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Mathematics, rightly viewed, possesses not only truth, but supreme

beauty – a beauty cold and austere, without appeal to any part of our

weaker nature, without the gorgeous trappings of painting or music, yet

sublimely pure, and capable of a stern perfection such as only the greatest

art can show.

Bertrand Russell
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Preface

If I feel unhappy, I do mathematics to become happy. If I am happy, I do

mathematics to keep happy.

Alfréd Rényi

In this work we study systems of nonlinear parabolic differential equations. In

particular, we consider equations containing nonlocal terms, in other words, func-

tional differential equations. By “nonlocal term” we mean terms which may depend

not only on the value of the unknown at a certain point but also on values at other

points, for example, it may contain a delay or an integral of the unknown on a

domain etc. Such problems may occur in some physical models. For instance, in

some diffusion processes the diffusion coefficient may depend on the unknown in a

nonlocal way, e.g., as in the following equation:

Dtu(t, x) − div

(
g
(∫

Ω

u(t, x)dx
)
gradu(t, x)

)
= f(t, x) (1)

for t > 0, x ∈ R
n where functions f : (0,∞) × R

n → R, g : R → R are given and

u : (0,∞)×R
n → R is the unknown with initial condition u(0, x) = ϕ(x) for x ∈ R

n.

One simple example for such diffusion process is, e.g., in population dynamics where

the growing rate may depend on the size of the population, mathematically, on the

integral of the density. Such nonlocal diffusion problems were considered in [21, 22],

further, a related problem, the so-called cross-diffusion was demonstrated in [33].

We mention two other important applications. First, climatology. In [4, 25, 27, 28]

functional differential equations arising in climatology were studied.

The other area where functional differential equations may occur is the modelling

of fluid flow, especially in porous media. A porous medium is a solid medium with lots

of tiny holes (e.g., limestone). The flow of a fluid through the medium is determined

by the large surface of the solid matrix and the closeness of the holes. For a detailed

introduction to this topic, see [7]. If the fluid carries dissolved chemical species,

chemical reactions can occur, see [38]. Among these include reactions that can change

vi



the porosity. This process is modelled by a system of equations that contains three

different types of equations: an ordinary, a parabolic and an elliptic one, see [23, 46].

For some other problems involving nonlocal differential equations, such as trans-

mission problems, see [39, 40, 41], or nonlocal boundary conditions, see [56, 57, 65].

It is worth mentioning some monographs concerning functional differential equa-

tions (by means of mostly semigroups), see [6, 29, 36, 32, 52, 70]. We also note that

instead of equations one may consider nonlocal variational inequalities. That type

of problems occur in elasticity theory, see [12, 31].

In the following, we study two systems of differential equations containig nonlocal

terms. The first one, that will be studied in Chapter 2, consists of equations of

parabolic type that are generalizations of equation (1). We extend the results of [63]

made on a single nonlocal parabolic equation to a system of equations.

The other system is the above mentioned one describing fluid flow in porous

media and consists of three different types of differential equations that will be in-

vestigated in Chapter 3. Some numerical experiments concerning this type of prob-

lem were done in [23, 46], however, correct proof on existence of solutions were not

made (and one can hardly find papers dealing with such kind of systems in rigorous

mathematical way).

The main tool of our further investigations will be the theory of operators of

monotone type. For a detailed explanation of this theory and its applications, see

the classical monographs [15, 20, 24, 35, 44, 55, 71]. However, for the convenience of

the Reader we shall recall some important assertions in Chapter 1. In particular, we

shall apply some results of [8, 17, 43, 48, 49] related to pseudomonotone operators.

By using the above framework we shall show existence of weak solutions in time

interval (0, T ) (0 < T ≤ ∞) for both systems, further, asymptotic properties will be

studied such as the boundedness and stabilization (i.e., convergence to equilibrium)

of solutions.

Besides the theoretical investigations of the above systems, we illustrate our

results with a variety of examples.

The results of Chapter 2 and 3 were published by the author in papers [9, 10,

11, 14]. Further, some parts of Section 1.6 are also the author’s results, see [13].
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Chapter 1

Preliminaries

Do not worry about your difficulties in mathematics. I can assure you mine

are still greater.

Albert Einstein

1.1 Inequalities

Calculus has its limits.

Folklore

In the following, the set of real numbers will be denoted by R, further, R
+ :=

{x ∈ R : x > 0}. The space of all n-tuples (n ≥ 1 integer) of real numbers will be

denoted by R
n.

Inequalities will play an important role in estimates. We briefly mention some of

them that will appear later.

Proposition 1.1 (triangle inequality). Let a1, a2, . . . , an ∈ R
k. Then

|a1 + a2 + · · · + an| ≤ |a1| + |a2| + · · · + |an|.

