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Supervisor: András Lukács Ph.D.
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Abstract

This thesis considers the overlapping areas of database management and busi-

ness intelligence. We present new results that aim to narrow the gap between the

disciplines of databases and data mining that are still considered rather separate

at the time of writing.

We study three selected problems on the boundary of databases and data

mining. The first one, frequent itemset mining (FIM), is a classic and central data

mining task. The thesis describes new FIM algorithms for relational database

environments. We demonstrate that the new algorithms efficiently utilize the

facilities provided by the database server, and fit the relational data model and

specialties of the environment.

Second, business intelligence architectures are studied. A new architecture

type is presented to integrate relational data warehouses and column-oriented

storages in a cost-effective way, enabling long-term storage and data mining.

Third, the thesis provides new results on the problem of entity resolution, a

central and complex data integration task. We present new models and scalable

algorithms for relational databases, for effective index use, as well as for dis-

tributed environments. We demonstrate a significant improvement in scalability

compared to previously known similar algorithms.

Results are validated over real life data and presented at international con-

ferences. The thesis demonstrates that the results also proved to be useful in

practice through industrial applications.
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Chapter 1
Introduction

The first decade of the new millennium was eventful in the IT world. For an

everyday person, it was all about broadband internet, new ways of social inter-

action by social networking, new generation of mobile devices, interfaces and

applications, sharing and searching incredible amounts of data and content. For

an IT professional, it was about cloud computing, web 2.0, mobile applications,

big data, new architectures and new paradigms. New trends changed the way

people think about information technologies, how and why these technologies

develop.

The promising decision support technologies of the 90’s become accepted

and widespread. Data warehousing, data mining, data visualization and other

analytical procedures and technologies take part in the life of today’s organiza-

tions. Meanwhile new questions have arisen. More and more data, the demand

on real time processing, new emerging technologies are to be considered when

developing decision support systems.

This thesis discusses selected topics of decision support technologies, in-

tended to provide answers to some of these newly emerged questions.

A few years ago my main interest was how to adopt data mining algorithms

to relational data warehouses. The work on efficient frequent itemset mining

and entity resolution algorithms for relational databases were inspired by this

question.

Today the main question of my interest is how analytical solutions can ben-

efit from the new emerging architectures and from frameworks capable of han-

dling petabytes of data. The two-phase architecture presented in this thesis gives

a possible answer to the weaknesses of traditional relational databases when

solving data mining tasks on big data. The work on distributed and indexing-

based entity resolution demonstrates how scalability of existing algorithms can

be overshadowed by the help of new architectures and tools.

1



2 CHAPTER 1. INTRODUCTION

My results range from theory to experimentation and industrial deployment.

I present a mixture of theoretical running time bounds, models and heuristics for

solving practical problems, and measurements on real life data. Unusual for a

doctoral dissertation, some of my results are implemented as part of the daily

operation of our partners.

1.1 Thesis Outline and Contributions
The thesis begins with a preliminary chapter with a short introduction on busi-

ness intelligence, data mining, entity resolution and motivating use cases. The

subsequent chapters deal with specific business intelligence topics, each with in-

troduction, motivating examples, related work, detailed description of our results

and notes on my contribution.

Chapter 3 gives a detailed discussion of business intelligence architectures,

concentrating on how relational databases can be extended to support data min-

ing efficiently.

A new architecture type is developed and described that can integrate re-

lational data warehouses and colum-oriented storages in a cost-effective way,

enabling long-term storage and data mining. The results were validated on the

massive weblog data of the Hungarian [origo] web portal, building prototype

two-phase system.

Chapter 4 gives an example how a data mining algorithm can be tightly cou-

pled to a database: we present efficient frequent itemset mining algorithms for

relational databases. These algorithm efficiently utilize the facilities provided by

the database server, and fit the relational data model and specialties of the en-

vironment. Applicability is demonstrated by experiments and a real-world web

analytics application.

In Chapter 5 we contribute to data quality by developing new, efficient meth-

ods for entity resolution. We scale up the entity resolution process by tightly

coupling algorithms to databases, by indexing efficiently and also by distribut-

ing the algorithms, with one Section for each approach.

Applicability is demonstrated by experiments and by case studies, primar-

ily on insurance client data. A large Hungarian insurance company successfully

applies the methods and algorithms for years in a client data warehouse applica-

tion.

Chapter 6 concludes by summing up new results and my contribution.

The work described in this thesis has been partly presented in the following

publications listed in chronological order:

• Results of Chapter 4 were published in [Sidl 05b].
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• Base ideas of the two-phase architecture of Chapter 3 appeared first in

[Benc 05], then [Racz 07] gave a detailed description of the concept.

• Entity resolution methods of Chapter 5 were published in three research

papers. Relational ER of Section 5.4 is described in [Sidl 09], algorithms

of Section 5.5 with heavy indexing appeared in [Sidl 11a] and distributed

solutions of Section 5.6 were presented in [Sidl 11b].



Chapter 2
Preliminaries

The decision support technologies from the ’90s, OLAP, data warehousing, data

mining, business intelligence found their places. They have become popular

and used in everyday practice, not only supporting decisions, but supporting

operational activities of today’s organizations. Next we briefly introduce the key

concepts of business intelligence and some related concepts.

2.1 Business Intelligence
The term business intelligence (BI) was coined by Howard Dresner, former an-

alyst of Gartner Inc. He defined BI in 1989 as “a set of concepts and methodolo-

gies to improve decision making in business through use of facts and fact-based

systems” [Mart 06]. In the 1990s the phrase has become popular, used as an

umbrella term, for applications, databases, methods and architectures providing

easy access to business data. The main focus of BI are Decision-Support Sys-
tems (DSS), offering valuable knowledge to decision makers. The definitions

of BI and DSS are rather vague and diverse. DSS for example can be handled

as a special BI domain. Besides, BI systems are sometimes described as DSS

systems, with the opposite inclusion relation.

In any case, BI (and therefore the fact-based systems in the definition) in-

cludes the following activities and areas of our interest ([Moss 03]):

• on-line analytical processing (OLAP),

• data mining,

• click-stream analysis,

• data warehousing,

4



2.1. BUSINESS INTELLIGENCE 5

• master data management.

One of our main BI subjects is data mining, a crucial step in knowledge dis-

covery. Data mining, a multidisciplinar area, addresses the discovery of hidden,

possibly unexpected, but useful patterns in big data. Data mining methods serve

the most complex information needs of organizations, providing useful mod-

els of the subject areas (prediction models and classificators, frequent patterns,

clusters).

Our main data mining problem is frequent itemset mining (FIM), a classic

and central data mining task. The main task of FIM is to find frequent patterns

in large databases of transactions (baskets) containing items. An example for

FIM is the widely known problem of market basket analysis. The goal is to

find sets of items with support (the count of transactions containing all the items

in the set) above a given minimum support threshold. FIM is a base to solve

several further tasks, including association rule, frequent sequence or subgraph

mining. The area has extensive literature, with many algorithms and imple-

mentations. Our main interest is the relationship between FIM algorithms and

relational databases.

Data integration is the task of combining data of different sources, provid-

ing a unified view. Data integration tasks occur frequently when building BI

applications, and require massive data quality improvement methods. Data min-

ing methods are also useless without consistent and clean datasets. A central

data quality task is Entity Resolution (ER) (or deduplication), the process of

identifying groups of records that refer to the same real-world entity. Dupli-

cated entity representations raise severe data quality issues leading to corrupted

aggregations that may eventually mislead management decisions or operational

processes.

Several business intelligence, and also several operative applications need

effective and scalable entity resolution algorithms. CRM, marketing, master

data management, or even web search engines and other web-based services

would profit from identifying duplicates. Without ER even simple questions can

be hard to answer, as for example “How many clients we actually have?” or “Is

our client already accessed by direct marketing, targeted advertisement?”.

ER is a computationally hard problem with O(n2) time complexity, and the

main difficulty comes from the size of the data sets. No algorithms were pub-

lished for large data volumes in practical applications: Previous algorithms of

the literature were usually designed as in-memory algorithms for small input

data set.

BI solutions can be built on several types of IT architectures. Relational data

warehouses form a widely accepted platform: they build on traditional relational

databases. Scalability has recently imposed new challenges as the volume of the
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data grows very fast while the increase in the capabilities of a single proces-

sor core has slowed down. Distributed systems, MapReduce, Key-Value stores

address scalability and have already begun to reshape the BI industry. It is how-

ever not yet clear how existing BI methodologies can be applied in these new

architectures, or how traditional architectures can be extended to adopt to higher

scalability requirements.

2.2 Business Intelligence Applications
The thesis focuses on some selected BI applications. These subject application

areas are emerging from practical applications of our algorithms, and from prac-

tical needs of R&D partners.

One area of our interest are the storage and analysis of big transactional data.

The demand of the telecommunication industry, service and content providers

emerges to collect and analyze usage and other transactional data. Some of their

questions regarding security, service improvement, marketing or business policy

issues can be answered by data mining methods. Even medium sized companies

can easily produce log files of extreme sizes (up to hundreds of gigabytes or ter-

abytes per month). Collecting, keeping these log data sets in a storage-efficient

and easily accessible way suitable for direct processing by several types of data

analysis and mining algorithms is a challenging problem.

Web analytics is an application of transactional log processing aiming to

collect and analyze internet data, with the intent to understand and optimize web

usage. Here recording activity of website visitors and other web usage events

may produce huge amounts of data. Since we first met the problem the area

undergone great changes, industry standard methods and applications emerged

and become widely accepted and used.

Another possible application of transactional log management methods is

the analysis of IT infrastructure logs. The IT infrastructure of any organiza-

tion produces huge amounts of diverse log data: authentication events, hardware

failures, resource (disk) shortage as well as auditing database access, people en-

tering doors, printer toners running out. The area is similar to web analytics. In

fact, web analytics can be considered as a sub-task of IT-log analytics. How-

ever, general IT-log analytics is more complex task and does not have standard

methodologies and applications yet.

Client master data management is a third area where we build prototype

applications with our new methods. A common task in practice is to collect,

aggregate, consolidate, quality-assure and distribute descriptive data of the main

subjects, in our case specifically clients. High quality master data is required

in all BI applications, including data warehousing, data mining and operational
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applications such as CRM (customer relationship management) or marketing.

We focus on data quality issues of client master data when building a client data

warehouse.



Chapter 3
Architectures for Business

Intelligence

In this chapter we study how relational databases can be extended to a data

mining and business intelligence platform. Efficient solutions already exist for

solving data mining tasks, but these are mostly independent of the database man-

agement system containing the data they work with. After identifying the limi-

tations of the relational technology and the needs of data mining tasks, an archi-

tecture can be designed to efficiently combine the advantages of different storage

architectures.

A common practice in relational data warehousing and also in ad-hoc an-

alytical applications is the use of relational databases. Advanced and mature

methodologies and tools can be chosen both to design and to implement a rela-

tional data warehouse, see [Kimb 11].

Column-oriented database systems such as the C-store [Ston 05] extend

traditional relational databases with the ability to compress data highly effi-

cient at the cost of slower random access and update. These systems are read-

optimized databases designed for relatively few concurrent users asking sophis-

ticated queries by storing relational data in columns rather than in rows as in the

conventional “row-store” approach.

A relatively new trend is to integrate row and column-wise storage methods.

For example, both SAP with a new storage engine called HANA ([Cha 11]), and

Microsoft with SQL Server ([Lars 11]) integrate in-memory column-oriented

storage techniques into their databases, blurring the boundaries between column-

wise and row-wise storage. This idea is similar to our two-phase architecture

following in Section 3.2. Column-oriented storage methods also found their

way into MapReduce systems (see [Flor 11] for an example).

Distributing databases is a common way to make our databases scalable.

8



3.1. COUPLING DATA MINING AND DATABASES 9

Hadoop [Whit 10], an open source implementation of the Map-Reduce frame-

work [Dean 08] is a common architecture for efficient parallelization.

Emerging distributed NoSQL (non-relational) technologies represent another

useful option (see [Leav 10] or [Ston 10a] for brief overview), providing high

scalability for limited classes of problems. These include hierarchical, graph,

object-oriented databases, key-value stores and document databases, each taking

a different data storage and access approach. Examples include MemcacheDB,

ScalienDB, Dynamo, CouchDB and MongoDB. A great debate is developing

if NoSQL solutions can substitute traditional relational databases, are the pre-

sumptions they build on useful or not.

A possible answer to the concerns above – as by the column- and row-

oriented storage methods – is to bring the NoSQL and SQL worlds closer. For

example, Michael Stonebraker, an influential database researcher and architect,

founder of several database companies, also a critic of overstating NoSQL skills

(see [Ston 10b]), recently founded VoltDB. The distributed main memory-based

VoltDB originates from H-Store [Kall 08], and promises excellent scalability,

relational model with SQL and ACID compliancy [Hari 08].

In this chapter we present an architecture that we designed for web log min-

ing at the largest Hungarian Web portal [origo] (www.origo.hu). The site [origo]

among others provides online news and magazines, community pages, software

downloads, free email as well as a search engine. The portal has a size of over

700 thousand pages and receives 7 million page hits on a typical workday, pro-

ducing 35 GB of raw server logs that remains a size of 4.5 GB per day even after

cleansing and preprocessing, thus overrunning the storage space and analysis

capabilities of typical commercial systems.

3.1 Coupling Data Mining and Databases
A fundamental question of business intelligence architectures relates to the in-

tegration of data mining into traditional databases. The goals of data mining,

the extraction of interesting knowledge from large databases complements the

goals of the data warehouse and on-line analytical processing technologies. The

chasm between the existing data mining and the database world is rather wide.

Most data mining solutions include fully database-independent applications for

the data mining tasks. As relational databases are widespread and common tools,

coupling data mining with relational databases can remarkably improve knowl-

edge discovery capabilities.

The concept of inductive databases [Imie 96, Boul 99] is about integrating

data and knowledge. The main goal of an inductive database is to allow the user

not only to query the data that resides in the database, but also to query and mine
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generalizations, patterns of interest. The knowledge discovery process should

be supported by an integrated framework, the user should be allowed to perform

different operations on both data and patterns.

The interaction takes place through inductive query languages supporting

data mining, often extensions of SQL. A good comparison between languages

supporting descriptive rule mining can be found in [Bott 04]. Other directions

allowing data mining-like queries are data mining APIs [Netz 01]. From the

analyst point of view the usability of OLAP systems could also be significantly

increased by the integration of data mining methods. This viewpoint of inductive

databases is called on-line analytical mining (OLAM) [Han 98].

Despite the probable usefulness we are still far away from a general the-

ory and practical realizations of full value of inductive databases. Moreover,

mainstream research interest seems to turn to other topics, including new scal-

able architectures with new ways of knowledge discovery. However, there are

promising partial results, including that RDBMS vendors try to integrate more

and more knowledge discovery support in their systems, turning them into deci-

sion support platforms (see [Li 04] and [MacL 04]).

Data mining enabled database system architectures can be classified by the

strength of the coupling between the mining algorithms and the database [Sara 98]:

Tight coupling. Data mining is integrated into the DBMS using the existing

query processing and storage methods. When used for data mining, this

solution has known efficiency limitations [Sara 98, Sidl 05b].

Semi-tight coupling. The existing DBMS system is extended with data mining

primitives of different complexity and provides an extension of the SQL

query language. Data mining algorithms work separately, but data access

is provided through a common interface.

Loose coupling. Data are read from the DBMS and directly loaded into a sep-

arate DM system. Both our and typical existing data mining solutions are

loosely-coupled and use locally stored copies.

3.2 Our Results
Around 2006 new technologies, column oriented, distributed and NoSQL stores

were just in incubatory phase. Some limitations of traditional databases for busi-

ness intelligence purposes were already clearly visible. At this time, we experi-

mented with a new architecture type, aiming to extend traditional relational data

warehouses with data mining and big data handling capabilities.
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Figure 3.1: Two-phase data warehouse architecture

We proposed a “two-phase data warehouse architecture” by adding a second

phase data source to a traditional DBMS. The philosophy of the second phase

lays between data streams, nearline databases and column-oriented databases:

we provide very fast streaming access for full table scans of long-term fine gran-

ularity historical data stored column-wise compressed. While our data mining

algorithms remain loosely coupled to the DBMS, they are tightly coupled with

the second phase data source and thus overcome the high cost of reading from

DBMS. Our architecture promises effective long-term archival, computation and

data mining at low costs as demonstrated by a case study of a large scale internet

content provider server log warehouse.

The prototype system includes several modules integrated into a complete

service for processing and analyzing web logs. After collection and filtering

data may enter advanced analysis, optimized high density compression for long-

term storage in a form appropriate for off-line data mining, as well as an OLAP-

based statistical unit that provides fast on-line service for basic aggregation and

detailed short-term queries.
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3.3 The Two-Phase Architecture
Figure 3.1 shows the proposal of the two-phase architecture. Data storage and

management is divided into two separate components — data is present in two

different phases.

The first phase is a traditional DBMS that processes data sources and pro-

vides user interface for management and analysis. The first phase can be im-

plemented using standard data warehouse technologies. The source data is ex-

tracted, transformed and loaded into the database by the ETL tools. The DBMS

contains detailed dimension tables with no restriction on its scheme (snowflake

or even more complex). The database is responsible for managing data cubes

and metadata, such as dimension tables. First the dimensions and dimension hi-

erarchies are refreshed, and fully detailed data cubes are built. Additional cubes

store the derived, subject area-specific data, which are updated after the main

cubes. These smaller cubes contain data with no time restrictions. (They can be

implemented as independent data marts as well [Desi 01].) By cost considera-

tions the first phase is restricted in its time window or granularity; for historic

data only aggregates are preserved. Reporting and analysis is done by tools con-

necting to the first phase data warehouse. From the usage point of view, the first

phase is responsible both for serving OLAP and ad-hoc queries and reports, and

for providing predefined data mining patterns generated from the second phase

data.

The new element is an additional second phase similar to nearline archive

storages but with slightly different goals. The background storage keeps data

available through streaming and data mining interfaces and also provides archival.

Data is imported either from the first phase or, for real time applications, directly

from data sources. Data is stored compressed.

A goal of the second phase is to optimize data mining access to very large

data sets. The second phase is restricted to a simple schema with one or more

basic fact tables. These are read only except for appending new data, and are

optimized for full table scans with possibly only very coarse or no indexes im-

plemented.

We expect a data streaming interface; sequential access to all or certain rela-

tively large blocks of the data fits well with a variety of data mining and machine

learning algorithms. Frequent itemset mining as well as partitioning clustering

algorithms such as k-means algorithms are designed to use a few passes of full

scans over the data [Han 00]. A given model can be applied to classify data;

certain models such as Naive Bayes or decision trees can also easily be trained

by sequential passes. Finally database sketches or synopses can be efficiently

built for further processing [Babc 02].

The second phase data consists of one or more basic fact tables with all fre-
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quently used attributes joined. Access is restricted read-only sequential with

the exception of inserting new data. The second phase does not support ran-

dom access and arbitrary attribute indexes. Basically it acts both as a nearline

solution to store archive data and as a data source for tightly integrated mining

algorithms.

