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1

Introduction

Quantum statistical mechanics is concerned with the properties of quantum
systems with an infinite number of degrees of freedom. Lattice fermion models
belong to the most popular topics of this field. They can serve as toy models
for studying general properties of fermionic systems. Furthermore, many
continuum models can be reduced to such lattice models under some appropriate
assumptions. The big technical advantage that makes both the analytical and
the numerical study of lattice fermion models very effective is that the algebra
describing the fermionic creation and annihilation operators belonging to a finite
region of the lattice is finite dimensional. Although in quantum statistical
mechanics we study states on the infinite dimensional algebra belonging to the
whole lattice, these states are entirely determined by their restrictions to the finite
dimensional algebras corresponding to the finite regions.

The von Neumann entropy serves as a measure of how mixed a state defined
on such a finite dimensional algebra is. For finite temperature states the von
Neumann entropy of a state restricted to a finite region usually scales with the
volume of the region (if the boundary of the region is regular enough). The
prefactor of the volume-like growth-rate, the entropy density, can be used for a
variational characterisation of these finite temperature states. Ground states of
certain models are often pure states on the whole lattice algebra, but of course,
even then their restrictions on subsystems might be mixed. Nevertheless, the von
Neumann entropy of the subsystems scales typically in a subvolume-like manner,
i.e., the entropy density is zero. It has been conjectured for a long time that the
entropy density of all pure translation-invariant states on fermionic lattices is zero.
This is called the zero-entropy-density conjecture. Even if the entropy density of
pure ground states is zero, it has been shown in recent years that the asymptotics
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itself might provide some information about the model. For one-dimensional
models the (sublinear) entropy asymptotics of pure ground states was found to
depend on the criticality or non-criticality of the model, and also a connection with
the central charge of the corresponding conformal field theory has been derived in
many analytical and numerical studies.

The entropy asymptotics of pure translation-invariant states on fermionic
lattices is hence of great interest. In this thesis we further restrict our scope:
we will investigate only quasifree states. Some of these arise as ground states
of certain models, but they can also be studied without a reference to particular
models. On the other hand, we will see that it suffices to take into account only
these states in order to prove certain impossibility theorems, and then of course
our conclusions hold in full generality. For instance, we prove that even though
the entropy density of these states is zero, they give rise to rise to arbitrary fast
subvolume-like entropy growth . Hence it is impossible to sharpen the zero-
entropy-density conjecture for pure translational-invariant states. We also prove a
lower bound for the entropy asymptotics of all pure translation-invariant quasifree
states (except the trivial ones), and present numerical data that are consistent with
the conformal field theoretical predictions.

The thesis is divided into five chapters. In the first chapter we give a short,
but hopefully self-contained, introduction to the basic notions of fermion lattice
systems, and we also introduce quasifree states. The second chapter is devoted to
the role of the von Neumann entropy in lattice quantum statistical mechanics. Our
own results are contained in the third and fourth chapters. In the third chapter a
proof for the lower bound of the entropy asymptoics and our numerical results are
presented, while in the fourth chapter we prove the sharpness of the zero-entropy-
density conjecture. In the final fifth chapter we summarise our results and discuss
some open questions. Since the formalism of the thesis uses in some degree the
language of functional analysis and C∗-algebras, we have added two mathematical
appendices at the end of the thesis, where we collect the basic definitions and
theorems from these fields.
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Chapter 1

States on the CAR -algebra

The aim of this chapter is to describe the C∗-algebra of fermionic creation and
annihilation operators, called the canonical anticommutation relations algebra
(CAR-algebra), and to introduce the concept of a state in the C∗-algebraic setting.
We will also define a particular set of states, called quasifree states, which will be
the main subject of the rest of the thesis. We end the chapter by showing how these
states arise naturally as ground and finite temperature states of certain families of
Hamiltonians.

Historically, the introduction of the canonical anticommutation relations was
the result of the marriage of two developments of quantum physics taking place
in the 1920’s. The first was Pauli’s exclusion principle. In 1925, to explain the
spectra of alkali atoms, Pauli postulated that two or more electrons cannot be in
the same quantum state [49]. A year later this principle was restated by Dirac
and Heisenberg as the antisymmetry property of the composite wavefunction of
electrons with respect to the interchange of electrons [17, 30]. The statistical
physical implication of the exclusion principle was already studied in the same
year (1926) by Fermi [26], and thereby his name was attached to particles with
this property, which are called fermions now. The second development was the
attempt to quantise field theories. In 1928, for the purpose of quantising the
electron field, the fermionic creation and annihilation operators were introduced
by Jordan and Wigner [35]. They realised that in order to map antisymmetric
composite wavefunctions to antisymmetric composite wavefunctions (with higher
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or lower particle number) using these creation and annihilation operators, the latter
have to satisfy the canonical anticommutation relations. They also proved that the
CAR-algebra over a d-dimensional Hilbert space are equivalent with the algebra
of 2d × 2d matrices, hence in this case there is one (up to unitary equivalence)
unique ∗-representation.1 The lack of uniqueness for systems with infinite degrees
of freedom, however, caused a lot of confusion which was not fully clarified until
the early 1960’s. In 1964 Haag and Kastler proposed a C∗-algebraic reformulation
of quantum theories with infinite degrees of freedom [29], in which they stressed
the importance of the C∗-algebra structure of the observables and the significance
of the existence of inequivalent representations for the discussions of topics such
as physical equivalence and superselection rules (for a monograph on this subject
see [28]).

Quasifree states were formally, i.e., in a C∗-algebraic way, defined only in
1964 by Shale and Stinespring [55], but these states arose in a less formal
way much earlier in quantum statistical mechanics, e.g. as ground and finite
temperature states of lattice fermionic models with only free hopping terms, and as
(Jordan-Wigner transformed) Gibbs states of certain quantum spin chain models
as it was shown in the paper by Lieb, Schultz and Mattis [41] in 1961, their
derivation was put on a rigorous basis by Araki and Matsui in 1980’s [7, 3].

The structure of this chapter is the following. Before introducing the C∗-
algebraic concepts that are used in the modern description of fermionic systems,
we begin the chapter by presenting the basics of the traditional Fock space
approach. The second section deals with the definition of the CAR-algebra and
quasifree states on the CAR-algebra. In the third section we show how one
can transfer translation-invariant states from a fermionic chain to a quantum spin
chain. We end the chapter by discussing some quantum spin chain and fermionic
lattice models with ground states and finite temperature states that are quasifree.
We omit the proofs of the presented statements and theorems in this introductory
chapter, they can be found in the monographs [13] and[1].

1The corresponding, but much harder, uniqness theorem for the Weyl-algebra with fi nite
degrees of freedom, was proved by von Neumann three year later later [45].



States on the CAR-algebra 5

1.1 The Fock space approach to fermionic systems

In this section we recapitulate very shortly the key concepts of one-particle
quantum mechanics, and then discuss the case of n identical particles with
fermionic statistics. After this we naturally arrive at the concept of the Fermi-Fock
space, a space that describes all the different n-particle spaces, and to the concept
of creation and annihilation operators, which act between these different n-particle
spaces. We close the section by showing the limitations of this approach, the
problems arising here will be cured in the next section.

1.1.1 The Hilbert space approach to quantum mechanics

In the traditional framework of quantummechanics, the states of a physical system
are identified with the density matrices, i.e., with the positive, linear operators of
unit trace, acting on a complex, separable Hilbert spaceH . 2 The observables are
identified with the self-adjoint linear operators acting on H . Let ρ be a density
matrix. When the system is in the state corresponding to ρ, the expectation value
of a bounded observable A is given by the formula:

〈A〉ρ := Tr H (ρA).

The statistical mixture with normalised weights λ1 and λ2 (λ1 + λ2 = 1;
λ1, λ2 ≥ 0) of two states corresponding to density matrices ρ1 and ρ2 is the
state described by ρ := c1ρ1 + c2ρ2. There is a special set of density matrices
that cannot be obtained as a statistical mixture of two different density matrices,
these are the projections of unit trace. Because of this extremality property, states
corresponding to projections of unit trace are called pure, while other states are
called mixed. For any pure state there exists a normed vector ψ ∈ H (‖ψ‖ = 1),
which is unique up to a complex phase, such that the projection corresponding to
the state is equal to Pψ, which is defined by

Pψ(ϕ) := ψ〈ψ, ϕ〉,
2The term density operator would be more correct, since the word "matrix" usually refers to a

basis. We shall, however, stick to this traditional nomenclature.
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for any ϕ ∈ H . Any density matrix can be written as a convex combination of
finite or countably many commuting projections, i.e., for any density matrix ρ,
there is an orthonormal basis {φi}i∈I ofH such that

ρ =
∑
i

λiPφi , λi ≥ 0,
∑
i

λi = 1.

Let ρa and ρb be two density matrices on the Hilbert space H , and let the
sequences {λai }i∈N+ and {λbi }i∈N+ denote their eigenvalues arranged in decreasing
order. We say that ρa is more mixed than ρb (or ρa majorises ρb) if

n∑
i=1

λai ≤
n∑
i=1

λbi

for all n ∈ N+.

1.1.2 The system of n indistinguishable fermions

The states of a system composed of a finite number of distinguishable particles
correspond to the density matrices of the tensor product Hilbert space of the dif-
ferent one-particle Hilbert spaces, while the observables correspond to the self-
adjoint operators of this tensor product Hilbert space. On the other hand, consid-
ering n number of indistinguishable particles, only certain density matrices and
self-adjoint operators of the n-fold tensor product Hilbert spaceH⊗n correspond to
allowed states and observables, namely, those that commute with a certain projec-
tion onH⊗n which is determined by the quantum statistics of the indistinguishable
particles. In the case of fermions, this projection is defined through the rule

P(n)F (ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn) :=
1
√
n!

∑
π∈S n

ε(π) ψπ(1) ⊗ ψπ(2) ⊗ · · · ⊗ ψπ(n),

where the sum, as denoted, is carried over all π permutations of the N indices
1, 2, . . . ,N, and ε(π) is ±1 according to the parity of π.

It is useful to introduce the notation

ψ1 ∧ ψ2 ∧ . . . ∧ ψn := P(n)F (ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn) ,
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which is called the antisymmetrization of the vector ψ1 ⊗ψ2 ⊗ · · · ⊗ψn. The range
of P(n)F is a closed subspace ofH⊗n which is denoted by ∧nH . Vectors of the form
ψ1 ∧ψ2 ∧ · · · ∧ψn span ∧nH . Moreover, ∧nH is a Hilbert space with the the inner
product inherited from the Hilbert spaceH⊗n:

〈ψ1 ∧ ψ2 ∧ · · · ∧ ψn , ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn〉 = det
([
〈ψi, ϕ j〉

])
. (1.1)

Let (∧nH)C denote the complementary Hilbert space of ∧nH in the full tensor
product Hilbert space H⊗n. Then H⊗n = ∧nH ⊗ (∧nH)C . Since an allowed
observable A and an allowed density matrix ρ commute with P(n)F , they can be
be written as ρF ⊗

�

(∧nH)C and AF ⊗
�

(∧nH)C , respectively, where AF is a self-
adjoint operator and ρF is a self-adjoint, positive, linear operator of unit trace,i.e,
a density matrix on ∧nH . Hence the allowed density matrices and observables
can be identified with the density matrices and observables on the Hilbert space
∧nH . If the set {φ1, φ2, . . . } is an orthonormal basis ofH , then the set

{φi1 ∧ . . . ∧ φin | i1 < . . . < in}

forms an orthonormal basis over ∧nH .

1.1.3 The Fock space

It is often useful or necessary to consider systems composed of many identical
fermions without restricting their precise number. The Fock-space construction
deals with such situation by the introduction of a Hilbert space that contains all
the n-particle Hilbert spaces as subspaces. More concretely, the Fermi-Fock space
F (H) over the one-particle Hilbert spaceH is

F (H) :=
⊕
n∈N
∧nH ,

where ∧0H is the one-dimensional Hilbert space C. This zeroth level describes
the state without particles, and one calls the state corresponding to the vector

Ω := 1 ⊕ 0 ⊕ 0 · · ·
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the Fock vacuum state. By definition, the n-particle space ∧nH can naturally be
viewed as a subspace of F (H), and hence elements of the form ψ1 ∧ . . . ∧ ψn as
elements of F (H). Let {φi}i∈I be an orthonormal basis ofH , where I is an ordered
finite or countable index set (depending on the dimension of H). For any finite
subset of indices J ⊂ I, we define the following vector in F (H)

φJ :=
∧
i∈J
φi,

where the wedge product is taken with respect to the ordering in I, and φ∅ = Ω.
The set {φJ | J ⊂ I, |J| < ∞} forms an orthonormal basis of F (H).

1.1.4 Creation and annihilation operators

For every vector ψ ∈ H , let us define the operator a(ψ) on the Fock space F (H)
by the formulas

a(ψ)Ω := 0, a(ψ) (ϕ1 ∧ . . . ∧ ϕn) :=
n∑
j=1

(−1) j〈ψ, ϕ j〉ϕ1 ∧ . . .∧ϕ j−1 ∧ϕ j+1 . . .∧ϕn.

The operator a(ψ) is bounded for any ψ, and its adjoint, a†(ψ) acts on F (H) in the
following way:

a†(ψ)Ω = ψ, a†(ψ) (ϕ1 ∧ . . . ∧ ϕn) = ψ ∧ ϕ1 ∧ . . . ∧ ϕn.

The operators a†(ψ) and a(ψ) are called creation and annihilation operators,
respectively. They satisfy the so-called canonical anticommutation relations:

a(ψ)a†(ϕ) + a†(ϕ)a(ψ) = 〈ψ, ϕ〉 �
,

a(ψ)a(ϕ) + a(ϕ)a(ψ) = 0.
(1.2)

It follows from the definition of these operators, that for an ordered basis
{φi}i∈I, any vector in the basis set {φJ | J ⊂ I, |J| < ∞} of F (H) can be obtained
from any other vector in this set by the action of a certain monomial of the
operators a(φi) and a†(φi).
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1.1.5 The Fock space of lattice fermions

Since the focus of the present thesis is lattice fermions, we will shortly summarise
the Fock space approach for these particular systems, and introduce some
definitions that we will use later.

First, we consider the case of fermions on a finite chain consisting of L number
of sites. Let us label the sites by integers from 0 to L− 1. The one-particle Hilbert
space is 	2(IL), where IL = {0, 1, . . . , L − 1}, i.e., the one-particle Hilbert space is
the L-dimensional complex vector space of functions f : IL → C, endowed with
the scalar product

〈 f , g〉 :=
L−1∑
i=0

f ∗(i)g(i) f , g ∈ 	2(IL).

The characteristic functions {χi}i∈IL (χi( j) := δi, j) form an orthonormal basis
of this one-particle Hilbert space, and the projection Pχi corresponds to the
state describing a fermion localised on lattice point i. If N ≤ L, then the set
{χi1 ∧ . . . ∧ χiN | 1 ≤ i1 < . . . < iN ≤ L} is a basis of the N-fermion Hilbert space
∧N	2(IL), and its dimension is therefore

(
N
L

)
, while in the N > L case ∧NH = 0.

Adding this up, the dimension of the Fock space F (	2(IL)) turns out to be 2L.
For an infinite chain, the one-particle Hilbert space is 	2(Z), while for an

infinite d-dimensional lattice it is 	2(Zd), and the set of characteristic functions
{χk }k∈Zd (χk (m) := δk ,m , for any m ∈ Zd) is an orthonormal basis. Hence
{φJ | J ⊂ Zd, |J| < ∞} is an orthonormal basis of the Fock space F (	2(Zd)).3

Of course, for any d these Fock spaces are equivalent, as all separable Hilbert
spaces are equivalent, however, it is convenient to use these particular one-
particle Hilbert spaces, since in this formalism the state corresponding to vector
φJ (J ⊂ Zd, |J| < ∞) can be interpreted as a state of fermions occupying the
lattice sites in J. Consequently, also the action of the operators Vi describing
the translations on the lattice can be written in a very simple form:

ViΩ = Ω,

ViφJ = φJ+ei ,

3In the defi nition of φJ we take the lexicographical ordering in Zd.
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where i ∈ {1, 2, . . .d} and e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ed =
(0, 0, 0, . . .1).

