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Chapter 1

Introduction

The methods of statistical physics have proved to be applicable to many other
areas in science where the system is not necessarily governed by physical laws nor
any other laws of nature. Extensive interdisciplinary research has been formed on
complex systems like sociology, evolution, vehicle transport or finance, to name a
few.

The reason to get physicists involved into these research areas is the universal-
ity of the phenomena in dynamical systems. The well-known and widely studied
concepts in statistical physics such as dynamics of complex systems, stochas-
tic processes, chaotic behaviour, critical phenomena and self-organised criticality
appear in the above mentioned research fields. Consequently, the methodology of
analysing certain problems in these areas can be very similar to those applied in
statistical physics. For example, chaotic dynamical description can be given to a
system, phases and phase transitions can be explored, critical exponents can be de-
fined, well-known models can be applied e.g. cellular automata, growth models,
etc.

Communication networks [1] has recently become a widely studied research
topic of physics [3], [4]. Two main research directions have been developed.
The first one deals with the structural properties and topology of communication
networks. It is stated that the World Wide Web [30] and the Internet [31] have
scale-free property, meaning that the distribution of the number of degrees of the
edges in the network follows power-law. These observations are in contrast to
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2 CHAPTER 1. INTRODUCTION

the previous random graph model [32], having exponential decay in the degree
distribution. Topology issues are not investigated in this dissertation, a thorough
summary on this area can be found in [29].

The second direction is the investigation of properties of the data traffic. Sta-
tistical characterisation and dynamical modeling of data traffic on certain network
links have attracted wide interest in the recent years. Deeper understanding of the
dynamics of packet transmission and the statistical description of the data traffic
is essential for the design and operation of telecommunication networks. For ex-
ample, traffic models serve as input for capacity management of certain network
elements, topology planning or the design and optimisation of various traffic con-
trol mechanisms. Traffic modeling involves statistical description of the traffic
where stationary distributions, correlation properties of the main traffic descrip-
tors are given, as well as dynamical description of a particular system based on
microscopic models.

In the following, a brief overview is given on the research issues of traffic mod-
eling in communication networks, followed by the state-of-the-art and the scope of
my research. Then after introducing the mathematical and technical background
of the topic, the detailed results are presented in two parts. The first part of the
dissertation focuses on the dynamical characterisation of the traffic in simplistic
computer network scenarios, where it is investigated how the basic rules (network
protocols) contribute to some macroscopic phenomena. In the second part matrix
analytic methods are used to characterise the behaviour of a queuing model and
some theoretical results on characterising a set of matrix analytic distributions are
shown.

1.1 Evolution of telecommunication traffic model-
ing

The first report on traffic modeling in communication networks appeared in 1917
[5], where the traditional telephone networks were described. The line was busy
during a call and was released after the call (circuit-switched technology). The
main parameters (call holding time, frequency of the call initiations) was com-
pletely determined by human activity, resulting in random behaviour and Poisson
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statistics (Poisson call arrivals and exponential call holding times). The load on
the telephone exchange centers was an important issue at that time, but based on
the Poisson-like statistics and short tailed distributions of the essential parame-
ters, the number of calls in a center was predictable and engineering the capacity
of such exchange centers was based on relatively simple calculations. The In-
ternet started to develop in the late 1960s from connected university Local Area
Networks (LAN) and soon became worldwide, now it has major role in the busi-
ness and commercial life. The spreading of data communication changed the
paradigm in traffic modeling and engineering. Besides circuit-switching, packet-
switched technology has appeared, where the digital information is segmented and
transmitted in packets (40-1500 bytes of data).

In packet switching, the address of the source and the destination of a packet
is encoded and attached to the packet as a header, separated from payload data.
When a packet is sent, central network elements, so-called routers are responsi-
ble for forwarding the packet towards the next neighbour hop in the direction of
the destination. The decision of which neighbour to forward to, is based on the
knowledge of the source and destination information stored in the packet header.
In order to achieve inter-operability between remote hosts, a standard set of rules
in packet data communication called Internet Protocol (IP) is designed and used
in the computers and routers [1], [2].

In contrast to the traditional telephone networks, in packet-switched networks
more than one connection can be maintained by the user at a time and not only
voice-calls but other applications such as file transfer or video-stream from a re-
mote machine can be initiated. Moreover, although the data transfers themselves
are initiated by users, the processes within a data transfer are driven by machines,
resulting in side effects in the traffic characteristics.

The load and the capacity of the routers and switches is an important issue in
data networks. In IP networks, when the amount of traffic in a router reaches the
limit that it can handle, congestion occurs and packets will queue up in buffers. If
congestion remains and the buffers are full, the packets arriving at the router can
not be handled and will be discarded.

In 1986, the users of computer networks in US universities experienced large
drop (by a factor of one thousand) in the performance, the data communication
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had become very slow [7]. Researchers revealed that if all computers sent their
data with maximum rate, the overall performance would highly degrade due to
congestion and packet drops. They proposed a solution where the hosts at the
end-points were able to adapt their sending rate to the network condition [7] which
was later developed further [8], [9], [10], [11], [12], [13] in order to optimise the
overall performance. The set of rules describing the methods of adaptation of the
rate is implemented as congestion control algorithms in the Transmission Control
Protocol (TCP), first proposed in [6].

TCP only works at the end-points and has three main roles: (1) transaction
setup, (2) reliable packet sending, and (3) congestion control. The transaction
setup is based on specific signal packets exchanged between the end hosts to estab-
lish a connection. The reliable packet delivery relies on detecting and re-sending
lost packets. It is achieved by sending acknowledgements as a response to the re-
ceived packets. If a packet is not acknowledged by the receiver, then it is assumed
to be lost and its transmission is initiated again by the sender. Congestion control
is based on probing the network congestion level and increasing or reducing the
sending rate if the load of the network is low or high, respectively. Although the
basic mechanism of TCP congestion control has not been changed from 1988, its
details are subject to research nowadays. The protocol is fine-tuned all the time
due to the fast development and high variability of the physical environments (lo-
cal area networks, satellite links, mobile networks, etc).

Many kinds of applications use the TCP/IP protocol family for data transfer,
like e.g. FTP, WWW, telnet, online streaming, peer-to-peer file exchange tools, e-
mail, etc. Their traffic generating mechanism varies a lot from small files (WWW)
to large files (FTP, peer-to-peer) and from uniform rate (streaming) to highly vari-
able sending rate (WWW, FTP, peer-to-peer). The heterogeneity and variability
of applications and the complexity of the underlying protocols make the traffic
characterisation and traffic modeling more challenging than it was in the case of
traditional telephone networks.

The Internet today is a world-wide packet switched network connecting net-
works of universities, companies, wireline/wireless operators. Modeling commu-
nication networks is not an easy task due to its heterogeneity. New technologies
emerge from time to time, Internet applications are getting more and more vari-
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ous, wideband mobile access is getting more and more widespread, all of these
will be new challenges in traffic modeling. The characterisation of the structure
and traffic in communication networks can play a major role in engineering the
network, where the main goal is to achieve reliability, efficiency and security on
this area.

The following section highlights the recent problems and findings in traffic
modeling in computer networks.

1.2 Related work

Recent measurements [34], [40], [45] have shown that the traffic volume on a link
is highly variable, long-range dependent (LRD, i.e. the autocorrelation function
decays slowly) and statistically self-similar (i.e. the series of data has the same
statistical properties over several timescales), which is in sharp contrast with the
traditional traffic models [5]. Indeed, the Poisson model applied to telephony
traffic has lost its validity when applied to the data network [34]. Packet density
fluctuations are shown to have self-similar behaviour over long timescales, more-
over, long-range spatial correlations of Ethernet/Internet traffic has been observed.
More recently, the authors in [59] measured the traffic at the connection point of
University LAN and the backbone network and found power-law fluctuations in
time.

There are many research activities induced by the results of these experiments
in many directions. One direction is revealing the origins and causes of the above
phenomena based on statistics related to individual sources. The authors in [42]
show that multiplexing large number of on-off packet train sources having long-
tailed ”on” periods results in self-similar traffic. Others claim that the long-tailed
distribution of file size on the servers has a crucial effect in forming self-similarity
[43].

Another direction is to investigate the effect of the network protocols. It is
shown that the TCP congestion control mechanism induces the LRD properties of
the traffic. Chaotic nature of the deterministic protocol, TCP is demonstrated in
[47], and it is pointed out that self-similarity can be generated by TCP’s chaotic
behaviour. The role of the congestion control algorithm of TCP in the propa-
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gation of long-range dependence and self-similarity through the Internet is re-
ported in [48]. It is shown that TCP inherits self-similarity when mixing with
self-similar background traffic. It is also demonstrated that TCP flows can pass on
self-similarity to multiple hops.

Authors of [35]-[41] apply the mathematical techniques of statistical mechan-
ics to characterise collective dynamics in large computer networks. Analysis of
power spectra, correlation functions, phase transitions has been applied and phase
transition between ’free-flow’ phase and ’congested’ phase has been reported.

Self-similarity and long-range dependence is often associated with polynomial
decay in the power spectrum of the network load on a given path (that is often
referred to as 1/f noise). It was first shown in [35] that such 1/f fluctuations
are observable in the round-trip packet delays in computer networks between two
points. Self-Organised Criticality (SOC) was introduced first in [46] to explain
1/f noise in systems driven by collective behaviour. A SOC model for computer
network traffic is investigated in [44].

Both statistical and dynamical properties of telecommunication network traffic
show similarities with highway traffic [53]. The analogies between the traffic of
computer networks and highways are investigated in [49]. It has been argued that
some of the common phenomena emerging in highways and computer networks
can be modelled using similar cellular automaton models.

Model-based approach is often used in order to pinpoint the essential factors
contributing to the main statistical properties of the system. Linear chain models
[54], [50], two dimensional lattice models (e.g. square lattice models in [57], [58],
[36]) and hierarchical trees in [56] are developed to investigate the dynamics of the
system. A two dimensional directed model can reproduce the main characteristics
of real-world Internet and vehicular traffic flows [55]. Scaling properties are found
in the models that make them valid for dynamical models of the Internet and
highway traffic as well.

1.3 Research scope

Most quantities in computer networks are characterised by heavy-tailed distri-
butions, arrivals have bursty nature and the traffic rate shows self-similarity and
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long-range dependence. The main topic addressed by this dissertation is the ap-
proximation of heavy traffic behaviour based on Markovian models.

Although the methods in the Markovian approach are not able to catch the
tail properties of real networks, Markov modeling is still a relevant method in
networking for the following reasons:

• Due to finiteness of time and data, LRD and heavy-tail properties are valid
only over a limited range of scales.

• Activities initiated by humans, not computers (e.g. starting of file download
or a telnet session) are shown to be well approximated by Poisson statistics.

• Generalised exponential distributions can be fitted to distributions with heavy
tails over finite number of timescales.

• Markovian models are easy to handle and analytically tractable.

Buffers and queues play major roles in networking thus, basic elements of
queuing theory are often used throughout this dissertation. A typical queuing sys-
tem is determined by an arrival process, a service time distribution and the number
of parallel queues (other parameters such as buffer limitation or prioritisation are
not considered here).

This dissertation contains new results in two main areas. The first one is mod-
eling the effects of the feedback control mechanism of TCP on the network. First,
back propagating waves of congestion in computer networks are investigated and
the bursty nature of TCP is proved to play an important role in this phenomenon.
Then, traffic models are set up based on the known sending mechanism of TCP.
Most papers studied long-lived TCP connections previously where the steady-
state behaviour determined the statistics. The traffic models described in this
dissertation relate to short-lived TCP connections (that are typical in Web ap-
plications) where transient effects dominate and the startup behaviour of the TCP
connections determine the statistical properties of the main traffic descriptors.

The second main area is the application of matrix analytical methods in queu-
ing systems in order to approximate heavy tails and bursty behaviour. The exact
transient behaviour of the queue-length moments in an infinite-server queue is
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computed, where both the arrival process and the service time has slow decay in
the distribution for several timescales. The application of matrix analytic methods
can be limited by computational capacity if large state space is used in the model.
The last part of this dissertation deals with minimising the complexity of the ma-
trix representation of a function of combined exponentials. The solution is general
and can be used to optimise computation efficiency in queuing applications.

1.3.1 Traffic modeling

Transmission Control Protocol (TCP) is an end-to-end network protocol responsi-
ble for the control mechanism in computer networks in order to avoid long-lasting
congestion. Since most data sources use TCP for transfer, it plays an important
role in forming the typical data patterns measured on the high-speed links. The
main purpose of this part is to investigate the effect of many aggregate TCP flows
sharing a link, particularly, how the bursty nature of packet train affect congestion
wave formation and the link saturation caused by multiple TCP flows is modelled.

1.3.1.1 The role of TCP in congestion transition

Several observations have been made on the formation and propagation of traffic
jams and there is a common agreement that the front of the congestion progresses
backwards against the flow of vehicles [51], [52].

There are some phenomena in computer networks indicating propagation of
congestion similarly as in car traffic. In [33] the effect of routing policies on the
jam transition in computer networks is investigated. The authors in [39] studied
the spatiotemporal correlations of the traffic in different network hops along a path
and found that congestion can propagate from a heavily loaded node towards its
less loaded neighbours. Collective behaviour of network nodes and spatiotempo-
ral forming of congestions are investigated in [44].

It is shown in this dissertation that congestion waves are formed naturally in
the data traffic of computer networks. The phenomenon is analyzed in detail and
it is derived that the intrinsic properties of the TCP protocol contribute to the
formation and the stability of the transition of congestion in the direction opposite
to the actual traffic. The large rate variation of TCP sending rate (burst effect) is
pinpointed as one of the major contributors of this phenomenon.
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This mechanism is checked in a computer network with simple topology re-
alised in a network simulator. Various scenarios are presented with different
amount of traffic rate variations and clear dependence is pointed out between con-
gestion transition and burstiness. Nevertheless, this basic mechanism is quite gen-
eral and can create congestion moving against the direction of the data traffic in
more complicated geometries as well. These results are published in [98].

1.3.1.2 Modeling short TCP connections

With the domination of TCP/IP based applications such as Web browsing one can
encounter many challenges. In research on network engineering, the description
of practical issues like the statistical properties of feedback controlled traffic or
network utilisation with Web-like conditions is very important. Most of the studies
on traffic preceding my work had considered persistent sources in the case of a
fixed number of parallel connections [16], [17], [22].

However, in reality understanding situations where Web users request a file
transfer at random inter-arrival times is a very important problem. In such traffic
scenario the file transfers are typically short and the transient effects dominate
over the whole transaction.

First, I propose a simple model of the TCP connection dynamics. It is shown
that the model is capable to describe the steady-state behaviour of the number of
parallel connections while the individual connections are in transient state. Short
file transfers and low packet loss probability keep the TCP connections in their
initial phase (known as slow start) over the download periods. Based on the tran-
sient properties the utilisation of a link shared by many TCP flows is computed
which then serves as a basis for a Markov model of the number of parallel ses-
sions in the system. This Markov model of parallel short TCP connections can be
applied in a more general framework incorporating the network topology as well,
as it is shown in [102].

Then I set up a model of transferring a Web page where the files are typi-
cally short but one page consists of more than one file. The performance (average
transfer rate and download time) is computed in two cases: (1) the short files
are downloaded sequentially, each of them opening new TCP connections; (2)
one TCP connection remains open for the whole download of the page, that is
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supported by certain versions of HTTP protocol. In this case, the results are appli-
cable for heavy-tailed file-size distribution as well. The model of short sequential
TCP connections is published in [103].

1.3.2 Matrix analytic methods

In real-world data communication systems, the properties of the main traffic pa-
rameters such as file size, duration of data transfers, time between packet arrivals
do not follow exponential distributions, but they are better described by general
distributions, often with heavy tails.

However, some studies suggest to be careful with applying heavy-tails in real
networking systems. Authors in [60] argue that in the engineering point of view
the waist of the distribution is more important than the tail behaviour. Investi-
gations on the correlation structure of TCP [61] revealed that the TCP protocol
generates traffic where self-similarity is valid only for a finite range of timescales.
These results seem to suggest that Markovian models can still be appropriate to
describe network traffic. Moreover, queuing systems can be much more easily
analysed if the service time and the inter-arrival time is exponentially distributed
(M/M/ type queues). A feasible approach to handle general distributions in queu-
ing systems is to apply approximations using a combination of exponentials.

The class of Phase-type (PH) distributions introduced in [62] and [63] is the
generalisation of exponential and Erlang distributions, since it includes all mix-
tures and convolutions of exponentials. The set of PH distributions is part of
matrix-exponential distributions, so calculations with them can be made by using
generalised exponential functions with matrices in the exponent. Using PH dis-
tributions in queuing theory, complex systems can be handled analytically. More-
over, the set of PH distributions is proved to be dense in the set of nonnegative
distributions, implying that any general distributions can be approximated by PH
distributions. Certainly, using Markovian approach for modeling general queu-
ing systems has its cost. The higher the accuracy one would like to achieve, the
more complex the approximating PH distribution should be and the more compu-
tational capacity one needs. Since PH is a combination of exponentials, its tail
behaviour will always be exponential. However, by choosing sufficiently large
number of components and appropriate parameter settings, the slow decay can be
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constructed by PH functions for several orders of magnitude, naturally followed
by exponential decay in the end.

While the continuous exponential distribution can be generalised by PH (see
above), the class of Markov Arrival Processes (MAP) or an even more general
class, Batch Markovian Arrival Processes (BMAP) is the generalisation of the
Poisson point process. MAPs are useful in modeling burst-like arrivals. Like PH
distributions, they can also be handled with matrix-exponential functions. These
properties make them useful for approximating LRD behaviour over several scales
and also analytically tractable.

Matrix analytic methods can be applied to approximate general models with
matrix exponential functions. One possible method for mapping a Markovian
model to a general one is to use moment matching algorithms [78]. Another pos-
sible approach is fitting the distribution step-by-step, using different exponential
components [64]. A method based on Expectation Maximisation (EM) algorithms
is used in [69] and [68]. Other models based on Markov Modulated Poisson Pro-
cess (MMPP) [74] are introduced in e.g. [75], [76], [77]. Fitting tools to model
network traffic with PH distributions are used in [65], [66]. MAP fitting methods
can be found in [67].

1.3.2.1 Transient behaviour of infinite-server queuing systems

The main objective is to investigate the MAP/PH/∞ queuing model. Numerical
methods exist to approximate the moments of the queue-length for the PH/G/∞
system [70] which can be extended to the more general MAP/G/∞ system. How-
ever, these solutions rely on the numerical solution of a set of differential equa-
tions. Further, authors in [79] derive numerically tractable formulae for the mo-
ments of BMAP/PH/∞ system, which still contain elements that can only be ob-
tained approximately.