The interaction between first and second phase can have multiple forms ac-

cording to the desired goals. For example we may use the second phase data to

generate a new aggregated view in the data warehouse that cannot be deduced

from the currently available aggregations. In this case we need to read through

all historical data that can be efficiently solved by a single query over the second-

phase data to initialize the data cube with accurate “phase back” data as required.

The same issue arises when the new system has to be initialized with historical

data.

Service providers and companies are usually required to keep detailed data

about their customers’ actions for a long time. This require access to the most

detailed historical data. Telecom sector is a good example of such storage re-

quirement. While basic retrieval functionality can be provided with standard off-

line storage solution (eg. tape archival), there are certain circumstances where

these methods cannot easily provide adequate answers. One such example is

when, instead of a particular record set or time frame, all the historical data has

to be searched for a specific pattern (e.g. fraudulent use). Loading hundreds or

thousand of tapes for such a query is an extremely costly operation, especially

when the pattern may not be formulated perfectly and several passes might be

necessary. In contrast, the modest data volumes of the second-phase compressed

data allows fast access. Efficient disaster protection by feasible replication of the

most detailed data across different sites is also easily achievable.

3.3.1 Second Phase Reference Implementation
In our reference implementation the entire second phase is external to the first

phase data warehouse system. The compression/decompression module and the

second-phase query engine (including data mining operations) were all devel-

oped with keeping the immense data volumes in mind. However, this is not

a requirement of the architecture. Handling of compressed tables and stream-

ing operations could be integrated in commercial database or data warehouse

systems, sharing much of the code with traditional query execution. Unfor-

tunately the only option not feasible is the golden mean, when only the com-

pression/decompression module is external to the database engine. In this case

during the full table scan of second-phase data such a large volume of data has

to pass the interface between the DBMS and the external module which makes

this option infeasible at hundreds of millions of records.
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We primarily use the second phase data over a streaming interface without

ever storing large uncompressed data chunks. This is achieved by a compressed

storage optimized for high throughput by large compression rates. Compressing

the data is relatively slow but rare, while decompression is frequently used but

very fast. We employ our semantic compression column by column [Racz 04].

The method is similar to column stores in the use of compression, but differs in

other aspects. A main difference is that we only compress data in columns but

we store in rows in order to serve data mining algorithms without the need of

joins on multiple columns.

The prototype second phase does not prohibit indexes similar to column

stores. The only index type we use is a very coarse block index suitable for

example to select data of different time periods. Queries hence use full or partial

table scans and joins are implemented only for small tables by internal memory

indexes. Notice that in our high throughput phase full table scans are relative

inexpensive operations.

Similar to our second phase, the column stores enable sophisticated com-

pression methods [Abad 06] and evaluate queries on compressed data as far as it

is possible. While we also compress data column-wise, we store them as a row

store as an additional benefit over column stores to avoid the use of join indexes.

Nevertheless the possibility of keeping the data in column-wise separate files

as well as multiple views under different sorting and partitioning is possible in

our second phase although our data management philosophy stays closer to data

streams than to common database principles.

Modular Design and Interfaces

The second phase is designed and developed for handling and processing very

large datasets, according to a data stream approach. It combines an abstrac-

tion of data source, run-time modularity and configurability with keeping perfor-

mance and resource management issues in hand. A versatile platform is built for

data mining and data analysis that allows an ordinary desktop or workstation-

range computer to perform queries including data mining operations on very

large datasets that are difficult to handle by boxed DBMS or statistical systems.

A single modular suite of software is written entirely from scratch in C++

language that spans the tasks of compression, high-throughput data access and

data mining. All the second-phase tasks are performed by a set of over 200 inde-

pendent modules for data manipulation (filters, transforms, aggregation, group-

ing, sorting etc.) and modeling (clustering, classification, frequent pattern min-

ing). Module configuration can be given in a query language that specifies the

required modules, their settings and virtually unrestricted interconnection over a

standard interface.



3.3. THE TWO-PHASE ARCHITECTURE 15

The modules adhere the streaming data source interface both for input and

output with a limited number of exceptions that use external memory sorting.

By connecting several modules together, one gets a pipeline of modules that

performs complex operations.

Data streaming allows second-phase data to be decompressed on-the-fly for

queries while never stored, not even temporarily. Only the small set of records

being currently processed exist in the memory uncompressed.

Compression

Compression is a key factor in the efficiency of the second phase, which our

compression module fulfils. In the prototype we used our semantics-based com-

pression scheme [Racz 04] utilizing inter-block data correlation. We optimized

for decompression speed as it is a considerably more frequent operation than

compression. Instead of a universal compression algorithm we provide a choice

of several algorithms specialized for diverse data types. Different compressed

parts may share metadata such as compression models, histograms or data dis-

tribution information. When querying we utilize the ordering created by the

compression module and the natural order of blocks/partitions (usually accord-

ing to time) as a coarse index. Using compression blocks we can access data

according to the filter conditions of the current query.

Data Model

In the second phase storage and query execution engine we use a data model

fitting to data mining applications, a generalization of the relational data model

and the sparse matrix data model. The model is similar to the model of BigTable

[Chan 06].

A relation is a set of rows. The sparse format means following: for each

row of the matrix, we take the set of nonzero entries as a list of their column

identifiers. In our model we group the attributes of the classic relational model

into header attributes and body attributes. Those records, which have the same

values in all the header attributes constitute a row and are collected together. The

values of the header attributes are stored, processed and transmitted only once

for each row, independently of the number of records belonging to that row. A

basic relation can be represented easily in our model: all attributes can be header

attributes (one row for each record) or there are no header attributes (in which

case there will be a single row).
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3.3.2 A Case Study

The two-phase data concept was tested in a case study with the largest Hungarian

web portal (www.origo.hu). In the time of our experiments the portal had from

7 to 9 million successful page requests per day, resulting in around 35 GB of

raw web server log files each day. This amount of data should remain accessible

for a long time to meet legal obligation and security liabilities and for analytics.

Since the cost of a huge traditional data warehouse was not affordable, they used

to build data marts on aggregated data while archive the raw data on tapes that

is very difficult to access and analyze.

Our solution is built on top of an Oracle 9i database that we also use for pre-

senting reports to users through an easy-to-use web-based interface. Web server

log data enters the DBMS through our ETL tools; in addition these tools collect

data from the editorial systems as well. The raw data is filtered, completed (with

domain names for IP addresses for example) before sent to the data warehouse

component. The main page-hit data cube is partitioned by date: each day has

a new partition. We also build hierarchies on top of the dimensions including

domains for the IP addresses and page groups based on the structure of the site.

The most granular page hit data cube can store data only for a limited time

period, approximately for five months. This data is aggregated into smaller,

subject oriented data cubes for the purposes of content optimization, marketing

and web-design without capacity problems.

The data warehouse has a refresh period of one day, new data arrives overnight.

First we make the database consistent by building the main table. At this point

the second phase data is generated: the compression module reads out and com-

presses the most detailed data. After compression additional data mining tasks

are performed, and the results are written back into the database for analysis.

Second-phase modules connect to the database through standard Oracle C++

APIs.

To ensure that the second-phase data is always consistent to the database,

they share all the data warehouse dimensions and metadata. However, the di-

mension data is stored also in the second phase as dictionaries, to handle changes

of the schema and slowly changing dimensions. Archive, rolled-out detailed

data of the star schema is always properly accessible from the second-phase.

The second-phase modules are built on the relational-like data model which fits

the snowflake schema of Figure 3.2 using the same surrogate keys of dimensions

as the database. The schema is designed according to common clickstream data

warehouse practice [Swei 02].
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Figure 3.2: The snowflake schema of the data warehouse in the case study



18 CHAPTER 3. ARCHITECTURES FOR BUSINESS INTELLIGENCE

Table 3.1: Space requirements of the page hit data cube (one month)

Storing method Size on disk

Compressed (bzip) raw log files 180.7 GB

Compressed (bzip), preprocessed log files 17.1 GB

Standard DB table 44.9 GB

Compressed DB table 39.1 GB

Second-phase compressed storage 1.9 GB

Experiments

In the following we demonstrate the usability of the two-phase architecture by

selected weblog measurements. We compare the database and the second phase

store according to space requirements and query performance. While the TPC-

H benchmark [TPC 06] is a good reference, unfortunately it is not applicable

due to the specialties of the business area and the second-phase storage. Instead,

as in [Josh 03], we measure basic data warehouse implementation-independent

properties.

Table 3.1 shows the space requirements of one month (31 days) web log

data in the different phases. DB table references to the main fact table of the

most granular page hit data, without the dimension and hierarchy tables. The

second-phase storage contains the basic dimension attributes as well. Oracle’s

data segment compression technique [Poss 03] achieves around 13 % storage

saving, as a result of the very sparse dataset. Our compression method reduces

storage down to 4.2 % of the basic fact table.

Figure 3.3 shows execution times for some basic queries of Table 3.2, ob-

served on the same server. We chose queries that do not use dimension tables

and require full table scans (we do not use daily block index that would speed

up our execution of Q3) of the fact table that store the required foreign keys. An

appropriate tuning of the database requires careful and accurate implementation

beyond the scope of the thesis.

Querying second-phase data has near constant performance. The reason of

the higher Q3 execution time is the following: the granularity (partition size) of

the compressed data is one month. In case of a query for one week of data we

have to process a whole month to produce the result, in contrast to the database

engine, where the query can be optimized to read only the appropriate fact ta-

ble partitions for the selected date range. However, the granularity of the com-

pressed data can be chosen arbitrarily, with the possibly increasing penalty of

the storage overhead of the dimension tables.

We demonstrate the strength of our architecture for data mining tasks on

Figure 3.4 (the experiment extends [Sidl 05b] and is based on the experiments of
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Table 3.2: Reference queries

Query SQL

Q1 select sum(PAGE ID) from FACT PAGE IMPRESSION

where DATE KEY between 20060101 and 20060131

Q2 select count(*) from FACT PAGE IMPRESSION

where DATE KEY between 20060101 and 20060131

and HTTP STATUS CODE = 200

Q3 select count(distinct USER ID) from FACT PAGE IMPRESSION

where DATE KEY between 20060116 and 20060122
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Section 4.2). The four depicted algorithm incorporate four different philosophy

for solving the task of frequent itemset mining in databases.

FP-TDG2 uses only relational database facilities to compute frequent itemsets,

namely tables, indexes and SQL operations.

NFP-CACHE is a tiny cache-mine system, reading the input data from the

database, caching it on the local filesystem, computing the results by an

efficient C++ standalone application (nonord-fp [Freq]), and writing back

the results to the database.

NFP-FILEIO serves as a baseline on the figure, representing the nonord-fp

algorithm using efficient file I/O libraries, getting the input data from files

and writing the output into files too, without any database connection.

PIPED-MINE stores the input data compressed on local disk, computes and

writes the result to the database using our second-phase toolkit.

The experiments were were performed on a PC server with a 3 GHz Intel

Pentium processor, 2 GB memory, RAID 5 with IDE disks, Debian Linux oper-

ating system and Oracle9i Release 2 DBMS (the same as in Section 4.2.4). The

dataset is a public dataset, having 340,183 transactions and 468 different items

[Freq].

The SQL-based FP-TDG2 performs poor mainly because the structures and

operations provided by the database are not suitable enough for implementa-

tions of data mining algorithms. The main part of the execution times of NFP-

CACHE comes from reading the input data from the database and writing back

the results. As the result set growths, the execution times are becoming therefore

also larger. PIPED-MINE employs a similar implementation of frequent itemset

mining algorithm as NFP algorithms. The time saving comes partly from using

the compressed data as input, and partly from using a faster database connection

API.

Figure 3.5 illustrates the execution times of the main regular jobs in our ex-

perimental system. We see the DBMS daily aggregation as the main bottleneck;

another reason for using our architecture is that monthly or weekly aggregates

cannot even be computed in tolerable time. We observe that the second phase of-

fers a good basis computing these aggregates as well as for running data mining

tasks.

3.4 Conclusions
A new architecture type is developed and described that can integrate relational

data warehouses and colum-oriented storages in a cost-effective way, enabling
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long-term storage and data mining.

The practical applicability of the new architecture is demonstrated by a pro-

totype system, where a commercial database management system and a data

mining framework of our own were integrated. This prototype system is then

used for web analytics, where the results were validated on weblog data of the

Hungarian [origo] web portal. In 2006, the portal had a size of over 700 thousand

pages and received over 7 million page hits on a typical workday, producing 35

GB of raw server logs, thus overrunning the storage space capabilities of typical

commercial systems. Despite of large cost allocation, several similar traditional

data warehouse technology based web analytics projects failed. Our prototype

two-phase web analytics data warehouse solved the same business problem in a

cost-effective way, and worked for years with minimal maintenance.

3.5 My Contribution
Two research papers were published as a joint work with András A. Benczúr,

Károly Csalogány, András Lukács, Balázs Rácz, Máté Uher and László Végh.

The first [Benc 05] concentrates on applying data mining methods on click-

stream data. Base ideas of our two-phase architecture are presented. In [Racz 07]

we focus on the architecture for the same clickstream analysis task; our data

mining framework (the second phase) is also described in detail.

My contribution in both papers consist of designing the general architecture

scheme, drawing up and solving the integration problem of the two components,

finally implementing and operating the prototype web analytics data warehouse.



Chapter 4
Frequent Itemset Mining

Frequent itemset mining (FIM) is a classic and central data mining task. FIM is a

base to solve several further tasks, including association rule, frequent sequence

or subgraph mining.

While algorithms for FIM were studied exhaustively (see e.g. [Freq]), much

fewer results are known about FIM algorithms implemented inside relational

database management systems. Next we study the relationship between FIM

algorithms and classic relational databases, and provide efficient coupled tightly

coupled SQL-based FIM algorithms.

Comparing the SQL-based implementations to the stand-alone FIM algo-

rithms one can notice that the second class contains the very well performing

pattern-growth algorithms [Han 00, Pei 01], while the idea of pattern-growth is

poorly represented among the available SQL-based FIM algorithms [Shan 04].

Next we try to fill the gap by suggesting a new pattern-growth FIM algorithm

tightly coupled to relational database management systems. The main result

is an efficient adoption of the sophisticated FP-growth algorithm to relational

databases. We expect that our algorithms process the data inside the database.

4.1 Problem Formulation

Let us consider the set of items I = {item1, item2, . . . itemm}. Let a database
be D ⊆ P (I), and let the baskets of items be the elements of D. The support
of an itemset A ⊂ I is the number of baskets that have all of the items from A.

We call an itemset frequent if the support of the itemset is greater than a given

threshold. Frequent itemset mining (FIM) is the task of finding all frequent

itemsets.

Association rules are binary relations between itemsets. Let the ordered pair

22
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of two disjoint itemset be an association rule, denoted as A → B. Let the

support of the rule A → B be the support of A ∪ B, the number of baskets

containing A ∪ B. The confidence of this rule is defined by the ratio of the

support of the set A ∪B to the support of the set A. The aim of association rule

mining is to find all the rules that have a support and confidence greater than or

equal to some previously given thresholds.

To solve the FIM problem, one can observe that frequent itemsets satisfy

the antimonotonicity property (or Apriori principle): For a subset of an item-

set, the support of the subset is less or equal to the support of the original

itemset. This property is the base of the multi-pass algorithm called Apriori
[Agra 94]. Further algorithms solving the FIM problem are based on pattern-

growth [Han 00, Pei 01].

4.2 Data Mining inside Relational Databases

As described in Section 3.1, the level of integration between data mining and

databases can vary on a scale from tight to none at all. SQL-based tightly cou-

pled algorithms are considered significantly inferior in terms of running time

compared to stand-alone implementations. Nevertheless there are advantages of

tightly coupled data mining. Since in practice data appears mostly in data ware-

houses and other databases, in a tight coupled architecture no additional data

mining system is needed. DBMSs are mature technologies that can facilitate

data mining to become online, robust, scalable and concurrent.

Next we discuss related work, study SQL-92-based FIM algorithms, both

Apriori and pattern-growth versions, and present a new efficient tightly coupled

FIM algorithm.

4.2.1 Related Work

The first attempt to the particular problem of integrated frequent itemset mining

was the SETM algorithm [Hout 95], expressed as SQL queries working on re-

lational tables. The Apriori algorithm [Agra 94] opened up new prospects for

FIM. The database-coupled variations of the Apriori algorithm were carefully

examined in [Sara 98]. The SQL-92 based implementations were too slow, but

the SQL implementations enhanced with object-relational extensions (SQL-OR)

performed acceptable. The so-called Cache-Mine implementation had the best

overall performance, where the database-independent mining algorithm cached

the relevant data in a local disk cache. The optimization of the key operation,

the join queries was studied in [Thom 99], and a new SQL-92-based method,
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Set-oriented Apriori was introduced. Further performance evaluations on com-

mercial RDBMS can be found in [Yosh 00], evaluations of the SQL-OR option

in [Mish 03]. An interesting SQL-92 algorithm based on universal quantification

is discussed in [Rant 03] and [Rant 04].

Since the introduction of the FP-growth method [Han 00], a few attempts

were made to implement pattern-growth methods inside the RDBMS [Shan 04].

[Bara 05] presents a novel, FP-tree-based indexing method, who provides a com-

plete and compact representation of the dataset for frequent itemset mining, effi-

ciently cooperating with the relational database. [Grah 04] deals with database-

independent frequent itemset mining, but supposing that secondary memory

have to be used.

Among the problems of data mining in DBMS, FIM is investigated most

intensively. Among other classical data mining tasks, we find tightly coupled

versions of decision tree classifiers [Satt 01, Bent 02]. A general tightly coupled

data mining architecture is introduced in [Meo 98].

4.2.2 SQL-based Apriori Algorithms
The Apriori algorithm is based on the so-called Apriori principle: the n-element

candidate sets Cn can be produced from the (n − 1)-element sets of frequent

itemsets Fn−1. Since the candidates have to be filtered to produce the frequent

itemsets Fn ⊆ Cn, the algorithm iterates two basic steps. In the n-th iteration,

Cn, the candidates for frequent itemsets having size n are generated. Then the

support of the candidates are counted by reading all input data. The process

iterates until the candidate itemset becomes empty.

Next we briefly discuss SQL-92 implementations. Typically, the input has

the (transaction id, item) schema as the number of items per transaction varies.

This model fits the star schema design in relational data warehouses too. In

the algorithm, except for the trivial C1, the implementations materialize all Cn

and Fn but they may differ in data representation. Two basic variations to

represent these sets are the horizontal (item1, item2, ...itemn) and the vertical

(set id, item) approaches. The horizontal approach has the disadvantage that

the maximal count of table attributes is limited.

SQL Apriori implementations also differ in the SQL commands for candi-

date generation and support counting. Since support counting is the most time

consuming part, most algorithms use the same efficient candidate generation op-

eration, a k-way join generating Cn from Fn−1. The support count commands

may be K-Way-Join, Subquery or 2-Way-Join and may utilize join operations or

rely on group by computations, for example Two-Group-Bys [Sara 98].

