
Document Classification with Latent
Dirichlet Allocation

István Bíró

Supervisor: András Lukács Ph.D.

Eötvös Loránd University
Faculty of Informatics

Department of Information Sciences

Informatics Ph.D. School
János Demetrovics D.Sc.

Foundations and Methods of Informatics Ph.D. Program
János Demetrovics D.Sc.

Budapest, 2009





Alulírott Bíró István kijelentem, hogy ezt a doktori értekezést magam készítettem és abban csak

a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint, vagy azonos tar-

talomban, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával meg-

jelöltem.

Budapest, 2009. június 30.

Bíró István

Az értekezés bírálatai és a védésről készült jegyzőkönyv megtekinthető az Eötvös Loránd Tu-

dományegyetem Informatikai Karának Dékáni Hivatalában.





Acknowledgements

Firstly, I wish to thank my supervisors András Lukács and András Benczúr for introducing me

to the topic of data mining. Without their constant support and guidance this thesis would have

never been completed.

Among my colleagues, I am especially grateful to Jácint Szabó for the successful research

that we did together. These results have finally become the main constituents of my thesis. I also

express my acknowledgements to Csaba Szepesvári and Zoltán Szamonek for the joint work in

my language modeling research. I would like to thank all of my co-authors for the successful

team work and the numerous fruitful discussions. I am grateful to the Data Mining and Web

Search Group in MTA SZTAKI, which proved to be a pleasant and inspiring environment.

I would like to thank Ana Maguitman for the invitation to the University of South at Bahia

Blanca as well as for the Argentine helpfulness and support during the three months research

period. I am much in debt to András Benczúr, Mátyás Brendel and Jácint Szabó for reading my

thesis and providing useful comments and suggestions.

My research was partially supported by the projects EU FP7 JUMAS, NKFP-07-A2 and

NKFP ASTOR 2/004/05 projects and the grant OTKA NK72845 of the Hungarian National

Science Fund.

Last but not least, I would like to say thank you for the trust and love of my wife Ari and

my two daughters Virág and Dorka providing me half of the success in achieving my goals.

v





Notation

D document collection (corpus), D = {dm}M
m=1

M number of documents in the corpus

V vocabulary, V = {tj}V
j=1

V number of terms in the vocabulary

K set of latent topics

K number of latent topics

N number of words (word-positions) in the corpus

Nm document length, N =
∑M

m=1 Nm

�α, �β,�γ Dirichlet hyperparameters

�ϑm topic mixture vector for document dm

Θ topic mixture matrix for the whole corpus, Θ = {�ϑm}M
m=1

�ϕk word mixture component of topic k

Φ word mixture matrix, Φ = {�ϕk}K
k=1

zm,n mixture indicator that chooses the topic for the nth word in document dm

wm,n term indicator for the nth word in document dm

Abbreviations

AUC Area Under Curve (related to the Receiver Operator Characteristic)

IR Information Retrieval

F F-measure

LDA Latent Dirichlet Allocation

LSA/LSI Latent Semantic Analysis/Indexing

ODP Open Directory Project

PLSA/PLSI Probabilistic Latent Semantic Analysis/Indexing

SVD Singular Value Decomposition

SVM Support Vector Machine

vii





Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Comparative Analysis of LSA and LDA . . . . . . . . . . . . . . . . . 2

1.2.2 Multi-corpus LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Linked LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.4 Fast Gibbs samplers . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.5 Web Spam Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Document modeling and classification 9
2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Text representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Vector space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Latent Semantic Analysis . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Classifier learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 C4.5 decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Stacked graphical learning . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Latent Dirichlet Allocation 27
3.1 History of LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Latent variable models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



3.4 LDA modeling framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Bayesian Network of LDA . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Model inference and parameter estimation . . . . . . . . . . . . . . . . 39

3.4.3 Unseen inference for LDA . . . . . . . . . . . . . . . . . . . . . . . . 43

4 A Comparative Analysis of LSA and LDA 45
4.1 Related results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Model construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Multi-corpus LDA 51
5.1 MLDA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 ϑ-smoothing with Personalized PageRank . . . . . . . . . . . . . . . . 53

5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Term selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.2 LDA inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Plain MLDA vs LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.2 Vocabularies and ϑ-smoothing . . . . . . . . . . . . . . . . . . . . . . 59

5.3.3 Running times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Linked LDA and sparse Gibbs samplers 63
6.1 Related results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Linked LDA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Fast Gibbs sampling heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4.1 The data set and classifiers . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4.2 Baseline classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4.3 LDA inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5.1 Speedup with the Gibbs sampling strategies . . . . . . . . . . . . . . . 72

6.5.2 Likelihood and convergence of LDA inference . . . . . . . . . . . . . 73

6.5.3 Comparison with the baseline . . . . . . . . . . . . . . . . . . . . . . 74

6.6 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



7 LDA in Web Spam Filtering 79
7.1 Related results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 MLDA as a spam filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3 Linked LDA as a spam filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.4 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 References 87





Chapter 1
Introduction

1.1 Overview

One of the main consequences of the “Age of Internet” is the enormous amount of electronic

data, mostly in the form of text. In the last two decades we observe increasing need for very

efficient content-based document management tasks including document classification (or alter-

natively text categorization or classification), the process of labeling documents with categories

from a predefined set. Although the history of text categorization dates back to the introduction

of computers, it is only from the early 90’s that text categorization has become an important part

of the mainstream research of text mining, thanks to the increased application-oriented inter-

est and to the rapid development of more powerful hardware. Categorization has successfully

proved its strengths in various contexts, such as automatic document annotation (or indexing),

document filtering (spam filtering in particular), automated metadata generation, word sense

disambiguation, hierarchical categorization of Web pages and document organization, just to

name a few.

The efficiency, scalability and quality of document classification algorithms heavily rely

on the representation of documents. Among the set-theoretical, algebraic and probabilistic ap-

proaches, the vector space model [101] representing documents as vectors in a vector space

is used most widely. Dimensionality reduction of the term vector space is an important con-

cept that, in addition to increasing efficiency by a more compact document representation, is

also capable of removing noise such as synonymy, polysemy or rare term use. Examples of

dimensionality reduction include Latent Semantic Analysis (LSA) [31] and Probabilistic Latent

Semantic Analysis (PLSA) [58]. See details in Chapter 2.

Another interesting approach that can be suitable for low dimensional representation is a

generative probabilistic model of text corpora, namely Latent Dirichlet Allocation (LDA) by

Blei, Ng, Jordan [13]. LDA models every topic as a distribution over the words of the vocabu-

lary, and every document as a distribution over the topics, thereby one can use the latent topic

1



mixture of a document as a reduced representation. LDA has several applications including

entity resolution [11], fraud detection in telecommunication systems [120], and image process-

ing [38, 110], in addition to the large number of applications in the field of text retrieval. For

more details about LDA see Chapter 3.

1.2 Our contribution

In the present thesis we discuss our results and experiments with LDA. Firstly, we describe a

thorough comparison of LSA and LDA in Web content classification. Secondly, we modify the

original LDA model in order to be applicable to supervised classification. Thirdly, we propose

a novel influence model that gives a fully generative model of the document content taking

linkage into account. Fourthly, we develop LDA specific boosting of Gibbs samplers resulting

in a significant speedup in our experiments. Finally, we apply our models to the task of Web

spam filtering at the Web Spam Challenge 2008. In the rest of this section we present our main

contribution separately in the next five subsections.

1.2.1 Comparative Analysis of LSA and LDA

In Chapter 4 we discuss the application of two text modeling approaches, LSA and LDA for

Web page classification. We report results on a comparison of these two approaches using

different vocabularies consisting of links and text. Both models are evaluated using varying

numbers of latent topics. Finally, we evaluate a hybrid latent variable model that combines the

latent topics resulting from both LSA and LDA. This new approach turns out to be superior to

the basic LSA and LDA models.

We study the classification efficiency of the LSA and LDA based latent topic models built on

different vector space representations of web documents. Generally, the vector space is spanned

over documents words. We refer to this representation as text based. However, in a hyperlinked

environment, one can represent documents with their in- and outneighbors as well, naturally

defining a link based representation.

Experimental results

We conduct a series of experiments to compare LDA to LSA, based on both text and link based

representations of Web documents. We use a thoroughly prepared subset of the ODP Web

directory. To a given page, we assign its main category label from the ODP category hierarchy.

After generating our models, we use the Weka machine learning toolkit with 10-fold cross

validation to run two different binary classifiers: C4.5 and SVM, separately for each category.

The key results are as follows:

2



• LDA outperforms LSA by 8% in F-measure and 5% in AUC.

• Link based representation is weaker than text based, however the combination of the

two performs the best. This reveals the possibility that different representations capture

different pieces of information hidden in the documents. The improvement of a text and

link based representation over a simple text based one is 27% in F-measure and 7% in

AUC, respectively.

• LDA and LSA models capture different aspects of the hidden structure of the corpus and

the combination of these models can be highly beneficial. The improvement of an LDA-

LSA hybrid model over LSA is 20% in F-measure and 7% in AUC, while over LDA is

11% in F-measure and a 2% in AUC.

The results appeared in Proceedings of the 6th IEEE Latin American Web Conference (LA-

WEB 2008).

1.2.2 Multi-corpus LDA

In Chapter 5 we introduce and evaluate a novel probabilistic topic exploration technique, called

Multi-corpus Latent Dirichlet Allocation (MLDA), for supervised semantic categorization of

Web pages. The appealing property of MLDA is that right after unseen inference the resulting

topic distribution directly classifies the documents. This is in contrast to, say, plain LDA, where

the topic distribution of the documents serves as features for a classifier.

MLDA model

MLDA is essentially a hierarchical method with two levels: categories and topics. Assume we

have a supervised document categorization task with m categories. Every document is assigned

to exactly one category, and this assignment is known only for the training corpus. For every

category we assign separate topic collection, and the union of these collections forms the topic

collection of LDA. In LDA a Dirichlet parameter vector α is chosen for every document so that

topics assigned to the document words are drawn from a fixed multinomial distribution drawn

from Dir(α). In MLDA, we require for every training document that this Dirichlet parameter α

has component zero for all topics outside the document’s category. In this way, only topics from

the document’s category are sampled to generate the document’s words. This is equivalent to

building separate LDA models for every category with category-specific topics. For an unseen

document d the fraction of topics in the topic distribution of d that belong to a given category

measures then how well d fits into that category. As a Dirichlet distribution allows only positive

parameters, we will extend the notion of Dirichlet distribution in a natural way by allowing

zeros. Although there exist hierarchical latent topic models [14, 111] to tackle more than one

3



layers similar to ours, the advantage of MLDA is that it is built up from plain LDA and no

complicated hierarchical models need to be developed.

Vocabulary term selection and ϑ-smoothing

We perform a careful term selection based on the tf -value of terms calculated for each different

category and on the entropy of the normalized tf -vector over the categories. The goal is to

find terms with high coverage and discriminability. There are several results published on term

selection methods for text categorization tasks [42, 67]. However, we do not directly apply these

here, as our setup is different in that the features put into the classifier come from discovered

latent topics, and are not derived directly from terms. We introduce a heuristic, ϑ-smoothing

which handles the effect that similar topics may arise in distinct categories.

Experimental results

We use the same Web document collection as in Section 1.2.1. We compare the classification

performance of MLDA with that of several baseline methods. We also test the effectiveness of

our proposed term selection and ϑ-smoothing. In the MLDA model, one can easily exploit the

statistics of the hierarchical category structure of the Web collection, therefore experiments on

this feature are done as well. MLDA can be used as a direct classifier, since the inferred topic

distribution gives an estimation of how well the document fits into the category. The key results

are as follows:

• Improvement in running time over LDA. In addition MLDA can be run in parallel.

• 15% increase in AUC with MLDA based direct classification over tf × idf based linear

SVM.

• A slight 2% increase in AUC by choosing the number of subcategories of the main cate-

gory as the number of latent topics.

• 10% increase in AUC by combining a careful vocabulary selection and the ϑ-smooting

heuristic over a “heuristic-free” MLDA baseline.

The results are accepted to the 19th European Conference on Machine Learning and 12th

Principles of Knowledge Discovery in Databases (ECML/PKDD 2009).

1.2.3 Linked LDA

In Chapter 6 we propose linked LDA, a novel influence model that gives a fully generative

model for hyperlinked documents, such as a collection of Web pages. We demonstrate the

4



applicability of our model for classifying large Web document collections. In our setup, topics

are propagated along links in such a way that linked documents directly influence the words in

the linking document. The inferred LDA model can be applied to dimensionality reduction in

classification similarly to results in Subsections 1.2.1 and 1.2.2. In addition, the model yields

link weights that can be applied in algorithms to process the graph defined by Web hyperlinks; as

an example, we deploy link weights extracted by linked LDA in stacked graphical learning [63].

Experimental results

In our experiments, we use the host-level aggregation of the WEBSPAM-UK2007 crawl of the

.uk domain. We make the following experiments in order to study the behavior of the linked

LDA model:

• We experimentally show the convergence of the log-likelihood of the model.

• We experimentally show a strong correlation between the model log-likelihood and the

AUC of classification.

• We compare linked LDA with the classical LDA model: linked LDA outperforms LDA

by about 4% in AUC.

• We compare linked LDA with link-PLSA-LDA, the state of the art link based topic model.

In this experiment, we use different link weight functions derived from the χ distribution

of linked LDA, from link-PLSA-LDA and the cocitation graph as well. We perform the

experiments with a stacked graphical learning classification scheme. The best model is

linked LDA; it improves the classification over link-PLSA-LDA by 3% in AUC.

The results are submitted to the ACM 18th Conference on Information and Knowledge Man-

agement (CIKM 2009).

1.2.4 Fast Gibbs samplers

In Chapter 6 we develop LDA specific boosting of Gibbs samplers resulting in a significant

speedup in our experiments. The crux in the scalability of LDA for large corpora lies in the

understanding of the Gibbs sampler for inference. Originally, the unit of sampling or, in other

terms, a transition step of the underlying Markov chain, is the redrawing of one sample for a

single term occurrence in the Gibbs sampler to LDA [47] as well as in the fast Gibbs sampler

[91]. The storage space and update time of all these counters prohibit sampling for very large

corpora. Since however the order of sampling is indifferent, we may group occurrences of the

same term in one document together. Our main idea is then to re-sample each of these term

positions in one step and assign a joint storage for them. We introduced three strategies: for

5



aggregated sampling we store a sample for each position but update all of them in one step

for a word; for limit sampling we update a topic distribution for each distinct word instead of

drawing a sample, while for sparse sampling we skip some of these words at random.

Results

• We prove that the heuristics have rationale, because they all have the required distribution

p(�z|�w) as their unique stationary distribution.

• We compare the running time of the proposed heuristics with the standard Gibbs Sam-

pling and with a recently developed fast Gibbs Sampler [91]. We measure an astonishing

10 − 11 times speedup over the fast sampler with only 1% decrease in terms of AUC.

• We experimentally show the convergence of the model log-likelihood of the various sam-

plers and the strong correlation between the model log-likelihood and the AUC.

The results are submitted to the ACM 18th Conference on Information and Knowledge Man-

agement (CIKM 2009).

1.2.5 Web Spam Filtering

We participated in the Web Spam Challenge contest in 2008. The goal of the Web Spam Chal-

lenge series is to identify and compare Machine Learning methods for automatically labeling

websites as spam or normal. We made experiments with both MLDA and linked LDA. We ran

our tests on the WEBSPAM-UK2007 dataset. The organizers provided baseline content and

link based features, thus we were given a controlled environment to measure the performance

of our models. In both cases, we applied feature combination schemes in order to improve

classification performance. In the case of MLDA, we used a logistic regression based combina-

tion, whilst with linked LDA, we combined the results of the different classifiers by the random

forest classifier.

Experimental results with MLDA

In MLDA, we build two separate LDA models, one for the spam and one for the normal web

pages, then we take the union of the resulting topic collections and make inference with respect

to this aggregated collection of topics for every unseen document d. Finally, the total probability

of spam topics in the topic distribution of an unseen document gives a prediction of being spam

or honest. The key results are as follows:

• We reached a relative improvement of 11% in AUC over the baseline classifiers with the

MLDA model, and we ranked fourth in the competition with an AUC = 0.80.

6



The results appeared in the proceedings of the 4th International Workshop on Adversarial

Information Retrieval on the Web (AIRWeb’08).

Experimental results with linked LDA

In case of linked LDA, we simply apply our model to get the topic distribution of the Web

pages, and then we perform spam classification. The key results are as follows:

• We tested linked LDA on the same corpus and we compared our results to the winner

of 2008. Our random forest based combinations achieve an AUC = 0.854, while the

winner’s result was AUC = 0.848.

The results appeared in the proceedings of the 5th International Workshop on Adversarial

Information Retrieval on the Web (AIRWeb’09).

1.3 Organization

In Chapter 2, we introduce the problem of document modeling with focus on classification.

Then we describe the core steps of a classification process: preprocessing, document represen-

tation, classifier training and evaluation.

The topic of Chapter 3 is LDA, the motivation of our research. Firstly, we start with an in-

troduction to Bayesian Inference, the underlying mathematical method of LDA, then we discuss

other latent variable models relevant to LDA. Finally, we describe the LDA modeling frame-

work in detail.

In Chapter 4, we report our comparative analysis based on LSA and LDA, in a Web page

classification application.

In Chapter 5, we introduce and evaluate a novel probabilistic topic exploration technique,

called Multi-corpus Latent Dirichlet Allocation (MLDA), for supervised semantic categoriza-

tion of Web pages.

Chapter 6 presents the applicability of LDA for classifying large Web document collections.

One of our main results is linked LDA, a novel influence model that gives a fully generative

model of the document content taking linkage into account. As another main contribution,

we develop LDA specific boosting of Gibbs samplers resulting in a significant speedup in our

experiments.

In Chapter 7 we present the results of our participation at Web Spam Challenge 2008 with

our MLDA and linked LDA models.

7



8



Chapter 2
Document modeling and classification

We begin this chapter with an introduction to text mining and document classification. In the

next four sections, we review the core steps of a typical document classification process: pre-

processing, representation, classification and evaluation. In Section 2.3 we introduce the classi-

fication algorithms used in our experiments.

Text mining is a relatively new, interdisciplinary, application-oriented research area, first

time mentioned in [39] and widely used from 2000. It uses similar techniques as natural lan-

guage processing [74] and information retrieval [75], combining them with the algorithms and

methods of data mining [52], machine learning [2] and statistics. Text Mining is the applica-

tion of algorithms and methods from the fields of machine learning and statistics to text with

the goal of exploring, identifying and analyzing implicit, previously unknown, and potentially

useful information.

Although typical text mining tasks include classification [105], clustering [4], information

extraction [103], automatic summarization [73], sentiment analysis [86], in this thesis we focus

on classification.

The history of document classification dates back to Maron’s [78] work on probabilistic text

classification. Since then, it has been used for a number of different applications: automated

document indexing [43, 114], automated metadata generation [51], document organization [68],

word sense disambiguation [19, 102], text filtering [84], hierarchical categorization of web

pages [36], etc.

The goal of document classification is to assign predefined classes to text documents [113].

As an example, we may automatically label each incoming news story with a topic like “sci-

ence”, “politics”, or “culture”. More formally, the task is to determine a classification function:

ψ : D → 2C (2.0.1)

where D = {di}M
i=1 is the set of the documents and C = {ci}K

i=1 is the set of pre-defined classes.

9



Function ψ is called the classifier. Thus the classifier assigns a subset of C to every document

di.

Document classification has three types: supervised, unsupervised and semi-supervised doc-

ument classification. In the first case, the classifier is trained on data previously labeled by hu-

man assessors. In the second case, the classification must be done without human assistance,

sometimes even without the pre-defined label set. Finally, in the third case, the training doc-

ument collection contains a large amount of unlabeled data together with labeled data. The

semi-supervised classifier (under certain assumptions) could also learn from the unlabeled data.

One of the main advantage of this methodology is:

“labels are hard to obtain while unlabeled data are abundant, therefore semi-supervised

learning is a good idea to reduce human labor and improve accuracy” [126].

The classification task can be categorized based on the number of labels assigned to the

documents: the general task described in (2.0.1) is the multi-label case, while at the single-

label case, only one label is assigned to a document (hence the classifier is simply ψ : D → C).

There is also a special case in the single-label classification: the binary classification, where

we have only two labels (positive and negative).

To build and evaluate a classifier in a typical supervised classification context, one has to

do the following: given the category set C and a document collection (corpus) D assigned to

C, we split the corpus D into two disjunct parts; training Dtrain and test set Dtest. We build

the classifier on Dtrain, then we apply it to the documents from Dtest and compare the original

labels to the classifier output. As a specific implementation, in K-fold cross validation the

document collection is partitioned into K subsamples. Of the K subsamples, a single subsample

is retained for testing the classifier, and the remaining K − 1 subsamples are used as training

data. The cross validation process is then repeated K times (the folds), with each of the K

subsamples used exactly once as the testing data. The K results from the folds can then be

averaged (or otherwise combined) to produce a single estimation. The advantage of this method

over repeated random sampling is that all observations are used for both training and testing,

and each observation is used for testing exactly once. 10-fold cross validation is commonly

used.

Sometimes it is important to adjust the input parameters of the classifier, for this purpose one

has to hold out a Dheldout part of the training corpus. The input parameters can then be optimized

in the {Dheldout,Dtest} pair, and evaluated on {Dtrain \ Dheldout,Dtest}. This technique can be

applied to the cross validation scheme as well.

An important special case of document classification is Web content classification, a re-

search area that abounds with opportunities for practical solutions. The performance of most

traditional machine learning methods is limited by their disregard for the interconnection struc-

10



ture between Web data instances (nodes). At the same time, relational machine learning meth-

ods often do not scale to web-sized data sets.