A different computational method is presented here where the time-dependent
moments of the queue length of MAP/PH/∞ system can be obtained exactly. This
model can be used to describe transient behaviour of systems with parallel servers,
general arrival and general processing times [99], [100].
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1.3.2.2 Minimising complexity in matrix analytic functions

The structure of the Phase-type (PH) distributions is analysed here. A PH dis-
tribution can be seen as a composition of exponential distributions and also as a
special case of matrix-exponential functions that can be represented by matrices.
The objective is to minimise the complexity of the matrix representation of a set
of PH distributions. The focus is on upper triangular representations i.e. matrices
having only upper diagonal elements.

The target set of functions is given as

f(t) =

3∑
i=1

ηiλie
−λit,

where λis are different real fixed coefficients in the exponent (λ1, λ2, λ3 > 0) and
ηis are parameters. Since f(t) is a probability density function, η3 = 1 − η1 − η2

should hold. This set of functions has 2 free parameters (η1 and η2) thus, one
particular function can be mapped to a point in the 2 dimensional parameter space.
The goal is to find the subset of the parameter space where the functions can
be represented by 3 dimensional matrices. The method of characterising the PH
distributions is based on the invariant polytope approach introduced in [80].

I found that for 3 distinct real coefficients in the exponent, the set of functions
that can be represented by 3 dimensional upper triangular matrices is a triangle
(polytope with 3 vertices) in the parameter space (η1, η2). Based on the con-
struction of the polytope, the representation matrix for the distributions inside the
triangle is given. The distributions outside the triangle can not be represented by
3 dimensional matrices. Moreover, a recursive decomposition of the set of the
distributions into subsets according to their minimal order upper triangular PH
representations can be given.

I generalised the case of 3 exponents to N exponents (N > 3). The polytope
with N vertices in the N − 1 dimensional space containing the functions repre-
sented by N dimensional matrices can be derived from the corresponding case of
N − 1 exponents. The results on this research area are published in [101].



Chapter 2

Mathematical background

2.1 Basic definitions

In this section definitions and theorems are summarised that are necessary for
the analysis later on. Only the most important statements are mentioned here,
for more details and the proofs of the theorems see the textbooks on probability
theory and queuing theory (e.g. [94], [95]).

A point process (or counting process) contains discrete events at certain times.
There is a sequence of non-negative random variables (usually called time vari-
ables):

0 = t0 < t1 < . . . < ∞

Then Nt =max{n, tn ≤ t} is a point process, that often corresponds to the ’num-
ber of arrivals’. The process of inter-arrival times is Tn = tn − tn−1. If the
variables Tn are independent and identically distributed (i.i.d.) then {tn} is called
renewal process. {Nt, t ≥ 0} is the associated renewal point process.

A widely used point process is the Poisson process, that is characterised by
the following properties:

• It has stationary and independent increments

• P (Nt+Δt − Nt = 1) = λΔt + o(Δt)

• P (Nt+Δt − Nt ≥ 2) = o(Δt)

13
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where λ > 0 and o(x) is a function with the property that limx→0 o(x)/x = 0.
The Poisson process has the following important properties:

Theorem 2.1.1. For a Poisson process, the probability distribution function (p.d.f.)
of the number of events within a time interval of lengthΔt is

P (n events in ([t, t + Δt])) =
(λΔt)n

n!
e−λΔt

Theorem 2.1.2. The distribution of the inter-arrival times of Poisson process is
exponential.

There is another type of processes frequently used in probability theory and
its applications. Let X be a random variable. Then introducing the auxiliary
variable t, YX(t) = f(X, t) function of X and t is called a stochastic process.
In most applications t is the time variable. Continuous-time and discrete-time
stochastic processes can be distinguished, depending on that t is real or integer. If
the stochastic variable X is fixed to a value x then Yx(t) = f(x, t) as an ordinary
function of t is called the realisation of the process. Given the p.d.f. PX(x) of the
variable X the p.d.f. of YX(t) can be written as

P1(y, t) =

∫
dxδ[y − f(x, t)]PX(x)

where δ(·) is the Dirac-delta function. Also the joint p.d.f. that YX(t) takes values
y1 at time t1, y2 at time t2, etc, up to n is

Pn(y1, t1; ...; yn, tn) =

∫
dxδ[y1 − YX(t1)] · · · δ[yn − YX(tn)]PX(x)

The index n indicates the number of variables in the joint p.d.f. The stochastic
process is stationary if the following equation holds for τ ∈ �:

Pn(y1, t1 + τ ; · · · ; yn, tn + τ) = Pn(y1, t1; · · · ; yn, tn)

i.e. Pn depends only on the differences of time values. The conditional probabil-
ity Pm|n(yn+1, tn+1; · · · ; yn+m, tn+m|y1, t1; · · · ; yn, tn) is the probability that the
process takes values yn+1 at tn+1; · · · ; yn+m at tn+m given that the process has
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taken y1 at t1; · · · ; yn at tn before. It can be calculated by the Bayes’ rule:

Pm|n(yn+1, tn+1; · · · ; yn+m, tn+m|y1, t1; · · · ; yn, tn) =
Pn+m(y1, t1; · · · ; yn+m, tn+m)

Pn(y1, t1; · · · ; yn, tn)

A very important type of stochastic processes is the Markov-process. A stochas-
tic process is called Markov-process if the conditional probabilities satisfy the
following equation (t1 < t2 < · · · < tn).

P1|n−1(yn, tn|y1, t1; · · · ; yn−1, tn−1) = P1|1(yn, tn|yn−1, tn−1),

i.e. the conditional probability of a Markov process being yn at tn provided that it
was yn−1 at tn−1 is completely determined and does not depend on the values at
previous times.

Thus, the Markov process is completely determined by P1(y, t) and the tran-
sition probability P1|1(y

′, t′|y, t). The joint distributions Pn(y1, t1; · · · ; yn, tn) can
be constructed from the initial p.d.f. and the transition probability.

An important equation for the transition probabilities is the Chapman-Kolm-
ogorov equation (the notation 1|1 is omitted here):

P (y3, t3|y1, t1) =

∫
dy2P (y3, t3|y2, t2)P (y2, t2|y1, t1), (t1 < t2 < t3)

In the following only those Markov processes are investigated where Xt ∈ �.
This type of process is called Markov chain and the discrete set of Xts is called
state set. In this case the transition probability from state i to state j is

Pij = P (j, tn+1|i, tn), i, j ∈ � n ≥ 0

The state i is said to be absorbing, if Pii = 1 and Pij = 0 for all j. The return
time of a state is defined as

Ti = inf {n : xn = i|x0 = i}

The state i is said to be transient if the probability that the return time is infinite is
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positive:

Pr(Ti = ∞) > 0

The Markov chain is positive recurrent, if all of its states has finite expected return
time. The mth transition probability i.e. the probability that starting from state i

the system is in state j after m steps can be written as

P m
ij = P (j, tn+m|i, tn), i, j ∈ � n, m ≥ 0

If the nth transition probability matrix is denoted by

P (n) = [P n
ij ],

then Chapman-Kolmogorov equation can be given in the form of matrix multipli-
cation (it is possible that the matrices are of infinite order):

P (n+m) = P (n)P (m)

State j is called reachable from i if P
(n)
ij > 0 for some n. If i is reachable from j

and j is reachable from i (∀i, j) then the Markov chain is irreducible.

If the probability that the system is in state j in time t is denoted by πj(t)

(πj(t) = P (j, t)) then the following balance equation holds (master equation for
discrete state set):

dπj(t)

dt
=

∑
i(i�=j)

πi(t)λij − πj(t)
∑

i(i�=j)

λji j ∈ �,

where λij(i �= j) denotes the transition probability per unit time from state i to
state j. Let the matrix Q = [qij ] be defined as

qij =

{
−∑

k(k �=i) λik if i = j

λij if i �= j

It is called transition rate matrix or infinitesimal generator matrix. The matrix Q
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has the following properties:

• its row sum is zero;

• its diagonal elements are non-positive;

• its off-diagonal elements are non-negative;

With the infinitesimal generator matrix the master equation can be written in a
simple form:

dπ

dt
= πQ

The following theorem assures that Markov chains with certain properties are
guaranteed to have a unique steady-state solution.

Theorem 2.1.3. If the system is ergodic (i.e. it consists of one irreducible chain
and it is positive recurrent) then πj = limt→∞ πj(t), j = 0, 1, . . . exist.

The following equation holds for the steady state probabilities:

πQ = 0 πe = 1,

where e is a column vector of proper dimension whose all elements are one.
Finally, the concept of queuing is introduced. Queuing theory is a mathemati-

cal theory investigating the behaviour of queues and waiting lines. Typically there
is one or more (possibly infinite) service points where demands arrive according
to fluctuating process. The service time of the demands at the service points also
fluctuates. Usually the demands arriving to a server is either being served or put
in a queue if the server is occupied by another demand. Examples for queuing
systems are e.g. waiting people standing in lines, waiting cars in highways or
buffered data packets in telecommunication networks.

Different queuing disciplines can be used e.g. ’First Come First Serve’ (FCFS),
’Last Come First Serve’ (LCFS) or ’Service in Random Order’ (SIRO). Various
operations and limitations can be specified in a queuing model e.g. prioritising
demands, limiting buffer sizes, limiting the population of demands, etc. In this
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dissertation the FCFS queuing discipline is used and no limitations and proiritisa-
tions take place.

The main questions regarding the behaviour of a queuing system are the sta-
tistical properties of the queue length, the length of time when no demands are
being served, the number of running parallel servers etc.

For the classification of the queuing models abbreviations are used known as
Kendall-Lee notations. The abbreviations are separated by slashes. The first and
the second term corresponds to the arrival and service processes, respectively,
while the third term indicates the number of parallel servers. The other terms
may indicate the queuing discipline and the capacity and population limitations
but these terms are omitted in this study.

The most widely used queuing model is the one with Poisson arrivals and
exponential service time, denoted by M/M/n, where M indicates Poisson arrivals
and exponential service times and n is the number of parallel servers. The general
queuing model is indicated by G/G/n, where both the arrival process and the
service time distribution is general.

2.2 Phase-type distributions

Consider a continuous-time Markov chain with n + 1 states, where the (n + 1)st
state is absorbing. The transition rate matrix of such a Markov chain can be de-
scribed by

T =

[
S S0

0 0

]
,

where S is a non-singular n × n matrix and S0 is an n-vector such that [S]ij ≥ 0,
[S]ii < 0, [S0]i ≥ 0 for all i �= j, (1 ≤ i, j ≤ n) and Se + S0 = 0, where
e is a row n-vector consisting of ones and 0 is a column vector consisting of
zeroes. The meaning of [T]ij (i �= j) is the transition rate (i.e. the average number
of transitions in a time unit) from the ith to jth state. The (n + 1)st row of T

is zero, indicating that the (n + 1)st state is absorbing. The initial distribution
is determined by the probability vector [α, αn+1], where 0 ≤ αi ≤ 1 for all i



2.2. PHASE-TYPE DISTRIBUTIONS 19

(1 ≤ i ≤ n + 1) and αe + αn+1 = 1. The distribution of the time until absorption
is called Phase-type (PH) distribution.

For quantitative description of PH distributions, let pi(t) denote the probability
that the process is in state i at time t (1 ≤ i ≤ n + 1). According to the master
equation the system is characterised by the following set of differential equations:

dp(t)

dt
= p(t)T

with initial condition p(0) = [α, αn+1]. The equation system has the solution

p(t) = [α, αn+1] exp(Tt).

The probability vector q(t) that the process is in one of the transient states 1, . . . , n

at time t is given by

q(t) = α exp(St).

Thus, the probability distribution function of the time until absorption is

F (t) = 1 − α exp(St)e.

The corresponding probability density function is

f(t) = −αS exp(St)e.

If αe < 1 (or equivalently αn+1 > 0) is allowed, then in order to make f(t) a
probability density function a weight in 0 has to be added so that

∫ ∞

0
f(t)dt = 1.

These probability density functions of PH distributions make a vector space.

The 2-tuple (α,S) is called the representation of the PH distribution. The
representation is not unique for a given PH distribution. The less the number
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of states in a representation the less the complexity of computation will be thus,
finding PH representations with minimal number of states is an important issue in
applications. The number of states in the underlying Markov chain is called the
order of the representation. The order of representation having minimal number
of states is called the order of the PH distribution.

PH distributions have the following useful properties:

• The set of PH distributions is dense in the set of nonnegative distributions.

• The mixture of 2 PH distributions is also PH.

• The convolution of 2 PH distributions is also PH.

If the system is assumed to immediately restart after getting into the (n + 1)st
state again according to the probability vector α, then the point process associ-
ated with absorbings, with PH-distributed variable between arrivals, is called PH
renewal process. It is shown in Section 2.3 that PH renewal processes are a special
case of Markov Arrival Processes (MAP).

There are various forms of interpretation of the PH distribution, including

• probability density and cumulative density functions,

• matrix-exponential representations,

• Laplace transforms,

• polytopes in the vector space of functions.

2.3 Markov Arrival Processes

Consider a continuous-time Markov-chain J(t) with n states. The transition rate
matrix is denoted by D. Let’s suppose that the transitions of the Markov-chain are
associated with arrivals in a point process. Moreover, there are arrivals associated
with staying in certain states where the arrival rate depends on that particular
state. The arrival process is thus governed by the states and state transitions of the
Markov-chain.



2.3. MARKOV ARRIVAL PROCESSES 21

To describe the process, D is decomposed into 2 matrices as D = D0 + D1

where D0 and D1 are matrices of order n with the following properties: D1 ≥ 0

(i.e. all elements of D1 are nonnegative), [D0]i,j ≥ 0 for 1 ≤ i �= j ≤ n,
[D0]i,i < 0 for 1 ≤ i ≤ n and the matrix D = D0 + D1 is stochastic, that is,
De = 0. Matrices D0 and D1 filter those parts of the Markov process which
correspond to non-arrival and arrival transitions, respectively.

• The non-diagonal elements of D1 refer to all phase transitions that generate
arrivals.

• The diagonal elements of D1 refer to all arrivals without phase transitions.

• The non-diagonal elements of D0 refer to all phase transitions that do not
generate arrivals.

• The diagonal elements of D0 should be set so that De = 0.

A natural generalisation of MAP is to allow more than one arrivals which
requires the definition of Dm accordingly, for m-sized batches.

A special case of MAP can be derived by letting only the diagonal elements of
D1 be nonzero, which basically means that no state transitions occur at the time of
arrivals. This results in the Markov Modulated Poisson Process (MMPP), which
is a widely used arrival model [74].

Another special case of MAP is the Phase-type (PH) renewal process. In this
case, the arrivals occur according to a renewal process where the time between
the arrivals has PH distribution represented by the (α,S) pair (see Section 2.2).
The vector α is the initial probability vector of the PH distribution while S is a
non-singular matrix describing the phase transitions until the absorption such that
[S]i,j ≥ 0 and [S]i,i < 0 for all i (1 ≤ i �= j ≤ n), and Se ≤ 0. In this case the
phase process is restarted after an arrival according to the initial probability vector
α and the arrival rate that depends on the phase is described by vector S0:

S0 = −Se.
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The MAP representation in this case is

D0 = S, D1 = S0
α.

One can consider the counting process and the underlying Markov-chain as a
continuous time Markov-chain {(N(t), J(t))} (t ≥ 0) where N(t) is the number
of arrivals in time (0, t]. The infinitesimal generator matrix Q of the Markov-
process has the following form:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D0 D1 0 0 . . .

0 D0 D1 0 . . .

0 0 D0 D1 . . .

0 0 0 D0 . . .
...

...
...

... . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

The row-blocks indicate the number of arrivals so far and the position inside
the block indicates the phase. The Markov-chain described above is divergent
since only arrivals are counted. If one would like to involve it in a queuing system,
service rates can be included, too. E.g. consider a MAP/M/∞ queuing system
where the infinitesimal matrix is the following (using the notations introduced in
[62]):

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D0 D1 0 0 . . .

A2 A1 A0 0 . . .

0 A2 A1 A0 . . .

0 0 A2 A1 . . .
...

...
...

... . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Here when the queue is empty, D0 refers to the phase transitions that do not
generate arrivals and D1 refers to the arrivals as earlier. When the queue is not
empty, the matrices A0, A1 and A2 govern the phase transitions, arrivals and
departures. The matrix A2 = μI refers to the departures (I is the unity matrix of
proper dimension), A0 = D1 refers to the arrivals, and A1 = D0 − A2 refers to
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the phase transitions that do not generate arrivals, nor departures. The transition
rate matrix is the sum of the A matrices: D = D0 +D1 = A0 +A1 +A2. If Q is
an irreducible Markov chain, then the stationary distribution π such that πQ = 0

can be found in the form of

π = [π0R, π0R
2, . . . ],

where R is the minimal non-negative solution of the equation

R2A2 + RA1 + A0 = 0

and π0 is the solution of the set of equations

π0(D0 + RA2) = 0

π0(I − R)−1e = 1

More details can be found in [62].
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Chapter 3

Preliminaries on telecommunication

3.1 Communication protocols

In packet switched networks the communication between hosts is achieved by
protocols. There are various tasks to be solved by protocols such as forwarding
the data packets to their destination, assuring security and reliability, providing
efficient transfer, etc. In order to satisfy these requirements, different standards
have been made defining protocol suites. The protocols are built on each other,
forming layers. The dominant layered architecture model is the TCP/IP model
[96].

This analysis focuses on the standardised TCP/IP protocol stack. The layers
of the TCP/IP standard are the following (in bottom-up direction):

• Link layer or media access layer, providing the physical links and interfaces.

• Network layer, responsible for carrying data from source to destination. In
most cases Internet Protocol (IP) is used in the network layer. IP provides a
connectionless service, it does not guarantee end-to-end delivery.

• Transport layer, providing end-to-end communication services for applica-
tions. The two primary protocols used in transport layer are Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP). TCP provides
a connection-oriented reliable service and flow control. UDP is a connec-
tionless transport service.

25
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• Application layer, providing application-level communication. Examples
for application layer protocols are Telnet for remote login, FTP for file trans-
fer, HTTP for Web browsing or SMTP for mail delivery.

The majority of the applications needs reliable data transfer so they use TCP
as transport protocol, therefore TCP has an important role in traffic characteristics.
Three main features of TCP are mentioned here:

• It maintains connection between end-hosts that is achieved by exchanging
signal packets to establish and to close a connection.

• It provides reliable transfer that is achieved by

– acknowledging all packets at the receiver side;

– putting the packets in the right order at the receiver side if they are
re-ordered;

– re-sending lost packets at the sender side;

• It controls network congestion that is achieved by adapting the sending rate
to the actual network capacity, meanwhile trying to reach the appropriate
rate as soon as possible;

The main results of the first part of the dissertation focus on the congestion
control mechanism of TCP. The following sections highlight the most commonly
used algorithms of congestion control and also summarise the TCP traffic models.

3.2 TCP congestion control

The aim of TCP congestion control is to adapt the sending rate to the network con-
ditions. It is achieved by increasing the sending rate when the available capacity
is sufficient and reduce it when there is traffic congestion in the network. In order
to achieve efficiency and fairness towards other competing TCPs, the mechanism
of adaptation is based on the AIMD model (Additive Increase, Multiplicative De-
crease)1 introduced first in [97].