The basic support counter operation of the K-Way-Join algorithm joins the

data table n times in the nth iteration step.
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insert into Fn (
select item1 ... itemn count(∗)
from Cn, Fn−1 as I1, ... Fn−1 as In
where I1.item < Cn.item1 and ... and

In.item < Cn.itemn and
I1.tid = I2.tid and ... and In−1.tid = In.tid

group by item1, ... itemn

having count(∗) ≥ minsup )

Subquery is an optimization of the K-Way-Join, which makes use of the

common prefixes between the itemsets in the candidate set. We developed dif-

ferent versions of Subquery to apply the divide-and-conquer idea of [Sava 95]:

If we divide the database into distinct partitions, then an itemset can only be

frequent, if it is frequent on at least one partition. It is possible therefore to par-

tition the input table, find the frequent itemsets over the partitions, then test all

partition-wise valid frequent itemsets over the whole input table. While in our

experiments, partitioning remains inefficient compared to our methods, it can be

used to mine data stored on multiple databases [Kona 04].

4.2.3 Pattern-growth Methods
Pattern-growth methods, first published in [Han 00], represent the database in

a compact data structure called Frequent-Pattern-tree (FP-tree). By using the

FP-tree structure, we may avoid both repeated database scan and large candidate

set generation. An FP-tree stores items having support greater than the minimum

support in a tree. Given an ordering of the items, transactions are represented

as paths from the root node, and share the same upper path if their first few

frequent items are the same. The FP-tree is searched recursively to find the

frequent itemsets with the FP-growth method.

Figure 4.1 shows an FP-tree built for an example dataset with minimum sup-

port 2. All nodes are labeled by an item, have a count value and a sidelink to

their siblings. The count value refers to the support of the path’s itemset from

the root to the given node. An additional header table stores the initial sidelink

and the total item count for the items.

FP-tree Construction

A table with schema

node : (node id, parent id, item, count, sidelink)

represents the FP-tree in a natural fashion where sidelink is a Boolean attribute

showing whether a node is part of the processed subtree or not in a particular
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Figure 4.1: FP-tree for a given database, built with minimum support threshold

2

state of processing. Parent attributes are NULL on the first level of the tree. An

alternative representation can be found in [Shan 04], where, instead of the parent

reference, a special and not fully discussed path attribute is used for all nodes.

The FP-tree can be built by reading the database once. For each transaction,

we either insert a new path into the tree if the itemset of its frequent items has not

been represented yet, or else we increase the counts. This method implemented

as a series of SQL queries is, however, not efficient and hard to optimize, since

we access the node table individually for all items. Instead, we build the FP-tree

level by level, inserting all nodes on a particular level of the tree batched in one

common SQL command.

The first version we present uses the subset of the original input table con-

taining only the transaction parts having frequent items, along with a table con-

taining (node id, item) elements, representing the prefix we have processed.

We delete the processed rows from the filtered input table, get the next item for

the transactions by a minimum search, and insert new rows in node. Suppos-

ing that input table is tdb filtered : (tid, item), the prefix table is prefix :
(tid, node id) and node seq.nextval is used to generate the unique identifiers,

the key step is as follows.

insert into node (
select node seq.nextval, min.minitem,

prefix.node id, count(min.tid)
from ( select tid, min(item) minitem

from tdb filtered
group by tid ) min, prefix

where min.tid = prefix.tid
group by min.item, prefix.node id )

Our second version uses an analytic function called dense rank to produce

a sorted and filtered version of the input table. We create groups with the help
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of this function, according to the tid attribute, and rank the items in the group

based on the given ordering (supposing that tdb: (tid, item) is the input table).

select tid, item, dense rank() over ( partition by tid
order by item ) rank

from tdb

The filtered input table is tdb filtered : (tid, item, rank) in this case. Build-

ing node is similar to the previous version, but we can eliminate the minimum

search and the deletion phase by referring to all levels by the rank value.

Items in the input table are represented by identifiers, therefore a natural

ordering exists, but this ordering is not suitable for building the FP-tree. We

have to use an additional table for items, in which they are ordered according

to exactly one new identifier. The new identifiers are given so that the natural

ordering of them will be the same as the descending ordering of the original

items based on the count of transactions they appear in. This ordering promises

optimal tree structure in the sense of compactness. This step can be solved by

a simple sorting query, and the results can be used to initially fill up the header

table described below.

FP-tree Evaluation

The basic FP-tree evaluation is not efficient enough with SQL operations. In-

stead we use a method similar to the top-down FP-growth described in [Wang 02],

who enables finding all frequent itemsets without materializing conditional sub-

trees.

The core of the algorithm is a recursive procedure with SQL operations us-

ing auxiliary tables. The header : (header id, item, count) table stores count

information for items coming up in stages of the recursion, and also serves

as a recursion heap. The identifiers in the header table are analogous to the

separate header tables in the original FP-growth. All the itemsets ending up

with a given x̄ item sequence are considered in a recursion step. Another ta-

ble header postfix : (header id, item) stores these x̄ postfixes for the header

identifiers. Using these tables the “mine” algorithm (Algorithm 1) recursively

produces all frequent itemsets above a given minsup minimal support value. It

is called first after the FP-tree creation phase as mine(0), when header is al-

ready filled with frequent items and their counts, and rows referring to the initial

0 header id.

We implemented the steps of the algorithms as SQL queries, with the help

of auxiliary tables. Frequent sets are written to the result : (set id, item) table,

absolute support values of itemsets to result support : (set id, support).
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Algorithm 1 FP-tree-based DB FIM

input parameter: h id

1: for h rec in ( select header id, item, count from header
where header id = h id ) do

2: if h rec.count ≥ minsup then
3: output long pattern: (h rec.item, postfix) using header postfix ;

4: new header ← generate new header id ;

5: for all n node from node located on paths upwards from h rec.item-s,

having sidelink = Y do
6: n.count← sum of counts of leafs ;

7: n.sidelink ← Y ;

8: if (new header, n.item) exists in header then
9: add n.count to header row identified by (new header, n.item) ;

10: else
11: insert (new header, n.item, n.count) into header;

12: for all n node from node not located on paths upwards from

h rec.item-s, having sidelink = Y and item < h rec.item do
13: n.sidelink ← N ;

14: mine(new header) ;
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The main observation that motivated the top-down FP-growth method is that

if we process the tree in a top-down fashion, then the counts of the nodes above

the actual leaf are no longer needed, therefore they can be used for counting.

We use further temporary tables for the purpose of climbing up the paths and

setting sidelinks and counts (rows 5.-12.). Table path : (node id, count) stores

the nodes found on the paths with the actual count value. We climb up the paths

level by level, accumulating the counts of the leaves. The required information

(original node, actual node, count value of the original node) for these steps

are stored in another temporary table. This step can be solved by the use of a

recursive query as well (assuming the syntax of Oracle):

select node id
from node
start with node id = (actual node)
connect by prior parent id = node id.

Processing the nodes on the paths leaf by leaf with the use of a recursive

query instead of level by level, however, was less effective according to our

early test results.

Optimization

It became clear after implementing the first versions of the algorithm that the

main costs arise from the node table accesses, especially from updates (steps

6, 7 and 12). These accesses refer to more and more node by the end of the

processing, when we process nodes near to the leaves. We can optimize the

updates, for example updating only those sidelinks of the nodes which don’t have

the right value yet, but after all without the use of indexes these steps require full

scans of the node table, and this costs mostly lots of block reads and writes.

However, one of the main reasons to use a relational databases is their efficient

indexing capabilities; next, we briefly enumerate some indexing considerations.

The node id, parent id and item attribute values don’t change after building

the node table. It is therefore profitable to use standard B-tree indexes on them,

like (item, node id) for searching node id-s by item, or (node id, parent id)
to find parent nodes efficiently. The sidelink and count values are changed

frequently. We don’t want to access the table by the count attribute, but the use

of some index on the sidelink attribute may be profitable. We can use regular

indexes, or, since the sidelink attribute has only two distinct values, we can use

bitmap index. We tested both the regular and bitmap version for sidelink along

with other index combinations. We refer hereafter the indexed version of the

above described algorithm as FP-TDG.
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We implemented several alternatives of FP-TDG. In our experiences, denor-

malizing the node table turned out beneficial: the database schema

node : (node id, parent id, item)

sidelink : (node id)

count : (node id, count)

enables us to manage the frequently changed information apart from the per-

manent tree-structure information. In this case we store the binary “header”

information as a set of node id. The “count” values for nodes are stored in a

smaller and separate table. Instead of building separate indexes on these two

tables we store them as B-trees with the help of the so-called “index-organized

table” facility of the database server. We refer this version as FP-TDG2.

4.2.4 Experiments
Our experiments were performed on Oracle 9i Release 2 DBMS, installed on a

server with a 3 GHz Intel Pentium processor, 2 GB memory, RAID 5 with IDE

disks and Debian Linux operating system. Memory consumption of the database

server was limited to 1 GB, because of other background services on the server.

Redo logging was reduced for all tables, and parallel processing functions of the

database were not enabled.

Since expressive power of SQL is not enough to express our algorithms, we

used a programming environment. We generate sequences of SQL operations

by PL/SQL, while main data processing and all data remains in the database.

PL/SQL could be exchanged to any other programming environment, in which

we can connect to the database server through some standard database API. The

algorithms can be executed on an arbitrary client, because the main part of the

data processing remains inside the database server. The client generates the

adequate SQL statements only, which requires little computing and networking

capacity.

We used public FIMI [Freq] datasets as test datasets (Table 4.1 contains the

properties of the three selected datasets for demonstration).

We have chosen Subquery to compare our algorithm to, because — as sug-

gested in [Sara 98] — Subquery had the best overall performance of the pre-

existing methods. (That is in fact opposed to [Rant 04], where K-Way-Join

is superior in the category). We implemented our version with the so-called

second-pass optimization: we don’t materialize the candidates of size two, we

replace it with a 2-way join between frequent item tables of size one.

The other algorithm we have chosen for comparison is nonordfp [Freq],

whith a fully database-independent C++ implementation. Nonordfp handles an
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Table 4.1: Dataset properties

Dataset # records # transactions # items Avg. num. of items

(K) per transaction

ACCIDENTS 11,500 340,183 468 33.8

BMS-WebView-1 149.6 59,602 497 2.5

BMS-WebView-2 358.3 77,512 3,340 4.6

KOSARAK 8,019 990,002 41,270 8.1

RETAIL 908.6 88,162 16,469 10.3

T10I4D100K 1010 100,000 870 10.1

FP-tree-like structure, and can efficiently evaluate it without materializing sub-

trees. The algorithm runs on the same machine as the database, but only con-

nects to it to read out the input data and to write back the result through standard

JDBC interface. Nonordfp caches the data in the filesystem for processing. The

memory usage was not limited. We refer hereinafter this implementation as

NFP-CACHE.

The main part of the total execution times of nonordfp came from reading

and writing the database. The response time goes up only below low minimum

support values, when the result set becomes large. The algorithm nonordfp out-

performs the SQL-based methods for low minimum support, however as being

in-memory algorithm, the input size is limited by the available memory.

Figure 4.2 shows execution times of our two methods for FP-tree construc-

tion. Figure 4.3 (left) shows execution times on different sized samples of the

RETAIL database with the minimum support value of 0.5 %. Figures 4.3 (right),

4.4, 4.5 and 4.6 (left) compare the total execution times of our algorithms.

FP-TDG and FP-TDG2 mostly outperform Subquery, but in case of the gen-

erated dataset T10I4D100K they do not perform well. This dataset is rather

sparse, and most FP-growth methods work less efficiently on sparse datasets.

This can be seen here as well. The FP-tree becomes too large, it does not com-

press the database efficiently, and this causes a leap in the aggregated node-

access times. On the other hand the sparsity of the database is advantageous for

the join-based Apriori methods, when the size of the candidate sets shrinks fast.

We have also tested Subquery and FP-TDG2 in a real-life environment, over

logs of the largest Hungarian web portal (www.origo.hu). The site had 7 mil-

lion page views on a typical workday in the times of the experiment. That was

processed by an experimental weblog mining architecture (see [Benc 05] and

Section 3.2 for details). The preprocessed data is stored in an Oracle 9i database

component of the architecture. The task is the identification of pages accessed

together by a large fraction of the users on a given day. Execution times of the

algorithms on a typical workday can be seen on Figure 4.6 (right side), where
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Figure 4.6: Execution times on weblog datasets

767,663 identified user accessed 57,911 different pages during the day, resulting

in 2,395,146 page view records. The average number of page views per user was

3.12.

In the weblog mining architecture the trends and statistics can be analyzed by

an analytical reporting framework. It can be reached through a webserver with

dynamic web pages, connected to the database. Users can discover frequent sets

of pages by extending the frequent sets one-by-one, starting with an empty, or

with a directly given set of pages. The possible extensions can be chosen from

a toplist. This simple method is suitable in our case, where we have 1 to 47

thousand frequent sets with a maximum size of 13 for the different minimum

supports measured and appeared on Figure 4.6.

In this real-life application of the SQL-based FP-TDG2 we eliminated the

need for a separate FIM system producing duplicated data. Frequent sets are

produced by only the use of the common database facilities. The execution times

are acceptable, they are comparable to the computation times of some complex

statistical aggregations in the database.

Implementations of the algorithms and the used sample datasets can be down-

loaded from [Sidl 05a].

4.3 Conclusions
We developed and presented a pattern-growth FIM algorithm for relational database

environments based on SQL operations. This algorithm efficiently utilizes the

facilities provided by the database server, and fits the relational data model and

specialties of the environment.
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The algorithms represent a major step forward relative to similar existing

algorithms. Applicability in real-world scenarios is demonstrated by a prototype

system.

4.4 My Contributions
The results were published with András Lukács [Sidl 05b], whose main contri-

butions were writing the introductory and related work sections.



Chapter 5
Entity Resolution

Entity Resolution (ER) is the process of identifying groups of records that refer

to the same real-world entity. One of the first description of the record linkage

problem appears in 1969, when Fellegi and Sunter [Fell 69] used a probabilistic

model to describe this referral relation. Since then the process was described

in many different contexts under many different names including duplicate de-

tection, instance identification, heterogeneous join, merge/purge, reference rec-

onciliation or object matching. There are lots of closely related topics too, for

example clustering, similarity joins,string similarity, data cleaning, data ware-

housing, data integration, information integration etc.

In most cases, records are heterogeneous and erroneous and hence the map-

ping to hidden real-world entities is not straightforward. Structural and syntactic

heterogeneity originates mostly from the heterogeneity of source systems, dif-

ference in data handling policies, standards, and finally from low data quality

due to typos, missing values and other problems. ER can be therefore handled

as a data cleaning task, occurring in data integration scenarios often.

Entity resolution is an actively researched area. To demonstrate this, if we

look at one of the main database conferences of 2010, the conference on Very

Large Databases, then there we can find approximately 5 research papers dealing

directly with entity resolution out of approximately 90 papers, and at least other

10 with closely related topics.

The ER problem can be formulated in many different ways. Input and output

can be a set of records with attributes, a set of XML documents or a graph. The

algorithms can either produce exact results or probabilistic mappings. Match-

ings can be defined by exact rules, by similarities or by links between records.

Results can be represented by record sets, by representative merged elements,

or both. Training data or entity activity log can be present. The architecture we

use to solve the problem can be distributed, can be a single database server, a

36
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standard standalone computer or, for another example, a data mining framework.

The main assumption in any cases is that we examine and group together

observations (records) of hidden real-world entities. The main goal is to im-

prove data quality, to give better representation of the real world. The selection

of the data model and representation, the match criteria, the architecture, the al-

gorithms and tools used are mostly orthogonal decisions. In the following we

examine some of these possible design decisions, while trying to scale up the

ER process. We present new algorithms for some of the available configura-

tions, which are able to improve existing solutions.

5.1 Motivation
Entity resolution appears in a wide range of applications. Author name reso-

lution in bibliographic databases forms the first and ever since popular task in

ER research where the goal is to group together different occurrences of authors

with names written in several ways. Name, institute and a few other personal

attributes as well as the co-authorship relations can be used for ER.

Various industrial ER scenarios for clients, products and others share com-

mon characteristics. All these areas would profit from an efficient solution of ER

problems. Search engines could identify and group together web pages dealing

with the same entity, such as a person or a product (see [IGlu 11] for a semantic

web example). Web services could identify duplicated registrations. Stores or

auction web sites could group together different items of products.

5.1.1 Client Databases
Companies typically face the entity resolution problem when building a client

database, or manage client master data. Clients may appear multiple times in

multiple source systems, e.g. a record for a contract, another for a purchase. As

another example, the same person may appear in several marketing databases

obtained by different means. ER is the key step in producing sound and clean

client master data.

Client records may consist of attributes, both of persons (birth data, tax and

social security numbers, postal address, etc.) and of organizations (client ID,

contract number). Attribute values are often missing or erroneous, and some

attributes change in time (name, postal address).

By resolving the record set, simple but fundamental as well as more complex

questions can be answered: How many clients we actually have? Can a given

client be addressed in a marketing campaign, or we just made an offer a few

days ago? Does a new client have ever contacted, or had any transaction with
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our company? Existing ER algorithms are however often not scalable enough,

resolving a larger record set may require days on conventional architectures.

Insurance Case Study

Our motivating application is client data integration of several insurance source

systems at the AEGON Hungary Insurance Ltd.1 The ER problem comes into

sight during the construction of a client data mart over legacy systems that re-

mained independent of each other for operational reasons during mergers and

ownership changes.

The first step of data integration consists of cleaning and integrating data

into a unified schema by massive ETL tools. Then a slowly-changing versioned

client dimension is built up including all available attributes. The goal of EM

is to identify clients with multiple dimension elements and automatically clean

the client dimension. Additional fact tables store relations between clients, and

between additional dimensions such as contract ID, postal address etc. as seen

in Fig. 5.1 (beware, this is not a proper ER diagram, only a sketch of the base

ideas). Despite the exhaustive pre-processing, there remained several duplicated

dimension elements, caused by differences in attributes of the source systems,

different data recording and storage policies as well as time-varying attributes.

Domain experts can define exact rules on customer attributes for construct-

ing match and merge functions of client records. Merging of records is also

possible: experts can formulate rules to construct a simple record containing the

most valuable information of the underlying matching records. An automated

ER process is expected, therefore exact results are preferred. Approximate re-

sult based on similarities and links between records can also be produced, but

these results have to be reviewed by experts and cannot be used automatically to

maintain the dimension.