Proposition 1.2. Let a1, a2, . . . , an ∈ R
k and s > 1 be a real number. Then

|a1 + a2 + · · · + an|s ≤ ns−1 (|a1|s + |a2|s + · · · + |an|s) . (1.1)

Proposition 1.3. Let a1, a2, . . . , an be nonnegative real numbers and s > 1 be a real

number. Then

as1 + as2 + · · · + asn ≤ n−1(a1 + a2 + · · · + an)
s. (1.2)

1



Proposition 1.4 (Young’s inequality). Let p, q be finite conjugate exponents, i.e.,

1 < p, q <∞ and
1

p
+

1

q
= 1. Then for a ≥ 0, b ≥ 0,

ab ≤ ap

p
+
bq

q
.

Corollary 1.5 (ε-inequality). Let p, q be finite conjugate exponents, i.e., 1 < p, q <

∞ and
1

p
+

1

q
= 1. Then for a ≥ 0, b ≥ 0, ε > 0 it holds

ab ≤ εpap

p
+

bq

εqq
.

Lemma 1.6. Let b, c be arbitrary and s ≥ 0 be a real number. Then∫ 1

0

|c+ τb|sdτ ≥ |b|s
2s(s+ 1)

. (1.3)

Proof. The case b = 0 is obvious. Now let b �= 0, further, without loss of generality

we may assume c < 0. We have two cases. If c + b > 0, then by dividing interval

[0, 1] with respect to the sign of c+ τb we obtain

∫ 1

0

|c+ τb|s dτ =

∫ − c
b

0

(−c− τb)s dτ +

∫ 1

− c
b

(c+ τb)s dτ

=
(−c)s+1 + (c+ b)s+1

b(s+ 1)

≥ |b|s
2s(s+ 1)

.

In the last estimate we used inequality (1.1). In the other case c+ τb is negative for

all τ ∈ [0, 1] thus∫ 1

0

|c+ τb|s dτ ≥
∫ 1

0

|τb|s dτ =
|b|s
s+ 1

≥ |b|s
2s(s+ 1)

.

Note that (1.3) is sharp, we have equality if c = − b
2
.

Proposition 1.7 (Gronwall’s lemma). Let t0 ≤ t1 be real numbers and φ, ψ [t0, t1] →
R

+ be continuous functions such that

φ(t) ≤ K + L ·
∫ t1

t0

ψ(s)φ(s)ds

holds for t0 ≤ t ≤ t1 with some positive contants K,L. Then

φ(t) ≤ K · eL·
∫ t1

t0
ψ(s)ds

for t0 ≤ t ≤ t1.

2



1.2 Lp spaces, Sobolev spaces, product spaces

Nature laughs at the difficulties of integration.

Pierre-Simon Laplace

We introduce some abstract spaces that will serve for our investigations. For the

details, see, e.g., [1]

Let n ≥ 1 be a fixed natural number and denote by λ the n dimensional Lebesgue

measure. We shall always work with this measure so we shall omit the notation dλ in

integrals. We use the abbreviations a.e and a.a. for the expressions almost everywhere

and almost all that means except of a set with measure zero.

Definition 1.8. Let 1 ≤ p < ∞ and Ω ⊂ R
n be a λ-measurable set. Then Lp(Ω)

denotes the space of measurable functions u : Ω → R such that

‖u‖Lp(Ω) :=

(∫
Ω

|u|p
) 1

p

<∞.

Definition 1.9. If p = ∞, one defines the space L∞(Ω) to be the set of λ-measurable

functions u : Ω → R such that

‖f‖L∞(Ω) := ess sup
Ω

f

:= inf

{
sup
N

|f | : N ⊂ Ω, λ(N) = 0

}

= sup {K ∈ R : ∃A ⊂ Ω : λ(A) > 0, f(x) > K for a.a. x ∈ A} <∞.

Definition 1.10. Let 1 ≤ p < ∞ and Ω ⊂ R
n be a bounded domain with smooth

boundary. In our further investigations we assume that the boundary is continuously

differentiable (which will be sufficient, see [1].) Denote by Di the distributional

differentiation with respect to the variable xi and let D = (D1, . . . , Dn) (i.e. Du =

(D1u, . . . , Dnu) is the gradient). Then

W 1,p(Ω) := {u ∈ Lp(Ω) : Diu ∈ Lp(Ω), 1 ≤ i ≤ n} ,

with the norm

‖u‖W 1,p(Ω) =

(∫
Ω

[
|u|p + |Du|p

]) 1
p

.

Let C∞
0 (Ω) be the set of infinitely differentiable functions Ω: → R with compact

support (i.e, identically zero outside of some compact subset of Ω) then we define

W 1,p
0 (Ω) as the closure of C∞

0 (Ω) in W 1,p(Ω). Then W 1,p
0 (Ω) is a closed linear sub-

space of W 1,p(Ω).

3



Remark 1.11. In the sequel we use the above norm on W 1,p(Ω) which is equivalent

with the other commonly used norm

‖u‖W 1,p(Ω) =

(∫
Ω

[
|u|p +

n∑
i=1

|Diu|p
]) 1

p

.

