(

⋃ C) =

dF (X∗) + dF (Y ∗) + |F2|. Hence we may rewrite τ1(G, r, 
m,H) in the form

τ1(G, r, 
m,H) =
1

2
(χ1 + q(X∗) + q(Y ∗) − |F2|) .

The proof finishes by the following claim.

Claim 5.41. (i) q(X∗) = ν − s, q(Y ∗) = ν − t.

(ii) |C| = s + t + |F2|.

(iii) Every tentacle Ci is 1-odd.

Proof. (i) is immediate by Claim 5.40. (ii) By Lemma 5.36(iii), dF2
(TX , TY ) = 0. We claim

that |CX | = |A| = s + |IF2
(TX)| and analogously for CY . Indeed, by (e) in Definition 5.33, there

is a unique 12-edge in F2 between A′ and A−A′ for each A′ ∈ A−AM with A being the smallest

set containing it. Hence there is a bijection between IF2
(TX) and A−AM .

(iii) By Lemma 5.25, the set of 1-odd tentacles is the same for H, G, 
m and H′, G′, 
m′, where

H′ = (X∗, Y, CX). Notice also that p′ = qF1
, where p′ denotes the demand function for G′. For
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a tentacle C ∈ CX , let A denote the corresponding member in A. Let T ⊆ A denote the set of

largest sets contained in A; let |T | = a. For each A′ ∈ T , dG+F (A′, A−A′) = 1, and the unique

edge is an 12-edge xy ∈ F2 with x ∈ A′, y ∈ C.

qF1
(Y ) = qF (Y ) = ν and qF (Y ∪A) = ν−1. Let b1 = dF2

(C,X−A) and b2 = dF2
(
⋃ T , X−A).

Note that if A ∈ AM , then b1 = b2 = 0, and if A /∈ AM then b1 + b2 ≥ 1. Thus qF1
(Y ∪ A) =

ν − 1 + b1 + b2. By Claim 5.40, qF (Y ∪ (
⋃ T )) = ν − a, and thus qF1

(Y ∪ (
⋃ T )) = ν + b2. By

the hydra property, p(Y ∪ A) + p(Y ) = p(Y ∪ (
⋃ T )) + p(Y ∪ C). Since dF1

(
⋃ T , C) = 0, it

follows that

qF1
(Y ∪ C) − qF1

(Y ) = qF1
(Y ∪ A) − qF1

(Y ∪ (
⋃

T )) = b1 − 1.

m′
1(C) = b1 and thus C is 1-odd for H′, G′, 
m′ (recall p′ = qF1

), and consequently, for H, G, 
m.

5.3.2 The augmentation problem

In this section, we briefly sketch how Conjecture 1.46 could be derived from Conjecture 1.45. We

start by constructing a legal degree-prescription 
m = (m1,m2) compatible with the partition

Q = (Q1, Q2) as in Section 5.2.2. This satisfies m1(V ) = m2(V ) = ΨQ(G). Next, consider a

�-minimal 
m-prescribed legal edge set F . We are done if νF = 0. If νF > 0, then consider

an optimal hydra H = (X∗, Y ∗, C1, . . . , C�) and h ∈ {1, 2} with νF = τ1(G, r, 
m,H) as in

Conjecture 1.46. Wlog. assume h = 1. Let v ∈ Ci with m1(v) > 0; consider the minimum tight

set Xv containing v as in Section 5.2.2.

If Xv ⊆ Ci ∩ Q1 holds in all such cases, then we may uncross these sets as in Section 5.1.1.

This result in a 1-subpartition Z, which is a refinement of C1, . . . , C� and p(Z) = m1(
⋃

Ci).

Now
∑

(p(Z) : Z ∈ Z, Z ⊆ Ci) = m1(Ci) for each 1 ≤ i ≤ �. Consequently, the 1-odd tentacles

are the same as the 1-toxic tentacles, and hence τ ′
1(G, r,Z,H) = τ1(G, r, 
m,H) + 1

2
m(V ) =

νF + 1
2
m(V ). Finally, Lemma 5.21 yields an augmenting edge set of size τ ′

1(G, r,Z,H).

If Xv − (Ci ∩ Q1) �= ∅ for some v ∈ Ci, m1(v) > 0, then we may define another legal

degree-prescription m′ and a �-minimal 
m′-prescribed legal edge set F ′ with νF ′ < νF . We

do not elabourate this argument here: it needs structural properties of �-minimal legal edge

sets generalizing Lemma 5.32. However, these results were proved only under the assumptions

νF ≥ 2 and
⋃FF = V .
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5.4 Further remarks

Partition-constrained global edge-connectivity augmentation

Let us briefly sketch how the ideas in Section 5.2.1 can be extended to give a new and simpler

proof of Theorem 1.23. More precisely, we work here with the degree-prescribed version, which

we did not formulate in the thesis. Nevertheless, assume we have a legal degree-prescription 
m

so that (1.4) holds, and let us have a connectivity requirement r ≡ k. Let F be a �-minimal


m-prescribed edge set. We shall prove ν ≤ 1.

In the case of global connectivity requirements, both (5.1a) and (5.1b) hold for any crossing

X,Y with p(X), p(Y ) > 0. Proving ν = 1 is utterly simple. Indeed, assume ν ≥ 2. Consider

X0 as in Lemma 5.8, and xy ∈ X0, uv ∈ Y with (xy, uv) flippable. For X0 and the stable set

Zxv, (5.1b) yields a contradiction. If ν = 1, we can exhibit a C4- or C6-obstacle6 by analyzing

a single hexa-flipping.

A similar argument, combined with the ideas of the proof of Theorem 5.11 in Section 5.1.4,

could be used to develop a simpler proof of the recent theorem of Bernáth, Grappe and Szigeti

[11] on partition-constrained coverings of positively crossing symmetric supermodular functions.

Beyond Theorem 5.30

On the way from Theorem 5.30 towards Conjecture 1.45, the first step would be to leave the

assumption X ∪ Y = V . Lemma 5.32 does not really use this assumption, and remains true

with minor modifications. The difficulty comes from the edges incident to V − (X ∪ Y ). One

might give a categorization of such edges, but there is essentially five different types of them.

Each type can be characterized in a manner similar to Lemmas 5.6 and 5.32. However, the

argument reaches an extreme level of complexity, far beyond the patience of both the author

and any possible reader.

To handle edges incident to V − (X ∪ Y ), we also need a refinement of the partial order �
as follows: F ′ ≺ F if νF ′ < νF , or νF ′ = νF and |FF ′ | < |FF |, or νF ′ = νF and |FF ′ | = |FF |, but∑

Z∈FF ′
|Z| >

∑
Z∈FF

|Z|. That is, we also want to maximize |X| + |Y |.
For νF = 1, the situation is even worse. We needed completely different kind of arguments

for νF = 1 and νF ≥ 2 already in the proof of Theorem 1.42. For Conjecture 1.45, we would

apparently also need a new type of argument for this case, doubling both length and complexity.

Once having proved Conjecture 1.45, it can be probably easily extended to an arbitrary

number of partition classes. For the global connectivity version Theorem 1.23, the main diffi-

culties already occur for t = 2. We also need some general version of the C6-configuration, but

6C4- and C6-configurations are for the augmentation problem, while the obstacles for the degree-prescribed

problem. Analogously, notice that we also use hydrae in two different senses, with toxic tentacles for the

augmentation and odd ones in the degree-prescribed version.
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hopefully this is the only new kind of obstacle.

Minimum cost edge-connectivity augmentation problems

Although the minimum-cost version of local edge-connectivity augmentation is NP-complete,

however, unlike the other basic connectivity augmentation problems, it admits a nice and strong

approximation. Jain [48] proved that for the natural LP-relaxation of the problem, a basic

feasible solution always has a component of value at least 1
2
. Rounding up such a value to 1,

adding this edge to the graph and iterating the method gives a 2-approximation algorithm.