Since in the lattice case we have a distinguished set of one-particle vectors χk ,
it is useful to introduce a short notation for the creation and annihilation operators
corresponding to them: a†k := a†(χk ) and ak := a(χk). From the canonical
anticommutation relations (1.2) we can derive that these operators satisfy the
following relations for any k, l ∈ Zd.

aka
†
l + a

†
l ak = δk ,l

�
,

akal + alak = 0.
(1.3)

For any finite subset J of Zd the particle number operator belonging to region
J can be expressed in an easy way with the above defined operators:

∑
k∈J a

†
kak .

1.1.6 Problems with the Fock space approach

In quantum statistical mechanics one usually wants to treat infinite lattices of
fermions with a finite particle density, and often translation-invariant systems of
such. The Fock space approach fails in this context, since the only translation-
invariant state in F (	(Zd)) is the projection corresponding to the vacuum vector
Ω, moreover, the average particle number per site

n(ρ) = lim
L→∞

1
(2L + 1)d

Tr

⎛⎜⎜⎜⎜⎜⎜⎜⎝ρ ∑
k∈{−L,...,L}d

a†kak

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,
will vanish for any density matrix ρ on F (	2(Z)).

The modern way to circumvent this problem is to treat the abstract algebra
of creation and annihilation operators as the basic ingredient of the theory of
fermions, and not its particular Fock representation. It will turn out that the Fock
representation is only one of the many inequivalent representations of this algebra,
and using also other representations one can avoid the above mentioned problems.
The next section is devoted to this C∗-algebraic approach.
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1.2 The C∗-algebraic approach to fermionic systems

In this section we give a short introduction to the C∗-algebraic formalism of lattice
fermionic systems. First, we introduce the canonical anticommutation relations
algebra, i.e. the CAR-algebra, which is isomorphic to the closure in operator
norm of the algebra generated by the creation and annihilation operators on the
Fermi-Fock space considered in the last section. Then we define the states in this
approach as certain functionals on this algebra, which map an "expectation value"
to each algebra element. For finite fermionic chains this definition of states is
equivalent with the definition of states in the Fock space approach, but for infinite
systems the C∗-algebraic definition is much wider. We discuss a particular class
of states, called quasifree states, at the end of the section, and we show that for
infinite lattice systems the Fock-representation is only one of the many possible
representations of the CAR-algebra.

1.2.1 The CAR-algebra

The CAR(	2(Zd))-algebra corresponding to fermionic systems on a d-dimensional
cubic lattice Zd is the unital C∗-algebra (with � being the unit) generated by
operators {ck}k∈Zd , satisfying the canonical anticommutation relations 4:

ckcl + clck = 0,
c∗kcl + cl c

∗
k = δk ,l

�
.

(1.4)

For any d, the C∗-algebras CAR(	2(Zd)) are isomorphic to each other, but it is
useful to consider these different particular presentations for different dimensions,
since now the action of the translation automorphism can be conveniently written
down:

τi(ck) = ck+ei ,
4In order to avoid confusion, we follow the standard way of denoting by c and c∗ the abstract

C∗-algebra generators, and by a and a† the particular Fock-representation of the creation and
annihilation operators.
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where {e}i∈{1,...,d} denotes the standard basis in Zd

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ed = (0, 0, 0, . . .1). (1.5)

In the case of a one-dimensional fermionic lattice, the translation automorphism
will simply denoted by τ.

For treating subsystems of the whole lattice, we will introduce for any finite
subset J of Zd the corresponding C∗-algebra CAR(	2(J)). It is the C∗-subalgebra of
CAR(	2(Zd)) generated by the finite number of generators {ck }k∈J. The dimension
of this C∗-algebra is 22|J|, as we will show in subsection 1.2.3. Any element that
is contained in such a CAR(	2(J)) subalgebra for some finite set J ⊂ Zd is called a
local element, and these elements form a dense subset in CAR(	2(Zd)).

1.2.2 States in the C∗-algebraic approach and the GNS theo-
rem

In the C∗-algebraic approach to quantum physics, a state of a physical system is
described by the expectation values of elements of the C∗-algebra corresponding
to the system. More precisely, letA be a unital C∗-algebra, a state is a normalised
positive linear functional ω : A → � . If a state ω cannot be written as a convex
combination of two other states, then it is called pure, else it is called mixed.

The relation of this definition to the density matrix approach is the following:
if π is an irreducible representation of a C∗-algebraA on a separable Hilbert space
H and ρ is a density matrix onH , then the functionω(A) =Tr(ρπ(A)) (A ∈ A), is a
state onA. Not all mixed states onA can be written in this form, however, for pure
states this form is general (moreover ρ is a projection in this case) according to
the following theorem - a version of the Gelfand-Naimark-Segal (GNS) theorem
(for the whole theorem see Appendix B):

Theorem. For any pure state ω over the C∗-algebra A, there exists a Hilbert
space Hω, an irreducible representation π of A on Hω and a unit vector Ωω in
Hω, so that the following conditions hold:

ω(A) = 〈Ωω, πω(A)Ωω〉,
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for any A ∈ A.

A state on the d-dimensional lattice fermion algebra CAR(Zd) is called
translation-invariant if ωQ ◦ τi = ωQ for all i ∈ {1, . . .d}. A translation-invariant
state is called ergodic if it cannot be decomposed as a mixture of two other
translation-invariant states.

1.2.3 Finite fermionic lattices

Before introducing a particular class of states on infinite fermionic lattices, let
us consider the case of a finite fermionic chain of L sites. To see the structure
of the C∗-algebra CAR(	2(IL)) corresponding to this system, we will introduce
a new set of generators instead of the set original defining set {ck}k∈IL . We
begin by introducing for any non-negative integer n smaller than 2L the notation
(bL−1(n)bL−2(n) . . . b0(n)) for the binary representation of n, i.e.

n =
L−1∑
i=0

bi(n)2i, bi(n) ∈ {0, 1}.

Let us now introduce the following operators for any integers k, l ∈ {0, 1, . . .2L−1}:

Êk,l := (2c∗0c0 −
�
)(b0(k)+b0(l))A0(b0(k), b0(l)) ×(

(2c∗0c0 −
�
)(2c∗1c1 −

�
)
)(b1(k)+b1(l)) A(b1(k), b1(l)) × · · ·

L−1∏
m=0

(2c∗mcm −
�
)(bL−1(k)+bL−1(l))A(bL−1(k), bL−1(l)),

where for any i ∈ {0, 1, . . .L − 1} the operators Ai(b, c) are defined as

Ai(0, 0) := c∗i ci , Ai(0, 1) := c∗i , Ai(1, 0) := ci , Ai(1, 1) := ci c
∗
i .

The operators Êk,l are linearly independent and any monomial of ck and c∗l can be
linearly expressed by these operators, i.e., they form a vector space basis of the
algebra CAR(	2(IL)), which is thus 22L dimensional. Since Êk,l satisfy exactly the
matrix unit relations

Êk,lÊm,n = δl,mÊk,n,
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the CAR(	2(IL))-algebra is isomorphic to the C∗-algebra of 2L × 2L matricesM2L

(see theorem B2 in Appendix B). From theorem B5 in Appendix B, we know that
to any linear functional f : Mn → C on a finite matrix algebra, there exists a
matrix D such that:

f (M) = Tr (DM),

for all M ∈ Mn. If we also require the functional to be positive and normalised,
the matrix D has to be positive and of unit trace, i.e., it has to be a density matrix.
Hence in the case of a finite fermionic chain the C∗-algebraic definition of a state
is equivalent with the traditional definition.

Similarly, for any finite J ∈ Zd, the algebra CAR(	2(J)) is then isomorphic
to the C∗-algebra of 2|J| × 2|J| matrices. Any state on this subalgebra corresponds
to a density matrix, i.e. to a positive element of unit trace in CAR(	2(J)). The
restriction of a state ω on CAR(	2(Z)) to this subalgebra will be denoted by ωJ,
and the corresponding restricted density matrix by ρω

J
(the superscript ω will

sometimes be omitted, if there is no possibility of confusion). Let {Jn}n∈N be a
family of growing finite subsets of Zd with the property that for any k ∈ Zd there
exists an n(k) such that for anym > n(k) the point k is contained in Jm. Since local
elements form a dense subset in CAR(	2(J)) the states ω1 and ω2 coincide if and
only if ρω1

Jn
= ρ

ω2
Jn
for any n ∈ N. Thus the restricted density matrices of a state ω

determine the state uniquely.

1.2.4 Quasifree states on infinite fermionic lattices

In this thesis we will investigate a particular class of states on the CAR-algebra,
called quasifree states, which we introduce in this section. Let Q be a bounded
operator on 	2(Zd) satisfying 0 ≤ Q ≤ �

. A linear functional ωQ on the
CAR(	2(Zd))-algebra that assigns to monomials of creation and annihilation
operators the values

ωQ
(
c∗k1 . . . c

∗
knclm . . . cl1

)
= δn,mdet

([
〈χk i ,Qχl j〉

]n
i, j=1

)
, 5 (1.6)

5This formula is sometimes called the Wick-expansion.
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extends to a state. ωQ is called the quasifree state corresponding to operator Q 6.
The operator Q is usually called the symbol of the state ωQ. The quasifree state is
pure if and only if Q is a projection.

In the case of d-dimensional lattice fermions, a quasi-free state ωQ is
translation-invariant if and only if its symbol in the {χk}k∈Zd basis, Qk ,l :=
〈χk ,Qχl〉 is a Toeplitz matrix, i.e., there exists a sequence {qk}k∈Zd so that Qk ,l =
qk−l . By the Fourier transform

q̃(θ) =
∑
k∈Zd

qkeik ·θ , and its inverse qk =
1

(2π)d

∫
Td
dθ q̃(θ)e−ik ·θ ,

with the d-dimensional torus Td being parametrised by [−π, π)d, the symbol of a
translation-invariant quasifree state is unitary equivalent with the multiplication
operator by q̃ on L2(Td, dθ). This function satisfies 0 ≤ q̃ ≤ 1 almost everywhere.
A Toeplitz matrix Q is a projection, and hence the translation-invariant quasifree
state ωQ is pure, if and only if its the Fourier transform q̃ is a characteristic
function ΞM of a measurable set M ⊂ Td. In this case M is called the Fermi
sea of the state, and the boundary of the interior points of M is called the Fermi
surface. In the one dimensional case, the elements of a discrete Fermi surface are
called the Fermi points.

By representing the C∗-algebra CAR(	2(Zd)) on the Fock space F (	2(Zd))
through the the rule π(ck ) := ak , and defining for any A ∈ CAR(	2(Zd)) the
expectation value ωFock(A) := 〈Ω, π(A)Ω〉 we obtain exactly the quasifree state
corresponding to the symbol 0.7 Two pure quasi free states ωQ(1) and ωQ(2) lead to
(unitary) equivalent irreducible GNS representations if and only if the operators
Q(1) − Q(2) are Hilbert-Schmidt operators (for the definition of Hilbert-Schmidt
operators, see Appendix A). Since for any nonzero projection Q is of Toeplitz
form, it cannot be a Hilbert-Schmidt operator. Hence for all pure translation-
invariant quasifree state (other than the Fock state Q = 0) we must use a
representation inequivalent to the Fock representation.

6Sometimes a broader defi nition is used for quasifree states, see [5], and in that context the
states we term quasifree states are called gauge-invariant quasifree states. We will stick to our
terminology of quasifree states throughout the whole thesis.

7ω0 is called the Fock state, while ω � is called the anti-Fock state.
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Let J be a finite subset of Zd, and let PJ be the projection from 	2(Zd) to the
subspace 	2(J), which is linearly generated by the functions {χk }k∈J, i.e.

PJ χk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
χk if k ∈ J

0 if k � J
.

The operator QJ := PJQPJ will be called the restriction of operator Q to the
subspace 	2(J). If we restrict a quasifree state ωQ to the finite subregion J, then the
corresponding restricted density matrix will be of the form

ρ
ωQ
J
=

|J|∏
i=1

(
qic(i)c

∗
(i) + (1 − qi)c∗(i)c(i)

)
,

where 0 ≤ qi ≤ 1 are the eigenvalues of the positive operator QJ ≤
� belonging

to the normalised orthogonal eigenvectors vi :=
∑
k∈J α

(i)
k χk (α

(i)
k ∈ C), and the

operators c(i) are defined as:

c(i) :=
∑
k∈J

α
(i)
k ck . (1.7)

1.3 Transferring translation-invariant states from
fermion chains to quantum spin chains

Translation-invariant quasifree states defined in the previous section play an
important role in the study of fermionic models, but also in the context of quantum
spin chain models. In this section we show how one can transfer a translation-
invariant state defined on the fermion chain algebra CAR(	2(Z)) to the quantum
spin chain algebra.

1.3.1 The quantum spin chain algebra

The observable algebra of an infinite chain of 1
2-spins is the unital C

∗-algebra
generated by elements σka (a = 1, 2, 3; k ∈ Z) satisfying the Pauli relations

σkaσ
l
b = σlbσ

k
a, when k � l,
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σlaσ
l
b = iεabcσlc + δab

�
.

Alternatively, one can say that it is the C∗-inductive limit:

S :=
+∞⊗
i=−∞
Ai, Ai � M2,

where M2 denotes the algebra of 2×2 matrices. One can then identify the elements
σka (a = 1, 2, 3; k ∈ Z) with the Pauli matrices embedded into the kth M2 factor of
S. The translation automorphism τS on S is defined by τS (σka) = σk+1a .

The C∗-algebras S and CAR(	2(Z)) are isomorphic. However, there exists no
isomorphism ι : S → CAR(	2(Z)) that satisfies the property ι ◦ τS = τ ◦ ι.8 This
intertwining property is needed to derive the translation invariance of a state ω ◦ ι
onS from that ofω on CAR(	2(Z)). However, we will be able to treat this problem
by a generalisation of the Jordan-Wigner transformation.

1.3.2 The Jordan-Wigner isomorphism

Let us consider a finite fermionic chain and a finite spin chain both having L
sites. The Jordan-Wigner transformation establishes an isomorphism between
the finite spin chain algebra SL � M⊗L2 (generated by the finite number of Pauli
matrices {σka}a∈{1,2,3},k∈{0...L−1}) and the finite fermionic chain algebra CAR(	2(IL))
in following way:9

ιLJW (σ
k
1) :=

k−1∏
m=0

(2cmc∗m −
�
)(c∗k + ck),

ιLJW (σ
k
2) :=

k−1∏
m=0

(2cmc∗m −
�
)i(c∗k − ck),

ιLJW (σ
k
3) := 2ckc∗k −

�
.

As we have mentioned, the Jordan-Wigner transformation cannot be gener-
alised to be a translation-intertwining isomorphism between the infinite lattice

8This is clear if we note that (S, τS) is asymptotically Abelian, while (CAR(�2(Z)), τ) is not.
9This is essentially the same transformation as the one defi ned in subsection 1.2.3.
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algebras S and CAR(	2(Z)).10 This problem can be circumvented by the Araki
construction [3], in the next subsection we will present a bit modified but equiva-
lent formulation of this method.

1.3.3 The Araki-Jordan-Wigner isomorphism

The basic idea of transferring translation-invariant states from the fermionic chain
to the quantum spin chain is to find a translation-intertwining isomorphism α

not between the algebras S and CAR(	2(Z)), since such isomorphism doesn’t
exists, but between two appropriate subalgebras S+ and CAR(	2(Z))+, which
are invariant under the translation automorphisms τS and τ, respectively. An ω
translation-invariant state on CAR(	2(Z)) will be restricted to CAR(	2(Z))+, and
this restricted state ω+ will then be transfered to a state ω+S := ω

+ ◦ α on S+, and
finally we will extend this state to a τS-invariant state ωS on S.

Firstly, let us introduce the parity automorphism π on CAR(	2(Z)). It is defined
by π(ck) = −ck. The elements of CAR(	2(Z))+ := {A ∈ CAR(	2(Z))

∣∣∣ π(A) = A}
are called even, while those of CAR(	2(Z))− := {A ∈ CAR(	2(Z))

∣∣∣ π(A) = −A} are
called odd. Alternatively, one can say that CAR(	2(Z))+ is the C∗-subalgebra
of CAR(	2(Z)) generated by the elements ckcl and c∗kcl (k, l ∈ Z). Any element
A ∈ CAR(	2(Z)) can uniquely be written in the form A = A+ + A−, where
A+ ∈CAR(	2(Z))+, and A− ∈CAR(	2(Z))−. Thus, CAR(	2(Z)) = CAR(	2(Z))+ +
CAR(	2(Z))−. The translation automorphism τ leaves the subalgebra CAR(	2(Z))+
invariant, and we will denote its restriction to this subalgebra by τ+. A state ω on
CAR(	2(Z)) is called even if ω ◦ π = ω.

