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(Budapest, Hungary), OTKA - MB08A 84576 (Lisbon, Portugal), I thank every-

body who helped me to get across. Finally I would like to express my sincere thanks

to my mom for her love and support, and to my true friends for the constant en-

couragement.



Contents

1 Introduction 3

2 Extreme Value Theory 7

2.1 Univariate Extreme Value Theory . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Limit for Maxima . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Limit for Threshold Exceedances . . . . . . . . . . . . . . . . 9

2.1.3 Conditions for the Limit Theorems . . . . . . . . . . . . . . . 11

2.2 Modeling Multivariate Maxima . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Limit for Multivariate Maxima . . . . . . . . . . . . . . . . . 14

2.2.2 Exponent Measure . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Standardized Margins . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Spectral Representation . . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Complete Dependence and Independence . . . . . . . . . . . . 17

2.2.6 Spectral Measure with Sum-Norm . . . . . . . . . . . . . . . . 18

2.2.7 Spectral Densities . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.8 Positive Association . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.9 Pickands’ Dependence Function . . . . . . . . . . . . . . . . . 21

2.2.10 Density Function of BEVD Models . . . . . . . . . . . . . . . 22

2.3 Modeling Multivariate Threshold Exceedances . . . . . . . . . . . . . 24

2.3.1 Limit for Multivariate Threshold Exceedances . . . . . . . . . 24

2.3.2 An Invariance Property of MGDP . . . . . . . . . . . . . . . . 26

2.3.3 Conditions for an MGPD to be absolutely continuous . . . . . 30

2.3.4 Density Function of BGPD Models . . . . . . . . . . . . . . . 31

3



4 CONTENTS

2.3.5 Nonstationary BGPD models . . . . . . . . . . . . . . . . . . 36

2.4 Infinite Dimensional Generalization of EVT . . . . . . . . . . . . . . 37

2.4.1 Max-stable Processes . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Connection to Generalized Pareto Processes . . . . . . . . . . 42

3 Parametric Families and Extensions 45

3.1 Models in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Classes of Bivariate Dependence Models . . . . . . . . . . . . 45

3.1.2 Construction of new asymmetric models in 2D . . . . . . . . . 49

3.1.3 Example 1: Ψ-transformation . . . . . . . . . . . . . . . . . . 53

3.1.4 Example 2: Φ-transformation . . . . . . . . . . . . . . . . . . 54

3.2 Models in d > 2 dimension . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Classes of Multivariate Dependence Models . . . . . . . . . . . 57

3.2.2 New asymmetric models in higher dimensions . . . . . . . . . 60

3.3 Copula Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 From Copulas to Autocopulas . . . . . . . . . . . . . . . . . . . . . . 67

4 Estimation, Goodness-of-Fit and Simulation 71

4.1 Parametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.1 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . 71

4.1.2 Maximum Composite Likelihood Estimation . . . . . . . . . . 73

4.2 Nonparametric Dependence Functions . . . . . . . . . . . . . . . . . . 74

4.3 Goodness-of-Fit Methods . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Prediction Regions and GoF Methods . . . . . . . . . . . . . . 77

4.3.2 GoF Methods for Copulas . . . . . . . . . . . . . . . . . . . . 79

4.3.3 Goodness-of-Fit Tests for Autocopulas . . . . . . . . . . . . . 82

4.4 Approximate Simulation from BGPD . . . . . . . . . . . . . . . . . . 84

4.5 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.1 Comparison of BEVD and BGPD Models . . . . . . . . . . . 87

4.5.2 Standard Error of Asymmetric BGPD Estimates . . . . . . . . 93

4.6 Testing for Heteroscedasticity in AR Models . . . . . . . . . . . . . . 96



CONTENTS 1

5 Applications to Wind Speed Data 105

5.1 Wind Speed Time Series . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Applications of BEVD and BGPD models . . . . . . . . . . . . . . . 109

5.2.1 BEVD Prediction Regions . . . . . . . . . . . . . . . . . . . . 109

5.2.2 BGPD Prediction Regions . . . . . . . . . . . . . . . . . . . . 110

5.3 Nonstationary BGPD Models . . . . . . . . . . . . . . . . . . . . . . 112

5.3.1 Changes over Consecutive Time Periods . . . . . . . . . . . . 113

5.3.2 Linear Trends in the BGPD Parameters . . . . . . . . . . . . 115

5.3.3 Quantifying Uncertainty by Block Bootstrap . . . . . . . . . . 116

5.3.4 Goodness-of-Fit and Prediction of Future Distribution . . . . 117

5.4 Asymmetric MGPD models . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.1 Baseline BGPD models for wind data . . . . . . . . . . . . . . 122

5.4.2 New BGPD models for wind data . . . . . . . . . . . . . . . . 124

5.4.3 New TGPD models for wind speed . . . . . . . . . . . . . . . 130

6 Future Objectives 139

6.1 Fitting MGPD in dimension 5 . . . . . . . . . . . . . . . . . . . . . . 139

6.2 MGPD on a grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



2 CONTENTS



Chapter 1

Introduction

In this thesis I investigate and develop methods for joint modeling of extremely

high values (extremes) of multivariate observations. The thesis consists of a short

theoretical overview of the multivariate extreme value theory and a detailed pre-

sentation of my own scientific contribution during the recent 5 years. The initial

motivation for the research was established within the framework of an applied

statistical project 1 called ”Applied stochastic models for ocean engineering, cli-

mate and safe transportation”, where modeling simultaneously appearing high wind

speeds - monthly maxima or exceedances over high thresholds - at different sites

was one of the main research objective. The scope of the presented methods is much

wider though, see e.g. the M.Sc. thesis2 of Krusper (2011) for actuarial and financial

applications or the presentation of Zempléni and Rakonczai (2011) for hydrological

applications for Danube River, see Figure 1.1.

The most important impact of this thesis is in statistical inference and applica-

tions, providing useful material for practitioners of various disciplines working on

extreme values, but simultaneously I present some theoretical considerations about

certain model properties and conditions of applicability. I devoted substantial work

to the development of a new R software package called mgpd which has been first

1The research visit was granted by Lund University, Sweden, see website

http://www.maths.lth.se/seamocs for further details.
2My research leading to this thesis was partially supported by the TÁMOP project 4.2.1./B−

09/KMR− 2010− 0003.

3



4 CHAPTER 1. INTRODUCTION

Logistic

−400 −200 0 200 400

−4
00

−2
00

0
20

0
40

0

Psi−Logistic

−400 −200 0 200 400
−4

00
−2

00
0

20
0

40
0

Figure 1.1: Flexibility of the constructed new models. Left panel: density curves of

logistic baseline model, right panel: a flexible new BGPD model from the logistic

baseline.

published in Rakonczai (2011) for modeling bivariate exceedances. It is freely avail-

able at the Comprehensive R Archive Network as a part of the Distributions

task. It is now widely used by researchers of the field, and as the maintainer of the

package I develop it following the demands of the users. The practical applications

have been carried out by this package as well and all of them are easy to reproduce

by running the cited code parts.

I outline the main probabilistic results providing the basis of modeling multivari-

ate extremes in chapter 2. In chapter 3, I propose an universal method of construct-

ing families of asymmetric dependence structures illustrated by some examples. At

the end of this chapter I also introduce a novel statistical tool called autocopula. In

chapter 4 goodness-of-fit and simulation methods are shown first, and then I present

some simulation studies approving the plausibility of the proposed models and meth-

ods. Finally, numerous 2 dimensional (2D) and 3 dimensional (3D) applications for
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wind data can be found in chapter 5, and further promising ideas in chapter 6.

Related publications with my contribution are the followings:

� Rakonczai, P. and Turkman, F. (2012) Applications of generalized Pareto pro-

cesses. (Technical report under progress, OTKA outgoing mobility grant, Lis-

bon, Portugal)

� Rakonczai, P. (2012) Asymmetric dependence models for bivariate threshold

exceedance models. Forum Statisticum Slovacum, ISSN 1336-7420 1, p.25-32.

� Rakonczai, P. and Zempléni, A. (2012) Bivariate generalized Pareto distribu-

tion in practice: models and estimation. Environmetrics, John Wiley & Sons,

23, p.219-227.

� Zempléni, A. and Rakonczai, P. (2011) New bivariate threshold models with

hydrological applications. Conference on Environmental Risk and Extreme

Events, Ascona, July 10-15

� Rakonczai, P., Márkus, L. and Zempléni, A. (2011) Autocopulas: investigat-

ing the interdependence structure of stationary time series. Methodology and

Computing in Applied Probability, 14, p.149-167.

� Rakonczai, P. (2011) Package ’mgpd’ manual.

see http://cran.r-project.org/web/packages/mgpd/mgpd.pdf

� Rakonczai, P. and Tajvidi, N. (2010) On prediction of bivariate extremes.

International Journal of Intelligent Technologies and Applied Statistics, 3(2),

p.115-139.

� Rakonczai, P., Butler, A. and Zempléni, A. (2010) Modeling temporal trend

within bivariate generalized Pareto models of logistic type.

(Technical report, HPC-Europa2 Project, Edinburgh, UK, available at

http://www.math.elte.hu/∼paulo/pdf/)

� Rakonczai, P. (2009) On Modelling and Prediction of Multivariate Extremes,

with applications to environmental data. Centrum Scientiarum Mathemati-

carum, Licentiate Theses in Mathematical Sciences 2009:05
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� Rakonczai, P., Márkus L. and Zempléni, A. (2008a) Goodness of Fit for Auto-

Copulas: Testing the Adequacy of Time Series Models, Proceedings of the

4th International Workshop in Applied Probability CD-ROM, paper No.73.,

6 pages, Compiegne, France

� Rakonczai, P., Márkus L. and Zempléni, A. (2008b) Adequacy of Time Se-

ries Models, Tested by Goodness of Fit for Auto-Copulas, Proceedings of the

COMPSTAT2008 conference, Porto, Portugal
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Recent Advances in Stochastic Modeling and Data Analysis, World Scientific,
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Chapter 2

Extreme Value Theory

2.1 Univariate Extreme Value Theory

Here we outline the main probabilistic results providing the basis of parametric

modeling of univariate extremes. These approaches are expanded when our attention

turns to the multivariate questions. To reveal the motivation behind extreme value

theory (EVT), let X1, ..., Xn be a sequence of independent random variables with

common distribution function F . In addition let Mn = max (X1, X2, . . . , Xn) be the

maximum of the sequence. The variables Xi often represent hourly or daily values

of a process and so Mn represents the maximum of the process over n time units.

The distribution function of Mn can be computed in a very elementary way as

P (Mn ≤ z) = P (X1 ≤, ..., Xn ≤ z) =

n∏
i=1

P (Xi ≤ z) = F n(z). (2.1)

However Equation 2.1 is not very useful in practice if F is unknown. Of course,

one may suggest to estimate F from the measurements in some way and use this

as a plug-in estimate in F̂ n(z). Unfortunately by doing this, even small differences

between F and F̂ might be multiplied up, leading to large error in the final estimate

of F n. An alternative solution is proposed by EVT, suggesting to look for approxi-

mate distribution families for F n directly, based on the extreme measurements only.

Central limit theory for extreme values (without proofs) is provided below.

7



8 CHAPTER 2. EXTREME VALUE THEORY

2.1.1 Limit for Maxima

For the maximum of univariate i.i.d. variables the theory is well-elaborated. Since

analogous statements follow for the minimum as

min (X1, X2, . . . , Xn) = −max (−X1,−X2, . . . ,−Xn) ,

we can limit our attention to the case of maximum. Let

z+ = sup{z : F (z) < 1}

denote the upper endpoint of the support of the distribution F (x). Then it is clear

that Mn → z+ a.s. as n → ∞. Thus, in order to get nondegenerate limit for Mn, we

consider normalized maxima

M∗
n =

Mn − an
bn

,

for some sequences of constants {an} and {bn} > 0. The Gnedenko-Fisher-Tippett

theorem states that the limit distribution, if exists, is in the class of the so-called

extreme value distributions (EVD).

Definition 1. The extreme value distribution with shape parameter ξ has the fol-

lowing distribution function.

If ξ �= 0,

Gξ (x) = exp
[
− (1 + ξx)−1/ξ

]
for 1 + ξx > 0 (otherwise 0 if ξ > 0 and 1 if ξ < 0).

If ξ = 0,

Gξ (x) = exp
[
−e−x

]
.

The ξ = 0 case can also be obtained from the ξ �= 0 case by letting ξ → 0. The limit

distribution is called Fréchet for ξ > 0, Gumbel or double exponential for ξ = 0 and

Weibull for ξ < 0.

One may also define the corresponding location-scale family Gξ,μ,σ by replacing

x above by (x− μ) /σ for μ ∈ R and σ > 0 and changing the support accordingly.

It is straightforward (see for example Embrechts et al.,1997) to check that Gumbel,

Fréchet and Weibull families can be combined into a single family as follows.
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Definition 2. The generalized extreme value (GEV) distribution is defined as

Gξ,μ,σ(x) = exp

{
−
(
1 + ξ

x− μ

σ

)− 1

ξ

}
, (2.2)

where 1+ξ x−μ
σ

> 0, μ ∈ R is called the location parameter, σ > 0 the scale parameter

and ξ ∈ R the shape parameter.

Theorem 1. [Fisher and Tippett (1928), Gnedenko (1943)]

If there exist {an} and {bn} > 0 sequences such that

P (M∗
n ≤ z) = P

(Mn − an
bn

≤ z
)
→ G(z) as n → ∞ (2.3)

where G is a nondegenerate distribution function, then G necessarily belongs to the

GEV family, defined in Equation 2.2. In this case we say that the distribution of Xi

belongs to the max-domain of attraction of the GEV distribution G.

This theorem is usually used in practical applications for modeling the maxima of

observations appearing in consecutive blocks of time (block maxima), as e.g. annual/

monthly/ weekly maxima.

Remark 1. From the statistical point of view the apparent difficulty is that the

normalizing constants are unknown. This can be easily solved in practice, as the

distribution of the non-normalized maxima can be approximated by GEV distribution

with different location and scale parameters:

P (Mn ≤ z) ∼ G
(z − an

bn

)
= G†(z).

2.1.2 Limit for Threshold Exceedances

Modeling only the block maxima can be inefficient. As EVT is basically concerned

with modeling the tail of an unknown distribution, a natural idea is to model all of

those observations Xi, whose values are larger than a considerably high threshold.

Due to the results of Balkema and de Haan (1974) and Pickands (1975) it is well-

known that if the distribution of Xi lies within the max-domain of attraction of a

GEV distribution, then the distribution of the threshold exceedances has a similar

limiting representation. The results are summarized in the following theorem.
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Figure 2.1: Distribution and density functions of GEV distribution (Equation 2.2)

and GPD (Equation 2.4).

Theorem 2. Let X1, ..., Xn be a sequence of independent random variables with

common distribution function F . Suppose that F belongs to the max-domain of at-

traction of a GEV distribution for some ξ, μ and σ > 0. Then for high thresholds

u

P (Xi − u ≤ z|Xi > u) → H(z) = 1−
(
1 +

ξz

σ̃

)− 1

ξ

as u → z+, (2.4)

where σ̃ = σ + ξ(u− μ).

The family defined in Equation 2.4 is called generalized Pareto distribution

(GPD).

Remark 2. Note, that both of the above limit results are strongly linked in the sense

that, as the threshold tends to the right endpoint of the underlying distribution,

the conditional distribution of the exceedances converges to GPD if and only if the

distribution of the normalized maxima converges to GEV distribution. For graphical

illustrations see Figure 2.1.
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2.1.3 Conditions for the Limit Theorems

The EVT-based statistical procedures implicitly assume that most distributions

of practical interest lie within the max-domain of attraction of a GEV distribution

(or equivalently, within a GPD). Therefore, a natural question arises: how general

is the class of distributions for which the limit results in Theorem 1 and Theorem 2

hold? Although it is not difficult to find counterexamples (e.g. among discrete dis-

tributions), the most well-known continuous distributions belong to this class. If

the shape parameter is nonzero then there are relatively easily verifiable conditions,

using the following definition.

Definition 3. We say that a distribution tail F̄ is regularly varying with index −α

for some α ≥ 0 if for every x > 0

lim
t→∞

F̄ (tx)

F̄ (x)
= tα.

In addition if α = 0, the function F̄ is said to be slowly varying.

Theorem 3 (Max-domain of attraction of Fréchet distribution). A distribution

function F belongs to the max-domain of attraction of a GEV distribution with

ξ > 0 (Fréchet-type) if and only if the distribution tail F̄ is regularly varying with

index −ξ.

This condition is satisfied by e.g. the Pareto, the Cauchy and the stable (for

α < 2) distributions.

Theorem 4 (Max-domain of attraction of Weibull distribution). A distribution

function F belongs to the max-domain of attraction of a GEV distribution with

ξ < 0 (Weibull-type) if and only if the support of F is bounded to the right (with

x+ < ∞ is the right endpoint) and F̄ (x+ − x−1) is regularly varying with index −ξ.

In contrast to the heavy-tailed distributions, the Weibull case contains distri-

butions which have a finite right endpoint including e.g. the uniform and the beta

distributions.
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The ξ = 0 (Gumbel-type) case is more complicated. Although there exist nec-

essary and sufficient conditions here as well, they are hardly used in practice. It

can be shown that the max-domain of attraction of the Gumbel distribution covers

quite a wide range of families of distribution functions. It contains distributions from

heavy-tailed distributions whose all moments are finite (e.g. the lognormal distribu-

tion) to light-tailed distributions (e.g. the normal, the exponential or the gamma

distribution) and even some distributions whose support is bounded to the right are

possible. More details and further references can be found about the three above

cases e.g. in Section 2.3,2.4 and 2.5 in Beirlant et al. (2004), respectively.
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2.2 Modeling Multivariate Maxima

Comparing the multivariate problem with the univariate case the new issue that

arises is the dependence structure. In such a case - beyond the marginal distribu-

tions - we must be able to determine how the individual variables relate to each

other. The main question is describing the class of possible dependence structures

and then to investigate how can we estimate them. Modeling multivariate extremes

typically consists of two distinct steps: modeling univariate margins and then - af-

ter the suitable standardization of margins - modeling the dependence. As the first

step involves only applying the univariate models of the previous section, here we

focus on the second one, namely on characterizing the dependence structures. The

first fundamental question one is confronted with is how to define the multivariate

extreme events, as there exists no unique ordering for multivariate observations. Bar-

nett (1976) considers several different categories of order relations. In the subsequent

sections, unless mentioned otherwise, all operations and order relations on vectors

are understood to be component-wise, i.e. for d-dimensional vectors x = (x1, ..., xd)

and y = (y1, ..., yd) the relation x ≤ y is defined as xj ≤ yj for all j = 1, ..., d. In

this case the maximum is defined by taking the component-wise maxima, which is

defined as

x ∨ y = (x1 ∨ y1, . . . , xd ∨ yd),

where ∨ stands for the maximum (analogously, a ∧ b = min(a, b)). By using this

notation the maximum of a sample of d-dimensional observations

Xi = (Xi,1, ..., Xi,d) for i = 1, ..., n is defined as

Mn = (Mn,1, ...,Mn,d) =
( n∨
i=1

Xi,1, ...,

n∨
i=1

Xi,d

)
.

Finally, it should be mentioned that we can focus on maximum without loss of

generality, since the following relation allows us to get the minimum by the help of

the maximum of the negatives:

n∧
1

Xi = −
n∨
1

(−Xi).
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Remark 3. The sample maximum is not necessarily a sample point. From a prac-

tical point of view this means that the maxima we intend to model need not be

simultaneous.

2.2.1 Limit for Multivariate Maxima

Analogously to the univariate case we assume that X has distribution function

F and there exist an and bn > 0 sequences of normalizing vectors, such that

P
(Mn − an

bn
≤ z

)
= Fn(bnz+ an) → G(z), (2.5)

where the Gi margins of the limit distribution G are nondegenerate distributions. If

Equation 2.5 holds then F is said to be in the domain of attraction of G and G itself

is said to be a multivariate extreme value distribution (MEVD). Since Equation 2.3

holds for each margin

P
(Mn,j − an,j

bn,j
≤ zj

)
→ Gj(zj) as n → ∞ (2.6)

for any j = 1, ..., d, where the d.f. Gj are nondegenerate by assumption. The mar-

gins are necessarily GEV distributions. Hence the essential part of the multivariate

extension reduces to handling the dependence structure among the margins. It can

be shown that the MEVD cannot be characterized as a parametric family indexed

by a finite dimensional parameter vector (in contrary to in the GEV case). Instead,

the family of MEVD is usually indexed by the class of the underlying dependence

structures. Several authors, among them Resnick (1987) and Pickands (1981),have

proposed equivalent characterizations of MEVD, assuming differently standardized

margins. The benefit of standardization is that some properties or characterizations

are more naturally seen for a given choice (see subsection 2.2.2, subsection 2.2.9 for

details.) However, of course, the choice of the marginal distribution itself does not

make any difference after transforming the margins back to the original GEV scale.

Remark 4. Since the margins are continuous, G is continuous, so the convergence

in Equation 2.5 holds not only in distribution but also for every x ∈ R uniformly.

A useful characterization of MEVD can be given by the next definition.
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Definition 4. A multivariate distribution function G is called max-stable, if for

every positive integer k there exist αk and βk > 0 vectors such that

Gk(βkx+ αk) = G(x), x ∈ R.

It is not difficult to see that the classes of extreme value and max-stable distri-

bution functions coincide (see 8.2.1 in Beirlant et al., 2004).

2.2.2 Exponent Measure

A further consequence of the max-stability is that G1/k is a valid distribution

function for every positive integer k. In such a case we say that the distribution

function G is max-infinitely divisible (Balkema and Resnick, 1977). Specially, there

exist a (unique) measure μ on [q,∞) \ {q}, such that

G(x) = exp
(
−μ([q,∞) \ [q,x])

)
, (2.7)

where q = (q1, . . . , qd) and qi = inf{x ∈ R : Gi(x) > 0} is the lower end-point of the

ith margin. This μ measure is called the exponent measure.

2.2.3 Standardized Margins

When studying the dependence structure of a MEVD, it is convenient to stan-

dardize the margins so that they are all the same. Although the choice of marginal

distribution might not look very relevant at the first glance, a smart choice can bring

further mathematical simplicity. By using unit Fréchet margins with distribution

function ψ(x) = e−1/x, x > 0 the exponent measure satisfies a useful homogeneity

property. (Another choice for margins is discussed later in subsection 2.2.9.)

If (X1, . . . , Xd) denotes a random vector with a distribution function G then

(−1/ logG1(X1), ...,−1/ logGd(Xd)) has unit Fréchet distribution margins. Its joint

distribution function G� can be written as

G�(y) = G(G←1 (e−1/y1), ..., G←d (e−1/yd)), y ∈ Rd
+,

where G←i denotes the quantile function of Gi, the ith margin of G. Conversely

G(x) = G�(−1/ logG1(x1), ...,−1/ logGd(xd)), x ∈ Rd,
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where −1/ log(0) = 0 and −1/ log(1) = ∞. The exponent measures μ and μ� of G

and G� are related in the following way. For x ∈ [q,∞]

μ
(
[q,∞) \ [q,x]

)
= μ�

(
[0,∞) \ [0,−1/ logG(x)]

)
,

moreover, for μ�, the following homogeneity property is fulfilled

sμ�
(
s([0,∞) \ [0,y])

)
= μ�

(
[0,∞) \ [0,y]

)
, y ∈ [0,∞); 0 < s < ∞.

The above relation actually holds for all Borel subsets of [0,∞) \ {0}, namely

μ�(s·) = s−1μ�(·), 0 < s < ∞.

2.2.4 Spectral Representation

Due to this homogeneity a very flexible representation can be given in terms of

polar coordinates. Let ‖ · ‖1 and ‖ · ‖2 be arbitrary norms on Rd and S2 = {ω ∈
Rd : ‖ω‖2 = 1} the unit sphere with respect to the second norm. Then define the

mapping T from Rd \ {0} to (0,∞) × S2 by T (y) = (r, ω) where r = ‖y‖1 is the

radial part and ω = y/‖y‖2 is the angular part of y. Now define an S measure for

any B Borel subsets of Ξ = S1 \ [0,∞) by

S(B) = μ�

(
{y ∈ [0,∞) : ‖y‖1 ≥ 1,y/‖y‖2 ∈ B}

)
.