A natural question is: for which classes cost functions is local edge-connectivity augmentation

polynomially solvable? An example is - similarly to Chapters 2 and 3 - the class of node-induced

cost functions, as it can be shown via standard polyhedral methods. The partition constrained

problem can also be interpreted in this framework: given the partition Q, let c(uv) = 1 if u

and v lie in different classes of Q and let c(uv) = 2 if u and v are contained in the same class.

It is clear that finding a minimum size Q-legal augmenting edge set is equivalent to finding a

minimum cost augmentation, hence the problem for this cost is in P for the global connectivity

case - and we conjecture that also for arbitrary requirements.7

One might wonder if there is a solvable class containing both node-induced cost functions

and the partition-induced cost functions as above. For example, a natural candidate is if we

have a different value wi for each partition class Qi, and the cost of edges between classes Qi and

Qj is wi + wj, while the cost of edges inside class Qi is 2wi + 2 minj �=i wj. (Or equivalently, we

want to find a minimum cost Q-legal augmenting edge set with cost wi +wj between Qi and Qj.

Notice that for this cost function, the cost remains unchanged by a Q-legal flipping.) We think

that this should not be much more difficult than the minimum cardinality partition-constrained

problem.

Let us propose another, related question. Jain’s iterative rounding method is the only

known 2-approximation algorithm for the general minimum cost problem; combinatorial al-

gorithms (e.g. Williamson et. al. [78]) have much worse approximation ratios. A possible

approach for constructing a combinatorial 2-approximation could be the following (at least for

the uncapacitated case). Find an sufficiently broad class of cost functions K for which (i) the

minimum cost version is still solvable; (ii) arbitrary metric cost function can be 2-approximated

by a cost function in K (that is, for a cost function c, we can find a c′ ∈ K with c′ ≤ c ≤ 2c′).

K being the node-induced cost functions does not meet this latter requirement; however, there

might exist a broader class that works. (Nevertheless, partition-induced cost functions should

7In these problems, we allow an arbitrary number of copies of the same edge in the augmenting set. In this

case, it may always be assumed that the cost function satisfies the triangle inequality. If capacities are also

imposed, the problem becomes NP-complete even in the minimum cardinality case (that is, if c ≡ 1), as shown

by Jordán [51]. Nevertheless, the approximation result of Jain also works with capacities.
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be rather excluded from K: it would be desireable to find a class where a relatively simple

algorithm yields an optimal solution.)
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Chapter 6

Constructive characterization of

(k, �)-edge-connected digraphs

This chapter is devoted to the proof of Theorem 1.47, based on our joint paper [56] with Erika

Renáta Kovács. In Section 6.1, the precise definitions are given and some basic properties

are exhibited. We also give the proof of Theorem 1.47 here based on the main technical tool

Theorem 6.1. This is a special case of the stronger Theorem 6.7 that we prove in Section 6.2

by using three basic lemmas. Among these, the first is a general splitting off result proved in

Section 6.3, while the proof of the other two lemmas is given in Section 6.4. Finally, in Section 6.5

we describe the structure of locally admissible sets and present a polynomial algorithm for

finding a sufficient locally admissible set F at a special node z. We also show an example of an

insufficient maximal globally admissible edge set.

6.1 Basic concepts and the proof of Theorem 1.47

We start with recalling some definitions from Section 1.5.4. Let D = (V,A) be a (k, �)-edge-

connected directed graph with root r0 ∈ V . For X ⊆ V , let γ(X) = k if r0 /∈ X and γ(X) = �

if r0 ∈ X. A node v ∈ V is called special if ρ(v) = k, � ≤ δ(v) ≤ k− 1. Let S denote the set of

special nodes (S �= ∅ is not assumed). If X ⊆ S then we say that X is a special set. Observe

that r0 /∈ S as δ(r0) ≥ k. For a z ∈ S, a subset F of edges entering z is locally admissible at

z if D − F is (k, �)-edge-connected in V − z and |F | ≤ k − δ(z). A locally admissible F will be

called sufficient if |F | = k − δ(z). Theorem 1.47 will be an easy consequence of the following.

Theorem 6.1. In a minimally (k, �)-edge-connected digraph D = (V,A) there exists a special

node z with a sufficient locally admissible set at z.

Let us see how Theorem 1.47 follows from this.
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Proof of Theorem 1.47. First let us show that the operations (i) and (ii) preserve (k, �)-edge-

connectivity. This is straightforward in the case of (i). For (ii), let D′ = (V + z, A′) denote the

digraph resulting from the (k, �)-edge-connected digraph D = (V,A) by applying (ii). For every

v ∈ V − r0, the k edge-disjoint paths from r0 to v and the � edge-disjoint paths from v to r0

in D naturally give the same number of paths in D′. Thus the only problem could be if there

were too few paths from r0 to z or from z to r0.

In this case, by Menger’s theorem we have a subset X of V + z with r0 /∈ X, z ∈ X, and

either ρ(X) < k or δ(X) < �. Since D′ is (k, �)-edge-connected in V , the only possibility is

X = {z}. However, ρ(z) = k and δ(z) ≥ � gives a contradiction.

For the other direction, if D is not minimally (k, �)-edge-connected, then we can obtain

D from a smaller (k, �)-edge-connected graph by operation (i). Otherwise, Theorem 6.1 is

applicable. Consider the special node z and the sufficient locally admissible F . D − F is (k, �)-

edge-connected in V − z and ρ(z) = δ(z), satisfying the conditions of Theorem 1.34. For the

digraph D′ resulting by a complete splitting at z, operation (ii) can be applyied to get D.

The locally admissible edge sets are characterized by the following claim. Let Δin(Z) and

Δout(Z) denote the sets of edges entering and leaving the set Z, respectively. As before, z

sometimes stands for the set {Z}.

Claim 6.2. F ⊆ Δin(z) is locally admissible at z if and only if |F | ≤ k − δ(z) and for each

∅ �= X � V , X �= {z},

ρA−F (X) ≥ γ(X). (6.1)

Proof. If F is locally admissible then for X �= V − z, (6.1) is the necessary cut condition as

D − F is (k, �)-edge-connected in V − z. If X = V − z then it is equivalent to δA−F (z) ≥ �,

which follows since δF (z) = 0. The converse direction follows by Menger’s theorem.

It is easy to check in polynomial time whether a set of edges entering z is locally admissible.

Furthermore these edge sets admit a nice structure: they form a matroid. A consequence is

that a building sequence can be found in polynomial time for a (k, �)-edge-connected digraph

D. This will be discussed in Section 6.5.

Given an arbitrary edge set F ⊆ A, for a node v ∈ V we use the notation Fv = F ∩ Δin(v).

Let μ(X) = δF (V − S − X,X), and let t(X) = min{δF (V − S − X, v) : v ∈ X}. A v giving

the minimum value in the definition of t(X) is called a seed of X. Let T (X) = max{ρFv
(X) :

v ∈ X}, and a v giving the maximum value is called a sprout of X. Note that a set may have

multiple seeds and sprouts.
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Definition 6.3. In a digraph D = (V,A) with special nodes S ⊆ V , we say that F ⊆ A is

globally admissible if

ρ(X) ≥ γ(X) + ρF (X), if X − S �= ∅, X � V, (6.2a)

ρ(X) ≥ k + T (X), if X is special, |X| ≥ 2, (6.2b)

ρ(X) ≥ γ(X) + μ(X) − t(X), for every ∅ �= X � V, (6.2c)

|Fv| ≤ k − δ(v), for every special node v and, (6.2d)

Fv = ∅, if v /∈ S. (6.2e)

Note that if X is not special, then all nodes in X − S are seeds and t(X) = 0, and thus

(6.2a) implies (6.2c). For a special set X, we have two conditions. On the right hand side of

(6.2c), we consider only edges coming from non-special nodes, however, not all such edges are

taken into account. The importance of (6.2b) is revealed by the following claim.