The equivalence of the two norms follows from inequalities (1.1) and (1.2).

Theorem 1.12. In case 1 < p <∞, W 1,p(Ω) is a reflexive Banach space.

Theorem 1.13. Let Ω ⊂ R
n be a bounded domain with smooth boundary and let

1 ≤ p <∞. Then the embedding W 1,p(Ω) ↪→ Lp(Ω) is compact.

Definition 1.14. Let 1 ≤ p < ∞ be a real, N ≥ 1 a natural number and Ω ⊂ R
n

a λ-measurable domain. Then (Lp(Ω))N denotes the set of measurable functions

u = (u(1), . . . , u(N)) : Ω → R
N such that u(l) ∈ Lp(Ω) for every 1 ≤ l ≤ N . We

introduce on this space the following norm

‖u‖(Lp(Ω))N :=

(∫
Ω

|u|p
) 1

p

.

Remark 1.15. One can readily verify that the above norm is equivalent with an other

commonly used norm

(
N∑
l=1

‖u(l)‖pLp(Ω)

) 1
p

. Note that for p = 2, (L2(Ω))N is a Hilbert

space with the scalar product

(u, v)(L2(Ω))N :=
N∑
l=1

∫
Ω

u(l)v(l).

Definition 1.16. Let 1 ≤ p <∞ be a real, N ≥ 1 a natural number and Ω ⊂ R
n a

domain with smooth boundary. Then (W 1,p(Ω))N denotes the space of measurable

functions u = (u(1), . . . , u(N)) : Ω → R
N such that u(l) ∈ W 1,p(Ω) for 1 ≤ l ≤ N . We

introduce the following norm on this space

‖u‖(W 1,p(Ω))N :=

(∫
Ω

|u|p + |Du|p
) 1

p

,

where Du = (D1u
(1), . . . , D1u

(N), . . . , Dnu
(1), . . . , Dnu

(N)).

Theorem 1.17. In case 1 < p <∞, (W 1,p(Ω))N is a reflexive Banach space.

Theorem 1.18. Let Ω ⊂ R
n be a bounded domain with smooth boundary and let

1 ≤ p <∞. Then the embedding (W 1,p(Ω))N ↪→ (Lp(Ω))N is compact.

4



1.3 Equi-integrability

There are 10 kinds of mathematicians. Those who can think binarily and those

who can’t.

Folklore

Now we introduce a less known theorem about convergences in Lp spaces. First

we define the notion of equi-integrability. As before, let Ω ⊂ R
n be a λ-measurable

domain and 1 ≤ p <∞ a real number.

Definition 1.19. Let (fk)k∈N a sequence of functions in Lp(Ω). Suppose that for

every ε > 0 there exists a set Aε ⊂ Ω of finite measure and δ(ε) > 0 such that for

every k ∈ N it holds ∫
Ω\Aε

|fk|p < ε, (1.4)

furthermore, for every measurable set with measure less than δ(ε) it follows∫
S

|fk|p < ε.

Then we say that the sequence (fk) is equi-integrable in Lp(Ω).

Remark 1.20. In case of bounded Ω, (1.4) is obviously satisfied with Aε = Ω.

Remark 1.21. It is worth noting the following. If (fk) and (gk) are sequences in

Lp(Ω) such that |fk| ≤ |gk| for every k and the sequence (gk) is equi-integrable in

Lp(Ω) then the sequence (fk) is also equi-integrable in Lp(Ω).

Proposition 1.22. If the sequence (fk) is convergent in Lp(Ω) then it is equi-

integrable.

Theorem 1.23 (Vitali). Suppose that the sequence (fk) is equi-integrable in Lp(Ω)

and fk → f a.e. in Ω. Then fk → f in Lp(Ω) (strongly).

The following theorem of choice is due to Frigyes Riesz.1

Lemma 1.24 (Riesz). Let (fk) be a Cauchy sequence in Lp(Ω). Then there exists a

subsequence (f̃k) ⊂ (fk) and f ∈ Lp(Ω) such that f̃k → f a.e. in Ω.

Corollary 1.25. Assume that fk → f in Lp(Ω). Then there exists a subsequence

(f̃k) ⊂ (fk) such that f̃k → f a.e. in Ω.

Remark 1.26. Obviously the above statements holds not only for the Lebesgue mea-

sure but for every complete measure space.

1This statement is a part of the well-known proof of Riesz-Fischer theorem on the completeness

of Lp spaces.
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1.4 Weak convergence

Mathematics consists of proving the most obvious thing in the least obvious

way.

George Pólya

We shall use some properties of the weak convergence listed below.

Theorem 1.27. In a normed space every weakly convergent sequence is bounded.

In a Banach space every weak-star convergent sequence is bounded.

Theorem 1.28. In a reflexive Banach space (especially in a Hilbert space) every

bounded sequence has a weakly convergent subsequence.