The measure S - called spectral measure - is determined uniquely by the exponent

measure and the chosen norms. Furthermore by the homogeneity of μ� we can see

that

μ�

(
{y ∈ [0,∞) : ‖y‖1 ≥ r,y/‖y‖2 ∈ B}

)
= r−1S(B)

for 0 < r < ∞ and B Borel subsets in Ξ. This leads to the so-called spectral

decomposition of the exponent measure given by de Haan and Resnick (1987)

μ� ◦ T−1(dr, dω) = r−2drS(dω),

which can be used to calculate the integral of a real-valued function f on [0,∞)\{0}
with respect to μ� as follows∫

[0,∞)\{0}

f(y)μ�(dy) =

∫
Ξ

∫ ∞

0

f(rω/‖ω‖1)r−2drS(dω)

=

∫
Ξ

∫ ∞

0

f(rω)r−2dr‖ω‖−11 S(dω).
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The exponent measure can be written as follows

V�(y) = μ�{[0,∞) \ [0,y)} = − logG�(y) (2.8)

=

∫
[0,∞)\{0}

1
{ d∨
i=1

zi
yi

> 1
}
μ�(dz)

=

∫
Ξ

d∨
j=1

( ωj
‖ω‖1

1

yj

)
S(dω), y ∈ [0,∞],

where V� is called the exponent measure function, which will be used later for

simplicity in the notation. Moreover the constraints for standard Fréchet margins

can be formulated as the following d equations∫
Ξ

ωj
‖ω‖1

S(dω) = 1, j = 1, . . . , d. (2.9)

Remark 5. Conversely, any positive measure S on Ξ satisfying Equation 2.9, is the

spectral measure of the d-variate MEVD G = exp(−V�) given by Equation 2.8.

2.2.5 Complete Dependence and Independence

Two interesting special cases are those of independence and complete depen-

dence. In general, the dependence structure lies between these cases. Let G be a

multivariate extreme value distribution with spectral measure S and ej denote the

jth unit vector in Rd. Then the margins of G are independent

G(x) =
d∏
j=1

Gj(xj), x ∈ Rd,

if and only if ∫
Ξ

f(ω)S(dω) =

d∑
j=1

‖ej‖1f(ej/‖ej‖2),

for any real-valued, S-integrable function f on Ξ. This practically means that S

consists of ‖ej‖1 point masses at the points ej/‖ej‖2. In addition the margins of G

are completely dependent

G(x) =

d∧
j=1

Gj(xj), x ∈ Rd,
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if and only if S collapses to a single point mass of size ‖ω0‖1/ω0 at the point ω0, where

ω0 = (ω0, . . . , ω0) is the intersection of Ξ and the line {x ∈ Rd : x1 = · · · = xd}.
This can be equivalently written as∫

Ξ

f(ω)S(dω) = ‖ω0‖1/ω0f(ω0),

for any real-valued, S-integrable function f on Ξ.

2.2.6 Spectral Measure with Sum-Norm

The most popular choice for the two norms ‖ · ‖1 and ‖ · ‖2 is the sum-norm,

‖x‖1 =
∑d

j=1 |xj |. In that case S will be denoted by W later on and the space Ξ is

equal to the unit simplex,

Sd = {ω ∈ [0,∞) :
d∑
j=1

ωj = 1}.

The general representation of G by Equation 2.8 gets simplified as

logG(x) =

∫
Sd

d∧
j=1

{ωj logGj(xj)}W (dω), x ∈ Rd

and the constraints on W from Equation 2.9 reads as∫
Sd

ωjW (dω) = 1, j = 1, . . . , d. (2.10)

Moreover, the entire mass of W equals to the number of dimensions

W (Sd) = d. (2.11)

Remark 6. In the case of independence W consists of unit point masses at all

vertices e1, ..., ed of the simplex Sd, while for complete dependence a single point

mass of size d is taken at the point (1/d, ..., 1/d).

Remark 7. In the bivariate case the unit simplex S2 can be identified with the unit

interval I = [0, 1] by identifying (ω, 1 − ω) ∈ S2 with ω ∈ I. Hence the spectral

measure W can also be defined over I as

W ([0, ω]) = μ�
(
{(y1, y2) ∈ [0,∞)2 : y1 + y2 ≥ 1, y1/(y1 + y2) ≤ ω

)
}
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for ω ∈ I and the constraints on W are∫
I

ωW (dω) =

∫
I

(1− ω)W (dω) = 1.

2.2.7 Spectral Densities

Let W be a spectral measure on the d-dimensional unit simplex Sd. For an

absolutely continuous MEVD G� the densities of W can be reconstructed from

the derivatives of the function V� = − logG�. We use wording as ”densities” and

not density, since usually W has a density on the interior and on each of lower-

dimensional subspaces of Sd as well. The natural partitions of the unit simplex

Sd are the so-called faces, with dimensions ranking from 0 (vertices) up to d − 1

(interior). In particular, these faces are defined for a non-empty subset a of {1, ..., d}
as

Sd,a = {ω ∈ Sd : ωj > 0 if j ∈ a; and ωj = 0 if j �∈ a},

splitting Sd into 2d − 1 subsets. Now let us consider the restriction of the spectral

measure W to the face Sd,a. If a is a singleton {j}, then Sd,a is just the vertex {ej}.
Let us denote this mass by ha = ha(ej), to be considered as the density of W at ej .

Remark 8. Even if the G� distribution function is absolutely continuous, the spec-

tral measure W may still allocate positive mass to the vertices. E.g. recalling Remark

6 we see that for independent margins W ({ej}) = 1 for all j = 1, . . . , d.

If a is a subset of {1, ..., d} with at least two elements, then the number of free

variables in Sd,a is k = |a| − 1. Hence Sd,a can be identified with an open region as

Δk = {t ∈ (0,∞)k :
k∑
j=1

tj < 1},

similarly to Remark 7 for the bivariate case. Let Ia be the map identifying t in

Δk with Ia(t) = ω in Sd,a. If a = {j1, . . . , jk+1} then ωji = ui for i = 1, . . . , k,

ωjk+1
= 1 −∑k

i=1 ui and ωj = 0 for j �∈ a. Assuming that the spectral measure W

has a density wa on Sd,a integrals over Sd, a can be calculated as∫
Sd,a

f(ω)W (dω) =

∫
Δk

f(Ia(t))wa(t)dt1 . . . dtk.
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We can obtain the spectral densities by computing partial derivatives of V� as follows.

If a = {j1, . . . , jk+1} ⊂ {1, . . . , d} and (yj)j∈a such that 0 < zj < ∞, then Coles and

Tawn (1991) have shown that

lim
yj→0,j �∈a

∂k+1V�
∂yj1 . . . ∂yjk+1

(y) = −
(∑

j∈a

yj

)−(k+2)

wa

(
yj1∑
j∈a yj

, . . . ,
yjk∑
j∈a yj

)
. (2.12)

There is a very useful tool introduced by Coles and Tawn (1991) which allows to

construct families of dependence models defined by their spectral densities.

Theorem 5. If w̄ is an arbitrary density in the interior of Sd with positive first

moments

mj =

∫
Sd

tjw̄(t1, . . . , td−1)dt1 · · · dtd−1, j = 1, . . . , d,

then the measure W on Sd defined by

w(t1, . . . , td−1) =
1

m0

d∏
j=1

w̄
(m1t1

m0
. . . ,

md−1td−1
m0

)
, (2.13)

where m0 =
∑d

j=1mjtj, is a valid measure satisfying the constrains in Equation 2.10

and Equation 2.11.

2.2.8 Positive Association

The following properties show practical cases, where the MEVD may be useful.

An MEVD G is necessarily ”positively quadrant dependent” (Sibuya, 1960 and

Tiago de Oliveira, 1962/1963), namely

G(x) ≥ G1(x1) . . . Gd(xd), x ∈ Rd. (2.14)

In particular, a random variable Y with distribution function G as

in Equation 2.14 has cov[fi(Yi), fj(Yj)] ≥ 0 for any 1 ≤ i, j ≤ d and any pair of

non-decreasing functions fi and fj such that the relevant expectations exist. MEVD

satisfies even stronger concepts of the above positive dependence, e.g.Marshall and

Olkin (1983) show that they are ”associated” in the sense that cov[ξ(Y ), η(Y )] ≥ 0

for every pair of non-decreasing functions ξ and η on Rd for which the relevant

expectations exist.
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2.2.9 Pickands’ Dependence Function

In two dimensions, all information on the dependence structure is covered by

another (equivalent) characterization, due to Pickands (1981). The joint survivor

function with standard exponential margins (denoted by 

 instead of 
 which is

kept for unit Fréchet margins) Ḡ�� is given by

Ḡ��(z1, z2) = P (Z1 > z1, Z2 > z2) = exp

{
−(z1 + z2)A

(
z2

z1 + z2

)}
, (2.15)

where A(t), called the (Pickands) dependence function, is responsible to capture the

dependence structure between the margins. It can be shown that the dependence

function necessarily satisfies the following properties (P):

1. (1− t) ∨ t ≤ A(t) ≤ 1 for t ∈ [0, 1] (⇒ A(0) = A(1) = 1);

2. A(t) is convex.

Remark 9. In the first property of (P) the lower and upper bounds correspond to

the two limiting cases of subsection 2.2.5. If A(t) = (1− t) ∨ t then we get complete

dependence and if A(t) = 1 then independence. For graphical illustration see the left

panel in Figure 2.2.

Of course, the representation using exponent measure function and unit Fréchet

margins can be written by the dependence function as well:

− logG�(y1, y2) = V�(y1, y2) =

(
1

y1
+

1

y2

)
A

(
y1

y1 + y2

)
. (2.16)

Furthermore, there is a connection between the Pickands dependence function and

the spectral measure W of μ� with respect to the sum-norm as in subsection 2.2.6

A(t) = 1− t +

∫ t

0

W ([0, ω])dω, t ∈ [0, 1]

Conversely W can be computed from A as

W ([0, ω]) = 1 + A′(ω) if ω ∈ [0, 1),
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Figure 2.2: Differentiable dependence functions, and their derivatives.

andW ([0, 1]) = 2, where A′ is the derivative of A. The point masses in the endpoints

are

W ({0}) = 1 + A′(0) and W ({1}) = 1− A′(1). (2.17)

Remark 10. If A′ is absolutely continuous, then W is absolutely continuous on the

interior of the unit interval with density w = A′′.

For higher dimensions Equation 2.15 could be generalized as

Ḡ��(z) = exp

{
−
(

d∑
i=1

zi

)
A

(
z1∑d
i=1 zi

, ...,
zd−1∑d
i=1 zi

)}
,

for some dependence function A, defined on the d-dimensional simplex. Further

characteristic properties of the dependence function can be found in Falk and Reiss

(2005).

2.2.10 Density Function of BEVD Models

Let (X1, X2) denote a bivariate random vector representing the component-wise

maxima of an i.i.d. sequence over a given period of time. Due to

subsection 2.2.1, under the appropriate conditions the distribution of (X1, X2) can

be approximated by a bivariate extreme-value distribution (BEVD) with cdf G. The
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BEVD is determined by its margins G1 and G2 respectively, which are necessarily

GEV, and by its Pickands dependence function A as

G(x1, x2) = exp

{
log

(
G1(x1)G2(x2)

)
A

(
log

(
G2(x2)

)
log

(
G1(x1)G2(x2)

))}
. (2.18)

Alternatively, for standardized margins it can be also given as in Equation 2.15

or in Equation 2.16. Due to the probability integral transform Ui = Gi(Xi), i =

1, 2 we can obtain uniformly distributed variables on the unit interval, which can

easily be further transformed to any desired distribution. The benefit of the simpler

forms (beyond the handiness in computing) will be clear later when we derive the

nonparametric estimator of A(t). To obtain the density of the BEVD one needs the

first and second derivatives of the dependence function denoted by A′(·) and A′′(·)
respectively. A useful formula for the BEVD density is presented in (8) of Hall and

Tajvidi (2004):

Theorem 6. The BEVD density g (on the original scale) can be expressed by the

dependence function A as

g(x1, x2) =
∂2

∂x1∂x2

G(x1, x2) =
∂2

∂x1∂x2

Ḡ∗(t1, t2) = (2.19)

Ḡ∗(t1, t2)t
′
1t
′
2 ×

((
A(ζ) + (1− ζ)A′(ζ)

)(
A(ζ)− ζA′(ζ)

)
+ ηA′′(ζ)

)
,

where

ti = t��i (xi) = − logGi(xi) =
(
1 + ξi

xi − μi
σi

)− 1

ξi , i = 1, 2

t′i = t��
′

i (xi) = − 1

σi

(
1 + ξi

xi − μi
σi

)− 1

ξi
−1

, i = 1, 2

ζ =
t2

t1 + t2

η =
t1t2

(t1 + t2)3
.

In order to ensure that the BEVD is absolutely continuous, we must assume that

A(t) is two times differentiable, which is not included in the necessary requirements

for a dependence function (P). Although the well-known parametric models satisfy

this extra property as well, it turns out to be a more problematic issue when using

nonparametric estimates for the dependence function A(t).



24 CHAPTER 2. EXTREME VALUE THEORY

2.3 Modeling Multivariate Threshold Exceedances

As taking component-wise maxima can hide the time structure within the given

period, we do not know if the different components of the maxima occurred simul-

taneously (in the same day for instance) or not. To avoid this problem, instead of

considering only the highest value of a time period, we investigate all observations

exceeding a given high threshold. Since this method usually uses more data (de-

pending on the threshold level) it usually leads to more accurate estimation than

the other method using only the maxima. In this case the first fundamental question

is which observations we should consider as exceedances. In a classical framework,

only those observations are involved in modeling that exceed the threshold in all

components, simultaneously. The distribution function of these exceedances can be

written analogously to MEVD, replacing the GEV margins by GPD margins. The

methods that uses this definition are widely investigated in the literature, see Smith

(1994) for one of its first applications or the PhD thesis of Michel (2006) for a re-

view. However, this definition can be very restrictive in some cases, as it still ignores

many potentially important observations: those with only some components beyond

the threshold.

2.3.1 Limit for Multivariate Threshold Exceedances

Here we give the following definition by Rootzén and Tajvidi (2006) which follows

the latter idea.

Definition 5. A distribution function H is a multivariate generalized Pareto dis-

tribution if

H(x) =
−1

logG(0)
log

G(x)

G(x ∧ 0)
(2.20)

for some MEVD G with nondegenerate margins and with 0 < G(0) < 1. In particu-

lar, H(x) = 0 for x < 0 and H(x) = 1− logG(x)/ logG(0) for x > 0.

Remark 11. Note, that this definition does not imply that the lower dimensional

margins of an MGPD are GPDs. However, if Z is distributed as H then the con-
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ditional distribution of Zi|Zi > 0 is GPD. This property holds for all marginal

distributions in any dimensions less than d.

Let X be a d-dimensional random vector with distribution function F , {u(t) :

t ∈ [1,∞)} a d-dimensional curve starting at u(1) = 0 and σ(u) = σ(u(t)) > 0 be

a function with values in Rd. Then the normalized exceedances at level u can be

defined as

Xu =
X− u

σ(u)
.

Theorem 7 (Rootzén and Tajvidi, 2006). (i) Suppose, that G is a d-dimensional

MEVD with 0 < G(0) < 1. If F ∈ D(G) then there exist an increasing continuous

curve u with F (u(t)) → 1 as t → ∞, and a function σ(u) > 0 such that

P (Xu ≤ x|Xu � 0) → −1

logG(0)
log

G(x)

G(x ∧ 0)

as t → ∞, for all x.

(ii) Suppose there exists an increasing continuous curve u with F (u(t)) → 1 as

t → ∞, and a function σ(u) > 0 such that

P (Xu ≤ x|Xu � 0) → H(x), (2.21)

for some function H, as t → ∞, for x > 0, where the marginals of H on R+ are

nondegenerate. Then the left-hand side of Equation 2.21 converges to a limit H(x)

for all x and there is a unique MEVD G with G(0) = exp(−1) such that

H(x) = log
G(x)

G(x ∧ 0)
.

This G satisfies G(x) = exp(−H̄(x)) for x > 0, and F ∈ D(G).

Theorem 8 (Rootzén and Tajvidi, 2006). (i) Suppose X has MGPD. Then there

exists an increasing continuous curve u with P (X ≤ u(t)) → 1 as t → ∞, and a

function σ(u) > 0 such that

P (Xu ≤ x|X � 0) = P (X ≤ x), (2.22)

for t ∈ [1,∞) and all x.

(ii) If there exists an increasing continuous curve u with P (X ≤ u(t)) → 1 as
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t → ∞, and a function σ(u) > 0 such that Equation 2.22 holds for x > 0 and X

has nondegenerate margins, then X has MGPD.

Remark 12. We can see that similarly to the univariate case, if the limit distribu-

tion for the normalized maxima converges to MEVD then the normalized exceedances

converges to MGPD.

2.3.2 An Invariance Property of MGDP

Focusing first on the bivariate case we can index G in Equation 2.20 by μi, σi, γi

marginal parameters for i = 1, 2 and some function representing the dependence

structure (e.g. exponent measure function V as below). For x1 > 0, x2 > 0 the

BGPD H can be written as

H(x1, x2) = 1− logG(x1, x2)

logG(0, 0)
= 1− V (x1, x2)

V (0, 0)
= 1− V�(τ1(x1), τ2(x2))

V�(τ1(0), τ2(0))
, (2.23)

where

τi(xi) =
−1

logGi(xi)
=

(
1 + γi

xi − μi
σi

)− 1

γi

, i = 1, 2,

and V and V� are the exponent measure functions on the original scale and the unit

Fréchet scale, respectively.

Theorem 9 (Rakonczai and Turkman, 2012). For any (X1, X2) bivariate general-

ized Pareto random vector there is a continuous, increasing curve � starting from

point (0, 0) for which the value of distribution function H(x1, x2) at (x1, x2) ∈ � is

invariant under changing the underlying dependence structure.

Proof: For simplicity we use the following notations:

τ1 = τ1(x1), τ2 = τ2(x1), cτ1 = τ1(0), cτ2 = τ2(0)

and take a closer look on the fraction on the right side of Equation 2.23. It can also

be written in terms of the dependence function as

H(x1, x2) = 1−

(
1
τ1
+ 1

τ2

)
A
(

τ1
τ1+τ2

)
(

1
cτ1

+ 1
cτ2

)
A
(

cτ1
cτ1+cτ2

) . (2.24)
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Figure 2.3: Distribution functions of symmetric logistic BGPD (introduced later in

subsection 3.1.1) with different marginal parameters (dependence parameter α =

1.5). On the black curve the distribution functions are invariant under changing the

dependence structure.

Obviously, if the arguments on the dependence functions are equal, then we can

simplify by them and the rest will not be dependent on A any more. This case

occurs if τ2 =
cτ2
cτ1

τ1 defining a linear function on the transformed scale. In general,

for arbitrary marginal parameters

x2 = τ−12

(
cτ2
cτ1

τ1(x1)

)
, (2.25)

which is a increasing function in x1 as stated in the theorem.

See Figure 2.3 for illustration.

Corollary 1. The curve � defined in Equation 2.25 is linear if the shape parameters

of the marginal distributions are equal. Specifically, it is identity if τ1(·) = τ2(·),
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Figure 2.4: Differences between some parametric BGPD distribution functions (in-

troduced later in subsection 3.1.1 and subsection 3.1.2) are zero on the diagonal

for identical location, scale and shape parameters. The dependence structures are

different, whereas the marginal parameters are μ = 0, σ = 1 and γ = 0.2 in any

case.

namely

μ1 = μ2 , σ1 = σ2, γ1 = γ2.

Corollary 2. Let (X1, X2) and (X ′
1, X

′
2) be bivariate generalized Pareto random

vectors with distribution functions H and H ′, respectively. Let us denote the curve

function in Equation 2.25 as f(·) = τ−12 (cτ2/cτ1τ1(·)). If the marginal parameters

μi, σi, γi for i = 1, 2 are identical for H and H ′ then

H(x, f(x)) = H ′(x, f(x)).

See Figure 2.4 for illustration.
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Exactly the same considerations can be applied for d > 2 dimensions. If

H(x1, . . . , xd) is a d-dimensional MGPD then Equation 2.24 for x1 > 0, . . . , xd > 0

modifies as

H(x1, x2, . . . , xd) = 1−
∑d

i=1
1
τi
A
(

τ1∑d
i=1

τi
, . . . , τd−1∑d

i=1
τi

)
∑d

i=1
1
cτi

A
(

cτ1∑d
i=1

cτi
, . . . ,

cτd−1∑d
i=1

cτi

) .
For further simplicity let us denote cj =

cτj
∑d

i=1
cτi

, for j = 1, . . . , d − 1. We can

simplify by A if its arguments appearing in the nominator and denominator are equal

componentwise. This happens if the following linear equation system is fulfilled

τ1 = c1

d∑
i=1

τi (2.26)

τ2 = c2

d∑
i=1

τi

...

τd−1 = cd−1

d∑
i=1

τi.

The solution of Equation 2.26 is a straight line in the d-dimensional space as

τ1 =
cτ1
cτ2

τ2 = · · · = cτ1
cτd

τd. (2.27)

The coordinates of the curve � on the original space can be then computed recursively

by solving

xj = τ−1j

(
cτj
cτ1

τj−1(xj−1)

)

for j = 2, . . . , d.

Corollary 3. If τ1(·) = · · · = τd(·) then cj = 1/d for j = 1, . . . , d − 1, and

Equation 2.27 leads to a diagonal line on the original scale. Hence for any pairs

of MGPD distribution functions H and H ′ with the above property H(x, . . . , x) =

H ′(x, . . . , x) for x > 0.
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2.3.3 Conditions for an MGPD to be absolutely continuous

For practical applications it is reasonable to require that in the MGPD model

there is no positive probability mass on the boundary of the distribution, because

otherwise the model would not remain absolutely continuous. A model, being not

absolutely continuous, is hardly realistic and causes further complications for maxi-

mum likelihood estimation. The following statement (Rakonczai and Zempléni, 2012)

can be used to construct an absolutely continuous MGPD model from a known ab-

solutely continuous MEVD:

Theorem 10. Let H be a MGPD represented by an absolutely continuous MEVD

G with spectral measure W . H is absolutely continuous ⇔ W (int(Sd)) = d holds,

i.e. all mass is put on the interior of the simplex.

Corollary 4. In the bivariate case, the above statements are also equivalent with

W ({0}) = W ({1}) = 0 and so, due to (Equation 2.17), with

− A′(0) = A′(1) = 1, (2.28)

where A is the Pickands dependence function.

Proof: Here we limit ourself to a special bivariate case, but for higher dimen-

sions analogous calculations can be made. Suppose that (X1, X2) ∼ H is a BGPD

with lower endpoints lx1 , ly2 for its margins. The marginal transformations mapping

X1 and X2 into the unit Fréchet scale are ti = −1/ logGi(xi) for i = 1, 2 as in

subsection 2.2.3. Let the value of the first component of (X1, X2) converge to lx1
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assuming fixed x2 > 0 value for the second one, then

lim
x1→lx1

H(x1, x2) = lim
x1→lx1

logG(x, y)− logG(x ∧ 0, y ∧ 0)

G(0, 0)
= (2.29)

= lim
x1→lx1

logG�(t1, t2)− logG�(t1, t2,0)

G�(t1,0, t2,0)
=

=
1

G�(t1,0, t2,0)︸ ︷︷ ︸
=c0

× lim
x1→lx1

[V�(t1, t2)− V�(t1, t2,0)] =

=
1

c0
× lim

x1→lx1

{∫
S2

max

(
w

t1
,
1− w

t2

)
W (dw)

−
∫
S2

max

(
w

t1
,
1− w

t2,0

)
W (dw)

}
=

=
1

c0
×

{
1

t2
W ({0, 1}) + lim

x1→lx1

∫
S2\{0,1}

w

t1
W (dw)−

− 1

t2,0
W ({0, 1})− lim

x1→lx1

∫
S2\{0,1}

w

t1
W (dw)

}
=

=
1

c0︸︷︷︸
�=0

×
{

1

t2
− 1

t2,0︸ ︷︷ ︸
�=0

}
×W ({0, 1}) =

= 0 ⇔ W ({0, 1}) = 0. �

Remark 13. By Remark 6 the class of absolutely continuous MGPD models does

not include the case of independent margins. This case is discussed in detail in the

Section 3 of Rootzén and Tajvidi (2006).