The selection of an appropriate model for Web pages is crucial for implementing a Web

page classifier. The goal is to obtain compact representations that are sufficiently descriptive

and discriminative of the topics associated with the pages. Three important questions are (1)

what features should be extracted from the pages, (2) how to use these features to model the

content of each page, and (3) what algorithm should be used to issue a prediction of a page

category.

preprocessing
to filter out 
documents
and features

rank reduction 
by LSA or LDA

topic prediction
with Bayes Net, 
C4.5 or SVM

feature (text and 
links) extraction
for matrix
representation

corpus document-feature
matrix representation

reduced
document-feature

matrix representation

low-rank
document-concept

matrix representation

classification

do
cu

m
en

ts

do
cu

m
en

ts

do
cu

m
en

ts

features
features concepts

Figure 2.1: Steps of the Web page classification process.

Figure 2.1 summarizes the steps involved in our web classification experiments including

the pre-processing of the corpus and the application of the classification algorithms.

Web page classification is different from traditional text classification because of the pres-

ence of links. While “text-only” approaches often provide a good indication of relatedness,

the incorporation of link signals can considerably improve methods for grouping similar re-

sources [6, 22, 95, 116].

A typical document classification process involves the following phases:

• preprocessing (Section 2.1)

• document representation (Section 2.2)

• classifier training (Section 2.3)

• evaluation (Section 2.4)

We briefly review these steps in the next four subsections.

11



2.1 Preprocessing

Because text cannot be directly interpreted by a classifier, preprocessing is needed to map text

into a compact representation. The borderline between preprocessing techniques and document

representation approaches are quite fuzzy, for example term selection or extraction can be con-

sidered as a preprocessing step or as a part of the representation. In our work, we follow the

treatment of [60]. Text preprocessing usually consists of the following tasks:

1. text segmentation, tokenization,

2. stop word filtering,

3. stemming, lemmatization,

4. dimensionality reduction by term selection or extraction.

Text segmentation aims at breaking up a stream of text into meaningful linguistical units:

words, phrases, sentences, paragraphs, chapters etc. Tokenization is the process of splitting a

document into words (or tokens) by removing all punctuation marks and by replacing tabs and

other non-text characters by single white spaces.

Stop words, e.g. prepositions, articles, conjunctions etc. have little information content. Ad-

ditionally, words that occur extremely often have low potential to distinguish topics while very

rare words are of no particular statistical relevance and can be removed from the document [7].

Stemming is the process for reducing inflected (or sometimes derived) words to their stem or

root form, e.g. removing the plural ’s’ from nouns, the ’ing’ from verbs, or other suffixes. After

the stemming process, every word is represented by its stem. The most popular algorithm is the

Porter stemmer [93], which is based on a set of transformation rules. However, it has several

drawbacks: it can be used only for English1 and causes over-stemming errors: the aggressive

suffix removal often maps semantically different words to the same root, e.g. designer →
design and designate → design. These errors usually deteriorate the performance of IR

systems [121]. Lemmatization captures a similar notion, although it applies a more complex

two-level approach. In the first step we determine the part-of-speech2 of a word, then we use

part-of-speech dependent rules to find the correct root of the word. A popular algorithm is

TreeTagger [104].

Term selection and term extraction refers to techniques with the goal to decrease the size of

the original vocabulary from |V| to |V̂|, where |V̂| � |V|.
Term selection can be achieved via filtering: we keep terms with highest score according to

a function that measures the “importance” of the term. The most common importance measure

1Although it can be extended to process similar languages [92].
2Part-of-speech (POS) refers to the linguistic category of the word.

12



is the document frequency df(tk) of a term tk. As a rule of thumb, the features can be reduced

by a factor of 10 with no loss in effectiveness [122]. Extensive experiments were carried out

with other term selection functions such as chi-square, information-gain, mutual information,

etc.

During term extraction, the terms in V̂ are obtained by combinations or transformations

of the original ones. These synthetic terms can help to reduce the noise caused by polysemy,

synonymy and homonymy. There are several term extraction approaches, e.g. term clustering,

Latent Semantic Analysis (LSA), probabilistic Latent Semantic Analysis (PLSA), etc. These

methods are described in detail in Section 2.2.

2.2 Text representation

There are numerous text representation approaches in the literature.We discuss selected methods

used in this thesis and we refer to [65] for a more detailed survey.

2.2.1 Vector space model

The vector space model was introduced in [101]. We have a document collection D ≡ {�di}M
i=1.

Documents are represented as finite dimensional vectors, that is �di = (wi1, . . . , wiV ), where

V is the vocabulary and V is its size. The vocabulary contains terms occurring in at least one

document of D. The weight wij represents how much term tj contributes to the content of the

document �di.

The weights wij can be defined in several ways. In the simplest binary weighting 1 denotes

presence and 0 denotes absence of the term in the document. The most widely used weighting

is tf × idf [100]:

wij = nij log
M∣∣∣{�dk : tj ∈ �dk}

∣∣∣ , (2.2.1)

where nij is the term frequency, or simply tf , the number of occurrences of term tj in document

�di. M is the number of documents and the denominator of the second term is the number of

documents containing term tj at least once. The second term of (2.2.1) is the inverse document

frequency (or idf ). This weighting embodies the intuition that the more often a term occurs

in a document, the more it represents of its content, and the more documents a term occurs in,

the less discriminating it is. There exist many variants of tf × idf that differ from each other

in terms of logarithms or other correction factors. Definition (2.2.1) is just one of the possible

instances of this class.

The similarity between two documents (or a document and a query) can be defined in several

13



ways using the tf × idf weights. The most common one is the cosine similarity:

sim(�di, �dj) =
�di · �dj∥∥∥�di

∥∥∥ ∥∥∥�dj

∥∥∥ . (2.2.2)

In a typical information retrieval context, given a query and a collection of documents, the

task is to find the most relevant documents from the collection to the query. The first step is

to calculate the vector space representation for the documents and the query, then to calculate

the cosine similarity for those documents containing the query words and finally to select those

having the highest similarity score.

Normalization is another important aspect of proper weighting. Document length normal-

ization of term weights is used to adjust the overestimation of long documents in retrieval over

the short documents. Two main reasons that necessitate the use of normalization in term weights

are:

• Higher term frequencies: Long documents usually use the same terms repeatedly. As

a result, term frequency factors may be large for long documents and this increases the

average contribution of their terms toward the query-document similarity.

• More terms: Long documents also have numerous different terms. This increases the

number of matches between a query and a long document, increasing the query-document

similarity and the chances to retrieve long documents before short ones.

Document length normalization is a way of penalizing the term weights for a document

in accordance with its length. Singhal in [108] examined the state of the art normalization

schemes and proposed a pivoted document length normalization. It adapts the normalization to

the document collection in context. Our experimental results showed significant improvements

in the retrieval performance over the standard tf × idf weighting. The scheme is as follows:

wij =
1 + log(nij)

1 − s + sNi

N̂

log
M∣∣∣{�dk : tj ∈ �dk}

∣∣∣ (2.2.3)

where s is a constant (in practical uses 0.8), Ni is the length of �di in terms of bytes instead of

words, N̂ is the average of Ni over the corpus and the second term is the idf .

2.2.2 Latent Semantic Analysis

Latent Semantic Analysis (LSA) introduced in 1988 by Deerwester et al. [31] is a method for

extracting and representing the contextual meaning of words by statistical computations applied

to a large corpus. The method uses the the vector space model with tf × idf term-weighting as

input and does term extraction, see Subsection 2.1 for an overview.

14



An important step in LSA is to transform the term-document vector space into a concept-

document and document-concept vector space. By reducing the number of concepts, the docu-

ments and their terms are projected into a lower-dimension concept space. As a consequence,

new and previously latent relations will arise between documents and terms. In order to apply

LSA we first generate a term-document matrix D from the given corpus. Then, singular-value

decomposition (SVD) is applied to D. The SVD of the matrix D is defined as the product of

three matrices,

D = UΣV T , (2.2.4)

where the columns of U and V are the left and right singular vectors, respectively, corresponding

to the diagonal elements of Σ called the singular values σ1 ≥ σ2 ≥ . . . σr of the matrix D. The

columns of U and V are orthogonal so that UT U = V T V = Ir, where r is the rank of matrix

D. The first k columns of U and V and σ1, . . . , σk are used to construct a rank-k approximation

to D via Dk = UkΣkV
T
k . A theorem by Eckart and Young [117] claims that Dk is the closest

rank-k approximation to D with respect to the Frobenius and spectral norms [9].

The rows of the reduced matrices, U’ and V’, respectively, are taken as coordinates of points

representing the documents and terms in a k dimensional space. Using the SVD decomposi-

tion, one can compare two terms, two documents or a document with a term. For example a

document-document similarity matrix can be defined as:

DT
k Dk = V Σ2V T . (2.2.5)

The main advantages of LSA are:

• Synonymy: Synonymy refers to the fact that two or more different words have the same

or similar meaning, such as movie and film. A traditional vector space model based IR

system cannot retrieve documents discussing the topic of a given query unless they have

common terms however after we map the query and the document to the concept space,

they are both likely to be represented by a similar weighted combination of the SVD

variables.

• Polysemy: Polysemy refers to the fact that one word have multiple meaning, such as the

word bank. The precision of the retrieval can be reduced significantly, if the query have a

large number of polysemous word. Applying LSA to the query we can filter out the rare

and less important usages of certain terms, thereby increasing the precision of the search.

• Term dependence: The vector space model relies on the binary independence concept, i.e.

the terms constituting the documents are completely independent from each other (they

are orthogonal basis vectors of the vector space). However it is well known that there

are strong correlations between terms. Term associations, for example can be exploited

15



by adding phrases composed of two or more words to the vocabulary. LSA offers a

more intuitive solution through the embedding of word-word, document-document and

word-document correlations into the reduced LSA factor based representation. Although

it comes at the price of an increased computational cost, this is only a one-time cost

because one can build the LSA representation for the entire document collection once

(i.e. performance at retrieval time is not affected).

The main disadvantages of LSA are as follows:

• LSA and normally-distributed data: As noted earlier, SVD finds a k-dimensional approx-

imation of the term-document matrix (say Ak), given that the Frobenius-norm of the error

term (A − Ak) is minimized, or in other terms beside least-squares error. But, least-

squares error is in fact suitable for normally-distributed data, not for count data as in the

term-document matrix. A possible solution is to use tf × idf weighting before applying

SVD [76].

• Storage: it seems to be antinomic, but the space requirement of an SVD representation

for several real datasets is larger than the sparse representation [61].

• Inefficient lookup: using vector space representation, one can build an inverted index

for the documents, i.e. a table where the keys are the words, and the contents are the

documents containing the key-word. Consequently, only documents that have some terms

in common with the query must be examined during the retrieval process. However in the

LSA representation, the query must be compared to every document in the collection.

2.3 Classifier learning

In this section we briefly review the most common classification algorithms or learning schemes

focusing on those which were used in our experiments. For a detailed explanation we refer the

reader to [35, 105].

2.3.1 Bayesian Networks

Bayesian Networks are probabilistic graphical models in which nodes represent random vari-

ables and missing edges between the nodes represent conditional independence assumptions. If

the edges are directed we call the network a Bayesian Network3, while graphs with undirected

edges belong to Markov Networks or Markov Random Fields.

3Belief network, generative model, causal model are popular alternate names.

16



Bayesian Networks will appear in two contexts in the present thesis. On the one hand, we

use them as a general modeling framework since LDA is a hierarchical Bayes model represented

by a 3 level Bayesian Network (more details in 3.4 Subsection). On the other hand, we also

deploy them for supervised classification: given the LDA representation of documents and

the corresponding category labels, one may apply classifiers from the Bayesian family (e.g.

naïve Bayes, tree augmented naïve Bayes etc.) to classify the data. First we introduce the

general framework, then we briefly discuss the naïve Bayes classifier and the BayesNet classifier

used in the Weka machine learning toolkit [118].

Given a set of random variables {Xi}n
i=1 and a Bayesian Network over them. The joint

probability distribution p(X1, . . . , Xn) is as follows:

p(X1, . . . , Xn) =
n∏

i=1

p(Xi|S(Xi)), (2.3.1)

where S(Xi) is the set of nodes in the graph that have a directed edge to Xi, also called the

parents of Xi. Note, that it is possible that S(Xi) = ∅: in that case the local probability

distribution of the node is said to be unconditional. A set of independent random variables are

represented as nodes without edges between them, hence the (2.3.1) reduces to the well known

factored representation of the joint probability distribution.

Figure 2.2: A simple Bayesian Network for modeling whether the grass is wet or not. The grass

is wet if either the sprinkler is on or it is raining. The local probability distributions associated

with a node are shown adjacent to the node.

The goal of learning a Bayesian Network is to determine both the structure of the network

(structure learning) and all the conditional probability distributions (parameter learning).

17



Structure learning. The goal is to determine the structure of the network. Since the num-

ber of possible structures is extremely large, structure learning often has high computational

complexity. Thus, heuristics and approximate learning algorithms are the realistic solutions.

A variety of learning algorithms have been proposed [24, 26, 55]. One practical approach for

structure learning is to impose some restrictions on the structure of the Bayesian Network, for

example, learning tree-like structures, in which each node has at most one parent.

Parameter learning. In order to fully specify the Bayesian Network and thus the joint prob-

ability distribution, it is necessary to specify the probability distribution for X conditional upon

X’s parents for each node X . The distribution of X conditional upon its parents may have any

functional form. If the conditional distributions contain parameters which are unknown and

must be estimated from data, one resort to maximum likelihood estimation, MAP estimation

or full Bayesian estimation, for a detailed explanation see Section 3.2. In case of presence of

unobserved variables the most common approach to estimate the joint probability distribution

is the expectation-maximization (EM) algorithm [32]. A simple Bayesian Network with the

calculated probabilities is demonstrated in Figure 2.2, adopted from [99].

Naïve Bayes. A naïve Bayes classifier is a simple probabilistic classifier based on applying

Bayes’ theorem with strong (naïve) independence assumptions. A more descriptive term for the

underlying probability model would be “independent feature model”. The network structure is

in Figure 2.3.

Figure 2.3: The structure of the naïve Bayesian Network. Features A1, . . . , An are conditionally

independent given the class label C.

Formally, for a document described by its terms or other features, �d = (w1, . . . , wi), the task

is to estimate probabilities p(C|�d ) = p(C|w1, . . . , wi). Using Bayes’ rule we get:

p(C|w1, . . . , wi) =
p(C)p(w1, . . . , wi|C)

p(w1, . . . , wi)
(2.3.2)

18



From Bayesian terminology, the first term of the nominator is the prior, the second is the

likelihood, and the left side of the equation is the posterior, see Section 3.2.1 for a detailed de-

scription. Applying the conditional independence assumption to the second term of the nomina-

tor, and considering that we are only interested in class c ∈ C, yielding the highest probability,

we arrive at:

p(C|w1, . . . , wi) ∼ p(C)
i∏

l=1

p(wl|C) (2.3.3)

Often the prior probabilities p(C) of all classes may be taken to be equal, thus only terms

p(wl|C) should be learned from training data. Although this model is unrealistic due to its

restrictive independence assumption, it yields surprisingly good classification accuracy [35, 62].

BayesNet in Weka. We use the BayesNet classifier implemented in Weka [118] with default

settings in our experiments. For more information see [16].

2.3.2 Support Vector Machine

Support Vector Machines (SVM) are supervised learning methods that recently have been ap-

plied successfully to text classification tasks [35, 62, 66]. SVM is generally proposed for binary

classification, however it can be extended to the multi-class case. The idea of SVM is based on

the simple case when we can separate the positive and negative instances by a hyperplane. First

we describe this simple setup, then we turn to the description of the SVM.

Let us suppose that the training documents are represented as V dimensional vectors, and

two classes are given: positive and negative. In the case of a linear classifier, one would like

to separate the documents with a V − 1 dimensional hyperplane. From the possible separating

hyperplanes we want to maximize their distance from the nearest data point. More formally:

D =
{

(�di, ci) | �di ∈ R
V , ci ∈ {+1,−1}

}m

i=1
, (2.3.4)

where �di represents the document and ci its class label. We want to find the hyperplane4 which

divides the points with labels ci = +1 from those having ci = −1. Any hyperplane can be

written as the set of points �d satisfying

�wT · �d −�b = �0. (2.3.5)

We want to choose the �w and �b to maximize distance between the parallel hyperplanes that are

as far apart from each other as possible while still separating the data. It can be shown that these

4It is often called as maximum-margin hyperplane.

19



hyperplanes can be described by the equations

�wT · �d −�b = +1

�wT · �d −�b = −1. (2.3.6)

Documents falling on these hyperplanes are the so called Support Vectors and the maxi-

mum margin hyperplane is at half-way between the Support Vector hyperplanes. This can be

formulated as an optimization problem:

choose �w,�b to minimize ‖�w‖
subject to ci(�wT �di −�b) ≥ 1, for all 1 ≤ i ≤ n (2.3.7)

After the above so-called linear SVM has been trained, the category of a point �y can be

calculated according to the formula:

c =

{
+1, if �wT · �y −�b > 0

−1, if �wT · �y −�b < 0

SVM can be applied when the training documents are not linearly separable in R
V and

can be modified to create non-linear classifiers by using different kernel-functions in the vector

inner-product. For a more thorough discussion of the topic can be found in [48].

SVM in Weka. We applied the Sequential Minimal Optimization (SMO) implementation in

Weka [118] for training an SVM classifier with a linear kernel function and default values, see

the details in [89].

2.3.3 C4.5 decision tree

Classifiers introduced in the previous sections behave like black boxes, i.e. they apply decision

rules that are not easily interpretable by humans. On the contrary, decision tree based classifiers

generate simple decision rules that can help to further analyse or to capture hidden associations

among data instances. In this thesis, we only describe decision tree text classifiers: internal

nodes in the tree represent terms from the given vocabulary, edges represent expressions testing

the association of the given term with the test document, finally, leaves are labeled by cate-

gories. After the tree is constructed, it can be used for classifying a test document as follows:

starting from the root, one recursively chooses a direction at all inner nodes based on evaluating

the expressions on edges which in turn are based on the weight of the given term of the test

document, until a leaf node is reached. The label of this node is then assigned to the document.

20



The most widely used classifiers use binary document representation (see Subsection 2.2.1),

hence produce binary trees. An example of a decision tree built for the category Wheat in the

Reuters-215785 collection is illustrated in Figure 2.4.

Figure 2.4: Decision tree example for the category Wheat from Reuters-21578. Edges are

labeled by terms and leaves are labeled by the categories (¬ stands for negation).

Decision tree construction

The decision trees are usually constructed iteratively. The general step at a given node of the

tree is to find the “best feature”, then make a branch from this node for every value of the

feature, then recursively repeat the branching process for the branches excluding the feature in

the current node. The branches contain training data samples with the same feature value.

The state of the art algorithms differ in the definition of “best attribute” and the balance

constraints on the tree. The most common algorithm is C4.5 developed by Ross Quinlan [97].

C4.5 is an extension of Quinlan’s earlier Iterative Dichotomiser 3 (ID3) algorithm. The ID3

algorithm uses the information gain to select the “best feature”, for further details see [96].

5http://daviddlewis.com/resources/testcollections/reuters21578/

21



C4.5 in Weka. We applied the C4.5 implementation in Weka with default values, for more

information see [97].

2.3.4 Stacked graphical learning

Stacked graphical learning is a general learning scheme developed by Kou and Cohen [63].

As a relational learning method, it exploits both labeled and unlabeled training instances to

build a classifier, relying on the interconnection structure behind the data (e.g. the hyperlinked

environment of documents).

General scheme

Given the training data composed of labeled (for the sake of simplicity, with only positive or

negative labels) and unlabeled instances. The general stacked graphical procedure starts with

one of the base learners introduced in Subsections 2.3.1, 2.3.2, 2.3.3 that classifies each element

v with weight p(v) ∈ [0, 1]. Positive and negative instances in the training set have p(v) equal

0 and 1, respectively. These values are used in a classifier stacking step to form new features

f(u) based on p(v) of the neighbors v of u. Finally the base learner is applied to the expanded

feature sets to make the final predictions. There are some technical details in connection with

the calculation of f(u).

• How can one propagate the information between nodes?

• How can one define the similarities between nodes (what kind of edge-weight function is

used)?

• What is the optimal distance to collect information from the neighbors?

Focusing on the problem of Web page classification, the possible solutions could be as

follows.

Direction of propagation

We may use both the input directed graph, its transpose by changing the direction of each edge,

or the undirected version arising as the union of the previous two graphs. We will refer to

the three variants as directed, reversed and undirected versions. For an edge weight function

d : V × V → R we use d−(u, v) = d(v, u) for the reversed and d± = d + d− for the undirected

version. We extend this notion for an arbitrary similarity measure sim(u, v) computed over edge

weights d and compute sim−(u, v) over d− and sim±(u, v) over d±.

22



Edge-weight functions

Cocitation coc(u, v) is defined as the number of common inneighbors of u and v. This measure

turned out to be most effective for Web spam classification [8]. Using the notation of Sec-

tion 2.3.4, coc−(u, v) denotes bibliographic coupling (nodes pointed to by both u and v) and

coc±(u, v) is the undirected cocitation. We may also use cocitation downweighted by degree,

coc(u, v)/d(u) · d(v).

The Jaccard and cosine similarity coefficients are useful for finding important connections

and ignoring “accidental” unimportant connections. The Jaccard coefficient Jac(u, v) is the ratio

of common neighbors within all neighbors. The coefficient has variants that use the reversed or

undirected graphs. For a weighted graph we may divide the total weight to common neighbors

by the total weight of edges from u and v. This measure performs poor if for example edges ux

and vy have low weight while uy and vx have very high, since the Jaccard coefficient is high

while the actual similarity is very low.