Claim 6.4. If F is globally admissible, then for each v ∈ S, Fv is locally admissible at v.

Proof. We have to verify (6.1). If X is not special, then ρA−Fv
(X) ≥ ρA−F (X) ≥ γ(X) by

(6.2a). If X is special and |X| ≥ 2, then by (6.2b), ρA−Fv
(X) ≥ ρ(X) − T (X) ≥ k.

Claim 6.5. If F is globally admissible in D and F ′ ⊆ F , then F ′ is also globally admissible in

D.

Proof. When removing an edge from F , the right hand sides of (6.2a), (6.2b) and (6.2c) cannot

increase.

F = ∅ is globally admissible if and only if D is (k, �)-edge-connected. By the above claim,

any digraph D that admits a globally admissible F is automatically (k, �)-edge-connected.

We say that a globally admissible set F is maximal if there is no edge uv ∈ A − F so that

F + uv is also globally admissible. A globally admissible F is called sufficient if (6.2d) holds

with equality for at least one special v, otherwise it is insufficient.

Let us now introduce now the various types of tight sets. We say that a set X is tight with

respect to the globally admissible F if at least one of (6.2a), (6.2b) or (6.2c) holds with equality

for X. A tight set with X − S �= ∅ is called normal tight. A special tight X with |X| ≥ 2 is

called T -tight or μ-tight if it satisfies (6.2b) or (6.2c) with equality, respectively. For a tight

X, if r0 /∈ X, then X is called in-tight, and if r0 ∈ X, then V − X is called out-tight. Note

that, somewhat confusingly, an out-tight set is not necessarily tight.

Claim 6.6. If F is insufficient globally admissible and for uv ∈ A − F , v ∈ S, F + uv is not

globally admissible, then uv enters a tight set X satisfying one of the following: (a) X is a

normal tight set, or (b) X is a T -tight set with sprout v, or (c) X is μ-tight, u ∈ V − S and X

has a seed t with t �= v.
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Proof. By assumption, F +uv should violate one of (6.2a), (6.2b) or (6.2c). This cannot happen

if none of them holds with equality for F , since the right hand sides may increase by at most 1.

Thus uv must enter a tight set X. If X is T -tight and v is not a sprout of v, then T (X) does

not increase by adding uv to F and thus (6.2b) will not be violated for X. Similarly, if X is

μ-tight and u ∈ S, then (6.2c) remains unchanged for F + uv. If u /∈ S but the unique seed of

X is v, then for F + uv, both μ(X) and t(X) increase by 1.

Note that if F is insufficient maximal globally admissible, this claim applies for every edge

uv ∈ A − F , v ∈ S.

We will prove a slight generalization of Theorem 6.1 for the purpose of a special induction

argument. To formulte this, one more new notion is needed. A globally admissible edge set F

saturates the digraph D if every edge uv ∈ A − F with v /∈ S enters a normal tight set. We

are going to prove the following:

Theorem 6.7. Let F0 ⊆ Δout(r0) be an arbitrary globally admissible set of edges in D = (V,A)

so that F0 saturates D. Then there exists a sufficient globally admissible F with F ⊇ F0.

The (k, �)-edge-connectivity of D is tacitly implied by the existence of F0. However, D is not

assumed to be minimal subject to this property. Nevertheless, F0 = ∅ is a globally admissible

edge set saturating D if and only if D is a minimally (k, �)-edge-connected digraph, and thus

Theorem 6.1 is a direct consequence of Theorem 6.7. Unfortunately, it is not true that every

maximal globally admissible F with F ⊇ F0 is sufficient, as shown by a counterexample in

Section 6.5.

Let uv be an edge entering the tight set X. If v ∈ S and X and uv satisfy one of the

conditions in Claim 6.6 or v /∈ S and X is normal tight, then we say that X blocks uv.

We conclude this section with some elementary propositions.

Claim 6.8. If X,Y ⊆ V , then

ρ(X) + ρ(Y ) = ρ(X ∩ Y ) + ρ(X ∪ Y ) + d(X,Y ), and (6.3a)

ρ(X) + ρ(Y ) = ρ(X − Y ) + ρ(Y − X) + ρ(X ∩ Y ) − δ(X ∩ Y ) + d̄(X,Y ). (6.3b)

�

Claim 6.9. For any X,Y ⊆ V ,

γ(X) + γ(Y ) = γ(X ∪ Y ) + γ(X ∩ Y ), and (6.4a)

γ(X) + γ(Y ) ≤ γ(X − Y ) + γ(Y − X). (6.4b)

�

Claim 6.10. For any X ⊆ V , ρ(X) − δ(X) =
∑

v∈X(ρ(v) − δ(v)). �
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Claim 6.11. Assume F is insufficient globally admissible, and Z �= ∅ is special. Then δ(Z) <

ρA−F (Z).

Proof. For each v ∈ Z, ρ(v) − δ(v) > |Fv|, and thus by summing for all v ∈ Z, ρ(Z) − δ(Z) =∑
v∈Z(ρ(v) − δ(v)) >

∑
v∈Z |Fv| ≥ ρF (Z), hence the claim follows.

Claim 6.12. For D = (U + u,A) with ρ(u) = δ(u), let Du denote the result of an (arbitrary)

complete splitting at u. Then for any X � U + u, ρDu
(X − u) ≤ ρD(X).

Proof. If u /∈ X, then the claim follows since splitting off a pair of edges incident to u cannot

increase the degree of X = X − u. In the case of u ∈ X, ρDu
(X − u) ≤ δD(U −X, u) + δD(U −

X,X − u) = ρD(X).

6.2 Proof of Theorem 6.7

The proof relies on three basic lemmas. First:

Lemma 6.13. Let F0 ⊆ Δout(r0) be an insufficient globally admissible set of edges, and ρ(u) =

δ(u) for some r0 �= u ∈ V . There exists a complete splitting at u so that F0 is globally admissible

in the resulting digraph.

Lemma 6.14. Assume F ′ is a globally admissible edge set and X is a tight set with |X| ≥ 2,

r0 /∈ X, |X − S| ≤ 1. Then for any maximal globally admissible F ⊇ F ′, F is sufficient.

Lemma 6.15. If F is maximal globally admissible with u ∈ S + r0 for each uv ∈ F , then F is

sufficient.

The first of these will be proved in Section 6.3, while the last two in Section 6.4. Let us now

turn to the proof of Theorem 6.7. Consider a counterexample D = (V,A) and F0 so that |V | is

minimal, and subject to this, |F0| is maximal. Consider a maximal globally admissible F ⊇ F0.

By the assumption, F is insufficient.

Case I

Assume there is a u ∈ V with ρ(u) = δ(u) = k. By Lemma 6.13, there is a complete splitting

at u so that F0 is globally admissible in the resulting digraph Du = (V − u,A′).

Claim 6.16. F0 saturates Du.

Proof. The set of special nodes is the same S in D and Du. Consider an edge e = yz in Du

with z /∈ S. Assume first that e is an edge in D as well. There is a normal tight set X ⊆ V

blocking e in D, since F0 saturated D. Claim 6.12 implies ρDu
(X − u) ≤ ρD(X). X − u is also
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normal and as the subset of F0 entering X − u in Du is the same as the subset in D entering

X, it follows that X − u blocks e in Du.

If e = yz is a new edge, then take a set X that blocked uz in D. X is again a normal tight

set in Du. Note that y /∈ X as otherwise the in-degree of X would be smaller in Du than in D

while the value of ρF0
(X) does not change. Hence X blocks e in Du, completing the proof.

As Du has less nodes than D, by the minimality of |V | there exists a special node w and a

sufficient locally admissible edge set Fw so that F ′ = Fw ∪ F0 is globally admissible. Note that

w is special in D as well.