Theorem 1.29. Assume that X is a normed space and xk → x weakly in X. Then

‖x‖X ≤ lim inf
k→∞

‖xk‖X .

1.5 Lp(0, T ;V ) spaces

I was x years old in the year x2. [In reply to a question about his age.]

Augustus de Morgan

We briefly introduce an abstract framework in order to treat evolution problems.

For the details and proofs, see, e.g., [71].

Definition 1.30. Let V be a Banach space, further, let 1 ≤ p <∞ and 0 < T <∞.

Then Lp(0, T ;V ) denotes the set of measurable functions u : (0, T ) → V such that

∫ T

0

‖u(t)‖pV dt <∞.

Remark 1.31. One can define analogously the spaces Lp(a, b;V ) for arbitrary a < b.

The following theorems remain true in this case.

Theorem 1.32. The space Lp(0, T ;V ) is a Banach space with the norm

‖u‖Lp(0,T ;V ) =

(∫ T

0

‖u(t)‖pV dt
) 1

p

.

6



Theorem 1.33. Let V be a reflexive Banach space and let p, q be finite conjugate

exponents, i.e.,
1

p
+

1

q
= 1. Then Lp(0, T ;V ) is a reflexive Banach space with its

dual Lq(0, T ;V ∗), in fact, a functional v ∈ Lq(0, T ;V ∗) acts on u ∈ Lp(0, T ;V ) in

the way

[v, u] :=

∫ T

0

〈v(t), u(t)〉 dt.
Remark 1.34. In the sequel, the pairing between the spaces V ∗and V , further, be-

tween Lq(0, T ;V ∗) and Lp(0, T ;V ), will be denoted by 〈·, ·〉, [·, ·], respectively.

Let V be a Banach space and H a (real) Hibert space. Assume that V ⊆ H,

V is dense in H and the embedding V ↪→ H is continuous. Denote by ‖ · ‖V the

norm of V and by (·, ·)H the scalar product of H. Then to every f ∈ H corresponds

an F ∈ V ∗ in the way 〈F, ·〉 := (f, ·)H . Since V is dense in H, the converse is also

true, every f ∈ H is determined by an element F ∈ V ∗. Hence we have a bijection

between H and a subspace of V ∗ thus H ⊂ V ∗. Moreover, it is also clear that the

embedding H ↪→ V ∗ is continuous.

Definition 1.35. If the above conditions are satisfied, the triple V ⊆ H ⊆ V ∗ is

called an evolution triple.

Definition 1.36. Let u ∈ Lp(0, T ;V ) and assume that there exists v ∈ Lq(0, T ;V ∗)

such that for every w ∈ V and ϕ ∈ C∞
0 (0, T ),∫ T

0

〈u(t), w〉ϕ′(t)dt = −
∫ T

0

〈v(t), w〉ϕ(t)dt.

Then v (which is unique if exists) is called the distributional derivative of u and we

write v = u′.

Definition 1.37. Let V ⊆ H ⊆ V ∗ be an evolution triple and let W 1,p(0, T ;V,H)

be the space of functions u ∈ Lp(0, T ;V ) such that u′ ∈ Lq(0, T ;V ∗). We introduce

the norm

‖u‖W 1,p(0,T ;V,H) := ‖u‖Lp(0,T ;V ) + ‖u′‖Lq(0,T ;V ∗). (1.5)

Theorem 1.38. With the above norm (1.5), W 1,p(0, T ;V,H) is a Banach space.

Theorem 1.39. Let u ∈ W 1,p(0, T ;V,H). Then the map [0, T ] � t �→ ‖u(t)‖2
H is

continuous, moreover, it is absolutely continuous.

Theorem 1.40. The set W 1,p(0, T ;V,H) is a subset of C([0, T ], H), moreover, the

embedding W 1,p(0, T ;V,H) ↪→ C([0, T ], H) is continuous. Precisely, for every u ∈
W 1,p(0, T ;V,H) there exists a unique continuous function ū : [0, T ] → H such that

ū = u a.e. in [0, T ] and

max
s∈[0,T ]

‖ū(s)‖H ≤ const · ‖u‖W 1,p(0,T ;V,H).

7



Corollary 1.41. If V ⊆ H ⊆ V ∗ is an evolution triple and u ∈ W 1,p(0, T ;V,H)

then the value of u(t) makes sense for every t ∈ [0, T ] (it is some element of H),

especially u(0) makes sense.

Theorem 1.42 (integration by parts). Let u, v ∈ W 1,p(0, T ;V,H). Then for 0 ≤
s ≤ t ≤ T ,∫ t

s

(〈u′(τ), v(τ)〉 + 〈v′(τ), u(τ)〉)dτ = (u(t), v(t))H − (u(s), v(s))H .