2.3.4 Density Function of BGPD Models

Following the notation of subsection 2.3.1 let (Y1, Y2) be the observed random

variable, (u1, u2) a given threshold vector and (X1, X2) = (Y1 − u1, Y2 − u2) the

random vector of exceedances. Due to Theorem 7 we can define the bivariate gen-

eralized Pareto distribution (later BGPD) for the exceedances by its distribution

function

H(x1, x2) =
−1

logG(0, 0)
log

G(x1, x2)

G(x1 ∧ 0, x2 ∧ 0)
, (2.30)
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for some BEVD G with nondegenerate margins and with 0 < G(0, 0) < 1. This is

the bivariate version of (Equation 2.20). So practically the probability measure is

positive in the upper three quarter planes and zero in the bottom left one. The main

message of this definition is that the BGPD distribution models those observations

too, which are extremes merely in one component. Similar formula to Equation 2.19

using dependence function A for the BGPD density h can be obtained as in (10) of

Rakonczai and Tajvidi (2010):

Theorem 11. The BGPD density h can be written by the dependence function A

as follows

h(x1, x2) =
t′1t
′
2

c0
× ηA′′(ζ), (2.31)

where t1, t2, t
′
1, t

′
2, ζ, η are the same as previously in Theorem 6 and

c0 = −(t��1 (0) + t��2 (0))A

(
t��2 (0)

t��1 (0) + t��2 (0)

)
.

Proof: It is easy to see, that for the regions where x > 0, y < 0 and x < 0, y > 0

the second derivatives are the same as for x > 0, y > 0. Viz. in the mentioned regions
∂2G(x∧0,y∧0)

∂x∂y
= 0. Taking this into account we see that the density is

h(x, y) =
∂2H(x, y)

∂x∂y
=

∂2

∂x∂y

(
1− logG(x, y)

logG(0, 0)

)
,

where considering the usual marginal standardization logG(x, y) can be written as

logG(x, y) = logG��(− logG1(x),− logG2(y)) =

logG��(t1, t2) = −(t1 + t2)A

(
t2

t1 + t2

)
.

Then the second mixed partial derivative of the above form look as

∂2

∂t1∂t2

(
(t1 + t2)A

( t2
t1 + t2

))
=

∂

∂t2

(
A(ζ) + (t1 + t2)A

′(ζ)
−t2

(t1 + t2)2

)
=

∂

∂t2
(A(ζ)− ζA′(ζ)) = A′(ζ)ζ ′t2 − ζ ′t2A

′(ζ)− ζA′′(ζ)ζ ′t2 =

−t1t2
(t1 + t2)3

A′′(ζ).�
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Illustration for some BGPD density functions can be found in Figure 2.5 and

Figure 2.6. In these figures there is the logistic dependence model chosen as baseline

and both previously proposed examples of Ψ− and Φ−models are applied. A simple

formula for the density of the d-variate MGPD, applying the exponent measure, can

be found in (7) of Rakonczai and Zempléni (2012).
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Figure 2.5: Ψ-logistic BGPD density functions, see subsection 3.1.2 for description

and Figure 3.5 for the applied dependence models.
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Figure 2.6: Φ-logistic BGPD density functions, see see subsection 3.1.2 for descrip-

tion and Figure 3.7 for the applied dependence models.
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Figure 2.7: BGPD density functions based on Smith dependence models, see

Figure 2.8 for the applied dependence models.
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2.3.5 Nonstationary BGPD models

What happens if we intend to use the BGPD model for probabilistic statements

about the future characteristics of extreme events? The stationary BGPD model

may produce biased predictions for the values of future extremes, if the underlying

process actually contains some form of systematic trend over time. This may occur

even when the fitted BGPD model appears to have a good fit to the observed data.

This motivates a generalization of the stationary BGPD model in which the pa-

rameters of the BGPD density (in Theorem 11) are assumed to be time dependent

(see Rakonczai et al., 2010). Extensions of univariate extreme value models to al-

low the values of the parameters to depend upon time or other covariates are well

developed (e.g. Yee & Stephenson, 2007), and bivariate models can be extended in

an analogous way. There are good arguments for filtering out possible trends and

periodicity from the bulk of the data before fitting a model to the extremes (Eastoe

and Tawn, 2009) , but the extremes of the filtered series may still be nonstationary

so the models to be introduced are definitely interesting for practitioners. It is also

possible to directly filter out trends in the extremes, but the outputs obtained from

fitting an extreme value model to the filtered data - e.g. prediction regions, which

we will introduce in the next section - can be difficult to transform back onto the

original scale.

By considering the marginal and the dependence parameters to be functions of

time, rather than constant, more flexibility can be added into the model. Here we

focus on the symmetric logistic dependence structure and linear trends over time for

the parameters of the BGPDmodel. Within this context the density of the stationary

BGPD model (Equation 2.31) is modified by transforming the parameters to be

μi = μi(t) = aμit + bμi (2.32)

σi = σi(t) = aσit+ bσi

ξi = ξi(t) = aξit+ bξi

α = α(t) = aαt+ bα,

where i = 1, 2 and t denotes time. We refer to this as the nonstationary BGPD

model. Each parameter of the stationary BGPD model is replaced by a pair of
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parameters: an intercept, and a linear slope (trend) over time. Of course, these new

parameters are subject to constraints, because the usual conditions that σi(t) > 0,

i = 1, 2 and α(t) > 1 must remain fulfilled across the entire range of observed times

t (and possibly beyond this range). The slope parameters (later: trend) monitor the

rates of change of the individual BGPD parameters over time, so the existence of

a statistically significant slope parameter indicates the presence of time-dependence

within the BGPD model.

Remark 14. If the assumption of linearity is inappropriate for a given application,

then the approach can be extended to include polynomial, exponential, logarithmic

or even periodic functions. It should also be noted that explanatory variables other

than time can be incorporated into the analysis in an analogous way.

2.4 Infinite Dimensional Generalization of EVT

This section describes the latest area of extreme value theory, which provides

further possible field of research and applications. Some parametric subclasses of

max-stable processes lead to new dependence models, which could be considered (if

satisfying Theorem 10) in MGPD models, see Theorem 12 and Theorem 13.

2.4.1 Max-stable Processes

Max-stable processes (de Haan, 1984 and Vatan, 1985) can be thought of an

infinite-dimensional generalization of extreme value theory. Due to Smith (1990)

this idea is extended as a universal approach to modeling extremes of processes with

spatial dependence. In spatial applications there are observations collected on the

points of a space grid and the joint distribution of extreme values at different places

is of interest. Of course, for a finite grid we can consider this problem as another

application of multivariate extreme value theory as in section 2.2, but usually this

leads to untractable explosion in model parameters and hence to further problems

in estimation and prediction.
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Definition 6 (de Haan, 1984). Let T be an index set and {Yi(t)}t∈T ,
i = 1, . . . , n be n independent replications of a continuous stochastic process. Assume

that there are sequences of continuous functions an(t) ∈ R and bn(t) > 0 such that

Z(t) = lim
n→∞

∨n
i=1 Yi(t)− an(t)

bn(t)
for any t ∈ T.

If this limit exists, the limit process Z(t) is a max-stable process.

The univariate margins are GEV distributions as in Equation 2.2 and for any d =

2, 3, . . . the d-dimensional marginal distribution are MEVD. Specially, if an(t) = 0

and bn(t) = n, then the corresponding process, {Z�(t)}t∈T , has unit Fréchet margins.

Similarly to subsection 2.2.3 the standardized process is available by

{Z�(t)}t∈T =

{[
1 +

ξ(t)(Y (t)− μ(t))

σ(t)

]1/ξ(t)

+

}
t∈T

,

where μ(t), σ(t) > 0 and σ(t) are continuous functions. The standardized process Z�

is still a max-stable process. Moreover, if Z� is stationary as well, it can be expressed

by the spectral representation of de Haan and Pickands (1986).Let {πj}∞j=1 be a

Poisson process on R+ with intensity ds/s2 and {Λj}∞j=1 be independent copies of a

stationary process Λ(x) on Rd satisfying

E{0 ∨ Λj(0)} = 0, (2.33)

where 0 denotes the origin. Then

Z� =
∞∨
j=1

{πj × {0 ∨ Λj(x)}} (2.34)

is a stationary max-stable process on Rd with unit Fréchet margins. (For more de-

tails see Smith, 1990.) Different choices for the process Λ(x) lead to some useful

max-stable models. Due to stationarity the joint distribution of Z�(x) is well de-

scribed by the joint distribution of Z�(0) and Z�(h), where 0 and h are the two sites.

Here we recall the two most well-known models, more detailed model summary can

be found in Davison et al. (2011).
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Smith model

One possibility is to take

Λj(x) = r(x− Cj),

where r is a probability density function and {Cj} is a homogeneous Poisson process,

both on Rd. In this case the value of the max-stable process at x may be interpreted

as the maximum over a infinite number of storms, centered at random point Cj and

of strength πj . The case, where r is multivariate normal density was considered by

Smith (1990). The exponent measure function for Z�(0) and Z�(h)

V�(z1, z2) =
1

z1
Φ

(
m(h)

2
+

1

m(h)
log

(
z2
z1

))
(2.35)

+
1

z2
Φ

(
m(h)

2
+

1

m(h)
log

(
z1
z2

))
,

where m2(h) = mTΩ−1m is the so-called Mahalanobis distance between h and the

origin, and Φ is the standard normal distribution function. This is an exchangeable

model, having M = m(h) > 0 as dependence parameter. Independence or complete

dependence between the margins corresponds to the limit M → 0+ or M → ∞,

respectively.

Theorem 12 (Rakonczai and Turkman, 2012). The BGPD model defined by the

Smith model (having exponent measure as in Equation 2.35) is absolutely continuous.

Proof: In order to prove the above statement it is useful to switch to the de-

pendence function representation.

V�(z1, z2) =

(
1

z1
+

1

z2

)
×

(
z2

z1 + z2
Φ

(
M

2
+

1

M
log

(
z2

z1+z2
z1

z1+z2

))

+
z1

z1 + z2
Φ

(
M

2
+

1

M
log

(
z1

z1+z2
z2

z1+z2

)))

=

(
1

z1
+

1

z2

)
A

(
z1

z1 + z2

)
,
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where the dependence function is

A(t) = (1− t)× Φ

(
M

2
+

1

M
log

(
1− t

t

))
(2.36)

+ t× Φ

(
M

2
+

1

M
log

(
t

1− t

))
,

For the BGPD density, we need to check the conditions in Equation 3.2, namely the

left and right limit of the first order derivative of A(t) in Equation 2.36 should be

computed at 0 and 1 respectively. Straightforward calculations shows that the limits

of A′(t)

A′(t) = −Φ

(
M

2
+

1

M
log

(
1− t

t

))

+ (1− t)× Φ′

(
M

2
+

1

M
log

(
t

1− t

))
× 1

M(1 − t)t

+ Φ

(
M

2
+

1

M
log

(
1− t

t

))

+ t× Φ′

(
M

2
+

1

M
log

(
t

1− t

))
× −1

M(1− t)t

are limt→0+ A′(t) = −1 + 0 + 0 + 0 = −1 and limt→1− A′(t) = 0 + 0 + 1 + 0 = 1,

hence Equation 3.2 ensures that BGPD constructed by this dependence model has

a density function. �

For graphical illustration of A(t) and its derivatives see Figure 2.8. (Some other

plots of BGPD density functions based on Smith dependence function are presented

later, in Figure 2.7.)

Remark 15. The Brown-Resnick (Section 6 in Davison et al., 2011) model leads

to the same bivariate dependence model as in Equation 2.36.

Schlather model

Another possibility is to take {Λj} to be a stationary standard Gaussian pro-

cess with correlation function �(h), scaled so that Equation 2.33 remain valid. The
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Figure 2.8: Dependence functions of the Smith model with different parameters and

the derivatives verifying Equation 3.2.

exponent measure function for Z�(0) and Z�(h) is

V�(z1, z2) =
1

2

(
1

z1
+

1

z2

)(
1 +

[
1− 2(�(h) + 1)

z1z2
(z1 + z2)2

]1/2)
. (2.37)

This model is appealing as it allows the use of the rich variety of correlation functions.

Unfortunately the positive definiteness of �(h) imposes constraints on the level of

asymptotic dependence (e.g. in some cases asymptotic independence can not be

approached).

Theorem 13 (Rakonczai and Turkman, 2012). The BGPD model defined by the

Schlather model (having exponent measure as in Equation 2.37) is not absolutely

continuous.

Proof: In order to prove the above statement it is useful to switch to the de-

pendence function representation. Let us define the dependence parameter M =

2(�(h)+1) ∈ (0, 4). Hence, independence or complete dependence between the mar-

gins corresponds to the limit M → 0+ or M → 4−, respectively. (M could be defined
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at the endpoints 0 and 4 as well, but in these cases the BGPD is degenerate anyway.)

V�(z1, z2) =

(
1

z1
+

1

z2

)
×
(
1

2
+

1

2

[
1−M

z1
z1 + z2

z2
z1 + z2

]1/2)

=

(
1

z1
+

1

z2

)
A

(
z1

z1 + z2

)
,

where

A(t) =
1

2
+

1

2

[
1−Mt(1− t)

]1/2

. (2.38)

By checking the conditions Equation 3.2 for A′(t)

A′(t) = −1

2

((
1−M × t(1− t)

)− 1

2 ×
(1
2
M × (1− 2t)

))

we found that at the two endpoints the first derivative is dependent on the de-

pendence parameter: limt→0+ A′(t) = −1/4 ×M and limt→1− A′(t) = 1/4 ×M (for

illustration see the right panel in Figure 2.9). Therefore Equation 3.2 can not be

fulfilled for any M ∈ (0, 4). This means that the Schlather model does not lead to

an absolutely continuous BGPD model. �

Additional literature related to modeling extreme events can be found e.g. in Coles

(2001), Finkenstadt and Rootzén (2004), Galambos (1987), Gumbel (1958), de Haan

and Ferreira (2006), Leadbetter et al. (1983), Reiss and Thomas (2007) and Resnick

(1987). An add-on R packages as evd by Stephenson (2002) and SpatialExtremes

by Ribatet (2012) are also available.

2.4.2 Connection to Generalized Pareto Processes

The generalization of the GPD concept, called the generalized Pareto process,

is defined in (3.1) of the very recent paper of Ferreira and de Haan (2012). In the

same paper it is shown (Theorem 4.1) that if a process X is in the domain of

attraction of a max-stable process then it is necessarily in the domain of attraction
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Figure 2.9: Dependence functions of the Schlather model with different parameters

and the derivatives, Equation 3.2 is not fulfilled.

of the corresponding generalized Pareto process and both limiting processes share

the same exponent measure. This results of the above authors are new and provide

various possibilities for further applications of threshold exceedance models in spatial

analysis of extremes.
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Chapter 3

Parametric Families and

Extensions

3.1 Models in 2D

In the previous chapter when representing the characterizations of MEVD and

MGPD models there has been no parametric assumption made. Although, of course,

for statistical inference it is very useful to have rich and flexible parametric families

satisfying the constraints of the representations. In this section we show numer-

ous subclasses of dependence structures, and also propose a construction method

for building further asymmetric models based on the existing ones. We take spe-

cial care on those models which lead to absolutely continuous MGPD models (see

Theorem 10), as we intend to use maximum likelihood inference as well when ap-

plying them to wind speed data later on.

3.1.1 Classes of Bivariate Dependence Models

The most popular and well-studied dependence models are collected below. The

list is not exhaustive but covers a rather wide range of families. Further details about

the presented dependence models can be found in the respective papers indicated,

giving the first appearance of the related models. Further models can be found

e.g. in Section 3.4 of Kotz and Nadarajah (2000) or in Section 9.2.2 of Beirlant

45
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et al. (2004).We present the exponent measure function V� from Equation 2.8 as

well as the spectral density w(t) from Equation 2.12 for every model. (Although

dependence functions are not explicitly given below, some graphical illustrations by

the evd package of R can be found in Figure 3.1, Figure 3.2, and Figure 3.3).

Asymmetric logistic model (Tawn, 1988)

V�(x, y) = (1− ψ1)/x+ (1− ψ2)/y + ((ψ1/x)
α + (ψ2/y)

α)1/α

w(t) = (α− 1)ψα1ψ
α
2 (t(1− t))α−2((ψ2t)

α + (ψ1(1− t))α)1/α−1,

where α > 1 and 0 ≤ ψ1;ψ2 ≤ 1. It allows exchangeability unless ψ1 = ψ2. In the

special case if ψ1 = ψ2 = 1, it is called symmetric logistic model. This is the only

case when the model has all its mass in the interior of the simplex W , otherwise

W ({0}) = 1− ψ2 and W ({1}) = 1− ψ1.

Asymmetric negative logistic model (Joe, 1990)

V�(x, y) = 1/x+ 1/y − ((ψ1/x)
α + (ψ2/y)

α)−1/α

w(t) = (1− α)ψα1ψ
α
2 (t(1− t))α−2((ψ2t)

α + (ψ1(1− t))α)1/α−1,

where α > 0 and 0 < ψ1;ψ2 ≤ 1. W ({0}) = 1 − ψ2, W ({1}) = 1 − ψ1 and so

ψ1 = ψ2 = 1 gives the only symmetric version with all its mass in the interior. We

refer to it as the symmetric negative logistic model.

Bilogistic model (Smith, 1990)

V�(x, y) =

∫
[0,1]

max

{
(ψ1 − 1)z−1/ψ1

ψ1x
,
(ψ2 − 1)(1− z)−1/ψ2

ψ2y

}
dz,

where ψ1;ψ2 > 1. A disadvantage is though, that there is only an implicit formula

for its spectral density on (0, 1) in terms of the root of an equation as

w(t) =
(1− ψ1)(1− q)q1−ψ1

(1− t)t2((1− q)ψ1 + qψ2)
,
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Figure 3.1: Asymmetric dependence functions: logistic and negative logistic models.

where q = q(x, y;ψ1, ψ2) is the root of the equation

(1− ψ1)x(1− q)ψ2 − (1− ψ2)yq
ψ1 = 0.

For valid input parameters the equation has a unique root in [0,1], what makes the

numerical root finding quite handy in this case.

Negative bilogistic model (Coles and Tawn, 1994)

The negative bilogistic model has the same exponent measure function as the bil-

ogistic model except that in this case ψ1;ψ2 < 0. The spectral density is wNegbilog(t) =

−wBilog(t) and similarly W ({0}) = W ({1}) = 0.

Tajvidi’s generalized symmetric logistic model (Tajvidi, 1996)

V�(x, y) =

((1
x

)2α

+ 2(1 + ψ)
( 1

xy

)α
+
(1
y

)2α
) 1

2α

,

where 1 ≤ α and 1 < ψ ≤ 2α− 2. Complete dependence arises when α → ∞, while

independence occurs as α = 1 and ψ = 0. The model has all its mass in the interior
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Figure 3.2: Asymmetric dependence functions: bilogistic and negative bilogistic mod-

els.

of the simplex, W ({0}) = W ({1}) = 0.

Polynomial model (Klüppelberg and May, 1999)

V�(x, y) = 1/x+ 1/y −
m∑
k=2

ψk

m−k∑
l=0

(
m− k

l

)
xl+k−1ym−k−l−1

(x+ y)m−1

w(t) = m(m− 1)ψmt
m−2 + (m− 1)(m− 2)ψm−1t

m−3 + ...+ 2ψ2,

where ψ2 > 0,
∑m

k=2 ψk ≥ 0, 0 ≤ ∑m
k=2(k − 1)ψk ≤ 1 and

∑m
k=2 k(k − 1)ψk ≥ 0.

The spectral measure W on the boundary points is W ({0}) = 1 − ∑m
k=2 ψk and

W ({1}) = 1−∑m
k=2(k − 1)ψk.

A special case is the asymmetric mixed model (Tawn, 1988)

V�(x, y) = 1/x+ 1/y − xy(x+ y)−2((ψ1 + ψ2)/x+ (ψ1 + 2ψ2)/y)

w(t) = ψ1t
3 + ψ2t

2 − (ψ1 + ψ2)t + 1,

where ψ1 ≥ 0, ψ1 + ψ2 ≤ 1, ψ1 + 2ψ2 ≤ 1 and ψ1 + 3ψ2 ≥ 0. When ψ1 = 0, the

asymmetric mixed model reduces to the symmetric mixed model, in such a case
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W ({0}) = 1−ψ2 and W ({1}) = 1−ψ2. Consequently ψ2 = 1 is the only symmetric

case when all mass is in the interior of [0,1].

Beta model (Coles and Tawn, 1991)

The beta model is asymmetric and satisfies W ({0}) = W ({1}) = 0 like the two

bilogistic models above.

V�(x, y) = 1/x(1− β(ψ1 + 1, ψ2; q)) + 1/yβ(ψ1, ψ2 + 1; q) (3.1)

and

w(t) =
ψψ1

1 ψψ2

2 Γ(ψ1 + ψ2 + 1)

Γ(ψ1)Γ(ψ2)

tψ1−1(1− t)ψ2−1

(ψ1t+ ψ2(1− t))1+ψ1+ψ2
, t ∈ (0, 1),

where q = ψ1y/(ψ1y + ψ2x) ψ1, ψ2 > 0 and β() is a normalized incomplete beta

function.

Remark 16. Although this model family origins from the Beta(ψ1, ψ2) density func-

tion

w̄(t) =
Γ(ψ1 + ψ2)

Γ(ψ1)Γ(ψ2)
tψ1−1(1− t)ψ2−1

applying the construction form in Equation 2.13, there is also an explicit formula

for the exponent measure.

3.1.2 Construction of new asymmetric models in 2D

Here we focus on those specific dependence models, which can be considered

in absolutely continuous BGPD models. Since BGPD models are defined by the

underlying BEVD model, and since BEVD models are defined by their dependence

structures, the most popular parametric families for describing the dependence struc-

tures of BEVD models might be considered for the BGPD models. Unfortunately

not all of them can be applied without further complications. E.g. we pointed out

earlier that a class of BGPD, represented by an absolutely continuous class of BEVD,

is not necessarily absolutely continuous. Conditions providing absolutely continuous

MGPD models can be found in Theorem 10 and equivalent forms for BGPD are pre-

sented in Corollary 4. Some important properties of these models are summarized in
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Table 3.1: Summary of bivariate dependence models. The asymmetric logistic and

negative logistic are not absolutely continuous. Asymmetric models with valid den-

sity are the bilogistic, negative bilogistic and Dirichlet models, but all of them have

further complications in calculation. New models denoted by ∗ are proposed later in

subsection 3.1.2.

Model Asym. Density Complications

Sym. Logistic − � −
Asym. Logistic � − −
Ψ-logistic∗ � � convexity constraints

Φ-logistic∗ � � convexity constraints

Sym. Neg. Logistic − � −
Asym. Neg. Logistic � − −
Ψ-negative logistic∗ � � convexity constraints

Φ-negative logistic∗ � � convexity constraints

Bilogistic � � not explicit

Neg. Bilogistic � � not explicit

Tajvidi’s − � −
C-T � � only w(t) is given

Mixed − if ψ2 = 1 −
Asym. Mixed � − −
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Figure 3.3: Asymmetric dependence functions: Coles-Tawn (or Beta) and asymmet-

ric mixed models.

Table 3.1. All of the presented parametric models have dependence function which

are differentiable in (0, 1), hence without mentioning specifically it is assumed by

default. The first and second column together show which specific parametric cases

include an absolutely continuous and asymmetric model. From the third column of

Table 3.1 we can see that there are a lack of easily computable asymmetric models,

especially if all probability mass is required to be put on the interior of the simplex

S2, ensuring the absolute continuity of the model. The bilogistic and negative bilo-

gistic models do not have an explicit formula for their exponent measure function.

The C-T model only have an explicit formula for the spectral density.