From Du we can get to D by pinching the k splitted edges with u. By abuse of notation,

we will denote by Fw the edge set in D corresponding to Fw in Du in the sense that if an edge

xw ∈ Fw has been divided by u, then we replace xw by uw in Fw. We will also use F ′ in this

sense in D. Unfortunately, it might happen that F ′ is not globally admissible in D. Consider

a globally admissible F1 maximal subject to the condition F0 ⊆ F1 ⊆ F ′ with |F1| as large as

possible. If F1 = F ′, then F1 is sufficient as δD(w) = δDu
(w). Otherwise, we are going to prove

that there is a tight set Z for F1 with |Z − S| ≤ 1, |Z| ≥ 2 so Lemma 6.14 is applicable giving

a sufficient globally admissible superset of F1.

Assume Fw − F1 �= ∅, and consider an edge zw ∈ Fw − F1. By Claim 6.6, zw is blocked by

some tight set Z with respect to F1.

Claim 6.17. Z ⊆ S ∪ {u}

Proof. Z = V − u is impossible as δF1
(u) < |Fw| ≤ k − �, and thus ρA−F1

(V − u) > �. Assume

V − Z − u �= ∅ and Z − S − u �= ∅. As F ′ is admissible in Du and Z − u is not special,

ρDu,A′−F ′(Z − u) ≥ γ(Z) follows. Claim 6.12 implies ρD,A−F ′(Z) ≥ ρDu,A′−F ′(Z − u). However,

ρA−F1
(Z) > ρA−F ′(Z) ≥ γ(Z) as zw ∈ F1 − F enters Z, showing that Z cannot be tight in D.

This implies the claim.

Case II

Assume the condition of Case I does not hold and there is an edge uv ∈ F with u ∈ V −S − r0.

Let D1 = (V,A − uv + r0v) and F1 = F0 + r0v.

Claim 6.18. F1 is globally admissible in D1 and saturates it. The set of tight sets is the same

in D and in D1.

Proof. If v /∈ X or v ∈ X and |{u, r0}∩X| �= 1 then no term is changed in the conditions (6.2a),

(6.2b) and (6.2c). This is in fact always the case for (6.2b). If u, v ∈ X, r0 /∈ X, then in (6.2a)

and (6.2c), both sides increase by one, while if v ∈ X, u /∈ X, r0 ∈ X, both sides decrease by

one. (Note that t(X) = 0 in both cases as X − S �= ∅.)
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This implies the admissibility and that the set of tight sets coincide in the two cases. Thus

if an edge uv ∈ A − F with v /∈ S is blocked by a normal tight set for F0 in D, then the same

set blocks it in D1, proving the saturation.

By the choice of D and F0, there is a sufficient edge set F ′ ⊇ F1 in D1 with |F ′
w| = k−δD1

(w)

for some w special node in D1. All nodes but u and r0 have the same in- and out-degrees in D

and D1, and thus w is special in D unless w = u and ρ(w) = δ(w) = k. This is a contradiction

since we assumed that no such node exists.

Let F ′′ = F ′ − r0v + uv. By the previous claim, it is straightforward to show that F ′′ is

globally admissible in D containing F0.

Case III.

For all edges in uv ∈ F , u ∈ S + r0. The conditions of Lemma 6.15 are satisfied, showing that

F is sufficient.

6.3 Splitting off

Theorem 1.1 gave the minimum number of edges covering a positively crossing supermodular

function on set pairs. What we are now interested in is an easier problem, namely, coverings

of positively crossing supermodular set functions. The following theorem of Frank can be seen

as a corollary of Theorem 1.1 on the one hand, and as an abstract generalization of Mader’s

splitting off theorem (Theorem 1.28) on the other hand.

Analogously as in Section 1.3, we introduce the notion of degree prescribed edge sets in

directed graphs. For a ground set U , let us call the pair (mi,mo) a degree prescription if

mi and mo are two U → Z+ functions with mi(U) = mo(U). We say that H is an (mi,mo)-

prescribed edge set if ρH(v) = mi(v), δH(v) = mo(v) for every v ∈ U . The existence of such

an edge set is straightforward.

Theorem 6.19 (Frank, 1999 [24]). Let U be a ground-set with a degree-prescription (mi,mo).

Let p be a non-negative, integer valued positively crossing supermodular set function on U with

p(∅) = p(U) = 0. Then there exists an (mi,mo)-prescribed edge set H with

ρH(X) ≥ p(X) for every X ⊆ V (6.5)

and if and only if

mi(X) ≥ p(X) and (6.6)

mo(U − X) ≥ p(X) for every X ⊆ U. (6.7)
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Theorem 1.34 is an easy consequence: consider a digraph D = (U + z, A) which is (k, �)-

edge-connected in U with root node r0 ∈ U . Let A′ denote the set of edges induced by U . For

v ∈ U , let mo(v) = δA(v, z) and mi(v) = δA(z, v). Let p(∅) = p(V ) = 0 and let p(X) = (γ(X)−
ρA′(X))+ otherwise. It is easy to check that this function is positively crossing supermodular

and that the conditions of the theorem are met due to the (k, �)-connectedness in U . The edge

set H ensured by the theorem corresponds to the split edges.

Let us now present a generalization of this theorem. The only difference will be that we

require a property slightly weaker than positively crossing supermodularity. This is still only

a special case of a theorem in the master thesis of T. Király [52, Theorem 2.8]. Our proof

follows the same lines as the proof given in [33] for Theorem 6.19. Whereas Theorem 6.19 can

be derived from Theorem 1.1, such a deduction does not seem to be possible in our case since

we have a skew supermodular-type property.

Theorem 6.20. Let U be a ground-set with a degree-prescription (mi,mo). Let p be a non-

negative, integer valued set function on U with p(∅) = p(U) = 0 satisfying the following property.

For crossing sets X,Y ∈ U , with p(X), p(Y ) > 0, either

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ) or (6.8a)

p(X) + p(Y ) < p(X − Y ) + p(Y − X) + mi(X ∩ Y ) − mo(X ∩ Y ). (6.8b)

Then there exists an (mi,mo)-prescribed edge set H satisfying (6.5) if and only if (6.6) and

(6.7) hold.

Proof. Necessity is obvious as p(X) ≤ ρH(X) ≤ min{mi(X),m0(U − X)}. For sufficiency,

assume for a contradiction that no such H exists. For an (mi,mo)-prescribed edge set H, Let

qH(X) = p(X)−ρH(X) denote the violation of (6.5) for X and let νH = maxX⊆U qH(X) denote

the maximum violation. Let FH := {X ⊂ U : qH(X) = νH} the set of maximally violating

sets.1 As in Section 1.3, assume H is chosen so that νH is as small as possible, and subject to

this, |FH| is as small as possible. As (6.5) does not hold, νH > 0, and thus p(X) > 0 for every

X ∈ FH . The next claim is a directed analogoue of Claim 5.3.

Claim 6.21. Let X,Y ∈ FH crossing. Then both X ∩ Y and X ∪ Y belong to FH .

Proof. If (6.8a) holds for X and Y then 2νH = p(X) + p(Y ) − ρH(X) − ρH(Y ) ≤ p(X ∪ Y ) +

p(X ∩ Y )− ρH(X ∪ Y )− ρH(X ∩ Y ) ≤ 2νH , hence the claim follows. Assume now (6.8b) holds.

Observe that mi(X ∩ Y ) − m0(X ∩ Y ) = ρH(X ∩ Y ) − δH(X ∩ Y ). Using this,

2νH = p(X) + p(Y ) − ρH(X) − ρH(Y ) <

< p(X − Y ) + p(Y − X) + (mi(X ∩ Y ) − mo(X ∩ Y )) − ρH(X) − ρH(Y ) ≤
≤ 2νH + ρH(X − Y ) + ρH(Y − X) + (ρH(X ∩ Y ) − δH(X ∩ Y )) − ρH(X) − ρH(Y ).