We can match clients based on attribute similarities (like Mr. Smith and

Mrs. Smith), or based on links (for example common address or phone num-

ber). Attribute values can change in time. People contained in the data mart

have personal attributes and company dependent attributes such as identifica-

tion numbers in the source portfolios. We deal with simple permanent attributes

closely related to the client as name, birth name, birth date, sex, tax and social

security number. We call a combination of these attributes an identity. People

naturally have multiple identities: they are asked for different set of attributes

in different roles (as a client for example compared to an insurance agent or a

third-party beneficiary of an insurance). Note that handling identities as separate

1 The AEGON Hungary has been a member of the AEGON Group since 1992, one of the

world’s largest life insurance and pension groups, and a strong provider of investment products.
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Figure 5.1: Simplified data model of the insurance client data mart

concepts enables the identification of not only the duplicated client records, but

also duplicated records of people in arbitrary roles. Agents and clients for exam-

ple have a lot of distinct attributes, but the essential entity attributes are always

present.

5.1.2 Practical Observations and Assumptions
We observed some simple properties of practical ER problems while solving and

studying ER scenarios. Next we describe some assumptions that we think are

useful for most of the ER tasks in practice.

Uncertain environment. ER tasks are always interpreted in an uncertain en-

vironment. The main ER problem arises from the fact that observations

of real world entities are erroneous and vague in some sense. Therefore,

deterministic entity resolution is not flexible enough; probabilistic models

for these uncertain statements are preferred.

Human supervision. Human supervision is hardly avoidable. Exact matching

rules can be defined, but the probabilistic nature of the problem and the

large amount of expert knowledge to be formulated makes the construction
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of these rules hard. Therefore, active learning methods are preferred where

borderline matching questions are decided by an expert.

Set-based model and matching. Traditional record-record matching oversim-

plifies real world problems in most cases. The real nature of the problem

is closer to matches between sets of records. Representative records can

be misleading and hard to construct: for example, it is hard to decide be-

tween two birth dates of the same rank. Deciding matches is sometimes

also hard without referring to all the feature values, with only a represen-

tative value. We think that ER models representing an entity with record

sets are favorable.

Type I and II errors. There can be a huge difference between the consequences

of match errors. In the client example, finding inappropriate matchings

(false negatives) can cause legal troubles with high costs, but not finding

a possible matching (false positives) is more tolerable. The model used

should adopt to this asymmetry.

A-priori knowledge. Besides the plain database of entity records, a-priori knowl-

edge may be available to improve ER quality. For example, we may have

information on distributions of attribute values or cardinalities of entity

groups. Use of similarity measures should consider statistical properties

of the given entity set: two records having the name “John Smith” match

with lower probability than two having “Csaba Sidló”. The external infor-

mation should be incorporated into the ER model or represented as extra

attributes.

Entity hierarchies. Real-world entities form natural hierarchies. For example,

ER procedures may be applied in a client scenario for the identification of

households or company hierarchies as the key entities of interest. In this

case we would like to identify entities not explicitly present in the source

data. As another example, ER is applicable for postal addresses that are

attributes of clients, while clients themselves are subject to resolution.

Overlapping entities. Entities may have vaguely defined boundaries in certain

practical cases. For example households may overlap as people may be-

long to more than one households, or move between households. Produc-

ing a definite non-overlapping group of personal records as households

is less useful than producing overlapping groups. Overlapping groups of

records as entities are therefore preferable in some cases.
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5.2 Related Work
One of the first descriptions of record linkage appears in the influential paper

of Fellegi and Sunter [Fell 69] in 1969, describing a probabilistic model. Since

then, entity resolution problems have been studied in many different disciplines

and names. For overview, in [Elma 07] a survey is given on duplicate record

detection, describing supervised, unsupervised and active learning, and summa-

rizing statistical and machine learning solutions based on various text similarity

and matching measures. Recently the book [Talb 10] introduces key models,

methods and new trends from a more practical point of view.

Traditional deduplication approach uses similarity measures for attributes,

and learns when two records can be resolved to the same entity. A survey of

string similarity functions can be found in [Elma 07], along with a survey of

basic duplicate detection algorithms. In [Grav 01] a nice solution is presented for

implementing string-similarity joins using q-grams in an RDBMS environment.

ER can be handled as a supervised learning problem, if training data is

present. We can apply data mining classification methods, for example Bayes

methods [Han 05, Fell 69], decision trees [McCa 95] or SVM [Bile 03, Chri 08].

Unsupervised learning methods such as latent Dirichlet allocation [Bhat 06a] or

clustering methods can also be used, if there is no training data. An interesting

approach lying between the previous two is called active learning: when a small

set of training data is given, the algorithm decides the new elements it could

use the best to extend the training set ([Sara 02]). An automated training data

selection method is described in [Kopc 08].

ER is formalized many times as generating clusters of linked records. In the

citation database scenario, with the goal of identifying authors, we do not really

have author attributes other than their names. We can however link these records

by joint papers. This way ER can be seen as a special problem of link-mining;

a survey containing link based entity resolution can be found in [Geto 05]. The

approach is called relational ER, based on the relations between records, or col-

lective ER, because we would like to resolve records based on the link graph as

a whole.

Entity resolution as a hypergraph clustering problem can be found in [Bhat 07],

under the name of relational clustering. Input data is handled as a reference

graph, with nodes as entity records and edges as links between these nodes. The

goal of the resolution process is to produce a resolved entity graph, where nodes

are entity instances that hold entity records together. Clustering is also suggested

[Hern 98]; however, general clustering methods are usually designed for less and

larger clusters as records of entitities in ER.

A seminal paper, [Benj 09] (published first in 2005) introduces generic entity

resolution with black-box match and merge functions, where resolution means
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the closure of the original entity set according to these functions. Simple fea-

ture indexes are also used. Generic entity resolution forms mostly the base

of our following methods and algorithms. The model and the algorithms are

extended in [Mene 06] for handling approximate results as records with con-

fidences. [Benj 07] adapts the algorithms to a distributed environment. Our

generic ER algorithms for relational databases of Section 5.4.2 was published in

[Sidl 09].

Other interesting approaches to ER includes utilizing aggregate constraints

[Chau 07], or giving methods for query time ER [Bhat 06b]. In [Bhat 08] a uni-

fied model is suggested for entity identification and document categorization.

[Wick 08] widens the coreference problem with schema matching and canoni-

calization, and provides a unified model. The role of cross-field dependencies is

described in detail in [Hall 08].

Recently, several new ER results were published. A new approach can be

found in [Yako 10]: entity behavior is recorded as transactional log. Common

patterns of these transactions are used to identify similar or identical entities.

Measuring the quality of entity resolution results is a crucial problem, [Mene 10]

deals with possible quality metrics. [Whan 09] enhances core ER algorithms

by combining the results of different blocking strategies. [Guo 10] exploits the

role of constraints when finding duplicates. [Whan 10] deals with the effect of

match/merge rule evolution, and gives methods to preserve results when rules

change. [Chri 09b] builds special inverted indexes to speed up ER with block-

ing. A survey of indexing techniques available for deduplication is provided in

[Chri 11], including blocking, sorted neighborhood, Q-grams and canopies.

Entity resolution frameworks are developed, like SERF, MTB, DDUpe and

MARLIN (see [Kopc 10a] for a survey). A practical comparison of ER ap-

proaches can be found in [Kopc 10b] using the FEVER framework.

The Febrl framework also provides parallelization [Chri 04]. Other paral-

lel algorithms are presented in [Kim 07], tested on a few thousands of records.

More recently [Kirs 10] introduces parallel matching and a distributed infras-

tructure, using similarity-based matchers.
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5.3 ER Models and Formulations
The problem of entity resolution can be formulated in several ways, with ap-

plicability depending on the particularities of the given practical problem. Next

we examine some of the potential models and formulations developed for the

algorithms following in Section 5.4, 5.5 and 5.6.

Section 5.3.1 gives an overview on the generic entity resolution model of

[Benj 09] as the starting point of our work. This model assumes exact results,

pairwise matches between records, representative elements and black-box match

and merge functions.

Generic ER model is modified in Section 5.3.2 to enable efficient algorithms

on relational databases. Match functions on (record set, record) pairs and merge

functions on record sets are used.

A more general model, with entities as sets of records, is described in Section

5.3.3. Here merging is a union of these sets, and no representative elements are

used. This model is used for index-based and distributed ER algorithms.

Practical match function classes and useful constructs are defined in Section

5.3.4 and 5.3.5. A probabilistic model is briefly introduced in 5.3.6, capable of

extending our algorithms to incorporate probabilistic, similarity-based match-

ing. This model is however not used in this thesis, only demonstrates a possible

way to formulate probabilistic matching.

5.3.1 Generic ER Model
The starting point of our work is the Generic ER model of [Benj 09]. They

suppose black-box match and merge functions and exact outcome, with repre-

sentative merged records for entities.

Let us assume a set of records I = {r1, r2, ...rn} ⊂ R, called instance (R
is a domain of records). Note that records are arbitrary elements, and do not

necessary share the same structure, or even have structure.

A match function is an R×R→ {true, false} Boolean function, denoted

as r1 ∼ r2 and r1 
∼ r2. The merge : R × R→ R partial function is defined on

matching pairs of records, denoted as 〈r1, r2〉 (for every r1 ∼ r2).
We also would like to characterize which record describes an entity better.

We suppose a partial ordering on records, called domination. We use r1 
 r2
(for r1 ∼ r2 records), if r2 describes the underlying entity “better”; for example

contains more information, or newer data.

Given the constructs above, we can define the generic ER problem as fol-

lows. Given an instance I , let the merge closure of I be a set of records that

can be reached by recursively adding new elements to I by merging matching

records. ER(I) denotes the resolved entity set: Let ER(I) be the smallest
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subset of the merge closure that could only be extended by records that are dom-

inated by other records within ER(I).
Note that up to this point we have no restrictions on match, merge functions

and on domination. ER(I) is a well-defined, but not necessary a finite set (con-

sider the example, where the merge function concatenates string records, and

r1 
 r2 means r2 is longer than r1). However, if we restrict the class of merge

and match functions, then we can make ER(I) always finite and independent of

the order in which records are processed.

Assume the following (ICAR) properties of the match and merge functions:

• idempotence: ∀ r : r ∼ r and 〈r, r〉 = r,

• commutativity:

∀ r1, r2 : r1 ∼ r2 ⇔ r2 ∼ r1, and r1 ∼ r2 ⇒ 〈r1, r2〉 = 〈r2, r1〉,
• associativity: ∀ r1, r2, r3 where 〈r1, 〈r2, r3〉〉 and 〈〈r1, r2〉, r3〉 exists:

〈r1, 〈r2, r3〉〉 = 〈〈r1, r2〉, r3〉,
• representativity: ∀ r4, r1 ∼ r4: r3 = 〈r1, r2〉 ⇒ r3 ∼ r4.

If we use functions corresponding to the properties above, then we can use a

natural domination partial ordering called merge domination: r1 is merge dom-

inated by r2, if r1 ∼ r2 and 〈r1, r2〉 = r2. Merge domination enables dropping

merged elements during processing promptly after merge steps, keeping only

merged elements.

ICAR properties and merge domination reduce the computational complex-

ity of computing ER(I). Although these definitions seem natural, we can ob-

serve cases, where the expectations do not meet the properties. In such cases

we have to decide, if we solve the computationally harder problem, or we define

new functions satisfying ICAR properties. By the use of merge domination we

also face the same problem, as we will see later. However, in most cases func-

tions according to ICAR and merge domination can be chosen to meet the user

requirements.

5.3.2 Relational Generic ER Model
Next we modify the general ER model of Section 5.3.1 and add further require-

ments to enable efficient RDBMS-based implementations. First of all, the gen-

eral ER model is too general for RDBMS-based implementations: we would

only like to deal with uniform relational instances. We expect instances to

meet the relational data model assumptions, and handle them as tables. Let

A1, A2...An be attributes, and let a relational instance be

Ir ⊆ ×n
i=1DOM(Ai) = Rr.
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The result of the resolution process will also be a relational instance. The con-

cept of relational instances is less general than the original, but still practical

and flexible. We are going to use such instances, and tuples (records) of these

instances, denoted as t ∈ Ir.
RDBMS allows us to carry out batched operations on relations efficiently.

Next we re-define match and merge to fit the relational environment better. Let

the relational match function be

matchr : Rr × 2Rr → 2Rr ,

where 2Rr is the power set of Rr, the set of Ir instances. The matchr function

compares a single record to an instance. Let the relational merge function be

the

merger : 2
Rr → Rr

partial function that is defined on instances, whose tuples match a single arbi-

trary tuple. The relational merge closure of an Ir relational instance is then

defined as the smallest I ′r subset of Ir that satisfies

∀ S ⊆ I ′r, ∀ t ∈ I ′r : merger(matchr(t, S)) ⊆ I ′r.

Applying merges on the closure does not lead us out of the closure. The def-

inition of domination stays the same as by the general model. The relational
entity resolution of an Ir instance, denoted as RER(Ir), is then defined as the

smallest subset of the relational merge closure that does not contain dominated

records.

We can derive the semantics of the new functions defined on tuple sets from

the pairwise functions: the new match function should produce the set of all

matching tuples of Ir. However, pairwise merge semantics cannot always be

easily translated to the new form. If we deal with ICAR pairwise functions, the

semantics of the corresponding set-styled merge can be understood as applying

pairwise merges in some arbitrary order to the original tuple. We can assume

that matchr and merger are derived from pairwise functions having the ICAR

properties the following way:

matchr(t, Ir) = {t′ ∈ Ir|t ∼ t′}

merger(Ir) = t ∈ R, where Ir = {r1, . . . rn}, t = 〈. . . 〈r1, r2, 〉r3〉 . . . rn〉.
We can use the merge domination for relational instances if match and merge

functions can be derived from ICAR pairwise functions.

Now, instead of derived merger, we define a more general function class.

We consider the relational match and merge functions, only if matchr can be
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derived from a pairwise function: matchr(t, Ir) = {t′ ∈ Ir|t ∼ t′}, and for all

t, t′ tuples and I1, I2 ⊆ Ir instances, properties

t ∼ t′ ⇒ t′ ∼ t,
t ∼ t,

t′ = merger(matchr(t, Ir)) ⇒ merger(matchr(t, Ir ∪ {t′})) = t′,
if exists: merger(I1 ∪ I2) = merger(merger(I1) ∪merger(I2))

(5.1)

hold (a sort of idempotency and associativity). The properties reduce the com-

plexity of computing RER(Ir), guarantee that RER(Ir) is finite, and the con-

struction does not depend on the order of operations. In practice most of the

useful functions can be formulated to meet these criteria.

Strong Merge Domination

Merge domination is a useful construct for reducing the size of RER(I), while

retaining all the information in RER(I). Yet, ICAR properties of pairwise

functions are sometimes too strict in practice. Consider the next example: a

match function of identities uses conditions based on a tax number equality sub-

condition and a combined sub-condition of birth name, current name and birth

date attributes. We would like to implement a merge function that collects the

more accurate birth date, the longest name and one of the tax numbers if more

tax numbers are present. If we collect and merge matching tuples of a given

record, the merged tuple can be a new one that does not match the original one:

we overwrite the matching attributes. We cannot express the semantics of the

example with ICAR match and merge functions.

We define a new domination relation called strong merge domination that

assumes only the properties of (5.1). The goal is to retain source records con-

taining information needed to find merged records. Strong merge domination

defines a partial ordering of a given instance I and for tuples t1 and t2 in I: t2 is

strong merge dominated by t1 if

t1 ∼ t2 and merger(matchr(t1, I \ {t2})) = t1.

Strong merge domination enables dropping source records that are similar to the

merged record (but not all source records).

5.3.3 Record Partitioning Model
Next we re-define the ER model to a more practical, record-set based version.

The starting point is that entities of the real world are typically hidden and only

indirect observations are recorded in a database. The task is basically not to
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Figure 5.2: Example of records belonging to the same entity

merge, but to group these observations, records together. This intuition is for-

malized as follows.

Let a set of records be R = {r1, r2, ...rm}, where each rj is described by its

k attribute values arj1, . . . , arjk such as ID, name, address etc. Some attribute

values may be missing, e.g. we may not know the e-mail address of customer j,

that we denote by arj� = ∅.
The goal is to partition records according to the entities they belong: let

E = {e1, e2, ...en} be a set of entities, each ei consisting of a subset of records

ei ⊆ R such that the union of the entities covers all records, and no record

belongs to more than one entity:

∪n
i=1ei = R

r ∈ ei ∧ r /∈ ej ⇒ i = j.

To give an example, consider records and attributes in a client database stat-

ing that “the name of the client is Mary Doe”. An example using person records

is depicted in Figure 5.2, with Mary Doe already a customer before her marriage

when her name changes to Mary Smith. The first two records have identical ID,

representing a customer with name Mary Smith and maiden name Mary Doe.

The remaining two records are variants of the name and maiden name, respec-

tively. Both of her names will appear in one record as name and maiden name

but duplicates for both versions may appear in the data.

An entity can have more than one attribute values a1, a2, . . . ai of the same

type, for example multiple names may exist for a real-world client. We represent

such an entity e by a set of records e = {r1, r2, . . . ri} such that there are records

for each value, ar1� = a1, ar2� = a2, . . . ari� = ai.

Use of merged, representative records as entities is a common practice. Merged

records can be however misleading and hard to construct, therefore we omit use

of representative merged records in this model. Deciding matches is sometimes
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impossible without referring to all the feature values, with only a representa-

tive value. We think that ER models representing an entity with record sets are

favorable and more practical in common scenarios.

Let an entity match relation be e ∼ e′. For such a relation, let the entity
resolution of an entity set E be another set of entities ER(E), where

∀e1, e2 ∈ E, e1 ∼ e2 ⇒ ∃ e′ ∈ ER(E) : e1 ⊆ e′ ∧ e2 ⊆ e′,

e ∈ E ⇒ ∃ e′ ∈ ER(E) : e ⊆ e′.

Thus, the entity resolution is a refined partitioning of the original entity record

sets where no more separate but matching entities can be found.

5.3.4 Matching and Indexability
Match is a relation between entities depending on the application. For example,

we may require attribute value identity, but the definition may involve distance

functions over the attribute space as well.

In case of the generic ER model (Section 5.3.1) we match on record pairs,

since entities are represented by a single record. In case of the relational generic

ER (Section 5.3.2) the match is defined between a record and a record set, where

the semantics may be reduced to record-pair matches on record pairs. In case of

the partitioning model (Section 5.3.3) multiple records are put together forming

entities, therefore we have to define matchings between record-sets.

Next we define and study some efficient match function classes.

Attribute-based Matching

The simplest way to define entity matching is tracing it back to attribute values:

Two entities match, i.e. e1 ∼ e2, if a matching attribute value is found in their

records, a1 ∼ a2. Formally, for the more general partitioning model, e1 and e2
are matched if there exists r1 ∈ e1 and r2 ∈ e2 and � with ar1� ∼ ar2�. For

the generic models of Section 5.3.1 and 5.3.1 attribute-based matching becomes

simpler, as entities are records.

We formulate a practical requirement for attribute matchings, called attribute
indexability: A given attribute match relation implements attribute indexability,

if attribute values matching to a given a can be enumerated and represented by

a single value or a set of values.