Cosine similarity fixes the above problem of the Jaccard coefficient. We consider the row of

the adjacency matrix corresponding to node u as vector u. The cosine similarity of nodes u and

v is simply cos(u, v) = uT v. We may similarly define cos−(u, v) over the transpose matrix and

cos±(u, v) over the sum.

Several other options to measure node similarities and form the neighborhood aggregate

features are explored in [8, 28]. In Chapter 6 we propose a linked LDA model, which naturally

produce an edge-weight function that can also be used in a stacking scheme with very good

results.

2.4 Evaluation

In this section we define the most commonly used evaluation measures in classification, namely

the accuracy (ACC), precision (PR), recall (R), F -measure (F) and Area Under Curve (AUC).

Accuracy is the fraction of correctly classified documents among all documents. Precision

is the fraction of retrieved documents that are relevant, i.e. belong to the target class, while recall

gives the fraction of the relevant documents retrieved. These measures can also be defined in

terms of a contingency table with the content of the true labels and the labels given by the

classifier, see Table 2.1.

FP (false positives) is the number of negative instances classified incorrectly as positive, FN

(false negatives) is the number of incorrectly classified positive instances, while TP (true posi-

tives) and TN (true negatives) are the number of documents classified correctly as positive and

negative, respectively. In terms of the entries of the contingency table, the previous measures

23



True labels

+ -

Classifier labels
+ TP FP
- FN TN

Table 2.1: Contingency table

are defined as follows:

ACC =
TP + TN

P + N
(2.4.1)

where ACC is the accuracy and P and N refers to the number of positive and negative documents,

respectively.

PR =
TP

TP + FP
and R =

TP
TP + FN

(2.4.2)

where PR and R are the precision and recall.

Obviously there is a trade-off between precision and recall. Precision can be increased if we

assign positive labels to only those documents of which we are really certain that they belong

to the positive class, thereby reducing the fraction of true positives may result in a lower recall.

On the other hand, if we accept more and more documents as positive, the fraction of false

negatives reduces resulting in higher recall and decreased precision.

A compromise between precision and recall is the F-measure, the weighted harmonic mean

of precision and recall:

F =
2

1
R

+ 1
PR

(2.4.3)

The AUC measure is defined over the Receiver Operating Characteristics (ROC) graph from

signal detection theory. The ROC graph is a technique for visualizing, organizing and selecting

classifiers based on their performance. First we define the true positive rate (TPR) and the false

positive rate (FPR), from table 2.1 as

TPR =
TP
P

and FPR =
FP
N

. (2.4.4)

The ROC graph is a two-dimensional graph in which TPR is plotted as the function of FPR.

A discrete classifier is one that outputs only a class label. Each discrete classifier produces an

(TPR, FPR) pair corresponding to a single point in ROC space. However, probabilistic classi-

fiers6, such as C4.5 or SVM naturally yield a probability or score which represents the degree

to which an instance is a member of a class. Such a classifier can be used with a threshold to

produce a discrete (binary) classifier: if the classifier output is above the threshold, the classifier

6We use the term probabilistic classifier in spite of the fact that the output may not be a proper probability,

although the score can always be converted into a probability measure.

24



produces a +, otherwise a −. Each threshold value produces a different point in ROC space

that result in the ROC curve. For comparing classifiers, however, we may want to reduce ROC

performance to a single scalar value representing expected performance. A common method

is to calculate the area under the ROC curve, abbreviated as AUC [17]. AUC is a portion of

the area of the unit square, hence AUC ∈ [0, 1]. However, because random guessing produces

the diagonal line between (0, 0) and (1, 1), with an area of 0.5, no meaningful classifier should

have an AUC less than 0.5. AUC has an important statistical property: the AUC of a classifier

is equivalent to the probability that the classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative instance. This is equivalent to the Wilcoxon test of

ranks [53].

So far we have considered the binary class case, although AUC can be straightforwardly

generalized to the multi-class case. ROC curve for class ci plots the classification performance

using class ci as the positive class and all other classes as the negative class, i.e. Pi = ci and

Ni =
⋃
j �=i

cj . From the |C| different AUCi values, the total AUC can be calculated as

AUC =
∑
ci∈C

AUCi · p(ci) (2.4.5)

where p(ci) is the prevalence of the class ci, i.e. the ratio of documents labeled as ci.

25



26



Chapter 3
Latent Dirichlet Allocation

In this chapter we discuss Latent Dirichlet Allocation, one of the most successful generative

latent topic models developed by Blei, Ng and Jordan [13]. As a warm up, assume that we want

to model how a collection of documents is generated. Documents are represented as mixtures

of topics, e.g. an article about trading with electron microscopes is composed of business and

science, while topics are represented as mixtures of words, e.g. in the topic closely related to

“computer science” words like operating system, hdd, algorithm have large frequency, while

words like checkmate, Heineken, carving have small. An illustrative example can be seen in

Figure 3.1.

Latent Dirichlet Allocation (LDA) models the generation of words in the documents as

follows: at the beginning all the documents are empty, but we know the topic mixture of all the

documents and the word mixture of all the topics. For each document, we choose a topic z from

the document specific topic mixture, then we choose a word w from the mixture of z, then we

repeat this process until we fill all of the word positions in the given document. Then, we restart

the process with the next document, and so on.

In reality, we have exactly the opposite information, namely we know the words of the

documents, and we would like to estimate the topic and word mixtures, respectively. This

process is called inference.

First of all we review the historical background and evolution of LDA, then we introduce

the Bayesian inference in Section 3.2. In Section 3.3, we survey other latent variable models,

finally, in Section 3.4 we give a thorough treatment of LDA.

3.1 History of LDA

The main motivation behind the development of LDA is to find a “suitable” modeling frame-

work for text corpora, or any other kind of discrete data. A primary information retrieval goal

is to find a low dimensional representation that supports efficient operations such as document

27



Figure 3.1: LDA example from [70]. Barrels represent topics as “bag of words” and arrows

refer to the probability of choosing the given topic. There are two topics, TOPIC1 captures

business, while TOPIC2 captures geography. Document 1 discusses more business and less

geography, while Document 2 is more about geography and less about business.

retrieval, classification, clustering, etc., while keeping the inter- or intra-document statistical

relationship as much as possible. First we review the three most influential approaches in this

field.

The tf × idf scheme models every document with real valued vectors. The weights represent

the contribution to the content of the document. It has been proved that this representation

reveals little in the way of inter- or intra-document statistical structure, and the goal of

reducing the description length (representation) of documents is only mildly alleviated.

Details can be found in Subsection 2.2.1.

Latent Semantic Analysis achieves significant compression. In LSA, every document is rep-

28



resented with k-dimensional vectors, where k is significantly smaller then the length of

the document, and these features can explain synonymy and polysemy, see the details in

Subsection 2.2.2.

Probabilistic Latent Semantic Analysis embeds the notion of LSA into a probabilistical frame-

work. It models every document with a topic-mixture. This mixture is assigned to the

documents individually, without a generative process, the mixture weights are learned by

expectation maximization.

Both LSA and PLSA rely on the “bag of words” assumption, that is the order of words is

irrelevant. In probability theory, this is equivalent to the exchangeability property.

Definition 1 (Exchangeability) A finite set of random variables {X1, . . . , Xk} is exchangeable

if

p(X1, . . . , Xk) = p(Xπ(1), . . . , Xπ(k)), (3.1.1)

that is the joint distribution is invariant to permutation. Here, π(·) is a permutation function on

the integers {1 . . . k}.

According to the classical representation theorem of de Finetti [29], a set of exchangeable

random variables always have a representation as a mixture distribution. Note that an assump-

tion of exchangeability is weaker than the assumption that the random variables are independent

and identically distributed. Rather, exchangeability essentially can be interpreted as meaning

“conditionally independent and identically distributed”, where the conditioning is with respect

to an underlying latent parameter of a probability distribution. The conditional probability

distribution p(X1, . . . , Xk|Θ) =
∏k

i=1 p(Xi|Θ) is easy to express, while the joint distribution

usually cannot be decomposed.

This property was exploited in PLSA only on the level of words. As one can argue that not

only words but also documents are exchangeable, a sound probabilistic model must capture the

exchangeability of both words and documents. The LDA is a model which takes this issue into

consideration.

3.2 Bayesian Inference

In LDA, Bayesian methods are usually applied for estimating the model parameters. In this

section we briefly review the theoretical background of Bayesian estimation and the related

concepts.

Bayesian inference is a general statistical inference method based on Bayes’ Theorem.

Given some evidence we would like to infer the probability of whether a hypothesis is true

29



or not. The process can be repeated if new evidence is observed and then the former probability

can be updated. For example in parameter estimation, one is given a data set χ ≡ {xi}|χ|i=1,

which can be considered as a sequence of independent and identically distributed (i.i.d.) real-

izations of a random variable X . This random variable has a parametric probability distribution

p(X|ϑ). The goal is to estimate parameters ϑ of X that can best explain the observation data χ.

By Bayes’ Theorem:

p(ϑ|χ) =
p(χ|ϑ)p(ϑ)

p(χ)
, (3.2.1)

where p(χ|ϑ) is the likelihood function, p(ϑ) is the prior, p(χ) is the evidence and p(ϑ|χ) is the

posterior distribution. Following the terminology:

posterior =
prior × likelihood

evidence
. (3.2.2)

The prior probability distribution p(ϑ) expresses uncertainty about ϑ before the observation data

is taken into account. The posterior probability p(ϑ|χ) is the conditional probability of the vari-

able taking the evidence into account. The posterior probability is computed from the prior and

the likelihood function via Bayes’ theorem as shown in (3.2.2). The likelihood function p(χ|ϑ),

or the likelihood is a function of the parameters of a statistical model, that is, a conditional

probability function considered as a function of its second argument with its first argument held

fixed.

Now we show different estimation methods that start from simple maximization of the like-

lihood, then we show how prior belief on parameters can be incorporated by maximizing the

posterior, and finally we use Bayes’ rule to infer a complete posterior distribution.

Maximum likelihood estimation tries to find parameters that maximize the likelihood:

ϑ̂ML = argmax
ϑ

p(χ|ϑ) = argmax
ϑ

∑
x∈χ

log p(x|ϑ) (3.2.3)

The second equation is valid, because one assumes that the data drawn from a particular distri-

bution is independent, identically distributed (iid) with unknown parameters. Thus the likeli-

hood function can be written as p(χ|ϑ) =
∏

x∈χ p(x|ϑ), and maxima is unaffected by monotone

transformations. The solution for (3.2.3) can be found numerically by using various optimiza-

tion algorithms, for example Lagrange multipliers, hill-climbing, simulated annealing etc.

Maximum a posteriori (MAP) estimation is very similar to maximum likelihood estima-

tion but allows to include some a priori belief on the parameters by weighting them with a

prior distribution p(ϑ). The name derives from the objective to maximize the posterior of the

30



parameters given the data:

ϑ̂MAP = argmax
ϑ

p(ϑ|χ) = argmax
ϑ

p(χ|ϑ)p(ϑ)

p(χ)
= argmax

ϑ

p(χ|ϑ)p(ϑ) =

= argmax
ϑ

{∑
x∈χ

log p(x|ϑ) + log p(ϑ)

}
(3.2.4)

Compared to (3.2.3), a prior distribution is added to the likelihood. In practice, the prior p(ϑ)

can be used to encode extra knowledge as well as to prevent overfitting by enforcing preference

to simpler models. The MAP estimation in (3.2.4) can be computed via numerical optimization,

Monte Carlo simulation, using a modified expectation-maximization, or analytically, if the dis-

tributions obeys certain conditions. With the incorporation of p(ϑ), MAP follows the Bayesian

approach to data modeling where the parameters ϑ are thought of as random variables. With

priors that are parametrized themselves, that is p(ϑ) := p(ϑ|α) with hyper-parameters α, the

belief in the anticipated values of ϑ can be expressed within the framework of probability1, and

a hierarchy of parameters can be created.

Full Bayes estimation extends the MAP approach by allowing a distribution over the pa-

rameter set ϑ instead of making a direct estimate. In that case one has to calculate the normal-

ization term in Equation 3.2.1, i.e. the probability of the “evidence”. Its value can be expressed

by:

p(χ) =

∫
ϑ∈Θ

p(χ|ϑ)p(ϑ)dϑ. (3.2.5)

Using Bayes’ Theorem, the full posterior distribution can be calculated. The intricate part of

the full Bayesian approach is the calculation of the above mentioned normalization integral.

Calculation of Bayesian models often becomes quite difficult, e.g., because the summations or

integrals of the marginal likelihood are intractable or there are unknown variables. Fortunately,

the Bayesian approach leaves some freedom to the encoding of prior belief, and a frequent

strategy to facilitate model inference is to use conjugate prior distributions. A class of prior

probability distributions p(ϑ) is said to be conjugate to a class of likelihood functions p(x|ϑ)

if the resulting posterior distributions p(ϑ|x) are in the same family as p(ϑ). For example, the

Gaussian family is conjugate to itself, the beta-distribution is conjugate to the Bernoulli or to the

binomial distribution and in the multidimensional case, the Dirichlet distribution is conjugate

to the multinomial distribution.

1Belief is not identical to probability, which is one of the reasons why Bayesian approaches are disputed by

some theorists despite their practical importance [56].

31



3.2.1 Distributions

In this section we discuss probability distributions relevant to text modeling. In the LDA model-

ing framework, the multinomial and its conjugate prior, the Dirichlet distribution will be heavily

used. These distributions are the k-dimensional generalized versions of the binomial and beta

distributions, respectively. We will also need the definitions of the gamma function, and the

k − 1-dimensional simplex in R
k.

Definition 2 (Binomial distribution) The probability of getting k successes in a sequence of n

independent true/false experiments. If X ∼ B(n, p), then p(X = k) =
(

n
k

)
pk(1 − p)n−k.

Definition 3 (Multinomial distribution) The multivariate generalization of the binomial dis-

tribution. The experiment has k possible outcomes with probabilities p = (p1, . . . , pk). Let the

random variables Xi indicate the number of times outcome number i was observed over the n

trials, then X = (X1, . . . , Xk) follows a multinomial distribution with parameters n and p and

p(X = x) = p(X1 = x1, . . . , Xk = xk) =
n!

x1! · · ·xk!
px1

1 · · · pxk
k (3.2.6)

Definition 4 (Beta-distribution)

p(θ|α, β) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1 − p)β−1 (3.2.7)

where θ ∈ [0, 1], and Γ(x) is the Gamma function, where Γ(x) =
∫ ∞

0
tx−1e−t dt, and Γ(n) =

(n − 1)! for a natural number n.

Definition 5 ((k − 1)-simplex)

Δk−1 =
{
(x1, · · · , xk) ∈ R

k | Σixi = 1 and xi ≥ 0 for all i
}

(3.2.8)

Definition 6 (Dirichlet-distribution) A k-dimensional Dirichlet-distribution is defined as:

p(�θ|�α) ∝ Dir(�α) =
Γ

(∑k
i=1 αi

)
∏k

i=1 Γ (αi)

k∏
i=1

θαi−1
i =

1

Δ(�α)

k∏
i=1

θαi−1
i , (3.2.9)

where the parameter �α is a k-dimensional vector with components αi ∈ R+, and Γ(x) is the

Gamma function. A k-dimensional Dirichlet random variable �θ is embedded in the (k − 1)-

simplex. This is a conjugate prior distribution to the multinomial, which property will facilitate

the Bayesian inference (see details in page 31). It can be shown that the function Δ(�α) is equal

to the Dirichlet integral of the first kind for the summation function:

Δ(�α) =

∫
∑

xi=1

N∏
i

xαi−1
i dNx. (3.2.10)

32



In figure 3.2 one can see the geometric interpretation.

Figure 3.2: 3-dimensional Dirichlet-distributions with different �α parameters. In the first case

�α = (4, 4, 4), in the second �α = (8, 1, 1), while in the third �α = (1, 4, 1). Colors with more red

indicate larger probabilities.

3.3 Latent variable models

Next, we discuss simpler latent variable models: the unigram model, a mixture of unigrams,

and the PLSA model from the point of Bayesian Networks (see Subsection 2.3.1 for a more

thorough discussion).

The notation in Bayesian Networks is as follows. Circles correspond to hidden random

variables, while double circles denote an evidence node, i.e. an observed variable. Conditionally

independent replications of nodes are represented by plates (or rectangular boxes); note that

this is equivalent to exchangeability, which is the property of a set of nodes to be invariant to

permutation. Arrows refer to conditional probability distributions from the conditioned to the

conditional variable.

Unigram model

Under the unigram model, the words wm,n of every document dm ≡ �wm = {wm,n}Nm
n=1 are

drawn independently from a single multinomial distribution �ϕ. This is illustrated in the graphi-

33



cal model in Figure 3.3. The probability of a document is as follows

p(�wm|�ϕ) =
Nm∏
n=1

p(wm,n|�ϕ). (3.3.1)

Figure 3.3: Unigram model represented as a graphical model.

Mixture of unigrams

In the mixture of unigrams model, each document dm is generated by first choosing a topic

indicator zm ∈ [1, K] and then generating Nm words independently from the corresponding

conditional multinomial �ϕzm . The graphical model of mixture of unigrams is in Figure 3.4. The

probability of a document is:

p(�wm|Φ) =
∑
zm

Nm∏
n=1

p(wm,n|�ϕzm)p(zm|�ϑm), (3.3.2)

where Φ = {�ϕk}K
k=1 are multinomial distributions. These can be viewed as representations

of topics and the documents are modeled as discussing only single topics. However, as the

empirical results in [13] illustrate, this assumption is often too limiting to effectively model a

large collection of documents.

34



Figure 3.4: Mixture of unigrams model represented as a graphical model.

PLSA model

Probabilistic Latent Semantic Analysis (PLSA), or Probabilistic Latent Semantic Indexing (PLSI,

in the field of information retrieval) is a latent topic mixture model that can be used for analyz-

ing discrete data (e.g. a document collection with vector space representation). As noted in the

introductory section of this chapter, LDA evolved from PLSA by extending the exchangeability

property to the level of documents by applying Dirichlet priors on the multinomial distributions

�ϑm and �ϕk, thus we are giving a more thorough presentation of this model.

The pseudo-code of the generative process of PLSA can be seen in Algorithm 3.3.1 and the

graphical model is in Figure 3.5. Note that the difference between the mixture of unigrams and

PLSA is the topic indicator variable zm,n, which is re-sampled for each word.

Algorithm 3.3.1 Generative process for PLSA

1: "document plate"

2: for all documents m ∈ [1, M ] do
3: "word plate"

4: for all words n ∈ [1, Nm] in document m do
5: sample topic index zm,n ∼ Multinomial(�ϑm)
6: sample term for word wm,n ∼ Multinomial(�ϕzm,n)
7: return

According to the graphical model, one can infer that a document dm and a word wm,n are

conditionally independent given a hidden topic zm,n, thus the probability of a document dm is

35



Figure 3.5: PLSA model represented as a graphical model.

as follows:

p(�wm|�ϑm, Φ) =
Nm∏
n=1

∑
zm,n

p(wm,n|�ϕzm,n)p(zm,n|�ϑm). (3.3.3)

PLSA was influenced by LSA (for further details see Subsection 2.2.2), as a solution for the

unsatisfactory statistical foundation [59]: the main difference between LSA and PLSA is the

objective function; in LSA, this is the L2 or Frobenius norm, while in PLSA it is the Kullback-

Leibler divergence between the model and the empirical data. As noted in the disadvantages of

LSA in Section 2.2.2, the Frobenius norm is suitable for Gaussian data, which hardly holds for

count data. The directions of the LSA latent space has no interpretable meaning, but those in

the PLSA space can be interpreted as multinomial word distributions.

Model estimation. According to the likelihood principle, one determines the model param-

eters, p(�ϑm), p(wm,n|zm,n) and p(zm,n|�ϑm) by maximization of the log-likelihood of the com-

plete corpus. The standard procedure for maximum likelihood estimation in latent variable

models is the expectation maximization (EM) algorithm [32]. EM alternates in two steps: (i)

an expectation (E) step where posterior probabilities are computed for the latent variables, (ii) a

maximization (M) step, where parameters are updated. In order to avoid overfitting, the authors

proposed a widely applicable generalization of maximum likelihood model fitting by tempered

36



EM, which is based on entropic regularization and is closely related to deterministic anneal-

ing [98].

3.4 LDA modeling framework

3.4.1 Bayesian Network of LDA

The Bayesian Network of LDA can be seen in Figure 3.6. There are three plates, a document

plate, a word plate and a topic plate with M ,Nm, K replication counts, respectively. The model

has three levels: �α, �β, �ϕk parameters are corpus-level parameters, assumed to be sampled once

in the process of generating the corpus. The variables �ϑm are document-level variables, sam-

pled once per document. Finally, the variables zm,n and wm,n are word-level variables and are

sampled once for each word in each document. The complete generative model is summarized

in Algorithm 3.4.1 and Figure 3.7 gives a list of all involved quantities.

Figure 3.6: LDA as a Bayesian Network. The boxes are “plates” representing replicates. The

outer plate represents documents, while the inner plate represents the repeated choice of topics

and words within a document.