Corollary 1.43. Let u ∈ W 1,p(0, T ;V,H). Then for 0 ≤ s ≤ t ≤ T ,

2

∫ t

s

〈u′(τ), u(τ)〉dτ = ‖u(t)‖2
H − ‖u(s)‖2

H .

Corollary 1.44. Let u ∈ W 1,p(0, T ;V,H) such that u(0) = 0. Then [u′, u] ≥ 0.

Remark 1.45. Now we are able to give an abstract formulation of an evolution

problem. Let V ⊆ H ⊆ V ∗ be an evolution triple, further, let A : Lp(0, T ;V ) →
Lq(0, T ;V ∗) be a (possibly nonlinear) operator and b ∈ Lq(0, T ;V ∗). For given u0 ∈
H find u ∈ W 1,p(0, T ;V,H) such that

u′ + A(u) = b

u(0) = u0.

By ensuring some special properties of operator A (these properties will be discussed

in Section 1.6) one obtains existence of solutions.

Finally, we mention some embedding theorems related to this topic.

Theorem 1.46 (Minty). Let V ⊆ H ⊆ V ∗ be an evolution triple where V is a

reflexive Banach space. Suppose that B is a reflexive Banach space such that V ⊆
B ⊆ V ∗ where the embedding V ↪→ B is compact and the embedding B ↪→ V ∗

is continuous. Then the embedding W 1,p(0, T ;V,H) ↪→ Lp(0, T ;B) is compact for

1 < p <∞.

Corollary 1.47. Let Ω ⊂ R
n be a bounded domain with smooth boundary, fur-

ther, let 2 ≤ p < ∞ be a real and N ≥ 1 a natural number. Then the embedding

W 1,p
(
0, T ; (W 1,p(Ω))N , (L2(Ω))N

)
↪→ Lp

(
0, T ; (Lp(Ω))N

)
is compact.

Proof. In case 2 ≤ p < ∞, (W 1,p(Ω))N ⊂ (L2(Ω))N ⊂ (W 1,p(Ω)∗)N is an evolution

triple and (W 1,p(Ω))N is reflexive thus Theorems 1.18 and 1.46 imply the desired

statement.

Corollary 1.48. Assume (uk) ⊂ W 1,p
(
0, T ; (W 1,p(Ω))N , (L2(Ω))N

)
such that uk →

u weakly in Lp
(
0, T ; (W 1,p(Ω))N

)
and u′k → u′ weakly in Lq

(
0, T ; (W 1,p(Ω)∗)N

)
.

Then there exists a subsequence (ũk) ⊂ (uk) such that ũk → u in Lp
(
0, T ; (Lp(Ω))N

)
.
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Proof. Due to the weak convegences, (uk) is bounded in Lp
(
0, T ; (W 1,p(Ω))N

)
and

(u′k) is bounded in Lp
(
0, T ; (W 1,p(Ω)∗)N

)
thus the sequence (uk) is bounded in

W 1,p
(
0, T ; (W 1,p(Ω))N , (L2(Ω))N

)
. By using Corollary 1.47 one has a subsequence

(ũk) ⊂ (uk) which is convergent in Lp
(
0, T ; (Lp(Ω))N

)
thus it is also weakly conver-

gent there. Since (uk) is weakly convergent in Lp
(
0, T ; (W 1,p(Ω))N

)
so it is weakly

convergent also in Lp
(
0, T ; (Lp(Ω))N

)
. Now the uniqueness of the weak limit implies

ũk → u in Lp
(
0, T ; (Lp(Ω))N

)
.

1.6 Special types of operators

Mathematics is made of 50 percent formulas, 50 percent proofs, and 50 percent

imagination.

Folklore

In the above introduced framework of evolution problems the operators of mono-

tone type play an important role. We define some properties of operators.

Let X be a reflexive Banach space with its dual X∗. We use the notation 〈·, ·〉
for the pairing between X∗ and X.

Definition 1.49. Consider an operator T : X ⊇ D(T ) → X∗. Then (by using the

terminology of [71])

• T is bounded if it maps bounded sets (of X) into bounded sets (of X∗).

• T is hemicontinuous if for arbitrary elements u, v, w ∈ X the map R � λ �→
〈T (u− λv), w〉 ∈ X is continuous.

• T is demicontinuous if for every sequence (uk) ⊂ D(T ) with the property

uk → u ∈ D(T ) in X it follows that T (uk) → T (u) weakly in X∗.

• T is monotone if 〈T (u) − T (v), u − v〉 ≥ 0 for every u, v ∈ D(T ). If equality

holds only in case of u = v then T is said to be strictly monotone.

• T is uniformly monotone if there exist constants p > 1, c > 0 such that

〈T (u) − T (v), u− v〉 ≥ c · ‖u− v‖p for every u, v ∈ X.