Standard indexing methods including hashing or B-trees can be used when

we represent attributes with a single value. In the case of multiple values, we

may handle multiple representative values in the same way as we normally

handle multiple attribute values. Examples of indexing methods working this
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way include n-grams or fingerprints of shingles [Brod 97], or multidimensional

search structures such as R or KD-trees. An exhaustive list of such possibilities

can for example be found in [Chri 09a, Table 9].

The requirement of entity match based on indexable attribute matching may

seem overly restrictive at the first glance. However, in most of the previous

work [Mong 97, Dong 05, Hern 98] (including R-swoosh [Benj 09], our starting

point algorithm) an exact match function is assumed, satisfying the indexability

requirement. Next we list alternatives from related results and show how they in

fact reduce to our simple settings. Then we will primarily describe algorithms

with attribute equality as a match function and elaborate on how more complex

match functions can be implemented and whether the given algorithm imposes

additional constraints.

A potential limitation is that our match function, by strict definition, does

not allow fuzzy matching by confidence levels. We may however reach beyond

this limitation by shifting the goal of our algorithms towards efficient candidate
generation. We may rephrase our output as an efficient way to distribute the

work of sophisticated match functions and identify potential matches in another,

simpler round. Also, we may easily accommodate complex match criteria or

even use our solutions to distribute machine learning.

Another limitation is that complex similarity of the values of a single at-

tribute cannot be expressed. We argue that, since pairwise comparison of all

attribute values is computationally infeasible, ER can efficiently solved only in

the case when similarity indexes can be built for all attributes. This require-

ment gives no additional restriction if we use similarity search indexes. When

using similarity-based or probabilistic features and match conditions, the in-

dexes provide entities (records or sets of records) with similar attribute values

beyond a given similarity threshold. Document Q-gram and TF-IDF indexes,

min-hash fingerprint [Brod 97] for example have multiple efficient standalone

implementations, for distributed environments as well. Similarity-based indexes

as described for example in [Chri 09b] are also useful in this case, and are ex-

haustively investigated topics.

The constraint of indexability above is somewhat orthogonal to the ICAR

properties (Section 5.3.1), introduced in [Benj 09]. ICAR is introduced for the

same purpose as our indexing requirements, by noting that G-Swoosh, the most

general ER algorithm, is inefficient. For a non-ICAR problem we will merge

more than allowed and require the split operation as post-processing. Requiring

ICAR may also help in somewhat limiting the size of the components that we

create by merges.
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Feature-based Matching and Indexes

Entity matching can also be defined in a more general way, forming features

based on attributes.

In [Benj 09] features are a set of attributes used to decide matchings, used

each feature independently. This concept is applicable for the generic models

of Section 5.3.1 and Section 5.3.2. Next we define features for the record par-

titioning model with practical index classes. Feature-based matching and these

feature and index classes will be used when we develop efficient indexing algo-

rithms.

Let features be a set of functions F = {f1, f2, ...fm}, each fi mapping enti-

ties to arbitrary set of values. Entities e1 and e2 match (e1 ∼ e2), if a matching

feature fi is found, denoted by fi(e1) ∼ fi(e2).
The notion of two entities matching along feature fi is defined as a function

of the two attribute subsets fi(e1) and fi(e2), depending on the application. For

example, we may require fi(e1) ∩ fi(e2) 
= ∅ but the definition may involve

distance functions over the attribute space as well.

Next we define a special set of features, with features preserving similarities

after merges. Let a feature f be a stable feature for an entity set E, if

∀e1, e2 ∈ E with f(e1) ∼ f(e2)⇒ f(e1) ∼ f(e1 ∪ e2) and f(e2) ∼ f(e1 ∪ e2).

In practice features defined by domain experts are usually stable.

Use of feature indexes can speed up the resolution process when identifying

entity matchings. A feature index provides candidates for a given entity: if there

exists an entity with matching feature, the feature index must include it in the

result.

For feature f and entity e ∈ E, let the feature index indexf (e) be the subset

of entities E such that

if f(e1) ∼ f(e2), then e2 ∈ indexf (e1) and e1 ∈ indexf (e2).

Given two entities e1 and e2 and features f1, f2, . . . , fm, the match condition

is

f1(e1) ∼ f1(e2) ∨ f2(e1) ∼ f2(e2) ∨ ... ∨ fm(e1) ∼ fm(e2).

It is therefore unlikely that a particular feature index can be used to find all

matching candidates: if not all features are indexed, then possible matches on

that given feature can be missed. The next completeness property formalizes if

a set of feature indexes can be used to find all matching candidates.

A feature index set {indexi | i = 1, ...,m} is a complete index set for fj
(j = 1, ..., n) features and for E entities, if

∀e1, e2 ∈ E, k ∈ [1, n] : fk(e1) ∼ fk(e2)⇒



5.3. ER MODELS AND FORMULATIONS 51

∃l ∈ [1,m] : e2 ∈ indexl(e1) ∧ e1 ∈ indexl(e2).

The completeness property for given entities states that there exists at least

one feature index candidate for all possible match. A trivial complete index

set contains only one index, returning the whole E as candidates. The relation

between indexes and features is not necessarily one-to-one: common indexes

may be used for more than one features.

5.3.5 Satisfactory Records
In practice there may exist records that do not contain enough information to

meet the match criteria. We can determine whether none of the attributes allows

matching.

For example suppose that we use the birth name, birth date and tax number

attributes of a client for matching: two records match, if they share the tax num-

ber or both the birth name and date. In this case if both birth date and tax number

are unknown, then it is needless to search matching tuples.

We can define satisfactory for the relational ER model (Section 5.3.2) as

an Rr → {true, false} function that, if t ∈ Rr, satisfies

satisfactory(t) =

{
true if ∃ t′ ∈ Rr : t ∼ t′,
false else.

For the partitioning ER model (Section 5.3.3) with features a similar function

can be defined for entities (sets of records). Let satisfactoryf (e) be a true or

false valued function for entities e ∈ E and features f such that

satisfactoryf (e) = false if 
 ∃ e′ ∈ E : f(e) ∼ f(e′).

We can use the same domain knowledge as for the match functions to con-

struct satisfactory.

5.3.6 Probabilistic Model
Entity resolution deals with hidden and uncertain real world entities. We shortly

introduce a probabilistic model that can be used more or less orthogonally to the

algorithmic results described later.

We cannot observe our entities directly, but their properties are recorded in

a database. These state that “the name of the given client is John Doe” or “the

client was born on January 1., 1977”. Records are considered as events of ob-

serving some entity properties. They are implicite and uncertain: deviations,

changes, heterogeneous formats may occur. Domain experts, as a matter of fact,
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work with hidden confidences, probabilities when constructing exact match con-

ditions. The rules they construct describe proper entity matching in most cases
in the given database – they indicate highly probable matching.

A simple way of handling matching confidences is to use thresholds. We

keep in mind that we deal with hidden confidences when constructing merge

and match functions, and construct them so that records match, if the probability

of belonging to the same entity is greater than a given threshold. Preliminary

statistics and distributions can help determining thresholds when using record

similarities or other fuzzy matching techniques.

Another way of handling probabilities is to use a model incorporating them

directly. The influential early work of [Fell 69] also used a probabilistic model.

There a linkage rule divides record pairs into three sets: matching pairs, possible

matching pairs (undecided) and non-matching pairs. Other models are built with

confidences on records (see [Mene 06] for example).

Let E = {e1, e2, ...en} be the set used to represent hidden real world entities.

Let R = {r1, r2, ...rm} be a set of records, where rj = {a1, a2, ...an} is a set of

attributes. Let a probabilistic entity resolution of an R set of records be

(1) PER(R) = {(r, e, p) | r ∈ R, e ∈ E, p ∈ [0, 1]},
(2) ∀(r1, e1, p1), (r2, e2, p2) ∈ PER(R) : r1 = r2 ∧ e1 = e2 ⇒ p1 = p2,

(3) ∀r ∈ R : ∃e ∈ E, p ∈ [0, 1] so that (r, e, p) ∈ PER(R).

PER(R) is similar to the ER(E) of Section 5.3.3. The triples can be interpreted

as statements about the relation between records and entities. In Eq. (1) we

simply state that for (r, e, p), the “record r belongs to entity e with the probability

of p”. According to (2), we cannot have two different probability values for a

given record-entity pair. In (3) we state that a record is assigned to at least one

entity.

Semantics and Estimation

Without semantics, PER(R) is only a syntactical construct for assigning records

to one or more entities – labeling the records with entities and probability values.

Next we add useful meaning to the constructs.

We think of records as events, as observations of an entity or of properties of

an entity. With the universe of these events, let P (ei|rj) be the conditional prob-

ability of encountering the hidden entity ei when observing record rj . Similarly,

P (ei|ak) can be used when observing an ak attribute value.

A Bayesian interpretation that we intend to use for (rj, ei, pk) is the follow-

ing. Let pk = P (ei|rj) be the conditional probability of the belief that a hidden

entity ei is present when we observe a record rj . P (ei|rj) is not known, but
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can be estimated with prior probabilities when a new record becomes known.

According to the Bayes theorem,

P (ei|rj) = P (rj|ei)P (ei)

P (rj)

In the Bayes formula, an approximate P (ei) can be computed: Given a

closed entity set, what are the chances of choosing ei? For example, if we have

1 million clients and assume uniform distribution, then we inspect a given client

with probability 1/106.
P (rj) is the probability of observing a given record, and can be estimated

based on the occurrences of attribute values in our database, or in an external

database. For example, “John Smith” is a common name with higher observation

probability than “Csaba Sidló”. Most ER models do not incorporate this kind of

information, and rely only on similarities.

P (rj|ei) can be estimated using similarities: what are the chances of observ-

ing rj record in connection with ei entity? For example, when for a client called

“John Doe”, what is the probability of recording “John Dow”? The estimation is

not straightforward, as real properties of a given entity are unknown. However,

if some records of the given entity are already available, then the properties of

the real entity can be estimated from them.

We can use the Bayes theorem on attributes too to handle attributes as inde-

pendent evidences:

P (ei|ak) = P (ak|ei)P (ei)

P (ak)
.

Bayesian Inference

The model and interpretation above may be used to represent the relation be-

tween records and real-world entities. We give a brief example how to to build a

good quality PER(R), how to label records with entities and probabilities.

We apply Bayesian inference, and process every record as a new evidence.

For every entity, we calculate the probability of belonging to that entity, and

then we assign the record to the most probable one. More formally, for every r
record and then for every possible i values, we test the hypothesis that r belongs

to ei. With probabilities above a given threshold we add the record to the given

entities, creating a new triple. We add a new e if no matching entities found.

Finally if we added a record to an entity, we re-calculate the probabilities of

the (r, e, p) triples affected. We may also recalculate probabilities when domain

experts give new, external evidences.

With careful probability estimations and threshold tuning a good model of

real-world entities can be built. Domain experts can interpret and review this
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model. We believe that the formalism above is practical and can adopt to the ER

scenarios we met and to the algorithms we construct later. As a future work we

will apply the model to our algorithms.
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5.4 Algorithms for Relational Databases
In practice, input data usually resides in relational databases and can grow to

huge volumes. Yet, typical solutions described in the literature employ stan-

dalone memory resident algorithms. Next we utilize facilities of standard, un-

modified relational database management systems (RDBMS) to enhance the ef-

ficiency and scalability of ER algorithms.

The main focus when dealing with ER for relational databases is to develop

efficient, industry scale attribute-based methods. We build on the relational data

model of Section 5.3.2, aiming to fit the RDBMS environment. Since standard

relational databases already offer general, well-tuned algorithms on relations for

batch processing, the following algorithms will use tables as main data struc-

tures with relational operations expressed as SQL statements. Our methods will

hence suit a uniform architecture with efficient storage, memory management,

caching, searching and indexing facilities. Our algorithms are tightly coupled to

the database (see Section 3.1), a beneficial property in practice since input data

usually resides in relational databases.

Existing algorithms for GER are in-memory algorithms and keep the whole

closure set in memory, therefore the scalability of these methods is limited. Al-

though the algorithms are optimal in that the number of required match oper-

ations is kept minimal, pairwise search for matching pairs would require more

efficient data structures than those in pre-existing implementations in order to

scale to practical applications.

We demonstrate the advantage of our approach when huge amounts of data

has to be handled. We use insurance client data (see Section 5.1.1). In our

motivating scenario an experimental client data mart is built, integrating several

data sources. Data integration begins with cleaning and loading data into a uni-

fied schema by massive ETL tools. Then a slowly-changing, versioned client

dimension is built up that includes all available attributes, with additional fact

tables providing relations between clients and other dimensions such as contract

or postal address. Despite the exhaustive pre-processing, several duplicates re-

mained due to different attribute sets in the source systems, different data record-

ing and storage policies as well as variation of the attributes over time.

The AEGON data mart used in our experiments has tens of millions of source

records, which makes the use of in-memory algorithms difficult. However, the

Generic ER approaches of Section 5.3.1 and Section 5.3.2 seem adequate for

the requirements. Domain experts define exact rules on client attributes for con-

structing match and merge functions of client records. Merging of records was

expected in this case: a simple record had to be produced containing as much

information of the underlying matching records as possible. Finally, an auto-

mated ER process with exact results has to be produced that can be used for data
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Algorithm 2 Dominated record elimination

input: I ′ closure instance

output: I ′ input instance without dominated records

1: for all t, t′ ∈ I ′, t 
= t′ do
2: if t 
 t′ then
3: remove t from I ′

mart updates. We believe that similar tasks and requirements commonly appear

in practice and require the revision of existing GER formulations.

5.4.1 Swoosh Variations
Pre-existing G-Swoosh and R-Swoosh ([Benj 09]) are optimal algorithms to

compute ER(I). G-Swoosh solves the general ER problem, while R-Swoosh

assumes ICAR properties and merge domination. Both algorithms are optimal

in sense of the required pairwise match operations. First we adapt these algo-

rithms to the relational environment.

Swoosh algorithms maintain two sets of records, I and I ′. I is the set of

records to be processed, I ′ is the set of records forming the closure of the pro-

cessed elements. G-Swoosh gets an element from I , matches against all ele-

ments of I ′, and adds the merged element to I along with all matching records

from I ′. If there is no matching, then the selected element is moved to I ′. With

no assumptions on domination, G-Swoosh can eliminate dominated records only

after producing the whole closure. This can be done using a simple algorithm

(Algorithm 2).

R-Swoosh (Algorithm 3) enhances the process by dropping source tuples

right after merging, making dominated record elimination unnecessary at the

end. Eliminating dominated records in every round keeps the size of I ′ smaller

too, reducing the costs. F-Swoosh ([Benj 09]) is the most efficient Swoosh al-

gorithm. F-Swoosh is extension of R-Swoosh, defining features on attributes to

decide matches, and maintaining index-like structures to speed up searching for

matching pairs.

We can implement Swoosh algorithms in the relational generic ER model

by using tables for I and I ′. Since data modification languages and APIs – built

around standard SQL – do not enable implementing general algorithms, we have

to use an embedding language to implement the logic of the algorithm. The

implementation itself can be a standalone unit implemented with any program-

ming language able to connect to relational databases, or it can be an embedded

stored procedure implemented with a supported programming language. How-
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Algorithm 3 R-Swoosh

input: I
output: I ′ = ER(I)

1: I ′ ← ∅
2: while I 
= ∅ do
3: t← an element from I
4: remove t from I
5: buddy ← null
6: for all t′ ∈ I ′ do
7: if t ∼ t′ then
8: buddy ← t′

9: exit loop
10: if buddy = null then
11: add t to I ′

12: else
13: merged← 〈t, buddy〉
14: add merged to I
15: remove buddy from I ′

ever, the space- and time-consuming operations can be formalized using SQL,

which makes the role of the embedding language insignificant.

Pairwise match functions on relations can be expressed as filtering operations

in the where clause of SQL queries. Next we will give examples on client data.

We are dealing with identities, with match functions such as “two identities cover

the same person, if they have the same tax number or social security number, or

if the birth date and birth name attributes are both equal”. For example we can

find matching pairs in R-Swoosh in the following way (supposing that t is an

arbitrary record):

select I ′.* from I ′

where ( t.birth name id = I ′.birth name id
and t.birth date = I ′.birth date )

or t.tax number = I ′.tax number
or t.ss number = I ′.ss number

Merging two records can be expressed using functions and operators applied

to the result set, in the select list of a query. The next example depicts a

merge of t and t′, using functions of the SQL-92 [ISO 92] specification:

select coalesce(t.birth date, t′.birth date) as birth date,
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( case when length(t.name) ≥ length(t′.name)
then t.name else t′.name end ) as name,

...

Regulations of our current SQL environment give a new set of constraints

on expressing match and merge functions, as SQL is not a Turing-complete lan-

guage (although using UDFs adds some more versatility). These new constraints

are orthogonal to the ICAR properties: we can easily implement functions vio-

lating ICAR. As a simple example, the SQL merge expression “t.premium +
t′.premium as premium” violates ICAR.

SQL implementation of matchr, the relational match function is parallel

with pairwise match functions. When implementing merger functions we would

like to formalize the semantics in a single select clause. We use grouping

selects to collect matching records, and aggregate functions to implement se-

mantics. For example a simple merge function that chooses an arbitrary not-null

value can be formalized as follows:

select max(birth date) as birth date,
max(birth name) as birth name,
...

Aggregate functions of our preferred RDBMS can limit the choice of possi-

ble set-style merge functions. Windowing analytic aggregate functions of Oracle

or other interesting extensions of SQL-92 aggregate functions in other RDBMSs

may give us sufficient versatility. We can express complex merge functions such

as “the longest name’s id” or “the passport id that occurs most often”. k

5.4.2 DB-GER and Variations
DB-G-GER algorithm (Algorithm 4) computes RER(Ir) when all the properties

of (5.1) without merge domination hold.

DB-G-GER iterates through the input relational instance I , and maintains

an instance I ′ with the previously processed and merged elements. In every

iteration step I ′ is the resolved entity set of the previously processed elements.

The main step is line 4, which can be expressed as a single SQL statement using

aggregate functions, as the next example shows:

select count (*), max(birth name), max(birth date), ...
from I ′

where ( t.birth name id = I ′.birth name id
and t.birth date = I ′.birth date )

or t.tax number = I ′.tax number
or t.ss number = I ′.ss number
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Algorithm 4 DB-G-GER

input: I
output: I ′ = RER(I)

1: I ′ ← ∅
2: for all t ∈ I do
3: add t to I ′

4: merged← merger(matchr(t, I
′))

5: if merged 
= t then
6: add merged to I ′

7: remove dominated elements from I ′

Since t is already in I ′, we merge at least one tuple. If the merge query groups

only one tuple together, we can be sure (in line 5) that the merged element is the

same as t: this follows by the properties of (5.1).

We do not presume merge domination, therefore we have to eliminate dom-

inated records in a separate step (line 9). We can build up a batched SQL state-

ment to select dominated records in the following fashion:

select i2.* from I ′ as i1, I ′ as i2 or
where i1.rowid 
= i2.rowid and

-- matching:
(i1.tax number = i2.tax number or ...) and
-- domination:
((case when i1.birth date is null then 0 else 1 end)
+ ...) <
((case when i2.birth date is null then 0 else 1 end)
+ ...)