1It is a difference between the undirected and directed setting that in Section 1.3, F denoted the set of

maximally violating sets minimal for containment.
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Finally we get

ρH(X) + ρH(Y ) < ρH(X − Y ) + ρH(Y − X) + (ρH(X ∩ Y ) − δH(X ∩ Y )),

a contradiction to (6.3b).

Let K be a minimal member of F and L ⊇ K be a maximal member. There is an edge

e = uv of H with u, v ∈ K and an f = xy with x, y ∈ U −L as otherwise K or L would violate

(6.6) or (6.7). Let H ′ be the result of flipping the edges xy and uv, that is, replacing them by

uy and xv.

Now ρH′(X) ≥ ρH(X)− 1 for every X ⊆ V and equality may hold only if X ∩ {x, y, u, v} is

either {x, v} or {u, y}. This condition cannot hold for an X ∈ F as it would imply that X and

K are crossing. Therefore, νH′ ≤ νH and here equality holds by the minimality of νH .

K /∈ FH′ as ρH′(K) = ρH(K) + 1. So by the minimality of FH , there is an X ∈ FH′ − FH

with qH(X) = νH − 1. By symmetry we may assume X ∩ {x, y, u, v} = {x, v}. p(X), p(K) > 0.

Again (6.8a) gives a contradiction easily, and if (6.8b) holds, then

2νH − 1 = p(X) + p(K) − ρH(X) − ρH(K) <

< p(X − K) + p(K − X) + mi(X ∩ K) − mo(K ∩ X) − ρH(X) − ρH(K) ≤
≤ 2νH − 1 + ρH(X − K) + ρH(K − X) + ρH(X ∩ K) − δH(X ∩ K) − ρH(X) − ρH(K).

In the last equation we have used that by the minimal choice of K and K−X �= ∅, qH(K−X) ≤
νH − 1. This is again a contradiction to (6.3b).

We are in the position to derive Lemma 6.13 as an easy consequence.

Proof of Lemma 6.13. Let F = F0. As F ⊆ Δout(r0), it follows that μ(X) = ρF (X) = δF (s,X)

for every X. Observe that in this case we only have to guarantee (6.2c) as it implies both (6.2a)

and (6.2b).

Let U = V − u, and let D′ = (U,A′) denote the subgraph induced by U .Let us define p(X)

the following way. p(∅) := p(V ) := 0, and for ∅ �= X �= V , let

p(X) := (γ(X) − ρA′(X) + μ(X) − t(X))+ = (γ(X) − ρA′−F (X) − t(X))+

Let mo(z) = δD(z, u) and mi(z) = δD(u, z).

Claim 6.22. The conditions of Theorem 6.20 are satisfied.

Using this claim Lemma 6.13 follows immediately. Let us split off the edges incident to u

according to the edge set A given by the theorem. As u was not special, the edges in F are left

unchanged. Let Du = (U,A′ +H) denote the digraph after the splitting. We have to prove that

F is globally admissible in Du. Again it is enough to verify (6.2c), which is a direct consequence

of ρH(X) ≥ p(X).
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Proof of Claim 6.22. Consider crossing sets X,Y ⊆ U with p(X), p(Y ) > 0. Then t(X) ≥
t(X ∪ Y ); furthermore, if X has a seed in X ∩ Y , then t(X) = t(X ∩ Y ) and the same holds

for exchanging X and Y . Consequently, if X ∩ Y − S �= ∅ or X ∩ Y is special but it contains a

seed of X or Y , then t(X) + t(Y ) ≥ t(X ∩ Y ) + t(X ∪ Y ) follows. In this case

p(X) + p(Y ) = γ(X) + γ(Y ) − t(X) − t(Y ) − ρA′−F (X) − ρA′−F (Y ) ≤
≤ γ(X ∪ Y ) + γ(X ∩ Y ) − t(X ∪ Y ) − t(X ∩ Y ) −

−ρA′−F (X ∪ Y ) − ρA′−F (X ∩ Y ) ≤ p(X ∪ Y ) + p(X ∩ Y ),

and thus (6.8a) holds. Assume now X ∩Y is special and X has a seed x ∈ X −Y , Y has a seed

y ∈ Y − X.

p(X) + p(Y ) = γ(X) + γ(Y ) − t(X) − t(Y ) − ρA′−F (X) − ρA′−F (Y ) ≤
≤ γ(X − Y ) + γ(Y − X) − t(X) − t(Y ) −

−ρA′−F (X − Y ) − ρA′−F (Y − X) − (ρA′−F (X ∩ Y ) − δA′−F (X ∩ Y ))

As F was insufficient, |Ft| < ρA(t)− δA(t) in the original digraph D for every t ∈ X ∩ Y , which

implies |Ft| < ρA′(t) + mi(t) − δA′(t) − mo(t). This gives mo(t) − mi(t) < ρA′−F (t) − δA′−F (t),

and thus mo(X ∩ Y )−mi(X ∩ Y ) < ρA′−F (X ∩ Y )− δA′−F (X ∩ Y ). Now t(X) = t(X − Y ) and

t(Y ) = t(Y − X) because of the seeds x and y, so we get

p(X) + p(Y ) < γ(X − Y ) + γ(Y − X) − t(X − Y ) − t(Y − X) −
−ρA′−F (X − Y ) − ρA′−F (Y − X) + (mi(X ∩ Y ) − mo(X ∩ Y )) ≤

≤ p(X − Y ) + p(Y − X) + mi(X ∩ Y ) − mo(X ∩ Y ).

It is left to verify (6.6) and (6.7). Let X ⊆ U . As F was globally admissible in D, ρA−F (X) ≥
γ(X)− t(X). Now ρA−F (X) = mi(X) + ρA′−F (X), giving (6.6). On the other hand, ρA−F (X +

u) ≥ γ(X + u) − t(X + u) = γ(X) as u /∈ S. ρA−F (X + u) = mo(U − X) + ρA′−F (X) and thus

mo(U − X) ≥ γ(X) − ρA′−F (X), giving (6.7).

6.4 Lemmas

In all claims and lemmas of this sections, F is assumed to be an insufficient globally admissible

edge set, if not asserted explicitly otherwise.

Claim 6.23. Assume ∅ �= Z � X � V , X − Z ⊆ S and δA−F (Z,X − Z) = ∅. Then ρ(Z) <

ρ(X) − δF (V − X,X − Z) and ρA−F (Z) < ρA−F (X).

124



Proof. For the first part, δ(X − Z) < ρA−F (X − Z) by Claim 6.11 as X − Z is special. Then

ρ(Z) = ρ(X)+δ(X−Z,Z)−δF (V −X,X−Z)−δA−F (V −X,X−Z) < ρ(X)−δF (V −X,X−Z)

since δ(X−Z,Z)−δA−F (V −X,X−Z) = δ(X−Z,Z)−ρA−F (X−Z) ≤ δ(X−Z)−ρA−F (X−Z) <

0 by the previous remark. The second part follows from this using ρF (Z)+ δF (V −X,X −Z) ≥
ρF (X).

The next lemma describes strong connectivity properties of various tight sets.

Lemma 6.24. (i) Assume X is an out-tight set. If for some Z ⊆ X, δA−F (Z,X − Z) = 0,

then Z is out-tight and Δout
D−F (Z) = Δout

D−F (X). (ii) If X is normal in-tight, Z ⊆ X, then

δA−F (Z,X −Z) = 0 implies that X −Z is also normal in-tight and Δin
D−F (X) = Δin

D−F (X −Z).

(iii) If X is μ-tight, and u is a seed of X, then there is an edge uv ∈ A−F with v ∈ X. (iv) If

X is T -tight and v is a sprout of X, then there is an edge uv ∈ A − F with u ∈ X.