Given the LDA parameters one can express various probability distributions, such as the

probability that a word wm,n instantiates a term:

p(wm,n|�ϑm, Φ) =
∑
zm,n

p(wm,n|�ϕzm,n)p(zm,n|�ϑm). (3.4.1)

37



Algorithm 3.4.1 Generative model for LDA from [56]

1: "topic plate"

2: for all topics k ∈ [1, K] do
3: sample mixture components �ϕk ∼ Dir(�β)
4: "document plate"

5: for all documents m ∈ [1, M ] do
6: sample mixture proportion �ϑm ∼ Dir(�α)
7: "word plate"

8: for all words n ∈ [1, Nm] in document m do
9: sample topic index zm,n ∼ Multinomial(�ϑm)

10: sample term for word wm,n ∼ Multinomial(�ϕzm,n)
11: return

M number of documents in the corpus

K number of latent topics/ mixture components

V number of terms t in vocabulary

N number of words in the corpus, i.e. N =
∑M

m=1 Nm

�α hyperparameter on the mixing proportions
�β hyperparameter on the mixture components
�ϑm parameter notation for p(z|d = m), the mixture component of topic k. One compo-

nent for each topic, Θ = {�ϑm}M
m=1

�ϕk parameter notation for p(t|z = k), the topic mixture proportion for document m.

One proportion for each document, Φ = {�ϕk}K
k=1

Nm document length (document-specific), modeled with a Poisson distribution with con-

stant parameter ξ
zm,n mixture indicator that chooses the topic for the nth word in document m
wm,n term indicator for the nth word in document m

Figure 3.7: Quantities in the model of LDA.

The complete-data likelihood of a document, the joint distribution of all known and hidden

variables given the hyperparameters can be expressed as:

p(�wm, �zm, �ϑm, Φ|�α, �β) =

document plate (1 document)︷ ︸︸ ︷
Nm∏
n=1

p(wm,n|�ϕzm,n)p(zm,n|�ϑm)︸ ︷︷ ︸
word plate

·p(�ϑm|�α) · p(Φ|�β)︸ ︷︷ ︸
topic plate

. (3.4.2)

By integrating out the distributions �ϑm and Φ and summing over zm,n, one can get the

likelihood of a document �wm, i.e., of the joint event of all words occurring:

38



p(�wm|�α, �β) =

∫∫
p(�ϑm|�α) · p(Φ|�β)

Nm∏
n=1

∑
zm,n

p(wm,n|�ϕzm,n)p(zm,n|�ϑm) dΦ d�ϑm

=

∫∫
p(�ϑm|�α) · p(Φ|�β)

Nm∏
n=1

p(wm,n|�ϑm, Φ) dΦ d�ϑm. (3.4.3)

Finally, the complete corpus W = {�wm}M
m=1 likelihood is equal to the product of the likeli-

hood of the independent documents:

p(W|�α, �β) =
M∏

m=1

p(�wm|�α, �β). (3.4.4)

Comparison of LDA and PLSA

The most important difference between the two models is how the document topic mixtures are

modeled. In PLSA �ϑm is a multinomial random variable with as many values as training docu-

ments. The model learns these topic mixtures only for the training documents, thus PLSA is not

a fully generative model, particularly at the level of documents, because there is no straightfor-

ward solution to assign probability to a previously unseen document. As another consequence,

the number of parameters which must be estimated grows linearly with the number of training

documents. The parameters for a k-topic PLSA model are k multinomial distributions of size V

and M mixtures over the k hidden topics. This gives kV + kM parameters and therefore grows

linearly in M . The linear growth in parameters suggests that the model is prone to overfitting.

Although the authors of PLSA proposed a tempering heuristic to smooth the parameters of the

model for acceptable predictive performance, it has been shown that overfitting can occur even

when tempering is used [90].

LDA overcomes both of these problems by treating the topic mixture weights as a k-

parameter hidden random variable sampled from a Dirichlet distribution, hence sampling for

unseen documents (e.g. test documents) can be easily done. Furthermore, the number of pa-

rameters is k + kV in a k-topic LDA model, which do not grow with the size of the training

corpus, thereby avoids overfitting.

3.4.2 Model inference and parameter estimation

Model inference refers to the estimation of the parameters from given observations (see Section

3.2 for further details). For a full Bayesian estimation one must resort to calculating the nor-

malization term in (3.2.1), which is usually intractable, even in the case of LDA, though it is a

relatively simple model. To solve the problem we need approximate inference algorithms, such

39



as Laplace approximation [72], mean field variational expectation maximization [13] or Gibbs

sampling [47, 94].

The authors of LDA applied variational expectation maximization for inference, later [47]

proved that Gibbs sampling is faster with the same efficiency. In our proposed models, i.e., in

multi-corpus LDA (see the details in Chapter 5) and in linked LDA (see details in Chapter 6)

we also deal with Gibbs sampling, thus we treat it in more details.

Gibbs sampling

Gibbs sampling is an algorithm based on Markov chain Monte Carlo (MCMC) simulation.

MCMC methods are able to simulate high-dimensional probability distributions by the station-

ary behaviour of a Markov chain [5]. During the process, one sample per transition is generated

in the chain. The chain starts from an initial random state, then after a burn-in period it sta-

bilizes by eliminating the influence of initialization parameters. The MCMC simulation of the

probability distribution p(�x) is as follows: dimensions xi are sampled alternately one at a time,

conditioned on the values of all other dimensions denoted by �x¬i = (x1, . . . , xi−1, xi+1, . . . , xn),

that is:

1. choose dimension i (random or by cyclical permutation)

2. sample xi from p(xi|�x¬i)

The requirement for building a Gibbs sampler is to know all the univariate conditionals (or full

conditionals) p(xi|�x¬i), which can be calculated as:

p(xi|�x¬i) =
p(�x)∫

p(�x) dxi

with �x = {xi, �x¬i}. (3.4.5)

Gibbs sampler for LDA

In order to construct a Gibbs sampler for LDA, one has to estimate the probability distribution

p(�z|�w) for �z ∈ KN , �w ∈ VN , where N denotes the set of word-positions in the corpus. This

distribution is directly proportional to the joint distribution:

p(�z|�w) =
p(�z, �w)∑
z p(�z, �w)

. (3.4.6)

The tricky part is the denominator, which is a summation over KN terms. However, using

Gibbs sampling, one requires only the full conditionals p(zi|�z¬i, �w) in order to simulate p(�z|�w).

First we derive the joint distribution:

p(�w, �z|�α, �β) = p(�w|�z, �β)p(�z|�α), (3.4.7)

40



because the first term is independent of �α due to the conditional independence of �w and �α given

�z, while the second term is independent of �β. The elements of the joint distribution can now be

handled separately. The first term can be obtained from p(�w|�z, Φ), which is simply:

p(�w|�z, Φ) =
N∏

i=1

ϕzi,wi
=

K∏
z=1

V∏
t=1

ϕNzt
z,t . (3.4.8)

That is, the N words of the corpus are observed according to independent multinomial trials

with parameters conditioned on the topic indices zi. In the second equation we split the product

over words into one product over topics and one over the vocabulary, separating the contribu-

tions of the topics. The term Nzt denotes the number of times that term t has been observed

with topic z. The distribution p(�w|�z, �β) is obtained by integrating over Φ, which can be done

component-wise using Dirichlet integrals within the product over z:

p(�w|�z, �β) =

∫
p(�w|�z, Φ)p(Φ|�β) dΦ

=

∫ K∏
z=1

1

Δ(�β)

V∏
t=1

ϕNzt+βt−1
z,t d�ϕz

=
K∏

z=1

Δ( �Nz + �β)

Δ(�β)
, �Nz = {Nzt}V

t=1. (3.4.9)

The topic distribution p(�z|�α) can be derived from p(�z|Θ):

p(�z|Θ) =
N∏

i=1

ϑdi,zi
=

M∏
m=1

K∏
z=1

ϑNmz
m,z , (3.4.10)

where di refers to the document word wi belongs to and Nmz refers to the number of times that

topic z has been observed in document m. Integrating out Θ, we obtain:

p(�z|�α) =

∫
p(�z|Θ)p(Θ|�α) dΘ

=

∫ M∏
m=1

1

Δ(�α)

K∏
z=1

ϑNmz+αz−1
m,z d�ϑm

=
M∏

m=1

Δ( �Nm + �α)

Δ(�α)
, �Nm = {Nmz}K

z=1. (3.4.11)

41



The joint distribution therefore becomes:

p(�w, �z|�α, �β) =
K∏

z=1

Δ( �Nz + �β)

Δ(�β)
·

M∏
m=1

Δ( �Nm + �α)

Δ(�α)
. (3.4.12)

Using (3.4.12) we can derive the update equation for the hidden variable:

p(zi = k|�z¬i, �w) =
p(�z, �w)

p(�z¬i, �w)
=

p(�w|�z)

p(�w|�z¬i)
· p(�z)

p(�z¬i)
(3.4.13)

∝ Δ(�nk + �β)

Δ(�nz,¬i + �β)
· Δ(�nm + �α)

Δ(�nm,¬i + �α)
(3.4.14)

=

Γ(Nkt+βt)

Γ(
∏V

v=1(Nkv+βv))
· Γ(Nmk+αk)

Γ(
∏K

z=1(Nmz+αz))
Γ(Nkt−1+βt)

Γ(
∏V

v=1(Nkv+βv)−1)
· Γ(Nmk−1+αk)

Γ(
∏K

z=1(Nmz+αz)−1)

(3.4.15)

=
N¬i

kt + βt∑V
v=1(Nkv + βv) − 1

· N¬i
mk + αk∑K

z=1(Nmz + αz) − 1
, (3.4.16)

where the superscript N¬i denotes that the word or topic with index i is excluded from the

corpus when computing the corresponding count. Note that only the terms of the products over

m and k contain the index i; all the others cancel out. We used the Γ(x) = (x − 1)Γ(x − 1)

identity to get (3.4.16) from (3.4.15).

In any time, one can calculate the values of Θ and Φ from the given state of the Markov

chain, i.e. from the current samples of p(�z|�w). This can be done as a posterior estimation,

by predicting the distribution of a new topic-word pair (z̃ = k, w̃ = t) that is observed in a

document m, given state (�z, �w):

p(z̃ = k, w̃ = t|�z, �w) = p(w̃ = t|z̃ = k, �z, �w) · p(z̃ = k|�z, �w) (3.4.17)

=
p(z̃ = k, w̃ = t, �z, �w)

p(�z|�w))
=

Γ(Nkt+1+βt)

Γ(
∏V

v=1(Nkv+βv)+1)
· Γ(Nmk+1+αk)

Γ(
∏K

z=1(Nmz+αz)+1)
Γ(Nkt+βt)

Γ(
∏V

v=1(Nkv+βv))
· Γ(Nmk+αk)

Γ(
∏K

z=1(Nmz+αz))

(3.4.18)

=
Nkt + βt∑V

v=1(Nkv + βv)
· Nmk + αk∑K

z=1(Nmz + αz)
. (3.4.19)

Using the decomposition in (3.4.17), we can interpret its first factor as ϕk,t and its second factor

as ϑm,k, hence:

42



ϕk,t =
Nkt + βt∑V

v=1(Nkv + βv)
, (3.4.20)

ϑm,k =
Nmk + αk∑K

z=1(Nmz + αz)
. (3.4.21)

The Gibbs sampling in Algorithm 3.4.2 can be run using equations (3.4.16), (3.4.20) and

(3.4.21). It uses three data structures, the matrix-like count tables Nmz and Nzt, which have

dimensions M × K and K × V respectively and the sparse matrix-like topic assignment table

zm,n with dimensions M × Nm. The Gibbs sampling algorithm starts from a random topic-

assignment state, then after a certain number of iterations (or alternatively the burn-in period)

we can read the parameters of Θ and Φ. Note that the determination of the required burn-in

lengths is one of the drawbacks of MCMC approaches. There are several criteria to check

that the Markov chain has converged (see [69]). We used cross entropy, which is a common

evaluation measure in language modeling [46]. Normalized cross entropy (CE)2 measures how

close is the estimated model to the “true model”, or in other terms, in what extent can the model

be generalized to unseen data. More formally, given a test corpus D̃ with M documents, then

the CE with respect to a model build on a corpus D is:

CE(D, D̃) = − 1

N
log p(D̃) = −

M∑
m=1

1

Nm

log p( �̃wm)

= −
M∑

m=1

1

Nm

Nm∑
n=1

log

(
K∏

k=1

p(wn = t|zn = k)p(zn = k|dm)

)

= − 1

N

V∑
v=1

Nmv log

(
K∏

k=1

ϕk,tϑm,k

)
. (3.4.22)

3.4.3 Unseen inference for LDA

Unseen inference refers to topic estimation of a collection of unseen documents D̃ based on

the previously built LDA model. For a document m̃ ∈ D̃, we need to estimate the posterior

distribution of topics �̃z, where m̃ = �̃w ∈ V Nm̃ and �̃z ∈ TNm̃ . Using the LDA model L(Φ, Θ),

p(�̃z| �̃w, L) = p(�̃z| �̃w, �w, �z), (3.4.23)

2Another often cited measure is the perplexity, which is simply 2CE.

43



Algorithm 3.4.2 Gibbs sampling algorithm for LDA from [56]

1: initialization: Nmz ← Nzt ← 0
2: for all documents m ∈ [1, M ] do
3: for all words n ∈ [1, Nm] in document m do
4: sample topic index zm,n ∼ Multinomial(1/K)
5: Nmz ← Nmz + 1
6: Nzt ← Nzt + 1

{Gibbs sampling over burn-in period and sampling period}

7: while not finished do
8: for all documents m ∈ [1, M ] do
9: for all words n ∈ [1, Nm] in document m do

10: update counts for wm,n = t, zm,n = z:

11: Nmz ← Nmz − 1
12: Nzt ← Nzt − 1
13: z̃ ∼ p(zi|�z¬i, �w)
14: update counts for wm,n = t, zm,n = z̃:

15: Nmz̃ ← Nmz̃ − 1
16: Nz̃t ← Nz̃t − 1

{check for convergence and compute parameters}

17: if converged and L sampling iterations since last read out then
18: compute Φ
19: compute Θ
20: return

here �w ∈ V N , �z ∈ TN are the word and topic vectors calculated on a training corpus D. We

first initialize Algorithm in 3.4.2 by randomly assigning topics to words in m̃, and initializing

the count tables Nmz, Nzt with the counts from the model L. Then we perform a number of

iterations with the Gibbs sampling update locally for the words i of m̃:

p
(
�̃zi = k|�̃z¬i, �̃w, �z¬i, �w

)
=

Nkt + Ñ¬i
kt + βt∑V

v=1(Nkv + Ñkv + βv)
· Nmk + N¬i

m̃k + αk∑K
z=1(Nmz + Nm̃z + αz)

, (3.4.24)

where the Ñkt table counts the observations of term t and topic k in the unseen document m̃.

Applying equation (3.4.21) to the unknown document:

ϑm̃,k =
Nm̃k + αk∑K

z=1(Nm̃z + αz)
. (3.4.25)

This procedure is applicable to the whole unseen corpus D̃, which is done by letting m̃ range

over the D̃.

44



Chapter 4
A Comparative Analysis of LSA and LDA

In this chapter we discuss the application of LSA and LDA in the Web page classification

task. We report results on a comparison of these two approaches using different vocabularies

consisting of links and text. Both models are evaluated using different numbers of latent topics.

Finally, we evaluate a hybrid latent variable model that combines the latent topics resulting

from both LSA and LDA. This new approach turns out to be superior to the basic LSA and

LDA models. In our experiments with categories and pages obtained from the Open Directory

Project (ODP)1 web directory, the hybrid model achieves an averaged F value of 0.852 and an

averaged AUC value of 0.96.

4.1 Related results

It has long been recognized that text and link features extracted from pages can help to discover

Web communities, which often leads to the extraction of topically coherent subgraphs useful

for clustering or classifying Web pages. Many algorithms based solely on link information

have been proposed to partition hypertext documents [15, 54, 88], to identify and examine

the structure of topics on the Web [23, 34, 45] and to categorize Web content [50]. Other

algorithms use the hyperlink structure of the Web to find related pages [30, 77]. An approach,

somewhat different from ours that combines latent variable models to identify topics on the

Web is Link-PLSA-LDA [80].

LSA and LDA are based on different principles, see Subsection 2.2.2 and 3.4. On the one

hand, LSA assumes that words and documents can be represented as points in the Euclidean

space. On the other hand, LDA (like other statistical models) assumes that the semantic prop-

erties of words and documents are expressed in terms of probabilistic topics. Although some

recent theoretical work has been carried out comparing Euclidean and probabilistic latent vari-

1http://www.dmoz.org

45



able models (e.g., [79]), this is the first attempt to the best of the authors’ knowledge to provide

a thorough empirical comparison of the two modeling approaches in the Web page classification

task.

We applied LSA and LDA to uncover the hidden structure of a document collection. Doc-

uments can then be compared by means of their topics and therefore documents can have high

similarity even if they do not share many common terms.

Contrary to the usual setup, we do not use links to propagate topics, but instead we treat

them as words and build latent topic models on them. LDA with a vocabulary consisting of

links was first considered in [124]. Their model, called SSN-LDA, is exactly our LDA model

on links, applied in a social network context. Aside from this paper, we are not aware of any

results on latent topic models built on links.

4.2 Experimental setup

Our goal is to compare LSA and LDA in a Web page classification task. For that purpose, we

run a series of tests described next.

4.2.1 Input data

In order to run our comparison tests, we selected nearly 500 topics from ODP. The topics were

selected from the third level of the ODP hierarchy. A number of constraints were imposed on

this selection with the purpose of ensuring the quality of our test set. For each topic we collected

all of its URLs as well as those in its subtopics. The total number of collected pages was more

than 350K. After this selection, the topics were merged into 8 different categories, preserving

only the main classification given by ODP: Arts, Business, Computers, Health, Science, Shop-

ping, Society, Sports. We randomly split this collection of pages into training (80%) and test

(20%) collections.

Text and links were extracted from the collected pages and used to generate two vocabulary

sets. We refer to the vocabulary set based on text as T and to the vocabulary set based on links

as L. In order to generate T , we extracted all terms from the selected Web pages and kept only

the 30K terms that occurred with the highest frequency. This vocabulary was filtered further by

eliminating stop-words2 and keeping only terms consisting of alphanumeric characters, includ-

ing those containing the hyphen, and the apostrophe. Documents with length less than 1000

terms were discarded. Finally, the text was stemmed3. The final number of words in T was

21308.

2http://www.lextek.com/manuals/onix/stopwords1.html.
3http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/.

46



The vocabulary set L combines the incoming links and outgoing links associated with our

corpus, that is the vocabulary consists of web pages linking to or linked by a page in our corpus.

Incoming links were obtained using the Google Web API. In our classification tests, we took

special care to filter out those links coming from topical directories. Finally, we extracted all the

outgoing links from the pages and added them to L. Links that occur in less than 10 documents

were removed from our vocabulary and we only kept (train and test) documents with at least 3

links. The size of vocabulary L was 44561. It is important to notice that distinct portions of

the training and test data are kept for the link and text vocabularies. By intersecting the two test

sets (i.e. the text based and the link based) we obtained a common test set with 1218 pages.

4.2.2 Model construction

Using the training collection, we created models for LSA and LDA based on different vocab-

ularies and using different number of latent topics. By taking this approach, we were able to

compare the performance of our models across different dimensions. For LSA we used the

tf × idf pivoted scheme described in (2.2.3) and applied SVD with dimensions 5, 15 and 30.

LDA was run for 1000 iterations to generate 5, 15 and 30 latent topics.

In what follows we will use a simple convention to name the tested models. For example, an

LSA model that uses text vocabulary and 15 latent topics is referred to as LSA-T-15, while one

that uses link vocabulary for the same number of topics is named LSA-L-15. In addition, one

could explore alternative text and link combinations, as well as the integration of latent topics

from LSA and LDA. For example, by combining LDA-T-15 with LDA-L-30 we obtained the

LDA-T-15-L-30 model, and by combining, LDA-L-15-T-30 with LSA-L-15-T-30 we obtained

LDA-L-15-T-30-LSA-L-15-T-30.

In order to generate the LSA models we used the Lanczos code of svdpack [10] to run

SVD. For LDA we used our home developed C++ code4. Once our models were generated,

we used the Weka machine learning toolkit [119] with 10 fold cross validation to run two

different binary classifiers: C4.5 and SVM, separately for every category. The F and AUC

values presented in the rest of the chapter are averaged over the 8 categories.

4.3 Results

In this section we report the averaged F and AUC values for the tested models. Although we

generated models with 5, 15 and 30 latent topics, we will omit the results for the models with

5 topics as they performed poorly. Tables 4.1 and 4.2 compare the performance of the LSA

and LDA models using different text and link vocabulary combinations. We can observe that

4http://www.ilab.sztaki.hu/ibiro/lda/

47



for both models the text vocabulary is superior to the link vocabulary. This is not surprising

considering that the number of links associated with each pages is usually much smaller than

the number of terms. However, we observe that the models that combine text and link features

are appreciably superior to those based only on text.

Experiments SVM C4.5

L-15 0.105/0.514 0.198/0.575

L-30 0.136/0.532 0.433/0.732

T-15 0.531/0.824 0.487/0.722

T-30 0.562/0.839 0.446/0.687

L-15-T-15 0.666/0.881 0.558/0.753

L-15-T-30 0.710/0.894 0.561/0.755

L-30-T-15 0.671/0.882 0.594/0.783

L-30-T-30 0.708/0.893 0.579/0.768

Table 4.1: Averaged F and AUC values with LSA.

Experiments SVM C4.5

L-15 0.249/0.724 0.385/0.738

L-30 0.367/0.758 0.458/0.761

T-15 0.464/0.834 0.435/0.686

T-30 0.619/0.876 0.453/0.710

L-15-T-15 0.699/0.900 0.604/0.787

L-15-T-30 0.765/0.938 0.571/0.756

L-30-T-15 0.687/0.896 0.594/0.771

L-30-T-30 0.757/0.921 0.575/0.767

Table 4.2: Averaged F and AUC values with LDA.