In order to extend the possible classes of models we propose a methodology,

which allows for the construction of new dependence models with extra asymmetry

parameter(s) from any valid models (four examples are denoted by ∗ in Table 3.1). As

the result of this method we may obtain more flexible asymmetric models defining

a new class of absolutely continuous BGPD. We illustrate the method - only for

mathematical simplicity - in the bivariate setting, but the same methodology can

be eliminated to the higher dimensional cases as well (see subsection 3.2.2). As the
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method is based on the representation of the BGPD by the dependence function,

we recall that if the extra condition Equation 3.2

−A′(0) = A′(1) = 1 (3.2)

is fulfilled, then the corresponding BGPD is absolutely continuous. Hence we need

to find a suitable transformation Υ(x) as the next algorithm shows:

1. Take a parametric baseline dependence model satisfying the extra condi-

tion in Equation 3.2 as well (e.g. symmetric logistic/negative logistic/mixed,

etc.);

2. Take a strictly monotonic transformation

Υ(x) : [0, 1] → [0, 1], such that Υ(0) = 0, Υ(1) = 1;

3. Construct a new dependence model from the baseline model

AΥ(t) = A(Υ(t));

4. Check whether AΥ is still a valid dependence function satisfying even the

extra condition of Equation 3.2.

For the construction it is natural to assume that it has a form of

Υ(t) = t + f(t),

hence (
A(Υ(t))

)′
= A′(Υ(t))Υ′(t) = A′(Υ(t))× [1 + f ′(t)] (3.3)(

A(Υ(t))
)′′

= A′′(t + f(t))(1 + 2f ′(t)) + A′(t+ f(t))f ′′(t).

Then by choosing f such that f ′(0) = f ′(1) = 0, (Equation 3.2) remains automat-

ically fulfilled. although the boundary condition and convexity need to be checked.

Particulary, convexity (the positivity of the second derivative) ensures the existence

of the density. In the following there are two different examples shown, which ones

in general lead to a wide class of valid models.
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Figure 3.4: Two-parametric class of transformations for model extension. (The cho-

sen parameters are arbitrary, and do not necessarily fulfill any constrains for the

resulted dependence function.) Upper panels: some fψ1,ψ2
functions; Lower panels:

some fφ1,φ2 functions.

3.1.3 Example 1: Ψ-transformation

Rakonczai and Zempléni (2012) found that the following functional form leads

to a wide class of valid models

fψ1,ψ2
(t) = ψ1(t(1− t))ψ2 , for t ∈ [0, 1], (3.4)

where ψ1 ∈ R and ψ2 ≥ 1 are asymmetry parameters. The transformation involving

fψ1,ψ2
will be denoted by Ψ in the following. Applications on logistic dependence are

shown in Figure 3.5. Numerically computed parameter regions verifying convexity

can be found in Figure 3.6 for Ψ−logistic (on the left) and Ψ−negative logistic (on
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Figure 3.5: Ψ-logistic dependence functions and their derivatives.
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Figure 3.6: Parameters ranges of ψ1, ψ2 and α fulfilling convexity constraints. The

valid parameters are between the identically colored curves for a given α.

3.1.4 Example 2: Φ-transformation

As the function f in Equation 3.4 takes only non-positive or non-negative values

for a given set of parameters, it might be useful to find another functional form which
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Figure 3.7: Φ-logistic dependence functions and their derivatives.

allows positive and negative values as well. (By doing so the graph of transformation

goes below and over the identity). We may try to find a function with two parameters

φ1, φ2 which satisfies the following constraints (C):

� fφ1,φ2(0) = fφ1,φ2(1) = 0 and f ′φ1,φ2(0) = f ′φ1,φ2(1) = 0,

� fφ1,φ2

(
1
φ2

)
= 0,

� fφ1,φ2

(
1

2φ2

)
= φ1 and fφ1,φ2

(
φ2+1
2φ2

)
= −φ1.

By using Hermite interpolation it is easy to find a polynomial of degree 6 according

to (C)

fφ1,φ2(t) =
64φ1(φ

5
2 − φ4

2 − 2φ3
2 − 2φ2

2 + 5φ2 − 2)φ5
2

(φ2 + 1)2(φ2 − 1)2(−1 + 2φ2)(1 + 2φ2
2 − 3φ2)

t6

+
−32φ1(5φ

6
2 − 2φ5

2 − 13φ4
2 − 12φ3

2 + 15φ2
2 + 6φ2 − 6)φ4

2

(φ2 + 1)2(φ2 − 1)2(−1 + 2φ2)(1 + 2φ2
2 − 3φ2)

t5

+
32φ1(4φ

7
2 + 3φ6

2 − 14φ5
2 − 15φ4

2 + 23φ2
2 − 8φ2 − 2)φ3

2

(φ2 + 1)2(φ2 − 1)2(−1 + 2φ2)(1 + 2φ2
2 − 3φ2)

t4

+
−32φ1(φ

7
2 + 4φ6

2 − 5φ5
2 − 10φ4

2 − 5φ3
2 + 12φ2

2 + 2φ2 − 4)φ3
2

(1 + 2φ2
2 − 3φ2)(φ2 + 1)2(4φ2 − 1 + 2φ3

2 − 5φ2
2)

t3

+
32φ1(φ

6
2 − 3φ4

2 − φ2
2 + 4φ2 − 2)φ3

2

(1 + 2φ2
2 − 3φ2)(φ2 + 1)2(4φ2 − 1 + 2φ3

2 − 5φ2
2)
t2.

(See Figure 3.7 for examples with logistic baseline.) The transformation involving

fφ1,φ2 will be denoted by Φ in the following. The same transformation is discussed
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in section 2.3 of Rakonczai (2012). Applications on logistic dependence are shown

in Figure 3.7.

Finally, solving the convexity inequations provides the valid range for the asymme-

try parameters. We should note, however, that this range depends on the parameters

of the baseline dependence model. As the set of valid parameters are often too com-

plicated to determine beforehand, we would rather suggest to check to convexity for

any set of parameters one by one and then accept or reject them accordingly. The

shape of the valid parameter set - verifying convexity - is investigated by numerical

calculations in the MSc. thesis of Kusper (2010), where e.g. Figure 12 shows 3 re-

gions of (ψ1, ψ2) asymmetry parameters assuming different dependence parameters

α = 0.3, 0.5 and 0.8 within the Φ−logistic model, respectively.

Remark 17. We should also note that the baseline model is embedded in the new

classes as for ψ1 = 0 or φ1 = 0 the transformations coincide with identity. This

fact helps in estimating the new parameters setting the baseline parameters as initial

parameters for further optimization.

In the next two sections we will see how the bivariate densities can be computed

from the characterization by the dependence function. These densities will be the

base for the maximum likelihood estimation, prediction regions and goodness-of-fit.

3.2 Models in d > 2 dimension

In this section we investigate some well-known parametric dependence structures

which can be possibly considered in the MGPD framework. Beyond that we will gen-

eralize the procedure of subsection 3.1.2 for higher dimensions. In subsection 3.2.2

we present how even a very simple symmetric dependence model with one single

dependence parameter can be expanded to a very flexible family with additional

asymmetry parameters. These novel structures have been applied for wind data in

subsection 5.4.3.
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3.2.1 Classes of Multivariate Dependence Models

There are four multivariate models presented in this section. The first two models

generally do not fulfill the condition of Theorem 10, but in the simplest symmetric

case both of them do, allowing us to consider these symmetric models as base-

line models for model construction. The third and fourth model are rather popular

asymmetric models for MEVD. Although both of them satisfy even the condition

of Theorem 10 their application in the MGPD framework is cumbersome as there

is no explicit formula available for their exponent measure. (Some inference can

be done though using some advanced statistical estimation methods presented in

subsection 4.1.2 later.)

Multivariate Asymmetric Logistic Model (Tawn, 1990)

Let B be the set of all non-empty subsets of {1, . . . , d}, let B1 = {b ∈ B : |b| = 1},
where |b| denotes the number of elements in the set b, and let Bi = {b ∈ B : i ∈ b}.
The exponent measure function assuming unit Fréchet margins is

V�(x1, . . . , xd) =
∑
b∈B

{∑
i∈b

(ψi,b
xi

)αb

}1/αb

,

where the dependence parameters αb > 1 for all b ∈ B \ B1, and the asymmetry

parameters ψi,b ∈ [0, 1] for all b ∈ B and i ∈ b. Further constraints and associated

densities can be found in Kotz and Nadarajah (2000), see Section 3.5.1. It is easy

to see (based on the bivariate case) that any nontrivial asymmetric setting of pa-

rameters leads to positive mass on the boundary, and so violates the constraints

of Theorem 10. Only the multivariate symmetric logistic model fulfills the above

requirements. Unfortunately this version is very limited, as it has one single param-

eter to capture the strength of dependence among all components. Its dependence

function in the trivariate case is the following

ATriv.Sym.Log =
(
tα1 + tα2 + (1− t1 − t2)

α
) 1

α

, (3.5)

where α > 1. Graphical illustration of this dependence function is in Figure 3.8.
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Figure 3.8: Dependence functions of trivariate symmetric logistic dependence mod-

els.

Multivariate Asymmetric Negative Logistic Model (Joe, 1990)

The exponent measure function assuming unit Fréchet margins is

V�(x1, . . . , xd) =

d∑
i=1

1

xi
−

∑
b∈B:|b|≥2

(−1)|b|

{∑
i∈b

(
ψi,b
xi

)αb

}1/αb

,

where the dependence parameters αb > 0 for all b ∈ B \ B1, and the asymmetry

parameters ψi,b ∈ [0, 1] for all b ∈ B and i ∈ b. Further constraints and associ-

ated densities can be found in Kotz and Nadarajah (2000), see Section 3.5.2. Simi-

larly to the logistic structure only the symmetric version fulfills the requirements of

Theorem 10. Its dependence function in the trivariate case is the following

ATriv.Sym.Neg.Log = 1−
(
t−α1 + t−α2 + (1− t1 − t2)

−α
)− 1

α

, (3.6)
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where α > 0. Graphical illustration of this dependence function is in Figure 3.9.
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Figure 3.9: Dependence functions of trivariate symmetric negative logistic depen-

dence models.

Dirichlet Model (Coles and Tawn, 1991)

Applying Equation 2.13 for the p-variate Dirichlet density function we can con-

struct the following spectral density

w(t) =
Γ(ψ1 + · · ·+ ψd)

(ψ1t1 + . . . ψdtd)d+1

d∏
j=1

ψj
Γ(ψj)

d∏
j=1

( ψjtj
ψ1t1 + . . . ψdtd

)ψj−1

, (3.7)

where ψi > 0 for j = 1, . . . , d and t ∈ Sd. This leads to an asymmetric structure,

symmetry arises when ψ1 = · · · = ψd. The form for the exponent measure is compli-

cated, only numerically computable. For more details see Section 3.5.4 in Kotz and

Nadarajah (2000).
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Remark 18. We should notice a useful property of this model. If (X1, . . . , Xd)

has Dirichlet dependence structure with (ψ1, . . . , ψd), then (Xi, Xj) has bivariate

Dirichlet (see Beta model in section 3.1.1) structure with parameters (ψi, ψj) for

each i �= j.

Pairwise Beta Model (Cooley et al.,2010)

Similarly to the Dirichlet model the pairwise beta model is also defined by its

spectral density. This is based on the pairwise beta density below

wi,j(t;ψ) =
d− 1√

d

Γ(2ψ)

Γ(ψ)2

(
ti

ti + tj

)ψ−1(
tj

ti + tj

)ψ−1

, (3.8)

where t ∈ Sd, ψ > 0 and 1 ≤ i < j ≤ d. Using this structure for every d(d−1)
2

pairs,

after the necessary standardization we get the pairwise beta model as follows

w(t;α, (ψ)i,j) =
1(
d
2

) 1

(d− 1)(d− 2)

Γ(αd+ 1)

Γ(2α + 1)Γ{α(2− 2)} (3.9)

×
∑

1≤i<j≤d

(ti + tj)
2α−1{1− (ti + tj)}(α−1)(d−2)wi,j(t;ψi,j),

where α > 0 is an additional global parameter. This model allows for asymmetry

and the parameters are easy to interpret as well.

Remark 19. This model is actually proven to be a special case of a more general

construction principle, for more details see Ballani and Schlather (2011). The beta

distributions may be replaced by any other distribution on [0, 1] with expectation 1/2.

Further distributions constructed in the above paper are the pairwise exponential,

weighted Dirichlet and weighted exponential models.

3.2.2 New asymmetric models in higher dimensions

The idea of subsection 3.1.2 can be applied successfully in higher than 2 dimen-

sional cases as well. Finding a baseline model according to Theorem 10 (as e.g. in

Equation 3.5 or in Equation 3.6) and a feasible transformation preserving the nec-

essary constraints of a (multivariate) dependence function
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1. max(t1, . . . , td) ≤ A(t1, . . . , td−1) ≤ 1;

2. A(t1, . . . , td−1) is convex;

may lead to a more flexible class of dependence structures. Although by increasing

dimensions, checking convexity becomes more and more computationally intensive,

we may check the second-order condition for convexity, i.e. A is convex if and only

if the Hessian matrix

∇2A(t)i,j =
∂2A(t)

∂ti∂tj
, (3.10)

for i, j = 1, . . . , d − 1 is positive semi-definite for all t ∈ Sd−1. Expanding the idea

of the Ψ−transformation in subsection 3.1.3 we can consider Ψ(t1, . . . , td−1) as(
t1 + ψ1,1

(
t1

[
1−

d−1∑
i=1

ti

])ψ1,2

, . . . , td−1 + ψd−1,1

(
td−1

[
1−

d−1∑
i=1

ti

])ψd−1,2

)
.

For instance we can take the trivariate symmetric logistic dependence model

(Equation 3.5) and apply the following transformation

Ψ(t1, t2) = (t1 + ψ1,1(t1(1− t1 − t2))
ψ2,1 , t2 + ψ2,1(t2(1− t1 − t2))

ψ2,2),

by choosing ψ1,1 = 0.1, ψ1,2 = 2, ψ2,1 = 0.2, ψ2,2 = 2. The differences between the

new models and the baseline models are illustrated in Figure 3.10 for different α

dependence parameters. Further comparisons between the second order derivatives

of the above models can be found in Figure 3.11.
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Figure 3.10: Differences between the trivariate Ψ− logistic (ψ1,1 = 0.1, ψ1,2 =

2, ψ2,1 = 0.2, ψ2,2 = 2) and the baseline logistic models with different α dependence

parameters.
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Figure 3.11: Second order derivatives for the trivariate Ψ−logistic (ψ1,1 = 0.1, ψ1,2 =

2, ψ2,1 = 0.2, ψ2,2 = 2), the baseline logistic model with α = 2 dependence parameter

and the differences between the above two functions.
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3.3 Copula Models

This approach for describing dependence is more general than those mentioned

above as copulas are applicable for any multivariate distribution. The main the-

orem is proven by Sklar (1959) who has shown that for any d-variate distribu-

tion function H , with univariate margins Fi there exits a copula C, a distribution

over the d-dimensional unit cube, with uniform margins, such that H(x1, ..., xd) =

C(F1(x1), ..., Fd(xd)). Moreover the copula C is unique if the marginal distributions

are continuous. For more details see Chapter 4 in Cherubini et al. (2004). In the

following we present the characterization of MEVD by copulas and give a brief

introduction of some parametric copula families which are not strictly linked to

MEVD.

Extreme Value Copulas

The extreme value copula family is used to represent the MEVD by uniformly

distributed margins.

Definition 7. The copula CMEV is called to be an extreme value copula if it is a

copula of a MEVD G as

G(x) = CMEV(G1(x1), ..., Gd(xd)). (3.11)

This family is well characterized by the stability property defined as follows.

Definition 8. A copula C is called to be stable if Cs(u) = C(us1, ..., u
s
d).

It can be shown that an extreme value copula of a MEVD must necessarily be

stable and conversely, if a copula is stable then it is an extreme value copula. As the

copula representation is also an equivalent form for a MEVD, it is possible to write

it in terms of the other dependence concepts. For instance a bivariate extreme value

copula can be written in terms of Pickands dependence function as

CBEV(u1, u2) = exp

{
log(u1u2)A

(
log u2

log u1u2

)}
, (u1, u2) ∈ [0, 1]2.



3.3. COPULA MODELS 65

Elliptical Copulas

Elliptical copulas are the copulas of elliptical distributions as multivariate Gauss

or Student-t distributions (see 4.8 in Cherubini et al. 2004).The main advantage of

this class is that one can specify different levels of correlation for every pairs of

margins. Unfortunately they do not have closed form expressions and are restricted

to have radial symmetry. The Gaussian copula family can be derived from the mul-

tivariate Gaussian distribution function with mean zero and correlation matrix Σ,

transforming the margins by the inverse of the standard normal distribution function

Φ as

CGa
Σ (u) = ΦΣ(Φ

−1(u1), ...,Φ
−1(ud)) (3.12)

=

∫ Φ−1(u1)

−∞

...

∫ Φ−1(ud)

−∞

1

(2π)
n
2 |Σ| 12

e−
1

2
xTΣ−1xdx1...dxd.

See Figure 3.12 for bivariate distribution and density functions of the Gaussian cop-

ula. Another member of the elliptical copula family is the Student’s t copula, is sim-

ilar to Equation 3.12, but the Gaussian distributions are replaced by t-distributions

in the formula. The Student’s t copula is defined as

CT
Σ,υ(u) = tΣ,υ(t

−1
υ (u1), ..., t

−1
υ (ud)) (3.13)

=

∫ t−1
υ (u1)

−∞

...

∫ t−1
υ (ud)

−∞

Γ(υ+n
2
)|Σ| 12

Γ(υ
2
)(υπ)

n
2

(
1 +

1

υ
xTΣ−1x

) υ+n
2

dx1...dxd,

where υ is the number of degrees of freedom.

Archimedean Copulas

Another broad class of copulas is called the Archimedean copula-family. Its struc-

ture is based on a so-called generator function: φ(u) : [0, 1] → [0,∞], which is con-

tinuous and strictly decreasing with φ(1) = 0. Then a d-variate Archimedean copula

function is

Cφ(u) = φ−1
( d∑
i=1

φ(ui)

)
.

Although this family has a very simple construction, it unfortunately suffers from

considerable limitations. For instance there is only one parameter (or just few) to
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Figure 3.12: Bivariate distribution and density functions of the Gaussian copula with

different dependence parameters. In the upper panels θ = 0.2, in the lower panels

θ = 0.6.

capture the entire dependence structure and by its construction all of these copulas

are permutation symmetric (exchangeable). This means that all s < d dimensional

margins are identically distributed, which is usually a too strict assumption in many

applications. Here we present two examples from this family, namely the Clayton

and the Gumbel copula.

The generator function of the Clayton copula (also known as Cook and Johnson’s

family) is given by φθ(u) = u−θ−1,where θ > 0. Thus, the Clayton d-copula function

is the following

CClayton(u) =

( d∑
i=1

u−θi − d+ 1

)− 1

θ

. (3.14)
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The Gumbel copula has the generator φθ(u) = [−ln(u)]θ,where θ ∈ [1,+∞). Thus,

the Gumbel d-copula function is given by

CGumbel(u) = e−(
∑d

i=1
− log(ui)θ)

1
θ . (3.15)

See Figure 3.13 for bivariate distribution and density functions of the Gumbel cop-

ula.

Remark 20. It should be noted that the Gumbel copula also satisfies the stability

property in Equation 3.11 and so it belongs to both of the Archimedean and extreme

value copula families at the same time. It is actually equivalent with the symmetric

logistic structure in section 3.1.1.

Additional literature related to copula modeling can be found e.g. in Cherubini

et al. (2004), Joe (1997), McNeil et al. (2005) and Nelsen (2006).

3.4 From Copulas to Autocopulas

In this section we extend the use of copulas to the interdependence structure

of stationary time series, to the analogy of the autocorrelation function. We give

a general definition and also a simplified (bivariate) version, which is often largely

sufficient for practical purposes.

Definition 9 (Rakonczai et al. 2008a,2008b,2011). Given a strictly stationary time

series Yt and L = {li ∈ Z+, i = 1, ..., d} a set of lags, the autocopula CY,L is defined

as the copula of the d+ 1-dimensional random vector (Yt, Yt−l1 ..., Yt−ld).

Let us remark that the supposed strict stationarity implies that the autocopula

does not depend on t.

Definition 10 (Rakonczai et al. 2008a,2008b,2011). Given a strictly stationary time

series Yt and l ∈ Z+ the l-lag autocopula CY,l is the copula of the bivariate random

vector (Yt, Yt−l). The l-lag autocopulas as the function of the lag l give the autocopula

function.
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Figure 3.13: Bivariate distribution and density functions of the Gumbel copula with

different dependence parameters. In the upper panels θ = 1.1, in the lower panels

θ = 2.

One of the most commonly used parametric copula family is the Gauss copula

family (see Equation 3.12), for which case the dependence structure is completely

determined by the covariances. In the time series setup, the Gaussian copula plays a

very specific role, as linear processes with Gaussian innovations give rise to Gaussian

copulas as both their serial copulas and autocopulas. We emphasize here the depen-

dence of the autocopula on the marginal distribution of the noise by mentioning that

linear processes with non-Gaussian innovations do not, in general, have Gaussian

autocopulas. Gaussian linear time series with autocorrelation decaying quicker than

1/ log(t) do have Gaussian-like interdependence, e.g. their extremes cannot appear

to be synchronized. This property can be quantified by the tail-dependence χ (see

Equation 5.1 later), which is 0 for the Gaussian copula. While covariances are fully
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representative of interdependence in the Gaussian case, they are insufficient for non-

Gaussian distributions, especially fail to represent the extremal dependence. Later,

in subsection 4.3.2 we present goodness-of-fit tests for copula models, which will be

very useful in section 4.6 for testing the autocopulas.
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Chapter 4

Estimation, Goodness-of-Fit and

Simulation

4.1 Parametric Estimation

In this section we summarize the most important results about maximum like-

lihood approaches. After the standard results we introduce a method known from

the area of spatial statistics providing a very useful tool for estimating models in

higher dimensions.

4.1.1 Maximum Likelihood Estimation

In the univariate case, Theorem 1 and Theorem 2 can be used to construct es-

timation methods for the distribution of maxima or exceedances. It is pointed out

in Section 6.3.1 of Embrechts et al. (1997) that there is no explicit solution to the

maximum likelihood equations. However in regular cases, when ξ > −1/2, there

are reliable numerical procedures to find the maximum likelihood estimators. These

estimators are efficient, consistent and asymptotically normal. Full discussion about

the properties of the estimators, including non-regular (ξ ≤ −1/2) cases can be

found in Smith (1985).

Remark 21. For applications in insurance, finance or quite a few environmental

71
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data sets the cases of non-negative shape parameter ξ ≥ 0 are the most relevant, as

these data can rarely be supposed to be bounded to the right.