Proof. (i) δA−F (X) = � and δA−F (Z) ≥ �. Thus if δA−F (Z,X − Z) = 0 then all edges in A − F

leaving Z must leave X as well, and this is what we wanted to prove.

(ii) Assume first X −Z − S �= ∅. ρA−F (X) = k, ρA−F (X −Z) ≥ k, and the claim follows as

in the first part.

Assume now X − Z is special. By Claim 6.23, ρA−F (Z) < ρA−F (X) = k, a contradiction as

X was not special, and thus neither is Z.

(iii) ρ(X) = k+δF (V −X−S,X−u). If all edges in X outgoing from u are in F , then we can

use Claim 6.23 for Z = {u}, and thus k = ρ(u) < k+δF (V −X−S,X−u)−δF (V −X,X−u) ≤ k,

a contradiction.

(iv) ρ(X) = k + T (X) = k + δF (V − X, v). If all edges in X entering v are in F , then

Claim 6.23 can be applied for Z = X − v. Thus k ≤ ρ(X − v) < k + T (X)− δF (V −X, v) = k,

a contradiction again.

Claim 6.25. For sets ∅ �= Z ⊆ X, X − Z ⊆ S, if X has a seed u ∈ Z then t(X) = t(Z).

Proof. As X − Z ⊆ S, for any x ∈ Z, δF (V − Z − S, x) = δF (V − X − S, x). u is the node in

X minimizing δ(V − X − S, x), and thus the claim follows.

In the next lemma, we show some configurations of tight sets which may not exist for an

insufficient globally admissible F .

Lemma 6.26. There exists no X ⊆ V with the following properties: |X| ≥ 2, X is in-tight and

(i) X − S �= ∅ and there is a subpartition Y = {Y1, . . . , Ym} of X so that X − S ⊆ ∪Y and

each Yi is out-tight and proper subset of X or (ii) X is μ-tight and there is an out-tight Y � X

containing a seed u of X; (iii) X is T -tight and there is an out-tight Y � X not containing a

sprout z of X.
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Proof. (i) We may assume that there is no special Yi as leaving such members from Y the

conditions still hold. Thus ρA−F (Yi) ≥ k for each i and δA−F (Yi) = � as they are out-tight

sets. Let X0 = X − ∪Y. As X0 is special, Claim 6.11 implies ρA−F (X0) − δA−F (X0) > δF (X0)

whenever X0 �= ∅. Now ρA−F (X) = k, δA−F (X) ≥ �, and thus

k − � ≥ ρA−F (X) − δA−F (X) =

= (ρA−F (X0) − δA−F (X0)) +
m∑

i=1

(ρA−F (Yi) − δA−F (Yi)) ≥ δF (X0) + m(k − �),

a contradiction, since either X0 �= ∅ and thus the last inequality is strict, or m ≥ 2 as we did

not allow Y = {X}.
(ii) Let u denote a seed of X as in the conditions. t(X) = t(Y ) by Claim 6.25 (X − Y ⊆ S

holds since X is special). δ(Y ) = � + δF (Y ) as Y is out-tight. Claim 6.11 gives ρ(X − Y ) −
δ(X − Y ) > ρF (X − Y ). Similarly to the previous case,

k + μ(X) − t(X) − � − δF (X) ≥ ρ(X) − δ(X) = ρ(X − Y ) − δ(X − Y ) +

+ρ(Y ) − δ(Y ) > ρF (X − Y ) + k + μ(Y ) − t(Y ) − � − δF (Y ).

This gives δF (Y )−δF (X)+μ(X)−μ(Y ) > ρF (X−Y ). Using δF (Y ) ≤ δF (X)+δF (Y,X−Y ) and

μ(X) = μ(Y )+δF (V −X−S,X−Y ), one gets δF (Y,X−Y )+δF (V −X−S,X−Y ) > ρF (X−Y ),

clearly a contradiction.

(iii) As in the previous two cases,

k + T (X) − � − δF (X) ≥ ρ(X) − δ(X) = ρ(X − Y ) − δ(X − Y ) +

+ρ(Y ) − δ(Y ) > ρF (X − Y ) + k − � − δF (Y ).

Thus δF (Y ) − δF (X) + T (X) > ρF (X − Y ). As δF (Y ) ≤ δF (X) + δF (Y,X − Y ) and T (X) =

δF (V − X, z), we have δF (Y,X − Y ) + δF (V − X, z) > ρF (X − Y ), a contradiction again.

Claim 6.27. (a) If X ∩ Y is special, then ρ(X) + ρ(Y ) > ρ(X − Y ) + ρ(Y − X) + δF (V −
X,X ∩ Y ) + δF (V − Y,X ∩ Y ).

(b) If Y is normal tight, Y −X−S �= ∅, r0 /∈ X∩Y , then ρ(Y ) ≤ ρ(Y −X)+δF (V −Y,X∩Y ).

Proof. (a) By (6.3b), it is enough to prove that (ρ(X ∩ Y ) − δ(X ∩ Y )) + d̄(X,Y ) > δF (V −
X,X∩Y )+δF (V −Y,X∩Y ). By Claim 6.11, ρF (X∩Y ) < ρ(X∩Y )−δ(X∩Y ) and obviously,

δF (V − X − Y,X ∩ Y ) ≤ d̄(X,Y ). These together imply the claim.

(b) Since Y − X is not special, ρ(Y − X) ≥ γ(Y − X) + ρF (Y − X) and γ(Y − X) = γ(Y )

as r0 /∈ X ∩ Y . Using these,

ρ(Y ) = γ(Y ) + ρF (Y ) = γ(Y ) + δF (V − Y, Y − X) + δF (V − Y,X ∩ Y ) ≤
≤ γ(Y − X) + ρF (Y − X) + δF (V − Y,X ∩ Y ) ≤ ρ(Y − X) + δF (V − Y,X ∩ Y ).
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We are almost ready to prove Lemma 6.14. The following lemma is slightly weaker, but will

easly imply it.

Lemma 6.28. If F ′ is globally admissible and there exists at least one special tight set, then

any maximal globally admissible set F ⊇ F ′ is sufficient.

Proof. Let F be a maximal globally admissible set containing F ′. Clearly, the tight sets for F

are also tight for F ′. We show that if F is insufficient, then no special tight set may exist.

First we show that no T -tight set exists. Indeed, assume X is minimal T -tight; let z be a

sprout. By Lemma 6.24(iv), there is an edge uz ∈ A − F with u ∈ X. By Claim 6.6, uz must

enter a tight set Y which is either normal or T -tight with sprout z. Case (c) is excluded since

u is special.

First assume Y is normal. If V − Y ⊆ X then we have a contradiction by Lemma 6.26(iii)

as V − Y is an out-tight set satisfying the conditions. Y ⊂ X is impossible as it would give

Y ⊆ S. Thus X and Y are crossing.

ρ(X) = k + T (X) ≤ ρ(X − Y ) + δF (V − X,X ∩ Y ) (6.9)

as z ∈ X ∩ Y and ρ(X − Y ) ≥ γ(X − Y ) = k. Using both Claim 6.27(b) and (a) we get a

contradiction unless F is sufficient.

If Y is a T -tight set, by the minimality of X, X and Y are crossing. (6.9) holds again and

also ρ(Y ) = k + T (Y ) ≤ ρ(Y − X) + δF (V − Y,X ∩ Y ) as z ∈ X ∩ Y is also a sprout of Y . A

contradiction again.

Next, assume X is minimal μ-tight, and let u be a seed. By Lemma 6.24(iii), we have a

uv ∈ A−F with v ∈ X blocked by a tight set Y . We have seen already that no T -tight sets exist.

Neither may Y be μ-tight since u is special. Thus Y should be normal. Again V −Y ⊆ X would

contradict Lemma 6.26(ii) and Y ⊂ X is impossible, and thus X and Y should be crossing.