The most effective model for LSA is LSA-L-15-T-30, which combines 15 link based topics

with 30 text based topics. Similarly, the best LDA model is LDA-L-15-T-30. Table 4.3 summa-

rizes the improvements obtained when link features are included in the vocabulary with SVM

classifier.

Method F AUC
LSA-T-30 0.562 0.839

LSA-L-15-T-30 0.710 0.894

Improvement 26.3% 6.6%

LDA-T-30 0.619 0.876

LDA-L-15-T-30 0.765 0.938

Improvement 23.6% 7.1%

Table 4.3: Comparison of text (T) and link (L) based classification results.

48



We also observe that LDA was superior to LSA for all the tested combinations. Table 4.4

shows the averaged F and AUC values for the best LSA and LDA configuration, using SVM.

Method F AUC
LSA-L-15-T-30 0.710 0.894

LDA-L-15-T-30 0.765 0.938

Improvement 7.7% 4.9%

Table 4.4: Averaged F and AUC values for the best LSA and LDA configuration.

Finally, we looked into the combination of the two latent variable models. Interestingly, by

combining the best configurations of LDA and LSA we obtain the best model with an averaged

F value of 0.852 and an averaged AUC value of 0.96. Table 4.5 summarizes these results.

The improvement registered by integrating both models points to the fact that the LDA

and LSA models capture different aspects of the hidden structure of the corpus and that the

combination of these models can be highly beneficial.

Method F AUC
LSA-L-15-T-30 0.710 0.894

LDA-L-15-T-30 0.765 0.938

LSA-L-15-T-30-LDA-L-15-T-30 0.852 0.96
Improvement LDA-LSA over LSA 20% 7.4%

Improvement LDA-LSA over LDA 11.3% 2.3%

Table 4.5: Averaged F and AUC values for the best LSA, LDA, and LSA-LDA combined

configuration.

4.4 Conclusion

In our experiments we observe that although LDA is superior to LSA for all the tested con-

figurations, the improvements achieved by combining latent structures from both approaches

are noteworthy. Despite the different underlying assumptions of these two approaches and the

apparent superiority of LDA, each one appears to have unique contribution for modeling text

and links for classification.

49



50



Chapter 5
Multi-corpus LDA

In this chapter we introduce and evaluate a technique called Multi-corpus Latent Dirichlet Al-

location (MLDA) for supervised semantic categorization of documents. In our setup, we as-

sign topics separately for each category, and for a labeled training document only those topics

are sampled that belong to its category. Thus, compared to the classical LDA that processes

the entire corpus in one, we essentially build separate LDA models for each category with

category-specific topics, and then these topic collections are put together to form a unified LDA

model. For an unseen document the inferred topic distribution gives an estimation how much

the document fits into the category.

We use this method for Web document classification. Our key results are 15% increase in

AUC value in classification accuracy over tf × idf with SVM and 13% over the classical LDA

baseline with SVM. Using a careful vocabulary selection method and heuristics to handle the

effect that similar topics may arise in distinct categories, we achieve an improvement of 27%

over tf × idf with SVM and 25% over LDA with SVM in AUC.

5.1 MLDA model

MLDA is a hierarchical method with two levels: categories and topics. Assume we have a super-

vised document categorization task with m categories. Every document is assigned to exactly

one category, and this assignment is known only for the training corpus. For every category

we assign a collection of topics of its own, and the union of these collections forms the topic

collection of LDA. In LDA a Dirichlet parameter vector α is chosen for every document so that

topics assigned to the document’s words are drawn from a fixed multinomial distribution drawn

from Dir(α). In MLDA, we require for every training document that this Dirichlet parameter α

has component zero for all topics outside the document’s category, in order to achieve that only

topics from the document’s category are sampled to the document’s words. This is equivalent to

building separate LDA models for every category with category-specific topics. For an unseen

51



document d the fraction of topics in the topic distribution of d that belong to a given category

measures how well d fits into that category. As a Dirichlet distribution allows only positive

parameters, we will extend the notion of Dirichlet distribution in a natural way by allowing

zeros. Although there exist hierarchical latent topic models [14, 111] similar to ours that tackle

more than one layers, the advantage of MLDA is that it is built up from plain LDA’s and no

complicated hierarchical models need to be developed.

More formally, if γ = (γ1, . . . , γl, 0, . . . , 0) ∈ R
n where γi > 0 for 1 ≤ i ≤ l, then let the

distribution Dir(γ) be concentrated on the subset {x ∈ R
n : xi = 0 ∀i > l,

∑
1≤i≤n xi = 1},

with distribution Dir(γ1, . . . , γl). Thus for p ∼ Dir(γ) we have that pi = 0 for i > l with

probability 1, and (p1, . . . , pl) is of distribution Dir(γ1, . . . , γl). It can be checked in the deduc-

tion of [56] that the only property used in the calculus of Subsection 3.4.2 is that the Dirichlet

distribution is conjugate to the multinomial distribution, which is kept for our extension, by

construction. Indeed, if x ∼ χ where χ ∼ Dir(γ1, . . . , γl, 0, . . . , 0) with γi > 0 for 1 ≤ i ≤ l,

then for i > l we have that χi = 0 and thus xi = 0 with probability 1. So the maximum a

posteriori estimation of χi is
γi + xi∑

1≤j≤n γj + xj

,

because the same holds for the classical case. To conclude, every calculation of the previous

subsection still holds.

As p(zi = k|�z¬i, �w) = 0 in Equation (3.4.16) if k has 0 Dirichlet prior, that is if it does

not belong to the category of the document, the model inference procedure breaks down into

making separate model inferences, one for every category. In other words, if we denote the

collection of those training documents which were assigned category i by Ci, 1 ≤ i ≤ m, then

MLDA model inference essentially builds m separate LDA models, one for every Ci, with an

appropriate choice of the topic number ki. After all model inferences have been done, we have

term distributions for all k =
∑{ki : 1 ≤ i ≤ m} topics.

Unseen inference is the same as for LDA. For an unseen document d, we perform Gibbs

sampling and after a sufficient number of iterations, we calculate ϑd as in (3.4.21). For every

category 1 ≤ i ≤ m we define

ξi =
∑
j∈Ki

ϑd,j, (5.1.1)

where Ki is the set of topic indices belonging to the category i. As ξi estimates how relevant

category i is to document d, ξi is a classifier itself. We call this direct classifier, and measure its

accuracy in terms of the AUC value, see Section 5.2. It is an appealing property of MLDA that

right after unseen inference the resulting topic distribution directly gives rise to a classification.

That is in contrast to, say, using plain LDA for categorization, where the topic distribution of

the documents serve as features for a further advanced classifier.

52



MLDA also outperforms LDA in its running time. If there are ki topics and Ni word po-

sitions in category i, then MLDA model inference runs in time O(I · ∑m
i=1 kiNi), where I is

the number of iterations. On the contrary, LDA model inference runs in time O(I · kN) where

k =
∑m

i=1 ki and N =
∑m

i=1 Ni. The more categories we have, the more is the gain. In addition,

model inference in MLDA can be run in parallel. Unseen inferences in MLDA and LDA take

about the same time, both are O(IkN) where N denotes the total number of word positions in

unseen documents.

5.1.1 ϑ-smoothing with Personalized PageRank

After model inference every document has an estimated topic distribution �ϑ. Averaging these

�ϑ’s over the documents gives a distribution vector �̂ϑ that estimates the overall presence of the

topics in the corpus. We call �̂ϑ the observed importance distribution of the topics in the

corpus.

We expect that topics with a high importance value are somewhat “more important” than

those with a small value, hence for a given category i we examine the top words of the best and

worst three topics. Figure 5.1 shows an example of category “Science”. The first three topics

have the greatest importance score according to �̂ϑ, while the last three have the smallest and for

the former we can easily assign a meaningful label but not for the latter. The results are similar

for the other main categories.

It is possible that MLDA infers two very similar topics in two distinct categories. In such a

case it can happen that multi-corpus unseen inference for an unseen document puts very skewed

weights on these two topics, endangering classification performance. To avoid such a situation,

we apply a modified 1-step Personalized PageRank on the topic space, taking topic-similarity

and the observed importance into account.

Our method for redistributing ϑ weights is based on a PageRank computation over a graph

with edge weights defined by the Jensen-Shannon divergence of the topics. We define PageRank

first and a Jensen-Shannon divergence similarity measure between two probability distributions

afterwards.

PageRank [85] is a recursive algorithm that assigns numerical importance scores to Web

pages. It was first used in the Google web search engine. The key concept is as follows: high

PageRank value can be obtained if a page have lots of links from pages with high PageRank.

PageRank is defined by the random surfer model. At a given time k, the random surfer is at page

u and chooses a page v from the set of outgoing links of u uniformly at random. This determines

his position at time k + 1. The PageRank of a page u is the probability that the random surfer

will arrive at that particular page. The former random walk defines a Markov chain on the Web

graph, the states are the nodes (Web pages) from G and the stochastic transition matrix P is

defined as pu,v = 1
d+(u)

, where d+(u) is the number of outlinks of page u. In order to ensure a

53



Figure 5.1: Best and worst topics of category Science according to the observed importance

distribution. Assigning a meaningful label to the first three columns is relatively easy, while the

last three are quite fuzzy. @card@ is a replacement of numbers.

unique stationary distribution, P must be irreducible and aperiodic. The aperiodicity, i.e. the

greatest common divisor of the length of all directed cycles in G is equal to 1, is always satisfied

in practice. P is irreducible if and only if there is a directed path between any pair of pages in

G. This condition can be fulfilled by adding a transition matrix E = �e · �rT to P , where �e is a

vector whose elements are all equal to 1, and �r is a vector whose elements are non-negative and

sum to 1. The new transition matrix is:

A = [c · P + (1 − c) · E]T , (5.1.2)

where 1 − c is the probability that the surfer jumps to a random page according to �r rather than

following an outgoing link. When the elements of �r are equal we get the original PageRank

(PR), while with a non-uniform �r the result will be the personalized PageRank vector (PPR).

The PageRank vector is the unique right eigenvector of A corresponding to eigenvalue 1.

54



The Jensen-Shannon divergence is a symmetric distance function between distributions with

range [0, 1] with the following definition:

Definition 7 (Jensen-Shannon divergence) Given two discrete probability distribution1, p and

q, the Jensen-Shannon divergence is defined as:

JSD(p||q) =
1

2
D (p||m) +

1

2
D (q||m) (5.1.3)

where m = p+q
2

, and D(p||q) is the Kullback-Leibler divergence.

Definition 8 (Kullback-Leibler divergence)

D(p||q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
. (5.1.4)

Next we define our ϑ-smoothing procedure. Let us define the topic graph as a complete

graph over the topics as nodes where edges are weighted by the Jensen-Shannon divergence of

the topics. Fix a document m. After unseen inference, its topic distribution is �ϑm. We smooth

�ϑm by distributing the components of �ϑm among themselves, as follows. For all topics h ∈ K,

we replace ϑm,h by

ϑnew
m,h = c · ϑm,h +

∑
j∈K\h

Sj ·
ϑ̂j

JSD(ϕj, ϕh) + ε
· ϑm,j (5.1.5)

where c is a smoothing constant, �̂ϑ is the observed importance distribution, ε is a small constant

to avoid dividing with zero, and ϕj, ϕh are the word distributions representing topics j and h,

respectively. Note that c = 1 corresponds to no ϑ-smoothing. In order to make sure that ϑnew
m,j is

a distribution, a normalization term Sj is chosen to satisfy:

∑
h∈K\j

Sj ·
ϑ̂j

JSD(ϕj, ϕh) + ε
· ϑm,j = (1 − c)ϑm,j, (5.1.6)

The experiments on ϑ-smoothing in Subsection 5.3.2 show slight improvement in accuracy

if the vocabulary has small discriminating power among the categories. This is perhaps because

it is more probable that similar topics are inferred in two categories if there are more words in

the vocabulary with high occurrence in both. We mention that ϑ-smoothing can be applied to

the classical LDA as well.

1Continuous case can be defined analogously.

55



5.2 Experimental setup

We have collected 290k documents from 8 categories of the DMOZ web directory2: Arts, Busi-

ness, Computers, Health, Science, Shopping, Society, Sports. In our experiments, a document

consists only of the text of the HTML page. After dropping documents with length less than

2000, we are left with 12k documents with total length of 64M.

For every category, we randomly split the collection of pages assigned to that category into

training (80%) and test (20%) collections, and we denote the training corpus of the ith category

by Ci. We learn the MLDA model on the training corpus, that is, effectively, we build separate

LDA models, one for every category. Then we carry out unseen inference on the test corpus.

For every unseen document d we define two aggregations of the inferred topic distribution ϑd:

we use ϑd itself as well as the category-wise ξ sum defined in (5.1.1). As we already noted, the

category-wise sum ξ gives an estimation on the relevancy of category i for document d that we

use as a direct classifier.

As baseline, we learn an LDA model with the same number of topics on the training corpus

(without using the category labels), and then take the inferred ϑ values as feature on the test

corpus.

We make experiments on how classifiers perform on the collection of these aggregated

features. We classify every category separately by binary classifiers (linear SVM, C4.5 and

BayesNet) using 10-fold cross validation to get the AUC value. We report the average AUC

over the 8 categories. Classification is carried out for both ϑ and ξ as features.

Every run (MLDA model build, unseen inference and classification) is repeated 10 times to

get variance of the AUC measure. These are at most 0.01 throughout, so we do not quote them

individually.

The calculations were performed with the machine learning toolkit Weka [118] for classifi-

cation and a home developed C++ code for LDA3.

The computations were run on a Debian Linux machine with 20GB RAM and 1.8GHz Dual

Core AMD Opteron 865 processor with 1MB cache.

5.2.1 Term selection

Although the importance of term selection in information retrieval and text mining has been

proved crucial by several results, most papers on LDA-based language models do not put strong

emphasis on the choice of the vocabulary. In this work we perform a careful term selection in

order to find terms with high coverage and discriminability. There are several results published

on term selection methods for text categorization tasks [42, 67]. However, we do not directly

2http://www.dmoz.org/
3http://www.ilab.sztaki.hu/˜ibiro/lda/

56



apply these here, as our setup is different in that the features put into the classifier come from

discovered latent topics, and are not derived directly from terms.

We keep only terms consisting of alphanumeric characters, hyphen, and apostrophe. We

delete all stop-words enumerated in the Onix list4. We stem by TreeTagger 5.

Our feature selection procedure is as follows.

1. For every training corpus Ci we take the terms with the largest tf value (calculated within

Ci). The resulting set of terms is denoted by Wi.

2. We unify these term collections over the categories, that is, let W =
⋃{Wi : 1 ≤ i ≤ m},

3. We drop those terms w from W for which the entropy of the normalized tf -vector over

the categories exceeds a threshold Hth, that is, for which

m∑
i=1

tfi(w)

tf(w)
· log

(
tfi(w)

tf(w)

)
≥ Hth

where tfi(w) is the term frequency of w calculated within Ci.

Term selection has two important aspects, discriminability and coverage. Note that step 1

takes care of the first and step 3 of the second.

We also made experiments with the unfiltered vocabulary (stop-wording and stemming the

largest 30k terms in tf ). For the thresholds set in our experiments, the size of the vocabulary

and the average document length after filtering is shown in Table 5.1. The first line refers to the

unfiltered case.

tftop Hth |V | d̂l

none none 21862 2602

15000 1.8 35996 1207

30000 1.8 89299 1329

30000 1.5 74828 637

Table 5.1: The size of the vocabulary |V | and the average document length d̂l after filtering for

different thresholds.

We mention that the running time of LDA is insensitive to the size of the vocabulary, so this

selection is exclusively for enhancing performance.

4http://www.lextek.com/manuals/onix/stopwords1.html
5http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

57



5.2.2 LDA inference

Model inference is performed separately for every training corpus Ci as described in Subsection

3.4.2, and then unseen inference is made for the test corpus w.r.t. the unified model. The number

of topics k is chosen in three ways with the values given in Table 5.2:

1. ki = 50 for all categories, referred as const

2. ki is the number of subcategories of the category, referred as sub

3. ki is the number of sub-sub-categories of the category, referred as sub-sub

category const sub sub-sub
Arts 50 15 41

Business 50 23 71

Computers 50 17 44

Health 50 15 39

Science 50 12 58

Shopping 50 22 82

Society 50 20 58

Sports 50 14 28

sum, k = 400 138 421

Table 5.2: Three choices for topic number k.

The Dirichlet parameter β was chosen to be constant 0.1 throughout. For a training doc-

ument in category i we chose α to be 50/ki on topics belonging to category i and zero else-

where. During unseen inference, α is defined accordingly, that is, for every topic z we have

αz = 50/ki if z belongs to category i. The tests are run with and without ϑ-smoothing, with

c = 0.5, 0.75, 0.85 and ε = 0.001. We apply Gibbs sampling for inference with 1000 iterations

throughout.

5.3 Results

5.3.1 Plain MLDA vs LDA

As a justification for MLDA, we compared plain MLDA (no vocabulary filtering and ϑ-smooth-

ing) with the classical LDA. The vocabulary is chosen to be unfiltered in both cases (see Subsec-

tion 5.2.1). For MLDA we tested all three variations for topic number (see Table 5.2). We show

classification results with ξ features only since with ϑ the AUC values were about 5% worse.

The classifiers were linear SVM, BayesNet and C4.5, as implemented in Weka, together with

58



the direct classification (defined in (5.1.1)). For LDA, the number of topics was k = 138, which

is equal to the total number of topics in MLDA sub, and for a test document, the corresponding

138 topic probabilities served as features for the binary classifiers in the test corpus. Another

baseline classifier is SVM over tf × idf , run on the whole corpus with 10-fold cross validation.

The AUC values are averaged over the 8 categories. The results are shown in Table 5.3.

SVM BayesNet C4.5 direct

MLDA (const) 0.812 0.812 0.605 0.866

MLDA (sub) 0.820 0.826 0.635 0.867
MLDA (sub-sub) 0.803 0.816 0.639 0.866

LDA (k = 138) 0.765 0.791 0.640 –

SVM over tf × idf 0.755 – – –

Table 5.3: Comparing plain MLDA with LDA in averaged AUC value.

The direct MLDA classifier outperforms the baselines and the classification methods on

MLDA based ϑ features. Table 5.3 indicates that MLDA is quite robust to topic number. How-

ever, as topic number choice sub was the best, we used this one in later tests.

5.3.2 Vocabularies and ϑ-smoothing

We made experiments on MLDA to fine tune the vocabulary selection thresholds and to test per-

formance of the ϑ-smoothing heuristic by a parameter sweep. Note that S = 1 in ϑ-smoothing

corresponds to doing no ϑ-smoothing. We fixed 7 kinds of vocabularies (with different choices

of tftop and Hth) and the topic-number was chosen to be sub (see Table 5.2). We applied direct

classification with results shown in Table 5.4.

vocabulary c = 1 0.85 0.75 0.5
30000 / 1.8 0.954 0.955 0.956 0.958
30000 / 1.5 0.948 0.948 0.948 0.947

30000 / 1.0 0.937 0.937 0.936 0.934

15000 / 1.8 0.946 0.947 0.948 0.952

15000 / 1.2 0.937 0.937 0.937 0.936

10000 / 1.5 0.942 0.942 0.943 0.943

unfiltered 0.867 0.866 0.861 0.830

Table 5.4: Averaged AUC of different values c for ϑ-smoothing and the vocabulary parameters

(tftop/Hth).

It is apparent that our term selection methods result in large improvement in accuracy. Clas-

sification is more accurate if Hth and tftop are larger. As both result in larger vocabularies, term

selection should be conducted carefully to keep the size of the vocabulary big enough. Note that

59



the larger the entropy parameter Hth is, the more ϑ-smoothing improves performance. This is

perhaps because of the fact that large Hth results in a vocabulary consisting of words with low

discriminability among the categories, and thus topics in distinct categories may have similar

word-distributions.

Every run (MLDA model build, unseen inference and classification) was repeated 10 times

to get variance of the AUC measure. These were at most 0.01 throughout, so we decided not to

quote them individually.

5.3.3 Running times

If the filtering parameters of the vocabulary are chosen to be tftop = 15000 and Hth = 1.8, and

the topic number is sub then model inference took 90 minutes for the biggest category Society

(4.3M word positions), and 5 minutes for the smallest category Sports (0.3M word positions).

Unseen inference took 339 minutes, with the same settings.

An example

To illustrate MLDA’s performance, we show what categories MLDA inferred for the site http://

www.order-yours-now.com/. As of July 2008, this site advertises a tool for creating

music contracts, and it has ODP categorization Computers: Software: Industry-Specific: Enter-

tainment Industry.

The 8 category-wise ξ features of MLDA defined in (5.1.1) that measure the relevance of

the categories are given in Table 5.5. We feel that MLDA’s categorization is on a par with

or perhaps better than that of ODP. The top ODP category is Computers, perhaps because the

product is sold as a computer program. On the contrary, MLDA suggests that the site mostly

belongs to Arts and Shopping, which we feel appropriate as it offers service for musicians for

profit. MLDA also detects the Business concept of the site, however, Shopping is given more

relevance than Business because of the informal style of the site.

The parameters for MLDA were set as follows: tftop = 15000, Hth = 1.8, c = 0.5 for

ϑ-smoothing, sub as topic number.