1The starting phase of TCP (slow start) does not follow the AIMD model.
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After establishing connection between two computers over the network data
packets start to be delivered. The algorithm implemented in TCP regulates the
packet-sending rate in the following way. First a single packet is sent out. Upon
receiving that packet the receiver acknowledges the arrival of the packet by send-
ing back a small size acknowledgement packet (ACK). The time elapsed between
the sending out of a packet and receiving the corresponding ACK is called round-
trip time (RTT). The TCP maintains an internal variable, the congestion window
(w), which is used to control the number of packets sent out when the ACK is
received. It starts with the initial value w = 1 and then it is increased according
to the following policy.

In the starting phase, w �→ 2w each time an ACK arrives. As a result, the
number of unacknowledged packets in the network doubles in a round-trip time.
The algorithm of the starting phase is called ’slow start’, the term ’slow’ refers to
the low initial window (w = 1) however, w increases exponentially every RTT in
this phase. It continues until w reaches a threshold.

After that the window increases as w �→ w + 1/w each time an ACK is re-
ceived. Two new packets are sent out if the congestion window crosses an integer
value and only a single packet otherwise. This way the integer part of the window
[w] gives the number of sent but not yet acknowledged packets in the network.
This process lasts until a packet is lost somewhere in the network, indicating con-
gestion. As a response the packet-sending rate should be decreased. So, the TCP
reduces the value of the congestion window w �→ 1

2
w and does not send out any

new packets in response to ACKs until the number of still unacknowledged pack-
ets decreases to the integer part of the new (reduced) value of the congestion win-
dow. After that the packet-sending algorithm returns to the original linear increase
phase described above. The second phase of TCP sending is called ’congestion
avoidance’.

There is also a possibility for the receiver to set an upper limit of the number
of unacknowledged packets kept out in the network, called Advertised window.
Setting this parameter aims at protecting the receiver from overload.

There are some other mechanisms in TCP not detailed here, such as timeout
indicating that all packets or ACKs are lost, three-way handshake (exchanging
signals such as SYN, SYNACK, ACK) preceding the file transfer, closing the
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connection by FIN packets, etc. These mechanisms are not considered in the
analysis because the initial and final signals have small contribution to the traffic
and the packet loss is assumed to be small so that the probability of losing w

packets is low.

3.3 TCP modeling

Modeling the behaviour of TCP has been a relevant research issue in the last
decades. TCP models can be set up in order to evaluate the performance of dif-
ferent implementations, each using different congestion control methods. Usually
the main performance measures of interest are the average data rate of a TCP
connection (throughput) and the time of the transfer (latency). The parameters
determining these performance measures are either constant parameters set by the
protocols (e.g. maximum segment size (MSS), the receiver’s advertised window
(Wm) or variable parameters describing the network properties such as round-trip
time (RTT ) or packet loss probability (p)). In [16] a simple model is set up as-
suming long-living TCP transfers, constant RTT , periodic loss and constant p.
According to the model the throughput is proportional to MSS and inversely pro-
portional to RTT and the square root of p (K is a constant value):

T =
MSS

RTT

K√
p

Several refinements of the above model have been published where other
mechanisms are also taken into account such as random loss, loss indication with
timeout (in the case when the whole window is lost) [17], [18], [15] and connec-
tion establishment and slow start phase [22], [23].

The validation of the models can be performed in different ways. One way is
to make measurements in live networks either actively (i.e. generate own traffic
and measure its performance) or passively (i.e. measure the traffic by tapping a
line without any intervention in the real traffic). Another way of validation is using
network simulator tools, that have been developed in order to assist in investigat-
ing various network setups. These tools enable one to assemble any computer
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network configuration, to use the most commonly used packet sending mecha-
nisms in TCP/IP protocol and to simulate its real behaviour without building the
system from hardware components. These simulators can imitate the behaviour of
hardware elements (computers, routers, lines etc.) accurately so that the results of
the simulations are nearly identical with those obtained from measurements. One
of the most popular tools is the Berkeley Network Simulator [90], which was used
in this study.
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Part I

Traffic modeling
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Chapter 4

The role of TCP in congestion
transition
In this chapter network traffic is studied where it is generated in a unidirectional
ring of identical routers connected to each other. Ring topology was chosen to
investigate to have some analogy with other granular flow simulations. The ring
geometry mimics periodic boundary conditions. This way the propagation of con-
gestion in an isolated, clean setup can be studied, where the effects of inhomo-
geneity and the complex topology of the real Internet does not interfere with the
basic mechanism creating the congestion wave. It is shown that this system drives
itself in a self-organised way into a critical congested state, where the system is
overloaded and packets are lost for a long period of time. Both the position of
the congested router (where packets are dropped) and the profile of the rate of the
packet sending activity (number of packets sent by the sources in unit time) at the
sites propagate against the direction of the packet flow. The profile of the con-
gestion wave can be reconstructed from the activities of the computers connected
to the ring. It is shown that the propagation of congestion is in strong relation-
ship with both congestion control mechanism in the transport protocol (TCP) and
bursty nature of the traffic flow coming out of the data sources. The effect of
bursts is investigated in different network simulation scenarios.

The speed of the congestion wave is highly dependent on many parameters of
the network. This dissertation focuses on the possible reasons of the phenomenon,
computation of the propagation speed is out of scope in this document. The ob-
servations are verified by network simulations.
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4.1 The model

Figure 4.1 shows the network setup. In the model system a ring is formed by N

identical routers, which can forward packets in clockwise direction.

B
0 1

i i−1

C

N−1

Figure 4.1: The ring structure. In the simulations a set of parameters typical for
the real Internet has been set (C = 107 bit/s, τ = .031 s, B = 300 packets,
P = 4416 bits, N = 10).

To each router a terminal computer is attached to generate the traffic. Routers
are connected with a line of capacity C (measured in data bits per second) with
a constant forwarding delay τ (measured in seconds). Incoming data flow in a
router, which is a mixture of packet flows injected by the terminal computer and
the background traffic coming from the neighbouring router, can temporarily ex-
ceed the capacity of the outgoing line. To avoid data loss in this situation the
router contains a buffer of size B (measured in data packets) where packets can
be stored. Terminal computers are instructed to send data persistently to their
anti-clockwise neighbors, so that the packets traverse the longest possible route
in the ring. The traffic studied is ”granular” as computers send data packets of
size P (measured in bits). The dynamics of the data traffic of computers is con-
trolled by the TCP protocol. This protocol ensures that the data packet-sending
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rate is decreased whenever congestion occurs and that it is increased when there
is available unused capacity in the system.

4.2 Observed phenomenon

The results of the simulation study carried out with the network simulator are
presented. The geometry and parameters of the setup is shown in Figure 4.1. In
this simulation scenario only 1 connection is established between one node and its
anti-clockwise neighbour, so each terminal sends one flow and receives one flow.
Figure 4.2 shows the spatiotemporal diagram of the congestion wave occurring in
the network simulator. The horizontal axis is the time (covering 3600 seconds)
and the site index (i) is on the vertical axis. In this simulation the number of sites
was N = 10. Note that the sites i = 0 and i = N − 1 are neighbors in the
ring topology. The shade of the figure represents the buffer size Bi. Dark patches
indicate very large buffer size due to high level of congestion. It can be seen
that the most congested site propagates in anti-clockwise direction with almost
constant speed, while the packet traffic itself is clockwise directed.
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Figure 4.2: Spatiotemporal diagram of congestion propagation (buffer usage).
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Figure 4.3: Spatiotemporal diagram of congestion propagation (congestion win-
dow).

According to the TCP protocol, the sending rate of each individual source is
determined by the congestion window (w) maintained for each flow at the senders.
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The value of w is the number of packets sent into the network in each round-
trip time (RTT). Since RTT is nearly constant in this case, the sending rate is
proportional to w. The spatiotemporal diagram of the w values of the individual
sources for the same scenario is shown in Figure 4.3.

One can see that in both cases the pattern remains stable and propagates in
anti-clockwise direction. In this respect it resembles the congestion propagation
in car traffic. The congestion wave is stable, the speed of the congestion wave
pattern is almost constant. It is also apparent that the two waves are synchronised.
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Figure 4.4: Time evolution of the buffer size at one individual link.

Figure 4.4 and Figure 4.5 show the time evolution of the buffer size and the
congestion window at one individual node, respectively.

The average speed of the wave can be determined by measuring the average
speed of the center of mass of the pattern. This should be carefully defined in the
present situation as the system is spatially periodic. Mapping the vertices upon
each of the N th roots of unity in the complex plane weighted by the sending rates
gives the complex number indicating the center of mass. The center of mass thus
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Figure 4.5: Time evolution of the congestion window of one individual TCP con-
nection.

can be obtained by

〈i〉(t) =
N

2π
arg

(
N−1∑
j=0

Xj(t)e
i(2π/N)j

)
,

where Xj indicates the sending rate of the jth terminal computer. The speed of
the pattern is the time derivative of this quantity.

Once the speed of the pattern is determined the shape of the profile can be
analyzed. Since the congestion waves has various shapes in different time instants,
it is necessary to take average of the sending rates at the wavefront. Representing
the sending rates Xi′+[〈i〉](t) in co-moving coordinates i′ relative to the center of
mass the shape of the traveling wave pattern is recovered. Averaging the new
series in time the profile of the front emerges as in Figure 4.6.

4.3 Analysis

In this section the possible reasons of congestion transition between adjacent sites
are investigated. It is shown how packet sending mechanism of TCP contributes
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Figure 4.6: The shape of the traveling wave profile. It has been determined by
averaging the time series in co-moving spatial coordinates.

to the wave formation. Several traffic properties are pinpointed that are necessary
for the development of stable waves.

It is stated that these properties are necessary in the sense that if the system
is configured such that one of these properties is not valid, congestion does not
propagate (even if it occurs occasionally somewhere).

4.3.1 TCP properties

TCP has many built-in algorithms and methods that enable reliable data delivery
and congestion control. Moreover, TCP has many variants that have been devel-
oped in the past decade to optimise the data transfer. This makes it difficult to
give a general model, however, TCP has some main properties valid for the most
frequently used versions. Those properties are highlighted in this section that are
common in most cases and contribute to the development of congestion waves
between adjacent nodes.

4.3.1.1 Adaptivity

One main property of TCP that plays an important role in the congestion transition
is its way to adapt to the network conditions. In this section the traffic pattern of
TCP is characterised, based on TCP congestion control described in Section 3.2.
In this case long-lasted connections are modelled so it is sufficient to investigate
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the ’congestion avoidance’ phase. In this phase TCP follows the AIMD model
that results in a traffic pattern as shown in Figure 4.7.
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Figure 4.7: Time evolution of TCP congestion window in case of random loss.

Assuming constant RTT during this process, the congestion window and the
number of packets out in the network are increased linearly in time. The increase
is additive, and it lasts until packets are dropped. Then the congestion window is
decreased by halving it. In case of multiple packet loss the congestion window is
decreased even further, where it might reach its minimal value.

4.3.1.2 Bursty packet injection

If the waiting time between the packet arrivals is highly variable then a typical
traffic pattern has long waiting times without any arrivals and short intervals where
many packets arrive. A series of a large number of packets arriving within a short
time interval is called burst.

Another property of TCP traffic playing major role in congestion transition is
the bursty packet sending from each sources in the network path. Several sources
of burstiness can be found in the network, some of them directly relate to the TCP
mechanism.
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File sending controlled by TCP usually begins with slow start. TCP slow start
means that starting with a small window, every acknowledgement generates two
other packets. The initial window size is usually 1, but there can also be larger
values. With delayed acknowledgement policy, every second packet is acknowl-
edged and every acknowledgement implies three packets, all at once. In case of
small file downloads the majority of the file is retrieved in slow start state. This
means that a considerable amount of packets are placed in double or triple bursts.
In most cases slow start is followed by congestion avoidance phase, where TCP
sends a double packet after the whole congestion window is acknowledged, which
can cause slightly bursty traffic.

Another source of burstiness can be the fast recovery algorithm of TCP for
the detection and correction of packet loss. When a packet is lost and several
consecutive packets arrive, the receiver acknowledges only the packet right before
the lost packet (duplicate acknowledgements). After the lost packet is resent and
successfully received, the receiver may acknowledge several packets at the same
time. As a consequence, the number of unacknowledged packets decreases and
several packets can be sent into the network in a burst.

There are certain applications that may send larger data packets than the Maxi-
mum Segment Size (MSS), e.g. video applications. These packets are fragmented
into packets of MSS size on the IP level, resulting in a burst of the same size as
the original packet size.

TCP is often in close connection with the application layer (e.g. HTTP) and
this can have significant effect on the resulting burst structure. The communica-
tion between client and server on the application level begins with a request of
a particular file, usually a text file that contains some hyperlinks to other objects
and files. This is often achieved by clicking on a given URL. The server sends the
file to the client, who is then able to send requests for the embedded files. The
request sending policy of the client can be implemented in different ways. Either
the client waits for the response before the next request is sent out, or the client
sends as many requests as it can allowing more requests to be in the network at
the same time without having any response (pipelining). Many servers support the
so-called keep-alive connection, where HTTP uses the same TCP connection to
get more files. In a persistent connection the congestion window of TCP remains
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the same when starting a new file download. If pipelining is not set, the initial
window size can be as large as 10 or 20 packets, which can cause significant burst
effects.

In the network scenario presented here bursts are generated due to the con-
gestion of acknowledgements. If the smaller size acknowledgement packets are
queued up one after each other in front of their receiver (that is the same as the
sender of the data packets), they are served in relatively small amount of time. In
case of long transfer each acknowledgement packet generates another data packet
to keep the window open. Due to the short time of the receiving of the the con-
secutive congested acknowledgements the data packets generated by them arrive
in burst.

4.3.2 Wave formation

In this section it is explained how the TCP properties described in 4.3.1 contribute
to forming and propagating congestion waves. First a balance equation is derived
that expresses the utilisation of each link as the function of the sending rates. Then
some properties of the TCP traffic are pinpointed as the major contributors to the
wave propagation.

While the continuous equations constitute gross simplification of the original
TCP dynamics, the main properties of the traveling wave can be recovered from
them with some additional assumption made on the packet loss process as it is
shown next.

The utilised bandwidth Ci−1(t) on the link connecting nodes i− 1 and i is the
sum of sending rates of TCPs whose traffic flows through that link. In this case
the flows of all TCPs traverse that link except the one starting at node i and ending
at node i − 1:

Ci−1(t) =
N−1∑

j=0,j �=i

Xj(t) =
N−1∑
j=0

Xj(t) − Xi(t), (4.1)

where 0 ≤ i ≤ N and site i = N is identified with site i = 0 due to periodicity.
The traffic of ACK packets emanating in i−1 and absorbed in i is low due to their
small size and their contribution to the traffic can be neglected.
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Due to the additive increase algorithm of TCP the rate is increasing monot-
onously. Congestion and packet loss occur in the system whenever the utilised
bandwidth of one of the sites Ci(t) reaches the link capacity C. According to
Equation 4.1 the largest link utilisation Ci(t) is at site i = i∗ − 1 where i∗ is the
site where the sending rate Xi∗(t) is the lowest.

One then has to investigate which TCP flow will lose packet on link i∗ − 1.
In principle all the TCP flows traversing the congested link can lose packets, so
only the TCP flow at site i∗ is immune. However, the observation is that the TCP
flow starting at the actual congested link (with sending rate Xi∗−1) experiences
the packet loss almost surely. This is due to the fact that TCP sends data packets
in batches as it is described in Section 4.3.1. Then obviously the TCP flow that
ejects this burst of data packets directly into an almost saturated buffer will lose
packets in the process.

The TCP at site i∗ − 1 suffers packet losses repeatedly and due to the multi-
plicative decrease algorithm of the TCP protocol its sending rate Xi∗−1 becomes
smaller than Xi∗ after several packet losses. From then on Xi∗−1 will be the low-
est in the system, link utilisation Ci∗−2 will be the highest after a while and TCP
at site i∗−2 suffers the packet losses. This way congestion propagates site by site
anti-clockwise in the system. After several rounds of congestion propagation the
propagating front of Figure 4.6 emerges.

The explanation of the congestion propagation is summarised in Figure 4.8.

4.4 Avoiding burst effects

The consequence of the bursty nature of the individual flows is that those TCP
flows will lose packets that are closest to the loaded buffer. Two simulation scenar-
ios have been installed where the parameters are set so that this effect is avoided
and congestion propagation is investigated in these cases. The first simulation
setup applies a special queue management algorithm in the routers, while the sec-
ond one uses a TCP parameter setting to limit the sending rate.

In the first setup a more complicated packet drop scheme is used in the router,
called Random Early Detection (RED) introduced in [26]. In spite of the tail-
drop algorithm used so far, in this algorithm not only those packets are dropped
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Figure 4.8: Basic mechanism of congestion propagation.

that arrive at full buffer but some randomly chosen packets in case the averaged
length of the queue in the buffer reaches a threshold. This way the routers start
dropping packets earlier than congestion occurs, thus smoothing out the packet
drop process.

After a packet arrival, the average queue size is calculated using an exponential
moving average. This calculated average queue size is compared to two thresholds
and based on the result a decision is made if the packet is dropped or not. There is
a minimum and a maximum threshold (minthresh, maxthresh). Below minthresh,
no packets are dropped. Betweenminthresh andmaxthresh each packet is dropped
with probability p where p is a function of the average queue length. If the average
queue length exceeds maxthresh, all packets are dropped. Figure 4.9 shows the
packet drop probability against the calculated average queue length when using
RED.

As it is discussed in Section 3.2, there are built-in mechanisms in TCP to
provide congestion control at the end points of the network. The main purpose of
implementing RED was to recognise and control congestion in the routers as well.
Another advantage of RED is that it helps avoiding burst-losses where consecutive
packets tend to be dropped, causing global synchronisation of TCP flows and
large performance degradation. Evaluations of RED and proposals to improve the
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Figure 4.9: Packet drop probability using RED algorithm.

algorithm can be found e.g. in [27], [28].
In the present scenario when RED is applied in a router, not only the computer

near the congested router suffers packet loss, which implies that in some randomly
chosen cases, other TCP sources will lose packet and decrease their sending rates.
This way the basic mechanism illustrated in Figure 4.8 does not work since other
computers might have the minimal sending rate and congestion occurs at another
router. Moreover, the larger the number of routers RED is applied in, the more
computers decrease their rates in advance, resulting that congestion might com-
pletely disappear.

Figure 4.10 shows the spatiotemporal diagram of the buffer usage when RED
is applied in 1 - 4 routers. In the case of 1 router with RED congestion waves occur
but they are not stable. In the case of 2 and 3 routers with RED some congestion
can be observed but it does not propagate. When 4 or more routers apply the RED
algorithm congestion completely disappears.