Using Claim 6.25 for X and Z = X − Y , t(X − Y ) = t(X). Thus

ρ(X) = k + μ(X) − t(X) = k + δF (V − S − X,X) − t(X − Y ) =

k + δF (V − S − X,X − Y ) − t(X − Y ) + δF (V − S − X,X ∩ Y ) ≤
≤ ρ(X − Y ) + δF (V − X,X ∩ Y ).

Using again Claim 6.27(b) and (a) gives a contradiction.

Lemma 6.29. Assume F is a maximal, insufficient globally admissible set of edges. If X and

Y are crossing tight sets, then X ∪ Y and X ∩ Y are tight as well. If X or Y blocks an edge

uv ∈ A − F , then either X ∪ Y or X ∩ Y blocks uv as well.

Proof. By Lemma 6.28, we know that both X and Y are normal tight. Assume first that

(X ∩ Y ) − S �= ∅. From (6.3a) and (6.4a) we have:

ρA−F (X) + ρA−F (Y ) = γ(X) + γ(Y ) = γ(X ∩ Y ) + γ(X ∪ Y ) ≤
≤ ρA−F (X ∩ Y ) + ρA−F (X ∪ Y ) ≤ ρA−F (X) + ρA−F (Y ),
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implying that both X ∩ Y and X ∪ Y are tight and dA−F (X,Y ) = 0. The second part of the

claim follows as both of them are normal.

We show that X∩Y ⊆ S is impossible. X−Y and Y −X are both non-special sets, and thus

Claim 6.27(b) applies for Y and also for X by exchanging the role of X and Y . Claim 6.27(a)

leads to a contradiction again.

An easy consequence of Lemma 6.29 is the following:

Claim 6.30. If F is maximal insufficient globally admissible and uv ∈ A− F , either there is a

unique minimal in-tight set Bin
uv blocking uv or a unique minimal out-tight Bout

uv blocking uv. If

u, v ∈ X for an in- or out-tight set X, then Bin
uv ⊆ X or Bout

uv ⊆ X.

Proof. By Lemma 6.29, for every edge uv ∈ A − F there is a unique minimal B1 and a unique

maximal B2 in-tight set entered by uv. If r0 /∈ B1 then B1 is in-tight and thus Bin
uv = B1, if

r0 ∈ B1 then Bout
uv = V − B2. (Note that both sets may exist). The second part also follows by

Lemma 6.29.

Now we are ready to prove Lemmas 6.14 and 6.15.

Proof of Lemma 6.14. By Lemma 6.28, the only case left is if X is normal tight with r0 /∈ X,

|X − S| = 1. Let X − S = {u}. If there is no edge in A − F from u to X − u, then by

Lemma 6.24, X −u is normal in-tight, a contradiction to X −u ⊆ S. Thus there exists an edge

uv ∈ A − F with v ∈ X. Let Y = Bin
uv or Y = Bout

uv as in Claim 6.30. In the first case Y ⊆ S

contradicting that it is a tight set and every tight set is normal. In the second case, X and

Y = {Y } satisfy the conditions of Lemma 6.26(i), a contradiction again.

Proof of Lemma 6.15. For a contradiction, assume F is insufficient. Let K denote the set of

in-tight singletons and L the set of out-tight singletons.

Claim 6.31. K ∩ L = ∅.

Proof. Let u ∈ K ∩ L. Trivially, u �= r0. As a singleton tight set cannot be special, ρ(u) = k

and δ(u) ≥ k. However, the out-tightness of {u} implies δA−F (u) = �, and thus δF (u) > 0, a

contradiction.

Claim 6.32. If an edge f = xy ∈ A − F is blocked by an in-tight set, then Bin
xy = {y}. If it is

blocked by an out-tight set, then Bout
xy = {x}.

Proof. Consider a minimal in-tight or out-tight set X for some edge f = xy ∈ A − F which is

not a singleton. By Lemma 6.24(i) or (ii) and the minimality of X, X is strongly connected in

A − F . We show that either X ⊆ K or X ⊆ L. Consider an edge uv ∈ A − F with u, v ∈ X,

guaranteed by the strong connectivity. By Claim 6.30, either uv enters a minimal in-tight or
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leaves a minimal out-tight Y with Y ⊆ X. By the minimal choice of X, Y is a singleton:

Y = {u} ∈ L or Y = {v} ∈ K. Thus either X ∩ K �= ∅ or X ∩ L �= ∅.
Assume first X∩K �= ∅ and let Z = X∩K. If X−Z �= ∅, then by the strongly connectedness

there is an edge uv ∈ A−F with u ∈ Z and v ∈ X−Z blocked by a minimal in- or out-tight set

Y . Again, Y is a singleton and either Y = {u} ∈ L or Y = {v} ∈ K. Both cases are impossible

since u ∈ X ∩ K, and v ∈ X − K. Thus we may conclude X ⊆ K.

Next, consider X ∩ L �= ∅ and let Z = X ∩ L. If X − Z �= ∅, then an edge uv ∈ A− F with

u ∈ X − Z, v ∈ Z gives the contradiction as above. Thus X ⊆ L follows.

X was either in- or out-tight. If X = Bout
xy is out-tight, then X ⊆ L is excluded as it would

give Bout
xy = {x}. Thus X ⊆ K. As K ∩ S = ∅, for each u ∈ X, ρ(u) = k, δ(u) ≥ k. By the

assumption that all edges in F have tail in S + r0, δF (X) = 0 and thus δ(X) = �. Now

k − � ≤ ρ(X) − δ(X) =
∑
u∈X

(ρ(u) − δ(u)) ≤ 0,

giving a contradiction.

If X = Bin
xy is in-tight, then X ⊆ K is excluded since it would give Bin

xy = {y}. Thus X ⊆ L.

X−S �= ∅ as all tight sets are normal by Lemma 6.28, and thus the conditions of Lemma 6.26(i)

apply with Y being the partition of X into singletons.

r0 /∈ K implies K �= V . Also K �= ∅ as by Claim 6.32, all edges in A − F leaving r0 should

enter members of K. As ρA−F (V −K) ≥ �, there is an edge uv ∈ A−F leaving K. This cannot

be blocked by neither an in-tight nor an out-tight singleton.

6.5 Further remarks

6.5.1 Matroid property of locally admissible sets

First, we describe the structure of the locally admissible edge sets at a given special node z. We

prove

Theorem 6.33. The set system Mz = {F : F is locally admissible at z} is a matroid.

This together with Theorem 6.1 gives a straightforward way for finding a sufficient locally

admissible edge set. By Theorem 6.1, we know that special nodes exist and one of them has

a sufficient locally admissible set. We check the special nodes one-by-one, and at each special

node z we greedily choose a maximal locally admissible edge set. Note that this can be done

easily as we just need to take care of the (k, �)-edge-connectedness in V −z which can be checked

by flow computations. Theorem 6.33 ensures that if z admits a sufficient global admissible edge

set, we can find it this way.
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Proof of Theorem 6.33. The only nontrivial property we have to check is that if |F | < |F ′| and

both F, F ′ ∈ Mz then there is an edge uz ∈ F ′ − F so that F + uz is locally admissible as well.

For a contradiction, assume this does not hold.

A set X will now be called tight at z for F if z ∈ X, X �= {z} and it satisfies (6.1) with

equality. (Actually this notion coincides with the tight sets containing z when we consider F as

a globally admissible set of edges). Note that since |F ′| ≤ k− δ(z) by definition and |F | < |F ′|,
|F | is insufficient.

Claim 6.34. If X and Y are crossing tight sets at z for F then X ∩ Y and X ∪ Y are also

tight.