As it was proven in Smith (1985), maximum likelihood estimators behave regu-

larly in the multivariate case, if the above condition is fulfilled marginally, that is

ξi ≥ −1/2 for i = 1, . . . , d. In some cases estimators for the dependence parame-

ters can be supperefficient. For more details, see Section 3.6 in Kotz and Nadarajah

(2000). An explicit algebraic formula of the Fisher information matrix is given in

Oakes and Manatunga (1992) for the BEVD and in Shi (1995) for the MEVD, both

assuming symmetric logistic dependence structure and simultaneous estimation of

the marginal and dependence parameters. Even for this simple case of dependence

models the density function and score statistic are extremely complicated, hence the

elements of the Fisher information matrix are available by numerical computations

only. Although similar tedious computations might be possible to carry out for fur-

ther (and even more complicated) dependence models or MGPD as well, there is

no particular advantage presenting the rather untractable results, mainly because

they have to be computed numerically anyway. In order to get information about the

standard error of estimates we used parametric or nonparametric bootstrap methods

depending on the purpose of application, see e.g. Table 4.6, Table 5.6, Table 5.12 or

Table 6.1. Maximum likelihood estimation of the time-dependent parameters in the

nonstationary BGPD model (introduced in subsection 2.3.5) does not lead to any

additional theoretical difficulties over those encountered with the stationary BGPD

model, since the equations for linear (or non-linear) trends in the parameters can

be easily substituted into the bivariate density. Numerical optimization of the like-

lihood becomes technically more challenging though, as the number of parameters

is increased. This increase in the number of parameters can, at least partially, be

addressed by using the parameter estimates from a simpler model (e.g. stationary

BGPD) to provide some of the starting values for optimizing the log-likelihood of

the nonstationary BGPD model.
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4.1.2 Maximum Composite Likelihood Estimation

Unfortunately joint density for the maximum likelihood estimation can be often

unavailable, e.g. for max-stable process models only the pairwise marginal distribu-

tions are known. Or in some other cases it may happen that the analytical form

of the joint distribution exp{−V�(z1, . . . , zd)} is available (see Equation 2.8), but to

obtain the density function from it is computationally infeasible for a high dimension

d. Later in subsection 5.4.3 we show a special example of an asymmetric MGPD for

d = 3 fitted by the ”full”-likelihood and another MGPD is presented in Table 6.1

for d = 5 fitted by the ”pairwise”-likelihood. In the above circumstances it might

be useful to base the inference on lower dimensional marginal densities. E.g. if we

have a model with a parameter vector θ, assuming that it can be identified from

the bivariate marginal densities, θ can be estimated by maximizing the so-called

composite log-likelihood function of the form

�p(y1, y2, . . . , yd; θ) =
∑

1≤i<j≤d

log fi,j(yi, yj; θ) (4.1)

(Lindsay, 1988; Cox and Reid, 2004; Varin, 2008). based on pairwise likelihoods

fi,j(θ). Of course, the composite likelihood can be also written analogously to

Equation 4.1 for arbitrary subsets of marginal events.

Theorem 14. Under appropriate conditions the maximum composite likelihood es-

timator (MCLE) is consistent and asymptotically normally distributed as

θ̂MCLE ∼ N(θ, I(θ)−1),

for

I(θ) = H(θ)J(θ)−1H(θ),

where H(θ) = E(−∇�(θ)) is the observed information matrix and J(θ) is the esti-

mated variance of the composite score vector. I(θ) is often called as Godambe infor-

mation matrix (Godambe, 1960).

The maximum composite likelihood estimator may be unbiased (see Cox and

Reid, 2004), but it may not be asymptotically efficient, namely the inverse of the
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Godambe information matrix may not attain the Cramér-Rao bound. As numerical

maximization of a composite log-likelihood function is not always straightforward,

in the later applications we used multiple starting points obtained by preliminary

models for the lower dimensional margins. We use this estimation method for a 5

dimensional wind data set later in Table 6.1.

4.2 Nonparametric Dependence Functions

For nonparametric estimation of A(t) we introduce first the modified version of

the Pickands estimator. Let (X1, X2) denote a bivariate random vector representing

the componentwise maxima of an i.i.d. sequence over a given period of time and let

(Z1, Z2) denote the standardized version of (X1, X2) as in subsection 2.2.9. Then

min
{
Z1/(1 − t), Z2/t

}
has exponential distribution with mean 1/A(t) for any t ∈

[0, 1]. The approximation of 1/A(t) by the sample mean provides a natural estimation

method. Let (Z1,j, Z2,j), j = 1, ..., n denote a sample from (Z1, Z2). The estimator

proposed by Pickands (1981,1989) can be written to the following form

1

ÂP (t)
=

1

n

n∑
j=1

min
{ Z1,j

1− t
,
Z2,j

t

}
.

However the estimator has the drawback that it might not be a dependence function

according to (P). In order to propose some appropriate marginal adjustments, let

us define Z̄i = n−1
∑n

j=1Zi,j, i = 1, 2. The estimator of Hall and Tajvidi (2000)

1

ÂHT (t)
=

1

n

n∑
j=1

min
{Z1,j/Z̄1

1− t
,
Z2,j/Z̄2

t

}
, (4.2)

satisfies ÂHT (0) = ÂHT (0) = 1 as well as ÂHT (t) ≥ max(t, 1− t). Although it is still

not necessarily convex, by replacing it with its greatest convex minorant ĂHT , we

can obtain an estimator, which already satisfies all the necessary criteria of (P). The

theoretical properties of the above estimators have been shown in Hall and Tajvidi

(2000), some of them are summarized below.

Theorem 15. Both ÂHT and its greatest convex minorant ĂHT are uniformly
√
n

consistent estimators for A in the full interval [0, 1]. Moreover, if A is twice differ-
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entiable then Â′HT and Ă′HT are uniformly
√
n consistent estimators for A′ on any

interval [ε, 1− ε], for ε > 0.

Theorem 16. Both ÂHT and its greatest convex minorant ĂHT have biases of or-

der n−1 as estimators of A. Similarly, Â′HT and Ă′HT have biases of order n−1 as

estimators of A′.

At the expense of its flexibility even ĂHT might not fulfill the ”extra” property of

differentiability, so the BEVD density function is still not available by assuming ĂHT

to be A in (Equation 2.19). To tackle this problem there has been another modifi-

cation suggested in Hall and Tajvidi (2000),namely that ÂHT can be approximated

by smoothing splines, constrained to satisfy (P). By choosing an appropriately fine

0 = t0 < t1 < · · · < tm = 1 division of the interval [0, 1] and a given smoothing

parameter λ > 0, we can take Ăλ to be the polynomial smoothing spline of degree

3 or more which minimizes
m∑
j=0

(
ÂHT (tj)− Ăλ(tj)

)2

+ λ

∫ 1

0

Ă′′λ(t)
2dt, (4.3)

subject to Ăλ(0) = Ăλ(1) = 1, Ă′λ(0) ≥ −1, Ă′λ(1) ≤ 1 and Ă′′λ(t) > 0 on [0,1].

By solving the non-linear optimization problem above we can obtain a proper non-

parametric estimator, suitable for density estimation. Although for Ăλ it is possible

to preserve the
√
n consistency by choosing an appropriate smoothing parameter,

the approach will not lead to a consistent estimation of the second derivative of A.

For the best choice of the smoothing parameter Hall and Tajvidi (2000) suggest a

cross-validation method.

Remark 22. In reality of course we do not observe (Z1,j , Z2,j), but (X1,j, X2,j) from

(X1, X2), since the marginal distributions are unknown. Hence it is common practice

to estimate them by fitting the GEV (or the empirical distribution function) and

plug the estimator into the transformation like Ẑi,j = − log Ĝi(Xi,j) i = 1, 2 and j =

1, ..., n.

As illustration we may see Figure 4.1 which compares the exact (symbolically

calculated) derivatives of the symmetric and asymmetric logistic dependence func-

tions as well as the (numerically approximated) derivatives of the spline–smoothed
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Figure 4.1: Upper block: The first and second derivatives for symmetric logistic

(α = 2.06) and asymmetric logistic (α = 2.5, ψ1 = 0.8, ψ2 = 0.6) models. Lower

block: The first and second derivatives for the smoothed Hall and Tajvidi estimators

with different λ smoothing parameters.

nonparametric functions with different smoothing parameter. We will see a simula-

tion study involving Ăλ in subsection 4.5.1 and in a practical application for wind

speed maxima in subsection 5.2.1.
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4.3 Goodness-of-Fit Methods

A very important issue after fitting a model is how to verify the choice for the

model family. In the following we show two methods for testing model hypotheses.

In subsection 4.3.1 we propose to use the very basic concept of χ2-test for testing

bivariate models, with a slight modification of allocating cells for the statistics by

density curves instead of by bivariate quantile curves. This approach will be often

used in chapter 5 for BEVD and BGPD models. In subsection 4.3.2 we present a

goodness-of-fit test for copula models, which will be very useful in section 4.6 for

testing the so called autocopulas.

4.3.1 Prediction Regions and GoF Methods

The main motivation behind fitting extreme value models is to have some reason-

able estimation for the tail of the distribution. In the univariate case this coincides

with estimation of high quantiles, which can be interpreted as estimated values which

will be exceeded with a given small probability. Analogously, for bivariate observa-

tions one might consider bivariate quantile curves (or semi-infinite prediction region

in 3.1 in H all and Tajvidi, 2004).For given probability γ and bivariate distribution

F this quantile curve is defined as Cγ = {(x1, x2) : F (x1, x2) = γ}. By definition, any

(x1, x2) point of Cγ determines a semi-infinite rectangle (−∞, x1]× (−∞, x2] which

is a γ−level prediction region for the future values of the variable. However having

a compact prediction region in hand would be even more appealing and easier to

interpret. See Figure 4.2 for graphical examples.

Prediction Regions

The construction of such a region is described in Hall and Tajvidi (2004), in the

following we recall the definition, and later refer to this definition as (γ−)prediction

region.
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Figure 4.2: Quantile curve (on the left) and compact prediction region (on the right)

for logistic BGPD.

Definition 11.

R̂(u) = {(x, y) : ĥ(x, y) ≥ u}

β(u) =

∫
R̂(u)

ĥ(x, y)dxdy

for any ĥ estimator of a bivariate density h as e.g. in Equation 2.19 or in

Equation 2.31. Given a prediction level γ, let u = ûγ denote the solution of the

equation β(u) = γ. Then R̂(ûγ) is called a γ-level prediction region for the future

values of (X, Y ).

Throughout the later sections this kind of (density based) compact prediction

regions will be used in order to evaluate the fitted models. A natural idea for model

evaluation is comparing the theoretical probability (rate) of points being outside a

given region with the observed probability of the same event. Basically, the expected

number of observations falling in or out of a given prediction region can be compared

with the realizations at different γ−levels. Such comparisons have been summarized

e.g. in Table 4.2 and Table 4.3 on simulated data.
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χ2-Test for Prediction Regions

More quantitative evaluation can be done by using χ2 goodness-of-fit test based

on the above regions. The regions can be viewed as a partition of the plane. As

the expected number of observations in each of these partitions is known, we can

compare the theoretical frequencies with the realization by a χ2 statistic. If the

parameters were known, the test statistics would follow, approximately, a χ2 distri-

bution with (k−1) degrees of freedom where k is the number of parts. Unfortunately

the parameters are unknown in most of the cases and there is no hope to prove a

theorem about the limit distribution of the test-statistics in case of estimated pa-

rameters. Simulations do not support the usual limit distribution either. However,

the simulated values under the nullhypothesis can serve as the null-distribution of

the test and thus they can provide critical values. We do not pursue this idea furter,

and use the χ2-teststatistics for quantitative comparisons only.

This procedure depends on the choice of partitions, so as we are more in-

terested in the higher quantiles we have typically chosen high levels as e.g γ =

0.75, 0.95, 0.99, . . . for the statistics. Often in the practical applications we just use

the above χ2 statistic itself as a measure the distance from a given sample. Specially,

we can order the models according to their distance from observed sample. Model

comparisons have been made e.g. in Table 5.9 and Table 5.11 on wind speed data.

4.3.2 GoF Methods for Copulas

There has been various alternatives of copula goodness-of-fit methods published

in the last decade. Instead of giving a comprehensive review of these methods here

we focus on a specific test algorithm of Rakonczai and Zempléni (2007) which is

modified version of a basic approach presented by Genest et al. (2006). Further,

less computation intensive methods are also available in Kojadinovic et al. (2011)

or Kojadinovic and Yan (2011). First, there are some univariate examples presented

and then we describe the actual test procedure applied in section 4.6.



80 CHAPTER 4. ESTIMATION, GOODNESS-OF-FIT AND SIMULATION

Univariate GoF Tests

There are several univariate GoF tests available in the related literature. For our

purposes those members of the Cramér-von Mises family have been chosen which

are proven to be sensitive to detect discrepancies near the tail of the distribution.

Generally they can be formulated (not denoting the dependence on the parameters)

as

T = n

∫ ∞

−∞

(Fn(x)− F (x))2Φ(x)dF (x),

where Fn is the empirical cdf., F is the cdf. which is to be fitted and Φ(x) is a

weight function. In the simplest case, when Φ(x) = 1 we get the Cramér-von Mises

statistics:

TCvM = n

∫ ∞

−∞

(Fn(x)− F (x))2dF (x) (4.4)

Focusing on the tails we may set the weight function as Φ(x) = (F (x)(1−F (x)))−1.

Using this weighting we get the Anderson-Darling statistics:

TAD = n

∫ ∞

−∞

(Fn(x)− F (x))2

F (x)(1− F (x))
dF (x). (4.5)

In many cases when only one of the tails is important (usually maximum for envi-

ronmental or insurance loss data) the following test statistic is more efficient

TuAD = n

∫ ∞

−∞

(Fn(x)− F (x))2

1− F (x)
dF (x) (4.6)

for the case of maximum and with Φ(x) = F (x) in the place of Φ(x) = 1 − F (x)

for minimum. The advantage of (Equation 4.6) in comparison to (Equation 4.5)

is that its sensitivity is concentrated to discrepancies at the relevant tail of the

distribution; see Zempléni’s test (Kotz and Nadarajah 2000, p.77). The computation

of these statistics is straightforward and for arbitrary weight function Φ(x) can be

numerically approximated.

Copula GoF Test

Even in the multivariate case it is possible to use the univariate techniques

described above, after performing an appropriate dimension reduction procedure on
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the copula distribution. For this purpose we suggest the use of the so-called Kendall’s

transform as follows

K(t) = P (H(X, Y ) ≤ t) = P (C(F (X), G(Y ))) ≤ t) = P (C(U, V )) ≤ t). (4.7)

The empirical version of K can be computed as

Kn(t) =
1

n

n∑
i=1

1(Ein ≤ t), t ∈ [0, 1],

where

Ein =
1

n

n∑
j=1

1(Uj ≤ Ui, Vj ≤ Vi).

Although a closed formula for Equation 4.7 is only available for some specific copula

families, K(t) can be easily approximated by simulation from any given model with

the desired accuracy. For illustrations see Figure 4.3. In the later sections we refer

to the approximated version of K(t) simply as K-function.
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Figure 4.3: Simulated K(t) for copulas with different Pearson’s correlation (Gauss

family)

Known tests for checking the match of the theoretical K(t) and its empirical

version use continuous functionals of Kendall’s process

κn(t) =
√
n(K(θn, t)−Kn(t)),
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having favorable asymptotic properties. There are two different kind of approaches

investigated in (Genest et al. 2006), Cramér-von Mises type and Kolmogorov-Smirnov

type statistics as

Sn =

∫ 1

0

(κn(t))
2dt (4.8)

Tn = sup
0≤t≤1

|κn(t)|.

Since the second statistic Tn is proved to be generally less powerful in detecting

discrepancies near the tails, we suggest to base the inference on the test statistics

according to Sn, analogously to Equation 4.4, Equation 4.5 and Equation 4.6. The

proposed test statistics are summarized in Table 4.1, where (ti)
m
i=1 is an appropriately

fine division of the interval (0, 1). These statistics have been applied e.g. in Table 4.8

and Table 4.7 later.

Table 4.1: Numerically approximated Cramér-von Mises type test statistics on the

Kendall’s process

Focused Regions Test Statistics

Global S1 =
1
m

∑
ti∈[0+ε,1−ε]

(K(θn, ti)−Kn(ti))
2

Upper Tail S2 =
1
m

∑
ti∈[0+ε,1−ε]

(K(θn,ti)−Kn(ti))
2

1−K(θn,ti)

Lower Tail S3 =
1
m

∑
ti∈[0+ε,1−ε]

(K(θn,ti)−Kn(ti))
2

K(θn,ti)

Lower and Upper Tail S4 =
1
m

∑
ti∈[0+ε,1−ε]

(K(θn,ti)−Kn(ti))2

K(θn,ti)(1−K(θn,ti))

4.3.3 Goodness-of-Fit Tests for Autocopulas

In time series analysis, after estimating a given time series model one must be

able to check the fit of the autocopulas of the model at different lags. Formally it is

equivalent to check the null-hypotheses for any l ≥ 1 lag

H0 : CYt,l ∈ C0,l = {Cθ,l : θ ∈ Θ}, (4.9)

e.g. the dependence structure of the investigated autocopula arises from C0,l, which
is a copula family defined by a specific time series model. One very crucial question
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before starting off is what exactly should be considered as an appropriate sample

for the later inference. As the usual inference theory for copulas works with the

assumption of i.i.d. observations from copula models one should not 1 use all single

pairs of observations from the autocopula{(
Yi, Yi−l

)
: i ∈ {l + 1, ..., n}

}
,

which are in most cases not independent. To avoid this, we can possibly use a thinned

subset of the observations (thinned sample) instead of the original one, e.g. one can

take only every m-th pair, where m is presumably large enough (the observations

are far enough in time from each other). For simplicity let T = {l+1, l+m+1, l+

2m+1, ..., l+rm+1 ≤ n} denote the new thinned set of time points and |T | = r+1

the new thinned sample size. Due to the thinning procedure, the dependence among

the pairs in {(
Yi, Yi−l

)
: i ∈ T

}
is supposed to disappear and only the dependence between the dimensions remains.

Of course, the choice of a proper m for thinning is highly dependent on the given

application, and needs elaborate investigations. Hereinafter, following the usual

methodology in this context, we consider the marginal distributions as nuisance

parameters and base the GoF tests only on rank statistics. Therefore, after carry-

ing out the appropriate thinning we perform the probability integral transformation

(PIT) for both margins, viz. we map the margins into the unit interval by their

empirical distribution function. The PIT is defined by{(∑
j∈T 1(Yj ≤ Yi)

|T |+ 1︸ ︷︷ ︸
=Ui

,

∑
j∈T 1(Yj−l ≤ Yi−l)

|T |+ 1︸ ︷︷ ︸
=Vi

)
: i ∈ T

}
.

Therefore the {(Ui, Vi) : i ∈ T } can be interpreted as an i.i.d. sample from the un-

derlying autocopula CYt,l. Later in section 4.6 we apply goodness-of-fit tests for this

kind of thinned copula samples gained from simulated time series. As an example,

in section 4.6, the effect of the choice for m is investigated in a certain practical

situation.

1Or if yes, somehow the dependence should be taken into account.
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4.4 Approximate Simulation from BGPD
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Figure 4.4: Simulated points and density level curves of Ψ−logistic and Φ−logistic

BGPD models.

There are several approaches known for simulating from BEVD. Shi et al. (1993)

present a scheme for simulating from the symmetric logistic model. A more generally

applicable scheme is described in Ghoudi et al. (1998). It works for all parametric

forms having two times differentiable Pickands dependence function. A third method

due to Nadarajah (1999), is different from these, uses limiting point process results

as an approximation of the bivariate extremes. Beyond these, further (more general)

multivariate simulation methods based on copula models are also available. Although

according to our best knowledge the extension of these methods to the proposed

BGPD case is not known yet. To resolve this problem here we suggest to use an

approximative procedure which can be applied for simulating samples from any d-

dimensional random vector X having distribution function H and density function

h.

1. Truncation. Determine a rectangle R ⊂ Rd which is large enough for the
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desired precision, e.g.P (X ∈ R) =
∫
R
h(x)dx = 1 − ε, for a given ε > 0 small

real number.

2. Discretization. Divide R to a fine grid equidistantly with step size m and

compute the probability of every internal rectangles P (X ∈ Rγ) for γ ∈ Γ,

where Γ is the index set of the internal rectangles.

3. Adjustment. Cumulate the probabilities from the lower left corner of R to the

upper right one and adjust all values by dividing by 1− ε.

4. Selection. Generate a sample vector Ui, for i = 1, . . . , n from the uniform

distribution on [0, 1] and select the lower left vertices of the grid rectangles

Gi = (Gi,1, . . . , Gi,d) allocated by Ui for i = 1, . . . , n.

5. Scattering. Randomize every component of Gi by adding a scattering compo-

nent σi,j for j = 1, . . . , d following uniform distribution on [0, m].

Finally

Xi = (Gi,1 + σi,1, . . . , Gi,d + σi,d)

for i = 1, . . . , n will be the sample having approximately H as distribution function

as ε → 0 and m → 0.

Remark 23. The discretization step can be accelerated by approximating P (X ∈ Rγ)

with the help of the density h. For any Rγ we can choose (randomly) a point xγ ∈ Rγ

and use h(xγ)×md for the approximation. In the later applications xγ is typically

chosen to be lower left vertex of Rγ.

Although this method can be very computer intensive, especially if we intend

to reach high precision, its bivariate and trivariate versions worked well for our

practical applications. As an example there are some simulated samples presented

in Figure 4.4. Finally the theorem below provides that the simulation method gives

a plausible approximation.

Theorem 17 (Rakonczai and Turkman, 2012). The simulation algorithm gives an

asymptotically unbiased approximation of a continuous distribution H.
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We should notice that the term ”asymptotically” does not only mean that the

step size tends to zero, but also we assume the boundaries of the large rectangle

R tend to infinity. The sketch of the proof for the bivariate case is the following.

Let us denote (X, Y ) the random vector having distribution function H and density

function h. Considering a grid Gm on the whole R2 with step size m the density

function hm(x, y) of simulated random vector is step function, which consists of

horizontal rectangles of size m × m. Moreover the densities are equal h(gx, gy) =

hm(gx, gy) for any points (gx, gy) ∈ Gm. In such a case
∑

Gm
hm(gx, gy)m

2 is actually

a Riemann sum, an so

Hm(x, y) =

∫
(−∞,x)×(−∞,y)

hm(x, y)dxdy ≈
∑

gx<x,gy<y

hm(gx, gy)m
2 (4.10)

≈
∫
(−∞,x)×(−∞,y)

h(x, y)dxdy = H(x, y).

Therefore the distribution function Hm converges to H pointwise. However the grid

is in our case on R on which the integral of h is 1 − ε, so according to 3. in order

to have a valid density we must use an adjusting factor (1− ε)−1. Even though this

adjusting factor causes bias in the simulated distribution, by the expansion of R the

adjusting factor tends to 1 and so the adjusted version of the sum in Equation 4.10

converges to its real value.

4.5 Simulation Study

In the first part of this section we fit and compare BEVD and BGPD models on

a wide range of simulated samples in order to reveal, which model gives the more

accurate prediction region in a given situation. In the second part of the section

we continue with investigating the standard error of the estimates of the newly

introduced models by a simulation study. Similar results on real wind data are

shown later in subsection 5.4.2 based on bootstrap simulations.
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4.5.1 Comparison of BEVD and BGPD Models

The statistical properties of the BGPD (Equation 2.30) are not fully understood

yet. In this section we present the results of a simulation study which investigates

accuracy of the BGPD estimates and also compares it with the rather standard block

maxima approach. The general methodology we followed was that in first step we

simulated a bivariate sample from a distribution whose margins were in the domain

of attraction of GEV (or GPD, equivalently) and whose dependence structure was

symmetric logistic (except in the very last case, when purposely other structures

have been chosen). Then, after selecting block maxima or threshold exceedances

from the simulated sample, we fitted BEVD for the block maxima and BGPD for the

threshold exceedances assuming the logistic family as dependence structure. At the

last step we computed the prediction regions (as in definition 11) and checked their

accuracy for both models. The model evaluation has been made by comparing the

theoretical probability (rate) of points being outside a given region with the observed

probability of of the same event, e.g. we computed how many of the simulated values

were outside the investigated region. In order to have a comprehensive overview of

the accuracy of the proposed exceedance model, wide range of parameters has been

used for the simulations. The description of the parameter settings is summarized

below:

1. Margins: exponential or GPD distributions. Both of these parametric fam-

ilies have GEV or GPD as a limit for their maxima or exceedances, respectively.

To be more realistic in the choice of margins, different (ad hoc) parameters

have been chosen, specifically X1 ∼ Exp(2) and X2 ∼ Exp(3) in the exponen-

tial case, and X1 ∼ GPD(0.08, 0.13) and X2 ∼ GPD(0.012, 0.09) in the GPD

case. (For the GPD distribution the first parameter is the scale, the second is

the shape parameter.)

2. Dependence structures. Technically, first we simulated from Gumbel copula

(Equation 3.15), which is equivalent with the symmetric logistic dependence

model in section 3.1.1. Then, in the last example we switched to another type of

copula and simulated from Clayton (Equation 3.14), Student (Equation 3.13)
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and Gauss family (Equation 3.12).

3. Association levels. We used the Kendall’s correlation τ as a measure of de-

pendence, and throughout the simulations 3 levels of association have been

chosen, as τ = 0.3, τ = 0.5 and τ = 0.7 representing a relatively weak, a

medium and a relatively strong association.