Secondly, we do a similar decomposition of the quantum spin chain algebra.
Let S+ be the C∗-subalgebra of S generated by σk3 and σ

k
1σ

l
1 (k, l ∈ Z), and let

us define the subspace S− := {σ0
1C+
∣∣∣ C+ ∈ S+}. Any element C ∈ S can

uniquely written in the form C = C+ + C−, where C+ ∈ S+ and C− ∈ S−, hence
S = S+ +S−. The translation automorphism on the quantum spin chain τS leaves
the subalgebra S+ invariant, and its restriction to this subalgebra will be denoted
by τ+S. S+ is isomorphic to CAR(	

2(Z))+ , an explicit isomorphism α is given by
10In an informal way, we could say that an element of the form "

∏k−1
m=−∞(2cmc∗m −

�
)" would

be needed in the defi nition of a "two-sided infi nite chain Jordan-Wigner transformation", which
doesn’t exists in CAR(�2(Z)).
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the Araki-Jordan-Wigner transformation:

α(σk3) := 2c∗kck −
�
,

α(σk1σ
l
1) := −

l−1∏
m=k

(2c∗mcm −
�
)(c∗k + ck)(c

∗
l + cl) when k < l.

Moreover, α is an isomorphism that intertwines the translations τ+S and τ
+, i.e.

τ+ ◦ α = α ◦ τ+S. Now, let ω
+ be the restriction of a state ω on CAR(	2(Z)) to

CAR(	2(Z))+. If ω is a translation-invariant state, i.e. ω ◦ τ = ω, then the state
ω+S := ω+ ◦α on S+, is τ+-invariant. The state ω

+
S can be extended to a state ωS on

S by ωS(C) = ωS(C+ + C−) := ω+S(C+), where C+ ∈ S+, and C− ∈ S−. This way
a translation-invariant state ω on S is obtained. Moreover, if ω is even, which is
satisfied for all translation-invariant states, then the restricted density matrices of
ω and ωS are transformed into each other by the isomorphism α, and ωS is pure if
and only if ω is pure. We will call ωS the state Araki-Jordan-Wigner transformed
state of ω.

1.4 Gibbs states and ground states

In this section the concept of ground states and finite temperature Gibbs states
are defined. We presented two models for which these latter states are known.
The first of these models is the tight-binding fermion model with only hopping
terms, the Gibbs states of these models are quasifree states, the second is the
XX quantum spin chain model, the Gibbs states of which are Jordan-Wigner
transformed quasifree states.

1.4.1 The definition of Gibbs states and ground states

A lattice fermion interaction is defined as a function Φ from the finite subsets J
of Zd into the hermitian elements of CAR(	2(Zd)) such that Φ(J) ∈ CAR(	2(J)).
A Hamiltonian associated to the interaction Φ is a function that from the finite
subsets of Zd to the hermitian elements of CAR(	2(Zd)) defined in the following
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way:
H(J) =

∑
J
′⊂J
Φ(J′).

We restrict our discussion to translation-invariant interactions, which satisfy the
additional requirement

τi(Φ(J)) = Φ(J + ei) ,

for any i ∈ {1, . . . , d} and any finite J ⊂ Zd.
A local Gibbs state at inverse temperature β := 1

T (working in units where
k = 1) and chemical potential μ belonging to the local Hamiltonian H(J) is defined
as the following state on CAR(	2(J))11

ωJ,β,μ(A) :=
Tr
(
A exp (−β (H(J) − μN(J)))

)
Tr exp (−β (H(J − μN(J)))

,

where NJ denotes the particle number operator corresponding to the region J:

N(J) :=
∑
k∈J
c∗kck

In the thermodynamic limit we will restrict ourselves to increasing families
of cubes centred around the origin12, and hence we will introduce the following
notation: for any two integers K, L with K ≤ L let us define [K, L]d := {k =
(k1, . . . , kd) | k ∈ Zd K ≤ ki ≤ L}. Let H be a Hamiltonian corresponding to a
translation-invariant interaction. If the limits

ωβ,μ(A) := lim
L→∞

ω[−L,L]d ,β,μ(A)

exist for all local elements A, we can extend this functional to the whole algebra
CAR(	2(Zd)) by continuity so that ωβ,μ becomes a state on this algebra. The
resulting state is called the limiting Gibbs state at inverse temperature β and

11Tr means the "dimension normalised trace-function" on the fi nite C∗-algebra CAR(�2(J)), see
Appendix B.

12One can of course use other (more strict) defi nitions. For example, in the monographs [13, 48]
parallelepipeds are used, and perhaps the physically most satisfactory is the so-called van Hove
limit (see [7]), where the limit is taken on even more general increasing subsets of Zd. These
different limits may not coincide, but for the models we discuss in the next subsection they do,
hence we choose this simplest defi nition.
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chemical potential μ belonging to the Hamiltonian H. If the limits

ωμ(A) := lim
β→∞

ωβ,μ(A)

exist for all A ∈ CAR(	2(Zd)) and form a state, then the resulting state is called
the ground state at chemical potential μ of the Hamiltonian H.

On the quantum spin chain algebra the concept of a Hamiltonian and of
Gibbs and ground states can be defined analogously, except for the absence of
the chemical potential term in this case.

In the next subsection we shall consider a class of models where these limits
exist, and where the resulting Gibbs and ground states are quasifree. For a more
complete treatment, e.g. for sufficient conditions for the existence of the Gibbs
states and analysis of large classes of models see the monograph [13].

1.4.2 The ground and finite temperature Gibbs states of cer-
tain lattice fermion and quantum spin chain models

Our first set of examples are the tight-binding fermion models with finite range
hopping terms. Let T denote an operator on 	2(Zd) which is of a Toeplitz form in
the basis {χk}k∈Zd and has the following finite range property in this basis: there
exists an integer n, so that Tk ,k+mei = 0 for any m ≥ n and for any standard
unit vector {ei}i∈{1,...,d}. Let us define the interaction function Φ on the subsets
containing two elements as

ΦT ({k, l}) = Tk ,lc∗kcl ,

and as 0 for all other finite subsets of Zd. The corresponding Hamiltonians are
then

H(J) :=
∑
k ,l∈J
Tk ,lc∗kcl .
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The limiting Gibbs state ωβ,μ for this set of Hamiltonians is the quasifree state
belonging to the symbol Q(β, μ), which has a Fourier transform of the form

q̃β,μ(θ) =
1

1 + exp
(
βt̃(θ) − μ

) ,
where t̃(θ) is the Fourier transform of the Toeplitz operator T :

t̃(θ) :=
∑
k∈Zd

Tk ,0eik ·θ .

The ground states of these models at chemical potential μ are the pure quasifree
states belonging to the symbol with the following Fourier transform:

q̃(gs)μ (θ) =
1
2

(
1 −

t̃(θ) − μ
|t̃(θ) − μ|

)
.

That is, q̃gs,μ is the characteristic function of the set of θs where the expression
t̃(θ) − μ is negative, and the Fermi surface is located at the points where the
equation t̃(θ) = μ is satisfied.

Our next example is the XX quantum spin chain model in a transverse
magnetic field. In this case we have two real parameters J and h, and the
interaction function belonging to sets of one element is defined as

ΦXXJ,h ({k}) := −hσ
k
3,

the interaction function belonging to sets of two elements is defined as

ΦXXJ,h ({k, l}) := −(δk,l+1 + δk+1,l)J(σ
k
1σ

l
1 + σ

k
2σ

l
2),

and Φ is 0 for all other finite subsets of Z. The corresponding local Hamiltonians
on an interval centred around the origin is

HXXJ,h ([−L, L]) = −
L−1∑
k=−L

J(σk1σ
k+1
1 + σ

k
2σ

k+1
2 ) − h

L∑
k=−L

σk3.

The Gibbs state at inverse temperature β belonging to this set of local Hamilto-
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nians is the Jordan-Wigner transformed state of a quasifree state on CAR(	2(Z)).
This quasifree state corresponds to the Fourier transformed symbol of

q̃XXβ (θ) =
1

1 + exp (−β(J cos(θ) + h))
,

while the ground state is described by the following characteristic function

q̃XXgs (θ) =
1
2

(
1 +

J cos(θ) + h
|J cos(θ) + h|

)
.



Chapter 2

The von Neumann entropy of
restricted density matrices on lattice
models

A state on the CAR(	2(Zd))-algebra is uniquely determined by its restricted
density matrices corresponding to subsystems of growing hypercubes centred
around the origin. The von Neumann entropy of a density matrix ρ provides a
good characterisation of the mixedness of ρ, thus knowing how the von Neumann
entropy depends on the size of the corresponding cubes, we should be able to gain
some information about the entire state. It turns out that this is indeed the case. In
this chapter first we will give a brief introduction to the variational characterization
of local and limiting Gibbs states based on the von Neumann entropy and its
density. Then we show in which way this quantity (in some cases) measures the
size of the subspace to which we can truncate a restricted density matrix without
loosing too much information about the state of the subsystem. Many numerical
methods like the density matrix renormalization group (DMRG) [51] rely on this
compressibility property of the restricted density matrices.

Usually, the von Neumann entropy is introduced as a quantum version of the
Shannon entropy. We will also follow this path in our discussion. However,
historically von Neumann defined this quantity named after him already in 1927

24
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[46], much earlier than the Shannon entropy was introduced [56].1 Since the
importance of this quantity was not obvious in the early days of "few-body
quantum mechanics", there was not much activity concerning the von Neumann
entropy for several decades. At the end of the 1960’s, when the rigorous
formulations of quantum statistical mechanics were laid by Ruelle, Araki and
others, and the role of the von Neumann entropy in this field was recognised, an
extensive study of this quantity began (see e.g. [60]). At the end of the 1980’s and
beginning of the 1990’s it was also realised that the von Neumann entropy plays
an important role in quantum information theory. Considering a tensor product
Hilbert spaceH = H1 ⊗H2, the von Neumann entropy of the restriction of a pure
state on H to the subalgebra acting on one of the tensor factors (e.g. on H1) is a
good measure of entanglement and it quantifies well "how much" this state can be
used for quantum information processing [9]. Wewill not consider this topic in the
present thesis, for a monograph on this subject, see [47]. In 2003 a new function
of this quantity was found again in the theory of quantum phase transitions. The
growth of the von Neumann entropy of restricted density matrices of ground states
of fermionic and quantum spin chains with the subsystem size was related to the
quantum criticality or non-criticality of the corresponding models [59, 39]. We
will discuss these studies in the next chapter.

In this chapter we will concentrate only on how the von Neumann entropy of
restricted density matrices characterise different translation-invariant states. The
first section is devoted to its role in finite temperature statistical physics, while
in the second section we present how it characterises the essential subspaces of
certain restricted density matrices.

2.1 The von Neumann entropy and Gibbs states

In the first part of this section the definition of the von Neumann entropy is
introduced, in the second subsection it is shown how this quantity can be used
to give a variational condition for Gibbs states.

1It was in fact von Neumann who advised the term "entropy" to Shannon saying:"You should
call it entropy (. . . ) nobody knows what entropy really is, so in a debate you will always have the
advantage" [57].
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2.1.1 The definition of the von Neumann entropy

Let μ : A → [0, 1] be a probability measure on a finite set A = {a1, a2, . . . , ad} of
d elements. A measure of the unsharpness of this probability distribution is the
Shannon entropy, which is defined as2

S (μ) := −
d∑
i=1

μ(ai) log μ(ai).

There are many beautiful theorems that show the usefulness of this measure, we
will just mention one of them. Suppose that a source produces L-long messages
from the alphabet A = {a1, . . . , ad}, such that a letter ai appears with probability
μ(ai). The number of possible messages is dL. However, it turns out that for large
L a typical sequence will be in a much smaller subspace of ∼ exp(LS (μ)) number
of elements, moreover, these typical sequences all have approximately the same
probability ∼ exp(−LS (μ)). More precisely, we can state the following theorem
(a weak version of the Shannon-McMillan theorem [44]):3

Theorem. Let μ be a probability measure on the finite set A. For any ε > 0 there
exists an integer L(ε) such that for all L ≥ L(ε) the (1 − ε)-entropy-typical subset
T Lε ⊂ A×L:

T Lε := { a = (ai1 , ai2 , . . . , aiL) ∈ A×L | μ×L( a ) ∈ (e−L(S (μ)−ε), e−L(S (μ)+ε)}

satisfies
μ×L(TLε ) ≥ 1 − ε ,

and
|TLε | ∈ (e+L(S (μ)−ε), e+L(S (μ)+ε)) .

Since the set of eigenvalues {λ1, λ2, . . . , λd} of a d-dimensional density matrix
ρ form a probability measure, one can also define the analogue of the Shannon

2Throughout the thesis "log" will denote the natural logarithm. However, it should be
mentioned that in the information theoretical setting sometimes the base 2 logarithm is used in
the defi nition of the Shannon and von Neumann entropies, relating to the the bit (and qubit) as the
fundamental information unit.

3In this theorem A×L means the L-times Descartes product of the set A, and μ×L the (L-times)
product measure of μ on it.
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entropy on them, called the von Neumann entropy of ρ:

S (ρ) := −Tr ρ logρ = −
d∑
i=1

λi log λi.

The von Neumann is in some sense a measure of the mixedness of the state
belonging to ρ. When ρ is a projector the von Neumann entropy of ρ is 0, while for
the density matrix 1

d
�
, which we regard as the most mixed state, the von Neumann

entropy reaches its maximum value log d, and if ρa is "more mixed" than ρb,4 then
S (ρa) ≥ S (ρb).

In this thesis we will be mainly interested in the von Neumann entropy of
restricted density matrices of translation-invariant states. In subsection 2.2.1 we
will discuss a theorem showing that for certain types of states the von Neumann
entropy will characterise the dimension of an "essential subspace" where the
density matrix is basically supported, in the same way as the Shannon entropy
characterises the size of the set of typical sequences of random words. Before
entering into these details, we present the more traditional role of the von
Neumann entropy in quantum statistical mechanics in the next subsection.

2.1.2 The variational characterisation of Gibbs states

The von Neumann entropy appears naturally in quantum statistical mechanics,
since it allows a variational characterisation of local Gibbs states and in some
cases of limiting Gibbs states as well. The variational characterisation of local
Gibbs states is straightforward, as we have the following theorem [13, 48]:

Theorem. Let H(J) be a local Hamiltonian, i.e. a selfadjoint element in
CAR(	2(J)). Let us define the following functional on the set of density matrices
of CAR(	2(J)):

Fβ,μ(ρ) := Tr (ρ (H(J) − μN(J))) − β−1S (ρ).

This functional is called the local free energy functional at inverse temperature
4In the sense of the defi nition presented in subsection 1.1.1, or more precisely, by the analogous

fi nite dimensional defi nition.
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β and chemical potential μ corresponding to the local Hamiltonian H(J). The
unique density matrix that minimises the functional Fβ,μ is the density matrix
corresponding to the Gibbs state at inverse temperature β and chemical potential
μ belonging to the local Hamiltonian H(J).

For a similar characterisation of some limiting Gibbs states we need the notion
of free energy density. Fortunately, the entropy and particle number densities exist
for all translation-invariant states on CAR(	2(Zd)) [7]:

Theorem. Let ω be a translation-invariant state on CAR(	2(Zd)). The limits

s(ω) := lim
L→∞

S
(
ρω[0,L−1]d

)
Ld

,

n(ω) := lim
L→∞

Tr
(
ρω[0,L−1]dN([0, L − 1]

d)
)

Ld

exist and the quantities s(ω) and n(ω) are called the entropy and particle densities
of the state ω, respectively.5

However, we do not have such a general theorem for the existence of the
energy density for all kinds of translation-invariant interactions. Suppose we are
given a Hamiltonian H corresponding to some translation-invariant interaction
function. Let us define the following quantity for any density matrix ρ in
CAR(	2([K, L]d))

E[K,L]d(ρ) := Tr
(
ρH([K, L]d)

)
,

which is called the local energy functional associated with the local Hamiltonian
H([K, L]d). Suppose that for any translation-invariant state ω on CAR(	2(Zd)) the

5Note, that we can use this "one-sided" defi nition due to translation-invariance, since the above
limits equal the "two-sided" limits

s(ω) := lim
L→∞

S
(
ρω[−L,L]d

)

(2L + 1)d
,

n(ω) := lim
L→∞

Tr
(
ρω[−L,L]d N([−L, L]

d)
)

(2L + 1)d
.
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limit

e(ω) = lim
L→∞

E[0,L−1]d
(
ρω[0,L−1]d

)
Ld

exists, which is called energy density functional of the Hamiltonian H. We can
then define the free energy density of ω at inverse temperature β and chemical
potential μ as:

fβ,μ(ω) = e(ω) − μn(ω) − β−1s(ω).