Another method to avoid the effect of burstiness is to limit the congestion
window. In real systems there is a parameter to maximise the congestion window
negotiated between the sender and the receiver to limit the sending rate so as the
receiver is not overloaded. This variable is referred to as Advertised window in
Section 3.2. Indeed, if the limitation is not based on the response to congestion but
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Figure 4.10: Spatiotemporal diagram of congestion propagation. The RED algo-
rithm is applied in 1 - 4 routers. The values of minthresh and maxthresh were set
to 50 and 100, respectively.

it is determined by a built-in constant variable then congestion can be completely
eliminated.

Figure 4.11 shows the spatiotemporal diagram when the congestion window
was maximised at 100 packets at several TCP flows. The number of limited flows
ranges from 1 to 6. It can be observed that the congestion wave tends to be more
and more distorted as the number of limited TCP flows increases. In case of 6

limited TCP flows the buffer usage is always small in those routers where the
limited flows are connected. In those cases without limitations the system gets
congested from time to time and the buffer usage oscillates individually however,
wave propagation does not occur.

4.5 Conclusions

In this chapter the forming and propagation of congestion in a simple network
scenario is investigated. The phenomenon is analyzed in detail and it is derived
that the intrinsic properties of the TCP protocol contribute to the formation and the
stability of the congestion waves. The large rate variation of TCP sending (burst
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Figure 4.11: Spatiotemporal diagram of congestion propagation. The number of
limited TCPs varies from 1 to 6.

effect) is pinpointed as one of the major contributors of this phenomenon. These
statements are supported by simulation experiments where the different settings
of network parameters and algorithms provide different conditions for congestion
propagation.

The microscopic model presented here emphasises some key effects experi-
enced in the current TCP/IP networks such as bursty packet traffic and conges-
tion and sets up a relationship with those effects and network parameters. The
model gives a deeper insight into the basic mechanisms of congestion formation
and burstiness and the simulation study shows some examples on how the burst
effects can be avoided.



Chapter 5

Modeling short TCP connections

Previous TCP models mostly considered infinite data sources, where stationarity
of TCP is assumed [14], [15], [20], [21]. In [22] and [23] short data transfers are
investigated but the number of parallel connections is limited there. In the first
model presented here the TCP connections are in transient phase, moreover, the
population of TCP sources is unlimited, which makes it possible to formulate the
model in compact way by using a few basic traditional traffic parameters only.

The objective is the description of multiple connections sharing a single link,
where the flows are typically short and the traffic rate is decomposed according to
the number of parallel TCP flows in the system. Another purpose is to calculate
the traffic rate where the files are downloaded sequentially, using different traffic
control algorithms.

5.1 Modeling parallel TCP connections

In this section the number of parallel TCP connections sharing a single link is
investigated. First the system setup and the main assumptions are shown, then the
average utilisation as the function of the number of parallel connections is com-
puted, that is followed by setting up a Markovian model to describe the dynamics
of the number of connections.

47
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5.1.1 System setup

The outline of the system model is shown in Figure 5.1. TCP connections arrive
randomly from an infinite population according to a Poisson process. Each con-
nection initiates a file transfer. The model focuses on short files where the tail of
the file size distribution is short (exponential decay). Low packet loss is assumed
so that the transfers seldom leave the initial slow start phase.

Buffer

TCP

TCP

TCP

TCP

Sink

Sink

Sink

Sink

Link

Server side Client side

B C, T_delay
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2
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n(t) n(t)
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Figure 5.1: System topology. In the simulations zero packet loss and fixed de-
lay Td varying between 5ms and 160ms has been assumed. The buffer size is
considered as infinite and the bandwidth is C = 107 bps.

Generally, the teletraffic systems can not be characterised by Poisson arrivals
and exponential file sizes. The reason of the choice of these simple models instead
is that:

• The file requests arrive from a large population of users, often resulting in
Poisson statistics. Packet arrival statistics within connections are different
from Poisson.

• The model concentrates on WWW browsing where small files dominate.
The transmission of large files can be treated separately, based on the well-
known persistent TCP models.

5.1.2 Description of aggregated traffic

A computation is shown that can be used to obtain the distribution of the conges-
tion window (cwnd) sizes when multiple different connections are present. The
calculation leads to a formula describing the utilisation of the link. The utilisation



5.1. MODELING PARALLEL TCP CONNECTIONS 49

can be considered as the probability that at a randomly chosen time the buffer is
serving. The computation method is based upon the independence of the parallel
TCP connections. The packet loss is neglected and the distribution of file sizes is
exponential. It is assumed that the sources send a certain amount of data (based
on cwnd) in every round. The value of the round-trip time is not needed in the
calculations. Although TCP measures and updates its cwnd in terms of bytes it is
easier to count the number of packets out in the network unacknowledged by the
receiver. The probability that a file consists of Np packets can be written as

ρp(Np) = P ((Np − 1)Sp < S < NpSp) =

NpSp∫
(Np−1)Sp

ρ(S)dS = e−σ(Np−1)Sp − e−σNpSp,

(5.1)

where Sp is the size of the IP packets, Np is the length of file measured in packets
and ρ(S) is the probability density function of the file sizes (σ > 0):

ρ(S) =

{
σe−σS , if S > 0

0, if S ≤ 0.

A file consisting of S bytes can be divided into Np = [S/Sp] + 1 packets where
[·] denotes the lower integer part. The file sizes have been modelled as real num-
bers so far, however the number of packets in a file is always an integer number.
The discretisation of the exponential distribution gives geometric distribution with
parameter p = e−σSp .

P (Np − 1 = k) = pk(1 − p) (5.2)

that is the random variable [S/Sp] follows geometric distribution with parameter
p. If the number of round-trips needed for the file to be downloaded is Nr, the
number of packets that have been sent out in the last window is denoted by Ŝ and
assuming that the TCP is in slow start phase in the whole download period, one
can write
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Np =

Nr−2∑
i=0

2i + Ŝ.

Given the file size Np, the Nr and Ŝ can be calculated by

Nr(Np) = [log2(Np)] + 1

Ŝ(Np) = Np − 2[log2(Np)] + 1,

where Np ≥ 1.

Let ρ(Np, w) denote the probability that a TCP transferring a file of length Np

keeps w packets in the network at an arbitrary moment. Given Nr(Np) states of
the system and assuming that the probability of all states is equal (1/Nr(Np)) the
following equation holds:

ρ(Np, w) =
1

Nr(Np)

Nr(Np)−2∑
i=0

δ(w − 2i) +
1

Nr(Np)
δ(w − Ŝ(Np)) (5.3)

where δ(.) is the delta function giving

δ(x) =

{
1, if x = 0

0, otherwise.

Using the discrete probability distributions (5.1) and (5.3) the distribution of the
congestion window size when one TCP connection is present in the system can be
computed as the following:

ρ
(1)
TCP (w) =

∞∑
Np=1

ρ(Np, w)ρp(Np) =
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=
∞∑

Np=1

e−σ(Np−1)Sp − e−σNpSp

[log2(Np)] + 1

⎡
⎣δ(w − Ŝ(Np)) +

[log2(Np)]−1∑
i=0

δ(w − 2i)

⎤
⎦ . (5.4)

If more than one TCPs are allowed to run in the system then the sum of the cwnd
sizes is the quantity characterising the network load. Convolving two distribution
functions like in Equation (5.4) one can get the result.

ρ
(2)
TCP (w) =

w∑
k=1

ρ
(1)
TCP (k)ρ

(1)
TCP (w − k),

Following this method, the distribution of the sum of cwnds in case of n connec-
tions can also be achieved by taking the convolution of the distribution functions
in case of 1 TCP and n − 1 TCPs.

ρ
(n)
TCP (w) =

w∑
k=1

ρ
(1)
TCP (k)ρ

(n−1)
TCP (w − k) (5.5)

Knowing these results the probability of queuing can be obtained. The sum of
the cwnds is the number of all segments that have been already sent out by the
TCP sources but have not yet been acknowledged. Since in this case there is only
one buffer in the path all unacknowledged packets are near that link, either being
served or waiting. The maximal number of packets on the link is determined
by the product of the bandwidth and the delay of the link (often referred to as
’pipe size’). This is the number of segments that can be transmitted over the link
without suffering any queuing delay. If the sum of the cwnd sizes (w) is larger
than the bandwidth-delay product measured in packets (CTd/Sp) then buffering
will certainly occur. If w < CTd/Sp then the probability of buffering is the ratio
of the sum of cwnds to the ’pipe size’:
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Figure 5.2: The utilisation of the buffer. The data points are the simulation results
and the solid line represents the numerical evaluation of the analytical model.

pq(w) =

{
wSp

CTd
, if CTd

Sp
> w

1, otherwise.

Using the distribution of the congestion window sizes (5.5) the link utilisation as
the function of the number of parallel TCPs can be obtained.

rn =
∞∑

w=1

ρ
(n)
TCP (w)pq(w). (5.6)

Some useful descriptors of the network have been obtained in a theoretical way.
The Formula 5.6 is evaluated numerically by iterating Equation 5.5 using the first
step of the iteration (Equation 5.4). Figure 5.2 shows the solution compared to the
simulation results. After a linear increase the function rn apparently goes to 1 as
n grows. The next step is to model the number of parallel flows and connect it to
Equation 5.6.
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5.1.3 Markovian model of the number of flows

A simple Markov model is introduced to describe the system. The states of the
Markov chain are the number of parallel TCP connections n.

It is assumed, that the length of the buffer is infinite, no packet loss occur and
the delay is fixed. Since connection departure can occur only in packet departure
instants, the previously developed results can be applied to obtain the distribution
of the number of parallel TCP connections.

Using the exponential file size, let μ denote the rate of connection departure,
given that the server is fully utilised. Then

μ =
C

E(S)
=

C

Sp E(Np)
.

If there are i connections in the system and the utilisation is ri then the rate of
departure is riμ. The connections arrive randomly according to a Poisson process
with rate λ. The state-diagram of the Markov chain is depicted in Figure 5.3.

λλ

i+1ii-1

λ

μμ

λ

1

λ

0

r r r
1 μ r2 μ   ri-1 i i+1μ

Figure 5.3: State diagram of the Markov chain describing the system model.

Figure 5.4 shows the utilisation computed in Section 5.1.2. The function rn is
partitioned to a linear part and a constant part (that is equal to 1). The linear part
corresponds to the case when the bandwidth-delay product is large enough, queu-
ing does not occur and the TCPs are independent from each other. The constant
part means that the pipe is full, TCP packets have to wait in the queue and the con-
nections have to share the available bandwidth. A threshold value is introduced to
separate the two scenarios.

Using the linear approximation rn = n
k∗

this threshold will be at k∗ as it is
shown in Figure 5.4. The value of k∗ can be calculated as the inverse slope of this
linear approximation. The simplified function of rn can then be written as
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Figure 5.4: The utilisation of the buffer. The mean value of the file size is
set to 62500 bytes and the packet size is 512 bytes. Two cases are presented,
Td =26.95ms, 161.72ms.

rn =

{
n
k∗

, if n � [k∗]

1, if n � [k∗].

Using the approximated values of rn the simplified Markov-chain is shown in
Figure 5.5. Using standard techniques [95] the steady-state probabilities of the
simplified Markov-chain can be evaluated. The distribution is Poissonian below
k∗ with parameter 
 = λ

μ/k∗
and geometric with parameter 
∗ = λ/μ above k∗:
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Figure 5.5: Simplified state diagram of the Markov chain describing the system
model.

p∗n =

{
p∗0

�n

n!
, if n � [k∗]

p∗0
�[k∗]

[k∗]!
(
∗)n−[k∗], if n � [k∗].

(5.7)

The value of p∗0 can be determined by normalisation and is given by

1

p∗0
=

[k∗]∑
j=0


j

j!
+


[k∗]

[k∗]!(1 − 
∗)
(5.8)

The above formulae have been derived also in [19] for M/G/1 processor shar-
ing model. An important consequence of this relation is that the parameter of the
geometric distribution can be expressed with the parameter of Poisson distribution
and the threshold. This relation enables one to interpret Equation 5.7 as a general-
isation of Erlang’s formula [5] for TCP traffic. The parameter 
 can be calculated
from the classic traffic parameters λ and μ – as in Erlang’s formula –, and recall
that the relation between 
 and 
∗ is 
∗ = 
/k∗.

Once the number of connections is modelled, traffic descriptors such as down-
load time can be calculated from Little’s law.

5.1.4 Validation of the model

Simulations has been performed in order to validate the Markov model. The ns-
2b simulator [90] with TCP Reno version was used. In the simulations the random
packet loss has been neglected and the buffer size was set to an extremely large
value. The link speed was set to C = 107 bps. The average file size was 1/σ =

62500 Bytes that is about 122 IP packets. Simulations of 15000 file downloads
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have been made at different link delays. In the simulations 
∗ = 0.6 and λ = 11.14

1/s were fixed.
Then the parameter values 
 and [k∗] have been estimated from the observed

histograms. The histograms and the model distribution with the estimated param-
eters are depicted in Figure 5.6. Both linear and logarithmic scales are presented.
It can be seen that the model distribution follows the histogram and the error re-
mains bounded both in the main part and in the tail. The estimation of the model
parameters was done by the weighted least squares method.

Td[ms] 
 
∗ 
/
∗ k∗

5.39 1.67 0.6 2.78 2.87
26.95 3.43 0.6 5.72 6.02
53.91 5.67 0.6 9.45 9.26

107.81 9.83 0.6 16.38 17.38
161.72 14.10 0.6 23.50 25.59

Table 5.1: Parameter values for different simulation scenarios.

In Table 5.1 the fitted values of 
 and 
/
∗ are shown. The variance of 


decreased with the increasing number of samples. It was found that for 15000

downloads the relative error of 
 was around 1.5%. In the last column the com-
puted k∗ values are shown.

Comparing the fitted 
/
∗ and the calculated k∗ values one can see that the
anticipated relation k∗ = 
/
∗ holds over the whole parameter range with some
minor deviations. Moreover, the k∗ values calculated analytically from the model
(last column) is close to the data fitted to the simulations.

5.2 Modeling sequential TCP connections

In this section short TCP connections following each other sequentially are anal-
ysed, which is typical in Web browsing. An analytical model is introduced to
compute the speed of the Web page download in case of different mechanisms of
handling the consecutive TCPs.
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Figure 5.6: The distribution of the number of TCP connections. Three typical
cases are presented on linear and logarithmic scale.

5.2.1 Packet transmission in WWW applications

Although various network applications can be found in the Internet, Web applica-
tions have significant share in the total traffic volume.

The Hypertext Transfer Protocol (HTTP) is responsible for sending and re-
ceiving the contents of Web pages. HTTP is an application layer protocol that
uses TCP on transport layer to control the transmission.

The communication between client and server on the application level begins
with a request of a particular file, usually a text file that contains some hyperlinks
to other objects and files. This is often achieved by clicking on a given URL. The
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server sends the file to the client, who is then able to send requests automatically
for the embedded files. The request sending policy of the client can be imple-
mented in different ways. Either the client waits for the response before the next
request is sent out, or the client sends as many requests as it can allowing more
requests to be in the network at the same time without having any response. The
later version is called pipelining and it is an important functionality of HTTP. It
can improve the performance, since all files belonging to a Web page is down-
loaded without waiting for any file transfer to be finished.

5.2.2 Analytical model

Different HTTP models and different file size distributions are considered. The
effect of TCP is taken into account by the results presented in [22]. This model
needs only the round-trip time RTT , the file size in packets, the packet loss prob-
ability and some TCP-related parameters as input and it generates the download
time as output.

In case of HTTP with pipelining, the download time and the average con-
gestion window (cwnd) can be calculated by considering the transfer of the Web
page as a continuous data flow1, while in HTTP without pipelining the download
is sometimes interrupted at end-of-file events. This behaviour results in additional
RTT in the download time and the average cwnd (Wnpl) is therefore smaller than
that of HTTP with pipelining (Wpl). Analytical formulae can be developed in both
cases.

The model is based on the formula for expected time of data transfer given in
[22]. With that formula the download time of a given file with known size can
be computed. In the following, the distribution of the file size and the number
of objects is assumed to be known. Considering a given file size distribution, the
average download time can be calculated by taking the probabilities of different
file size occurrences. Let the file size be a continuous variable and f(x) be the
probability density function of the file size distribution. In case of more than one
embedded object, the page size (PS) is the sum of the embedded object sizes.

1In practice, first the client should wait for the arrival of the base-page and then follows the
sending of the requests for the embedded objects that the base-page contains references for.
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The probability density function of the sum of i variables from the distribution
characterized by f can be written as the ith convolution of f . If we define g1(x) =

f(x) the following recursive formula can be written:

gi(x) =

x∑
y=1

f(y)gi−1(x + 1 − y)

This is the probability density that one page contains x packets in the case of i em-
bedded objects. If h denotes the distribution of the number of embedded objects
on one page, the probability that one page contains x packets can be described by

g(x) =

∞∑
i=1

gi(x)h(i).

The expected download time of one page is then

E(Tdl) =
∞∑

x=1

Tdl(x)g(x),

where Tdl(x) is the expected time for data transfer according to [22]. The ex-
pected page size E(PS) can be calculated by taking the average over the g(x)

distribution:

E(PS) =
∞∑

x=1

xg(x)

The approximate calculation of the throughput is given by dividing the page size
with the download time for one page and the average cwnd is the throughput
multiplied by RTT :

Wpl =
E(PS)

E(Tdl)
RTT (5.9)

The average cwnd may depend on the file size distribution. The effect of the
tail of distribution is investigated by numerical computations. Table 5.2 shows
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that comparing typically short-tailed (exponential) and heavy-tailed (Pareto) file
sizes, the final result does not differ much, the deviation remains below 4 %.

Wpl, Exp Wpl, Par Dev [%]
F = 10, p = 0.01 4.257206 4.164887 2.22
F = 10, p = 0.05 2.284299 2.243360 1.82
F = 10, p = 0.10 0.918700 0.909426 1.02
F = 50, p = 0.01 17.18964 16.53288 3.97
F = 50, p = 0.05 9.074864 8.733306 3.91
F = 50, p = 0.10 2.822689 2.758703 2.32

Table 5.2: Deviation in average cwnd between exponentially distributed and
Pareto distributed file size, for different combinations of average file size (F ) and
packet loss (p).

The formula for Wpl is checked for exponentially distributed file size and ver-
ified by simulations presented in Section 5.2.3.