4. Sample sizes. The sample sizes were chosen as N = 10 000. See Rakonczai and

Tajvidi (2010) for N = 5 000 and 20 000.

5. Prediction levels. As the usual interest in modeling extremes is in the upper

tail of distribution (high quantiles) the model performances have been com-

pared for high prediction levels γ = 0.75, 0.95 and 0.99.

In Table 4.2 and Table 4.3 a side-by-side comparison of BEVD and BGPD mod-

els is given assuming different margins and strength of association between them.

These simulations show clearly that for logistic dependence at medium and high level

of association the BGPD estimates performs acceptably well (similar to BEVD) and

there is a strong bias (both in estimates and regions) for low level of association.

Further investigations prove that for higher threshold levels the bias disappears. As

the increased threshold requires larger sample sizes, the BEVD is more efficient for

low correlation. One snapshot of the simulation is displayed by Figure 4.5, where

the left block shows the estimated prediction regions for block maxima and the right

block for the threshold exceedances (shifted back to the original scale).

Another type of dependence structures different from the Gumbel copula has also

been investigated. Their parameters have been chosen to have a certain association

of τ = 0.5 being in line with the previous simulations. For results see Table 4.4. As-

suming new families of copulas reflects that actually the asymptotic tail dependence

has a crucial role in efficiency of BGPD. For example if the original data have been

linked by Clayton copula (turned upside down), then also the extremes of their mar-

gins are supposed to have strong association. In this case the BGPD has been fairly

accurate. However the accuracy diminishes for the Student-t copula, as in that case

the extremes are not so strongly associated. Finally the fit is the weakest for Gaus-

sian copula when the dependence parameter is very close to 1. We can also conclude
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Figure 4.5: Snapshot picture of the simulation in the case of exponential margins,

linked by Gumbel copula with τ = 0.3, 0.5 and 0.7 Kendall’s correlation. The panels

of the left block show the block maxima and their estimated prediction regions by

BEVD. The panels of the right block show threshold exceedances and their estimated

prediction regions by BGPD. The prediction levels for the regions are γ = 0.99 (solid

line) and γ = 0.95 (dashed line).

that low tail dependence implies slower convergence in thresholds and so requires

more observations for the satisfactory estimation, whereas from medium level of tail

dependence the BGPD is similar to BEVD. Further illustration for simulations with
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Table 4.2: Expected (by the fitted model) and observed rates of logistic BEVD and

logistic BGPD models for simulations with exponential margins.

BEVD vs. BGPD: Exponential margins and Gumbel copula

BEVD τ=0.3 τ=0.5 τ=0.7

Level Exp.rate Obs.rate St.Err. Obs.rate St.Err. Obs.rate St.Err.

99% 0.01 0.010 0.006 0.011 0.005 0.010 0.006

95% 0.05 0.052 0.010 0.052 0.013 0.052 0.011

75% 0.25 0.256 0.015 0.253 0.017 0.252 0.018

BGPD τ=0.3 τ=0.5 τ=0.7

Level Exp.rate Obs.rate St.Err. Obs.rate St.Err. Obs.rate St.Err.

99% 0.01 0.004 0.004 0.008 0.004 0.010 0.004

95% 0.05 0.037 0.008 0.046 0.009 0.051 0.009

75% 0.25 0.281 0.015 0.257 0.016 0.253 0.016

Table 4.3: Expected (by the fitted model) and observed rates of logistic BEVD and

logistic BGPD models for simulations with GPD distributed margins.

BEVD vs. BGPD: GPD margins and Gumbel copula

BEVD τ=0.3 τ=0.5 τ=0.7

Level Exp.rate Obs.rate St.Err. Obs.rate St.Err. Obs.rate St.Err.

99% 0.01 0.010 0.006 0.011 0.006 0.009 0.006

95% 0.05 0.052 0.012 0.052 0.011 0.049 0.011

75% 0.25 0.253 0.019 0.250 0.018 0.253 0.015

BGPD τ=0.3 τ=0.5 τ=0.7

Level Exp.rate Obs.rate St.Err. Obs.rate St.Err. Obs.rate St.Err.

99% 0.01 0.005 0.004 0.009 0.005 0.011 0.006

95% 0.05 0.040 0.010 0.044 0.010 0.053 0.009

75% 0.25 0.276 0.017 0.252 0.017 0.250 0.015
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Table 4.4: Expected and observed rates of logistic BEVD and logistic BGPD models

for simulations with exponential margins linked by different copulas having the same

τ = 0.5 Kendall’s correlation.

BEVD vs. BGPD: Exponential margins and different copulas

Gumbel BEVD BGPD

Level Exp.rate Obs.rate St.Err. Obs.rate St.Err.

99% 0.01 0.011 0.005 0.008 0.004

95% 0.05 0.052 0.013 0.046 0.009

75% 0.25 0.253 0.017 0.257 0.016

Clayton BEVD BGPD

Level Exp.rate Obs.rate St.Err. Obs.rate St.Err.

99% 0.01 0.010 0.005 0.009 0.005

95% 0.05 0.049 0.010 0.047 0.010

75% 0.25 0.252 0.018 0.251 0.016

Student BEVD BGPD

Level Exp.rate Obs.rate St.Err. Obs.rate St.Err.

99% 0.01 0.009 0.006 0.006 0.004

95% 0.05 0.048 0.010 0.039 0.009

75% 0.25 0.254 0.020 0.269 0.016

Gaussian BEVD BGPD

Level Exp.rate Obs.rate St.Err. Obs.rate St.Err.

99% 0.01 0.008 0.005 0.003 0.002

95% 0.05 0.046 0.011 0.031 0.007

75% 0.25 0.254 0.018 0.268 0.013

different copula models can be found in Figure 4.6.
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Figure 4.6: Prediction regions for simulations from exponential margins linked by

Clayton, Student-t and Gauss copula with τ = 0.5 Kendall’s correlation. The pre-

diction levels for the regions are γ = 0.99 (solid line) and γ = 0.95 (dashed line).
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4.5.2 Standard Error of Asymmetric BGPD Estimates

As statistical properties of the BGPD estimates are not known yet, there has

been a simulation study carried out investigating the standard error of the depen-

dence parameters in the new models. Here we focus on model construction presented

in subsection 3.1.3 and subsection 3.1.4, and simulate the standard error of their

estimates assuming logistic and negative logistic baseline models. Although the sim-

ulation procedure (presented in section 4.4) brings an additional uncertainty into

the procedure through the discretization error, we believe that the computations

are delicately performed and so approximate the real values appropriately.

Study I.

First we have chosen Ψ−negative logistic dependence within the BGPD model

with α = 1.3, 1.4 and 1.5, ψ1 = 0, 0.1, 0.2 and 0.3 and fixed ψ2 = 2 (also assumed

as known) parameters. For every set of model parameters (satisfying convexity) 200

samples with a relatively large sample size n = 2000 have been generated. The

parameters have been re-estimated by maximum likelihood estimation. In this case

there have been 6 marginal parameters and 2 dependence parameters to estimate.

The mean values and the standard errors are summarized in Table 4.5. The small

deviations from the known parameter values and the relatively small standard errors

(in brackets) verify the capability of the model construction. (This also means that

the simulator procedure we used had been accurate enough.)

Study II.

In another setting we have chosen logistic dependence within the BGPD model

having α = 1.5 as logistic dependence parameter and various values for the addi-

tional asymmetry parameters. In contrast with the previous case (Table 4.5) the

second asymmetry parameters ψ2, φ2 are assumed to be unknown as well. In this

case there have been 6 marginal parameters and 3 dependence parameters to esti-

mate. The results can be found in Table 4.6 where both Ψ− and Φ− models look to

be well estimable in the asymmetric cases (if ψ1 or φ1 are non-zero), e.g. the devia-
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Table 4.5: Parameter estimation and standard errors for simulated samples (n=2000)

and number of repetitions: 200. If convexity assumption was not fulfilled for the given

set of parameters there is ”n.a” written.

Simulation study for Ψ-negative logistic BGPD

α = 1.3 α = 1.4 α = 1.5

α̂ ψ̂1 α̂ ψ̂1 α̂ ψ̂1

ψ1 = 0.0 1.30 (0.04) 0.01 (0.05) 1.40 (0.04) 0.00 (0.05) 1.50 (0.04) 0.00 (0.04)

ψ1 = 0.1 1.30 (0.04) 0.11 (0.05) 1.41 (0.04) 0.12 (0.04) 1.51 (0.04) 0.12 (0.03)

ψ1 = 0.2 1.32 (0.04) 0.23 (0.05) 1.41 (0.05) 0.20 (0.04) n.a n.a

ψ1 = 0.3 1.31 (0.05) 0.30 (0.07) n.a n.a n.a n.a

tions from the known parameter values and the standard errors (in brackets) are still

relatively small. Although in the symmetric case, when ψ1 or φ1 equal to zero, the

standard errors are significantly increased. This is due to the fact that in this case

ψ2 or φ2 are irrelevant parameters, and being so their estimates are hardly getting

farther from the initial values during the maximum likelihood optimization. The

second derivatives of the re-estimated dependence models (spectral density curves)

can be seen in Figure 4.7.
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Table 4.6: Simulation and re-estimation for Ψ− and Φ− models made from logistic

dependence baseline (α = 1.5).

Estimates and standard errors

Ψ-models Φ-models

ψ1 ψ̂1 ψ2 ψ̂2 φ1 φ̂1 φ2 φ̂2

0.0 0.063(1.173) 2 3.005(1.005) 0.000 −0.001(0.002) 3 2.222(0.613)

0.6 0.643(0.182) 2 2.024(0.154) 0.005 0.005(0.003) 3 2.810(0.474)

1.2 1.261(0.189) 2 2.021(0.095) 0.010 0.010(0.002) 3 3.007(0.164)

1.8 1.810(0.195) 2 2.004(0.083) 0.015 0.015(0.003) 3 2.990(0.141)
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Figure 4.7: Spectral densities of the original and re-estimated models (50 repeti-

tions): Ψ−logistic and Φ−logistic models are in the upper and lower panels respec-

tively.
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4.6 Testing for Heteroscedasticity in AR Models

Here we illustrate the use of the test procedure suggested in section 4.3.2 and

subsection 4.3.3 for autocopulas of stationary time series (see ) through a simple

but important practical example. More details and a hydrological application can be

found in Rakonczai et al. (2011) or in Petrickova (2012). Time series having the same

weak AR representation, i.e. complying the same AR model driven by uncorrelated

innovations do have identical autocovariance structure: the one of the ”classical”

AR series, generated from that particular AR model by i.i.d. innovations. (In the

sequel for AR or AR(p) series we always suppose that their innovations are i.i.d.)

As a consequence, no test based on autocovariances can really make a distinction

between an ARCH- (or eventually GARCH) innovation driven AR (hereinafter AR-

ARCH or AR-GARCH) and an i.i.d. one driven AR series. The identification of the

autocopula may serve this end, and this is what we intend to show here. So, we

use the concept of autocopula for model selection purposes just as the ACF/ACVF

is most frequently used. One may argue that the rejection of the AR hypothesis

can be achieved e.g. by linearity tests, too, but then the possible alternative is not

restricted to one particular type of models, while a well-identified autocopula may

point to that within the bounds of reliability inherent in the sample.

In this example we are interested in whether the nonlinearity can be inferred from

the sample when the series Y (t) in question satisfies an AR-ARCH(1,1) model. We

suppose that we sample from time 1 to N a time series Y (t) satisfying the following

equation

Y (t) = φ · Y (t− 1) + ε(t)

ε(t) = σ(t) · Z(t)
σ2(t) = ω + α · ε2(t− 1),

where |φ| < 1, ω > 0, α > 0, α+ ω < 1 and Z(t) is an i.i.d. standard normal series.

These conditions imposed on the parameters guarantee the existence of a stationary

solution with finite variance (though the study would have been possible under more
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relaxed assumptions, including infinite variance, as well). As for the terminology we

call ε(t) to be the innovation and Z(t) the generating noise. We test, and try to reject

the null-hypothesis that Y (t) is an AR(1) series with i.i.d. innovations, having the

same marginal distribution as the stationary distribution of the ARCH innovation

ε(t).

Since the simulations serve only the illustration of the proposed method, we are

not aimed at a full scale investigation of the behavior of various AR-ARCH samples.

So, we only consider one fixed setup of the parameters, in particular, we choose the

autoregressive coefficient in the equation as φ = 0.5 and the two parameters for the

heteroscedastic innovation as ω = 0.1 and α = 0.85. This choice results in a definite

but not too strong autocorrelation, a significant ARCH effect, and a moderate vari-

ance. We simulate relatively large time series samples with size N = 50000 from the

AR-ARCH series Y(t). In doing this, we first generate the stationary ARCH inno-

vations from standard Gaussian white noise, letting a sufficiently long (50000) step

burn in period before we store the actual 50000 innovation values. We then create

the AR-ARCH sample from these innovations by R’s ”arimasim” function. We also

generate AR series, by first taking a random reordering of the ARCH sample, to

destroy interdependence. This way we obtain an innovation, that various tests ac-

cept for an i.i.d. sample. Among them is the BDS-test (Brock-Dechert-Scheinkman)

testing serial independence. For all the simulated ARCH samples the BDS-test is

highly significant, i.e. rejects the null of serial independence by practically all-zero

p-values, and the test is insignificant for the resampled innovations, giving typical p-

values in the range of 0.4 and 0.6. This is not surprising, as the sample size is pretty

high. The same can be inferred from the autocopula of the resampled series. As we

noted above the autocopula of a linear process is dependent on the marginal of the

innovation, so, it is of utmost importance that the newly created i.i.d. innovations

have the same marginal distribution as the stationary ARCH series, and from this

resampled innovation we create the required AR series. Re-generating the ARCH

sample, and repeating the latter procedure to obtain independent innovations, we

get 500 of such AR series and compute from each of them the l-lag autocopulas,

and their K-functions. Averaging the K-functions out we obtain a good estimation
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of the theoretical K in (Equation 4.7). This kind of empirical approach is necessary

since it seems hopeless to compute an exact closed formula of the true theoretical

K. In order to explore the difference we compare the autocopulas of the AR and

the AR-ARCH series at the same set of lags, basically by checking the distance

of the empirical K-function of the AR-ARCH series from the averaged K-function

of the AR series by the help of the test statistics presented in Table 4.1. For the

formal test the 95% quantiles of the different test statistics have been computed as

critical values. Again, as the distributions of the test statistics are not known the

95% quantiles under the null hypothesis were determined from the simulated AR

samples. Practically these critical values represent the maximal ”distance” which is

still acceptable for a given simulation to be considered as an AR according to the

null-hypothesis at γ = 0.05 significance level. The autocovariance functions of the

AR and AR-ARCH series, displayed in the left panels of Figure 4.8, are very similar

as expected, and their differences in the first few lags are insignificant, according to

the limit distribution of the estimator.

In contrast to the almost full coincidence of the autocovariance functions, the

autocopulas differ substantially. For instance the discrepancies between the 1-lag au-

tocopulas can even be detected visually, as is shown in the right panels of Figure 4.8.

We have taken a sample from both the AR-ARCH and the AR series created by

the above described simulations, and thinned it for every considered lag by choosing

every 10th l-lag-apart pairs of values (this means e.g. consecutive pairs in the case

of l = 1), creating a sample of (n = 500) pairs from every process.

(Note that in our notation N refers to the sample size of the original time series

and n refers to the sample size of the thinned copula sample.) In view of the fading

away interdependence within the time series the l-lag-apart pairs in the thinned

sample for small lags hardly (insignificantly) differ from an independent sample of

pairs of variables, with the same pairwise interdependence. This is the reason why

we use those thinned samples to estimate the autocopula of the given lag. A hint

for the choice of the thinning can be obtained from the autocovariance function

which is practically zero for l = 10, so the elements of autocopula sample do not

suffer from the interdependence effect of the time series. (The effect of the choice of
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Figure 4.8: Differences between AR and AR-ARCH: The left block shows the esti-

mated ACF-s, whereas the right block shows thinned 1-lag autocopula samples for

both time series models, with thinning parameter s = 10 and sample size n = 1500.

thinning is discussed later at the end of this section.) The difference between higher

lag autocopulas is not so clear visually, see Figure 4.9, so there is a definite need for

more quantitative investigation, based on formal tests.

GoF tests checking the match of the autocopulas have been performed for l =

1, ..., 7 lags based on the 4 statistics presented in Table 4.1. The null-hypothesis

stated, as mentioned before, that the autocopula of the sample arises from the AR

model. The algorithm we followed at a given l-lag:
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Figure 4.9: Thinned autocopula samples for AR and AR-ARCH models: l = 2, 3,

thinning parameter s = 10 and sample size n = 1500.

1. Simulate AR time series n = 500 times as described above

2. Obtain their l-lag autocopula sample from the thinned by s = 10 series

3. Calculate the test statistics Si,j, i = 1, ..., 4 and j = 1, ..., 500 and choose the

0.95 quantiles as critical values Qi,0.95, i = 1, ..., 4

4. Simulate AR-ARCH time series n = 500 times

5. Obtain now their l-lag autocopula sample from the thinned by s = 10 series

6. Calculate the test statistics1 Si,j, i = 1, ..., 4 and j = 1, ..., 500 and in every

case reject H0 when Si,j > Qi,0.95

The results are summarized in Table 4.7.

Although all 4 tests gave very similar results for l = 1, we found that the tail-

sensitive test statistics performed definitely better, especially for higher lags. Namely
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Table 4.7: Rejection percentages of the hypothesis of AR autocopula, if the true

model is an AR-ARCH, at significance level γ = 0.05 and sample size n = 500 (out

of 500 simulation)

AR-ARCH vs AR at γ = 0.05, n = 500

lag S1 S2 S3 S4

l = 1 72.0% 65.7% 68.4% 70.9%

l = 2 16.3% 28.0% 17.8% 27.8%

l = 3 9.4% 23.7% 10.6% 22.4%

l = 4 7.9% 19.5% 9.4% 17.8%

l = 5 5.4% 12.0% 6.6% 11.2%

l = 6 5.9% 9.8% 6.5% 9.3%

l = 7 5.3% 7.4% 5.5% 6.9%

S2 (with upper weights) and S4 (both upper and lower weights) turned out to be

the most effective. The efficiency was not too high at this sampling level, even

so the tests were able to separate almost 70% of the AR-ARCH models from the

AR ones by the 1-lag autocopula, and this separation level can be increased by

taking into account more lags simultaneously. Of course, one could improve the

separation rate by increasing the significance level but by doing so one would reject

more AR models incorrectly. In order to reach real and significant improvement in

separation one should increase the sample size for the autocopulas, when possible,

creating a finer resolution image, thus better approximating the real copula. Our

large simulation sample size enabled us to perform the same algorithm with larger

autocopula samples. Still applying the same s = 10 thinning parameter the tests

have been recomputed with new sample sizes as n = 1000, 1500. The rejection rates

for S2 and S4 are shown in Table 4.8.

We conclude that the sample size has a very significant effect on the results.

Although the computations assuming larger autocopula samples are more exhaus-

tive, the larger copula samples yield definitely stronger tests. For example the S4
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Table 4.8: Rejection rates computed from samples with sample size n =

500, 1000 and 1500 (out of 500 simulations)

AR-ARCH vs. AR by S2 and S4 for larger samples

s = 10 S2 statistics S4 statistics

lag n = 500 n = 1000 n = 1500 n = 500 n = 1000 n = 1500

l = 1 65.7% 93.4% 99.3% 70.9% 96.0% 99.6%

l = 2 28.0% 49.7% 68.6% 27.8% 50.4% 69.9%

l = 3 23.7% 39.6% 51.6% 22.4% 37.7% 50.3%

l = 4 19.5% 28.2% 34.8% 17.8% 25.5% 32.2%

l = 5 12.0% 15.9% 20.4% 11.2% 14.1% 18.4%

l = 6 9.8% 11.4% 11.5% 9.3% 10.3% 10.3%

l = 7 7.4% 8.0% 8.8% 6.9% 7.8% 7.8%

based test improves by 30% for l = 1, resulting in, that almost all of the ARCH

time series has been separated from AR successfully. For higher order autocopulas

(l = 2, 3, 4, 5) the rejection rates increase roughly 1.5− 2 times, as well. For greater

lags (l ≥ 5) there is no such improvement any more, but the explanation behind

this phenomenon is simply the negligible association in the autocopulas. As with

the increasing lags the strengths of association fades out totally, there remains prac-

tically no measurable dependence to model and compare. As it has already been

mentioned, a theoretical assumption must be fulfilled when using standard results

about copulas, namely that the multivariate observations are supposed to be inde-

pendent. As usual in time series models the assumption of independence between

close pairs: (Xt, Xt−l) and (Xt+s, Xt+s−l), s being small, is not realistic. (In this no-

tation t ≥ 1 and l ≥ 1 denotes the time and the lag as before, moreover s ≥ 1 is

what we have earlier referred to as the thinning parameter.) Of course the larger s is

the better, but in practical applications there is always a limit defined by the given

sample size. So one needs to find the optimal s which is large enough for acceptable

independence and small enough for having sufficiently large sample for the proper
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inference. The decision can be based on the ACF by choosing such a large s for

which the ACF is essentially zero.

In the given situation there is no limitation on the sample size as we can generate

time series with arbitrary length. In order to investigate the effect of the thinning

parameter on the test performance n = 500 has been chosen constantly as sample

size, avoiding differences appearing in the comparison just because of the different

sample sizes. The results for the relevant lags are shown in Table 4.9. By analyzing

it, we can find a remarkable relapse in the test performance when the criteria of

independence of sample elements is presumably violated, i.e. the observation pairs

have been chosen too close to each other, as in the case of s = 1, or to a lesser extent

for s = 3.

Table 4.9: Rejection rates by decreasing s = 10, 5, 3 and 1 thinning parameter (out

of 500 simulations, with sample size n = 500)

AR-ARCH vs. AR by S2 and S4 for different thinning parameters

S2 statistics S4 statistics

lag s = 10 s = 5 s = 3 s = 1 s = 10 s = 5 s = 3 s = 1

l = 1 65.7% 63.7% 63.9% 57.2% 70.9% 69.4% 71.1% 66.6%

l = 2 28.0% 26.1% 24.3% 21.4% 27.8% 25.0% 22.9% 21.8%

l = 3 23.7% 24.8% 24.1% 17.6% 22.4% 23.3% 22.0% 17.8%

l = 4 19.5% 18.4% 16.0% 11.2% 17.8% 18.3% 15.5% 10.2%

l = 5 12.0% 12.9% 11.1% 9.4% 11.2% 11.4% 10.0% 8.4%
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Chapter 5

Applications to Wind Speed Data

As an illustration of the methods presented in the previous chapters we have

investigated a wind speed dataset from north of Germany. Beyond fitting standard

and new kind of extreme value models, we have also calculated some prediction

regions in order to interpret the model estimates. We have calculated the standard

error of the estimates by bootstrap simulations, and compared the differences in

model performances by the help of prediction regions.

5.1 Wind Speed Time Series

For our study we have investigated a wind speed time series of 5 sites in Ger-

many, namely Hamburg, Hannover, Bremerhaven, Fehmarn and Schleswig. These

observations have been measured hourly for the recent 50 years observed (from 1958

till 2007). In order to reduce the serial correlation within the series, we calculated

the maxima of the original observations for each day, and considered them as ”daily

observations”. More precisely, the entire period covers 18061 days, and 17926 ob-

servations are actually available during this period (the remaining 135 values are

missing). Some segments with length of 100 days are illustrated in Figure 5.1.

Before the joint modeling a preliminary univariate extreme value analysis have

been performed as well. (Similar univariate analysis on flood data can be found

in Bozsó el al., 2005.) There have been GEV distribution (Equation 2.2) fitted to

105
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Figure 5.1: Segments of the wind speed data series for Hamburg, Hannover, Bre-

merhaven, Fehmarn and Schleswig.

the monthly wind speed maxima, the parameter estimates are summarized in the

upper block of Table 5.1 whereas the fitted density functions are in the left panel of

Figure 5.2. Analogously, for GPD (Equation 2.4) has been fitted to the exceedances

over the 99% quantiles, see the lower block of Table 5.1 and the right panel in

Figure 5.2. These estimates can also be used e.g. as initial values when estimating

joint distributions.