The translation-invariant states that minimise this functional, are called the
free-energy-density variational states. For a large class of suitably tempered
interactions satisfying some technical constraints (that are met for instance by
the famous Hubbard model) it has been proved [7] that the free-energy-density
variational states corresponding to these interactions are unique and equal to the
corresponding limiting Gibbs states. This variational characterisation of Gibbs
states may look of only academic interest, since we have little knowledge of
the state space structure of CAR(	2(Zd)), and usually we can’t find the free-
energy-density variational state. However, this variational principle is also used
in approximations. For example, for quasifree states we have a formula for the
entropy density (see subsection 2.2.2) and the particle density [1] and for many
interactions also the energy density can be calculated, and hence the quasifree
state of the lowest free energy density can often be found. The state obtained in
this way is then used in approximating the ground state (e.g. certain ground state
expectation values). This method is called the (gauge- and translation-invariant)
Hartree-Fock approximation.

2.2 The essential subspace of restricted density ma-
trices and the zero-entropy-density conjecture

In this section a theorem and some conjectures about how the von Neumann
entropy characterises the size of the essential subspaces of restricted density
matrices of translation-invariant states are presented. We also discuss the so-
called zero-entropy-density conjecture, and show in the second subsection that
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this conjecture holds for pure translation-invariant quasifree states.

2.2.1 Entropy growth and the essential subspace of restricted
density matrices of ergodic states

Recently numerical studies have given birth to the physicist folklore that the
restricted density matrices ρ[0,L−1]d of translation-invariant states are essentially
concentrated on a subspace of dimension of ∼ exp(S (ρ[0,L−1]d)). This has not only
been observed in many numerical studies [43, 40, 50, 54], but is also used in
numerical studies e.g. in DMRG studies.6 In the rigorous setting, however, up
to now there is only a proof for such a statement for ergodic states on quantum
spin chains with non-vanishing entropy densities (which can also be used directly
for the analogous inverse-Jordan-Wigner transformed fermionic states). This
statement is the far reaching quantum generalisation of the classical Shannon-
McMillan theorem (see [31, 10, 11] for different versions of the following
theorem):

Theorem. Let ω be an ergodic state on the quantum spin chain algebra S, with
restricted density matrices ρL := ρω[0,L−1], and entropy density s. For any ε > 0
there exists an integer L(ε) such that for all L ≥ L(ε) there exists an "(1 − ε)-
essential-subspace projection" PL,ε in the subalgebra SL with the properties

Tr (ρLPL,ε) > 1 − ε,

Tr (PL,ε) < 2L(s+ε).

Moreover, for all projections P ∈ S([0, L − 1]) with Tr (P) < 2L(s−ε) we have
Tr (ρLP) < ε.
Letting ε go to zero, the above statements imply, that there exists a sequence of
projections PL ∈ SL so that:

lim
L→∞

Tr(ρLPL) = 1 and lim
L→∞

log (Tr(PL))
L

= s,

6In DMRG theory the von Neumann entropy is actually used to determine the needed subspace
above the truncation-limit.[40]
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and this statement is sharp in the sense that there does not exists a sequence of
projections P′L ∈ SL so that:

lim
L→∞

Tr(ρLP′L) = 1 and lim
L→∞

log
(
Tr(P′L)

)
L

< s.

Hence for ergodic states with non-zero entropy density s, the restricted density
matrices are supported asymptotically on subspaces with exponentially growing
dimension, with a growth exponent of s since for large subsystems L · s ∼ S (L)
(when s > 0), the physicist folklore is supported in this case. However, in the
case when s = 0, this theorem for ergodic states tells us only that the support
grows slower than an exponential function and up to now there is no stronger
rigorous statement. In physics the s = 0 case usually corresponds to the ground
state of a Hamiltonian, which is in many cases a translation-invariant pure state.
In the mathematical physics community it has been conjectured for a long time,
that the entropy density should be zero for all translation-invariant states on the
algebras CAR(Z). Every known example of translation-invariant pure state has
zero entropy density, moreover, the pure states arising as ground states of local
Hamiltonians showed at most a S (ρ[0,L−1]d) ∼ Ld−1 log L growth. This might
suggest that there could be an even stricter restriction on the growth of the
S (ρ[0,L−1]d ) than that it is subvolume-like. This is, however, not the case. We will
show in chapter 4 that the zero-entropy-density conjecture is sharp in the sense
that for any function FL growing slower than Ld, i.e. limL→∞ FL/Ld = 0, there
is a pure translation-invariant ωF state on CAR(	2(Zd)) for which S (ρωF[0,L−1]d) is
greater than FL for large enough L.

In the next subsection we give a formula for the entropy density of quasifree
state, which illustrates that for these states the zero-entropy-density conjecture is
satisfied.

2.2.2 The entropy density of quasifree states

From subsection 1.2.4 we know that the restricted density matrix ρ
ωQ
J

of a
quasifree state ωQ has the following form:
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ρ
ωQ
J
=

|J|∏
i=1

(
qic(i)c

∗
(i) + (1 − qi)c

∗
(i)c(i)
)
,

where 0 ≤ qi ≤ 1 are the eigenvalues of QJ, and the operators c(i) are defined in
Eq. (1.7). By this definition, for any i, j the operators (qic(i)c

∗
(i) + (1 − qi)c

∗
(i)c(i))

and (q jc( j)c
∗
( j)+ (1−q j)c∗( j)c( j)) commute, and the spectra of the operator (qic(i)c∗(i)+

(1 − qi)c∗(i)c(i)) is {qi, 1 − qi}, thus the 2
|J| number of eigenvalues of ρωQ

J
are

E
(
{ni}i∈{1,...,|J|}

)
=

|J|∏
i=1

fni(qi),

where ni can be 0 or 1 for any i ∈ {1, . . . , |J|} , and f0(x) := x and f1(x) := 1 − x.
Hence the von Nemunann entropy of ρωQ

J
is:

S
(
ρ
ωQ
J

)
= −

1∑
n1=0

· · ·
1∑

n|J|=0

E
(
{ni}i∈{1,...,|J|}

)
logE
(
{ni}i∈{1,...,|J|}

)
,

or equivalently,

S
(
ρ
ωQ
J

)
= −Tr

(
QJ logQJ + (

� − QJ) log(
� − QJ)

)
. (2.1)

For the one-dimensional case, the entropy density can simply be calculated from
Szegő’s theorem, which states the following [1]:

Theorem. Let T be such an operator on 	2(Z) that its matrix in the {χk}k∈Z basis is
a Toeplitz matrix, i.e., there exists an integrable function t̃ on the one-dimensional
torus T parametrised by [−π, π) so that

Tk,l =
1
2π

π∫
−π

dθ t̃(θ)e−i(k−l)θ ,

where Tk,l = 〈χk, TχL〉, and let λi(L) (i ∈ {1, . . . , L}) denote the the eigenvalues of
the restricted operator T[0,L−1]. For any continuous complex function f defined on
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the (essential) range of t̃ the following holds

lim
L→∞

∑L
i=1 f (λi(L))
L

=
1
2π

π∫
−π

dθ f (t̃(θ)).

By this theorem, the entropy density of a translation-invariant quasifree state
ωQ is:

s(ωQ) = lim
L→∞

S
(
ρ
ωQ
[0,L−1]
)

L

= lim
L→∞
−Tr
(
Q[0,L−1] logQ[0,L−1] +

( � − Q[0,L−1]
)
log
( � − Q[0,L−1]

))
L

= −
1
2π

∫
T

dθ
(
q̃(θ) log q̃(θ) + (1 − q̃(θ)) log(1 − q̃(θ))

)
,

where q̃ denotes the Fourier transform of the symbol Q.
The derivation of the d-dimensional case is more involved, the details can be

found in [20], but the result is analogous: the entropy density of a translation-
invariant quasifree state ω on CAR(	2(Zd)) is

s(ωQ) = −
1

(2π)d

∫
Td
dθ
(
q̃(θ) log q̃(θ) + (1 − q̃(θ)) log(1 − q̃(θ))

)
, (2.2)

where q̃(θ) is the Fourier transform of the symbol of the state. For pure
translation-invariant states, as we mentioned in subsection 1.2.4, q̃ is 0 or 1 almost
everywhere, according to Eq.(2.2) this means, that their entropy density vanishes.
Thus the zero-entropy-density conjecture holds for these pure states. Surprisingly
enough, the zero-entropy-density conjecture cannot be improved even for this
special class of states, as we will see in chapter 4.



Chapter 3

Lower bound for the entropy
asymptotics of pure quasifree states

In this chapter we derive a lower bound for the entropy asymptotics of all
nontrivial pure translation-invariant quasifree states on CAR(	2(Zd)). We prove
that for these states the von Neumann entropy of a cubic subsystem with edge
length L cannot grow slower than cLd−1 log L (for some positive constant c, which
depends on the state). We also present numerical results for the one-dimensional
case. Our results support the conjecture that when the Fermi sea of the pure one-
dimensional quasifree state is composed of a finite n number of intervals, i.e., there
are 2n number of Fermi points, the entropy grows asymptotically as n3 log L+const,
which is consistent with the conformal field theoretical prediction.

The study of the von Neumann entropy asymptotics of pure translation-
invariant states on fermionic and spin lattices was initiated in the mathematical
and mathematical physics literature by the zero-entropy-density conjecture, which
we discussed in the previous chapter (for relatively older papers, from the
early 1990’s, discussing entropy growth of pure states, see [22, 23]). In
the physicist community the studies on these asymptotics began (at quite a
high intensity) after the two papers [59, 39] by Vidal and his coworkers from
2003 and 2004, and the investigations usually concentrate on the pure ground
states of certain Hamiltonians. We will summarise the numerical findings of
the aforementioned two papers in this paragraph. Suppose we have a lattice

34
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Hamiltonian corresponding to a finite ranged translation-invariant interaction
function in which the local operators are taken into account with prefactors called
coupling strengths, which will be the "parameters" of the Hamiltonian. If the
expectation value of some observable in the limiting ground state depends non-
analytically on this set of parameters, then we say that the system undergoes
a quantum phase transition. In most cases that have been studied in the
physics literature, at a quantum phase transition point some spin-spin or electron-
electron correlations in the ground state decay algebraically with the distance
(and the ground state is called critical), while at non-critical points the two-point
correlations decay exponentially [53]. Vidal and coworkers studied the entropy
asymptotics both for critical and non-critical pure ground states of quantum spin
chain models. They found that in the studied critical cases the von Neumann
entropy growth with the subsystem size is logarithmic, and the prefactor of
the logarithmic growth is one-third of the central charge of the corresponding
conformal field theory, while for non-critical ground states the entropy growth is
bounded by a constant. There have also been many analytical studies supporting
these findings [15, 33, 34, 36, 37]. The conformal field theoretical background
of this behaviour has actually been derived much earlier [32] in a surprisingly
different context, namely in the field of black hole thermodynamics. Owning to
the recent interest in this subject this, conformal field theoretical derivation has
been generalised and made more precise in the recent years [38, 14].

In the higher dimensional case there is no such direct connection between
quantum criticality and entropy asymptotics. One of the first multidimensional
models that were investigated numerically and analytically in this context were
the different versions of the tight-binding fermion models with only hopping
terms (the models discussed in section 1.4). The ground states of these models
are quasifree states, and with certain restrictions on the Fermi sea structure a
Ld−1 log L type of entropy asymptotics was found [61, 27, 8]. In this chapter
we will prove without any restriction on the Fermi sea structure (except for non-
triviality) that this is a general lower bound, however, there exist quasifree states
with much faster entropy asymptotics. For other (both for critical and non-critical)
models studied in the physics literature, only a Ld−1 type of asymptotics, a so-
called "area law", was found [52, 8, 58]. Hence the connection between entropy
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asymptotics and quantum criticality is only limited to one-dimensional systems.
This chapter is divided into three sections. The first two sections constitute

the part where we prove the mentioned lower bound for the von Neumann
entropy asymptotics of any (non-trivial) pure translation-invariant quasifree state
on CAR(	2(Zd)). We divided this part into two sections. The reason for this is that
the proof in the one-dimensional case is relatively easy, but quite instructive, so
the first section is devoted to this. The much harder proof for the multidimensional
case is included in section 2. In the third section we present our numerical
results for a set of special pure translation-invariant one-dimensional quasifree
states. Our numerical results are in a complete agreement with the conformal field
theoretic predictions, which we will also discuss. Our proofs for the lower bound
appeared in the papers [24, 25], while the results of the numerical simulation were
published partly in Ref. [19].

3.1 Lower bound in the one dimensional case

In this section we first present a lower estimate for the formula (2.1), which was
introduced in [21], and which is only quadratic in the symbolQ and therefore easy
to handle. Then, using this estimate, we prove in the second subsection that the
entropy asymptotics for any (nontrivial) pure translation-invariant quasifree state
on CAR(	2(Z)) is at least logarithmic.

3.1.1 A quadratic lower estimate

Let ωQ be a pure translation-invariant quasifree state on the CAR(	2(Z))-algebra.
This means thatQ is a projection on 	2(Z), and there exists a measurable setM ⊂ T
(we parametrise the one-dimensional torus T by [−π, π), as usual) so that

Qk,l =
1
2π

π∫
−π

dθ ΞMe−i(k−l)θ ,

where ΞM is the characteristic function of M. Let us introduce the notations:
S L := S (ρ

ωQ
[0,L−1]) and QL := Q[0,L−1]. According to Eq. (2.1), S L can be expressed
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as:
S L = −Tr

(
QL logQL + (

� − QL) log(
� − QL)

)
.

In order to simplify further calculations we work with the following quadratic
lower bound of S L (introduced in [21]):

S L ≥ BL := Tr QL(
� − QL). (3.1)

That BL is indeed a lower bound of S L can be simply proved by the aid of the
inequality x(1 − x) ≤ −x ln x − (1 − x) ln(1 − x), which holds for 0 ≤ x ≤ 1.

Connected to this lower bound we will later need the following formulas:

BL =
1
2π

π∫
−π

dθ
sin2(Lθ/2)
sin2(θ/2)

ΛM(θ), (3.2)

1
2π

π∫
−π

dθΛM(θ)
sin2(Lθ/2)
sin2(θ/2)

, ≥
4L2

π3

π/L∫
0

dθΛM(θ), (3.3)

δ∫
0

dθ
sin2(Lθ/2)
sin2(θ/2)

≥ c1L, (3.4)

δ∫
0

dθ θ
sin2(Lθ/2)
sin2(θ/2)

≥ c2 log L, (3.5)

where c1, c2 are two positive numbers that depend on 0 < δ < π/2, and ΛM is the
function:

ΛM(θ) = |(M + θ) \ M|, (3.6)

here | · | denotes the Haar-Lebesgue measure, and M + θ denotes the image of
M under a rotation by θ on T. The derivation of the last three inequatilities
(3.3)-(3.5) are straightforward (the reader is referred to [21]), while the tricky
derivation of Eq. (3.2), presented also in [21], can be summarised (using that Qk,l
is a Toeplitz matrix belonging to the characteristic function ΞK) in the following
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set of manipulations:

Tr QL(
� − QL) =

L−1∑
k=0

Qk,k −
L−1∑
k,l=0

|Qk,l|2 = LQ0,0 − L
L−1∑

k=−(L−1)

(
1 −
|k|
L

)
|Qk,0|2

=
L
2π

π∫
−π

dθ1 ΞM(θ1) −
L
4π2

π∫
−π

dθ1

π∫
−π

dθ2 ΞM(θ1)ΞM(θ2)
L−1∑

k=−(L−1)

L − |k|
L

eik(θ1−θ2)

=
L
2π

π∫
−π

dθ1 ΞM(θ1) −
L
4π2

π∫
−π

dθ1

π∫
−π

dθ3 ΞM(θ1)ΞM(θ1 − θ3)
sin2(Lθ3/2)
L sin2(θ3/2)

=
L
4π2

π∫
−π

dθ1

π∫
−π

dθ3 ΞM(θ1) [1 − ΞM(θ1 − θ3)]
sin2(Lθ3/2)
L sin2(θ3/2)

=
1
4π2

π∫
−π

dθ3
sin2(Lθ3/2)
sin2(θ3/2)

π∫
−π

dθ1 ΞM(θ1) [1 − ΞM(θ1 − θ3)]

=
1
2π

π∫
−π

dθ3
sin2(Lθ3/2)
sin2(θ3/2)

|M \ (M + θ3)|.