Here we formalized a simple domination relation: a tuple dominates another

matching tuple if it contains more non-null attributes.

The next algorithm, DB-GER (Algorithm 5) presumes merge domination. It

eliminates dominated records right after merging, therefore shrinks I ′ in every

round. Line 6 can be implemented on relations as follows:

delete from I ′ where i1.tax number = i2.tax number or ...

Both DB-G-GER and DB-GER produce RER(Ir), and can be implemented

using efficient batched database operations.

We can profit from using strong merge domination, we can drop unnecessary

tuples right after merging. Not all source records can be dropped, but the ones

that match the merged record. The necessary modification affects only one row
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Algorithm 5 DB-GER

input: I
output: I ′ = RER(I)

1: I ′ ← ∅
2: for all t ∈ I do
3: add t to I ′

4: merged← merger(matchr(t, I
′))

5: if merged 
= t then
6: remove matchr(t, I

′) from I ′

7: add merged to I ′

of algorithm DB-GER (Algorithm 5). If we use properties of (5.1) and strong

merge domination, line 6 changes to “remove matchr(merged, I ′) from I ′”.

Database Indexes

An advantage of using set-based match functions is that we can efficiently search
for all matching tuples using indexes instead of going through all elements of a

set and making pairwise decisions. In case of relational databases, when DB-

GER merges matching records in line 4, the indexes suggest records that satisfy

at least one part of the match criteria. If table I ′ is sparse enough, index-based

table accesses can be a lot less costly than a full table scans. The time cost of

searching in a regular B-tree index depends on the depth of the search tree, which

grows much more slowly than the number of elements (and handled usually as a

small constant).

The idea of shaping features on attributes and making feature-level decisions

in [Benj 09] has the same motivation as indexing. As described in Section 5.3.4,

a feature is a subset of attributes, and the match criteria is a combination of

feature-based conditions. Two records match if at least one feature-pair indicates

matching. F-Swoosh, the feature-level ER algorithm in [Benj 09] stores positive

feature-comparisons in a linear space hash table. Another set is also maintained

for storing features that gave only negative matches before. These structures can

also be interpreted as indexes.

Available types of indexes are RDBMS-dependent. Besides the basic B-tree

variants we may use bitmap, spatial (GIS) and multimedia indexes or indexes

for text similarity search. Multidimensional indexes such as general R-trees can

also be useful.

We may expect major performance improvement with adequate indexing.

However, greedy indexing can harm performance if index updates cost more
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than the search time improvement. As a basic index selection strategy we can

build an index for the feature with the least selectivity. We will examine some

observations related to indexing in Section 5.4.3.

Database-independent algorithms with efficient indexing are discussed in

Section 5.5.

Pre-filtering

For records not containing enough information for matching we can define the

matchable of Section 5.3.5; it is needless to search matching tuples in I ′ for

them. We can sort out unsatisfactory tuples from the input by extending DB-

GER with an extra condition in Line 2 on matchable.

Uncertainty

DB-GER algorithms produce exact results, but they also enable using fuzzy or

similarity-based match conditions (see 5.3.4 for models). We give an example

how similarity-based matching with confidence threshold can be implemented.

Common RDBMSs provide us useful attribute types and indexes supporting

probability feature matches. For example, in PostgreSQL we can build GIS in-

dexes on geospatial locations. We can then efficiently evaluate match conditions

such as “two buildings can be considered the same if the distance of their central

point are in a range of 10 meters”. Supposing that b1 and b2 are such location

attributes, the match condition can be expressed as

b1 && Expand(b2, 10) and distance sphere(b1, b2) < 10.

Here the && operator pre-filters the result based on an efficient GIS index.

Other important examples of uncertain conditions with thresholds are string

similarity searches such as matching very similar names. Most of the RDMBSs

support string similarity searches with indexes.

Approximate results in the insurance scenario can also be used to identify

households or company hierarchies. We would like to find entities not explicitly

present in the source data, but GER algorithms can still be applied easily.

Incremental Processing

The agglomerative style of R-Swoosh and DB-GER algorithms fits to the regular

data warehouse refreshment policies. We can build an agglomerative delta-load

process where only new records are processed in every refreshment cycle. I ′

always contains RER(I) of the preceding records. This way we do not have
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to face huge data volumes in every refreshment round. As a special case, on-

line, event-driven refresh is also solvable: it is possible to implement real-time

updates of resolved entity sets.

Mapping Source and Resolved Records

We would often like to store all input records and define the mapping between

source and resolved records. For example after preprocessing we may store all

source client records without merging as client versions. We build up RER(I)
to compute exact aggregations, or to stream back resolved information to ERP

systems.

The RER(I) set contains exactly one matching record for an original source

record in case of ICAR and merge domination: we select the single matching

record from RER(I) for the original source record. In case of strong merge

domination we can have more matching tuples in RER(I) for a given tuple. To

find the dominant one we have to use all the information, we have to merge all

matching tuples. The merged tuple is guaranteed to be in RER(I).

5.4.3 Experiments
All DB-GER experiments were performed on a commodity PC with Intel Celeron

3.2 GHz CPU, 1 GB RAM and a 7200 RPM disk without RAID. We used Oracle

10g with data warehousing configuration set up to use 400 MB SGA memory.

The algorithms were implemented using PL/SQL, using only regular SQL

functionality and regular B-tree indexes. No physical level or other special op-

timization was done. We implemented F-Swoosh of [Benj 09], using Java 1.5,

with hash set and hash table data structures from the standard library. F-Swoosh

measurements were performed on a separate but identical hardware with Win-

dows XP. Input data was not stored locally: input records were coming from the

separate Oracle database, and results were written back. The execution times do

not contain the cost of initial and final data transfer.

Experimental real world dataset was provided by AEGON Hungary, con-

taining approximately 12 million distinct identity records of clients. Identities

contain common attributes such as name, birth name, mother’s name, sex, birth

date and place, external identifiers such as social security number or tax number.

Attributes were cleaned and unified using the ETL facilities of an experimental

insurance client data mart. Preliminary data cleansing included standardization

and correction of attribute values, using external knowledge too, such as first

name databases. We have chosen uniform match and merge functions verified

by domain experts. We used the properties of (5.1) and strong merge domina-

tion. Yet, on our database only a few records conflicted with ICAR.



5.4. ALGORITHMS FOR RELATIONAL DATABASES 63

�

�

�

�

�
�
�
�
�
�
�
�
	


�
�
�
�
�
�


�
	
�
�
�
�

�����

����

���

�

��

	
��

��

��
�
��

��

��
�
��

��

��
�
���

�

� �� ��� ����� ������

�������	
���
�

������

� �� ��� ����� ������

�������	
���
�

��
���

Figure 5.3: Scalability of the algorithms (with linear and log time scale)

We implemented G-Swoosh and R-Swoosh on relations (as DB-G-Swoosh

and DB-R-Swoosh), DB-G-GER and DB-GER. Both DB-G-Swoosh and DB-

G-GER employed a one-round duplicate elimination step. All algorithms used

the same input and output schema. We measured execution times without the

operations required to produce input data. The experiments were averaged from

multiple executions in different orders to overcome caching and other perfor-

mance issues beyond our control.

Figure 5.3 shows execution times of the algorithms against the size of input

data. Naive database implementations of G-Swoosh and R-Swoosh scale poorly,

Java F-Swoosh implementation performed worst. The main cause is that DB-

Swoosh variants search for matching records more efficiently than the original

linear search, and they use batched set-styled operations.

Interestingly, DB-GER and DB-G-GER, DB-G-Swoosh and DB-R-Swoosh

perform similar. This means that the role of the domination is not significant.

When using instant dominated record removal, the cost of the required delete

operations balances the cost of handling a larger I ′ when eliminating dominated

records at the end. The aggregated costs of duplicate elimination is depicted in

Figure 5.4.

We also examined the impact of match selectivity on execution times. We

fixed the input size at 50 thousand and measured execution times against merges.

We can run experiments with different match functions, but different functions

have different evaluation times. Instead, we change the data set, and the match

function stays the same: selectivity depends on the match function and both on

the data set. With heuristics knowing how the match function works, we can
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Figure 5.4: Percent of execution time needed to eliminate dominated records

select subsets containing more or less matching pairs. For example, we can

increase the number of merges by selecting identities with birth dates of a given

year. Figure 5.5 shows the execution times against the count of merged records

(the count of distinct records engaged in a merge operation), and against the

count of eliminated records (the difference between input and output size). DB-

G-GER algorithm performs better for the interval under survey, caused by the

high deletion costs of dominated records in every round of DB-GER.

We measured execution times of DB-GER with different indexing strategies

(Figure 5.6). Without indexes we do not have to maintain additional structures,

but we have to perform full-table scans. The other two variants used a given

set of standard indexes over the features, selected and defined by hand. The

‘fullindex’ version was ordered to always use indexes, a set of indexes. The ‘op-

timizer’ version relies on the query optimizer to select an appropriate plan, using

indexes of the same set if necessary. Since no stress was laid on the selection

of indexes to build, the two versions can only differ in query performance, not

when updating the tables

The overall space cost of the indexes (note that some feature indexes could

be omitted) were about 1.9 - 2.0 times the size of the table, with a composite

index being the largest. This is a significant space cost, yet maintaining these

indexes may be a good trade-off. The version without indexes outperforms DB-

Swoosh and F-Swoosh variations because of the new set-styled batched opera-

tions. There is no significant difference between the ’fullindex’ and the ’opti-

mizer’ versions.
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Figure 5.5: Impact of match selectivity
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Figure 5.6: Performance of DB-GER with different indexing strategies
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5.5 Algorithms with Efficient Indexing

The following algorithms all solve the ER problem of the record-partitioning

model of Section 5.3.3; they differ how they build and use indexes. A naive so-

lution would be to iterate through the input entity set and find matching pairs, as

long as such pair exists. Instead of comparing all pairs, we reduce search time

by indexing our data. However, at the same time indexes increase space com-

plexity and add additional maintenance costs. Indexing solutions are therefore

not necessary faster than non-indexing variants: we investigate the efficiency of

different index realizations later, and show that index use pays off.

In what follows, we consider ER algorithms solving the problem formulated

in Section 5.3.3, where we refine record partitions. The input of the algorithms

is therefore a set of records as entities, with each record corresponding to its

unique own entity; as the output, some records will be merged to form a smaller

size entity set E ′. The algorithms may also work with partially merged records

as input, as long as only matching records are merged. We assume feature-based

matching and use the concepts of feature indexes and complete index sets.

However we can use indexing capabilities of database management systems,

as in Section 5.4, these algorithms are loosely-coupled and aimed to build stand-

alone applications.

5.5.1 Basic Feature Indexing

IndexER (Algorithm 6) is our basic indexing solution to the ER problem where

feature indexes are handled as search data structures. IndexER maintains a result

set E ′ containing no unexplored matches and extends this set by entities from the

input. Feature indexes contain only entities of E ′, therefore have to be updated

when E ′ changes.

E ′ always contains the resolution of the processed entities, and while E di-

minishes, IndexER solves the ER(E) problem. Efficiency of the algorithm de-

pends both on the indexing tools used, and on properties of the input data set

(eg. how many matching records it contains), as well as on the match logic (how

many features there are, are they similarity-based etc.). We explore some aspects

of performance later.

Only satisfactory entities need to be indexed, containing enough information

to match. A satisfactory function can be defined based on heuristics of the given

feature and match logic (according to Section 5.3.5, for example by filtering

incomplete or empty attribute values. When using a satisfactory function, the

index lookup and update (Line 9 and 13) become conditional, dealing only with

satisfactoryf (e) features.
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Algorithm 6 Index-ER

input: Entity set E such that each record corresponds to a unique entity.

output: E ′ = ER(E)

1: E ′ ← ∅
2: merged← null
3: while E 
= ∅ ∨merged 
= null do
4: if merged 
= null then
5: e← merged
6: else
7: e← an element from E
8: remove e from E
9: candidates← ∪f indexf (e)

10: merged← null
11: if candidates = ∅ then
12: E ′ ← E ′ ∪ {e}
13: for all indexes: add e to indexf

14: else
15: for all c ∈ candidates do
16: if c ∼ e then
17: merged← merged ∪ {c} ∪ {e}
18: remove c from E ′

19: remove c from all indexf
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Algorithm 7 Pre-Index-ER

input: Entity set E such that each record corresponds to a unique entity.

output: E ′ = ER(E)

1: E ′ ← ∅
2: merged← null
3: prepare all indexf with E
4: while E 
= ∅ or merged 
= null do
5: if merged 
= null then
6: e← merged
7: else
8: e← an element from E
9: remove e from E

10: candidates ← ∪
f :satisfactory

f
(e)
{e′ ∈ E ′ : e′ originates from an

indexf (e) entity }
11: merged← null
12: if candidates = ∅ then
13: E ′ ← E ′ ∪ {e}
14: else
15: for all c ∈ candidates do
16: if c ∼ e then
17: merged← merged ∪ {c} ∪ {e}
18: remove c from E ′

5.5.2 Feature Pre-indexing

Index updates are usually expensive, next we try to avoid updating the indexes.

We can observe that records do not change during the resolution process: Al-

gorithms only re-partition records when merging entities. If we build feature

indexes in a batch for all records before the resolution process, we can save

index maintenance costs.

We can build the index for a stable feature preliminary. At the beginning each

entity consists of a single record, and feature indexes refer to that initial entity.

Additional data structures are needed to track entity merges, and to record if an

entity belongs to the resolved set. Pre-Index-ER (Algorithm 7) implements this

indexing scheme. We also assume the presence of a satisfactory function, used

as a pre-filtering condition. While Index-ER (Algorithm 6) feature indexes grow

with the number of processed records, Pre-Index-ER indexes always contain all

records.
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Algorithm 8 Block-Index-ER

input: Entity set E such that each record corresponds to a unique entity.

output: E ′ = ER(E)

1: E ′ ← ∅
2: for all f feature do
3: Bf ← partition E ′ according to f
4: for all Bi

f partition in Bf do
5: update E ′ with ER(Bi

f )

5.5.3 Feature-based Blocking

Blocking is a proven method to speed up ER algorithms. Blocking divide records

into smaller subsets based on expert heuristics including ZIP code or first letter

of family names. ER is then performed on the smaller subsets more easily, es-

pecially when they fit in the memory.

With blocking processing speeds up, but potential matching pairs between

different blocks may be missed. One solution to the problem of missed pairs

is to use multiple blocking criteria, and combine the results. Another potential

solution is iterative blocking [Whan 09], where merged entities are delegated to

other affected blocks.

Block-Index-ER (Algorithm 8) implements a new partitioning scheme dif-

ferent from both multiple and iterative blocking. We iterate through all features,

partition the input set in every round, and solve the sub-problem with an arbitrary

ER algorithm, e.g. Index-ER.

In Line 3 a feature-based partitioning is performed. We form up blocks ac-

cording to feature boundaries. Let Bi
f (i = 1..n) be a feature-based blocking of

an E entity set with f feature, if

∀i ∈ [1..n] : e ∈ Bi
f ⇒
 ∃e′ ∈ Bj

f , j ∈ [1..n], j 
= i : f(e) ∼ f(e′),

∪i∈[1..n]Bi
f = E

Creating feature-based blocking for a given feature and memory limit is not

always a straightforward task. However, we do not deal with this sub-problem

in the thesis, and suppose that the complexity of constructing the feature-based

blocking is negligible.

In Line 5 the algorithm applies all entity merges to E ′. If an entity does

not exists in E ′, it is appended. The algorithm iterates through all blocks of a

feature-based blocking and applies every merge. Matching entities always fall
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into a common block for some of the stable features, therefore at the end Block-

Index-ER produces ER(E). We have to process all partitions for all features,

but the number of these partitions is relatively small for real-world problems.

5.5.4 Index Realizations

Efficiency of Index-ER algorithms depends on properties of the input entity set,

the features used and the indexing methods and tools chosen. Next we briefly

examine a few alternatives.

The most useful and simplest algorithm variations handle features as at-

tribute value sets, match operators as equality tests. For example, two clients

match if they share a birth date, a birth name and a postal address. Conventional

search structures are applicable in this scenario. B-trees for example are proven

to be optimal and useful general search constructs.

For features based on multiple attributes an index can be built for an arbi-

trary attribute with good selectivity. Eg. for a complicated birth data feature a

birth name B-tree index may be used, if birth name is always known. Another

possibility is to use multidimensional indexes, eg. R-trees. With R-trees we can

use multiple attributes as search key.

Scalability can be improved by relying on external memory indexes that be-

come slower when running out of cache memory, but keep serving the algorithm.

Another possible enhancement is the use of various distributed key-value stores

or indexes.

When using similarity-based or probabilistic features and match conditions,

the indexes provide entities with similar feature value beyond a given similar-

ity threshold. Examples include finding duplicated web pages, using features

based on geographic location and distance, features with name similarities etc.

Similarity-based indexes are useful in this case, and are exhaustively investi-

gated topics. Document Q-gram and TF-IDF indexes for example have multiple

efficient standalone implementations, for distributed environments as well.

5.5.5 Experiments

Experiments were performed on a Linux server containing an AMD 2 GHz

Opteron CPU, 7 GB of main memory and a 7200 RPM disk without RAID.

We used PostgreSQL 8.4 using 1GB memory, Berkeley DB Java Edition (BDB)

4.1 using 500 MB cache, Sun JDK 1.6 with 3 GB maximum heap size. A rel-

atively weak hardware architecture was chosen intentionally: behavior of the

algorithms and indexing schemes become problematic and therefore interesting

when reaching the given constraints (eg. the memory limit).
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Algorithms were implemented using Java, input and output were stored in

PostgreSQL. We note that our solution works also based on various other index-

ing tools not covered in this paper, including Project Voldemort, Kyoto Cabinet,

ScalienDB, etc. We performed repeated executions and averaged the results.

Time needed for input read and output write are not included.

For experiments, a data set of the AEGON Hungary Insurance Ltd. was used,

containing approximately 20 million client records. Records consist of both per-

sonal attributes (names, birth data, tax number, etc.) and company-dependent

identifiers (see Section 5.1.1). According to preliminary estimates and experi-

mental results each client has 1.95 records in average. We used random sam-

pling to obtain smaller subsets. We also used selection heuristics to influence

the count of records per user. For example, selecting all records for the family

name ‘Smith’ instead of random sample will increase the match count.

Match logic provided by experts included simple attribute-equality testing,

e.g. “two entities match, if they have common tax numbers”, and more compli-

cated ones. For example, the birth data feature used 5 attributes, with multiple

attribute-value equality testing.

We used two previously known algorithms for comparison. DB-GER is an

SQL-based ER algorithm for relational databases (see Section 5.4.2 or [Sidl 09]).