Due to the relatively short distance between these locations the observations are

rather strongly correlated. The Kendall’s correlation is in the range of 0.43 − 0.62

(see the legend in Figure 5.3), which can be rated to somewhere between the medium

(τ = 0.5) and strong (τ = 0.7) association level according to the simulation study

cases. As discussed in section 4.5 prediction regions based on both BEVD and BGPD
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Table 5.1: Univariate Analysis: GEV and GPD parameter estimates and standard

errors.

GEV parameters

Param. Hamburg Hannover Bremerhaven Fehmarn Schleswig

μ 9.99 (0.08) 15.14 (0.12) 13.43 (0.12) 10.10 (0.09) 9.99 (0.08)

σ 1.84 (0.06) 2.63 (0.08) 2.75 (0.09) 1.88 (0.06) 1.65 (0.05)

γ -0.03 (0.03) -0.08 (0.03) -0.12 (0.02) -0.02 (0.03) 0.01 (0.03)

GPD parameters

Param. Hamburg Hannover Bremerhaven Fehmarn Schleswig

σ 1.23 (0.15) 1.99 (0.21) 1.85 (0.20) 1.40 (0.15) 1.53 (0.17)

γ 0.12 (0.09) -0.06 (0.08) -0.02 (0.08) 0.03 (0.08) 0.03 (0.08)

model hold their nominal level for this degree of association. Further measures as

χ(q) = 2− log(P (FX(X) < q, FY (Y ) < q))/ log(q) (5.1)

and

χ̄(q) = 2 log(1− q)/ log(P (FX(X) > q, FY (Y ) > q))− 1

for FX and FY marginal distribution functions and q ∈ (0, 1) can be interpreted

as quantile dependent measures of dependence, and so the asymptotic dependence

can be measured by their limits at one. For more formulas and exact interpretation

see Section 8.4 of Coles, (2001). In Figure 5.3 we can see that the limit of χ(q) is

significantly above zero, and it appears that χ̄(q) tends towards one as q approaches

one, so that the wind speeds at these sites may be considered to be asymptotically

dependent.

As the study is based on pairs and triplets of sites, there are many different

combinations we may choose from. For the sake of transparency we always picked

up those sites which give the best illustration to the proposed methods within a

given application. Therefore the chosen sites might be different in different parts of

this chapter depending on the given purpose.



108 CHAPTER 5. APPLICATIONS TO WIND SPEED DATA

5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Univariate GEV

m/s

D
en

si
ty

Hamburg
Hannnover
Bremerhaven
Fehmarn
Schleswig

10 15 20 25
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Univariate GPD

m/s

D
en

si
ty

Figure 5.2: Univariate Analysis: GEV density functions fitted to monthly maxima

(on the left) and GPD density function fitted to exceedances over the 99% quantiles

(on the right).
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Figure 5.3: χ-plots (on the left) and χ̄-plots (on the right) for the pairs of sites.
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5.2 Applications of BEVD and BGPD models

In this section - being in line with subsection 4.5.1 - we compare the BEVD

and BGPD methods assuming standard dependence structures. More advanced

structures are demonstrated later in section 5.3 for nonstationary models, and in

subsection 5.4.2 for asymmetric models. For the analysis daily observations from

Hamburg and Hannover have been used which are displayed on Figure 5.4. We fit-

ted BEVD and BGPD models and checked whether the corresponding prediction

regions fits the data or not.
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Figure 5.4: The daily observations of wind speed measurements in Hamburg and

Hannover with the 98% quantiles of the margins as threshold levels

5.2.1 BEVD Prediction Regions

For modeling the monthly maxima a parametric (logistic) and nonparametric

(spline smoothed Hall-Tajvidi) estimators have been used. As the choice of the

smoothing parameter λ can have a considerable effect on the estimated curves here



110 CHAPTER 5. APPLICATIONS TO WIND SPEED DATA

we present two reasonable alternatives of λ. The curves of the prediction regions (on

the original scale) are presented in the upper panels of Figure 5.5. Although these

regions make the models visually comparable, at the first glance there is no flagrant

difference among the applied models. The quantitative results for the estimators are

summarized in Table 5.2, where the expected number of observations falling out of

a given region has been compared with the observations at different γ levels.

As expected, the results depend on the value of the prediction level, so this kind

of comparison is consequently not enough to decide which one is best alternative.

Even if a fitted model was very close to the observation for this given ”realization”

of the wind speeds, it might not be generally the best choice from prediction point

of view. As our focus is often on the accuracy of prediction regions (not only on

the model fit) beyond the usual goodness-of-fit tests a cross-validation procedure is

also needed. Following a standard method we can possibly split the data into two

equal complementary parts and then consider one of these sets is as a training set

and the other part as a testing set of observations we intend to predict. Technically,

as we needed an automatic algorithm for the cross validation method, we started

the likelihood maximization from the parameter vector (ξ̂1, μ̂1, σ̂1, ξ̂2, μ̂2, σ̂2, α) given

by the margins. The results are presented in Table 5.3. Generally the prediction

regions perform acceptably well at γ = 0.5, 0.75 and 0.95 prediction levels, perhaps

with slightly under-estimation of the quantiles. At the highest γ = 0.99 level the bias

seems to be more serious, on average there are 2 times more observations outside

this region than expected.

5.2.2 BGPD Prediction Regions

Analogously to subsection 5.2.1 prediction regions have been calculated for the

exceedances as well. First we considered the density given in (Equation 2.31) with

a logistic dependence function which has been inherited from the block maxima

method and α = 2.06 has been kept fixed during the maximum likelihood opti-

mization. Practically by doing this we just adjusted the 6 marginal parameters to

α = 2.06, a given dependence parameter. After this step we also let the dependence

parameter be free and optimized the maximum likelihood in all 7 parameters. The
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Table 5.2: Performance of different models at different predictive levels (Hamburg

and Hannover).

Level Expect. Log BEVD H&T BEVD Expect. Fix Log BGPD Log BGPD

50% 296 311 316 264 272 278

75% 148 142 149 132 123 119

95% 30 31 34 26 26 23

99% 6 12 15 5 8 3

Log-lik - -2531.5 -2533.8 - -2202.5 -2187.8

second method returned back a higher likelihood value: −2187.8 compared to the

first one’s −2202.5, suggesting that the fixed dependence parameter α = 2.06 might

not be accurate enough. The prediction regions are presented in the lower panels

of Figure 5.5. The statistics for the regions together with the likelihood values are

summarized in Table 5.2.

Similarly to the block maxima method cross-validation has been carried out for

the logistic BGPD model as well. In contrast to BEVD model no obvious underesti-

mation was found and the estimated quantiles have been more appropriate compared

with the observations, see Table 5.3 for further details.

Table 5.3: Cross-validation: Results on the test data (Hamburg and Hannover).

Level Expect. Log BEVD HT BEVD Expect. Log BGPD

50% 148 154.2(7.3) 156.4(6.6) 132 139.3(4.6)

75% 74 71.0(6.4) 73.2(6.3) 66 60.5(3)

95% 15 16.3(2.6) 17.3(2.8) 13.2 12.3(1.9)

99% 3 5.9(1.7) 5.9(1.7) 2.6 1.8(0.9)
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Figure 5.5: Prediction regions of BEVD and BGPD models at high prediction levels,

γ = 0.99 (blue line) and γ = 0.95 (green line) for Hamburg and Hannover.

5.3 Nonstationary BGPD Models

Here we investigate a nonstationary extension of the BGPD model which allows

for the possibility that the characteristics of extreme events are changing over time,

or depend upon the value of some other covariate. More details can be found in

Rakonczai et al. , (2010). We illustrate the practical application on the wind speed

data from the previous section. We focus on modeling threshold exceedances oc-

curring for four pairs of stations - Bremerhaven-Hamburg, Bremerhaven-Hannover,

Fehmarn-Hannover and Fehmarn-Bremerhaven (see Figure 5.6) , and, for more de-

tailed analyses, focus upon the data for Fehmarn-Hannover. We use numerical max-

imum likelihood to fit the stationary BGPD model to bivariate data for each of the

four pairs of stations.
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Figure 5.6: Exceedances are distinguished by different colors in order to compare

values between the first and second half of the 50 year time period (1957-2007).

5.3.1 Changes over Consecutive Time Periods

In order to explore whether the parameters of the BGPD model are changing over

time we have divided the time series into two sections (into two 25 year periods, see

Figure 5.6), fitted the stationary BGPD model separately to data for each of these

two periods, and compared the resulting parameter estimates. The results of these

comparisons, for the ξ1, ξ2 and α parameters, are summarized in Table 5.4 together

with the estimates of the full 50 years, and appear to show systematic changes in

the values of the parameters between the earlier and later periods. These changes

could, however, be within the (unknown) variation associated with each estimate.

We do not present equivalent results for the μ1, μ2 and σ1, σ2 parameters, which

have no natural interpretation within the context of the BGPD model, but instead

compute prediction regions, for four different probability levels (γ = 0.5, 0.75, 0.95

and 0.99). The joint effects of changes in the seven parameters over time can be

explored by looking at changes over time in the profiles of the prediction regions.

Prediction regions for four probability levels are also shown in Figure 5.7 for each
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Table 5.4: Parameter estimates by fitting the stationary BGPD model to data of (a)

the whole period of 50 years, (b) the first 25 years and (c) the last 25 years.

Locations Bremerhaven & Hamburg Bremerhaven & Hannover

Parameters ξ1 ξ2 α ξ1 ξ2 α

50 years 0.092 0.160 1.834 0.126 0.108 1.753

1st 25 years 0.143 0.135 1.800 0.143 0.131 1.717

2nd 25 years 0.034 0.912 1.897 0.092 −0.042 1.822

Locations Fehmarn & Hannover Fehmarn & Bremerhaven

Parameters ξ1 ξ2 α ξ1 ξ2 α

50 years 0.182 0.155 1.595 0.176 0.059 1.985

1st 25 years 0.199 0.148 1.571 0.173 0.092 1.960

2nd 25 years 0.146 0.132 1.700 0.172 0.002 2.047

of the two 25 year periods. These figures reveal some evidence for time dependence,
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Figure 5.7: Prediction regions with γ = 0.50, 0.75, 0.95 and 0.99 for the models of

Table 5.4.
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since the prediction regions for the two periods are rather different. It can be seen

that extreme exceedances in Bremerhaven tend to be lower in the second period than

in the first period, whilst there is an apparent increase in extremes at Hannover.

The strength of association may possibly also be changing in some cases.

5.3.2 Linear Trends in the BGPD Parameters

The exploratory results suggest that the properties of the extremes could be

changing over time, and that it is therefore worth considering models that include

temporal trends. Several nonstationary BGPD models have been fitted to the data

for each of the four pairs of stations: the first of these models (which we call BGPD-

1) has only one time-dependent parameter α(t)), whilst the final model (BGDP-7)

model allows all seven parameters to be linear function of time. The inclusion of

more time-dependent parameters into the BGPD model allows it to be more flexible

in describing changes over time in the distribution of exceedances, but may lead

to overfitting. This trade-off can be examined by studying the magnitude of the in-

crease in log-likelihood values as we move from simpler to more complicated models.

In Table 5.5 the logarithms of the maximum likelihood values for the nonstation-

ary models are compared with the corresponding values for the stationary BGPD

model (which we call BGDP-0). We can see that the increase in log-likelihood values

in moving from the BGPD-0 model to the BGPD-7 model is largest for Fehmarn

and Hannover (126), relatively large for Bremerhaven-Hannover (84), and relatively

small for the remaining two pairs of sites (24 for Bremerhaven-Hamburg and 28 for

Fehmarn-Bremerhaven). These results suggest that the strongest evidence for non-

stationarity is for the Fehmarn-Hannover data, but residual temporal dependence

at extreme levels (clustering) makes it difficult to formally evaluate the statisti-

cal significance of any of these changes. Prediction regions for Fehmarn-Hannover

are displayed in Figure 5.8 - the regions are shown for the midpoint of each of ten

disjoint five year periods for which data are available. The profiles of the predic-

tion regions for different consecutive time periods can, visually, be of assistance in

detecting nonstationary, and determining the nature of this nonstationarity.
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Table 5.5: Maximum log-likelihood values associated with fitting the stationary

model (BGPD-0) and a range of nonstationary models to the full 50 year dataset.

Maximum Log-likelihood values for nonstationary models

Models BGPD-0 BGPD-1 BGPD-2 BGPD-3

Time-dep. in - α ξ1, ξ2 ξ1, ξ2, α

Bremerhaven-Hamburg −5412 −5411 −5408 −5398

Bremerhaven-Hannover −6120 −6112 −6083 −6084

Fehmarn-Hannover −6041 −6037 −5961 −5935

Fehmarn-Bremerhaven −5137 −5133 −5117 −5113

Models BGPD-2 BGPD-3 BGPD-3 BGPD-7

Time-dep. in σ1, σ2 σ1, σ2, α μ1, μ2, α all

Bremerhaven-Hamburg −5407 −5397 −5400 −5388

Bremerhaven-Hannover −6078 −6073 −6088 −6036

Fehmarn-Hannover −5952 −5933 −5958 −5915

Fehmarn-Bremerhaven −5116 −5113 −5116 −5109

5.3.3 Quantifying Uncertainty by Block Bootstrap

The non-independence of extreme wind speeds, as a result of clustering, invali-

dates the use of standard approaches for quantifying uncertainty. To investigate the

degree of uncertainty associated with estimation a block bootstrap procedure has

been performed assuming half year long data blocks from the data. The first part

of the bootstrap study used 200 block bootstrap samples to investigate the varia-

tion of estimates within the stationary BGPD model. The results for Fehmarn and

Hannover are, for illustration, presented in left columns of Table 5.6. Nonstationary

BGPD models were also fitted to the block bootstrap samples. Table 5.6 shows the

estimated trends over time within a BGPD-3 model that includes time-dependence

in ξ1, ξ2 and α. The trend parameters are scaled so that they refer to the overall

change between the start and end of the time series: they should be divided by 18061

in order to get the daily rate of change and by 49.5 in order to get the annual rate
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Figure 5.8: Time-dependent prediction regions with γ = 0.95 and γ = 0.99, as

derived from nonstationary and stationary BGPD models fitted to the data for

Fehmarn and Hannover. Prediction regions are shown for the midpoint of each five

year period (of which there are ten) and the colours change from blue to orange as

time moves forward.

of change.

5.3.4 Goodness-of-Fit and Prediction of Future Distribution

Including linearly varying time-dependent parameters rather than time-constant

ones looks to be very promising if there is significant time-dependence to capture.

However, the selection of the most appropriate model(s) is a challenging problem,

since the range of possible nonstationary BGPD models is rather wide (depending

how many, and which, parameters are assumed to be time-dependent).

The goodness-of-fit for a given model can be checked based on the prediction

regions that have been already been computed, although in this case the regions

are time-dependent as well. Therefore the prediction regions should strictly be re-
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Table 5.6: Bootstrap estimates and standard errors for the parameters of a BGPD-0

and BGPD-3 model. ”Fitted”: estimates for the original data set. ”Bootstrapped”:

mean parameter estimates from the 200 block-bootstrap samples, together with

standard errors (in brackets).

Bootstrap results BGPD-0 BGPD-3

Parameters Fitted Bootstrapped Fitted Bootstrapped

Intercept for ξ1 0.18 0.18(0.01) 0.18 0.15(0.02)

Trend for ξ1 − − 0.00 0.02(0.04)

Intercept for ξ2 0.15 0.15(0.02) 0.11 0.11(0.03)

Trend for ξ2 − − 0.13 0.07(0.05)

Intercept for α 1.59 1.60(0.04) 1.47 1.50(0.06)

Trend for α − − 0.25 0.31(0.12)

calculated for every single unique time point, leading to a highly computationally

intensive method. In order to avoid this the prediction regions have been recalculated

yearly: this division is sufficiently fine to give reasonable results, because differences

in the profiles of the regions between consecutive years are very slight. The results

for four pairs of stations are summarized in Table 5.7, and clearly show that all

models have similar performance for all four levels of α. In each case the very high

quantiles seem to be slightly overestimated (for most pairs of stations there are less

points outside the γ = 0.99 and γ = 0.95 prediction regions than expected), but this

phenomena disappears for γ = 0.75 and there actually seems to be underestimation

for γ = 0.5.
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Table 5.7: Results of applying the goodness-of-fit procedure to BGPD-0, BGPD-3

and BGPD-7 models for four pairs of stations. Four different prediction levels are

used (γ = 0.99, 0.95, 0.75 and 0.5) and the time-dependent prediction regions have

been recalculated yearly (in the midpoints of the years).

Rate of falling outside prediction region

Brem. & Hamb. BGPD-0 BGPD-3 BGPD-3 BGPD-3 BGPD-7

Expected (1− γ) - ξ’s+α σ’s+α μ’s+α all

0.010 0.011 0.008 0.011 0.011 0.009

0.050 0.042 0.039 0.044 0.043 0.040

0.250 0.259 0.261 0.255 0.259 0.261

0.500 0.527 0.533 0.539 0.536 0.538

Brem. & Hann. BGPD-0 BGPD-3 BGPD-3 BGPD-3 BGPD-7

Expected (1− γ) - ξ’s+α σ’s+α μ’s+α all

0.010 0.004 0.005 0.005 0.005 0.003

0.050 0.030 0.031 0.034 0.033 0.035

0.250 0.263 0.265 0.266 0.262 0.262

0.500 0.538 0.540 0.541 0.536 0.549

Fehm. & Hann. BGPD-0 BGPD-3 BGPD-3 BGPD-3 BGPD-7

Expected (1− γ) - ξ’s+α σ’s+α μ’s+α all

0.010 0.001 0.002 0.002 0.002 0.004

0.050 0.031 0.032 0.033 0.031 0.029

0.250 0.262 0.278 0.266 0.266 0.258

0.500 0.552 0.562 0.550 0.543 0.542

Fehm. & Brem. BGPD-0 BGPD-3 BGPD-3 BGPD-3 BGPD-7

Expected (1− γ) - ξ’s+α σ’s+α μ’s+α all

0.010 0.006 0.002 0.004 0.006 0.002

0.050 0.029 0.031 0.033 0.032 0.030

0.250 0.258 0.263 0.255 0.251 0.251

0.500 0.535 0.553 0.543 0.539 0.540
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Although the goodness-of-fit results for the stationary and nonstationary models

are very similar, the accuracy of predicted values for future time points could still

be very different. To check whether this is the case, and whether there is actually

value in using a nonstationary rather than a stationary model, we propose a cross-

validation procedure. The data have been divided - according to the usual 70%−30%

division - into a training set (the first 35 years of data) and a test set (the final 15

years of data). The models are fitted to the training set of 35 years, and these models

are then used to generate predictions for the next 15 years; these predictions can

then be compared against the test data. The results are summarized in Table 5.8,

where the observed quantiles are compared with theoretical quantiles calculated from

different BGPD models. It can clearly be seen that the substantial overestimation

of high quantiles within the stationary model disappears when using nonstationary

models instead. In general we see that the nonstationary models (BGPD-3 and

BGPD-7) perform better than the stationary model (BGPD-0) in modeling high

quantiles (which are the most important in the context of wind speeds), but do

worse in modeling lower quantiles. Specifically, it appears that the nonstationary

models do better than the stationary models for γ = 0.99 and 0.95, that the results

are mixed for γ = 0.75 and that the stationary model does best for γ = 0.50.

5.4 Asymmetric MGPD models

In this section the stations Bremerhaven, Fehmarn and Schleswig have been

chosen for illustration. The bivariate observations, which exceed the marginal 95%

quantiles in at least one coordinate are plotted in Figure 5.9. Throughout this sec-

tion the observations are considered as being stationary, but nonstationarity can also

be handled e.g. by choosing time-dependent model parameters as in section 5.3. We

have applied a wide range of dependence models: standard ones (some of those pre-

sented in subsection 3.1.1 and summarized in Table 3.1 without ∗ mark) and some

of their extension (marked with ∗ in the table and described in subsection 3.1.2).

Remark 24. For the sake of replicability, there are also some R codes appended

later. Most of these codes are included as examples in the reference manual of ’mgpd’
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Table 5.8: Comparison of empirical and predicted marginal quantiles (50%, 75%, 95%

and 99%) for the final 15 years of data. The predicted values are based on fitting

BGPD-0, BGPD-3 and BGPD-7 models to the 35 years of training data.

Cross-validation results on the test data

Quantiles (m/s) 50% 75% 95% 99%

Brem. & Hamb. x y x y x y x y

Observed 14.9 10.7 16.6 11.9 19.1 14.4 20.8 17.4

BGPD-0 14.3 10.9 15.8 12.0 19.8 15.0 24.8 18.8

BGPD-3 14.3 10.8 15.5 11.8 18.9 14.6 23.1 18.1

BGPD-7 14.4 10.6 15.5 11.5 18.2 14.1 21.1 17.5

Brem. & Hann. x y x y x y x y

Observed 14.6 16.4 16.2 18.1 18.9 21.9 20.5 25.1

BGPD-0 14.4 16.1 15.9 17.6 19.9 21.5 24.9 25.9

BGPD-3 13.7 16.8 15.2 18.5 18.9 22.7 23.2 27.5

BGPD-7 14.0 16.7 15.4 18.2 18.8 21.5 22.3 24.5

Fehm. & Hann. x y x y x y x y

Observed 10.9 16.5 11.9 18.2 14.3 22.0 16.4 25.1

BGPD-0 10.9 16.0 12.0 17.5 15.2 21.5 19.5 26.6

BGPD-3 9.7 16.8 11.1 18.4 13.8 22.8 17.3 28.1

BGPD-7 9.6 16.7 11.0 18.2 13.4 22.1 16.4 27.0

Fehm. & Brem. x y x y x y x y

Observed 11.0 14.9 12.1 16.6 14.3 19.1 16.5 20.8

BGPD-0 11.0 14.5 12.1 16.0 15.3 20.0 19.6 24.6

BGPD-3 10.6 14.7 11.5 16.0 14.0 19.4 17.2 23.3

BGPD-7 10.6 14.8 11.6 16.1 14.4 18.8 18.1 21.4

package. Although in order to make the package upload and installation faster, some

parts of the examples are commented by ”##Not run:”, removing these comments

from the code makes all parts run.

Because of the large number of model parameters (7-9), which are difficult to
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interpret, we used bivariate prediction regions as we have already seen for another

pairs of stations as e.g. in Figure 5.5 or Figure 5.7.
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Figure 5.9: Bivariate wind speed observations exceeding the marginal 95% quantiles

in at least one coordinate at three pairs of sites.

5.4.1 Baseline BGPD models for wind data

For the three pairs of the above stations there have been 6 different dependence

model assumed in the BGPD model, namely logistic, negative logistic, Coles-Tawn

(Dirichlet), bilogistic, negative bilogistic and Tajvidi (generalized symmetric logis-

tic). After fitting these models to the data, prediction regions have been computed. In

order to compare their fit we apply the test procedure from subsection 4.3.1, which

can be easily performed as a simple byproduct of the prediction region method.

Some prediction regions at Fehmarn-Schleswig can be seen in Figure 5.10 and in

the first column of Figure 5.12. By applying the methods shown in section 4.3.1 we

compare the theoretical frequencies with the realization through χ2 statistics. The

estimates of the dependence parameters and the χ2 statistics for the standard mod-

els are summarized in Table 5.9. It seems that in every case an asymmetric model

performs the best. Especially, we can see that at Bremerhaven-Schleswig the bil-

ogistic (χ2
BiLog = 15.9) and Tajvidi (χ2

Tajvidi = 13.6), at Bremerhaven-Fehmarn the
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Table 5.9: Estimates of dependence parameters and χ2 statistics for the fitted BGPD

models.