5.4 Conclusion and future work

In this chapter we have described Multi-corpus LDA (MLDA), a way to apply LDA for super-

vised text categorization by viewing it as a hierarchical topic model. Essentially, separate LDA

models are built for each category with category-specific topics, then these models are unified,

and inference is made for an unseen document w.r.t. this unified model. As a key observation,

60



category
∑

ϑ
Arts 0.246

Shopping 0.208

Business 0.107

Health 0.103

Society 0.096

Computers 0.094

Sports 0.076

Science 0.071

Table 5.5: Relevance of categories for site http://www.order-yours-now.com/,

found by MLDA.

the topic unification method significantly boosted performance by avoiding overfitting to a large

number of topics, requiring lower running times.

61



62



Chapter 6
Linked LDA and sparse Gibbs samplers

In this chapter we demonstrate again the applicability of LDA for classifying large Web doc-

ument collections. One of the main results is a novel influence model, called linked LDA that

gives a fully generative model of the document content taking linkage into account. In this

setup, topics propagate along links in such a way that linked documents directly influence the

words in the linking document. As another main contribution, we develop LDA specific boost-

ing of Gibbs samplers resulting in a significant speedup in our experiments. The inferred LDA

model can be applied for classification as dimensionality reduction similarly to LSA. In addi-

tion, the model yields link weights that can be applied in algorithms to process the Web graph;

as an example we deploy LDA link weights in stacked graphical learning. By using BayesNet

classifier, in terms of the AUC of classification, we achieve 4% improvement over the classical

LDA with BayesNet and 18% over tf × idf with SVM. Our Gibbs sampling strategies yield

about 5-10 times speedup with less than 1% decrease in accuracy in terms of likelihood and

AUC of classification.

Recently several models extend LDA to exploit links between web documents or scientific

papers [25, 33, 37, 81]. In these models the term and topic distributions may be modified along

the links. All these models have the drawback that every document is thought of either citing

or cited, in other words, the citation graph is bipartite, and influence flows only from cited

documents to citing ones.

In this research we develop the linked LDA model, in which each document can cite to

and be cited by others and thus be influenced and influence other documents. Linked LDA is

very similar to the citation influence model of Dietz, Bickel and Scheffer [33] with the main

difference that in our case the citation graph is not restricted to be bipartite. This fact and

its consequences are the main advantages of linked LDA, namely that the citation graph is

homogeneous, one does not have to take two copies, citing and cited, of every document, and

finally that influence may flow along paths of length more than one, a fact that gives power to

learning over graphs [64, 125]. In addition, we give a flexible model of all possible effects,

63



including cross-topic relations and link selection. As an example, we may model the fact that

topics Business and Computer are closer to one another than to Health as well as the distinction

between topically related and unrelated links such as links to software to view the content

over a Health site. The model may also distinguish between sites with strong, weak or even no

influence from its neighbors. The linked LDA model is described in full detail in Subsection 6.2.

We demonstrate the applicability of linked LDA for text categorization, an application which

is explicitly mentioned in [13] but, to the author’s knowledge, justified prior to our work only

in special applications [12]. The inferred topic distributions of documents are used as features

to classify the documents into categories. In the linked LDA model, a weight is inferred for

every link. In order to validate the applicability of these edge weights, we show that their

usage improves the performance of stacked graphical classification, a meta-learning scheme

introduced in [64] (for a brief overview we refer to Subsection 2.3.4).

The crux in the scalability of LDA for large corpora lies in the understanding of the Gibbs

sampler for inference. In the first application of the Gibbs sampler to LDA [47] as well as in the

fast Gibbs sampler [91] the unit of sampling or, in other terms, a transition step of the underlying

Markov chain, is the redrawing of one sample for a single term occurrence. The storage space

and update time of all these counters prohibit sampling for very large corpora. Since, however,

the order of sampling is neutral, we may group occurrences of the same term in one document

together. Our main idea is then to re-sample each of these term positions in one step and, to

assign a joint storage to them. We introduce three strategies: for aggregated sampling we store

a sample for each position as above but update all of them in one step for a word, for limit
sampling we update a topic distribution for each distinct word instead of drawing a sample,

while for sparse sampling we randomly skip some of these words. All of these methods result

in a significant speedup of about 5-10 times, with less than 1% decrease in accuracy in terms of

likelihood and AUC of classification. The largest corpus where we could successfully perform

classification using these boostings consisted of 100k documents (that is, web sites with a total

of 12M pages), and altogether 1.8G term positions.

To assess the prediction power of the proposed features, we run experiments on a host-

level aggregation of the .uk domain, which is publicly available through the Web Spam Chal-

lenge [21]. We perform topical classification into one of 11 top-level categories of the ODP. Our

techniques are evaluated along several alternatives and, in terms of the AUC measure, yield an

improvement of 4% over the classical LDA and 18% over tf × idf with SVM (here BayesNet

is used on linked LDA based features).

64



6.1 Related results

We compare our linked LDA model to preexisting extensions of PLSA and LDA that jointly

model text and linkage as well as the influence of topics along links. The first such model

is PHITS defined by Cohn and Hoffman [25]. The mixed membership model of Erosheva,

Fienberg and Lafferty [37] can be thought of as an LDA based version of PHITS. Common

to these models is the idea to infer similar topics to documents that are jointly similar in their

“bag of words” and link adjacency vectors. Later, several similar link based LDA models were

introduced, including the copycat model, the citation influence model by Dietz, Bickel and

Scheffer [33] and the link-PLSA-LDA and pairwise-link-LDA models by Nallapati, Ahmed,

Xing and Cohen [81]. These two results extend LDA over a bipartition of the corpus into citing

and cited documents so that influence flows along links from cited to citing documents. They

are shown to outperform earlier methods [33, 81]. While these models generate topical relation

for hyperlinked documents, in a homogeneous corpus one has to duplicate each document and

infer two models for them. This is in contrast to the linked LDA model that treats citing and

cited documents identically. As a completely different direction for link-based LDA models, we

mention the results [109, 123, 124] which give a generative model for the links of a network,

with no words at the nodes.

We also compare the performance of our results to general classifiers aided by Web hy-

perlinks. Relational learning methods (presented, for instance, in [44]) also consider existing

relationships between data instances. The first relational learning method designed for topical

web classification was proposed by Chakrabarti, Dom and Indyk [22] and improved by An-

gelova and Weikum [6]. Several subsequent results [95, and the references therein] confirm

that classification performance can be significantly improved by taking into account the labels

assigned to neighboring nodes. In our baseline experiments we use the most accurate hypertext

classifiers [20] obtained by stacked graphical learning, see Subsection 2.3.4 for details. Perfor-

mance of stacked graphical learning is evaluated in Subsection 6.5.3 both with various graph

based edge weights [28] and with those inferred by our linked LDA model.

Another main contribution of this work is three new efficient inference methods. Upon

introducing LDA, Blei, Ng, Jordan [13] proposed a variational algorithm for inference. Later,

several other methods were described for inference in LDA, namely collapsed Gibbs sampling

[47], expectation propagation, and collapsed variational inference [112]. Besides, [82] suggests

methods on how Gibbs sampling can be applied in a paralleled environment.

Among the above collapsed Gibbs sampling methods, fastest convergence is achieved by

that of Griffiths and Steyvers [47]. To the author’s knowledge, prior to our result there has been

one type of attempt to speed up LDA inference in general, and LDA based Gibbs sampling in

particular. Porteous, Newman, Ihler, Asuncion, Smyth, Welling [91] modify Gibbs sampling

such that it gives the same distribution by using search data structure for sample updates. They

65



show significant speedup for large topic numbers.

6.2 Linked LDA model

Next we extend LDA to model the effect of a hyperlink between two documents on topic and

term distributions. The key idea is to modify the topic distribution of a position on the word

plate based on a link from the current document on the document plate. For each word position,

we select either an outlink or the document itself to modify the topic distribution of the original

LDA model.

Formally we introduce linked LDA over the notations of Subsection 3.4. Links are repre-

sented by a directed graph with inlinks for cited and outlinks for citing documents. Our model

also relies on the LDA distributions �ϕk and �ϑm. We introduce an additional distribution �χm on

the set Sm, which contains the document m and its outneighbors. �χm is sampled from Dir(�γm),

where �γm is a positive smoothing vector of size |Sm|. The complete generative model can be

seen in 6.2.1 and the corresponding BayesNet is in Figure 6.1.

Figure 6.1: Linked LDA as a Bayesian Network.

Note that for sake of a unified treatment, m itself can be an influencing document of itself.

This is in contrast to the citation influence model of [33], where for every word a Bernoulli draw

decides whether the influencing document is m itself or an outneighbor of it.

We describe the Gibbs sampling inference procedure for linked LDA. The goal is to estimate

the distribution p(�r, �z|�w) for �r ∈ DN , �z ∈ T N , �w ∈ VN where N =
∑M

i=1 Ni denotes the set

66



Algorithm 6.2.1 Generative model for linked LDA

1: "topic plate"

2: for all topics k ∈ [1, K] do
3: sample mixture components �ϕk ∼ Dir(�β)
4: "document plate"

5: for all documents m ∈ [1, M ] do
6: sample mixture proportion �χm ∼ Dir(�γ)

7: sample mixture proportion �ϑm ∼ Dir(�α)
8: "word plate"

9: for all words n ∈ [1, Nm] in document m do
10: sample influencing document index rm,n ∼ Multinomial(�χm)

11: sample topic index zm,n ∼ Multinomial(�ϑrm,n)
12: sample term for word wm,n ∼ Multinomial(�ϕzm,n)
13: return

of word positions in the documents. In Gibbs sampling one has to calculate p(zm,n = k, rm,n =

l|�z¬(m,n), �r¬(m,n), �w) for m ∈ [1, M ] and n ∈ [1, Nm]. First, it can be shown that

p(�r, �z, �w|�α, �β,�γ) =
M∏

m=1

Δ( �N r
m + �γm)

Δ(�γm)
·

M∏
m=1

Δ( �N z
d + �α)

Δ(�α)
·

K∏
z=1

Δ( �Nw
z + �β)

Δ(�β)
. (6.2.1)

Here �N r
m is the count vector of influencing documents appearing at the words of document m,

�N z
d is the count vector of observed topics influenced by m, and �Nw

z is the count vector of words

with topic z.

By division, (6.2.1) gives an iteration in the Gibbs sampling as follows:

p(zm,n = k, rm,n = l|�z¬(m,n), �r¬(m,n), �w) =
p(�z, �r, �w)

p(�z¬(m,n), �r¬(m,n), �w¬(m,n))
·

1

p(�wm,n|�z¬(m,n), �r¬(m,n), �w¬(m,n))
,

thus

p(zm,n = k, rm,n = l|�z¬(m,n), �r¬(m,n), �w) ∝ p(�z, �r, �w)

p(�z¬(m,n), �r¬(m,n), �w¬(m,n))
=

N
¬(m,n)
lk + αk

K∑
z=1

(Nlz + αz) − 1

· N
¬(m,n)
ml + γl

Sm∑
r=1

(Nmr + γr) − 1

· N
¬(m,n)
kt + βt

V∑
v=1

(Nkv + βv) − 1

, (6.2.2)

where Nml denotes the number of words in document m influenced by outneighbor l ∈ Sm,

similarly, Nlk is the number of words in document l with topic k, and Nkt is the count of word

67



t in topic k in the corpus. The superscript ¬(m,n) means that the index (m, n) is excluded from

the counting.

Note that, this “two-coordinate” sampling is against the general Gibbs procedure that re-

samples one coordinate at a time, however, we experienced lower running times and no de-

terioration in inference quality. For the sake of completeness we specify the straightforward

one-coordinate sampling, i.e. sample on zm,n = k and rm,n = l one after another:

p(zm,n = k|�z¬(m,n), �r, �w) ∝ N
¬(m,n)
lk + αk

K∑
z=1

(Nlz + αz) − 1

· N
¬(m,n)
kt + βt

V∑
v=1

(Nkv + βv) − 1

, (6.2.3)

and

p(rm,n = l|�z, �r¬(m,n), �w) ∝ N
¬(m,n)
lk + αk

K∑
z=1

(Nlz + αz) − 1

· N
¬(m,n)
ml + γl

Sm∑
r=1

(Nmr + γr) − 1

. (6.2.4)

Similarly to LDA, we stop after a sufficient number of iterations with the current topic

assignment sample �z, and estimate ϕ as in (3.4.20), ϑ as in (3.4.21), and χ by

χml =
Nml + γml

|Sm|∑
r=1

(Nmr + γmr)

. (6.2.5)

For an unseen document m̃, distributions ϑ and χ can be estimated exactly as in (3.4.21) and

(6.2.5) once we have a sample from its word topic assignment �z. Sampling �z can be performed

with a similar method as above, but now only for the positions i in m̃.

6.3 Fast Gibbs sampling heuristics

In this section we describe three strategies for a faster inference for both the original and the

linked LDA models. The methods modify the original Gibbs sampling procedure [47]. For

simplicity, we describe them for the classical LDA setting. The speedup obtained by these

boostings is evaluated in Subsection 6.5.1.

All of our methods start by sorting the words of the original documents so that sampling is

performed subsequently for the occurrences of the same word. We introduce additional heuris-

tics to compute the new samples for all occurrences of the same word in a document at once.

In aggregated Gibbs sampling we calculate the conditional topic distribution F as in Equa-

tion (3.4.16) for the first occurrence i of a word in a given document. Next we draw a topic

68



from F for every position with the same word without recalculating F , and update all counts

corresponding to the same word. In this way, the number of calculations of the conditional topic

distributions is the number of different terms in the document instead of the length of the doc-

ument, moreover, the space requirement remains unchanged. This can be further improved by

maintaining the aggregated topic count vector for terms with large frequency in the document,

instead of storing the topic at each word.

Limit Gibbs sampling is based on the “bag of words” model assumption suggesting that the

topic of a document remains unchanged by multiplying all term frequencies by a constant. In

the limit hence we may maintain the calculated conditional topic distribution F for the set of all

occurrences of a word, without drawing a topic for every single occurrence. Equation (3.4.16)

can be adapted to this setting by a straightforward redefinition of the N counts. Similarly to

aggregated Gibbs sampling, limit sampling may result in compressed space usage depending

on the size and term frequency distribution of the documents.

It is easy to check that if the topic distributions for all positions are uniform then we get an

instable fixed point of limit Gibbs sampling, provided both α and β are constant. Clearly, with

large probability, these fixed points can be avoided by selecting biased initial topic distributions.

We never encountered such instable fixed points during our experiments.

Sparse sampling with sparsity parameter � is a lazy version of limit Gibbs sampling where

we ignore some of the less frequent terms to achieve faster convergence on the more important

ones. On every document m with dm words, we sample dm/� times from a multinomial distri-

bution on the distinct terms with replacement by selecting a term by a probability proportional

to its term frequency tfw in the document. Hence with � = 1 we expect a performance similar

to limit Gibbs sampling, while large � results in a speedup of about a factor of � with a trade-off

of lower accuracy.

Aggregated Gibbs sampling has the required distribution p(�z|�w) as its unique stationary

distribution. Indeed, it is a random walk over a finite state Markov chain which is irreducible and

aperiodic as α, β > 0, implying that it has a unique stationary distribution, which is necessarily

the distribution p(�z|�w) by construction.

As for limit Gibbs sampling, we rely on the assumption, that in the bag of words model,

multiplying all term frequencies in the corpus by a constant the semantic meaning of the docu-

ments change only moderately. As limit Gibbs sampling arises as a limit of aggregated Gibbs

sampling by tending this constant to infinity, its stationary distribution is very close to what

the aggregated version samples, that is, the required p(�z|�w). This argument is justified by our

measurements in Section 6.5.

Laziness clearly keeps the above arguments valid, thus aggregated sparse Gibbs sampling

has stationary distribution p(�z|�w), and sparse sampling the same as limit.

69



6.4 Experimental setup

6.4.1 The data set and classifiers

In our experiments we use the 114k node host-level aggregation of the WEBSPAM-UK2007

.uk domain crawl, which consists of 12.5M pages and is publicly available through the Web

Spam Challenge [21]. We perform topical classification into one of the 14 top-level English

language categories of the Open Directory Project (ODP) while excluding category “World”

containing non-English language documents. If a site contains a page registered in ODP with

some top category, then we label it with that category. In case of a conflict we choose a random

page of the site registered in ODP and label its site with its top category. In this way we could

derive category label for 32k documents.

We perform the usual data cleansing steps prior to classification. After stemming by Tree-

Tagger1 and removing stop words by the Onix list2, we aggregate the words appearing in all

HTML pages of the sites to form one document per site. We discard rare terms and keep the

100k most frequent ones to form our vocabulary. We discard all hosts that become empty that

is those consisting solely of probably only a few rare terms. Finally we weight directed links

between hosts by their multiplicity. For every site we keep only at most 50 outlinks with largest

weight.

We call this the big corpus, as it contains 1.8G positions, far more than the usual corpora

on which LDA experiments have been carried out. Since the big corpus is infeasible for the

baseline experiments, we also form a small corpus consisting of the labeled hosts only, to be

able to compare our results with the baseline. We use the most frequent 20k terms as vocabulary

and keep only the 10 largest weight outlink for each host. Note that even the small corpus is

large enough to cause efficiency problems for the baseline classifiers.

We chose 11 out of the 14 categories to apply classification to them, as the other 3 categories

were very small in our corpus. In our experiments we perform binary classification for all of

these 11 big categories. We use the linear kernel SVM, the C4.5 decision tree and the BayesNet

implementation of the machine learning toolkit Weka [118]. We use 10-fold cross validation

and measure performance by the average AUC over the 11 classes. Every run ((linked) LDA

model build and classification) is repeated 10 times to get variance of the AUC classification

performance.

1http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
2http://www.lextek.com/manuals/onix/stopwords1.html

70



6.4.2 Baseline classifiers

As the simplest baseline we use the tf × idf vectors with SVM for the small corpus, as it took a

prohibitively long time to run it on the big corpus. Another baseline is to use the LDA delivered

ϑ topic distributions as features with the classifier BayesNet.

Recently a large number of relational learning methods were invented, however, their com-

parison is beyond the scope of this thesis. Instead we concentrate on the stacked graphical

learning method [64] that reaches best performance for classifying Web spam over this corpus

[20]. We use cocitation to measure node similarities. We may use both the input directed

graph and its transpose by changing the direction of each link. We will refer to these variants as

directed and reversed versions.

6.4.3 LDA inference

In our LDA inference, the following parameter settings are used. The number of topics is chosen

to be k = 30. The Dirichlet parameter vector components �βj are constant 200/|V |, and �α is

also constant with values 50/k. For linked LDA we also consider directed links between the

documents. For a document d, the smoothing parameter vector γd is chosen in such a way that

γd(c) ∝ w(d → c) for all c ∈ Sd, c �= d and

γd(d) ∝ 1 +
∑

c∈Sd,c �=d

w(d → c)

, so that
∑

c∈Sd
γd(c) = |d|/p, where |d| is the number of word positions in d (the document

length), and w(d → c) denotes the multiplicity of the d → c link in the corpus. We chose

p = 10 to get moderately high Dirichlet smoothing parameters.

We take the ϑ topic distribution vectors as features for the documents and use the classifiers

of Subsection 6.4.1. For Gibbs sampling in LDA and linked LDA we apply the baseline as well

as the aggregated, limit and sparse heuristics. Altogether this results in eight different classes

of experiments.

As another independent experiment, we also measure the quality of the inferred edge weight

function χ. This weight can be used in the stacked graphical classification procedure of Sub-

section 6.4.2 over the ϑ topic distribution feature and the tf × idf baseline classifiers, for both

the link graph and its reversed version.

The same experiments are performed with the link-PLSA-LDA model [81], using the C-

code kindly provided to us by Ramesh Nallapati. We also compared the running time of our

Gibbs sampling strategies with the fast collapsed Gibbs sampling method of [91], using the

71



C-code referred to therein3. For results, see Subsection 6.5.1.

We developed an own C++-code for LDA and linked LDA containing plain Gibbs sampling

and the three Gibbs sampling boostings proposed in this research. This code is publicly avail-

able4 together with the used ODP labels of the .uk sites. The computations were run on a

Debian Linux machine with 50GB RAM and 1.8GHz Dual Core AMD Opteron 865 processor

with 1MB cache.

6.5 Results

6.5.1 Speedup with the Gibbs sampling strategies

Applying aggregated, limit and sparse Gibbs samplings results in an astonishing speedup, see

Tables 6.1-6.2. Experiments were carried out on the small corpus, and the models were run with

k = 30 topics.

Gibbs sampler LDA linked LDA

plain 1000 1303

aggregated 193 1006

limit 190 970

sparse (� = 2) 135 402

sparse (� = 5) 105 241

sparse (� = 10) 91 171

sparse (� = 20) 84 129

sparse (� = 50) 80 107

Table 6.1: Average CPU times for one iteration of the Gibbs sampler in seconds.

model / sampler time

LDA / fast compressed Gibbs [91] 949

link-PLSA-LDA / var. inf. [81] 19,826

Table 6.2: Average CPU times for one iteration for baseline models and samplers in seconds.

Observe that the speedup of aggregated Gibbs sampling is striking, and this does not come

at the expense of lower accuracy. Indeed, results of Subsections 6.5.2 and 6.5.3 show less than

1% decrease in terms of likelihood and AUC value after 50 iterations when using aggregated

Gibbs sampling. The advantage of limit sampling over aggregated sampling (no need to draw

from the distribution) turns out to be negligible. For sparse Gibbs sampling the speedup is a

3http://www.ics.uci.edu/˜iporteou/fastlda/
4http://www.ilab.sztaki.hu/˜ibiro/linkedLDA/

72



straightforward consequence of the fact that we skip many terms during sampling, and thus the

running time is approximately a linear function of 1/�, where � is the sparsity parameter. The

constant term in this linear function is apparently approximately 75 seconds for LDA and linked

LDA, certainly, this is the time needed to iterate through the 16G memory. As for the choice

� = 10, note that the running time of one iteration for LDA is only 9% of the one with plain

Gibbs sampling, and still, the accuracy measured in AUC is only 2% worse as seen in Table 6.4.