Java F-Swoosh is a basic Java in-memory F-Swoosh implementation of [Benj 09],

the same as in Section 5.4.2. Both DB-GER and Java F-Swoosh experiments

were performed with Oracle 10g database. Index-ER-BDB and Pre-Index-ER-

BDB used Berkeley DB B-trees for feature indexes and also to store records.

Pre-Index-ER-Pg used standard PostgreSQL indexes. Block-Index-ER-Pg used

feature-based blocking and in-memory algorithms for feature indexes. Feature

block construction and the update operation with block results is done by Post-

greSQL.

Figure 5.7 plots execution times against input size. Java F-Swoosh showed

poor performance without proper indexing. Performance of Block-Index-ER-Pg

was still inferior: PostgreSQL through JDBC handles batch updates slow on the

whole entity set. In-memory processing and Index-ER variation on blocks costs

negligible time. So Block-Index-ER stays promising, supposing that a better

entity store can be found with faster updates. Interestingly Pre-Index-ER-Pg

also performed poor: feature index lookups were much slower than by BDB.

Both Pre-Index-ER-BDB and Index-ER-BDB outperform previous solutions.

Figure 5.8 shows how the number of records processed changes for a smaller

record set. Index-ER-BDB slows down as the size of the feature indexes in-

crease. With Pre-Index-ER-BDB processing becomes faster as more and more

merges were performed.

The reason why Index-ER-BDB outperforms Pre-Index-ER-BDB variation
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Figure 5.7: Execution times against input size

is depicted in Figure 5.9. At around 3.5 M records, Index-ER-BDB slows down

since at this point, BDB runs out of cache memory. However, Pre-Index-ER-

BDB builds the whole index at the beginning, runs out of cache memory right

away, and runs slow all along.

The additional space cost to store feature indexes depends both on the num-

ber of features and on the distribution of feature values. In our experiments 5

features were used, using diverse attributes with more or less values. Index size

varied from 2 to 3 times the original database size. For PostgreSQL this realized

as around 6.9 GB index size compared to the 2.4 GB full database size.
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Figure 5.8: Processing speed change for 1.1 M records

5.6 Distributed Algorithms
Previously we built efficient algorithms on relational databases and efficient in-

dexing methods, speeding up the entity resolution process. Another possible

way of scalable algorithm construction is distribution. Existing distributed ER

algorithms typically rely on shared memory architectures. Next we develop al-

gorithms for shared-nothing architectures, and demonstrate the strength of our

algorithms with experiments. The following methods are somewhat orthogonal

to the previous results; a good indexing solution can be for example combined

with our distributed algorithms.

We demonstrate that ER can be solved using algorithms with three different

distributed computing paradigms:

• Distributed key-value stores;

• Map-Reduce;

• Bulk Synchronous Parallel.

At first we show simple reductions to communication complexity and data

streaming lower bounds to illustrate the difficulties with a distributed implemen-

tation: If the data records are split among servers, then basically all data must be

transferred.

The naive solution to solve the ER problem is to iterate through the input

entity set and find matching pairs while there are unexplored matchings. Such

algorithms, including G-swoosh and even the improved R-swoosh ([Benj 09]),

run in quadratic time and are hence inefficient for large data sets.
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Figure 5.9: Processing speed change for 7.2 M records

We assume the partitioning model of Section 5.3.3, with the indexable at-

tribute properties. In our distributed algorithms we will either use feature in-

dexes combining several attributes or rely solely on attributes and undo false

merges in the post-processing phase.

Next we describe two critical issues of a parallel implementation that are

normally considered as minor details in the literature since they are naturally

resolved by sequential algorithms. Note that D-swoosh [Benj 07] and the older

version P-swoosh [Kawa 06] as well as the first results in the area [Hern 98]

require shared memory and do not address these problems.

First, using multiple processing nodes, efficient data distribution keeping the

majority of candidate duplicates at the same node does not exists. Stated in

another way, there is no locality sensitive hashing for the minimum distance. For

inputs of length n, the probabilistic (bounded error) communication complexity

of set intersection is Θ(n) [Kaly 92]. We discuss consequent negative results

about problem partitioning in Section 5.6.2 by rephrasing data distribution as

communication problem.

Second, the graph of entity mergers along matching values of various at-

tributes may form an arbitrary graph. There is a need for connected compo-

nent identification, which is described first in the iterative blocking algorithm of

[Whan 09] that can be considered the sequential version of some of our meth-

ods. Parallel connected components [Hirs 79] is not as simple and the general

solution may require several passes. For efficiency it is crucial to base our al-

gorithm on the assumption that the graphs are tiny (which is usually the case in

practice).

The contributions of this Section are as follows.

• We show that, simply speaking, any distributed ER algorithm must ex-
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change all of its data across different servers, hence significantly harden-

ing the task compared to pre-existing shared memory ER solutions (Sec-

tion 5.6.2). In particular this means that blocking may result in significant

gains for multi-threaded ER but much less for ER over distributed data.

• We demonstrate that ER can be implemented under three major distributed

programming paradigms: distributed key-value stores, Map-Reduce, and

Bulk Synchronous Parallel.

• We measure our distributed algorithms on very large scale real world data.

Our client database consists of 20 million records that we blow up to 600

million for scalability tests.

The goal of our distributed implementations is to evaluate the applicability

of the frameworks and show their strength and limitation for complex ER tasks.

We emphasize that our codes contain little optimization in their interaction with

the corresponding software framework; also the frameworks, in particular the

Bulk Synchronous Parallel, is yet in an incubatory phase and we may observe

significant speedup by using an improved release.

5.6.1 Magnitudes of Input Data

Next we demonstrate that smart algorithms over emerging distributed infrastruc-

tures enable ER for several orders of magnitude larger data sets than in earlier

research. Earlier results give experiments for a few 100,000 records (see Sec-

tion 5.2). For example, similar to the size of our data set, in [Whan 09] 2 million

records are processed, but processing took several hours and distribution to more

servers was not considered.

For our 20 million record real world customer data set, our fastest distributed

algorithm completes its task in less than an hour over 15 low-end servers. Fur-

thermore, we experimented by replicating our data to a 300 times larger data

set than in [Whan 09]. Experiments with data closest to our size is reported in

[Weis 08], 10 million records. They rely on a simple sorting based algorithm

[Hern 98] that also forms the base of our methods. They produce approximate

results and deploy commercial database management systems that however im-

pose limitations to their procedure, for example the usability of similarity in-

dexes is unclear.

A distributed ER implementation that we are aware of, D-swoosh [Benj 07]

does not rely on shared memory but uses no distributed software infrastructure

either. They communicate by sockets between pairs of servers; also the number

of records is a mere few 100,000 in their experiment.
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5.6.2 A Lower Communication Complexity Bound

Blocking is a proven method to speed up ER algorithms but, as we will show,

its power diminishes when data is distributed across multiple servers with no

shared memory.

Blocking divide records into smaller subsets based on expert heuristics in-

cluding ZIP code, first letter of family names, etc., so that ER is performed on

the smaller subsets more easily. In this way we can divide the original problem,

but may miss potential matching pairs between different blocks. One solution is

to use multiple blocking criteria, and then combine the results of the different ER

results together. Or, combine all the possible blocking results for exact results,

as Algorithm 8 does. Another potential solution is iterative blocking [Whan 09],

where merged entities are delegated to other affected blocks.

For efficient blocking, we may use external knowledge, e.g. only compare

records with the same zip code, but this approach may fail if a person moves to

another location. As another example that is characteristic to our real data set,

maiden names have arbitrary connections to names (in some languages, even

the first names may change!) for married women representing probably at least

a quarter of most customer data sets.

Next we deal with algorithms blocking the original data sets for multiple

processing nodes. These nodes compute their ER results locally, while commu-

nicate with each other to produce an exact result of the original problem.

The following set of results indicates that no ER algorithm exists that dis-

tributes the data and exchanges records among the parts without communicating

significantly less than the entire data set among the processes. Common to these

results is that they use a reduction to the probabilistic (bounded error) commu-

nication complexity of set disjointness. By the result of [Kaly 92], the question

whether two n-subsets of a universe intersect cannot be decided by communi-

cating less than Θ(n) bits.

Our first negative result is a direct consequence of the set disjointness com-

munication complexity bound. Given that the records are partitioned to at least

two data servers in some clever way, we may want to test if ER can be solved

by local computations. In other words, for a given attribute we need to check

whether there is a value that appears at both servers. By the communication

bound, this task requires Θ(n) bits of communication for n records. Although a

single bit for an attribute value may be considered a very efficient encoding, still

the Θ(n) bound means that we basically have to communicate all data between

the parts regardless of how smart algorithm is used for partitioning.

The above negative result can be reformulated by using another lower bound

[Alon 99, Proposition 3.8] stating (among others) that the number of distinct

elements cannot be exactly computed in less than Ω(n) memory bits. In addition,
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this problem cannot be solved by sampling either [Char 00]. There are however

low space relative error approximation results that may give hope of speeding

up some ER heuristics both in [Alon 99] and earlier in [Flaj 85]. Note however

that for an exact ER algorithm, the negative results apply.

The impossibility of finding a “very smart” partitioning method can be ex-

pressed in another way. In the space of attributes as dimensions, two records

are similar if they agree in at least one coordinate (as with the basic attribute-

equality matching). Hence another way to state the negative results, there is

no efficient locality sensitive hashing for entity linkage as similarity. Our argu-

ment is reminiscent to the non-existence for extremely nonconvex dissimilarity

functions such as the minimum or a variant that simply counts the number of

nonzeroes frequently termed Donoho’s zero-’norm’ [Dono 04].

Common to the three algorithms in Sections 5.6.3–5.6.5 is that they first

communicate all data records among different parts of the data set and then per-

form additional steps to compute connected components. Communication is

performed in iterations; in one iteration, the attribute values of a single attribute

is communicated. Disregarding the work performed by the connected compo-

nent algorithms that we consider low in practice, our algorithms are optimal by

the above lower bounds.

5.6.3 Algorithms Based on Key-Value Stores
High performance key-value stores are growing in both size and importance;

they now are critical parts of major internet services such as Amazon (Dynamo

[DeCa 07]), LinkedIn (Project Voldemort [Proj]), and Facebook (memcached

[Fitz 04]).

In our first distributed implementation we choose Project Voldemort due to

its ease of installation and APIs. We note that our solution works also based on

various other indexing tools not covered in this paper, including Kyoto Cabinet,

Scalien DB, or even MySQL.

The ER algorithm itself is an adaptation of a sequential connected compo-

nent algorithm by relying on the distributed key-value store. It is a simplified

version of Algorithm 6 (Index-ER), not dealing with features, but only with at-

tribute matchings. The algorithms can be extended to handle more complex

match criteria, as they produce candidates that can be verified by arbitrary logic.

Efficiency of the algorithm depends both on the indexing tools used, and on

properties of the input data set (e.g. how many matching records it contains), as

well as on the match logic (how many attributes there are, are they similarity-

based etc.).

The implementations manage entities by their entity ID ID(e). We propose

two variants:
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Algorithm 9 Union-Find ER by distributed key-value store

input: Entity set E; one attribute store for each attribute with attribute value as

key and entity ID as value; another auxiliary store with both key and value as

entity ID.

output: E ′ = ER(E)

1: for all entities e do
2: for � = 1, . . . , k do
3: for all r ∈ e do
4: for all IDs i with attribute matching ar� do
5: erase i from the attribute store

6: union(i, ID(e))

1. The list of entities is read sequentially from disk. There are k indexes, one

for each attribute, and another index that points to the parent of the given

entity. This algorithm implements a union-find data structure [Corm 01,

Section 21] over this last key-value store.

2. The entities reside in a Voldemort store with ID(e) as key. There are k
indexes, one for each attribute, as in the previous solution. Entities are

merged by performing a breadth-first search [Corm 01, Section 22] and

the entity store is immediately updated during merge.

The union-find based solution (Algorithm 9) simply iterates through all at-

tribute values and unites all pairs that match in this attribute. It requires a data

structure in line 6 that can be implemented by another distributed key-value

store. As in [Corm 01, Section 21], we need a pointer for all entities to a parent

entity; the chain of pointers must lead to the root. We may implement pointers

by a key-value store where the key is the entity ID and the value is the parent ID.

To save work, optionally in line 5 we may remove those record-attribute pairs

that are already considered for merging.

Since the components are assumed to be small, a simple union-find imple-

mentation suffices. We apply path collapsing: whenever a pair of entities are

united, both have to seek down to the root containing the component IDs. Along

these paths, we may replace all pointers directly to the root, thus allowing a near

optimal average logarithmic search time.

Supposing small entities, the theoretical complexity of the algorithm is equal

to that of union-find, i.e. slightly better than O(n log n) [Corm 01]. The amount

of communication equals to the total size of the data, i.e. this algorithm is optimal

with respect to the bounds in Section 5.6.2.
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Algorithm 10 BFS ER by distributed key-value store

input: Entity set E; one attribute store for each attribute with attribute value as

key and entity ID as value; another entity store with entity ID as key and the

complete entity data as value.

output: E ′ = ER(E)

1: while not at the end of the entity store do
2: get next entity e from entity store

3: erase e from all attribute stores and put its records into Q
4: while Q 
= ∅ do
5: get next r from Q
6: for � = 1, . . . , k do
7: for all entities e′ with attribute matching ar� do
8: erase e′ from all attribute stores

9: update e by e ∪ e′ in the entity store.

10: add all records of e′ to Q

The second implementation (Algorithm 10) performs breadth-first search as

in [Corm 01, Section 22]. We use queues storing new records to be merged into

the current entity. We iterate through records and, as in Algorithm 9, we obtain

all matching entities by using the attribute stores. We immediately delete these

records from the attribute stores and update the entity store to avoid infinite loops

in a component.

We need to be able to list all attribute values matching ar� in line 4 of Algo-

rithm 9 and line 7 of Algorithm 10. While this is trivial if the match function

is the equality, our algorithms are suitable for similarity functions by an ap-

propriate distributed similarity index. We may also trivially handle multi-value

attributes, or, as in our case, name and maiden name by fetching both values

from the corresponding attribute index.

In Algorithm 10 we may apply complex multi-attribute rules or learning

based approaches as well, since we have access to the entire entity data via

the entity index. For Algorithm 9 for example we handle a feature consisting of

name, birth date and mother’s name by indexing the concatenation of the three

attributes as one single string.

The theoretical complexity of the algorithm is equal to that of BFS, i.e.

O(n log n) [Corm 01]. The amount of communication equals to the total size

of the data, i.e. this algorithm is also optimal with respect to the bounds in Sec-

tion 5.6.2.

Finally we note that Algorithm 10 can take further advantage of parallelism:

we may run the algorithm in several copies, each reading entities depending on
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Algorithm 11 ER by Map-Reduce

input: Entity set E over a distributed file system.

output: E ′ = ER(E)

1: for � = 1, . . . , k do
2: sort records r by attribute value ar�
3: for all attribute values a do
4: for all pairs of records r, r′ with ar� = ar′� = a do
5: write (ID(r), ID(r′)) to graph G
6: Map-Reduce connected components(G)
7: sort records by component ID and merge groups of identical ID

a hash value of their ID. An additional step is needed to resolve the cases when

two parallel runs accidentally reach the same merged entity starting out with

an initial entity their data portion that we do not discuss here. If we distribute

computation to t nodes, we may basically achieve a speedup factor of t if the

data is randomly split to both the computing and the data store servers.

5.6.4 Algorithm Based on Map-Reduce
Our next algorithm is based on Hadoop [Whit 10], an open source implementa-

tion of the Map-Reduce framework [Dean 08]. It can be considered an extension

of the Map-Reduce set similarity join of [Vern 10]; note that we may enhance

our algorithm by techniques such as basic or indexed kernels from that result.

Compared to a set similarity join, key difference is that we have to merge records

over several attributes that will eventually require a connected component algo-

rithm. This latter task can be solved by iterated matrix multiplication [Corm 01,

Section 25]; a similar implementation is given in the Hadoop-based Pegasus

framework [Kang 09].

Our Map-Reduce algorithm is split into two parts. The first part, Algo-

rithm 11, iterates through all attributes. For each, it sorts attribute values and

records all potential matches in a graph file. Then the connected component

Algorithm 12 is called that assigns a component ID to all records. Finally, the

last line of the main algorithm merges all records with the same ID. In this step,

additional split heuristics can be implemented to undo some of the unnecessary

merges similar to the algorithms in Section 5.6.3.

In Algorithm 11 we assign IDs to records as follows. If there are entities

that consist of more than one record at start, we spit it into two records, both

with the same ID. By a slight abuse of notation we may even handle entities

with multiple values a and a′ for certain attributes: we may place its ID multiple
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Algorithm 12 Map-Reduce connected components

input: Graph G of record IDs.

output: Component ID for all record IDs.

1: sort G to form sequences Si = {i, IDi, list of edges (i, j)}
2: change = true

3: while change = true do
4: change = false

5: Map:
6: for all IDs i do
7: for all IDs j with (i, j) ∈ Si do
8: emit IDi to reducer j
9: emit entire Si to reducer i

10: Reduce:
11: for all reducers j do
12: ID′ = min of all ID values received

13: if ID′ < IDj then
14: change = true

15: replace IDj by ID in Sj

16: write Sj

times, for both a, a′ and possibly more, into an array to be sorted in line 2.

Note that placing an entity multiple times in line 2 we may also handle com-

plex features such as the combination of a name and maiden name. In this case

we consider name and maiden name as a single attribute with multiple values

and proceed as above.

We describe the connected component Algorithm 12 in detail. The algorithm

implements the matrix multiplication based all-pairs reachability algorithm of

[Corm 01, Section 25] in a way similar to [Kang 09]. Two ingredients are the

reduction of the problem to iterated matrix multiplication with a modified asso-

ciative operation and the implementation of the matrix operation over Hadoop.

For the first, let us replace addition by the minimum function and let

IDj = min(IDj, min
i:(ij) is an edge

{IDi}). (5.2)

In iteration s, this method selects the minimum value in the s step neighborhood

of every record. If we record the fact that some IDj decrease in an iteration,

then we may terminate if there is no change.

Finally we show how to compute the matrix-vector multiplication type step

of (5.2) by Map-Reduce. Starting at line 5, mapper i sends its current ID to
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Algorithm 13 Bulk Synchronous Parallel (BSP) ER

input: Entity set E.

output: E ′ = ER(E)

1: Partition entities E = {E1, . . . , Ed} to data nodes 1 . . . d.

2: for i = 1, . . . , d do
3: send Ei to data node i
4: start master node and data nodes 1, . . . , d
5: wait for termination

6: start BSP connected components on data nodes 1, . . . , d
7: wait for termination

8: merge results from data nodes 1, . . . , d to E ′

reducer j for all edges ij in the graph to prepare the data needed to compute

(5.2). In addition, reducer j starting in line 10 must write data Sj suitable for

the next matrix-vector multiplication iteration. In addition to IDj , this Sj must

contain the edges out of record j. For this purpose, mapper i sends its entire data

Si to reducer i, competing the description of the algorithm.