Performance of standard BGPD models

Brem.-Schleswig Log NegLog C-T BiLog NegBilog Tajvidi

Par.I 2.06 1.34 2.22 0.54 0.59 2.12

Par.II - - 1.25 0.42 0.93 0.09

χ2 17.77 18.82 18.98 15.91 16.21 13.63

Brem.-Fehmarn Log NegLog C-T BiLog NegBilog Tajvidi

Dep.I 1.98 1.26 1.12 0.43 1.02 2.24

Dep.II - - 2.38 0.57 0.60 0.43

χ2 44.89 26.08 13.09 39.01 22.89 27.77

Fehm.-Schleswig Log NegLog C-T BiLog NegBiLog Tajvidi

Dep.I 1.95 1.22 2.19 0.55 0.61 2.26

Dep.II - - 1.06 0.45 1.06 0.59

χ2 42.82 30.08 24.19 44.36 30.76 27.76



124 CHAPTER 5. APPLICATIONS TO WIND SPEED DATA

Coles-Tawn (χ2
C-T = 13.1) and negative bilogistic (χ2

NegBilog = 22.9), and at Fehmarn-

Schleswig the Coles-Tawn (χ2
C-T = 24.2) and Tajvidi (χ2

Tajvidi = 27.8) models gave

the best fit. In general, the logistic and negative logistic models perform poorly, so

in the followings we check how their extensions work on these data.
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Figure 5.10: Coles-Tawn (Dirichlet), bilogistic, negative bilogistic and Tajvidi BGPD

prediction regions BGPD prediction regions for Fehmarn and Schleswig.

5.4.2 New BGPD models for wind data

After applying the Ψ− or Φ−transformations (as in subsection 3.1.3 and subsection 3.1.4)

for the logistic and negative logistic models we carried out the same procedure as

for the standard BGPD models. An example of an R code (see 24), for fitting BGPD

models by the mgpd package, is inserted below.

> library(mgpd)

> data(WindData)

> nms <- c( "Bremerhaven", "Fehmarn")
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>

> ## Threshold selection and initial values for optimization

> demodata <- WindData[ , nms]

> thr <- apply( demodata, 2, quantile, prob=0.95)

> potdata <- mgpd_data( demodata, thr=thr)

> init <- mgpd_init( potdata)

>

> ## Model fitting

> est.log <- fbgpd( c(init,2), dat=potdata[ , 1:2], model="log"

+ , fixed=FALSE)

> est.log$value

[1] 5137.405

> ##Not run: est.psilog <- fbgpd( c(est.log$par[1:7], 0, 1.8)

> ##Not run: , dat=potdata[,1:2], model="psilog", fixed=FALSE)

> ##Not run: est.philog <- fbgpd( c(est.log$par[1:7], -0.001, 2)

> ##Not run: , dat=potdata[ , 1:2], model="philog", fixed=FALSE)

The effect of newly introduced asymmetry parameters on the spectral densities

is shown in Figure 5.11. The prediction regions of new BGPD models compared

with the baseline models are displayed in Figure 5.12 for Fehmarn-Schleswig. Here

we can see how the new dependence models change the BGPD density curves. An

example of an R code (see 24), for drawing prediction regions by the mgpd package,

is the following.

>

> ## Computing prediction regions

> x <- seq(-12, 15, 0.05 )

> y <- seq( -6, 15, 0.05 )

> z <- outer( x, y, dbgpd, model="log"

+ , mar1 = est.log$par[1:3], mar2 = est.log$par[4:6]

+ , dep = est.log$par[7] )
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Figure 5.11: Fitted spectral densities for the 3 pairs of sites.

> reg <- dbgpd_region( x, y, z )

>

> ## Plot data VS Prediction regions

> plot(potdata[,1]+thr[1], potdata[,2]+thr[2], cex=0.7, col="gray"

+ , main="Logistic BGPD Regions",

+ , xlab=paste(nms[1]," (m/s)",sep="")

+ , ylab=paste(nms[2]," (m/s)",sep="")

+ , xlim=c(0,30), ylim=c(0,30) )

> contour( reg$x+thr[1], reg$y+thr[2], reg$z, levels=reg$q,

+ drawlabels=FALSE, add=TRUE, col=c(1,4,"orange"))

> abline( h=thr[2], v=thr[1], lty=2 )

> legend( "bottomleft", c(expression(gamma==0.95)
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+ , expression(gamma==0.9), expression(gamma==0.75))

+ , lty=1, col=c(1,4,"orange"), title="Regions")

The expected values and number of observations in between the neighboring

regions can be seen in Table 5.10. The performance of the different models shows

mixed results, but in some cases the improvement is obvious. E.g. at Bremerhaven-

Schleswig the Ψ−logistic model is consequently closer to the expectation than its

baseline (logistic), as well the Ψ−negative logistic model at Bremerhaven-Fehmarn.

In order to have a more comprehensive picture about the fit, the estimates and

the χ2 statistics have been summarized in Table 5.11. As we expected, the logis-

tic improved a lot due to the Ψ−transformation at Bremerhaven-Schleswig, from

χ2
Log = 17.8 to χ2

Ψ−Log = 11.9 (so performed much better than any of the standard

ones). At Bremerhaven-Fehmarn the Ψ−negative logistic BGPD model shows the

most significant improvement, as χ2
Ψ−Log = 13.7, but here also the Φ-logistic BGPD

improved substantially, from χ2
Log = 44.9 to χ2

Φ−Log = 21.6. Finally at Fehmarn-

Schleswig the most substantial reduction in the test-statistics is observed when using

Φ-transformation for the logistic model whereas the Ψ-transformation worked better

for the negative logistic model, which is actually the overall best with having the

smallest χ2
Ψ−NegLog = 23.6 statistic. As a conclusion, we can say that the proposed

transformations (Ψ or Φ) improve the models (logistic or negative logistic) in gen-

eral, and beyond that the most improved models turn out to be one of the overall

best (including the standard ones as well) for any pairs of stations. Further more

technical advantage is that the new models are significantly easier (and so much

faster) to compute than e.g. the bilogistic and negative bilogistic models.

In order to estimate the uncertainty of the above parameters a bootstrap simu-

lation study has been carried out. The wind data has been bootstrapped 100 times

and for all bootstrap samples the various BGPD models have been re-estimated. A

typical example for the results is shown in Table 5.12, which has been calculated

for the pair Fehmarn-Schleswig. Generally, we found all the standard errors of the

estimates to be reasonable comparing with those we got from the simulation study

in Table 4.6.
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Table 5.10: Number of observations between the γ = 0.99, 0.95, 0.9, 0.75, 0.5, 0.25

prediction regions (see also Figure 5.12 for Fehmarn-Schleswig)

Goodness-of-fit tables for χ2 statistics

Range 1-0.95 0.99-0.95 0.95-0.75 0.75-0.5 0.5-0.25 0.25-0

Bremerhaven and Schleswig

Expected 12.2 49 245 306 306 306

Log 14 40 265 353 289 263

Ψ−L 12 43 263 343 296 267

Φ−L 9 43 257 359 314 242

NegLog 22 38 254 344 286 280

Ψ−NegL 20 39 256 344 288 277

Φ−NegL 18 35 265 366 289 251

Bremerhaven and Fehmarn

Expected 12.6 50.3 251.4 314.3 314.3 314.3

Log 10 28 292 343 351 233

Ψ−L 10 39 286 344 332 246

Φ−L 11 49 311 319 297 270

NegLog 11 38 281 335 346 246

Ψ−NegL 11 38 268 338 333 269

Φ−NegL 12 47 291 321 341 245

Fehmarn and Schleswig

Expected 12.5 49.8 249.2 311.5 311.5 311.5

Log 10 34 259 379 333 231

Ψ−L 12 37 257 365 349 226

Φ−L 12 40 272 365 311 246

NegLog 11 37 261 370 323 244

Ψ−NegL 13 40 255 356 335 247

Φ−NegL 16 37 260 363 319 251
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Table 5.11: Estimates of dependence models, log-likelihood values and χ2 statistics

for the fitted BGPD models.

Performance of the model extensions

Brem.-Schl. Log Ψ−Log Φ−Log NegLog Ψ−NegL Φ−NegL

Dep. 2.06 2.04 2.07 1.34 1.32 1.30

Asy.I - 0.21 -0.003 - 0.20 -0.004

Asy.II - 1.74 2.63 - 1.95 2.13

-Log.lik. 4872.1 4858.9 4871.1 4870.8 4861.3 4869.5

χ2 17.77 11.85 24.97 18.82 15.98 30.95

Brem.-Fehm. Log Ψ−Log Φ−Log NegLog Ψ−NegL Φ−NegL

Dep. 1.98 1.98 1.96 1.26 1.29 1.26

Asy.I - -0.15 0.01 - -0.26 0.002

Asy.II - 1.22 1.80 - 1.91 2.00

-Log.lik. 5137.4 5115.8 5122.5 5124.9 5113.0 5122.9

χ2 44.89 26.46 21.61 26.08 13.72 24.16

Fehm.-Schl. Log Ψ−Log Φ−Log NegLog Ψ−NegL Φ−NegL

Dep. 1.95 1.97 1.91 1.22 1.23 1.21

Asy.I - 0.20 0.01 - 0.32 0.003

Asy.II - 1.66 2.04 - 2.00 2.18

-Log.lik. 4636.1 4624.4 4617.6 4622.8 4612.7 4618.8

χ2 42.82 40.74 27.01 30.08 23.59 25.23

Table 5.12: Fehmarn-Schleswing: Bootstrap estimates and standard errors for the

fitted models.

Fehmarn-Schleswig: Bootstrap estimates and standard errors

Model Log Ψ−Log Φ−Log NegLog Ψ−NegL Φ−NegL

Dep. 1.95(0.04) 2.07(0.13) 1.926(0.045) 1.22(0.04) 1.23(0.05) 1.218(0.008)

Asy.I − 0.23(0.13) 0.009(0.002) − 0.33(0.18) 0.002(0.001)

Asy.II − 2.01(0.27) 2.130(0.182) − 2.1(0.92) 2.635(0.026)
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Figure 5.12: BGPD prediction regions for Fehmarn and Schleswig.

5.4.3 New TGPD models for wind speed

Based on the results of the previous section, it is obvious that there is relevant

improvement achieved by using an appropriately transformed asymmetric model.

It is a further interesting question whether similar considerations can be success-

fully applied in the trivariate case as well. Another reason is that we have seen in

section 3.2 that there are not too many possibilities available to choose the depen-

dence structure from if d > 2, specially if asymmetry is required. Here we attempt

to apply the extension of the Ψ−transformation from subsection 3.1.3 for model-

ing 3 dimensional wind data. So now, instead of considering pairs, we focus on

triplets of observations from the same three sites. The data, trivariate exceedances

at Bremerhaven-Schleswig-Fehmarn, are plotted in Figure 5.13. We should note that

this time the plots of the bivariate margins contain observations in the lower left

quarter plane as well, in contrast with the previous section. The observations of

this quarter are the ones which are actually below the two corresponding marginal
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Figure 5.13: Threshold exceedances for triplets of observations at Bremerhaven-

Schleswig-Fehmarn.

thresholds, but over the third one. In fact, the three thresholds divide the space into

8 partitions and only one of these partitions contains observations under the thresh-

old in all components. We intend to estimate TGPD which describes the behavior

of the exceedances in the remaining 7 partitions of the 3D space.

Technical issues

The multivariate symmetric logistic and negative logistic models are clearly not

flexible enough having one single parameter only, not even for BGPD as we have

already seen. Dirichlet model (in Equation 3.7), pairwise beta (in Equation 3.9) and

their further extensions by Ballani and Schlather (2011)are more flexible options, but

unfortunately in their case full-likelihood considerations are very difficult to carry
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out as there is no explicit formula known for their exponent measures (only for their

spectral densities). We recall that in the MGPD density there is the constant factor
−1

logG(0,...,0)
= 1

V (0,...,0)
present, so basically we need to have the exponent measure and

the spectral density at the same time for the maximum likelihood estimation.

Remark 25. Estimates of the Dirichlet parameters are not unattainable though,

as using bivariate BGPD densities for pairwise composite likelihood method (see

subsection 4.1.2) instead of the full-likelihood estimation might work in this case.

An attempt on the pairwise likelihood for d = 5 is shown later in Table 6.1.

Our suggestion is using one of the model extensions described in subsection 3.2.2.

By doing this there is no need of numerical approximation of the exponent measure

as both the exponent measure and the spectral density is given explicitly. Basi-

cally, the only nontrivial criteria one must take care of is convexity. Checking the

second order condition in Equation 3.10 might be done relatively fast by Cholesky

decomposition of the Hessian matrix. In our typical example in subsection 3.2.2 the

set of asymmetry parameters is 4 dimensional as there are ψ1,1, ψ1,2, ψ2,1, ψ2,2 extra

parameters included. The difficulty due to the unknown set of valid asymmetry pa-

rameters verifying convexity constraints can be tackled by allowing the entire R4 for

ψ1,1, ψ1,2, ψ2,1, ψ2,2 during the maximum likelihood optimization and rejecting the

invalid parameters during the optimization process by penalizing when necessary.

Technically, in the mgpd package the likelihood is set to be infinite for the above

invalid cases. Another important technical problem is how to choose an appropriate

initial value for the maximization. Our general finding was that an arbitrary initial

value for the Ψ-logistic model rarely ended up with higher likelihood value than

likelihood of the baseline. In order to avoid the algorithm to get stuck at local max-

ima we first estimated the baseline model without the extra parameters and then

used the results as initial values for the extended model. However often finding the

proper initial values for the baseline model optimization can be difficult.

Remark 26. In the mgpd there is an option for using least square estimation (LSQ)

by minimizing the distance between the empirical and fitted distribution functions in

the observation points. The LSQ estimates might also been used as initial values.
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The fitted models

In this section we apply the new parametric families of trivariate generalized

Pareto distribution (TGPD) to the same three sites, investigated in the bivariate

case. An example of an R code (see 24), for fitting TGPD models by the mgpd

package, is inserted below.

> nms <- c("Bremerhaven", "Fehmarn", "Schleswig")

> demodata <- WindData[ , nms ]

> thr <- apply( demodata, 2, quantile, prob=0.99 )

> potdata <- mgpd_data( demodata, thr=thr )

> init <- mgpd_init( potdata[,1:3])

> est.log <- optim( c(init, 1.5), ml3_log

+ , dat=potdata[,1:3], silent=TRUE)

> est.log$value

[1] 2074.082

> est.psilog <- optim( c(est.log$par[1:10], 0, 0, 1, 1)

+ , ml3_psilog, dat=potdata[,1:3], checkconv=F, silent=TRUE)

Maximum likelihood estimates of the dependence models are summarized in

Table 5.13, where the last row shows the (minus) loglikelihood values. According

to likelihood ratio test both Ψ-models are significantly better then their baselines,

e.g. for logistic χ2
Log. = 2(74.1 − 68) = 12.2 and for negative logistic χ2

NegLog. =

2(47.9 − 39) = 17.8, so the p-values are 0.016 and 0.001 with 14 − 10 = 4 degrees

of freedom, respectively. There has also been a bootstrap simulation performed for

computing the standard error of the estimates. The 3D wind data has been boot-

strapped 100 times and for all bootstrap samples the TGPD models have been

re-estimated. A typical example for the results is shown in Table 5.14, which has

been calculated for Ψ−logistic model. Generally, we found the standard errors of

the estimates to be small, showing that the extra parameters are reasonable choice

for modeling. Finally, the effect of the asymmetry parameters are very conspicuous,

see Figure 5.14. The differences between the density functions of the baseline and
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Table 5.13: Estimates and loglikelihood values of TGPD models fitted to

Bremerhaven-Fehmarn-Schleswig.

TGPD model at Bremerhaven-Fehmarn-Schleswig

Model Log Ψ−Log NegLog Ψ−NegLog

α 1.991 2.012 0.768 0.766

ψ1,1 0.000 -0.023 0.000 -0.001

ψ1,2 0.000 0.007 0.000 -0.006

ψ2,1 0.000 0.899 0.000 1.052

ψ2,2 0.000 1.268 0.000 1.025

-Log.lik 2074.1 2068.0 2147.9 2139.0

Table 5.14: Ψ−logistic TGPD model at Bremerhaven-Fehmarn-Schleswig: Estimates

and standard errors by bootstrap.

Bootstrap for Ψ−logistic TGPD model

α 1.991 1.983 (0.033) 2.012 2.004 (0.038)

ψ1,1 0.000 0.000 (0.000) -0.023 -0.023 (0.002)

ψ1,2 0.000 0.000 (0.000) 0.007 0.003 (0.003)

ψ2,1 0.000 0.000 (0.000) 0.899 0.952 (0.041)

ψ2,2 0.000 0.000 (0.000) 1.268 0.988 (0.045)
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the Ψ-model, we got for the wind speed data, can be seen in the right panel. An

example of an R code (see 24), for comparing TGPD density functions by the mgpd

package, is inserted below.

> dens.logfixz<-function( x, y,

+ param=c( 0, 1, 0, 0, 1, 0, 0, 1, 1, 2),

+ fixz=1, ...)

+ {

+ fixz <- rep(fixz, length(x))

+ logmod <- dtgpd_psilog(x, y, fixz

+ , mar1 = param[1:3], mar2= param[4:6]

+ , mar3 = param[7:9], dep = param[10]

+ , checkconv=FALSE)

+ logmod

+ }

> dens.psilogfixz <- function( x, y

+ , param=c(0, 1, 0, 0, 1, 0, 0, 1, 1, 2, 0, 0, 2, 2)

+ , fixz=1,...)

+ {

+ fixz <- rep( fixz, length(x))

+ psilogmod <- dtgpd_psilog(x, y, fixz

+ ,mar1 = param[1:3], mar2= param[4:6]

+ ,mar3 = param[7:9], dep = param[10]

+ ,A1 = param[11] , A2 = param[12]

+ ,B1 = param[13] , B2 = param[14]

+ , checkconv=FALSE)

+ psilogmod

+ }

> xx <- yy <- seq( -6, 10, .1)

> zz0 <- outer(xx, yy, dens.logfixz

+ , param=est.log$par, fixz=-0.5)

> zz <- outer(xx, yy, dens.psilogfixz
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+ , param=c(est.log$par,-0.02,0.01,1,1.3), fixz=-0.5)

> image.plot(xx+thr[1],yy+thr[2],zz

+ ,main=paste("Psi-Log TGPD density, ",nms[3],": ",-0.5+thr[3]," m/s",sep="")

+ ,xlab=paste(nms[1], "m/s",sep=""),ylab=paste(nms[2], "m/s",sep=""))

> abline(h=thr[2],lty=2)

> abline(v=thr[1],lty=2)

> image.plot(xx+thr[1],yy+thr[2],zz0-zz

+ ,main=paste("Differece between Log and Psi-Log TGPD")

+ ,xlab=paste(nms[1], "m/s",sep=""),ylab=paste(nms[2], "m/s",sep=""))

> abline(h=thr[2],lty=2)

> abline(v=thr[1],lty=2)



5.4. ASYMMETRIC MGPD MODELS 137

15 20 25

1
0

1
5

2
0

Psi−Log TGPD density, Schleswig: 12 m/s

Bremerhavenm/s

F
e

h
m

a
rn

m
/s

0.000

0.002

0.004

0.006

0.008

0.010

0.012

15 20 25
1
0

1
5

2
0

Differece between Log and Psi−Log TGPD

Bremerhavenm/s

F
e

h
m

a
rn

m
/s

−4e

−2e

0e+

2e−

4e−

15 20 25

1
0

1
5

2
0

Psi−Log TGPD density, Schleswig: 13 m/s

Bremerhavenm/s

F
e
h

m
a

rn
m

/s

0.000

0.002

0.004

0.006

0.008

0.010

15 20 25

1
0

1
5

2
0

Differece between Log and Psi−Log TGPD

Bremerhavenm/s

F
e
h

m
a

rn
m

/s

−2e

0e+

2e−

4e−

6e−

Figure 5.14: On the left: The conditional bivariate density function of logistic TGPD

(the value of third variable is fixed), Right panel: differences between TGPD densities

with logistic and Ψ−logistic dependence structures fitted to wind data.
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Chapter 6

Future Objectives

Here I sketch some ideas for such further research objectives, in which I have

already some preliminary results, but they are not yet completely elaborated. Sig-

nificant increase in the number of sites is still a very challenging problem. In the

followings I discuss some initial attempts to solve it, at least for our case.

6.1 Fitting MGPD in dimension 5

Finally here we attempt to fit a model including all sites. As full likelihood es-

timation would be very complicated for most known models here we propose the

use of the pairwise composite likelihood method (see subsection 4.1.2). The most

suitable parametric dependence model for fitting MGPD this way is the Dirichlet

model in Equation 3.7 because the d-dimensional joint distribution can be built up

using the 2 dimensional margins due to the property presented in remark 18. For

likelihood optimization we have used the mean of the BGPD estimates computed

separately, see the first column of Table 6.1, and for the composite likelihood esti-

mates see the second column of the table. The mean and standard error of bootstrap

estimates computed by 100 repetitions can be seen in the last column. The original

and bootstrap estimates are reasonably close to each other, and the standard errors

are rather small. Further inference on the fitted model as well as application of other

similar models as e.g. in Equation 3.9 are among the future research goals. An ex-

139
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Table 6.1: Composite likelihood estimates for Hamburg-Hannover-Bremerhaven-

Fehmarn-Schleswig.

Dirichlet MGPD parameters

Loc. Init. Estim. Bootstrap

Hamburg 1.16 1.18 1.21 (0.12)

Hannover 1.05 0.81 0.85 (0.07)

Bremerhaven 1.55 1.56 1.61 (0.12)

Fehmarn 1.78 1.32 1.38 (0.14)

Schleswig 1.12 1.37 1.40 (0.11)

ample of an R code (see 24), for fitting Dirichlet model in 5D by mgpd package, is

inserted below.

> nms <- names( WindData[, 2:6])

> demodata <- WindData[, 2:6]

> thr <- apply( demodata, 2, quantile, prob=0.95)

>

> ## pairwise composite loglikelihood

> cml_ct <- function(param,mlmax=1e+15,...)

+ {

+ ndim <- length(param)/4

+ param <- matrix(param,nrow=ndim,byrow=T)

+ complik <- rep(mlmax,choose(ndim,2))

+ counter <- 0

+

+ for(i in 1:ndim){for(j in 1:ndim){if(i<j){

+ lik <- NULL

+ counter <- counter+1

+ xdat <- sample_ij[[paste("sample", i, j, sep="")]]

+ lik <- try(dbgpd(xdat[,1], xdat[,2], model = "ct"

+ , mar1 = param[i,1:3], mar2 = param[j,1:3]
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+ , a = param[i,4] , b = param[j,4]))

+ if(!is.null(lik))

+ {

+ complik[counter] <- -sum( log( lik))

+ if( min( 1+param[i, 3]*( xdat[, 1]-param[i, 1])

+ /param[i, 2])<0) complik[counter] <- mlmax

+ if( min( 1+param[j, 3]*( xdat[, 2]-param[j, 1])

+ /param[j, 2])<0) complik[counter] <- mlmax

+ }

+ }}}

+ sum(complik)

+ }

>

> ## optimization from random initial value

> est.cml <- optim(rep(c(0,1.5,0.1,1.4),5),cml_ct)

> est.cml <- as.data.frame(matrix(est.cml$par

> , nrow= length(est.cml$par)/4,byrow=T))

> names(est.cml) <- c("loc","scale","shape","dep")

> row.names(est.cml) <- nms

6.2 MGPD on a grid

A useful approach for modeling exceedances on a grid can be the use of the

so called generalized Pareto process (see Ferreira and de Haan, 2012). This can be

basically considered as the infinite dimensional extension of GPD in Equation 2.4.

Indeed, the relationship between GEV and GPD remains valid for infinite dimen-

sional versions as well, meaning that any Pareto process is in the domain of attraction

of a max-stable process with the same spectral measure and vice versa (see Corol-

lary 4.1,4.2 and 4.3 in Ferreira and de Haan, 2012). The following method that of

Davison et al. (2011) for spatial exceedances look very promising. For this instead

of fitting pairwise BEVD for maxima we may attempt to fit BGPD for bivariate ex-
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ceedances. With the help of SpatialExtremes R-package (Ribatet, 2012) it is easy

to simulate samples from most of well-known parametric max-stable processes. As

due to Theorem 13 the Schlather process does not lead to absolutely continuous

BGPD margins for the exceedances, for applications the Smith process is more rec-

ommendable (see Theorem 12). Therefore I am about to develop a new option of

the mgpd R-package which is also capable to fit BGPD models having Smith type

dependence. As a further step for the future I plan to use this routine to reveal the

dependence structure of the process using randomly chosen bivariate samples.
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