We point out that though we used the same C-code as [91], our measurement on fast Gibbs

sampling demonstrates a somewhat poorer performance than the results presented in [91], even

if one takes into account that fast Gibbs sampling is proved to have better performance with

a large number of topics (k ≈ 1000) (with k = 100 topics we experienced 2100 seconds on

average). On the other hand, fast Gibbs sampler gets faster and faster for the consecutive iter-

ations: in our experiments with k = 30 topics we measured 2656 seconds for the first iteration

(much worse than for plain Gibbs) and 757 seconds for the 50th. Thus the calculated average

would be better with more iterations – for which, however, there is no real need according to

the observations in Subsection 6.5.2.

As the number of iterations with variational inference is usually chosen to be around 50,

the same as for Gibbs sampling, we feel the above running times for Gibbs sampling and link-

PLSA-LDA with its variational inference are comparable.

6.5.2 Likelihood and convergence of LDA inference

Figures 6.2-6.4 show the convergence of the likelihood and the AUC for BayesNet, for some

combinations of LDA and linked LDA models run with various Gibbs samplers. The plots range

over 50 iterations, and we have stopped inference after every 2 iterations and calculated the AUC

of a BayesNet classification over the ϑ features, and the likelihood (as described in Subsections

3.4.2 and 6.2). The number of topics was k = 30 for all models, and the parameters were as

described in Subsection 6.4.3.

The high pairwise correlation of the otherwise quite different accuracy measures, likelihood

and AUC values in Figure 6.2 are very interesting. This is certainly due to the fact that after the

topic assignment stabilizes, there is only negligible variance in the ϑ features. This behavior

indicates that the widely accepted method of stopping LDA iterations right after the likelihood

has stabilized can be used even if the inferred variables (ϑ in our case) are later input to other

classification methods.

The usual choice for the number of Gibbs sampling iterations for LDA is 500-1000. Thus it

is worth emphasizing that in our experiments, both likelihood and accuracy stabilizes after only

20-30 iterations. This is in accordance with the similar experiments of [47, 115], which found

that for classical LDA, likelihood stabilizes after 50-100 iterations, over various corpora. As a

consequence, we chose 50 as the number of iterations for the next experiments.

73



Figure 6.2: Correlation of the likelihood (the lower the better) and the AUC for BayesNet (the

higher the better) for three choices of model and sampler combinations.

Figure 6.3 demonstrates that the linked LDA model with plain, aggregated and limit sam-

plers overperform classical LDA by about 1% in likelihood. This gap increases to about 4%

after applying classifiers to the inferred ϑ topic distributions, see Table 6.4. The aggregated

and limit Gibbs boostings result in negligible deterioration in the likelihood, though they give 5

times speedup.

The observation that much fewer iterations are enough for Gibbs sampling, combined with

our Gibbs boosting methods bids fair that LDA may become a computationally highly efficient

latent topic model in the future.

6.5.3 Comparison with the baseline

We run supervised web document classification as described in Subsection 6.4.2. The results

can be seen in Tables 6.3-6.5, the evaluation metric is AUC, averaged over the 11 big categories.

Experiments on the big corpus could be carried out only for linked LDA with plain Gibbs

sampler, and LDA with various samplers, as it took too much space for the linked LDA model

with the Gibbs sampling boostings and too much time for the baseline methods to terminate,

see Table 6.3.

74



Figure 6.3: Convergence of the likelihood for various models and samplers.

The tables clearly indicate that applying aggregated, limit and sparse Gibbs sampling with

sparsity � at most 10, has only a minor negative effect of about 2% on the classification accuracy,

albeit they give significant speedup by Table 6.1. Linked LDA slightly outperforms the LDA

based categorization for all classifiers, by about 4%. This gap is biggest for BayesNet. The

results show an interesting under-performance of SVM, which gives reasonable result only with

tf × idf features.

Table 6.5 indicates that the χ link weights delivered by the linked LDA model captures in-

fluence very well, as it improves 2% over tf × idf , 4% over LDA and 3% over linked LDA with

the cocitation graph, and 3% over link-PLSA-LDA with its own χ weights. This clearly indi-

cates that the χ link weights provided by the linked LDA model are good approximations of the

topical similarity along links. Reversing the graph influences behaves in a quite unpredictable

way, though rev-cocit is somewhat better than cocit, furthermore, reversion worsens the AUC

measure if the weights come from linked or link-PLSA-LDA χ values.

Every run (LDA model build and classification with and without graph stacking) is repeated

10 times to get variance of the AUC measure. This was at most 0.015 throughout, so we decided

not to quote them individually.

75



Figure 6.4: Convergence of the likelihood for the sparse sampler for LDA with various sparsity

parameters.

6.6 Conclusion and future work

In this chapter we introduced the linked LDA model, which integrates the flow of influence

along links into LDA in such a way that each document can be citing and cited at the same

time. By our strategies to boost Gibbs sampling, we were able to apply our model to supervised

web document classification as a feature generation and dimensionality reduction method. In

our experiments linked LDA outperformed LDA and other link based LDA models by about

4% in AUC. One of our Gibbs sampler heuristics produced 10-fold speedup with negligible

deterioration in convergence, likelihood and classification accuracy. Over our data set of Web

hosts, these boostings outperform the fast Gibbs sampler of [91] in speed to a great extent. We

also note that our samplers use ideas orthogonal to the fast collapsed Gibbs sampler of [91]

and the paralleled sampling of [82], so these methods can be used in combination. It would

be interesting to explore other domains than LDA where our Gibbs sampling strategies can be

applied. Limit Gibbs sampling makes it possible to have arbitrary non-negative real numbers

as word counts in a document, instead of the usual tf counts. To this end, we plan to measure

whether accuracy of LDA is improved if the tf counts are replaced with the pivoted tf × idf

76



model / sampler BayesNet SVM C4.5

LDA 0.821 0.610 0.762

LDA / aggr. 0.820 0.584 0.756

LDA / limit 0.810 0.595 0.739

linked LDA 0.854 0.623 0.765

Table 6.3: Big corpus. Classification accuracy measured in AUC for LDA and linked LDA

under various Gibbs sampling heuristics.

model / sampler BayesNet SVM C4.5

LDA 0.817 0.605 0.767

LDA / aggr. 0.813 0.591 0.750

LDA / limit 0.808 0.562 0.720

LDA / sparse (� = 2) 0.805 0.554 0.719

LDA / sparse (� = 5) 0.799 0.571 0.713

LDA / sparse (� = 10) 0.791 0.567 0.711

LDA / sparse (� = 20) 0.764 0.549 0.689

LDA / sparse (� = 50) 0.735 0.524 0.670

linked LDA 0.850 0.609 0.777
linked LDA / aggr. 0.849 0.596 0.771

linked LDA / limit 0.845 0.588 0.761

linked LDA / sparse (� = 2) 0.840 0.583 0.758

linked LDA / sparse (� = 5) 0.836 0.579 0.753

linked LDA / sparse (� = 10) 0.827 0.573 0.751

linked LDA / sparse (� = 20) 0.799 0.556 0.726

linked LDA / sparse (� = 50) 0.768 0.530 0.705

link-PLSA-LDA/var. inf. [81] 0.827 0.587 0.754

tf × idf 0.569 0.720 0.565

Table 6.4: Small corpus. Classification accuracy measured in AUC for LDA and linked LDA

under various Gibbs sampling heuristics as well as the baseline methods.

counts of [106].

77



model + graph BayesNet C4.5

LDA + cocit 0.830 0.762

LDA + rev-cocit 0.831 0.770

linked LDA + χ 0.863 0.785
linked LDA + rev-χ 0.857 0.780

linked LDA + cocit 0.838 0.765

linked LDA + rev-cocit 0.839 0.752

link-PLSA-LDA + own-χ 0.839 0.755

link-PLSA-LDA + own-rev-χ 0.837 0.755

link-PLSA-LDA + cocit 0.835 0.754

link-PLSA-LDA + rev-cocit 0.840 0.763

tf × idf + cocit 0.597 0.589

tf × idf + rev-cocit 0.595 0.593

tf × idf + linked LDA-χ 0.611 0.601

tf × idf + linked LDA-rev-χ 0.609 0.598

tf × idf + link-PLSA-LDA-χ 0.604 0.597

tf × idf + link-PLSA-LDA-rev-χ 0.606 0.596

Table 6.5: Small corpus, classification with graph stacking. The base learner may be one of

tf × idf , LDA, linked LDA (both without Gibbs sampling heuristics) and link-PLSA-LDA.

Edge weights may arise by cocitation or the inferred χ of the linked LDA and link-PLSA-LDA

models. These weights may be obtained over the reversed graph, which is indicated by rev.

78



Chapter 7
LDA in Web Spam Filtering

In this chapter we present our experimental results in Web spam filtering using the previously

developed LDA models, see Chapters 5 and 6. We participated in the Web Spam Challenge

contest in 2008. The goal of the Web Spam Challenge series is to identify and compare Machine

Learning methods for automatically labeling structured data represented as graphs, for example

a collection of Web sites. The organizers provided us baseline content and link based features,

thus we are given a controlled environment to measure the performance of our models. In both

cases, we applied feature combination schemes in order to improve classification performance.

In case of MLDA, we used a logistic regression based combination, whilst with linked LDA,

we combined the results of the different classifiers by the random forest classifier.

We ranked fourth in the competition using the MLDA model. One year later we tested linked

LDA on the same corpus and we compared our results to the winner of 2008. Our random forest

based combinations achieved an AUC = 0.854, whilst the winner’s result was AUC = 0.848.

Identifying and preventing spam was cited as one of the top challenges in web search engines

by [57]. Singhal estimated that the search engine spam industry had a revenue potential of

$4.5 billion in year 2004 if they had been able to completely fool all search engines on all

commercially viable queries [107]. Due to the large and ever increasing financial gains resulting

from high search engine ratings, it is no wonder that a significant amount of human and machine

resources are devoted to artificially inflating the rankings of certain Web pages. As all major

search engines incorporate anchor text and link analysis algorithms into their ranking schemes,

Web spam appears in sophisticated forms that manipulate content as well as linkage [49].

The most widely used definitions of Web spam are as follows. In [49] a content is called

spam if it is completely irrelevant for the given search terms.

In another definition [87] search engine spam consists of features that maintainers would

not add to their sites if search engines did not exist. Link spam however could act even without

the presence of a search engine by misleading users to visit certain pages, in particular for the

purpose of misusing affiliate programs.

79



7.1 Related results

Spam hunters use a variety of content based features [18, 40, 41, 83] to detect web spam, a

recent measurement of their combination appears in [20]. Perhaps the strongest SVM based

content classification is described in [1]. An efficient method for combining several classifiers

is the use of logistic regression, as shown by Lynam and Cormack [71]. In this work we ap-

ply a modification of this method for combination: a random forest over the log-odds of the

classifiers.

Closest to our methods are the content based email spam detection methods applied to Web

spam presented at the Web Spam Challenge 2007 [27]. They use the method of [18] that com-

presses spam and non-spam separately; features are defined based on how well the document in

question compresses with spam and non-spam, respectively. Our method is similar in the sense

that we also build separate spam and non-spam content models.

7.2 MLDA as a spam filter

We run the classical LDA separately for both spam and non-spam classes of the training set,

then we take the union of the resulting topic collections and make inference w.r.t. this aggregated

collection of topics for every unseen document m̃. The total probability of spam topics in the

topic distribution of an unseen document gives an LDA prediction of being spam or honest.

7.2.1 Experiments

We test the MLDA method in combination with the Web Spam Challenge 2008 public features1,

SVM over pivoted tf × idf [106], and the connectivity sonar features (analysis of the breadth-

first and directory levels within a host together with the internal and external linkage) of [3].

Using logistic regression to aggregate these classifiers, the MLDA method yields an improve-

ment of 11% in F and 1.5% in AUC. For classification, we used the machine learning toolkit

Weka [118]. For a detailed explanation, see Section 5.2.

The data set we used is the UK2007-WEBSPAM corpus. We kept only the labeled sites

with 203 labeled as spam and 3589 as non-spam. We aggregated the words and meta keywords

appearing in all pages of the sites to form one document per site in a “bag of words” model

(only multiplicity and no order information used). We kept only alphanumeric characters and

the hyphen but removed all words containing a hyphen not between two alphabetical words.

We used the TreeTagger2 for stemming and we deleted all stop words enumerated in the

1Downloaded from http://www.yr-bcn.es/webspam/datasets/uk2007/features/ in March

31, 2008.
2http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

80



pair of topic numbers F AUC
5/50 0.451 0.855

10/50 0.458 0.861

20/50 0.448 0.873

5/10 0.458 0.868

20/20 0.414 0.868

Table 7.1: F and AUC values of the five best performing LDA predictions.

Onix list3. After this procedure the most frequent 22,000 words formed the vocabulary.

We used our own C++ code to run LDA and to run the multi-corpus inference for unseen

documents in MLDA. We applied 10-fold cross validation. Two LDA’s were run on the training

spam and non-spam corpora, and then multi-corpus inference was made to the test documents

by Gibbs sampling.

The Dirichlet parameter β was chosen to be constant 0.1 throughout, while α(s) = 50/k(s),

α(n) = 50/k(n), and during multi-corpus inference α was constant 50/(k(s) + k(n)).

We stopped Gibbs sampling after 100 steps for inference on the training data, and after 50

steps for the multi-corpus inference for an unseen document. In a later experiment, we found

that only 50-100 iteration is enough to get the same evaluation measures within error bound, for

further details see Subsection 6.5.2.

The number of topics were chosen to be k(s) = 2, 5, 10, 20 and k(n) = 10, 20, 50. Con-

sequently, we performed altogether 12 runs, and thus obtained 12 one-dimensional LDA pre-

dictions as features. By observing the F curves as shown in Figure 7.1 we selected the five

best performing parameter choices. F and AUC values are shown in Table 7.1. The best result

corresponds to the choice k(s) = 10 and k(n) = 50 with an F of 0.46.

Figure 7.1 indicates that the multi-corpus method is robust to the parameter of topic num-

bers, as the performance does not really change by changing the topic numbers. As one can

expect, the maximum of such an F curve is approximately k(s)/k(n).

We combined the single best performing k(s) = 10, k(n) = 50 LDA prediction with an SVM

classifier over the tf × idf features, a C4.5 classifier over the public and the sonar features with

logistic regression. All methods were performed by the machine learning toolkit Weka [118].

The F and AUC values are shown in Table 7.2. LDA improved a relative 11% over the F and

1.5% over the AUC of the remaining combined features.

We also performed single-feature classification for the 5 best performing LDA predictions

over the UK2006-WEBSPAM corpus. Here we have 2125 sites labeled as spam, and 8082

labeled as non-spam. The parameters and the setup was the same as above. The results can be

seen at Table 7.3.

3http://www.lextek.com/manuals/onix/stopwords1.html

81



Figure 7.1: F curves of the five best LDA features with varying threshold (horizontal axis).

7.3 Linked LDA as a spam filter

We demonstrate the applicability of linked LDA for Web spam filtering. The inferred topic

distributions of documents are used as features to classify the documents as spam or not. To

assess the prediction power of these features, we test the linked LDA method in combination

with the Web Spam Challenge 2008 public features and SVM over tf × idf . Using a log-odds

based random forest to aggregate these classifiers, the inclusion of linked LDA into the public

and tf × idf features yield an improvement of 3% in AUC. For a detailed explanation, see

Section 6.4.

7.3.1 Experiments

We make experiments on the WEBSPAM-UK2007 corpus4. We treat this corpus on site level,

that is, we aggregate the words appearing in all html pages of the sites to form one document

per site in a “bag of words” model. We keep only alphanumeric characters and the hyphen but

4http://barcelona.research.yahoo.net/webspam/datasets/uk2007/

82



feature set F AUC
text (SVM) 0.554 0.864

public & text & sonar (log) 0.601 0.954

public & text & sonar & lda (log) 0.667 0.969

Table 7.2: F and AUC values.

pair of topic numbers F AUC
5–50 0.704 0.881

10–50 0.735 0.902

20–50 0.746 0.919

5–10 0.723 0.906

20–20 0.744 0.925

Table 7.3: F and AUC values for the UK2006-WEBSPAM corpus.

remove all words containing a hyphen not between two alphabetical words. After stemming by

TreeTagger and removing stop words by the Onix list, the most frequent 100k words form the

vocabulary.

We take the 6k sites having a Web Spam Challenge 2008 spam or non-spam label, and the

sites linked by one of these, to form a corpus of 45k sites, on which the experiments are made.

We weight directed links between hosts by their multiplicity, and for every site we keep only at

most 10 outlinks with largest weight. After linked LDA inference is run, we have the ϑ topic

distribution vectors as features to the classification.

In our experiments, we perform two-class classification for the spamicity. We use the linear

kernel SVM, the C4.5 decision tree and the BayesNet implementation of the machine learning

toolkit Weka [118].

As the simplest baseline, we use the public features with C4.5 decision tree and the tf ×
idfvectors with SVM. For tf × idf , only terms appearing in at least half of the sites are kept.

Another baseline is to use the LDA delivered ϑ topic distributions as features with the classifier

BayesNet. These baselines and the linked LDA based BayesNet classifier learn on the Web

Spam Challenge 2008 train corpus (3900 sites) and are evaluated on the Web Spam Challenge

2008 test corpus (2027 sites), to be able to compare our measurements with the 2008 Challenge

results.

Our combination of the classifiers is inspired by the log-odds averaging by Lynam and

Cormack [71]. We first make a 10-fold cross validation on the Web Spam Challenge 2008 train

corpus to obtain for every site a score for every classifier. Then for every classifier we calculate

the log-odds as a feature, which is the logarithm of the fraction of the number of spams with

lower score over the number of non-spam sites with higher score. Finally, we learn a random

forest over this (quite small) feature set, and evaluate it on the Web Spam Challenge 2008 test

83



corpus.

For LDA inference the following parameter settings are used. The number of topics is

chosen to be k = 30 and k = 90. The Dirichlet parameter vector components �βj is constant

200/|V |, and �αj is also a constant with value 50/k. For a document d, the smoothing parameter

vector γd is chosen in the same way as in 6.4.3.

We tried three values p = 1, 4, 10 in order to find the right smoothing constant for the links.

Gibbs sampling is stopped after 50 iterations, as several measurements indicate that both

the AUC value on classifying over the topic distributions and the likelihood stabilizes after 50

iterations, see details in Subsection 6.5.2.

The results of the classification can be seen in Tables 7.4-7.6, the evaluation metric is AUC.

For linked LDA only the parameter choice p = 4, k = 30 was included in the combination, as

it gave the best result.

p = 1 p = 4 p = 10
k = 30 0.768 0.784 0.783

k = 90 0.764 0.777 0.773

Table 7.4: Classification accuracy measured in AUC for linked LDA with various parameters,

classified by BayesNet.

features AUC
LDA with BayesNet 0.766

tf × idf with SVM 0.795

public (link) with C4.5 0.724

public (content) with C4.5 0.782

Table 7.5: Classification accuracy measured in AUC for the baseline methods.

The tables indicate that linked LDA slightly outperforms LDA by about 3% using BayesNet,

showing the predicting power of the links in the corpus. Most notably, linked LDA achieved

8% improvement over the public link features with C4.5, and it is at par with the public content

features. The addition of linked LDA to the log-odds based combination of the public and

tf × idfbased classifiers results in a 3% improvement in AUC.

As every evaluation was performed on the Web Spam Challenge 2008 test corpus, we can

compare these measurements to the 2008 challenge results5. The present methods improve a

lot over the 0.796 AUC achieved by our research group using the MLDA model. The winner,

Geng et al., managed to have an AUC of 0.848, and even this value is beaten by our public &

tf × idf& linked LDA combination, with AUC 0.854.

5http://webspam.lip6.fr/wiki/pmwiki.php?n=Main.PhaseIIIResults

84



features AUC
tf × idf & LDA 0.827

tf × idf & linked LDA 0.831

public & LDA 0.820

public & linked LDA 0.829

public & tf × idf 0.827

public & tf × idf & LDA 0.845

public & tf × idf & linked LDA 0.854
public & tf × idf & LDA& linked LDA 0.854

Table 7.6: Classification accuracy measured in AUC by combining the classifications of Tables

7.4 and 7.5 with a log-odds based random forest. For linked LDA the parameters are chosen to

be p = 4, k = 30.

7.4 Conclusion and future work

We successfully applied our MLDA and linked LDA models for Web spam filtering. We believe

that similar to the success of email spam filtering methods [27], semantic analysis to spam

filtering is a promising direction. In future work we plan to implement the email content filtering

methods of [27] and test its combination with LDA. As another experiment we are currently

measuring the quality of the inferred linked LDA edge weights χ, by using it in a stacked

graphical classification procedure, for both the link graph and the cocitation graph.

85



86



Chapter 8
References

[1] Jacob Abernethy, Olivier Chapelle, and Carlos Castillo. WITCH: A New Approach to

Web Spam Detection. In Proceedings of the 4th International Workshop on Adversarial

Information Retrieval on the Web (AIRWeb), 2008.

[2] E. Alpaydin. Introduction to machine learning. MIT press, 2004.

[3] Einat Amitay, David Carmel, Adam Darlow, Ronny Lempel, and Aya Soffer. The Con-

nectivity Sonar: Detecting site functionality by structural patterns. In Proceedings of the

14th ACM Conference on Hypertext and Hypermedia (HT), pages 38–47, Nottingham,

United Kingdom, 2003.