3.1.2 Lower bound for the entropy asymptotics

In the trivial cases, |M| = 0 or |M| = |T| = 1, the entropy asymptotics function
S L is identically zero and, as we have mentioned in the introduction of this
chapter, there are pure states with a finite, but bounded entropy asymptotics, and
there are also pure states with logarithmic and faster than logarithmic entropy
growth. However, interestingly, until now no pure translation-invariant state on
the fermion or spin chain algebras have been found with a non-bounded sub-
logarithmic growth, but up to now there is no proof for their non-existence. We
will now prove that at least among the pure translation-invariant quasifree states
there exists no such state.

Theorem. Let ωQ be a pure translation-invariant state on CAR(Z) and Q � {0,
� }.

Then there exists a positive constant c such that S L ≥ c log L, where S L =
S (ρωQ[0,L−1]).

Proof: Let the Fourier transform of q(k) = Qk,0 be the characteristic function
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ΞM of (the Fermi sea) M ⊂ [−π, π). It is known from Lebesgue’s density theorem
that for any measurable set M, |M| = |Md| holds, where Md denotes the set of the
density points of M:

Md =
{
x ∈ M

∣∣∣∣∣∣ limδ→0

|(x − δ, x + δ) ∩ M|
2δ

= 1
}
.

It can be inferred from this theorem that for any M of positive measure, there is
such a point x ∈ M that

∀ε > 0 : ∃ δ > 0 so that for every interval I that satisfies x ∈ I, and |I| < δ,

|M ∩ I| > (1 − ε)|I|.
(3.7)

Disregarding the trivial cases (that is, the cases when Q ∈ {0, � }), the measure of
the complement Mc := T \M is also positive. This means that Mc also has a point
that satisfies (3.7). We denote this point by y. For a given ε, we can choose a
common δ to x and y. Let I be an interval shorter than this δ: |I| < δ, and x ∈ I.
There is an integer n such that y ∈ (I + n|I|). The set (I + n|I|) can be assured to be
disjoint from I by choosing a sufficiently small δ. The following inequalities hold
for I:

|M ∩ I| > (1 − ε)|I|, |Mc ∩ (I + n|I|)| > (1 − ε)|I|. (3.8)

The estimate on ΛM (defined in Eq.(3.6)) below, though seemingly weak, is the
core of the proof:

ΛM(|I|) = |(M + |I|) \ M|

≥

∣∣∣∣∣∣∣
⎛⎜⎜⎜⎜⎜⎝n−1⋃
k=1

(I + k|I|) ∩ (M + |I|)
⎞⎟⎟⎟⎟⎟⎠ \ M
∣∣∣∣∣∣∣

=

n−1∑
k=1

∣∣∣((I + k|I|) ∩ (M + |I|)) \ ( (I + (k)|I|) ∩ M)∣∣∣
≥

n−1∑
k=1

(∣∣∣((I + k|I|) ∩ (M + |I|))∣∣∣ − ∣∣∣(I + k|I|) ∩ M∣∣∣)
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=

n−1∑
k=1

∣∣∣((I + k|I|) ∩ (M + |I|))∣∣∣ − n−1∑
k=1

∣∣∣(I + (k + 1)|I|) ∩ (M + |I|)∣∣∣
=
∣∣∣I ∩ M∣∣∣ − ∣∣∣(I + n|I|) ∩ M∣∣∣.

Having a look at (3.8), we obtain that for arbitrary positive ε,

ΛM(|I|) ≥ (1 − 2ε)|I|

if |I| is sufficiently small. Hence if we choose a fix ε < 1/2 and define
κ := 1 − 2ε > 0, then there exists a δ > 0 so that ΛM(θ) ≥ κθ for 0 ≤ θ ≤ δ.
Now, if we restrict the integration region to [0, δ] in the quadratic lower bound
(3.2) for the entropy, and we use the just derived inequality for ΛM(θ) together
with (3.5), we can estimate the entropy asymptotics function as

S L ≥ BL =
1
2π

π∫
−π

dθΛM(θ)
sin2(Lθ/2)
sin2(θ/2)

≥
1
2π

δ∫
0

dθΛM(θ)
sin2(Lθ/2)
sin2(θ/2)

≥
1
2π

δ∫
0

dθ κθ
sin2(Lθ/2)
sin2(θ/2)

≥ c log L,

thus we arrived at the proposition stated in the theorem.

3.2 Lower bound in the d-dimensional case

We have seen in the previous section that all nontrivial pure translation-invariant
quasifree states on CAR(	2(Z)) have at least a logarithmic entropy growth.
Although the generalisation for arbitrary spatial dimension d is undoubtedly
plausible (the conjectured result being a Ld−1 log L lower bound), and it seems
to be straightforward at first sight, the actual reasoning of the proof is much more
involved and more care and other methods are to be used. This is due to the
complicated spatial structure the Fermi seas might have in higher dimensions -
compared with the one-dimensional case.

Let ωQ be a pure translational-invariant quasifree state on CAR(	2(Zd)), and
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let the Fourier transform of q(k) = Qk ,0 be the characteristic function ΞM of the
measurable setM ⊂ Td, and let us again introduce the notation S L := S (ρ

ωQ

[0,L−1]d).
The analogue of the one dimensional quadratic lower bound can again be used
[61]:

S L ≥
1

(2π)d

π∫
−π

dθ1 . . .
π∫
−π

dθd ΛM(θ1, . . . θd)
d∏
i=1

kL(θi). (3.9)

The definitions of kL and ΛM are the following:

kL(θ) =
sin2 Lθ/2
sin2 θ/2

, and ΛM(θ) = |M \M + θ |,

where | · | again denotes the Lebesgue measure, and for any θ = (θ1, θ2, . . . θd)
R
d-vector M + θ is the image of M under a translation of the points of the torus
T
d = ×di=1S

1 defined by rotating the first S 1-factor by θ1, the second S 1-factor by
θ2, and so on.

Theorem. The entropy growth function S L := S (ρ
ωQ

[0,L−1]d) of the pure translation-
invariant quasifree state ωQ (with Q � {0, � }) is bounded from below by
cLd−1 log L for some c > 0 (which depends on Q).

Proof:
We will use again the notation that ΞM is the Fourier transform of q(k) = Qk ,0.

To be more transparent, the proof it is divided into four steps. In the first two steps
some general properties ofΛM are derived. Then putting these properties together,
we obtain a lower bound for ΛM in the third part, and by the aid of this, the proof
can be easily completed in the fourth step.

1. Continuity and subadditivity of ΛM

The continuity of ΛM can be proven from Stone’s theorem (theorem A7 in
Appendix A). According to this theorem the representation of the translations in
L2(Td) given by (Uθ ψ)(α) := ψ(θ +α) is continuous in the strong topology, hence
in the weak topology as well (see theorem A6 in Appendix A). The difference
ΛM(θ1) − ΛM(θ2) can be written as:
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ΛM(θ1) − ΛM(θ2) =
1

(2π)d

∫
Td
dθ ΞM(θ)(1 − ΞM(θ + θ1))

−
1

(2π)d

∫
Td
dθ ΞM(θ)(1 − ΞM(θ + θ2))

=
1

(2π)d

∫
Td
dθ ΞM(θ)(ΞM(θ + θ2) − ΞM(θ + θ1))

= 〈ΞM, (Uθ2 − Uθ1)ΞM〉.

Weak continuity of Uθ implies that this expression goes to zero as θ1 goes to θ2,
thus ΛM is continuous.

Next, for any two translations θ1 and θ2 the following holds:

M \ (M + θ1 + θ2) ⊂
[
M \ (M + θ1)

]
∪
[
(M + θ1) \ (M + θ1 + θ2)

]
.

By monotony and translational invariance of the Haar-Lebesgue measure on Td,
we obtain the subadditivity property:

ΛM(θ1 + θ2) ≤ ΛM(θ1) + ΛM(θ2).

2. Irrelevant and relevant directions of ΛM

The subspace {aθ | a ∈ R} generated by a vector θ ∈ Rd is called an irrelevant
direction (with respect toM) if ΛM(aθ) = 0 for all a ∈ R (see Fig.3.2 on the next
page), otherwise it is called a relevant direction. Subadditivity of ΛM implies that
vectors generating irrelevant directions form a vector space:

ΛM(aθ1 + bθ2) ≤ ΛM(aθ1) + ΛM(bθ2) = 0.

However, if θ1 and θ2 generate relevant directions, then a linear combination of θ1
and θ2 can generate either a relevant or an irrelevant direction.

It is easy to show that there exists at least one relevant direction of ΛM if
M is nontrivial (i.e., if 0 < |M| < |Td|). If all directions were irrelevant, then
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Figure 3.1: Three M ⊂ T2 Fermi seas with irrelevant directions. (The two-dimensional
torus T2 is represented as the square with opposites sides identifi ed.)

by definition, M would remain invariant (up to a zero measure set) under any
translation. In this case one could define a translation-invariant measure μ on
every Haar-Lebesgue measurable set L by the formula μ(L) := |M∩L|. According
to Haar’s theorem, any translation-invariant measure on the torus is equal to the
Haar-Lebesgue measure times a constant, i.e., μ(M) = k|M|. If k = 0 then
|M| = |M ∩ M| = μ(M) = 0, if k > 0, then |Td| = μ(Td)/k = |M ∩ Td|/k =
|M ∩M|/k = μ(M)/k = |M|.

Let ei denote the ith standard unit vector of Rd, e1 = (1, 0, 0, . . .0), e2 =
(0, 1, 0, . . .0), etc. Vectors of the form aei act on the torus Td = ×di=1 S

1 by rotating
only the ith S 1 factor and leaving the other S 1 factors invariant. We call the one-
parameter subspaces of the form {aei : a ∈ R} principal directions. It follows
from the previous discussion that all principal directions cannot be irrelevant (if
M is nontrivial). By a permutation of the S 1 factors, we can achieve that the first
m (m > 0) standard unit vectors each generate a relevant direction, while the last
d − m generate irrelevant directions.

3. Lower bound for ΛM

First we show that for every fixed relevant direction there exists a linear lower
bound for ΛM. Let θ be a vector for which ΛM(θ) > 0. Continuity of ΛM
implies that there is an ε > 0 and a c > 0 such that ΛM(bθ) > c for any
1 − ε ≤ b ≤ 1. Let us denote by �x� the "lower integer part" of x (x ≥ �x�).
Now, 1 − ε ≤ �1/a�a ≤ 1 holds if 0 < a ≤ ε. Using the subadditivity of ΛM, we
obtain c < ΛM(�1/a�aθ) ≤ �1/a�ΛM(aθ) ≤ ΛM(aθ)/a. Summarising, for any θ
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that generates a relevant direction, there exist a c > 0 and an ε > 0 so that

ΛM(aθ) > ca for 0 < a < ε.

However, this is not enough for an estimate of the integrand in (3.9), which
is our goal. Next we have to show that there exists a sufficiently large set of
relevant directions. As we have mentioned in the previous part of the proof,
we can assume that the first m standard basis vectors {ei}mi=1 each generate a
relevant direction. This does not mean that a linear combination of them also
generates a relevant direction, but we can circumvent this problem by finding
an m-dimensional subregion in which the positive linear combinations (positive
cone) of vectors have this property.

If there is a (nonzero) vector θ {si}mi=1 generating an irrelevant direction for all
cones {

∑m
i=1 pi(siei) | pi ≥ 0} determined by the choice of signs {si}mi=1 ( i ∈ {−1, 1}),

then these irrelevant vectors θ {si}mi=1 will linearly generate the wholeR
m vector space

spanned by the firstm standard basis vectors ei, which contradicts the assumptions
that {ei}mi=1 generate relevant directions. Therefore there is a choice of signs {si}

m
i=1

such that any vector in the compact set V � {(s1p1, s2p2, . . . , smpm, 0, . . . , 0) | pi ≥
0,
∑
i p2i = 1} generates a relevant direction.
For any relevant direction we have a linear lower bound for ΛM if the

translation is sufficiently small. Unfortunately, the prefactor and the validity
region of the linear lower bound depend on the direction, so for a global lower
bound of ΛM we have to get rid of this direction dependence. For this purpose, let
us consider the following function defined on V:

s(ϑ) � sup
{
c ∈ R+ | ∃ε > 0 so that ΛM(aϑ) ≥ ca for any 0 ≤ a ≤ ε

}
.

We show that if s− = infϑ∈V s(ϑ) = 0, then there would exist an irrelevant
generator in V in contradiction to its definition, therefore s− is positive. Since V
is compact, if s− = 0 then there is a sequence {ϑ(n)}n∈N+ ⊂V , which is convergent,
and limn→∞ s(ϑ(n))=0. Let the limit of ϑ(n) be ϑ. By subadditivity ofΛM and the
definition of the function s, for any positive integer k there is an index nk so that
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ΛM(aϑ(nk)) < a/k for any a. By continuity of ΛM,

ΛM(aϑ) = lim
k→∞
ΛM(aϑ(nk)) ≤ lim

k→∞
a
k
= 0.

Let 0 < σ < s−. It is important that σ is strictly smaller than s−. We define
a function on V (whose σ-dependence is suppressed because σ is fixed from now
on):

ε(ϑ) � sup
{
ε | ΛM(aϑ) ≥ σa if a ≤ ε

}
.

We show that ε− � infϑ∈V ε(ϑ) > 0. The argument is similar to the one we
have just finished. Suppose the contrary. V is compact, so we have a convergent
sequence {ϑ(n)}n∈N+, with limit ϑ, such that limn→∞ ε(ϑ(n)) = 0. Note that our
choice σ < s− guarantees that ε is strictly positive on V . Continuity of ΛM implies
that ΛM(ε(ϑ)ϑ) = σε(ϑ). Consequently,

limn→∞ΛM
(⌊

a
ε(ϑ(n))

⌋
ε(ϑ(n))ϑ(n)

)
≤ limn→∞

⌊
a

ε(ϑ(n))

⌋
ΛM

(
ε(ϑ(n))ϑ(n)

)
= limn→∞

⌊
a

ε(ϑ(n))

⌋
ε(ϑ(n))σ = σa

(3.10)

for any a. But limn→∞�a/ε(ϑ(n))�ε(ϑ(n))ϑ(n) = aϑ, and ΛM(aϑ) > σa for some
a (the latter inequality is strict, this is the point where our choice σ < s− comes
into play again), which contradicts (3.10).

At last we arrived at the advertised lower bound for ΛM:

ΛM(ϑ) ≥ σ ‖ϑ ‖ if
ϑ

‖ϑ ‖
∈ V, and ‖ϑ ‖< ε−. (3.11)
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4. A lower bound for the entropy asymptotics

We can write the lower bound (3.9) as

S L ≥
1

(2π)d

π∫
−π

dθ1 . . .
π∫
−π

dθm
m∏
i=1

kL(θi)ΛM(PRθ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
π∫
−π

dθm+1 . . .
π∫
−π

dθd
d∏

i=d−m
kL(θi)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥
Ld−m

(2π)m

∣∣∣∣∣∣∣∣∣
s1ε−/

√
m∫

0

dθ1 . . .
smε−/

√
m∫

0

dθm σ ‖PRθ ‖

∣∣∣∣∣∣∣∣∣
≥
Ld−m

(2π)m
σ

ε−/
√
m∫

0

dθ1 . . .
ε−/
√
m∫

0

dθm θ1
m∏
i=1

kL(θi)

≥ cLd−1 log L.

In the first inequality we simply used the fact that the irrelevant translations
alter M only by a zero measure set, so in the argument of ΛM the last d − m
components can be set to zero (PR is the standard projection from Rd = Rm×Rd−m

to the subspace Rm generated by the first m standard unit vectors), and the
integrations over the irrelevant principal directions can be pulled out. Next, these
integrals were performed, and the integration region was shrunk into a hypercube
where the lower bound (3.11) can be applied. Then we replaced the Euclidean
norm of PRθ with its first component. Finally, using the inequalities (3.4) and
(3.5) the proof is completed (with some constant c > 0).