• T is maximal monotone if T is monotone, furthermore, if u ∈ X and b ∈ X∗

are such that 〈b− T (v), u− v〉 ≥ 0 for every v ∈ X then T (u) = b.
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• T is pseudomonotone if for every sequence (uk) ⊂ D(T ) such that uk → u in

X and lim sup
k→∞

〈T (uk), uk − u〉 ≤ 0, it follows that lim
k→∞

〈T (uk), uk − u〉 = 0 and

T (uk) → T (u) weakly in X∗.

• T is coercive if lim
‖u‖X→∞

〈T (u), u〉
‖u‖X = +∞.

Remark 1.50. If T is a linear operator then its monotonicity is equivalent with

〈T (u), u〉 ≥ 0 for every u ∈ D(T ).

An important operator is the operator of the differentiation. Let

L : Lp(0, T ;V ) ⊃ D(L) → Lq(0, T ;V ∗), Lu = u′ (1.6)

where

D(L) := {u ∈ Lp(0, T ;V ) : u′ ∈ Lq(0, T ;V ∗), u(0) = 0} , (1.7)

or

D(L) := {u ∈ Lp(0, T ;V ) : u′ ∈ Lq(0, T ;V ∗), u(0) = u(T )} . (1.8)

Theorem 1.51. Let D(L) given by (1.7) or (1.8). Then L (defined by (1.6)) is a

densely defined, closed, maximal monotone linear operator.

The following convergence theorem will be useful in our investigations.

Theorem 1.52. Suppose that (uk) ⊂ D(L) (where D(L) is defined by (1.7) or (1.8)

and L is defined by (1.6)) such that uk → u weakly in Lp(0, T ;V ) and Luk → v

weakly in Lq(0, T ;V ∗) for some v ∈ Lq(0, T ;V ∗). Then u ∈ D(L) and v = Lu.

Further, if D(L) is defined by formula (1.7) then uk(0) → u(0) and uk(T ) → u(T )

weakly in H.

Proof. From the definition of the distributional derivative it follows∫ T

0

〈ϕ′(t)w, uk(t)〉dt = −
∫ T

0

〈Luk(t), w〉ϕ(t)dt,

for every w ∈ V and ϕ ∈ C∞
0 (0, T ). Passing to the limit as k → ∞ yields∫ T

0

〈ϕ′(t)w, u(t)〉dt = −
∫ T

0

〈v(t), ϕ(t)w〉dt,

which means exactly that v = u′. Now note that for every w(t) ≡ w ∈ V the

integration by parts formula implies∫ T

0

〈u′k, w〉 =

∫ T

0

(〈u′k(t), w(t)〉 + 〈w′(t), uk(t)〉
)
dt

= (uk(T ) − uk(0), w).
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By the weak convergence of (u′k),∫ T

0

〈u′k, w〉 →
∫ T

0

〈u′, w〉 = (u(T ) − u(0), w).

In case D(L) is defined by (1.8), uk(T ) − uk(0) = 0 hence from the above limit

relation (u(T ) − u(0), w) = 0 follows. This holds for all w ∈ V thus the density

of V in H implies u(0) = u(T ). If D(L) is defined by (1.7) then it follows that

uk(T ) → u(T ) − u(0) weakly in H. By applying integration by parts formula we

obtain

(uk(T ), ϕ(T )w) =

∫ T

0

(〈ϕ′(t)w, uk〉 + 〈u′k, ϕ(t)w〉)dt
where ϕ ∈ C∞(0, T ) and w ∈ V . Then by passing to the limit it follows

(u(T ) − u(0), ϕ(T )w) =

∫ T

0

(〈ϕ′(t)w, u〉 + 〈u′ϕ(t)w〉)dt.
Now on the right hand side of the above equation we apply integration by parts

formula for both terms. Then we may deduce

(u(T ) − u(0), ϕ(T )w) = (u(T ), ϕ(T )w) − (u(0), ϕ(0)w).

Choose ϕ ∈ C∞(0,∞) ∩ C([0, T ]) such that ϕ(0) = 1 and ϕ(T ) = 0 then by the

density of V in H we conclude u(0) = 0. Finally, uk(T ) → u(T ) − u(0) = u(T )

weakly in H and obviously uk(0) = 0 → 0 = u(0) strongly in H.

Now we verify a sufficient condition for some of these properties in case of oper-

ators arising in weak formulation of partial differential equations.

Definition 1.53. Suppose that X is a closed subspace of W 1,p(Ω), where Ω ⊂ R
n

is a domain with smooth boundary and define operator A : X → X∗ by

〈A(u), v〉 =

∫
Ω

(
n∑
i=1

ai(x, u(x), Du(x))Div(x) + a0(x, u(x), Du(x))v(x)

)
dx (1.9)

where v ∈ X and the following assumptions are fulfilled (a vector ξ ∈ R
n+1 will have

the coordinates (ξ0, . . . , ξn)):

(i) Functions ai : Ω × R
n+1 → R (i = 0, . . . , n) have the Carathéodory property,

i.e., ai(x, ξ) is measurable in x ∈ Ω for all fixed ξ ∈ R
n+1, and continuous in

ξ ∈ R
n+1 for a.a. fixed x ∈ Ω.