Proof. If X ∩ Y �= {z}, then (6.1) also holds for X ∩ Y and X ∪ Y and thus the claim follows

by the submodularity of the function ρA−F . We show that X ∩ Y = {z} is impossible. Indeed,

by (6.3b) we would have γ(X) + γ(Y ) = ρA−F (X) + ρA−F (Y ) ≥ ρA−F (X − Y ) + ρA−F (Y −
X) + ρA−F (z) − δA−F (z) > ρA−F (X − Y ) + ρA−F (Y − X) ≥ γ(X − Y ) + γ(Y − X) as F was

insufficient, a contradiction to (6.4b).

Thus for each edge uz ∈ F ′ − F there is a unique minimal tight set Xuz at z for F entered

by uz. For different uz, wz ∈ F ′ − F , Xuz and Xwz cannot be crossing as Xuz ∩ Xwz would

also be tight contradicting their minimality. Thus Xuz ∪ Xwz = V . Let T = {V − Xuz : uz ∈
F ′ − F}. T forms a subpartition of V − z so that for each uz ∈ F ′ − F , u is contained in

some member of T . For each Y ∈ T , δ(Y ) = γ(V − Y ) + δF (Y ). As F ′ is locally admissible,

δF ′(Y ) ≤ δ(Y )−γ(V −Y ) = δF (Y ), and thus δF ′−F (Y ) ≤ δF−F ′(Y ). Summing up for all Y ∈ T
we get |F ′ − F | =

∑
Y ∈T δF ′−F (Y ) ≤ ∑

Y ∈T δF−F ′(Y ) ≤ |F − F ′|, contradicting |F | < |F ′|.

6.5.2 Example of an insufficient maximal globally admissible set

u

r0

v

t

w

An example for an insufficient maximal globally admissible set is shown on the figure for

k = 4, � = 2. D is minimally (4, 2)-edge-connected. It contains two special nodes u and t with

in-degree 4 and out-degree 2. Both of them have a sufficient locally admissible edge set: for

both u and t the two edges coming from w are sufficient locally admissible. However, if we
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consider F consisting of one wu and on wt edge (the thick edges), F is maximal as the following

sets block every edge entering u and t: {u}, {t} {w} are out-tight and {u, t, v, w} is in-tight.

However, F is insufficient.

The proof of the case � = k − 1 by Frank and Király [33] used an argument similar to the

proof of Lemma 6.15. One might wonder why the much simpler argument cannot be applied

in the general case to prove that every maximal globally admissible set is sufficient (which is,

in fact, false). A possible explanation is that Claim 6.31 fails to hold unless F satisfies the

condition in Lemma 6.15: in this example the singleton set {w} is both in- and out-tight.
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Eötvös University, Budapest, 1999. available online at http://www.cs.elte.hu/. 122

136
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Abstract

The main subject of the thesis is connectivity augmentation: we would like to make a given graph

k-connected by adding a minimum number of new edges. There are four basic problems in this

field, since one might consider both edge- and node-connectivity augmentation in both graphs

and digraphs. The thesis wishes to contribute to three out of these four problems: directed-

and undirected node-connectivity and undirected edge-connectivity augmentation. Although

directed edge-connectivity augmentation is not being considered, the last chapter is devoted to

a constructive characterization result related to directed edge-connectivity. Let us summarize

the main results of the thesis.

• We present a min-max formula and a combinatorial polynomial time algorithm for aug-

menting undirected node-connectivity by one. The complexity status of undirected node-

connectivity augmentation of arbitrary graphs is still open; already the special case of

augmenting by one has attracted considerable attention. The formula proved in Chap-

ter 3 was conjectured by Frank and Jordán in 1994.

• We present the first combinatorial polynomial time algorithm for directed node-connec-

tivity augmentation. For this problem, Frank and Jordán gave a min-max formula in

1995; however, it remained an open problem to develop a combinatorial algorithm. We

present two, completely different combinatorial algorithms. Chapter 2 contains one for

the special case of augmenting connectivity by one (a joint work with András Frank), and

Chapter 4 presents another for augmenting the connectivity of arbitrary digraphs (a joint

work with András Benczúr Jr.). The latter result also gives a new, algorithmic proof of

the general theorem of Frank and Jordán on covering positively crossing supermodular

functions on set pairs.

• We establish a constructive characterization of (k, �)-edge-connected digraphs. This result

of Chapter 6, a joint work with Erika Renáta Kovács, settles a conjecture of Frank from

2003. The theorem gives a common generalization of a number of previously known char-

acterizations, and naturally fits into the framework defined by splitting off and orientation

theorems.

• We present partial results concerning partition constrained undirected local edge-conn-

ectivity augmentation. In Chapter 5, we discuss some classical results concerning undi-

rected edge-connectivity augmentation in a unified framework, based on the technique of

edge-flippings. For the partition constrained problem we formulate a conjecture and give

a partial proof.

Most results are based on the papers [36], [74], [73] and [56], except for Chapter 5, which

contains unpublished results.





Összefoglalás

Az értekezés fő témája az összefüggőség-növelés: egy adott gráfot szeretnénk minimális számú

él hozzávételével k-szorosan összefüggővé tenni. Ez négy alapkérdést foglal magában, mivel él-

és pontösszefüggőség növelése is felvethető mind iránýıtott, mind iránýıtatlan gráfokban. Az

értekezésben ezen alapproblémák közül hárommal foglalkozunk: az iránýıtott és iránýıtatalan

pontösszefüggőség, valamint az iránýıtatlan élösszefüggőség növelésével. Iránýıtott élössze-

függőség-növelésről ugyan nem esik szó, viszont az utolsó fejezetben ezzel az összefüggőség-

fogalommal kapcsolatban adunk egy konstrukt́ıv karakterizációs eredményt. Az értekezés fő

eredményei a következők.

• Megadunk egy min-max formulát és egy kombinatorikus polinomiális algoritmust az irá-

nýıtatlan pontösszefüggőség eggyel való növelésére. Tetszőleges gráfok iránýıtatlan pont-

összefüggőség-növelésének bonyolultsága nyitott kérdés; az eggyel való növelés önmagában

is sokat vizsgált terület. A harmadik részben bizonýıtott formula Frank és Jordán 1994-ből

származó sejtése.

• Megadjuk az első kombinatorikus polinomiális algoritmust iránýıtott pontösszefüggőség-

növelésre. Erre a problémára Frank és Jordán 1995-ben adtak min-max formulát. Nyitott

maradt azonban a kérdés: hogyan található meg egy optimális megoldás kombinatorikus

algoritmus seǵıtségével. Az értekezésben megadunk két, teljesen különböző kombina-

torikus algoritmust. A második rész az összefüggőség eggyel való növelésének speciá-

lis esetét oldja meg algoritmikusan (Frank Andrással közös eredmény), a negyedik rész

pedig az általános problémára ad algoritmust (ifj. Benczúr Andrással közös eredmény).

Valójában még általánosabb problémát oldunk meg: új, algoritmikus bizonýıtást adunk

Frank és Jordán általános halmazpárfedési tételére is.

• Megadjuk a (k, �)-élösszefüggő gráfok egy konstrukt́ıv karakterizációját. A hatodik részben

bemutatott, Kovács Erika Renátával közös eredmény Frank 2003-as sejtését bizonýıtja be.

A tétel több korábbi karakterizáció közös általánośıtását adja, és természetesen illeszkedik

az eddig leemelési és iránýıtási tételek rendszerébe.

• Részleges eredményeket adunk a part́ıciókorlátos iránýıtatlan lokális élösszefüggőség-növe-

lési problémára. Az ötödik részben iránýıtatlan élösszefüggőség-növeléssel kapcsolatban

tárgyalunk néhány klasszikus eredményt egységes keretben, az élátbillentési technikát

használva. A part́ıciókorlátos problémával kapcsolatban megfogalmazunk és részben be-

bizonýıtunk egy sejtést.

Az eredmények nagy része a [36], [74], [73] és [56] cikkekből származik. Kivételt képez az

ötödik rész, amely nem publikált eredményeket tartalmaz.