3.3 Numerical results

In this section some numerical results for the entropy asymptotics of pure
translation-invariant quasifree states on one-dimensional fermion systems are
presented. Calculating the von Neumann entropy asymptotics of states on
quantum spin or fermionic chains is usually a very hard numerical problem, even
if the restricted density matrices of the subsystems (subchains) are known. It is
so because one has to diagonalise a 2L × 2L dimensional density matrix to obtain
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Figure 3.2: Numerically calculated von Neumann entropy of restricted density matrices
of different pure translational-invariant quasifree states as a function of the subsystem size
L (in a logarithmic scale). The red points belong to the case of 2 Fermi points situated at
{−π/2, π/2} ∈ [−π, π), the green points to the case of 4 Fermi points at {−π/, 0, π/4, π/2},
the blue points to the case of 6 Fermi points at {−3π/4,−π/4, 0, π/4, π/2, 3π/4}, the
purple points to the case of 8 Fermi points at {−3π/4,−π/2,−π/4, 0, π/4, π/2, 3π/4, 7π/8},
and fi nally the cyan coloured points belong to the case of 10 Fermi points situated at
{−7π/8,−3π/4,−π/2,−π/4, 0, π/8, π/4, π/2, 3π/4, 7π/8}. Straight lines were fi tted on
the numerically calculated entropies of subsystems as a function of log L, i.e., of the
form S L = a log L + b. The obtained fi t parameters have the following values (the
subscript indicates the number of Fermi points): a2 = 0.333333952, b2 = 0.726063128;
a4 = 0.666694765, b4 = 0.837985960; a6 = 1.000055552, b6 = 1.012651221;
a8 = 1.333474220, b8 = 0.972334872; a10 = 1.666963228, b10 = 0.806282809.

the entropy belonging to a subchain of length L. Hence only the entropy of small
subsystems can be calculated.1 In the quasifree case, however, we are faced with
an exponentially easier numerical problem, since the entropy of a density matrix
belonging to a subchain of length L can be obtained by finding the eigenvalues of
only an L × L matrix (the Q[0,L−1] matrix), due to Eq. (2.1).

Wewill consider the special case of one-dimensional pure translation-invariant
quasifree states ωQ for which the the Fourier transform of q(k) = Qk,0 is (almost

1It is even very hard to store with a given precision a general state of e.g. 50 spins (or a state
of fermions on a lattice of 50 sites).
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everywhere) equal to the characteristic function of a set M ⊂ T which is the union
of finitely many disjoint closed intervals. In the physicist terminology (described
in subsection 1.2.4) one would say that the Fermi sea is composed of a finite
number of intervals, or that there is a finite number of Fermi points. If M is such
a set belonging to the symbol Q, then its complement Mc belongs to the symbol

� −Q. From Eq. (2.1) we can infer that the entropy asymptotics of the state ωQ is
equal to the asymptotics of ω( � −Q). This means in this case that only the locations
of the Fermi points are important.

The states described in the previous paragraph arise for instance as ground
states of tight binding models with only finite ranged hopping terms. This was
discussed in subsection 1.4.2. In the conformal field theoretical language, the
central charge for such a tight binding fermion model is equal to one-half times
the number of "fermionic soft modes" (the zero crossings of the spectral function
f (θ) := (t̃(θ)−μ) defined in subsection 1.4.2) [37], i.e., one-half times the number
of Fermi points. Let 2n denote the number of Fermi points. The conformal
field theoretical derivation [14, 38], would then suggest a n

3 log L + const entropy
asymptotics. Our numerical results2 shown in Fig.3.3 are in complete agreement
with the conformal field theoretical predictions.

Based on these numerical results (and the conformal field theoretic predic-
tions) one can state the following conjecture for these one-dimensional pure
quasifree states:

Conjecture. Let ωQ be such a pure translation-invariant quasifree state on
CAR(	2(Z)) for which the Fourier transform of the function q(k) = Qk,0 is (almost
everywhere) equal to the characteristic function of n disjoint closed intervals.
Then

lim
L→∞

S
(
ρ
ωQ
[0,L−1]
)

log L
=
n
3
,

2These numerical observations were partially made when we investigated in [19] an extension
of the XX model (introduced in [2]). During the completion of this article also analytical works
appeared [36, 37] where the same results were obtained, but only for symmetrically placed Fermi
points on the interval (−π, π).
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and that the follwoing limits exists:

lim
L→∞

(
S
(
ρ
ωQ
[0,L−1]
)
−
n
3
log L
)
.



Chapter 4

Sharpness of the
zero-entropy-density conjecture

As mentioned in previous chapters, it is a natural and long-standing conjecture
in mathematical quantum statistical physics that the entropy density for all
translation-invariant pure states on CAR(	2(Zd)) vanishes. However, until now
mathematicians and physicists have not succeeded in finding a proof (or a counter
example) for this conjecture. The pure states appearing in the physics literature
had at most a Ld−1 log L entropy growth [59, 61, 27]. Based on these observations
one could think that even a stronger restriction applies to general translation-
invariant pure states than the conjectured subvolume-like asymptotics. In [21]
Fannes, Haegeman, and Mosonyi tried to push the entropy asymptotics of such
states to the limits, and were able to find for any α ∈ (0, 1) a one-dimensional pure
translation-invariant quasifree state for which the entropy growth S L is faster than
Lα. They conjectured that there are pure translation-invariant states with even
faster entropy asymptotics, e.g. L/ log L, and that the zero-entropy-conjecture
cannot be sharpened in the sense that arbitrary fast sublinear entropy asymptotics
might be reached.1 We will prove exactly this type of sharpness of the zero-
entropy-conjecture in this chapter. For any sub-Ld function FL,2 we will find a

1However, they believed that their quadratic lower estimate (3.1) for the entropy asymptotics
of quasifree states might not be efficient enough for fi nding such states. But in fact in proving their
conjecture this quadratic estimate will be sufficient.

2That is for any FL satisfying limL→∞ FL/Ld = 0.

50
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pure translation-invariant quasifree state on CAR(	2(Zd)) with a faster entropy
asymptotics than FL. The theorems presented in this chapter were published in
our papers [24, 25].

4.1 Proof for the sharpness of the zero-entropy-
density conjecture

We will first prove the sharpness of the zero-entropy-density conjecture for the
one-dimensional case. The extension to the multidimensional is trivial.

The pure translation-invariant quasifree states leading to the Lα-type entropy
asymptotics considered in the paper by Fannes et al [21] had Fermi seas with a
"thick Cantor set"-like structure. Our starting point for choosing the Fermi seas
will be the numerical observation presented in the previous chapter. As we showed
numerically, for Fermi seas consisting of finite number of intervals on [−π, π), the
entropy asymptotics increases with the number of intervals which the Fermis seas
are composed. Hence our idea was to consider Fermi seas consisting of an infinite
number of intervals (with decreasing length).

Theorem. For any function f : N → R+ which is sublinear (limL→∞ fL/L = 0),
there exists a pure translation-invariant quasifree state for which S L is bounded
from below by fL, that is, S L ≥ fL for every sufficiently large L.

Proof: Our proof will be based again on the quadratic lower bound (3.1), and
the inequality (3.3). Using this inequality, we reduce the problem to showing the
existence of a set M ⊂ [−π, π) for which the right hand side of (3.3) grows not
slower than the given fL as L goes to infinity.

The construction of the Fermi sea M is based on two non-negative sequences:
a sequence of integers (ni)i∈N and another one of real numbers (	i)i∈N, where
	i ≥ 2	i+1. Let M be the union of infinitely many disjoint intervals, the endpoints



Sharpness of the zero-entropy-density conjecture 52

of which are determined by these two sequences as below:

M =
⋃
i∈N

ni⋃
k=1

Iki , Iki = [a
k
i , b

k
i ], bki − aki = 	i;

a10 = 0; a1i = b
ni−1
i−1 + 	i−1, if i > 0;

aki = b
k−1
i + 	i, if k > 1.

(4.1)

The (	i)i∈N and (ni)i∈N are chosen so that the set M constructed above is
bounded, and for convenience, we suppose additionally that ni	i is monotonically
decreasing, and:

∞∑
i=0

ni	i <
π

2
.

Thus M ⊂ [0, π). With construction (4.1), ΛM takes the form

ΛM(θ) =
∞∑
i=0

ni∑
k=1

∣∣∣(Iki + θ) \ M∣∣∣ ≥ ∞∑
i=iθ

ni∑
k=1

∣∣∣(Iki + θ) \ K∣∣∣ ,
where iθ is the smallest index for which 2ni	i < θ for all i ≥ iθ. Each translated
interval (Iki +θ) with i ≥ iθ is situated in a region where the original intervals in the
construction of M and the gaps between them are not longer than 	i/2 (or where
M has no point at all). For this reason |(Iki + θ) \ M| ≥ 	i/3 for every term in the
last summation. Therefore we obtain

ΛM(θ) ≥
1
3

∞∑
i=iθ

ni	i.

Now, let fL be an arbitrary sublinear function, i.e. limL→∞ fL/L = 0. Obvi-
ously, there exists a monotonically increasing continuously differentiable function
g : [0, π]→ R+ with the properties:

g(0) = 0,
4
π2
g
(
π

L

)
≥
fL
L
.

Let us define the function h as h(x) = d
dx (xg(x)). h is continuous, and h(0) = 0.

We suppose that h is strictly monotonically increasing in the neighbourhood of
zero. If not, we choose a continuous, strictly monotonically increasing ĥ such that
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ĥ ≥ h, and ĥ(0) = 0.3 This ĥ can be derived from a ĝ for which ĝ ≥ g, and then
the argument can be continued with ĥ instead of h.

The next step is to specify (ni)i∈L and (	i)i∈L so that

ΛM(θ) ≥ h(θ) ≥
1
3

∞∑
i=iθ

ni	i (4.2)

should hold for sufficiently small θ.
Let si be the solution of the following recursive equation, starting from a given

s0 (0 < s0 < π):
h (6(si − si+1)) = si+1. (4.3)

It is clear from the required properties of h that there is a solution that satisfies
the equalities 0 ≤ si+1 ≤ si for every i. Since (si)i∈N is bounded from below and
monotonically decreasing, it has a limit at infinity. Suppose that this limit differs
from zero, say it is s∞ > 0. Taking an arbitrary small ε > 0, there is an i for which
ε > 6(si − si+1), and we find that h(ε) ≥ h(6(si − si+1)) = si+1 ≥ s∞ for any ε, so
h(0) ≥ s∞ in contradiction with h(0) = 0. Thus limi→∞ si = 0.

Now we are ready to specify the values of 	i and ni by the equation

si =
1
3

∞∑
j=i

n j	 j (4.4)

Considering that (si)i∈N is a monotonically decreasing sequence tending to zero,
these equalities can be satisfied by some series (ni)i∈N and (	i)i∈N. Starting with a
particular 	i, we can always determine the next term by choosing some 	i+1 ≤ 	i/2.
The only restriction on the choice of 	i is that si−si+1 should be an integral multiple
of 	i. This requirement can undoubtedly be met, and then si − si+1 = 1

3ni	i yields
the value of ni. The inclusion M ⊂ [0, π) can be assured by choosing sufficiently
small s0.

Recall that (ni	i)i∈N has been required to be monotonic. We can easily convince
ourselves that (ni	i)i∈N constructed from (si)i∈N has this property. Indeed, it follows
immediately from the strict monotonicity of h: h(2ni	i) = h(6(si − si+1)) = si+1 ≤

3A possible choice is ĥ(x) � max{h(y) | y ∈ [0, x]} + x.
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si = h(6(si−1 − si)) = h(2ni−1	i−1).
Monotonicity of (si)i∈N and its behaviour at infinity entail that for any θ below

a certain bound, there is an index i for which 6(si − si+1) ≤ θ ≤ 6(si−1 − si). Notice
that this index is nothing but iθ. Thus putting together (4.3), and (4.4), we arrive
at the desired estimate (4.2). Consequently, for sufficiently large L, in the region
of the integration in (3.3), ΛM(θ) ≥ h(θ) holds. Performing the integration in (3.3)
completes the proof:

S L ≥ BL ≥
4L2

π3

π
L∫

0

ΛM(θ)dθ ≥
4L2

π3

π
L∫

0

h(θ)dθ =

4L2

π3

π
L∫

0

d
dθ
(
θg(θ)
)
dθ =

4L
π2
g
(
π

L

)
≥ fL.

As we mentioned at the beginning of this section, the higher dimensional
version of this sharpness result is a simple consequence of the one-dimensional
proof.

Theorem. Let F : N → R+ be a function that satisfies limL→∞ FL/Ld = 0. There
exists a pure quasi-free state such that S L ≥ FL for sufficiently large L.

Proof: Let us define the function fL � FL/Ld−1. This satisfies limL→∞ fL/L = 0.
In the previous proof we showed that for every such fL there exists an M ∈ [−π, π)
satisfying the following inequality for sufficiently large L:

4L2

π3

π
L∫

0

ΛM(θ)dθ ≥ fL (4.5)

Let us define the following (Fermi sea or) measurable subset of [−π, π)d: M =
×d−1i=1 [−π, π)×M, and let the inverse Fourier transform of the characteristic function
ΞM define the Toeplitz operator Q on 	2(Zd). Then the quadratic lower bound for
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the quasifree state ωQ simplifies to

S L ≥
1

(2π)d

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
π∫
−π

dθ′
sin2(Lθ′/2)
sin2(θ′/2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
d−1 π∫
−π

dθ
sin2(Lθ/2)
sin2(θ/2)

) ΛM(θ)

=
Ld−1

2π

π∫
−π

dθ
sin2(Lθ/2)
sin2(θ/2)

ΛM(θ).

Restricting the integration region and using (3.3) and (4.5), we obtain for
sufficiently large L the final inequality:

S L ≥
Ld−1

2π

π/L∫
0

dθ
sin2(Lθ/2)
sin2(θ/2)

ΛM(θ)

≥ Ld−1
4L2

π3

π/L∫
0

dθ ΛM(θ) ≥
4Ld

π2
g
(
π

L

)
≥ Ld−1 fL = FL.



Chapter 5

Conclusion and Outlook

The aim of the present thesis was to study the von Neumann entropy asymptotics
of translation-invariant quasifree states of fermions on d-dimensional lattices. It is
known that the entropy density for such states is zero. However, the long-standing
question whether the entropy-asymptotics of all pure translation-invariant state
is subvolume-like, that is, whether they have a vanishing entropy density, is
still unanswered. We showed that if the above mentioned zero-entropy-density
conjecture is true, then it cannot be sharpened in the sense that for any sub-Ld

function FL there exists a pure translation-invariant quasifree state with a faster
entropy asymptotics than FL. Another natural question that arises in this context
is whether there exists for any monotonically increasing sub-Ld function GL a
pure translation-invariant state on CAR(	2(Zd)) with an entropy asymptotics S L
such that limL→∞

S L
GL
= c, where c > 0 (or even more strictly, c = 1). We showed

that at least in the case of pure translation-invariant quasifree states the answer is
negative. We proved that for pure quasifree states the entropy growth is either
identically 0, or at least as fast as c Ld−1 log L. Moreover, the numerical data
presented in the third chapter for one-dimensional pure quasifree states with a
finite 2n number of Fermi points suggest a ( n3 log L + const)-type of asymptotics,
in agreement with the conformal field theoretical calculations. Based on these
results and other results presented in the literature, one might conjecture that the
entropy asymptotics of the ground state of a d-dimensional lattice Hamiltonian
corresponding to translation-invariant local interactions respects a kind of area
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law, i.e., asymptotically it is aLd−1 (a ≥ 0) or it violates this law by a logarithmic
factor at most (cLd−1 log L ). This conjecture and the zero-entropy-density
conjecture are two important unsolved problems in this field.
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Appendix A

Hilbert spaces and bounded
operators on Hilbert spaces

In this appendix we collect some basic definitions and theorems about Hilbert
spaces and about bounded operators on Hilbert spaces in order to make this thesis
more self-contained. For a monograph on this subject, see [12].

A.1 Hilbert spaces

A Euclidean space E is a vector space endowed with a scalar product i.e., with a
function 〈·, ·〉E : E × E → E satisfying the following properties

(i) Sesquilinearity:1

〈a1ψ1+a2ψ2 , b1ϕ1+b2ϕ2〉E = a1b1 〈ψ1, ϕ1〉E+a1b2 〈ψ1, ϕ2〉E+a2b1 〈ψ2, ϕ1〉E+
a2b2 〈ψ2, ϕ2〉E , holds for all ψ1, ψ2, ϕ1, ϕ2 ∈ E, and for all a1, a2, b1, b2 ∈ C.