(ii) There exist constants p > 1, c > 0 and a function k1 ∈ Lq(Ω) such that for

a.a. x ∈ Ω and every ξ ∈ R
n+1,

|ai(x, ξ)| ≤ c · |ξ|p−1 + k1(x), i = 0, . . . , n.
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(iii) For a.a. x ∈ Ω and every ξ, ξ̃ ∈ R
n+1 such that (ξ1, . . . , ξn) �= (ξ̃1, . . . , ξ̃n),

n∑
i=1

(
ai(x, ξ0, ξ1, . . . , ξn) − ai(x, ξ0, ξ̃1, . . . , ξ̃n)

)
(ξi − ξ̃i) ≥ 0.

(iv) There exist a constant c2 > 0 and a function k2 ∈ L1(Ω) such that for a.a.

x ∈ Ω and every ξ ∈ R
n+1 ,

n∑
i=0

ai(x, ξ)ξi ≥ c2|ξ|p − k2(x).

Theorem 1.54. Suppose that conditions (i)–(iv) hold. Then A is a bounded, demi-

continuous, coercive and pseudomonotone operator.

Proof. For the proof of the boundedness, demicontinuity and coverciveness see, e.g.,

the classical monographs [44, 53, 71]. For the pseudomonotonicity, see [17].

Proposition 1.55. Assume p ≥ 2 and conditions (i)–(ii). Further, suppose that

functions ai (i = 0, . . . , n) are continuously differentiable in variable ξ and there

exists a constant δ > 0 such that for a.a. x ∈ Ω, every ξ ∈ R
n+1, (z0, . . . , zn) ∈ R

n+1,

n∑
j=0

n∑
i=0

Djai(x, ξ)zizj ≥ δ ·
n∑
i=0

|ξi|p−2z2
i . (1.10)

Then operator A is uniformly monotone.

Proof. Fix x ∈ Ω, ξ, ξ̃ ∈ R
n+1 and define functions fi : [0, 1] → R by fi(τ) =

ai(x, ξ̃+τ(ξ− ξ̃)) (i = 0, . . . , n). Then by applying assumption (1.10) and inequality

(1.3) we may deduce

n∑
i=0

(ai(x, ξ) − ai(x, ξ̃))(ξi − ξ̃i) =
n∑
i=0

(fi(1) − fi(0))(ξi − ξ̃i)

=
n∑
i=0

∫ 1

0

n∑
j=0

Djai(ξ̃ + τ(ξ − ξ̃))(ξj − ξ̃j)(ξi − ξ̃i)dτ

≥ δ ·
n∑
i=0

∫ 1

0

|ξ̃ + τ(ξ − ξ̃)|p−2(ξi − ξ̃i)
2dτ

≥ δ

2p−2(p− 1)
|ξ − ξ̃|p.

Whence after integration we conclude

〈A(u1) − A(u2), u1 − u2〉 ≥ δ

2p−2(p− 1)
‖u1 − u2‖pX .
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Now we are able to give some example for the above functions ai such that the

operator A will be uniformly monotone. For more details, see [13].

Proposition 1.56. Let ai(ξ) = ξi|ξi|p−2 with some p ≥ 2 (i = 0, . . . , n). Then

operator A defined by (1.9) is uniformly monotone.

Proof. Note that A obviously satisfies conditions (i)–(ii). In this case of ai,

〈A(u), v〉 =

∫
Ω

(
n∑
i=1

DiuDiv|Diu|p−2 + uv|u|p−2

)
dx.

Simple calculations yield Diai(ξ) = (p− 1)|ξi|p−2 and Djai(ξ) = 0 (j �= i). Hence

n∑
j=0

n∑
i=0

Djai(ξ)zizj = (p− 1)
n∑
i=0

|ξi|p−2z2
i

thus Proposition 1.55 implies the uniform monotonicity of A.

Proposition 1.57. Let ai(ξ) = ξi|(ξ1, . . . , ξn)|p−2 for i = 1, . . . , n and a0(ξ) =

ξ0|ξ0|p−2 where p ≥ 2. Then operator A defined by (1.9) is uniformly monotone.