In HTTP without pipelining the average congestion window is, as mentioned
earlier, smaller than the average congestion window of HTTP with pipelining,
for which the calculations shown above are appropriate for attaining Wpl. This
result can be used for deriving Wnpl, taking into consideration that sometimes
the last segments of a particular file do not fill the available space allowed by
the congestion window. Since the files are transmitted one by one, the relation
between Wpl and Wnpl can be written as

Wnpl =
F

R̂(Wpl)
(5.10)

where F is the average file size and R̂(Wpl) is the average number of round-trips
needed to download one file. On average, in case of HTTP with pipelining, the
system works as if Wpl packets were transmitted in every round-trip. All files
are finite, so in the last round-trip the sender does not always send Wpl packets.
Consequently, the transfer of a file of size S is expected to be completed in  S

Wpl
�

round-trips, where x� means the ceiling function, i.e. the smallest integer larger
than or equal to x. Taking the average over the file size distribution, the expression
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for R̂(Wpl) can be written as

R̂(Wpl) =

∞∫
0

⌈ S

Wpl

⌉
f(S)dS (5.11)

When considering exponentially distributed file sizes with average F , this expres-
sion can be simplified by evaluating the integral as follows:

R̂(Wpl) =
∞∑
i=0

(i+1)Wpl∫
iWpl

⌈ S

Wpl

⌉
f(S)dS =

∞∑
i=0

e−
iWpl

F =
1

1 − e−
Wpl

F

(5.12)

This formula is appropriate only for exponential distribution. With heavy-
tailed distributed file size (e.g. Pareto) an explicit formula is not this easily de-
rived. However, numerical evaluations of Equation 5.11 show that the results
when using Pareto distributed file size do not differ much from the case when us-
ing exponentially distributed file size. In Table 5.3 the results are shown where the
difference in R̂(Wpl) between Pareto and exponential distribution is investigated
by varying Wpl and the average file size.

R̂(Wpl), Exp R̂(Wpl), Par Dev [%]
F = 10, Wpl = 1 10.508 10.513 0.05
F = 10, Wpl = 4 3.0332 3.0717 1.25
F = 10, Wpl = 8 1.8160 1.8821 3.51
F = 50, Wpl = 1 50.502 50.408 0.19
F = 50, Wpl = 6 8.8433 8.8519 0.10
F = 50, Wpl = 12 4.6866 4.7099 0.50

Table 5.3: Deviation in download time between exponentially distributed and
Pareto distributed file size, for different combinations of average file size (F ) and
average cwnd.

Since the mean values of the file sizes are the same, the influence of the ceiling
function in Equation 5.11 is large when the value of F/Wpl is small, but in all
cases it remains within 4 %.
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Finally, combining Equations 5.10 and 5.12 gives us the relation between the
average congestion window sizes using HTTP with and without pipelining:

Wnpl = F (1 − e−
Wpl

F ) (5.13)

The simulation results also confirm that the distribution of file size does not
have much influence on the performance therefore, the computations and simula-
tions are based on the exponential case.

5.2.3 Validation of the model

The main results of the analytical model stated in Section 5.2.2 are compared to
simulations and measurements of the corresponding scenarios.

The calculations are carried out for different parameters of the Web site (av-
erage file size and average number of embedded objects on a Web page) and dif-
ferent values of packet loss in the network (from 0.01 to 0.1). Constant round-trip
time is assumed in all cases and the pipelined and non-pipelined versions are both
considered. The main metric of interest is the average congestion window size,
from which the average download time and the average offered load can be calcu-
lated. For testing the method, a simple network of a Web client, a Web server and
a link connecting them is used.

Web-server Web-client
Internet

Delay=0ms
Bandwidth=10Mbps Delay=100ms

Bandwidth=10Mbps

Delay=0ms
Bandwidth=10Mbps

Router 1 Router 2

Figure 5.7: System topology. The delay and the bandwidth are fixed, the packet
loss varies between 0.01 and 0.1.

Figure 5.7 shows the investigated scenario. The fix delay in the core network
is 0.1s and the bandwidth values of the links are 10Mbps, which corresponds to a
high bandwidth-delay product network. The upload delay is 0s, so acknowledge-
ments and requests from the client side can reach their destination immediately.
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Since the TCP segment size is 1000 bytes (plus 40 bytes header size), the RTT

(which includes the fix delay and the packet service time) has a constant value of
0.1025s.

The simulations were performed by ns-2.1b6 simulator tool [90]. This
version of ns does not contain any HTTP-related objects, so the application part
of the simulator needed to be implemented. An ns-based HTTP-simulator written
in Tcl found at [25] served as the underlying tool of the simulations, where HTTP
with and without pipelining is implemented.

Figure 5.8 shows the simulation and computation results in different scenarios.
The average cwnd of TCP is presented as the function of packet loss probability.

In the simulations packets were dropped randomly at a given rate. The dis-
tribution of the file size and the number of objects inside a Web page were both
exponential and the simulations stopped when 2000 pages were retrieved. In order
to view the difference between the pipelined and non-pipelined connections, the
two cases with the same parameter settings are plotted on the same figure. Six
cases are distinguished depending on the average file size (F = 10kB, 50kB),
average number of embedded objects (N = 5, 10), and the maximum cwnd of
TCP advertised by the client (Wmax = 10, 50). The usage of Nagle algorithm 2

was switched off, no delayed acknowledgement was set and the initial cwnd was
1.

Several conclusions can be drawn looking at the plots more closely. The an-
alytical model fits well to the simulations up to 5% packet loss, but for larger
packet losses they become more separated. The pipelined HTTP and the corre-
sponding data generated by HTTP without pipelining converge, both in simulation
and computation cases. This means that if the packet loss rate is high, then the
effect of pipelining is small. A similar statement can be declared concerning the
file size. If the average file length is large, the influence of the pipelining is small.
A larger maximal congestion window results, of course, in larger throughput, and
this effect is more relevant at smaller packet losses.

In order to validate the model with passive measurements, the same setup was

2The Nagle algorithm is an optional method in TCP to collect those consecutive packets smaller
than the maximum segment size and concatenate them into one segment in order to decrease the
overhead. In case of file transfers typically the last packet is delayed due to this method.
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Figure 5.8: Average congestion window, simulation vs computation results.

used except for several parameters. There was a narrow link at the client side,
a serial line with 115.2 Kbps. The packet size was 1500 bytes and an extra 0.5s
delay was set in the router at the client side in order to decrease the variation of
the RTT . The delay was included by the help of NIST-Net network emulator
tool [91]. Several Web pages were downloaded from a public Web server and the
packets at the server side were traced by the tcpdump packet capture tool. The
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measured packet loss was 0.5 %, the average file size was 16.5 Kbytes, the average
number of embedded objects was 19, the maximum cwnd advertised by the client
was 32120 bytes, which corresponds to 21 packets and the measured RTT was
565 ms. The pipelining was switched on and off in the browser according to the
investigated scenario.

The cwnd of the TCP at the server side was calculated by counting the pack-
ets sent to the network between the departure of a particular packet and the arrival
of the corresponding acknowledgement. Table 5.4 shows the measured and com-
puted cwnd.

Measurement Computation
Pipelined Non-pipelined Pipelined Non-pipelined

cwnd 13.38 6.44 11.73 6.56

Table 5.4: Comparison of measured and computed data.

For testing pipelining, opera6.03 for linux was used, where the maximum
number of parallel TCP sessions can be set to 1, but the usage of pipelining can not
be disabled. For non-pipelined requests, mozilla5.0 was applied, where using
and not using pipelining can be chosen, but the maximal number of connections
can not be set and at least two TCP sessions are running most of the time. The
computed values should be estimated with the assumption that in case of two
parallel connections one TCP retrieves half of the page with the same file-size
distribution.

5.3 Conclusions

In this chapter file transfers are considered where the files are small, the packet
loss probability is low and the RTT is constant. In the first case parallel file trans-
fers sharing a single link are investigated and the utilisation of the link is computed
as the function of the number of parallel files. Packet level dynamics of TCP is
used in the calculations. The values of the link utilisation are then used in the
Markovian model of the number of parallel TCP flows on the link. A simplified
version of the Markov model is solved and verified. From the number of parallel
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connections the statistical properties of useful traffic descriptors such as download
time and throughput can be calculated.

In the second case the download performance of small files contained on a Web
page is analyzed. The difference between the average throughputs and latencies
are calculated in case when the files are concatenated into one object (pipelining)
and in case when regular file downloads follow each other. From the computa-
tional results it can be deduced that the difference between the two cases is larger
if the packet loss is smaller and if the average file size is smaller. The throughput
calculation is robust in the sense it is insensitive to the distribution of the file size.
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Matrix analytic methods
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Chapter 6

Transient behaviour of
infinite-server queuing systems

In [71] some explicit formulae for the queuing system with phase-type (PH) ar-
rivals, infinite-server queues and general service-time distributions (PH/G/∞
queue) are derived. A basic system of differential equations is obtained for the
queue-length moment generating function. Although the equation system can be
solved explicitly only in special cases, certain statements on the moments of the
queue length can be made. Additionally, the same statements concerning the ba-
sic equation system and the generation of the factorial moments are valid when
MAP is applied instead of PH arrival process, resulting in a MAP/G/∞ system.
The exact solution of this queuing model is not presented in [71], only numerical
solution of the generated set of differential equations is obtained. However, if the
service time distribution is restricted to PH, an exact solution can be obtained for
the moments of the number of sessions. In [73] the time-dependent generalisation
of the queuing system MAPt/PHt/∞ is considered and numerical evaluation of
the basic system of differential equation is presented. This chapter provides the
exact time-dependent solution for the moments of the number of elements being
served in MAP/PH/∞ queuing system.

69
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6.1 Moments of an infinite-server queuing system

In the following an infinite-server queuing system is introduced with MAP arrivals
and PH service time distribution. The moments of the queue length are computed,
where the queue length stands for the parallel demands being served in the system.

6.1.1 Equations for the moments

Let X(t) denote the queue length and J(t) the phase of the arrival process at time
t and let μ

(K)(t) denote the M-vector whose ith element is μ
(K)
i (t) (K ≥ 1),

where

μ
(K)
i (t) = E[X(K)(t)|X(0) = 0, J(0) = i]

K ≥ 1, 1 ≤ i ≤ M

X(K)(t) denotes the factorial product X(t)[X(t)−1] · · · [X(t)−K+1] and μ
(K)
i (t)

denotes the Kth factorial moments of the number of demands being served if the
system is started from state i with zero queue length.

The main purpose is to calculate the time evolution of the moments of the
above queuing system. According to the calculations in [71], the following system
of differential equations can be written for each factorial moments of the queue
length:

d

dt
μ

(1)(t) = Dμ
(1)(t) + {1 − H(t)}D1e

μ
(1)(0) = 0 (6.1)

and for K ≥ 2

d

dt
μ

(K)(t) = Dμ
(K)(t) + K{1 − H(t)}D1μ

(K−1)(t)

μ
(K)(0) = 0. (6.2)



6.1. MOMENTS OF AN INFINITE-SERVER QUEUING SYSTEM 71

H(t) denotes the cumulative distribution function (c.d.f.) of the service time and
e is the M-vector whose each elements are 1.

According to [71] the following theorem holds for the asymptotic nature of
the factorial moments of the queue length:

Theorem 6.1.1. If the mean service time is assumed to be finite (μ =
∫ ∞

0
{1 −

H(t)}dt < ∞), then for any K ≥ 1, the vector of the factorial moments μ
(K)(t)

converges as t → ∞ to a finite vector all of whose components are equal.

Proof. The proof can be found in [71] in detail.

The authors in [71] use numerical approach to solve Equations 6.1 and 6.2.
However, if the service time distribution is restricted to be PH distribution, the
exact solution can be found.

Starting from solving Equation 6.1, the time dependence of each moment of
the queue length can be iteratively calculated by Equation 6.2 by using the pre-
ceding moment. The solution method is shown next.

6.1.2 Solution for the first moment

For the solution of the transient behaviour, the method introduced here is based
on solving the above set of differential equations with service time distributions
generated by mixing Erlang type distributions.

The sum of L independent, identically distributed random variables from ex-
ponential distribution with parameter δ gives the Erlang distribution with param-
eters L and δ, and it is denoted by E(L, δ). The c.d.f. of the Erlang distribution
with parameters L and δ is

He(t) = 1 −
L−1∑
i=0

e−δtδiti

i!
.

The general formula for the c.d.f. of the service time distribution consisting of
mixed Erlang distributions is then
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H(t) = 1 −
I∑

i=1

e−βit

Ji∑
j=0

αijt
j, (6.3)

where βis and αijs are coefficients, I is the number of different exponents and
Ji is the maximal t-power belonging to the ith exponent. Since H(t) is a c.d.f.,
βi > 0 for all 1 ≤ i ≤ I . Formula 6.3 is one representation of a PH distribution
function (for details see e.g. [72]).

The solution method is based on standard techniques of solving first order
linear inhomogeneous ordinary sets of differential equations with constant coef-
ficients, which can be found e.g. in [92]. The solution for the factorial moments
can be expressed as the sum of the general solution of the homogeneous part and a
particular solution of the inhomogeneous part of the set of differential equations.
Since D1 and D0 matrices are constant, the solution of the homogeneous part re-
mains the same for all moments. For K ≥ 2, the solution of the inhomogeneous
part of the set of differential equations for the Kth moment depends on the solu-
tion of the set of differential equations corresponding to the (K − 1)st moment.
The first step is computing μ

(1)(t), then the same method can be used for the
higher moments, accordingly.

The first step of solving Equation 6.1 is to obtain the solution of the homoge-
neous part of the equation:

d

dt
μ

(1)(H)(t) = Dμ
(1)(H)(t) (6.4)

The general solution is the linear combination of exponentials:

μ(1)(H)
n (t) =

M∑
m=1

Vnmcmermt (6.5)

The columns of the M × M matrix V are the eigenvectors of the constant
coefficient matrix D, rms are the corresponding eigenvalues, cms are unknown
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variables.

Theorem 6.1.2. The matrixD has an eigenvalue equal to 0, and the real part of
all other eigenvalues are negative.

Proof. The theorem immediately follows from the fact that D is a stochastic ma-
trix i.e. De = 0.

Remark 6.1.3. Since one of the exponents is 0, the above solution of the homo-
geneous part of the set of differential equations has a term independent of t. This
term plays an important role, when taking the limit t → ∞. r1 = 0 can be chosen
without breaking the generality.

Remark 6.1.4. In case of complex eigenvalues, complex conjugate pairs occur in
the set of roots of the characteristic polynomial of D and also in the exponents,
resulting in real numbers in the solution.

Remark 6.1.5. In case of multiple eigenvalues, extra polynomials should be taken
into account but the basic solution methodology remains the same. The details of
solving Equation 6.4 taking into account multiple eigenvalues are shown later.

For the general solution of the set of differential equations, one should also
get one of the particular solutions. For this purpose, the method of undetermined
coefficients can be applied, i.e. cm (1 ≤ m ≤ M) is considered as a function of t.

M∑
m=1

Vkm ˙cm(t)ermt = fk(t), (6.6)

where

fk(t) = (1 − H(t))
M∑
i=1

D1ki

and it has the following general form:

fk(t) =
I∑

i=1

e−βikt

Ji∑
j=0

α
(k)
ij tj (6.7)
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The derivatives of the cm(t) functions (1 ≤ m ≤ M) can be expressed by
fk(t) functions and the inverse of V. Let the M × M matrix A be the inverse of
V, A = V−1. Solving Equation 6.6 for ċ, the following equations hold for the
derivatives of the coefficients:

˙cm(t) =

M∑
k=1

Amkfk(t)e
−rmt =

M∑
k=1

Amk

I∑
i=1

e−(βik+rm)t

Ji∑
j=0

α
(k)
ij tj ,

1 ≤ m ≤ M (6.8)

For a particular term the integration can be performed as follows:

∫
e−δttjdt = −Γ(j + 1)

δ(j+1)

j∑
l=0

e−δtδltl

l!
+ C

if δ �= 0 and in case of δ = 0

∫
tjdt =

tj+1

j + 1
+ C.

After the integration of both sides of Equation 6.8, the following formula for
cm is obtained (the constant part of the integration is taken as 0 for simplicity
because a particular solution is sufficient):

c	m(t)ermt =
M∑

(	)k=1

I∑
(	)i=1

Ji∑
j=0

j∑
l=0

Amkα
(k)
ij

Γ(j + 1)

δ
(m)
ik

(j+1)

e−βiktδ
(m)
ik

l
tl

l!
,

1 ≤ m ≤ M

where δ
(m)
ik = βik + rm. The diamond sign indicates that the above formula is



6.1. MOMENTS OF AN INFINITE-SERVER QUEUING SYSTEM 75

evaluated only for those i and k indexes for that δ
(m)
ik �= 0. If δ

(m)
ik = 0, those i and

k indexes should be treated separately:

c∗m(t)ermt =

M∑
(∗)k=1

I∑
(∗)i=1

Ji∑
j=0

Amkα
(k)
ij

tj+1

j + 1
ermt

where the star sign indicates that the summation is performed for only those i and
k indexes for that δ

(m)
ik = 0. The nth component of the particular solution can be

written as

μ	(1)(P )
n (t) =

M∑
m=1

Vnmc	m(t)ermt =

M∑
(	)m=1

M∑
(	)k=1

I∑
(	)i=1

Ji∑
j=0

j∑
l=0

VnmAmkα
(k)
ij

Γ(j + 1)

δ
(m)
ik

(j+1)

e−βiktδ
(m)
ik

l
tl

l!
, 1 ≤ n ≤ M

(6.9)

where only those i, k and m indexes are taken into account for that δ
(m)
ik �= 0. In

case of δ
(m)
ik = 0, the following formula holds:

μ∗(1)(P )
n (t) =

M∑
m=1

Vnmc∗m(t)ermt =

M∑
(∗)m=1

M∑
(∗)k=1

I∑
(∗)i=1

Ji∑
j=0

VnmAmkα
(k)
ij

tj+1

j + 1
ermt

1 ≤ n ≤ M (6.10)

The particular solution of the Equation system 6.1 is the sum of the two dif-
ferent cases.
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μ(1)(P )
n (t) = μ	(1)(P )

n (t) + μ∗(1)(P )
n (t) (6.11)

Note that both μ
	(1)(P )
n (t) and μ

∗(1)(P )
n (t) converge with t → ∞ to zero since

βik > 0 for all i and k in the corresponding interval, rm > 0 for all 2 ≤ m ≤ M

and r1 = 0 can not occur in μ
∗(1)(P )
n (t) since in that case δ

(m)
ik = 0 does not hold.

The general solution of the first factorial moment can then be derived by re-
placing Equations 6.5 and 6.11 in the following formula:

μ(1)
n (t) = μ(1)(H)

n (t) + μ(1)(P )
n (t) (6.12)

In order to calculate cm coefficients in Equation 6.5 the initial condition of Equa-
tion 6.1 can be used, thus

μ(1)
n (0) = μ(1)(P )

n (0) +

M∑
m=1

Vnmcm = 0

where cm is considered as constant. Using the notation A = V−1 again, the vector
of coefficients can be calculated by

c = −A ∗ μ
(1)(P )(0) (6.13)

The time-dependent solution of Equation 6.1 is thus described in Equation 6.12
where μ

(1)(H)
n (t) is specified in Equation 6.5 where the cm expressed in Equa-

tion 6.13 should be replaced and μ
(1)(P )
n (t) is specified in Equation 6.11.