(ii) Positivity:
〈ψ, ψ〉E ≥ 0, holds for all ψ ∈ E, and 〈ψ, ψ〉E = 0 if and only if ψ = 0.

Using the above axioms we obtain that the inequality

0 ≤ 〈ψ + zϕ, ψ + zϕ〉E = 〈ψ, ψ〉E + z 〈ψ, ϕ〉E + z 〈ϕ, ψ〉E + |z|2 〈ϕ, ϕ〉E
1In the mathematical literature, sesquilinearity is usually defi ned the other way around:

〈a1ψ1 + a2ψ2 , b1ϕ1 + b2ϕ2〉E = a1b1 〈ψ1, ϕ1〉E + a1b2 〈ψ1, ϕ2〉E + a2b1 〈ψ2, ϕ1〉E + a2b2 〈ψ2, ϕ2〉E,
but in this thesis we follow the physicist convention.
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is true for any two vectors ψ, ϕ ∈ E and complex number z. The necessary and
sufficient conditions for this quadratic expression in z to be nonnegative are

〈ψ, ϕ〉E = 〈ϕ, ψ〉E (A.1)

|〈ψ, ϕ〉E| ≤ 〈ψ, ψ〉E 〈ϕ, ϕ〉E, (A.2)

which hold thus for all ϕ, ψ ∈ E. Eq. (A.1) is the so-called Hermiticity property
of the scalar product, while (A.2) is called the Cauchy-Schwarz inequality. Now
we can define a norm on E:

‖ψ‖E :=
√
〈ψ, ψ〉E

Using the axioms of the scalar product and the Cauchy-Schwarz inequality, one
can easily show that the properties

(i) ‖ψ‖E ≥ 0, and ‖ψ‖E = 0 if and only if ψ = 0,

(ii) ‖zψ‖E = |z| ‖ψ‖E,

(iii) ‖ψ + ϕ‖E ≤ ‖ψ‖E + ‖ϕ‖E,

are satisfied for all ψ, ϕ ∈ H and z ∈ C.
A Euclidean space which is complete under the norm, that is, for which all

Cauchy sequences have a limit in the norm, is called a Hilbert space.2 LetH be a
Hilbert space, a set of vectors {φi}i∈I inH satisfying the properties

(i) 〈φi, φ j〉H = δi, j for all i, j ∈ I,

(ii) the set {
∑
j∈J ajφ j | a j ∈ C, J ⊂ I, |J| < ∞} is dense in H (in the topology

induced by the norm ‖·‖H),

is called an orthonormal basis ofH .
2A sequence of vectors {ψi}i∈N+ has a limit in the norm ‖·‖E, if there exists a vector ψ such

that limi→∞ ‖ψi − ψ‖E = 0. A sequence of vectors {ψi}i∈N+ is said to be a Cauchy sequence
under the norm ‖·‖E, if for every ε > 0 there exists an integer i(ε) such that for any n,m ≥ i(ε):
‖ψn − ψm‖E ≤ ε.
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Theorem A 1. Let H be a Hilbert space. There exists an orthonormal basis in
H , every orthonormal basis inH has the same cardinality, any vector ψ ∈ H can
be expanded in any orthonormal basis {φi}i∈I , i.e.

ψ =
∑
i∈I
ziφi, where zi = 〈φi, ψ〉,

and ‖ψ‖H =
√∑

i∈I |zi|2 .3

The cardinality of an orthonormal basis in a Hilbert space H is called the
dimension of H . A Hilbert space H is separable if its dimension is finite or
countably infinite.

The N-dimensional complex vector spaceCN with the canonical scalar product

〈(a1, a2, . . . , aN), (b1, b2, . . . , bN)〉Cn :=
N∑
i=1

ai bi, ∀ai, bi ∈ C, (A.3)

is an N-dimensional Hilbert space. The linear space of square-summable
functions on Zd

	2(Zd) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ξ : Zd → C
∣∣∣∣∣∣
∑
k∈Zd
|ξ(k)|2 < ∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
equipped with the scalar product

〈 {ξk}k∈Zd , {ζk}k∈Zd 〉�2(Zd) :=
∑
k∈Zd

ξk ζk (A.4)

forms also a Hilbert space. The set of characteristic functions of one-point sets of
Z
d, i.e. the set {χk }k∈Zd (where χk (m) := δk ,m), is an orthonormal basis of 	2(Zd).

Similarly, let us consider the vector space of (Lebesgue-equivalence classes
of) square-integrable functions on the d-dimensional torus Td, parametrised by

3More precisely, it can be proved for any Hilbert space H that only for a countable subset of
indices does zi = 〈φi, ψ〉 not vanish. Let us denote this subset by K. For any bijection b : N+ → K,
let us defi ne ψbn :=

∑n
l=1 zb(l)φb(l), then for any bijection b the sequence ψbn converges to ψ in the

norm ‖·‖H .
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[−π, π)d:

L2(Td) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ f : Td → C
∣∣∣∣∣∣ 1
(2π)d

π∫
−π

dθ1 . . .
π∫
−π

dθd | f (θ1, θ2, . . . , θd)|2 < ∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
where f is identified with its equivalence class modulo the relation of equality
almost everywhere.4 This vector space endowed with the scalar product

〈 f , g〉L2(Td) :=
1

(2π)d

π∫
−π

dθ1 . . .
π∫
−π

dθd f (θ1, θ2, . . . , θd) g(θ1, θ2, . . . , θd)

is also a separable Hilbert space. For every k ∈ Zd let us consider the square-
integrable functions fk(θ) := eik ·θ , where θ = (θ1, θ2, . . . , θd) ∈ [−π, π)d, the set of
these functions { fk}k∈Zd forms an orthonormal basis of L(Td).

LetH1 andH2 be two Hilbert spaces, a vector space isomorphism U : H1 →
H2 satisfying the property

〈Uψ,Uϕ〉H2 = 〈ψ, ϕ〉H1 , ∀ψ, ϕ ∈ H1,

is called a unitary map. Two Hilbert spaces are isomorphic if there exists a unitary
map between them. The unique linear map Fd : 	2(Zd) → L2(Td) defined by the
property

Fd(χk) := fk

is a unitary map called the Fourier transformation. Hence 	2(Zd) and L2(Td)
are isomorphic Hilbert spaces. Since any isometric bijection between two
orthonormal bases can be extended uniquely to a unitary map, we have the
following theorem:

Theorem A 2. Any N dimensional Hilbert space is isomorphic to CN (endowed
with the scalar product (A.3)), and any infinite dimensional separable Hilbert
space is isomorphic to 	2(Z) (with the scalar product (A.4)).

4Here
∫ π
−π dθi/(2π) denotes the integration with respect to the Haar-Lebesgue measure on the

ith T-factor of Td.
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We end this subsection by the Riesz representation theorem:

Theorem A 3. Let H be a Hilbert space, and let g : H → C be a continuous5

linear function. Then there exists a unique vector ϕg such that

g(ψ) = 〈ϕg, ψ〉H ,

for all ψ ∈ H , moreover,

∥∥∥ϕg∥∥∥H = sup
ψ∈H\{0}

|g(ψ)|
‖ψ‖H

.

A.2 Bounded operators on Hilbert spaces

In this subsection a Hilbert space will always mean a separable Hilbert space. Let
H be a Hilbert space, a linear mapping A : H → H is called bounded if the
quantity

‖A‖B(H) := sup
ψ∈H\{0}

‖Aψ‖H
‖ψ‖H

(A.5)

is bounded. A linear mapping A : H → H is continuous (with respect to the
Hilbert space norm ‖·‖H ) if and only if A is bounded. The set of bounded linear
operators (mappings) on H is denoted by B(H), and for every c1, c2 ∈ C and
A, B ∈ B(H) both c1A + c2B and AB := A ◦ B are bounded. The bounded linear
operator

�
H , defined by the property

�
Hψ := ψ ∀ψ ∈ H ,

is called the unit operator on H . The function ‖·‖B(H) : B(H) → R, defined by
Eq. (A.5), satisfies the properties

(i) ‖A‖B(H) ≥ 0, and ‖A‖B(H) = 0 if and only if A = 0,

(ii) ‖c A‖B(H) = |c| ‖A‖B(H),

(iii) ‖A + B‖B(H) ≤ ‖A‖B(H) + ‖B‖B(H),
5Continuous with respect to the topologies defi ned by the norms | · | on C, and ‖·‖iH onH .
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for all A, B ∈ B(H) and c ∈ C, and ‖·‖B(H) is called the operator norm on B(H).
B(H) is closed under this norm, and for all A, B ∈ B(H)

‖AB‖B(H) ≤ ‖A‖B(H) ‖B‖B(H) .

Theorem A 4. For any bounded linear operator A on H , there exists a bounded
linear operator A† onH such that

〈ϕ, Aψ〉H = 〈A†ϕ, ψ〉H ,

for all ϕ, ψ ∈ H . A† is called the adjoint or Hermitian conjugate of A.

The Hermitian conjugation (as a B(H) → B(H) mapping) satisfies the
following properties:

(i) (A†)† = A,

(ii) (aA + bB)† = aA† + bB†,

(iii) (AB)† = B†A†,

(iv)
∥∥∥A†A∥∥∥B(H) = ‖A‖

2
B(H),

for all A, B ∈ B(H) and all a, b ∈ C.
An operator U : H → H is unitary if and only if U ∈ B(H) and

U†U = UU† = �
H . If U : H1 → H2 is a unitary operator, then the map defined

for all A ∈ B(H1) as αU(A) := UAU−1 is a linear bijection between B(H1) and
B(H2), and satisfies the following properties

(i) αU(AB) = αU(A)αU (B),

(ii) αU(A†) = (αU(A))†

(iii) ‖αU(A)‖B(H2) = ‖A‖B(H1)

for all A, B ∈ B(H1).
In particular, considering the Fourier transform Fd between 	2(Zd) andL2(Td),

the function αFd maps B(	2(Zd)) to B(L2(Td)). An operator T ∈ B(	2(Zd)) is
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called a Toeplitz operator, if there exists a sequence {ϕT (k)}k∈Zd ∈ 	2(Zd) such that

Tk ,l := ϕT (k − l),

for all k, l ∈ Zd, where Tk ,l := 〈χk , Tχl〉�2(Zd). An operator F ∈ B(L2(Td)) is called
a multiplication operator, if there exists a function gF ∈ L2(Td) such that

F f (θ) = gF(θ) f (θ)

holds for all f ∈ L2(Td) (and the equality is meant, as usual, for almost every
θ ∈ Td). The function αFd maps the Toeplitz operators on 	2(Zd) onto the
multiplication operators on L2(Td) in the following way:

αFd (T ) = F if and only if Fd(ϕT ) = gF. (A.6)

Next we introduce the following three terms for elements of B(H) with some
special properties: S ∈ B(H) is called self-adjoint if it satisfies S = S †, a self-
adjoint operator P ∈ B(H) satisfying also P = P2 is called a projection, an
operator A ∈ B(H) for which (ψ, Aψ) ≥ 0 holds for any ψ ∈ H is called a
positive operator.

Any positive operator is self-adjoint, and for any B ∈ B(H), B†B is positive.
For any positive operator A ∈ B(H), there exists a unique positive operator
Sq(A) ∈ B(H) such that A = (Sq(A))2. Sq(A) is called the the square root of
A, and we will use the notation A1/2 :=Sq(A). For any A ∈ B(H) we define the
absolute value of A, as the positive operator |A| := (A†A)1/2.

Let {φ}i∈I be an orthonormal basis of H , for a bounded operator A on H the
value of the series ∑

i∈I
〈φi, |A| φi〉H (A.7)

is independent of the orthonormal basis, but can be infinite. If the series (A.7) is
finite, then the series

Tr (A) :=
∑
i∈I
〈φi, Aφi〉H (A.8)
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is also finite, absolute convergent, and independent of the orthonormal basis. Such
an A , for which the series (A.7) is finite, is said to be trace class operator, and the
quantity (A.8) is called the trace of A. The set of trace class operators is denoted
by T (H), and it is a linear subspace of B(H). Moreover, for any A ∈ T (H) and
B ∈ B(H) the operators AB and BA are also trace class operators, i.e., T (H) is
a (two-sided) ideal in B(H). The trace (as a mapping) is a linear functional on
T (H) and satisfies the following properties as well:

(i) Tr (A†A) ≥ 0, ∀A ∈ T (H),

(ii) Tr (AB) = Tr (BA), ∀A ∈ T (H), ∀B ∈ B(H).

For any projection P ∈ T (H) with Tr (P) = 1, there exists a unit vector ψP ∈ H ,
which is unique up to a complex phase, such that:

Pψ = ϕP〈ϕP, ψ〉H , ∀ψ ∈ H .

If for an A ∈ B(H) and a ψ ∈ H

Aψ = λψ,

holds for some λ ∈ C, then ψ is called an eigenvector of A belonging to the
eigenvalue λ. Let {λTi }i∈I denote the eigenvalues of a self-adjoint trace class
operator T on H . The eigenvalues of T are then real, and for any non-zero
eigenvalue λTi , the eigenvectors belonging to λTi form a finite-dimensional sub-
Hilbert space of H , which is called the eigensubspace of T belonging to the
eigenvalue λTi . Let di be the dimension of this eigensubspace, and let {φ

(i)
k }k∈{1,...,di}

be an orthonormal basis of this eigensubspace. Then the eigenvalue λTi is called a
di-fold degenerate eigenvalue of T , and we can define the projection Pi belonging
to this subspace by

Pi ψ :=
di∑
k=1

φ
(i)
k 〈φ

(i)
k , ψ〉H , ∀ψ ∈ H ,
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where Pi is independent of the choice of the orthonormal basis {φ(i)k }k∈{1,...,di}.
Moreover, the following equality, as a convergence in the operator norm, holds:

T =
∑
i∈I
λi Pi. (A.9)

The series (A.9) is called the discrete spectral decomposition of the self-adjoint
trace class operator T .

The Hilbert-Schmidt operators form a subset of B(H), which is slighlty
broader than T (H). These operators play an important role in the classification
of pure quasifree states generating inequivalent irreducible representations. Let
{φ}i∈I be an orthonormal basis inH and A ∈ B(H), if

∑
i∈I
‖Aφi‖H < ∞ (A.10)

holds, then A is called a Hilbert-Schmidt operator, and in this case the value of
the left hand side of (A.10) is independent of the choice of the orthonormal basis,
and the square root of this quantity is called the Hilbert-Schmidt norm.

Theorem A 5. The set of all Hilbert-Schmidt operators OHS (H) in B(H) form
self-adjoint (two-sided) ideal in B(H) which is complete under the Hilbert-
Schmidt norm. Moreover, the product of two Hilbert-Schmidt operators is a trace
class operator, and the subspace of Hilbert-Schmidt operators itself is a Hilbert
space with the scalar product defined as:

〈A, B〉OHS (H) := Tr (A†B) ∀ A, B ∈ OHS (H).

Now we turn to discuss different topologies on B(H). We have already
got acquainted with the operator norm topology on B(H), the open sets in this
topology are generated from the finite intersections and arbitrary unions of the
sets (defined for all A ∈ B(H) and all ε ∈ R+)

Vn(A, ε) := {B ∈ B(H) | ‖B − A‖B(H) < ε},
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and a sequence {An}n∈N+ converges to A in the operator norm topology if

lim
n→∞
‖An − A‖B(H) = 0.

In the theory of operator algebras and in quantum physics other topologies
play important roles, too. In this thesis we have only mentioned two other
topologies: the strong and theweak topology. The open sets of the strong topology
are generated from the finite intersections and arbitrary unions of the sets (defined
for all A ∈ B(H) and all ψ ∈ H)

Vs(A, ψ) := {B ∈ B(H) | ‖(B − A)ψ‖H < 1 }.

Hence a sequence {An}n∈N+ converges to A in the strong topology if

lim
n→∞
‖(An − A)ψ‖H = 0

holds for all ψ ∈ H .
The open sets of the weak topology are generated from the finite intersections

and arbitrary unions of the sets (defined for all A ∈ B(H) and all ψ, ϕ ∈ H)

Vw(A, ψ, ϕ) := {B ∈ B(H) | |〈ϕ, (B − A)ψ〉H | < 1 }.