[4] N.O. Andrews and E.A. Fox. Recent Developments in Document Clustering. 2007.

[5] C. Andrieu, N. De Freitas, A. Doucet, and M.I. Jordan. An introduction to MCMC for

machine learning. Machine learning, 50:5–43, 2003.

[6] R. Angelova and G. Weikum. Graph-based text classification: learn from your neighbors.

Proceedings of the 29th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 485–492, 2006.

[7] Ricardo A. Baeza-Yates. Introduction to data structures and algorithms related to infor-

mation retrieval. In Information Retrieval: Data Structures & Algorithms, pages 13–27.

1992.

[8] András A. Benczúr, Károly Csalogány, and Tamás Sarlós. Link-based similarity search

to fight web spam. In Proceedings of the 2nd International Workshop on Adversarial

Information Retrieval on the Web (AIRWeb), held in conjunction with SIGIR2006, 2006.

[9] Berry, Dumais, and O’Brien. Using linear algebra for intelligent information retrieval.

SIREV: SIAM Review, 37, 1995.

87



[10] M.W. Berry. SVDPACK: A Fortran-77 Software Library for the Sparse Singular Value

Decomposition. 1992.

[11] I. Bhattacharya and L. Getoor. A latent dirichlet model for unsupervised entity resolution.

SIAM International Conference on Data Mining, 2006.

[12] István Bíró, Jácint Szabó, and András A. Benczúr. Latent Dirichlet Allocation in Web

Spam Filtering. In Proceedings of the 4th International Workshop on Adversarial Infor-

mation Retrieval on the Web (AIRWeb), 2008.

[13] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent Dirichlet allocation. Journal of Machine

Learning Research, 3(5):993–1022, 2003.

[14] D.M. Blei, T.L. Griffiths, M.I. Jordan, and J.B. Tenenbaum. Hierarchical topic models

and the nested Chinese restaurant process. In Advances in Neural Information Processing

Systems 16: Proceedings of the 2003 Conference, page 17. Bradford Book, 2004.

[15] Rodrigo A. Botafogo and Ben Shneiderman. Identifying aggregates in hypertext struc-

tures. In Proceedings of the third annual ACM conference on Hypertext, pages 63–74.

ACM Press, 1991.

[16] R. R. Bouckaert. Bayesian network classifiers in weka. Technical Report 14/2004, Comp.

Sci. Dept.. U. of Waikato., September 2004.

[17] A. Bradley. The use of the area under the ROC curve in the evaluation of machine

learning algorithms, 1997. hardcopy.

[18] A. Bratko, B. Filipič, G.V. Cormack, T.R. Lynam, and B. Zupan. Spam Filtering Using

Statistical Data Compression Models. The Journal of Machine Learning Research, 7:

2673–2698, 2006.

[19] P.F. Brown, S.A. Della Pietra, V.J. Della Pietra, and R.L. Mercer. Word-sense disam-

biguation using statistical methods. In Proceedings of the 29th annual meeting on As-

sociation for Computational Linguistics, pages 264–270. Association for Computational

Linguistics Morristown, NJ, USA, 1991.

[20] C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri. Know your neighbors:

web spam detection using the web topology. Proceedings of the 30th annual interna-

tional ACM SIGIR conference on Research and development in information retrieval,

pages 423–430, 2007.

88



[21] Carlos Castillo, Kumar Chellapilla, and Ludovic Denoyer. Web spam challenge 2008. In

Proceedings of the 4th International Workshop on Adversarial Information Retrieval on

the Web (AIRWeb), 2008.

[22] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using hyper-

links. ACM SIGMOD Record, 27(2):307–318, 1998.

[23] Soumen Chakrabarti, Mukul M. Joshi, Kunal Punera, and David M. Pennock. The struc-

ture of broad topics on the Web. In Proceedings of the eleventh international conference

on World Wide Web, pages 251–262. ACM Press, 2002.

[24] Jie Cheng, Russell Greiner, Jonathan Kelly, David Bell, and Weiru Liu. Learning

Bayesian networks from data: An information-theory based approach. Artificial Intelli-

gence, 137(1–2):43–90, 2002.

[25] D. Cohn and T. Hofmann. The Missing Link-A Probabilistic Model of Document Content

and Hypertext Connectivity. Advances in Neural Information Processing Systems, pages

430–436, 2001.

[26] G. Cooper and E. Herskovits. A bayesian method for the induction of probabilistic net-

works from data. Technical Report Stanford KSL 9, June 1991.

[27] G.V. Cormack. Content-based Web Spam Detection. In Proceedings of the 3rd inter-

national workshop on adversarial information retrieval, AIRWeb 2007, Banff, Alberta,

Canada, 2007.

[28] Károly Csalogány, A.A. Benczúr, D. Siklósi, and L. Lukács. Semi-Supervised Learning:

A Comparative Study for Web Spam and Telephone User Churn. In Graph Labeling

Workshop in conjunction with ECML/PKDD 2007, 2007.

[29] B. de Finetti and B. de Finetti. Theory of probability, Volume I. Bull. Amer. Math. Soc. 83

(1977), 94-97. DOI: 10.1090/S0002-9904-1977-14188-8 PII: S, 2(9904):14188–8, 1977.

[30] Jeffrey Dean and Monika R. Henzinger. Finding related pages in the World Wide Web.

Computer Networks (Amsterdam, Netherlands: 1999), 31(11–16):1467–1479, 1999.

[31] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and

Richard A. Harshman. Indexing by latent semantic analysis. Journal of the American

Society of Information Science, 41(6):391–407, 1990.

[32] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Proceedings of the Royal Statistical Society, B-39:1–38,

1977.

89



[33] L. Dietz, S. Bickel, and T. Scheffer. Unsupervised prediction of citation influences. In

Proceedings of the 24th international conference on Machine learning, pages 233–240.

ACM Press New York, NY, USA, 2007.

[34] Stephen Dill, S. Ravi Kumar, Kevin S. McCurley, Sridhar Rajagopalan, D. Sivakumar,

and Andrew Tomkins. Self-similarity in the Web. In The VLDB journal, pages 69–78,

2001.

[35] Dumais, Platt, Heckerman, and Sahami. Inductive learning algorithms and representa-

tions for text categorization. In CIKM: ACM CIKM International Conference on Infor-

mation and Knowledge Management. ACM, SIGIR, and SIGMIS, 1998.

[36] S. Dumais and H. Chen. Hierarchical classification of Web content. In Proceedings of

the 23rd annual international ACM SIGIR conference on Research and development in

information retrieval, pages 256–263. ACM New York, NY, USA, 2000.

[37] E. Erosheva, S. Fienberg, and J. Lafferty. Mixed-membership models of scientific publi-

cations, 2004.

[38] L. Fei-Fei and P. Perona. A Bayesian hierarchical model for learning natural scene cate-

gories. Proc. CVPR, 5, 2005.

[39] R. Feldman and I. Dagan. KDT-knowledge discovery in texts. In Proceedings of the First

Annual Conference on Knowledge Discovery and Data Mining (KDD), 1995.

[40] Denis Fetterly, Mark Manasse, and Marc Najork. Spam, damn spam, and statistics – Us-

ing statistical analysis to locate spam web pages. In Proceedings of the 7th International

Workshop on the Web and Databases (WebDB), pages 1–6, Paris, France, 2004.

[41] Denis Fetterly, Mark Manasse, and Marc Najork. Detecting phrase-level duplication

on the world wide web. In Proceedings of the 28th ACM International Conference on

Research and Development in Information Retrieval (SIGIR), Salvador, Brazil, 2005.

[42] G. Forman, I. Guyon, and A. Elisseeff. An Extensive Empirical Study of Feature Se-

lection Metrics for Text Classification. Journal of Machine Learning Research, 3(7-8):

1289–1305, 2003.

[43] N. Fuhr. A probabilistic model of dictionary based automatic indexing. Techn. Hochsch.

Darmstadt, Fachbereich Informatik, 1985.

[44] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. MIT Press,

2007.

90



[45] David Gibson, Jon M. Kleinberg, and Prabhakar Raghavan. Inferring Web communities

from link topology. In UK Conference on Hypertext, pages 225–234, 1998.

[46] J. Goodman. A bit of progress in language modeling. Technical report, Microsoft Re-

search, 2001.

[47] T.L. Griffiths. Finding scientific topics. Proceedings of the National Academy of Sci-

ences, 101:5228–5235, 2004.

[48] Steve Gunn. Support vector machines for classification and regression. Technical report,

April 07 1998.

[49] Zoltán Gyöngyi and Hector Garcia-Molina. Web spam taxonomy. In Proceedings of the

1st International Workshop on Adversarial Information Retrieval on the Web (AIRWeb),

Chiba, Japan, 2005.

[50] Zoltan Gyongyi, Hector Garcia-Molina, and Jan Pedersen. Web content categorization

using link information. Technical report, Stanford University, 2007.

[51] H. Han, C.L. Giles, E. Manavoglu, H. Zha, Z. Zhang, and E.A. Fox. Automatic doc-

ument metadata extraction using support vector machines. In Proceedings of the 3rd

ACM/IEEE-CS joint conference on Digital libraries, pages 37–48. IEEE Computer So-

ciety Washington, DC, USA, 2003.

[52] J. Han and M. Kamber. Data mining: concepts and techniques. Morgan Kaufmann,

2006.

[53] Hanley and McNeil. The meaning and use of the area under a receiver operating charac-

teristic (ROC) curve. Radiology, 143(1):29–36, April 1982.

[54] Y. Hara and Y. Kasahara. A set-to-set linking strategy for hypertext systems. In Pro-

ceedings of the conference on Office information systems, pages 131–135. ACM Press,

1990.

[55] David Heckerman. Tutorial on learning in bayesian networks. Technical Report MSR-

TR-95-06, Microsoft, 1995.

[56] G. Heinrich. Parameter estimation for text analysis. Technical report, Technical Report,

2004.

[57] Monika R. Henzinger, Rajeev Motwani, and Craig Silverstein. Challenges in web search

engines. SIGIR Forum, 36(2):11–22, 2002.

91



[58] T. Hofmann. Unsupervised Learning by Probabilistic Latent Semantic Analysis. Machine

Learning, 42(1):177–196, 2001.

[59] Thomas Hofmann. Probabilistic latent semantic indexing. In SIGIR ’99: Proceedings of

the 22nd annual international ACM SIGIR conference on Research and development in

information retrieval, pages 50–57, New York, NY, USA, 1999. ACM.

[60] Andreas Hotho, Andreas Nürnberger, and Gerhard Paass. A brief survey of text mining.

LDV Forum, 20(1):19–62, 2005.

[61] David Hull. Improving text retrieval for the routing problem using latent semantic index-

ing. In W. Bruce Croft and C. J. van Rijsbergen, editors, Proceedings of the 17th Annual

International Conference on Research and Development in Information Retrieval, pages

282–291, London, UK, July 1994. Springer Verlag.

[62] Thorsten Joachims. Text categorization with support vector machines: Learning with

many relevant features. Technical Report LS VIII-Report, Universität Dortmund, Dort-

mund, Germany, 1997.

[63] Zhanzhen Kou. Stacked graphical learning. PhD thesis, School of Computer Science,

Carnegie Mellon University, December 2007.

[64] Zhenzhen Kou and William W Cohen. Stacked graphical models for efficient inference

in markov random fields. In SDM 07, 2007.

[65] D. Kuropka. Modelle zur Repräsentation natürlichsprachlicher Dokumente–Information-

Filtering und-Retrieval mit relationalen Datenbanken. Advances in Information Systems

and Management Science, 10, 2004.

[66] Edda Leopold and Jörg Kindermann. Text categorization with support vector machines.

how to represent texts in input space? Machine Learning, 46(1/3):423, 2002.

[67] J. Li and M. Sun. Scalable Term Selection for Text Categorization. Proceedings of

the 2007 Joint Conference on Empirical Methods in Natural Language Processing and

Computational Natural Language Learning (EMNLP-CoNLL), pages 774–782, 2007.

[68] S.H. Lin, M.C. Chen, J.M. Ho, and Y.M. Huang. ACIRD: intelligent Internet document

organization and retrieval. IEEE Transactions on knowledge and data engineering, 14

(3):599–614, 2002.

[69] J.S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2001.

[70] Nicolas Loeff. Latent dirichlet allocation. Presentation.

92



[71] T.R. Lynam, G.V. Cormack, and D.R. Cheriton. On-line spam filter fusion. Proc. of the

29th international ACM SIGIR conference on Research and development in information

retrieval, pages 123–130, 2006.

[72] D.J.C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge

University Press, 2003.

[73] I. Mani and P. Code. Automatic summarization. Computational Linguistics, 28(2), 2001.

[74] C.D. Manning and H. Schütze. Foundations of statistical natural language processing.

MIT Press, 1999.

[75] C.D. Manning, P. Raghavan, and H. Schtze. Introduction to information retrieval. Cam-

bridge University Press New York, NY, USA, 2008.

[76] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Lan-

guage Processing. The MIT Press, Cambridge, England, 2000.

[77] Massimo Marchiori. The quest for correct information on the Web: hyper search engines.

In Selected papers from the sixth international conference on World Wide Web, pages

1225–1235. Elsevier Science Publishers Ltd., 1997.

[78] M. E. Maron. Automatic indexing: An experiment inquiry. Journal of the ACM, 8(3):

404–417, July 1961.

[79] M.Steyvers and T. Griffiths. Probabilistic topic models. In S. Dennis T. Landauer,

D.S. McNamara and W. Kintsch, editors, Handbook of Latent Semantic Analysis. Mah-

wah, NJ: Erlbaum, 2007.

[80] R. Nallapati and W. Cohen. Link-plsa-lda: A new unsupervised model for topics and

influence in blogs. In International Conference for Weblogs and Social Media, 2008.

[81] R. Nallapati, A. Ahmed, E. Xing, and W.W. Cohen. Joint Latent Topic Models for Text

and Citations. In Proceedings of the 14th ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM Press New York, NY, USA, 2008.

[82] D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed Inference for Latent

Dirichlet Allocation. Advances in Neural Information Processing Systems, 20, 2007.

[83] Alexandros Ntoulas, Marc Najork, Mark Manasse, and Dennis Fetterly. Detecting spam

web pages through content analysis. In Proceedings of the 15th International World Wide

Web Conference (WWW), pages 83–92, Edinburgh, Scotland, 2006.

93



[84] D.W. Oard. The state of the art in text filtering. User Modeling and User-Adapted

Interaction, 7(3):141–178, 1997.

[85] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank cita-

tion ranking: Bringing order to the web. Technical Report 1999-66, Stanford University,

1998.

[86] B. Pang and L. Lee. Opinion mining and sentiment analysis. Now Publishers, 2008.

[87] Alan Perkins. White paper: The classification of search engine spam, September

2001. Online at http://www.silverdisc.co.uk/articles/spam-classification/ (visited June

27th, 2005).

[88] James Pitkow and Peter Pirolli. Life, death, and lawfulness on the electronic frontier. In

Proceedings of the SIGCHI conference on Human factors in computing systems, pages

383–390. ACM Press, 1997.

[89] J. Platt. Fast training of support vector machines using sequential minimal optimization.

In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods

— Support Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

[90] A. Popescul, L. H. Ungar, D. M. Pennock, and S. Lawrence. Probabilistic models for

unified collaborative and content-based recommendation in sparse-data environments.

In Proceedings of the 17th International Conference on Uncertainty in Artificial Intelli-

gence, pages 437–444. Morgan Kaufmann, San Francisco, CA, 2001.

[91] I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and M. Welling. Fast Col-

lapsed Gibbs Sampling for Latent Dirichlet Allocation. In Proceedings of the 14th ACM

SIGKDD international conference on Knowledge discovery and data mining. ACM Press

New York, NY, USA, 2008.

[92] M. Porter. Snowball stemming algorithm.

[93] M. F. Porter. An algorithm for suffix stripping. Program, 14:130–137, 3 1980.

[94] J.K. Pritchard, M. Stephens, and P. Donnelly. Inference of Population Structure Using

Multilocus Genotype Data. Genetics, 155(2):945–959, 2000.

[95] Xiaoguang Qi and Brian D. Davison. Knowing a web page by the company it keeps.

In Proceedings of the 15th Conference on Information and Knowledge Management

(CIKM), 2006.

[96] J. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

94



[97] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,

CA., 1993.

[98] K. Rose, E. Gurewitz, and GC Fox. A Deterministic Annealing Approach To Constrained

Clustering. Information Theory, 1991 (papers in summary form only received), Proceed-

ings. 1991 IEEE International Symposium on (Cat. No. 91CH3003-1), pages 373–373,

1991.

[99] S. Russell and P.N.A. Intelligence. A modern approach. Artificial Intelligence. Prentice-

Hall, Egnlewood Cliffs, 1995.

[100] G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval. Infor-

mation Processing and Management, 24(5):513–523, 1988.

[101] G. Salton, A. Wong, and A. C. S. Yang. A vector space model for automatic indexing.

Communications of the ACM, 18:229–237, 1975.

[102] M. Sanderson. Word sense disambiguation and information retrieval. In Proceedings of

the 17th annual international ACM SIGIR conference on Research and development in

information retrieval, pages 142–151. Springer-Verlag New York, Inc. New York, NY,

USA, 1994.

[103] S. Sarawagi. Information extraction. Foundations and Trends R© in Databases, 1(3):

261–377, 2007.

[104] H. Schmid. Probabilistic part-of-speech tagging using decision trees. In Proceedings of

International Conference on New Methods in Language Processing, volume 12. Manch-

ester, UK, 1994.

[105] Fabrizio Sebastiani. Machine learning in automated text categorization. CSURV: Com-

puting Surveys, 34, 2002.

[106] A. Singhal, G. Salton, M. Mitra, and C. Buckley. Document length normalization. Infor-

mation Processing and Management, 32(5):619–633, 1996.

[107] Amit Singhal. Challenges in running a commercial search engine. In IBM Search and

Collaboration Seminar 2004. IBM Haifa Labs, 2004.

[108] Amit Singhal, Chris Buckley, and Mandar Mitra. Pivoted document length normaliza-

tion. In SIGIR ’96: Proceedings of the 19th annual international ACM SIGIR conference

on Research and development in information retrieval, pages 21–29, New York, NY,

USA, 1996. ACM.

95



[109] J. Sinkkonen, J. Aukia, and S. Kaski. Component models for large networks. Arxiv

preprint arXiv:0803.1628, 2008.

[110] J. Sivic, BC Russell, AA Efros, A. Zisserman, and WT Freeman. Discovering Objects

and their Localization in Images. Computer Vision, ICCV 2005. Tenth IEEE International

Conference on, 1, 2005.

[111] Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. Hierarchical dirichlet processes. Jour-

nal of the American Statistical Association, 101(476):1566–1581, 2006.

[112] Y.W. Teh, D. Newman, and M. Welling. A Collapsed Variational Bayesian Inference

Algorithm for Latent Dirichlet Allocation. Advances in Neural Information Processing

Systems, 19:1353, 2007.

[113] D. Tikk, editor. Szövegbányászat. TypoTEX, Budapest, 2007. 294 pages.

[114] K. Tzeras and S. Hartmann. Automatic indexing based on Bayesian inference networks.

[115] D.D. Walker and E.K. Ringger. Model-based document clustering with a collapsed gibbs

sampler. In Proceedings of the 14th ACM SIGKDD international conference on Knowl-

edge discovery and data mining. ACM Press New York, NY, USA, 2008.

[116] Ron Weiss, Bienvenido Vélez, and Mark A. Sheldon. HyPursuit: a hierarchical network

search engine that exploits content-link hypertext clustering. In Proceedings of the the

seventh ACM conference on Hypertext, pages 180–193. ACM Press, 1996.

[117] J. H. Wilkinson and C. Reinsch. Handbook for Automatic Computation. Vol. II Linear

Algebra. Springer-Verlag, New York, 1971.

[118] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann Series in Data Management Systems. Morgan Kauf-

mann, second edition, June 2005.

[119] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools and

techniques, 2nd Edition. Morgan Kaufmann, San Francisco, 2005.

[120] D. Xing and M. Girolami. Employing Latent Dirichlet Allocation for fraud detection in

telecommunications. Pattern Recognition Letters, 28(13):1727–1734, 2007.

[121] F. Yamout, R. Demachkieh, G. Hamdan, and R. Sabra. Further enhancement to Porter

algorithm. In Proceedings of the KI2004 Workshop on Machine Learning and Interaction

for Text-based Information Retrieval, Germany, pages 7–24, 2004.

96



[122] Y. Yang and J. O. Pedersen. A comparative study on feature selection in text categoriza-

tion. In Proceedings of ICML-97, 14th International Conference on Machine Learning,

1997.

[123] H. Zhang, C.L. Giles, H.C. Foley, and J. Yen. Probabilistic Community Discovery Using

Hierarchical Latent Gaussian Mixture Model. In Proceedings of the National Confer-

ence on Artificial Intelligence, volume 22, page 663. Menlo Park, CA; Cambridge, MA;

London; AAAI Press; MIT Press; 1999, 2007.

[124] H. Zhang, B. Qiu, C.L. Giles, H.C. Foley, and J. Yen. An LDA-based Community Struc-

ture Discovery Approach for Large-Scale Social Networks. Intelligence and Security

Informatics, 2007 IEEE, pages 200–207, 2007.

[125] X. Zhu, J. Kandola, Z. Ghahramani, and J. Lafferty. Nonparametric transforms of graph

kernels for semi-supervised learning. Advances in Neural Information Processing Sys-

tems, 17:1641–1648, 2005.

[126] Xiaojin Zhu. Semi-supervised learning literature survey. Technical Report 1530, Com-

puter Sciences, University of Wisconsin-Madison, 2005.

97