At last, the stationary solution for μ
(1)(t) can be achieved by taking the limi-

tation t → ∞ in Equation 6.12. Since βik > 0 (1 ≤ i ≤ I ,1 ≤ k ≤ M), all terms
of μ

(1)(P )
n (t) in Equation 6.11 goes to 0 if t → ∞. Since rm < 0 (2 ≤ m ≤ M)

and r1 = 0 according to Theorem 6.1.2 and Remark 6.1.3, the asymptotic value
of μ

(1)
n (t) is Vn1c1 which is equal for all 1 ≤ n ≤ M according to Theorem 6.1.1.
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6.1.3 Handling multiple eigenvalues

If there exists one or more eigenvalues of the M × M matrix D with multiplicity
larger than one, the solution of Equation 6.4 can not be written as in Equation 6.5.
However, the solution in this case can be achieved by letting the coefficient matrix
elements depend on t as polynomials.

μ(1)(H)
n (t) =

M∑
(�)m=1

Vnm(t)cmermt

where the square at the bottom of the term means that the eigenvalue with mul-
tiplicity larger than one is considered only once in the sum. If e.g. r1 �= r2 =

r3 = r4 �= r5 meaning that r2 has multiplicity 3, then m = 3 and m = 4 is not
taken into account. Assuming that one particular eigenvalue rm has multiplicity
Q, Vnm(t) can be written as a polynomial with degree Q:

Vnm(t) =

Q∑
j=1

pnjt
j−1 0 ≤ n ≤ M

The M×Q constant coefficient matrix p can then be achieved by replacing the
particular term Vnm(t)cmermt into the original homogeneous differential equation
and dividing by cmermt. If the matrix elements of p are written in a column-vector
p̂ such that

p̂ = [[p11 . . . pM1] . . . [p1Q . . . pMQ]]T ,

the following equation system is obtained for the pnj variables:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Fm −E 0 . . . 0

0 Fm −2E 0
...

0 0
. . . . . . 0

...
... −(Q − 1)E

0 0 . . . Fm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[p̂] = [0]
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where Fm = D− rmE and E stands for the M ×M unity matrix. The solution of
the above equation system can be expressed by exactly Q free parameters chosen
from the different columns of the p matrix.

The solution of the homogeneous system achieved this way differs from the
solution shown in Equation 6.5 in that it may have polynomial coefficients. It does
not cause any problems afterwards, since it falls in the function class described
by Equation 6.7. Additionally, obtaining the particular solution of the inhomo-
geneous differential equation by using the well-known method of undetermined
coefficients can be done in the same way as in the calculations before. Some of
the coefficients are those of the polynomials in this case.

6.1.4 Solution for the higher moments

Since the general form of the basic equation system does not change during the
derivation of the particular factorial moments, the solution of the equations can be
obtained iteratively by updating the second term of the right-hand side of Equa-
tion 6.2 by Formula 6.3. This way μ

(K)
n (t) can be computed for any K ≥ 1 and

1 ≤ n ≤ M . The asymptotic behaviour of the system can then be obtained by
taking the limit t → ∞ in each step. From the factorial moments, the moments of
the queue length can be obtained by simple computations. Practically the iteration
steps can be performed by using e.g. Matlab, appropriately defining the initial β

vector and α matrix and updating them according to the above method.
As a summary, the sets of differential equations 6.1 and 6.2 can be solved

exactly if the distribution of the service time (whose c.d.f. is H(t)) is a mix
of exponentials. A practical limitation is that due to the complexity, only the
solutions for the first few factorial moments can be achieved in a considerable
amount of computational time. A numerical application and evaluation of the
method can be found in the following example.

6.2 Application example

In this section the usage of the model is illustrated by a technical application. The
system under investigation consists of processing modules of a Web-based content
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provider (e.g. a news service using Multimedia Messaging Service, MMS). The
service operates via a central file-server containing the news items and different
multimedia objects (pictures, videos, animations). The server can identify the type
of browser a certain request is sent from. The appearance of the article depends
on the terminal type so the server has to optimise it according to the type of the
browser. The aim of the operator is to send the messages in a format that appears
in as good quality as possible (e.g. the size and resolution of the pictures or
the rendering of the text). Web servers may adapt to the limited capabilities of
mobile equipments as well in order to improve the performance and the quality of
browsing.

The content provider consists of a central server, converter units and a storage
unit. The operation steps of the service is illustrated in Figure 6.1. The timing
sequence of the events is represented by the numbers next to the arrows.

1. When a new article arrives from the news agency at the server a basic ver-
sion is generated.

2. A message arrives from a user requesting for the article.

3. The server converts the basic version according to the browser type.

4. Since there may be another user with the same browser type requesting this
article the converted version is stored temporarily so that the conversion
need not be performed once again.

5. The storage unit sends the requested version of the article to the server.

6. The server forwards the article to the user.

When a request arrives from a browser of type that has been processed so far,
the server can turn to the storage unit. For a new browser type the conversion has
to be made. Note that the converters are not necessarily separate processing units,
they can be different program threads on the same processor.

The purpose is to investigate the functionality of the conversion from the pub-
lication of a new article by the agency to the state where the article is converted
to all possible forms. In order for the fast service more than one conversion can
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Figure 6.1: Outline of the news service.

be processed at the same time. If the number of converters is not large enough
all the converters may be occupied resulting in rejection of a request coming from
a terminal which has a new type. Increasing the number of converters may meet
financial limits. The task is to fix an upper limit for the processing converters
where the probability of being all of them occupied is very small.

6.2.1 Mathematical modeling

Matrix analytic methods can be applied to the above model in the following way.
If there are n types of browser, matrices D, D0 and D1 can be built from the rela-
tive frequency of the occurrence of each browser types and the arrival intensity of
the requests from the users. Table 6.1 shows the relative frequencies of n browser
types.

Type 1 2 . . . n
Frequency F1 F2 . . . Fn

Table 6.1: Share of the different types of browsers (frequency).
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Since Fis are relative frequencies,
∑n

i=1 Fi = 1. If all Fis are different, the
number of states in the MAP is S = 2n thus, the S × S matrix D describing the
model becomes rather large. However, the size of the matrix can be reasonably
decreased by letting the frequency of some types the same so as ni browser types
have the same frequency. Table 6.2 shows such a scenario, here

∑k
i=1 niFi = 1.

The resulting number of states is S =
∏k

i=1 nk.

Type 1 2 . . . n1 n1 + 1 n1 + 2 . . . n1 + n2 . . . n1 + ... + nk

Frequency F1 F1 . . . F1 F2 F2 . . . F2 . . . Fk

Table 6.2: Share of the different types of browsers with reduced number of differ-
ent frequencies.

The states represent the number of messages of certain browser types that
have arrived so far. State transitions may only occur only if a new type of request
arrives. If the requests have Poisson arrival with rate λ, the elements of the MAP
representation matrix D can be built from λ multiplied by the proper frequency
values. For details see Section 6.2.2.

6.2.2 Numerical example

An example is shown where the time-dependent moments of the queue-length of
a MAP/M/∞ queuing system is computed. Let’s assume that the requests of
the users arrive according to Poisson process with intensity 8 requests per sec. In
the example 10 different types of terminals are known with different converting
procedures. The time of conversion is exponentially distributed with average 5

seconds (though the model can handle more complex distributions).

H(t) = 1 − e−
t
5 .

The share of the 10 different types and their average number of requests in one
second is summarised in Table 6.3. Note that the sum of the Frequencies is 100%

and the sum of the Intensities is 8 1/s which corresponds to the above assumption
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on the request intensity.

Type Frequency Intensity
1. type 21% 1.68
2. type 20% 1.6
3. type 13% 1.04
4. type 13% 1.04
5. type 13% 1.04
6. type 4% 0.32
7. type 4% 0.32
8. type 4% 0.32
9. type 4% 0.32

10. type 4% 0.32

Table 6.3: The share of the different types of browsers (frequency) and the number
of requests in a second generated by them (intensity).

Frequency Types Intensity
21% 1. 1.68
20% 2. 1.6
13% 3., 4., 5. 1.04
4% 6., 7., 8., 9., 10. 0.32

Table 6.4: Different types of browsers sorted by their intensities.

One can see from Table 6.4 that the state space of the underlying MAP can
be described by 4-tuples. These vectors point out which terminal types have a
properly converted version of the latest article in the storage unit. The meaning of
the elements of the 4-tuples is:

1: If the article is not converted for type 1 then its value is 0 otherwise 1.

2: If the article is not converted for type 2 then its value is 0 otherwise 1.

3: Conversions of types 3-5 are counted here. Its value can be between 0 and 3.
The arrival order does not matter since types 3-5 have the same frequency.
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4: Conversions of types 6-10 are counted here. Its value can be between 0 and 5.
The arrival order does not matter since types 6-10 have the same frequency.

The number of states is 2·2·4·6 = 96. State transition is allowed only between
states whose 4-vector representation differs in only one digit. The initial state is
(0, 0, 0, 0), i.e. the storage unit is still empty. The state transitions are given in a
96 × 96 matrix D1 in the following way (see Figure 6.2).

0 0 0 0

0 0 0 0 0 0 0 0 0 0 01 0 1 1 1

01 0 0 0 0 00 1 0 10 1 0 0 2 0 1 1 20 0 0 0 0 01 111 11

1 1 3 5

0 1 3 5 1 0 3 5 1 1 2 5 1 1 3 4

2nd arrival

10th arrival

1st arrival

Figure 6.2: State transition upon arrivals.

If the state transition corresponds to the conversion of terminal type 1 then the
value of the matrix element is 8 1/s ·0.21 = 1.68 1/s as it can be seen in Table 6.3
in column ”Intensity”. The matrix element of the state transition corresponding
the conversion of terminal type 2 is 1.6 1/s.

In case of types 3-5 the corresponding state transition changes the 3rd vector
element. In this case the number of conversions needs to be maintained as well
since the first request is expected to arrive with intensity 3 · 1.04 1/s = 3.12 1/s



84 CHAPTER 6. TRANSIENT BEHAVIOUR OF ...

from one of types 3-5. However, after the first request, only the remaining two
types can generate new requests so the intensity decreases to 2 · 1.04 1/s =

2.08 1/s. If 2 types are already processed from types 3-5, the arrival intensity
of the remaining request is 1.04 1/s.

The case of types 6-10 is similar to the above case of types 3-5. Here the initial
intensity is 5 · 0.32 1/s = 1.6 1/s and it decreases to 0.32 1/s if one type is left
to be processed.

From the publishing of the article the requests arrive continuously to the server.
After the first types are processed, the number of needed conversions is smaller. If
10 converters are available, all demands can be served. However, it will be shown
that the service can be completed with a smaller number of converters.

Since every request from a new type generates a state transition, D0 has only
diagonal elements, each of them assigned so that D = D0 + D1 is stochastic, i.e.
the sum of the elements in a row is 0. By replacing the D and D1 matrices and
the H(t) function into Equations 6.1 and 6.2 and solving them following the steps
shown before, the time-dependent moments can be obtained. The formulae are
evaluated by Matlab.

In Figure 6.3 the time evolution of the average number of busy converters is
depicted. It can be seen clearly that the largest number of working converters is
expected to operate 0.75 seconds after the news publishing.

In order to find a reasonable limit for the number of available converters where
the probability of saturation is small at the maximum utilisation, the moments of
the number of busy converters are evaluated 0.75 seconds after the publishing of
the new article. Assuming that unlimited number of available converters exists,
Table 6.5 contains the results.

Since the number of conversions is at most 10, the distribution of the number
of parallel conversions can be computed from the moments with the help of a
Vandermonde-type matrix [93]. Table 6.6 shows the probability of the number of
parallel conversions (N) exceeding a given limit (n).

If the system was designed so that the probability of reaching the capacity
limit should be less than 0.1%, from Table 6.6 it can be deduced that instead of
10 converters, 5 converter units or processing capacity corresponding to 5 parallel
processing threads would be sufficient.
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Figure 6.3: Time evolution of the average number of busy converters after the
publishing of a new article.

Factorial Moment
moment

1. 1.848 1.848
2. 3.063 4.911
3. 4.499 15.537
4. 5.763 56.048
5. 6.307 224.208
6. 5.734 976.641
7. 4.157 4573.540
8. 2.253 22805.388
9. 0.812 120181.397

10. 0.146 665327.954

Table 6.5: Moments of the number of parallel conversions 0.75 seconds after the
publishing of the new article.
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n P (N > n)
0 0.871
1 0.577
2 0.276
3 0.095
4 0.023
5 0.004
6 5 · 10−4

7 4 · 10−5

8 2 · 10−6

9 3 · 10−8

10 0

Table 6.6: Distribution function of the number of parallel conversions 0.75 sec-
onds after the publishing of the new article.

6.3 Conclusions

In this chapter a mathematical model is introduced and a possible application of
the model is shown. The transient behaviour of the first moment of a MAP/PH/∞
queuing system is determined exactly by setting up and solving an inhomogeneous
linear set of differential equations. The solution is iterated several times to obtain
the higher moments. This model can be used to describe transient behaviour of
systems with parallel servers, general arrival and general processing times. The
applicability of the computational method is illustrated by solving a dimensioning
problem of content and multimedia servers.



Chapter 7

Minimising complexity in matrix
analytic functions

Matrix analytic representations play important role in queuing analysis. The pur-
pose of reducing the number of states in PH representations is to minimise the
complexity of numerical methods.

A special type of the PH-representations is the triangular representation, where
the elements of the generator matrix are non-zero only at the diagonal elements
and above (upper triangular representation) or only at the diagonal elements and
below (lower triangular representation). A special case of triangular representa-
tions is the bi-diagonal representation where only the bi-diagonal elements of the
generator matrix are non-zero. A bi-diagonal representation is also called Coxian
representation [83]. The Coxian representation is called ordered Coxian, if the
diagonal entries of the generator matrix are decreasing.

Triangular representations and Coxian representations are sparse and less com-
plex than the general ones. However, the triangular order of a PH distribution (i.e.
the minimal number of states the distribution can be represented with triangular
matrix) is generally higher than the order. Several statements have been presented
on the Coxian representations, triangular representations and triangular order of
the PH-distributions. It was shown in [85] that any upper triangular PH repre-
sentation has an equivalent ordered Coxian representation of the same or smaller
order.

87
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There are attempts to give lower bounds for the number of states needed in a
PH representation based on some knowledge of the distribution. For example, the
main theorem of [84] shows that the order n Erlang distribution has the smallest
coefficient of variation among the order n PH distributions, that is, the coefficient
of variation can be used to calculate a lower bound for the order of the PH distri-
butions. Another related result, which gives such bound in the case of complex
conjugate poles, is Theorem 3.1 in [81]. The authors in [82] characterise the min-
imal order of upper triangular PH representations for PH distributions with one
real pole of multiplicity at most 3. Besides, in [88] bounds on the PH order of
PH distributions subject to certain conditions are collected. An important goal in
[87] is to find a smaller PH representation given an existing one. It is proved there
that any PH representation with order 3 with only real eigenvalues has an ordered
Coxian representation of order 4 or smaller order.

The objective of this thesis is to find a method to construct upper triangular
representations to PH distributions using as few states as possible. The target set
of functions is the absolutely continuous PH distributions (i.e. no weight at 0)
with 3 distinct real poles in their Laplace-transform.

A method is shown how to decompose this set into subsets containing distri-
butions possessing order 3 and higher order upper triangular PH representations.
The decomposition is based on the concept of invariant polytopes defined in [80].
Moreover, it is shown how to build the PH representation from an invariant poly-
tope.

7.1 Definitions and basic theorems

A short summary of the most important notations and definitions that need to be
introduced to make the relevant statements is given below. Basic lemmas and
theorems are also proved.

Definition 7.1.1. MEλ1,λ2,λ3 is the convex set of matrix-exponential distributions
with distinct real poles −λ1,−λ2,−λ3 (λ1, λ2, λ3 > 0). MEδ

λ1,λ2,λ3
is the exten-
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sion of this set with the Dirac-delta function.

MEλ1,λ2,λ3 =
{
f(t), t ∈ �

+
0 : f(t) ∈ �

+
0 ,

∃a ∈ �
3 , ∃M ∈ �

3×3 , sp(M) = {−λ1,−λ2,−λ3}, f(t) = aT eM·te
}
.

MEδ
λ1,λ2,λ3

= co
{{δ0},MEλ1,λ2,λ3

}
,

where co{. . . } denotes the convex hull of the union of the sets listed.

That is, for each f(t) ∈ MEλ1,λ2,λ3 there is a representation (a,M), where M

has eigenvalues −λ1,−λ2,−λ3. The function represented by (a,M) is denoted
by f(a,M).

The algebraical form of a density function of the Phase-type distribution f(t)

with three distinct real poles is

f(t) = α0δ0(t) +
3∑

i=1

αie
−λi·t, α0, αi ∈ �, λi ∈ �+ , i = 1, 2, 3

Following the path of [80] two linear operators are defined on ME δ
λ1,λ2,λ3

.

Definition 7.1.2. Let a linear operatorRt : MEδ
λ1,λ2,λ3

→ MEδ
λ1,λ2,λ3

be

Rt

(
α0δ0(u) + f(a,M)(u)

)
= β0δ0(u) + f(b,M)(u),

where β0 = α0 +
∫ t

0
f(a,M)(u)du and b = aT eM·t.

Let Γ : MEδ
λ1,λ2,λ3

→ MEδ
λ1,λ2,λ3

be

Γ
(
α0δ0(u) + f(a,M)(u)

)
=

lim
t→0

Rt

(
α0δ0(u) + f(a,M)(u)

) − R0

(
α0δ0(u) + f(a,M)(u)

)
t

The operator Rt shifts the continuous part of the distribution to the left with t and
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that part getting into (−∞, 0) is transformed to the mass at zero. The following
lemma is also adopted from [80].

Lemma 7.1.3. Let f(u) ∈ MEδ
λ1,λ2,λ3

be written in the following form

f(u) = α0δ0(u) +
3∑

i=1

αie
−λi·u,

then

Rt (f(u)) =

(
α0 +

3∑
i=1

αi

λi
(1 − e−λi·t)

)
δ0(u) +

3∑
i=1

αie
−λi·(t+u)

and

Γ (f(u)) =

3∑
i=1

αiδ0(u) −
3∑

i=1

αiλie
−λi·u.