Hence a sequence {An}n∈N+ converges to A in the weak topology if

lim
n→∞
〈ϕ, Anψ〉H = 〈ϕ, Aψ〉H

holds for all ψ, ϕ ∈ H .
These topologies are not equivalent. Let {φ}i∈N+ be an orthonormal basis of the

infinite dimensional separable Hilbert space H , and let us define for any n ∈ N
the operator S n as

S nφi :=

⎧⎪⎪⎨⎪⎪⎩ 0 if i ≤ n
φi−n if i > n

.

The sequence {S n}n∈N converges to 0 in the weak and in the strong topologies,
but it does not converge in the operator norm topology. Now, let us consider the
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sequence of the Hermitian conjugates of S n, which act on the basis elements as:

S †nφi = φi+n.

The sequence {S †n}n∈N converges in the weak topology to 0, but it doesn’t converge
in the operator norm topology and in the strong topology.

The following important, although easy, theorem relates the three mentioned
topologies on B(H) to each other.

Theorem A 6. If a subset O1 ⊂ B(H) is open in the weak operator topology, then
it is open in the strong and the norm topology as well. If a subset O2 ⊂ B(H) is
open in the strong topology, then it is also open in the norm topology.
Hence if a sequence of operators converges in the operator norm topology, it

converges also in the strong and weak topologies; if a sequence converges in the
strong topology, then it converges also in the weak topology.
More generally, let S be a set with a fixed topology. If a function F : S →

B(H) is continuous with respect to the operator norm topology on B(H), then
it is continuous with respect to the strong and weak topologies on B(H). If a
function G : S → B(H) is continuous with respect to the strong topology, then it
is continuous also in the weak topology.6

An important function, which is not continuous in the norm topology, is the
function U : Td → B(L2(Td)) describing the group of translations, defined as:

(
U(θ)ψ

)
(α) := ψ(θ + α), θ, α ∈ Td, ∀ψ ∈ L2(Td). (A.11)

Although this function is not continuous in the operator norm topology, we
have the following theorem (called Stone’s theorem)

Theorem A 7. The group of translations U : Td → B(L2(Td)), defined by Eq.
(A.11) is continuous in the strong topology.

6Also the following holds: if a function f : B(H) → S is continuous with respect to the
weak topology on B(H), then it is continuous in the strong and norm topologies; if a function
g : B(H) → S is continuous with respect to the strong topology, it is continuous in the norm
topology also.



Appendix B

Abstract C∗-algebras

In this appendix we give a short introduction to the theory of C∗-algebras and their
representations. For useful monographs on this subject, see [4, 12, 16]

B.1 Defi nitions and basic examples

A ∗-algebra is an algebra A with an involution, i.e. with a map ∗ : A → A
satisfying the following properties:

(i) (A∗)∗ = A,

(ii) (z1A + z2B)∗ = z1A∗ + z2B∗,

(iii) (AB)∗ = B∗A∗,

for all A, B ∈ A and all z1, z2 ∈ C. A C∗-algebra is a ∗-algebraA endowed with a
norm ‖ · ‖A : A → A such that

(i) A is complete with respect to the norm ‖·‖A,

(ii) ‖AB‖A ≤ ‖A‖A ‖B‖A ∀A, B ∈ A ,

(iii) ‖A∗A‖A = ‖A‖2A ∀A ∈ A.

Let A be a C∗-algebra. Any subalgebra of A which is invariant under the ∗-
operation and closed in the operator norm is again a C∗-algebra (with the restricted

71
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structures), and such a subalgebra is called a C∗-subalgebra ofA. An I subalgebra
ofA is called a two-sided ideal ofA if for any A ∈ A and any I ∈ I it holds that
AI, IA ∈ I. A C∗-algebra that does not contain any two-sided ideal which is
closed under the norm is called simple. A C∗-algebra is unital if there exists an
element

�
so that

�
A = A

�
= A for all A ∈ A, in this case �

is called the unit of
A, and one can easily prove the uniqness of such an element. If the C∗-algebraA
is not unital, then one can adjoin a unit to it by extendingA in a natural way. The
new extended C∗-algebra Ã is C ⊕ A as a vector space. Introducing the notation:
z

�
+ A := z ⊕ A (and C �

+A := Ã), the ∗-operation, the algebra product, and the
norm is defined in the following way on Ã:

(z
�
+ A)∗ := z

�
+ A∗, ∀A ∈ A, ∀z ∈ C,

(z1
�
+ A)(z2

�
+ B) := z1z2

�
+ z1B + z2A + AB, ∀A, B ∈ A, ∀z1, z2 ∈ C,

‖(z �
+ A)‖Ã := sup

B∈A/{0}

‖zB + AB‖A
‖B‖A

, ∀A ∈ A, ∀z ∈ C.

By these definitions Ã becomes a unital C∗-algebra. In the rest of the appendix
by a C∗-algebra we will always mean a unital C∗-algebra.

Next we introduce the following terminology for elements of a C∗-algebra
with certain special properties: A ∈ A is called self-adjoint if A∗ = A, an element
B ∈ A is called positive if there exists a C ∈ A such that B = C∗C, an element
P is called a projection if P = P∗ = P2, finally, U ∈ A is a unitary element if
UU∗ = U∗U =

�
.

A morphism1 α : A → B between two C∗-algebras is a linear map such that

α(AB) = α(A)α(B),

α(A∗) = α(A)∗

holds for all A, B ∈ A. If a morphism is injective, it is a monomorphism, if
it is surjective, it is an epimorphism, if it is bijective, it is an isomorphism. A
morphism between the same two C∗-algebras is called an endomorphism , while
an isomorphism between the same two C∗-algebras is termed automorphism.

1Sometimes the term ∗-morphism is also used.
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Theorem B 1. Let α be a morphism, and β a monomorphism between the C∗-
algebrasA and B, then

‖A‖A ≥ ‖α(A)‖B ∀A ∈ A,

‖A‖A = ‖β(A)‖B ∀A ∈ A.

The linear operators on the Hilbert space CN , that is the N × N matrices with
their natural algebra structure, the Hermitian conjugation as the ∗-operation, and
the operator norm ‖·‖B(Cn) form a C∗-algebra. We denote this C∗-algebra byMN .

Theorem B 2. Any (abstract) C∗-algebra that is linearly generated by an N2

number of linearly independent elements {Êk,l}k,l={1,2,...,N} satisfying the relations

Êk,lÊm,n = δl,mÊk,n , Ê∗k,l = Êl,k (B.1)

is isomorphic toMN.

InMN, a particular set of operators satisfying (B.1) are the matrix units Ek,l
(k, l ∈ {1, . . .N}):

E1,1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, E1,2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, . . .

E2,1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
1 0 0 . . . 0
0 0 0 . . . 0
...

0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, E2,2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
0 1 0 . . . 0
0 0 0 . . . 0
...

0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, . . .

...
...

Furthermore, a finite direct sum of finite matrix algebras ⊕iMNi forms a C∗-
algebra (with the natural algebra structure, the Hermitian conjugation as a ∗-
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operation, and the operator norm derived from the natural embedding ⊕iMNi ⊂
M(
∑
i Ni)). We have the following classification theorem for finite dimensional C∗-

algebras:

Theorem B 3. Any finite dimensional C∗-algebra is isomorphic to some direct
sum of full matrix algebras, i.e. to

k⊕
i=1

MNi

for some finite sequence of positive integers (N1,N2, . . .Nk). Any simple finite
dimensional C∗-algebra is isomorphic toMN for some positive integer N.

Turning to infinite dimensional C∗-algebras, the set of bounded operators
acting on a Hilbert space B(H) with its natural algebra structure, the Hermitian
conjugation as a ∗-operation, and the operator norm ‖·‖B(H) forms a C∗-algebra.2

If a C∗-algebra A has a countable number of elements that form a dense set
in A (with respect to the norm ‖·‖A), then A is called a separable C∗-algebra.
The following generalisation of theorem B3 to infinite dimensional C∗-algebras
connects the abstract theory of C∗-algebras with the theory of bounded operators
on Hilbert spaces.

Theorem B 4. Any C∗-algebraA is isomorphic with a C∗-subalgebra ofB(H) for
some Hilbert spaceH . IfA is separable, then it is isomorphic to a C∗-subalgebra
of bounded operators on a separable Hilbert space.

Hence any abstract C∗-algebra can be identified with a subspace of bounded
linear operators on a Hilbert space H . Of course, there might be non-trivial
subspaces in H that are invariant under the action of the entire C∗-algebra in
question. In the quantum physical setting this would mean that the Hilbert
space would contain many unphysical degrees of freedom, but with a set of
"superselection rules" one could in principle distinguish the unphysical states from
the physical ones. Hence at first sight working with abstract C∗-algebras seems
unnecessary . However, in the next section we shall see that this is not exactly the
case.

2We do not require the separability ofH here.
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B.2 Linear functionals and representations of C∗-
algebras

We begin this section by introducing the vocabulary of the representation theory of
C∗-algebras. A representation of a C∗-algebraA is a unit-preserving ∗-morphism
Π : A → B(H).3 A representation Π is called irreducible if there is no
nontrivial subspace of H that is invarant under the action of all the operators in
Π(A) ⊂ B(H), or equivalently, the commutant of Π(A) is C �

.4 A vector ψ ∈ H
is called a cyclic vector under a representation Π if the set {Π(A)ψ | A ∈ A} is
dense in H . A representation Π is called faithful if it is a monomorphism. The
representations Π1 : A → B(H1) and Π2 : A → B(H2) are (unitary) equivalent,
if there exists a unitary operator U : H1 → H2, such that Π1(A) = U−1Π2(A)U
holds for all A ∈ A.

We ended the last chapter by stating that any C∗-algebra A is isomorphic
with a subspace of bounded linear operators on a Hilbert space H , i.e., there
exists a faithful representation Π : A → B(H). Hence at first sight one would
wonder why it is useful in quantum physics to introduce the concept of abstract C∗-
algebras, instead of working alone with bounded operators on Hilbert spaces. It
is exactly in the theory of representations and linear functionals (a closely related
field), where we can see the real merits of the C∗-algebraic approach. We continue
with the vocabulary of the theory of functionals. A linear functional is simply
a linear function from a C∗-algebra to the set of complex numbers. A linear
functional ω : A → C is called positive if ω(A∗A) ≥ 0 for all A ∈ A, and if
this positive linear functional is normed as ω(

�
) = 1, it is called a state. The

mixture of two states ω1 and ω2 with normalised weights λ1 and λ2 (λ1 + λ2 = 1;
λ1, λ2 > 0) is the state defined as λ1ω1 + λ2ω2. A state ω : A → C is called pure
if it is not a mixture of two different states, otherwise ω is called mixed.

At the beginning let us restrict our discussion to functionals and represen-
tations of C∗-algebras of bounded operators on finite and infinite dimensional
Hilbert spaces. We have already seen a positive functional onMN , namely, the
trace. The trace of the unit operator ofMN is Tr(

�
) = N, so the term "the unit-

3Sometimes also the term ∗-representation is used for such a morphism.
4The commutant of a subalgeraA in B(H) is the set {B ∈ B(H) | AB = BA, ∀A ∈ A}.
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normed trace" is commonly used for the functional tr := 1
NTr , which is a state

since tr(
�
) = 1.5 By the trace functional we can endow MN with the Hilbert-

Schmidt scalar product 〈AB〉HS = Tr (A∗B). With this scalar product MN is a
Hilbert space. Let ω be an arbitrary functional on MN . From the Riesz repre-
sentation theorem (theorem A3) we can infer that there exists a unique element
D such that ω(A) = Tr (D∗A), and it is easy to prove that if ω is a positive linear
functional, then the corresponding operator D must be a positive operator. One
can also prove that a state ω is pure if and only if the corresponding D is a pro-
jection of unit trace. We can thus conclude this paragraph with the following
theorem:

Theorem B 5. For any linear functional ω : MN → C, there exists a unique
element D ∈ MN such that

ω(A) = Tr (DA), ∀ A ∈ A.

If ω is positive, then D is a positive operator; if ω is a state, then Tr (D) = 1; and
if ω is a pure state, then D is a projection.

Hence for any pure state ωP, there exists a unitvector v ∈ CN such that:

ωP(A) := 〈v, Av〉CN , ∀A ∈ A. (B.2)

Let us now investigate the states on the C∗-algebra of bounded operators on an
infinite dimensional separable Hilbert space H , i.e. on B(H). B(H) is similarly
toMN a simple C∗-algebra. Let D ∈ B(H) be a trace class operator of unit trace,
and let us define the functional ωD as:6

ωD(A) := Tr (DA), ∀A ∈ B(H).

ωD is a state on B(H), and ωD is pure if D is a projection of unite trace. However,
not all states on B(H) arise in this way! The representation theoretical reason for
this difference is the following:

5Sometimes, to avoid confusion, we call Tr the "dimension-normed trace".
6Remember that for any D ∈ T (H) and A ∈ B(H): DA ∈ T (H).
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Theorem B 6. Let H be a separable Hilbert space. If H is finite dimensional,
then any irreducible representation is unitary equivalent to the identity mapping
ι : B(H) → B(H) (i.e. ι : MN → MN). However, if H is infinite-dimensional,
then there exist irreducible representations Π : B(H) → B(H) that are not
unitary equivalent to the identity mapping ι : B(H)→ B(H).7

The proper generalisation of Eq. (B.2) to the infinite dimensional case is
that for any pure state ωP on B(H), there exists an irreducible representation
ΠωP : B(H)→ B(H) and a unitvector ψωP ∈ H such that

ωP(A) = 〈ψωP ,ΠωP(A)ψωP〉H , ∀ A ∈ B(H).

We mention here, that similarly to the C∗-algebra B(H), the CAR(	2(Zd))-algebra
is also a simple C∗-algebra, but with many inequivalent irreducible representa-
tions. Hence we have to consider the different irreducible representations, too,
inorder to obtain its pure states.

Before we generalise theorem B5 to the infinite dimensional case, we shall
state it in another way. Let ω be a state onMN, and let Dω be the corresponding
positive operator of unit trace such that

ω(A) := Tr (DA), ∀ A ∈ MN .

Since Dω is a positive operator on CN , there exists a finite sequence {λi}i∈{1,2,...,n(ω)}
(n(ω) ≤ N ) of positive real numbers and a sequence of pairwise orthogonal CN

unitvectors { vi }i∈{1,2,...,n(ω)} such that

Cω =
n(ω)∑
i=1

λiPi,

where Pi denotes the projection onto the subspace generated by vi. Now, let us
7This is not in contrast with the uniquness theorem of von Neumann, since in the C∗-algebraic

approach, the primary observable C∗-algebra of quantum-mechanics is the Weyl algebra and not
B(H) [28]. The irreducible representations of this C∗-algebra is unique(!), and B(H) arises as the
weak closure of the represented Weyl-algebra.
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consider the representation Π[n(ω)] :MN → ⊕ni=1MN defined as

Π[n(ω)](A) := A ⊕ A ⊕ · · · ⊕ A, ∀ A ∈ MN.

Furthermore, let us consider the following vector in ⊕ni=1C
N :

Vω := (λ1v1) ⊕ (λ2v2) ⊕ · · · ⊕ (λnvn).

Using the above notations one can easily show that

ω(A) = 〈Vω,Π
[n(ω)](A)Vω〉⊕ni=1CN , ∀ A ∈ MN ,

and Vω is cyclic under the representation Πn(ω).
Now, the analogue of theorem B5 to B(H), CAR(	2(Zd)) and all other (unital)

C∗-algebras, called the Gelfand-Naimark-Segal (GNS) theorem, can be stated in
the following way:

Theorem B 7. Let ω be a state on a (unital) C∗-algebra A. There exists a
representation Πω : A→ Hω, a unit vector ψω ∈ Hω such that

ω(A) = 〈ψω,Πω(A)ψω〉Hω ∀ A ∈ A,

and ψω is cyclic under Πω. The triple (Hω,Πω, ψω) is unique up to a unitary
transformation in the following sense. If (H ′ω,Π′ω, ψ′ω) is a similar triple, i.e.,

ω(A) = 〈ψ′ω,Π′ω(A)ψ′ω〉H ′ω ∀ A ∈ A,

then there exists a unitary map U : Hω →H ′ω such that

Π′ω(A) = UΠω(A)U
−1, ∀ A ∈ A,

Uψω = ψ′ω.

Πω is irreducible if and only if ω is pure.
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