The running time of the algorithm is O(�(n log n)/t) for the � mergesort op-

erations over t servers and O(sn/t) for connected components over t servers

where s is the size of the largest component. The implementation transmits all

data � times during the sort operations, hence requires � times more communica-

tion than the optimum. This algorithm is the least efficient in theory also since

Hadoop introduces additional disk I/O operations when storing partial results.

5.6.5 A Bulk Synchronous Parallel Algorithm
In his seminal paper, Valiant [Vali 90] introduced the Bulk Synchronous Parallel

framework for distributed algorithms. This framework is reintroduced as evolv-

ing infrastructures for distributed processing both proprietary as Google’s Pregel

[Male 10] and open source such as HAMA [Seo 10]. The idea is to divide the

algorithm into phases divided by barriers. In each phase, nodes may produce

messages to other nodes that they receive in the next phase.

In the following HAMA implementation, the first step of the main algorithm

(Algorithm 13) is to distribute the data to servers (line 1). We may use a strong

attribute or set of attributes for distribution that, similar to blocking ER algo-

rithms, may result in significant speedup. Then a merge-sort algorithm is started

over a master and d data servers in line 4. After initiating connected component

computation in line 6 over the same data nodes, a last step is called that merges

all records into the parent entity e at the data server holding e.
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Algorithm 14 Data node algorithm for BSP ER

input: Entity set Ed such that each record corresponds to a unique entity.

output: E ′
d and list Le for each entity e ∈ E ′

d

1: E ′
d = ER(Ed)

2: for � = 1, . . . , k do
3: start phase 2�− 1
4: sort records r ∈ E ′

d by attribute value ar�
5: for all attribute values a in sorted order do
6: ma ← {ID(r1), ID(r2), . . .} for all records ri with ari� = a
7: send ma to master node

8: send “end” to master node

9: end phase 2�− 1; start 2�
10: repeat
11: receive a, ID1, d1, ID2, d2, . . . from master

12: add ID1, d1, ID2, d2, . . . to entity list L(e) holding r ∈ e with ar� = a
13: until master node sends “end”

14: end of phase 2�

Algorithm 15 Master node algorithm for BSP ER

input: list of data nodes 1, . . . , d.

1: for � = 1, . . . , k do
2: start phase 2�− 1
3: for data nodes p = 1, . . . , d do
4: receive m

(p)
a = {ID(p,a)

1 , ID
(p,a)
2 , . . .} from node p

5: end phase 2�− 1; start 2�
6: for all attribute values a in sorted order, merging the message queues

from nodes 1, . . . , d do
7: if s > 1 for nodes p1, . . . , ps that submitted message m

(p)
a for attribute

value a then
8: for i = 1, . . . , s do
9: submit a to node pi

10: for j = 1, . . . , s with j 
= i do
11: submit (pj, ID

(pj ,a)
t ) to node pi for all t

12: end phase 2�
13: terminate master node after phase k
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The algorithm of data nodes (Algorithm 14) assumes, as in the Map-Reduce

algorithm that entities with multiple values for certain attributes are split into

records and uses the same ID(r) notation for obtaining the entity ID. A farm

of d such data nodes perform merge-sort with a master running Algorithm 15.

Note that there may be more masters to speed up merge-sort by e.g. hashing the

attribute value sets.

We perform merge-sort of the attribute values in iterations over attributes

� = 1, . . . , k. Algorithms 14 and 15 run in BSP phases 1, . . . , 2k. In the odd

numbered phases data nodes send the values a along with the list ma of entity

IDs holding value a. The master collects all values shared between different data

nodes. In the even numbered phases the master sends out these values a to each

data node holding a, followed by the list of entity IDs and corresponding data

node ID. Data nodes store these lists at the entity e holding a for the connected

component algorithm.

Compared to the current HAMA based implementation, the above algorithm

could be more efficient by using primitives for merging sorted lists. In theory

the master(s) could balance the amount of data received from data nodes by, for

the next attribute value a, immediately discarding if the value appears only once

or emitting if matching is found. In this case the master could always requesting

the next data from those that hold a. In its current state however we are even less

efficient as communication in phases 1 . . . 2k have be broken into smaller blocks

so that all messages from data nodes fit into the master’s memory.

Finally we turn to the connected component Algorithm 16 implemented as

the classical “minimum-over-graph” algorithm. Algorithm 16 finds minimal ID

of connected components of the graph in phases until termination. We proceed

in BSP phases until there is no change in the entity IDs that we perform by

marking entity e if its ID changes in the phase. In a phase, every marked entity

sends its ID to its neighbors and unmarks itself. Receiving entities change their

ID to minimum and mark themselves if there is a change. It is easy to see that in

phase t, each entity gets the minimum ID of its neighbors within at most t steps.

The algorithm can be made more flexible by implementing more complex

functions at the master nodes. For example it may collect all attribute values in

a similarity index and send response to merge all similar entity values.

The running time of the algorithm is O(ER(n/t)) for the resolution of the

initial data at each server where ER(n) is the running time of an optimal se-

quential ER algorithm. Phases 1, . . . , 2k communicate all data exactly once and

run linear in the data transmitted, hence they altogether take O(n) time. Finally

the connected component algorithm takes O(sn/t) time over t servers where s
is the size of the largest component. By the assumption that s is very small, this

algorithm is theoretically the best and also uses near optimal amount of commu-
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Algorithm 16 BSP Connected Component algorithm

input: E ′
d and list Le for each entity e ∈ E ′

d

output: parent entity ID and node ID(e), P (e) for each entity e ∈ E ′
d

1: sort E ′
d by ID

2: for all (ID, p) ∈ L(e) for entities e ∈ E ′
d with ID < ID(e) do

3: mark e
4: ID′(e)← ID
5: P (e) = p
6: while there are marks on entities do
7: start next phase
8: for all (ID, p) ∈ L(e) for marked entities e with ID > ID(e) do
9: send ID(e), ID, P (e) to data node p

10: unmark e
11: while messages to the current data node d exists do
12: receive ID, ID′, p

13: find e with ID(e) = ID
14: if ID′(e) > ID′ then
15: mark e
16: ID′(e)← ID
17: P (e) = p
18: start last phase: move all data to the lowest ID representative that will hold

the resolved entity
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nication.

5.6.6 Experiments

Experiments were performed on 15-server Linux farms containing identical dual

core 3 GHz Pentium CPUs, 4 GB of main memory. Software versions were Sun

Java 1.6, Project Voldemort 0.81, Hadoop 0.20.3, and a patched2 HAMA 0.3.0.

Voldemort was configured to use a replication factor of 1. We configured our

systems to use all available internal memory. The largest test data sets do not fit

in the memory of one node but still fit in the entire 15× 4 GB of the cluster.

The data set is provided by AEGON Hungary Insurance Ltd. containing

approximately 20 million client records, the same as in Section 5.5.5. The data

set contained several attributes with different types, and 1.95 record per client in

average. The size of the record set was also 1.7 GB in a flat CSV file.

We used the same sampling to obtain smaller subsets as in Section 5.5.5. We

created larger data by replication and random permutation. In each replica, we

added a version tag to all attributes so that the original structure of matches was

preserved but no new matches were introduced between replicas.

In the experimental settings we used a real-world match condition composed

of 9 attributes in 5 orthogonal matching features, also similar to the condition of

Section 5.5.5. All of our algorithms produce the same exact results determined

by the match conditions, therefore accuracy is not measured, only verified.

Comparison of Overall Running Times

Figure 5.10 and 5.11 depict the overall execution times including reading the

input and finalizing the output. By these figures we observe the superiority of

Map-Reduce: It was able to process one order of magnitude larger input sets than

the others. Given the fixed duplication factor obtained by our data replication

procedure, the running time up to 600 million records appears to be linear in

input size, which makes the algorithm very useful in practice. The effect of

varying duplication factor is tested later in Fig. 5.12. We did not lay stress on

optimization, therefore further performance improvements could be achieved by

fine tuning Hadoop and the Java code.

Theoretically, the BSP algorithm requires the least communication between

nodes, therefore we expected similar or better behavior compared to the Map-

Reduce version. BSP, however, performed poorly. The reasons can be both

non-optimal coding, bad initial data distribution to nodes, or the experimen-

tal state of the Hama framework. BSP therefore requires further investigation.

2We fixed the distributed double barrier implementation.



5.6. DISTRIBUTED ALGORITHMS 87

Figure 5.10: Execution time against input size for all algorithms

Re-implementing the algorithm using sockets could clear up the role of the in-

frastructure.

Our key-value store algorithms give the worst performance. This is no sur-

prise since they are basically sequential in that they process the input one-by-one

on a single main node. The main bottleneck turns out neither CPU nor I/O but the

communication between the main node and the key-value store nodes. Distribut-

ing not just the data but also the computation would be therefore useful, however

that requires a careful locking mechanism over the feature indexes and the entity

store. Distributed key-value stores are slower than their non-distributed counter-

part (in our case, BerkeleyDB) for small data (see Section 5.5.5 or [Sidl 11a] for

related experiments). The main reason for using distribution is that the perfor-

mance of single-node key-value stores falls drastically when reaching memory

limits.

Although our BFS distributed key-value store algorithm is the slowest, it

has the advantage of applying a general match logic: Attribute indexes provide

candidates for a general match function. The main reason of the relatively poor

performance of the BFS algorithm is that for larger data sets we get too many

candidates for sophisticated matching conditions and indexing a single attribute

of a sophisticated feature is simply not efficient enough.

Figure 5.12 shows the impact of match count on the execution times of the

Map-Reduce algorithm. As we expected, increasing match count (less hidden

entity) results in larger running times: more edges appear in the match graph

and more iterations have to be performed when finding connected components.
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Figure 5.11: Execution time against input size for all algorithms, below 20 mil-

lion records

Figure 5.12: Execution times plotted against the number of merged entities in 5

million records
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Figure 5.13: Cumulative execution times of the distinct phases in the BSP algo-

rithm

Running Times of Algorithm Phases

Except for the key-value store procedures, all of our algorithms can be separated

to different phases. Our first algorithm, the Union-Find key-value store one finds

all matchings first. Then in a second round it produces the output based on the

union-find store. The time needed for the second round was approximately 20%

of the first phase in all settings.

For the BSP algorithm, Figure 5.13 depicts the time required by its phases.

In Phase 1, we read the input and resolve the initial datasets per node by an in-

memory ER implementation similar to the union-find variation. Phase 2 covers

the main process of master and data nodes and Phase 3 the connected component

search. The output is finalized in Phase 4. The running time share of the phases

seems to be fixed over our range of input sizes with most of the time devoted to

Phase 2, the main part of the procedure.

Figure 5.14 shows running times of the Map-Reduce implementation phases.

This implementation first sorts the data by feature values and produces the edge

matrix in Phase 2. The edge matrix is used to find connected components in

Phase 3, taking the majority of execution time. Note the complementarity with

the BSP algorithm where the time for connected component computation is neg-

ligible. In Phase 4, we produce the output based on the list of the connected

components.
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Figure 5.14: Cumulative execution times of the distinct phases in the Map-

Reduce algorithm

5.7 Conclusions

ER data models and algorithms were developed and presented for relational

databases. These algorithms scale well, are practical and more efficient then

earlier similar algorithms.

We developed new, practical postulates for relational databases, based on

the generic ER formulation, enabling our DB-GER variations to perform sig-

nificantly better than previous Swoosh algorithms. DB-GER also proved to be

useful in practice in an insurance customer integration scenario. The applica-

bility is demonstrated by experiments and by a case study: AEGON Hungary, a

large Hungarian insurance company successfully applies the methods and algo-

rithms for years in a client data warehouse application.

We think that standard SQL is flexible enough to build practical match and

merge functions; the formal capture of the SQL match and merge function class

remains however unclear.

Efficient entity feature index based algorithms are developed and presented

for ER without memory bounds and using external memory if necessary. The

constructs used for indexes, features and blocking enable solving a wide range

of practical problems. Usefulness of building and maintaining entity indexes

for search time reduction is demonstrated by experiments and a case study. The

algorithms were tested against a similar insurance client dataset.

We believe that appropriate selection of indexing tools and algorithms can

further improve performance. Our algorithms may include arbitrary indexing

and search solutions, both for exact and for similarity-based matching. The class
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of suitable tools depends on the data set, on the features, on the match logic and

on the architectural environment as well. Another possible step towards ER on

big data is making the algorithms distributed.

The distributed algorithms described in 5.6 all solve the ER problem over

three different types of distributed software architectures efficiently. Applicabil-

ity and efficiency is demonstrated by experiments relying on the insurance client

data warehouse environment. In our experiments, distributed ER algorithms also

proved to be useful in practice. To our best knowledge, the algorithm based on

MapReduce scales the best by the time of writing. We investigated communica-

tion complexity bounds and the range of ER tasks that can be described by the

given model.

Distributed key-value stores provide the easiest extensions towards similar-

ity search and fuzzy match functions: Instead of lexicographical or numeric

indexes, we may simply use distributed similarity search structures. This solu-

tion is however the slowest of the alternatives. A further possible way of parallel

processing have to be studied: If the resolved entity set resides in the key-value

store, then parallel resolving tasks can speed up the entire executions. However,

the soundness of this parallelization have to be ensured by locking mechanisms

not covered in this paper.

Hadoop is apparently a mature Map-Reduce infrastructure already capable

of efficiently implementing ER algorithms. For Bulk Synchronous Parallel al-

gorithms, there is no open source infrastructure of similar level of maturity yet.

We demonstrated that HAMA, an incubatory project is capable of supporting

ER algorithms and we expect BSP implementations may eventually be superior

since they reduce cross-server communication and may completely eliminate

slow disk I/O operations. Also, partitioning along a strong feature may result in

significant speedup and our solution may also combine well with feature-based

blocking.

In future work these algorithms and index alternatives should be tested in

other settings, e.g. on conceptually different data sets, or with similarity-based

feature matching. Implementing the BSP algorithm using sockets or other basic-

level communication could clear up the role of the infrastructure and show the

capability of the algorithm for practical ER problems.

The probabilistic model promise good applicability based on our experi-

ments. As a future work, the model and methods of Section 5.3.6 should be

applied to our scalable algorithms.

We used slightly different environments to evaluate our ER algorithms, there-

fore precise comparison is not feasible. Nevertheless, Figure 5.15 and 5.16 pro-

vide an inaccurate, but useful overview of the new ER algorithms described in

the thesis. Scalability of all algorithms are shown on insurance client data (the
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Figure 5.15: Scalability of our entity resolution algorithms.

two sides differ only in the maximum of the horizontal axis).

• Java-F-Swoosh: an own Java implementation of the best previously known

generic entity resolution algorithm (F-Swoosh [Benj 09]),

• DB-GER: our best relational entity resolution algorithm, based on a com-

mercial relational database,

• index-ER-BDB: our best efficient indexing algorithm built on Java and

Berkeley DB,

• MapReduce: our best distributed ER algorithm using 15 computer nodes

and Hadoop implementation.

Previous results assume 10 or 100 thousand records as input. To give an

example, in [Kirs 10] a distributed algorithm is described with similarity-based

matching, tested on 114 thousand records. Algorithms of [Weis 08] were tested

closest to our database size with 10 million records. In comparison, our 600

million input records indicates a significant improvement in scalability.

5.8 My Contribution
Entity resolution methods for relational databases (Section 5.3.2 and 5.4) were

presented on an ADBIS conference as a single-author paper that subsequently

appeared in an LNCS volume for selected and revised papers of the conference

[Sidl 09].

The results on entity resolution with heavy indexing (parts of Section 5.3.3

and Section 5.5) were presented on an ADBIS conference as a single-author

work, and appeared in the conference proceedings [Sidl 11a].
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Figure 5.16: Scalability of our entity resolution algorithms, below 20 million

records.

Results of Section 5.6 on distributed ER appeared in [Sidl 11b]. This pa-

per represents a joint work with András Garzó, András Molnár and András A.

Benczúr. My contributions were formulating the problem, raising the idea of

the three different parallelization methods, contributing to detailed algorithm

design, implementing the key-value store algorithms, generating the experimen-

tal dataset and coordinating the experiments. I also took part in the design of

the other types of distributed algorithms. The complexity bounds originate from

András A. Benczúr.



Chapter 6
Summary and Conclusions

The thesis described results extending business intelligence applications and

methods to meet new needs, discussing selected topics of BI. Results were mo-

tivated by real business requirements and needs that cannot, or can be hardly

resolved with existing tools. The methods correspond to the common research

practice of the area, and were presented to the research community on interna-

tional conferences and workshops.

The new architecture type of Chapter 3 can integrate relational data ware-

houses and colum-oriented storages in a cost-effective way, enabling long-term

storage and data mining. The practical applicability of the new architecture was

demonstrated by a prototype system, where a commercial database management

system and a data mining framework of our own were integrated.

A pattern-growth frequent itemset mining algorithm is presented in Chapter

4 for relational database environments based on SQL operations. This algorithm

efficiently utilizes the facilities provided by the database server, and fits the re-

lational data model and specialties of the environment.

New entity resolution data models and algorithms were developed in Chap-

ter 5. Algorithms for relational databases scale well, are practical and more

efficient then earlier similar algorithms. Efficient entity index-based algorithms

were developed and presented for entity resolution without memory bounds and

using external memory if necessary. We demonstrated that the problem can be

efficiently solved by deploying distributed computing environments. To our best

knowledge, the algorithm based on MapReduce scales the best by the time of

writing. Applicability of our algorithms are demonstrated by experiments rely-

ing on insurance client data data.

94



Bibliography

[Abad 06] D. J. Abadi, S. R. Madden, and M. C. Ferreira. “Integrating Com-

pression and Execution in Column-Oriented Database Systems”.

In: SIGMOD ’06: Proceedings of the ACM SIGMOD International
Conference on Management of Data, ACM, 2006.

[Agra 94] R. Agrawal and R. Srikant. “Fast Algorithms for Mining Associa-

tion Rules in Large Databases”. In: VLDB ’94: Proceedings of the
20th International Conference on Very Large Data Bases, pp. 487–

499, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1994.

[Alon 99] N. Alon, Y. Matias, and M. Szegedy. “The space complexity of

approximating the frequency moments”. Journal of Computer and
System Sciences, Vol. 58, No. 1, pp. 137–147, 1999.

[Babc 02] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. “Mod-

els and issues in data stream systems”. In: PODS ’02: Proceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pp. 1–16, ACM Press, New York,

NY, USA, 2002.

[Bara 05] E. Baralis, T. Cerquitelli, and S. Chiusano. “Index Support for Fre-

quent Itemset Mining in a Relational DBMS”. In: ICDE ’05: Pro-
ceedings of the 21st International Conference on Data Engineering
(ICDE’05), pp. 754–765, IEEE Computer Society, 2005.
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[Sidl 05b] C. I. Sidló and A. Lukács. “Shaping SQL-Based Frequent Pat-

tern Mining Algorithms”. In: Knowledge Discovery in Inductive
Databases: 4th International Workshop, KDID 2005, Revised Se-
lected and Invited Papers, pp. 188–201, Springer-Verlag, 2005.
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