The MEδ
λ1,λ2,λ3

convex set is a subset of a 4 dimensional vector space of func-
tions �. The following distributions form a basis of the vector space:

δ0, λ1e
−λ1·t, λ2e

−λ2·t, λ3e
−λ3·t

In the following, all vectors will be expressed with coordinates in this basis,
which shall later be referred to as canonical basis. These vectors can be written
in the form of (η0; η1, η2, η3). The effect of Rt and Γ can be expressed in the
canonical basis as

Rt ((η0; η1, η2, η3)) =

(
η0 +

3∑
i=1

ηi(1 − e−λi·t); η1e
−λ1·t, η2e

−λ2·t, η3e
−λ3·t

)
=

=

(
1 −

3∑
i=1

ηie
−λi·t; η1e

−λ1·t, η2e
−λ2·t, η3e

−λ3·t

)
. (7.1)
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Γ ((η0; η1, η2, η3)) =

(
3∑

i=1

ηiλi;−η1λ1,−η2λ2,−η3λ3

)
. (7.2)

Definition 7.1.4. Let f(·) ∈ MEδ
λ1,λ2,λ3

given by (η0; η1, η2, η3), where

f(t) = η0δ0(t) +
3∑

i=1

ηiλie
−λi·t,

and η0 + η1 + η2 + η3 = 1. The non-linear operator L is defined as

L : MEδ
λ1,λ2,λ3

→ MEδ
λ1,λ2,λ3

L ((η0; η1, η2, η3)) =

(
0;

η1∑3
i=1 ηi

,
η2∑3
i=1 ηi

,
η3∑3
i=1 ηi

)
. (7.3)

In this thesis representations are investigated for distributions with absolutely
continuous density functions given as

f(t) =

3∑
i=1

ηiλie
−λi·t, (7.4)

for which λ3 > λ2 > λ1 > 0. Since f(t) is a probability density function,∑3
i=1 ηi = 1 should hold. It is obvious that absolutely continuous distribution

functions are within a 2 dimensional subspace in �. Thus, it is possible to define
a bijection between this affine plane and �2 .

Definition 7.1.5. Let f(·) ∈ MEλ1,λ2,λ3 be an absolutely continuous distribution,
which can be expressed in the canonical basis as

f(·) = (0; η1, η2, η3)

and η1 + η2 + η3 = 1, that is L(f(·)) = f(·). Define the operatorT as

T : � → �
2 T ((0; η1, η2, η3)) = (η1, η2).
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The operator T ◦ L maps MEδ
λ1,λ2,λ3

to �2 . The operators corresponding to
Rt and Γ can also be defined on �2 .

Definition 7.1.6. Let theWt : �2 → �
2 operator be defined as

Wt(η1, η2) =

(
η1e

−λ1·t∑3
i=1 ηie−λi·t,

η2e
−λ2·t∑3

i=1 ηie−λi·t

)
,

where η3 = 1 − η1 − η2. Let the Θ̂ : �2 → �
2 operator be defined as

Θ̂(η1, η2) = lim
t→0

Wt(η1, η2) −W0(η1, η2)

t

A direct expression for Θ̂ is the following

Θ̂(η1, η2) =
(
η1(η1(λ1 − λ3) + η2(λ2 − λ3) + λ3 − λ1),

η2(η1(λ1 − λ3) + η2(λ2 − λ3) + λ3 − λ2)
)
. (7.5)

Note that the operators Wt and Θ̂ in �2 correspond to Rt and Γ in MEδ
λ1,λ2,λ3

,
respectively. The claim of the following lemma is that Wt is consistent to Rt in
the desired way.

Lemma 7.1.7. Let (η1, η2) ∈ �
2 , η3 = 1 − η1 − η2 and f(t) =

∑3
i=1 ηie

−λit, i.e.
f(·) ∈ MEδ

λ1,λ2,λ3
and the integral of f(·) is 1. Then

∀t ∈ �
+
0 : Wt(η1, η2) = Wt ◦T(f(·)) = T ◦ L ◦ Rt(f(·)).

The proof is straightforward using the definitions. The following lemma high-
lights an important property of Rt.

Lemma 7.1.8. Let f(·) ∈ MEλ1,λ2,λ3 be an absolutely continuous distribution,
which can be expressed in the canonical basis as f(·) = (0; η1, η2, η3), (η1 + η2 +

η3 = 1).
Then for all such f(·) ∈ MEλ1,λ2,λ3 and t ≥ 0 (t ∈ �): ∃c ∈ [0, 1] such that

Rt(f(·)) = δ0 + c (L(Rt(f(·))) − δ0) .
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In other words, Rt(f(·)) is the convex combination of δ0 and L(Rt(f(·)).
Proof. Let c be chosen such that c =

∑3
i=1 ηie

−λi·t.

L(Rt(f(·))) =

(
0;

η1e
−λ1·t∑3

i=1 ηie−λi·t
,

η2e
−λ2·t∑3

i=1 ηie−λi·t
,

η3e
−λ3·t∑3

i=1 ηie−λi·t

)
,

δ0 + c (L(Rt(f(·))) − δ0) =

(
1 −

3∑
i=1

ηie
−λi·t; η1e

−λ1·t, η2e
−λ2·t, η3e

−λ3·t

)
.

If f(t) =
∑3

i=1 ηiλie
−λi·t is a probability density function of an absolutely

continuous distribution, then the cumulative density function is F (t) = 1 −∑3
i=1 ηie

−λi·t. Since F (t) ∈ [0, 1], the constant in Lemma 7.1.8 is c ∈ [0, 1].
That is, Rt(f(·)) is the convex combination of δ0 and L(Rt(f(·))).
Definition 7.1.9. Let f1(·), . . . , fn(·) ∈ MEδ

λ1,λ2,λ3
be arbitrary vectors. Denote

by co{f1(·), . . . , fn(·)} the convex hull of these vectors, forming a polytope in �.
The co{f1(·), . . . , fn(·)} set is said to beRt-invariant if

∀t ∈ �
+
0 , ∀f(·) ∈ co{f1(·), . . . , fn(·)} : Rt (f(·)) ∈ co{f1(·), . . . , fn(·)}.

It is apparent that if co{f1(·), . . . , fn(·)} is Rt-invariant then it contains the whole
trajectory of f(·) starting from inside the Rt-invariant set and vice versa. From
Lemma 7.1.8 the following theorem follows:

Theorem 7.1.10. If one finds a polytope in the 2 dimensional affine plane entirely
containing the orbit L(Rt(f(·))), then the convex hull of this polytope and δ0

entirely containsRt(f(·)) given that f(·) is an absolutely continuous distribution.
In Lemma 3.4 in [80] a nice and simple necessary and sufficient condition is given
for a polytope co{δ0(·), f1(·), . . . , fn(·)} to be Rt-invariant. For this condition,
the concept of “pointing inward” is defined.

Definition 7.1.11. Let co{δ0(·), f1(·), . . . , fn(·)} be a polytope in MEδ
λ1,λ2,λ3

.
Then Γ(fi(·)) points inward to the polytope if

∃ε > 0, ∀δ ∈ [0, ε) : fi(·) + δΓ(fi(·)) ∈ co{δ0(·), f1(·), . . . , fn(·)}.
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According to Lemma 3.4 in [80], the following theorem holds:

Theorem 7.1.12. A polytope co{δ0(·), f1(·), . . . , fn(·)} isRt-invariant if and only
if ∀i = 1, . . . , n the vector Γ(fi(·)) “points inward” to the polytope.

The following theorem states that Rt-invariance of a polytope in MEδ
λ1,λ2,λ3

is related to the “point inward” property of the set transformed to �2 .

Theorem 7.1.13. Let f1(·), f2(·), . . . , fn(·) ∈ MEλ1,λ2,λ3 . Then the co{δ0(·), f1(·),
. . . , fn(·)} polytope is Rt-invariant if and only if Θ̂ ◦ T(fi(·)) points inward to
the co{T(f1(·)), . . . ,T(fn(·))} polytope ∀i = 1, . . . , n.

Proof. Assuming that co{δ0(·), f1(·), . . . , fn(·)} is Rt-invariant

∃ε > 0, ∀δ ∈ [0, ε), ∀i = 1, . . . , n : Rδ(fi(·)) ∈ co{δ0(·), f1(·), . . . , fn(·)}.

From this it follows that

∃ε > 0, ∀δ ∈ [0, ε), ∀i = 1, . . . , n : Wδ ◦ T(fi(·)) ∈ co{T(f1(·)), . . . ,T(fn(·))}.

Then, according to Definition 7.1.6,

∃ε′ > 0, ∀δ′ ∈ [0, ε′), ∀i = 1, . . . , n :

W0 ◦ T(fi(·)) + δ′Θ̂ ◦ T(fi(·)) ∈ co{T(f1(·)), . . . ,T(fn(·))},

that is, Θ̂ ◦ T(fi(·)) points inward to co{T(f1(·)), . . . ,T(fn(·))} (1 ≤ i ≤ n).
Now assume that ∀i = 1, . . . , n the Θ̂ ◦T(fi(·)) vector points inward to

co{T(f1(·)), . . . ,T(fn(·))}. Then

∃ε > 0, ∀δ ∈ [0, ε), ∀i = 1, . . . , n :

T(fi(·)) + δΘ̂ ◦ T(fi(·)) ∈ co{T(f1(·)), . . . ,T(fn(·))}.
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According to Definition 7.1.6,

∃ε′ > 0, ∀δ′ ∈ [0, ε′), ∀i = 1, . . . , n :

Wδ′ ◦ T(fi(·)) ∈ co{T(f1(·)), . . . ,T(fn(·))}.

In this case Wδ′ ◦ T(fi(·)) can be obtained as a convex combination:

Wδ′ ◦ T(fi(·)) =

n∑
j=1

αjT(fj(·)),
n∑

j=1

αj = 1, αj ≥ 0 ∀j

Since T is a linear map,

W′
δ ◦ T(fi(·)) = T

(
n∑

j=1

αjfj(·)
)

,

otherwise, according to Lemma 7.1.7,

Wδ′ ◦ T(fi(·)) = T ◦ L ◦ Rδ′(fi(·)).

Consequently the following equation holds:

T ◦ L ◦ Rδ′(fi(·)) = T

(
n∑

j=1

αjfj(·)
)

.

Since T is a bijection,

L ◦ Rδ′(fi(·)) =
n∑

j=1

αjfj(·).

According to Lemma 7.1.8, since Rδ′(fi(·)) is a convex combination of δ0 and
L ◦Rδ′(fi(·)), it follows that Rδ′(fi(·)) ∈ co{δ0(·), f1(·), . . . , fn(·)}.

An important consequence of Theorem 7.1.13 is that if a polytope in MEδ
λ1,λ2,λ3
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is Rt-invariant, then the corresponding polytope in �2 is Wt-invariant and vice
versa.

The next goal is the classification of the set of absolutely continuous proba-
bility distributions according to the minimal order, at which a distribution can be
represented by an upper triangular PH generator matrix.

7.2 Classification of PH distributions

In this section a recursive method is shown to find PH distributions with 3 distinct
real poles that can be represented by matrices of 1,2,3 or more dimensions. First
the mapping between MEδ

λ1,λ2,λ3
and �2 is illustrated. It is shown where the PH

distributions are mapped and how the Wt and Θ̂ operators work on the mapped
points. Then a method is shown how to identify the set of functions that can
be represented in n dimensions but can not be represented in n + 1 dimensions.
The methodology is demonstrated up to 3 dimensions, the investigation of higher
dimensions is out of scope in this dissertation.

Figure 7.1 shows the set of MEλ1,λ2,λ3 distributions and the main structure of
the Θ̂ vector field where some of the trajectories, which are in fact the Wt(η1, η2)

orbits, of the vector field are plotted. The starting point of a Wt-orbit represents
a Phase-type distribution. The direction of the Θ̂ corresponding to (η1, η2) is the
tangential of the Wt-orbit at this point.

According to [80], for each PH representation there is a corresponding Wt-
invariant polytope in the vector field. Visually, the Wt-invariance means that a
Wt(η1, η2)-orbit starting inside the polytope remains inside the polytope for all t.

All Wt-orbits (except for η1 = 0) converge to (1, 0) since the distribution

f(u) = η1λ1e
−λ1u + η2λ2e

−λ2u + η3λ3e
−λ3u, λ3 > λ2 > λ1 > 0

(η1 > 0) has exponential asymptotic with rate parameter λ1. As t > 0 grows the
absolutely continuous part of the distribution Rt(f(·)) becomes dominated by the
λ1e

−λ1t distribution and consequently the T◦L(Rt(f(·))) vector has increasingly
dominant first coordinate.

Figure 7.1 also shows many Wt-orbits asymptotically approaching the η1 +
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η2 = 1 line. The reason for this is that the e−λ3t component in the absolutely
continuous part of Rt(f(·)) vanishes faster therefore the other two components
become dominant over the third component.

There are two curves shown by dashed lines in Figure 7.1 indicating the border
of the convex set corresponding to the MEλ1,λ2,λ3 distributions. One border is the
line corresponding to the f(0) = 0 distributions. This is a one dimensional affine
plane since the (η1, η2) points of this curve satisfy the following linear equation:

η1λ1 + η2λ2 + (1 − η1 − η2)λ3 = 0. (7.6)

The other curve contains points corresponding to distributions for which f(t) =

0 for a certain t > 0. This curve is a solution of a parametric equation on η1 and
η2:

η1λ1e
−λ1·t + η2λ2e

−λ2·t + (1 − η1 − η2)λ3e
−λ3·t = 0.

Note that this curve is also developed in Theorem 1 in [86].
The purpose of the following investigations is to find minimal upper triangular

phase-type (TPH) representation with order 1, 2 and 3. The order of the mini-
mal TPH representation is the triangular order. The triangular order is sometimes
higher than the order.

The sets in �2 corresponding to the sets of absolutely continuous Phase-type
distributions in MEλ1,λ2,λ3 are constructed with upper triangular PH representa-
tion of order 1, 2 and 3. Theorem 6.2 in [82] provides the basis for this analysis:

Theorem 7.2.1. A triangular PH-distribution μ is of triangular order k ≥ 1 if
and only if, for some ε > 0, μ + εΓμ is of triangular order k − 1.

A formal definition for this relation is established by introducing the following
notion of “look at”.

Definition 7.2.2. The distribution g(·) ∈ MEλ1,λ2,λ3 , “looks at” the distribution
f(·) ∈ MEλ1,λ2,λ3 if there exists a c > 0 (c ∈ �), such that

Θ̂ ◦ T(g(·))) = c (T(f(·)) − T(g(·))) .
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0.0 1.0 2.0 3.0 4.0
η1

−4.0

−2.0

0.0

2.0

4.0

η2
f(0) = 0  functions

f(t) = 0  functions

Figure 7.1: The structure of the vector field

Remark 7.2.3. The constant in Definition 7.2.2 is defined to be positive for a
T(g(·)) vertex of a convex polytope in order to point inward to the polytope. Nev-
ertheless, the sign of the constant is not always considered in the intermediate
calculations. If a negative constant occurs in the later equations, then this yields
to pseudo-solutions. These will be sorted out in the last step, when a particular
representation is found.

First, distributions that can be represented in 1 dimension are found. In fact,
these are the exponential distributions with parameter λ1, λ2 or λ3. For this the set
S1 is defined.

Definition 7.2.4. Let S1 ⊂ �
2 be as follows:

S1 = {(0, 0), (0, 1), (1, 0)}.
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Indeed, the vectors in S1 correspond to the desired exponential distributions,
since

(0, 0) = T ((0; 0, 0, 1)) : λ3e
−λ3·t,

(0, 1) = T ((0; 0, 1, 0)) : λ2e
−λ2·t,

(1, 0) = T ((0; 1, 0, 0)) : λ1e
−λ1·t.

Then S2 can be defined formally as the set of those points “looking at” a point
in S1. The following definition of Sn shows how to distinguish the different sets of
functions that have order-n upper triangular PH representations using the concept
of Definition 7.2.2.

Definition 7.2.5. Sn consists of points “looking at” points in Sn−1, but them-
selves are outside of Sn−1. Formally

Sn = {−→η n ∈ �
2 : −→η n /∈ Sn−1, ∃−→η n−1 ∈ Sn−1,−→η n“looks at”−→η n−1}.

Based on Theorem 7.2.1, the set of distributions with triangular order n is Sn. The
set S2 is the union of three sets.

1. co{(0, 0), (0, λ3

λ3−λ2
)}: f(t) = η2λ2e

−λ2·t + η3λ3e
−λ3·t, η2 + η3 = 1,

2. co{(0, 0), ( λ3

λ3−λ1
, 0)}: f(t) = η1λ1e

−λ1·t + η3λ3e
−λ3·t, η1 + η3 = 1,

3. co{(0, 1), ( λ2

λ2−λ1
, −λ1

λ2−λ1
)}: f(t) = η1λ1e

−λ1·t + η2λ2e
−λ2·t, η1 + η2 = 1.

The set S3 consists of distributions T(f3(·)) = (η3,1, η3,2) with the property
that the Θ̂(η3,1, η3,2) vector points from (η3,1, η3,2) towards a point T(f2(·)) =

(η2,1, η2,2) ∈ S2.
The MEλ1,λ2,λ3 set can be divided into four main subsets according to the

structure of the Wt-orbits as it is shown in Figure 7.2:

C1 ∪ C2 ∪ C3 ∪ C4 = {T(f(·)) : f(·) ∈ MEλ1,λ2,λ3},



100 CHAPTER 7. MINIMISING COMPLEXITY ...

where

C1 = {(η1, η2) : η1 ≥ 0, η2 ≥ 0, 1 − η1 ≤ η2} ∩ {T(f(·)) : f(·) ∈ MEλ1,λ2,λ3},

C2 = {(η1, η2) : η1 ≥ 0, η2 ≥ 0, 1 − η1 ≥ η2} ∩ {T(f(·)) : f(·) ∈ MEλ1,λ2,λ3},

C3 = {(η1, η2) : η1 ≥ 0, η2 ≤ 0, 1 − η1 ≤ η2} ∩ {T(f(·)) : f(·) ∈ MEλ1,λ2,λ3},

C4 = {(η1, η2) : η1 ≥ 0, η2 ≤ 0, 1 − η1 ≥ η2} ∩ {T(f(·)) : f(·) ∈ MEλ1,λ2,λ3}.

The Wt-orbits starting from the points in C1 approach the η1 + η2 = 1 line
from above, while starting in C2 the Wt-orbits does the same from below. In both
cases, the orbits stay above the horizontal axis. The trajectories starting in C3

approach the η1 + η2 = 1 line from above, but the trajectories remain below the
horizontal axis in this case. The structure of the trajectories starting in C4 is more
complex. It is bounded by the f(t) = 0 curve from below and 3 straight lines
from above:

η2 = 0

η1 + η2 = 1

f(0) = 0

Here, the distributions in C1, C2 and C3 are part of S3 since any of their points
“looks at” a point in S2, particularly on the one dimensional affine plane of η1 +

η2 = 1.

Since not all points of C4 “look at” a point in S2, the set is determined whose
points “look at” an extremal point of S2. This extremal point is the intersection of
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the two lines given by η1 + η2 = 1 and f(0) = 0:
(

λ2

λ2 − λ1
,

−λ1

λ2 − λ1

)
∈ S2.

0.0 1.0 2.0 3.0 4.0
η1

−4.0

−2.0

0.0

2.0

4.0

η2

C 1 C 2

C 4C 3

Figure 7.2: The Ci sets

The border of S3 which splits the set C4 into two, is the following.

Definition 7.2.6.

L3 =
{

(η1, η2) ∈ �
2 : g(·) ∈ MEλ1,λ2,λ3, (η1, η2) = T(g(·)),

Θ̂((η1, η2)) = c

(
(η1, η2) −

(
λ2

λ2 − λ1

,
−λ1

λ2 − λ1

)) }
.

L3 is the set of points “looking at” the extremal point of S2.
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Theorem 7.2.7. The set L3 is a segment of a 1 dimensional affine plane given by

(λ3 − λ1)λ1η1 + (λ3 − λ2)λ2η2 = 0.

Proof. The theorem is the special case of a more general theorem stated and
proved later in Section 7.3.

Now all information is available to obtain S3.

Theorem 7.2.8. S3 is the triangle bordered by the following lines:

η1 = 0

f(0) = 0

L3

Proof. All vertices of the triangle “look at” a point in S2 so S3 contains the trian-
gle. The sets C1, C2 and C3 are part of the triangle so S3 contains C1, C2 and C3.
The question is that which part of C4 “looks at” a point in S2 and which does not.
L3 is defined as the set of points “looking at” the extremal point of S2.

With the current parametrisation the signed curvature of a Wt-orbit is positive
if the tangent vector rotates anti-clockwise and negative if it rotates clockwise
direction.

It is easy to see that if the signed curvature of the Wt-orbits is positive for all
starting points in this region then the points above L3 “look at” a point in S2 and
none of the points below L3 “look at” a point in S2. In other words, if the signed
curvature is positive then L3 is the lower border of S3.

Starting from (η1, η2) the Wt-orbit is described as

(x(t), y(t)) =

(
η1e

−λ1t∑3
i=1 ηie−λit

,
η2e

−λ2t∑3
i=1 ηie−λit

)

If x′, x′′, y′, y′′ denote the first and second derivatives at t = 0 of x(t) and
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y(t), respectively then the signed curvature of the Wt-orbit at the starting point is
defined as

κ =
x′y′′ − y′x′′

(x′2 + y′2)3/2

After evaluating the numerator of κ, taking the derivatives at t = 0 (every
point can be the starting point) and simplifying the expression one gets

κ =
η1η2η3(λ2 − λ1)(λ1 − λ3)(λ3 − λ2)

(x′2 + y′2)3/2
.

Using the facts that λ3 > λ2 > λ1 and in C4 η1 > 0, η2 < 0 and η3 > 0, it can be
deduced that κ > 0 and the proof is completed.

Figure 7.2 illustrates that the signed curvature is positive for the orbits starting
in C4.

The above tedious construction of S2 and in particular S3 enables one to illus-
trate the sequential construction of the subsets whose corresponding distributions
have upper triangular PH representation of certain order. The idea of sequential
construction has been proposed in [82].

The construction presented here is based on the following idea. The distribu-
tions, which “look at” the set of distributions possessing upper triangular represen-
tations of minimal order k − 1, have upper triangular representations of minimal
order k . According to this, the points of S3 “look at” S2 whose points “look at”
S1 as it was shown above.

This method can be used for higher dimensions as well. If Ln (n > 3) is the
set of points “looking at” the extremal points of Sn−1 and Ln is computed then
Sn is bordered by Ln and Ln−1. However, finding the extremal points of Sn for
n > 3 is not trivial since Sn is not a polytope in this case. The method for finding
the sets Sn (n > 3) is not detailed here, it can be found in [101].

Figure 7.3 shows the sets of distributions with minimal triangular PH repre-
sentations in 3, 4, 5 and 6 dimensions. The remaining part of the MEλ1,λ2,λ3 set
contains distributions that do not have triangular PH representations up to order 6.
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Figure 7.3: The borders of the subsets

7.3 Generalisation to m poles

Some statements can be generalised to functions with arbitrary number of distinct
real poles in their Laplace transform. The form of these functions can be written
as

f(t) =

m∑
i=1

ηiλie
−λit,



7.3. GENERALISATION TO M POLES 105

for which

m∑
i=1

ηi = 1, λm > . . . > λ1 > 0

Some of the definitions are repeated in a more general setting.

Definition 7.3.1. Let f(·) ∈ MEλ1,... ,λm
be an absolutely continuous function,

which can be expressed in the canonical basis as

f(·) = (0; η1, . . . , ηm)

and η1 + . . . + ηm = 1, that is L(f(·)) = f(·). Define the operator T from the
above affine plane of absolutely continuous functions to �m−1 as

T ((0; η1, . . . , ηm)) = (η1, . . . , ηm−1).

Definition 7.3.2. Let theWt : �m−1 → �
m−1 operator (t ∈ �, t > 0) be defined

as

Wt(η1, . . . , ηm−1) =

(
η1e

−λ1·t∑m−1
i=1 ηie−λi·t + (1 − ∑m−1

i=1 ηi)e−λm·t
, . . . ,

ηm−1e
−λm−1·t∑m−1

i=1 ηie−λi·t + (1 − ∑m−1
i=1 ηi)e−λm·t

)
.

Let the Θ̂ : �m−1 → �
m−1 operator be defined as

Θ̂(η1, . . . , ηm−1) = lim
t→0

Wt(η1, . . . , ηm−1) − W0(η1, . . . , ηm−1)

t

Definition 7.3.3. The distribution g(·) ∈ MEλ1,... ,λm
where g(·) ≥ 0 and

∫ ∞

0
g(t)dt =

1 “looks at” the subset D ⊂ MEλ1,... ,λm
if ∃f(·) ∈ D and ∃c > 0 (c ∈ �), such

that

Θ̂ ◦ T(g(·))) = c (T(f(·)) − T(g(·))) .
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Using the above definitions, the following theorem holds:

Theorem 7.3.4. Introduce them − 2 dimensional affine planesD1, D2 ⊂ �
N as

D1 = {(η1, . . . , ηm−1) :

m−1∑
i=1

ηi = 1}

D2 = {(η1, . . . , ηm−1) :

m−1∑
i=1

λiηi = 0}

where N ≥ m − 1,m ≥ 3, λi ∈ � i = 1, . . . , m − 1 are constant. The functions
that “look at” the m − 3 dimensional affine plane D1 ∩ D2, form an m − 2

dimensional affine plane given by the following equation:

m−1∑
i=1

(λi − λm)ciηi = 0.

Proof. The aim is to determine the set of distributions g(·) that “look at” D1∩D2.
Let’s introduce ηi, η′

i, i = 1, . . . , m − 1 where T(f(·)) = (η1, . . . , ηm−1), f(·) ∈
D1 ∩ D2 and T(g(·)) = (η′

1, . . . , η′
m−1). Then the following equation holds,

[
Θ̂ ◦ T(g(·))

]
i
= c(η′

i − ηi),

where

[
Θ̂ ◦ T(g(·))

]
i
= −λiη

′
i + η′

i

m∑
j=1

λjη
′
j .

Thus, ηi can be expressed by λis and η′
is.

ηi = η′
i +

1

c
λiη

′
i −

1

c
η′

i

m∑
j=1

λjη
′
j

Note that η′
m = 1 − ∑m−1

j=1 η′
j . Since ηis are components of a distribution in



7.4. FINDING A REPRESENTATION 107

D1 ∩ D2, they satisfy the following equations,

m−1∑
i=1

ηi = 1

and

m−1∑
i=1

λiηi = 0.

By replacing ηi to the above equations and eliminating c one gets
(

1 −
m−1∑
i=1

η′
i

)(
λm

m−1∑
i=1

λiη
′
i −

m−1∑
i=1

λ2
i η

′
i

)
= 0

In fact, this equation defines two affine planes. For all the points of D1 the ex-
pression inside the first parentheses is 0. The other affine plane is defined by
the expression inside the second parentheses when it is set to 0. This is a linear
equation for η′

is, that is, this affine plane contains the origin.

Specifying Theorem 7.3.4 with m = 3 one gets Theorem 7.2.7 as indicated
before.

7.4 Finding a representation

A method is shown in this section for finding upper triangular representations to
distributions within invariant polytopes. The method is based on Lemma 3.1 in
[80].

Theorem 7.4.1. 1. Let fi(·) ∈ MEλ1,λ2,λ3 , (i = 1, . . . , n) be distributions
where

co{f1(·), . . . , fn(·)}

is Rt-invariant. Then there exists an n × n generator matrix M ∈ �
n×n ,
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for which

Γ(fi) =

n∑
j=1

Mijfj

2. Introduce S,G ∈ �
n×3 matrices containing the coordinates of distributions

fi(·) and Γ(fi(·)) in the

λ1e
−λ1t, λ2e

−λ2t, λ3e
−λ3t

canonical basis, that is,

fi(t) =

3∑
k=1

Sikλke
−λkt, where i = 1, . . . , n

and

Γ(fi(t)) =
3∑

k=1

Gikλke
−λkt, where i = 1, . . . , n.

Then the following holds,

G = MS.

Proof. 1. The proof of the first part can be found in [80] as part of the proof
of the “Invariant polytope lemma”.

2. The ith row of G can be written as

Γ(fi(t)) =
n∑

j=1

Mijfj =
n∑

j=1

Mij

(
3∑

k=1

Sjke
−λkt

)
=

3∑
k=1

e−λkt

(
n∑

j=1

MijSjk

)
=

3∑
k=1

[MS]ike
−λkt,
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that is, Gik = [MS]ik and the Theorem follows.

Corollary 7.4.2. If the polytope in Theorem 7.4.1 has 3 extreme points, that is,
n = 3 and S ∈ R3×3 is invertible, then

M = GS−1.

If the S ∈ �
3×3 matrix is not invertible or if one intends to find a PH repre-

sentation of order more than 3 (in which case S is not a square matrix therefore
S ∈ �

n×3 cannot be invertible) then the result of Corollary 7.4.2 can be gener-
alised to the case of non-invertible S, where the generalised inverse (pseudoin-
verse) of S is used. For details regarding the generalised inverse refer to [89].

Corollary 7.4.3. If S ∈ �
3×3 is not invertible, or if the polytope in Theorem 7.4.1

has more than 3 extreme points, that is, n > 3, then there exists a matrix K ∈
�

n×n such that

M = GS# + K,

whereKSS# = 0 and S# denotes the pseudoinverse of S.

Proof. Since SS# is a projection, it decomposes the vector space �n into a direct
sum of two subspaces. One is Ker(SS#) the kernel of SS# and the other one is
Im(SS#) the image of SS#, that is,

�
n = Ker(SS#) + Im(SS#).

where SS# is identical on Im(SS#).
Denote the rows of M by −→m i:

M =

⎡
⎢⎢⎣

−→m 1

...
−→mn

⎤
⎥⎥⎦ .

Let −→k i ∈ Ker(SS#) be such that −→m i − −→
k i ∈ Im(SS#). Denote K the matrix
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composed of −→k i vectors:

K =

⎡
⎢⎢⎣

−→
k 1

...
−→
k n

⎤
⎥⎥⎦ .

From Theorem 7.4.1 one has

G = MS.

Then

GS# = MSS# = (M −K)SS# = (M −K) .

It was used in the above steps that K is composed of kernel vectors and (M− K)

is composed of image vectors.

In practice, there is a certain degree of freedom in choosing the −→
k i kernel

vector in K when the ith row of M is calculated. It should be done in such a way
that M would become a proper generator matrix. This also supports the fact that
a PH representation is not always unique.

7.5 Numerical example

First the concept of “points inward” is demonstrated with the following simple
example. Let λ1 = 0.5, λ2 = 1 and λ3 = 2 and consider the following three
points in �2 :

−→η 1 = (0, 0),−→η 2 = (2.667,−2),−→η 3 = (0, 2).

The co{−→η 1,−→η 2,−→η 3} triangle is Wt-invariant because Θ̂(−→η i) points inward
to the triangle for i = 1, 2, 3. In order to see this, Θ̂(−→η i) can be calculated using
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Definition 7.1.6. First, the Wt functions are calculated:

Wt(−→η 1) = (0, 0),

Wt(−→η 2) = ( 2.667e−0.5t

2.667e−0.5t−2e−t+0.333e−2t ,
−2e−t

2.667e−0.5t−2e−t+0.333e−2t ),

Wt(−→η 3) = (0, 2e−t

2e−t−e−2t ).

Next the Θ̂ vectors can be calculated

Θ̂((0, 0)) = (0, 0), Θ̂((2.667,−2)) = (−1.333, 2), Θ̂((0, 2)) = (0,−2).

It is obvious for the Θ̂(−→η 1) vector that it points inward to the triangle because this
is the −→

0 vector. Θ̂(−→η 3) points inward to the triangle because this vector points
from −→η 3 towards −→η 1:

−→η 1 −−→η 3 = (0, 0) − (0, 2) = (0,−2) = Θ̂((0, 2)).

Finally, Θ̂(−→η 2) also points inward to the triangle, because this vector points from
−→η 2 towards −→η 3:

−→η 3 −−→η 2 = (0, 2) − (2.667,−2) = (−2.667, 4) = 2Θ̂((2.667,−2)).

Note that η1, η2 and η3 are the vertices of S3 with the given λi values.

The second example demonstrates that the triangular order is generally higher
than the order. An order 3 PH generator matrix containing a cycle with eigenval-
ues −λ1, −λ2, −λ3 is shown in Equation 7.7.

P =

⎡
⎢⎣

−2.0421 0.1982 0

0 −0.6365 0.6365

0.5363 0 −0.8214

⎤
⎥⎦ (7.7)

The invariant triangle corresponding to this representation is different from the
triangles above in the sense that the vector field is non-zero in all the 3 vertices
of the triangle. The 1st vertex “looks at” the 2nd one. The 2nd “looks at” the 3rd
vertex. Moreover, the vector at the 3rd vertex points towards the 1st vertex.

Since this construction is fundamentally different it is not trivial how the set
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of PH distributions possessing such representations is related to S3.
The vertices of P are ([0, 0, 1], P ), ([0, 1, 0], P ) and ([1, 0, 0], P ):

−→ν 1 = (0.5200, 0.9349),
−→ν 2 = (2.4247, −1.6371),
−→ν 3 = (0.3116, −0.3113).

It is not difficult to see that −→ν 1,−→ν 2 ∈ S3. However, −→ν 3 is not in S3 be-
cause (0.3116,−0.2337) ∈ L3 and the second coordinate of −→ν 3 is smaller than
−0.2337. Consequently, there is no equivalent upper triangular PH representation
of order 3 for ([1, 0, 0],P).

7.6 Conclusions

The structure of the Phase-type distributions whose Laplace transform have 3
distinct real poles is investigated. A recursive decomposition of the set of such
distributions into subsets according to their minimal order upper triangular PH
representations is provided. This is done by mapping the set of distributions into
a 2 dimensional vector space. In order to use the invariant polytope approach, a
parametric linear mapping and a corresponding vector field on this vector space is
defined.

This analysis provides a basis for finding those functions with minimal trian-
gular order higher than 3. Also a generalisation is given for finding n dimensional
triangular PH representations in case of n distinct real poles. A method is shown
to obtain the representation matrix of the functions inside an invariant polytope.

A possible generalisation of the results is the representation of PH distributions
with more than 3 distinct real poles and the case of non-distinct real poles through
the special order 3 case, which is already developed in [82]. Further generalisation
can be the case of complex poles.



Summary
The objective of my research was to analyse and model the traffic behaviour in
computer networks. The results presented in this dissertation are based on cap-
turing the essential properties of the underlying network protocols on one hand
and on the application and optimisation of Markovian models and matrix analytic
methods on the other hand.

The first part of the dissertation focuses on traffic characteristics on a cer-
tain link and the behaviour of the communication protocols are modelled. First
it is shown that congestion can propagate in TCP/IP networks in a natural way.
It is explained how the feedback-based end-to-end protocol, TCP contributes to
burst effects in the network and how the burst effect causes the propagation of
congestion from one router to the other. Then traffic models are set up for file
downloads where the average file size is small. In the first model parallel transfers
sharing a link are investigated and formulae are derived for the link utilisation in
deterministic case and for the number of parallel connections where the connec-
tion arrival and departure is random. The second model determines the download
performance for a Web page when the objects are retrieved sequentially.

The second part of the dissertation contains results on solving a queuing prob-
lem with matrix analytic methods. The time-dependent moments of an infinite
server queuing model is obtained exactly and it is illustrated how the solution can
be used in modeling and engineering of a telecommunication server. Then a new
formalism is introduced to investigate the structure of phase-type distributions.
The distribution functions are mapped to a vector space where the phase-type dis-
tributions were classified based on complexity i.e. the size of their representation
matrices. The statements are declared on 3 dimensions and some theorems are
proved for n dimensions which can contribute to the solution of the generalised
problem in the future.
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Összefoglalás
Kutatómunkám célja az volt, hogy elemezzem és modellezzem a forgalom vi-
selkedését számı́tógéphálózatokban. Az ismertetett eredmények egyrészt a há-
lózatban működő protokollok alaptulajdonságaira, másrészt Markov modellek és
mátrix-analitikus módszerek alkalmazására és azok optimalizálására épülnek.

A disszertáció első részében a hálózat egy pontján mérhető forgalmi jellemzők
leı́rására és a kommunikációs protokollok modellezésére helyeztem a hangsúlyt.
Először megállapı́tottam, hogy a torlódások természetes módon terjednek a TCP/IP
hálózatokban. Megmutattam, hogy a visszacsatoláson alapuló, a hálózat végpont-
jain működő TCP protokoll hogyan járul hozzá a ”burst”-ös csomagérkezésekhez
és ezen keresztül a torlódás terjedéséhez egyik routertől a másikig. Majd olyan
fájlletöltések forgalmát modelleztem, ahol az átlagos fájlméret kicsi. Az első
modellben párhuzamos letöltéseket vizsgáltam, melyek ugyanazon a vonalon osz-
toznak, és levezettem egy formulát a vonal kihasználtságának jellemzésére deter-
minisztikus esetben és a párhuzamos TCP kapcsolatok számának leı́rására abban
az esetben, amikor az érkezés és a kiszolgálási idő véletlenszerű. A második
modellben Web-oldalak letöltésének teljesı́tménymutatóit határoztam meg, ahol
az oldalon levő objektumok egymás után töltődnek le.

A disszertáció második része egy sorbanállási probléma megoldását mutatja
be mátrix analitikus módszerek segı́tségével. Egzakt megoldást mutattam be a
sorhossz momentumainak időbeli változására egy olyan sorbanállási rendszerben,
ahol végtelen számú kiszolgáló van, az érkezések és a kiszolgálás pedig mátrix
analitikus függvényekkel adott, továbbá demonstráltam, hogyan alkalmazható köz-
vetlenül a kapott eredmény távközlésben használt szerverek tervezésénél. Majd
egy új formalizmust vezettem be a fázis-tı́pusú eloszlások jellemzésére. Az elosz-
lásfüggvényeket egy vektortérre képeztem le, ahol bonyolultság szerint osztályoz-
tam az eloszlásokat, vagyis aszerint, hogy milyen méretű mátrixokkal reprezentál-
hatók. Az állı́tásokat három dimenzióra fogalmaztam meg, de bizonyos tételeket
több dimenzióra is beláttam, ami az általános probléma megoldásához vezethet.
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