Proof. Obviously, A fulfils also conditions (i)–(ii). Now

〈A(u), v〉 =

∫
Ω

(
n∑
i=1

DiuDiv|Du|p−2 + uv|u|p−2

)
,

i.e., A is the weak form of operator u �→ Δpu + u|u|p−2, where Δp is called the

p-Laplacian and has the form

Δpu = div(Du|Du|p−2). (1.11)

It is easy to see that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Djai(ξ) = (p− 2)ξjξi|(ξ1, . . . , ξn)|p−4, for i, j > 0, i �= j;

Diai(ξ) = |(ξ1, . . . , ξn)|p−2 + (p− 2)ξ2
i |(ξ1, . . . , ξn)|p−4, for i > 0;

Dja0(ξ) = D0ai(ξ) = 0, for j > 0, i > 0;

D0a0(ξ) = (p− 1)|ξ0|p−2.
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Hence

n∑
j=0

n∑
i=0

Djaizizj =
n∑
i=1

|(ξ1, . . . , ξn)|p−2z2
i + (p− 1)|ξ0|p−2z2

0

+ (p− 2)|(ξ1, . . . , ξn)|p−4 ·
n∑
j=1

n∑
i=1

ξiξjzizj

=
n∑
i=1

|(ξ1, . . . , ξn)|p−2z2
i + (p− 1)|ξ0|p−2z2

0

+ (p− 2)|(ξ1, . . . , ξn)|p−4 ·
(

n∑
i=1

ξizi

)2

≥
n∑
i=0

|ξi|p−2z2
i

thus from Proposition 1.55 it follows that A is uniformly monotone.

Proposition 1.58. Suppose 2 ≤ p ≤ 4 and let ai(ξ) = ξi|ξ|p−2 for 0 ≤ i ≤ k ≤ n

and ai(ξ) = ξi|(ξk+1, . . . , ξn)|p−2 for k < i ≤ n. Then operator A defined by (1.9) is

uniformly monotone.

Proof. It is easily seen that A also satisfies conditions (i)–(ii). Now for brevity let

ζ = (ξk+1, . . . , ξn). Clearly,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Djai(ξ) = (p− 2)ξiξj|ξ|p−4, for 0 ≤ i ≤ k, 0 ≤ j ≤ n, j �= i;

Djai(ξ) = (p− 2)ξiξj|ζ|p−4, for k < i ≤ n, k < j < n, j �= i;

Djai(ξ) = 0, for k < i ≤ n, 0 ≤ j ≤ k

Diai(ξ) = |ξ|p−2 + (p− 2)ξ2
i |ξ|p−4, for 0 ≤ i ≤ k;

Diai(ξ) = |ζ|p−2 + (p− 2)ξ2
i |ζ|p−4, for k < i ≤ n.

Then

n∑
j=0

n∑
i=0

Djai(ξ)zizj =
k∑
i=0

|ξ|p−2z2
i + (p− 2)|ξ|p−4

n∑
j=0

k∑
i=0

ξiξjzizj

+
n∑

i=k+1

|ζ|p−2z2
i + (p− 2)|ζ|p−4

n∑
j=k+1

n∑
i=k+1

ξiξjzizj

=
k∑
i=0

|ξ|p−2z2
i +

n∑
i=k+1

|ζ|p−2z2
i + (p− 2)|ξ|p−4

(
k∑
i=0

ξizi

)2

+ (p− 2)|ζ|p−4

(
n∑

i=k+1

ξizi

)2

+ (p− 2)|ξ|p−4

n∑
j=k+1

k∑
i=0

ξiξjzizj.
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By using the estimate

n∑
j=k+1

k∑
i=0

ξiξjzizj =

(
n∑

j=k+1

ξjzj

)(
k∑
i=0

ξizi

)

≥ −1

2

(
n∑

i=k+1

ξizi

)2

− 1

2

(
k∑
i=0

ξizi

)2

.

and the fact that |ζ|p−4 ≥ |ξ|p−4 since p ≤ 4 we conclude

n∑
j=0

n∑
i=0

Djai(ξ)zizj =
k∑
i=0

|ξ|p−2z2
i +

n∑
i=k+1

|ζ|p−2z2
i +

1

2
(p− 2)|ξ|p−4

(
n∑

i=k+1

ξizi

)2

+
1

2
(p− 2)|ξ|p−4

(
k∑
i=0

ξizi

)2

≥
n∑
i=0

|ξi|p−2z2
i .

Now Proposition 1.55 yields the uniform monotonicity of A.

Remark 1.59. In case p > 4 one may consider, e.g., the following functions

ai(ξ) = ξi|(ξ0, . . . , ξk)|p−2 + ξi|ξ|r−2 if 0 ≤ i ≤ k ≤ n,

ai(ξ) = ξi|(ξk+1, . . . , ξn)|p−2 + ξi|(ξk+1, . . . , ξn)|r−2 if k < i < n,

where 2 ≤ r ≤ 4. Then operator A defined by (1.9) is uniformly monotone.

In non-time-dependent problems the following classical theorem states existence

of solutions.

Theorem 1.60. Let X be a reflexive Banach space. Assume that operator T : X →
X∗ is bounded, hemicontinuous, pseudomonotone and coercive. Then for every v ∈
X∗ there exists u ∈ X such that T (u) = v.

We can ensure uniqueness by some stronger assumptions.

Theorem 1.61. Let X be a reflexive Banach space. Suppose that operator T : X →
X∗ is bounded, hemicontinuous, strictly monotone and coercive. Then for every v ∈
X∗ there exists a unique u ∈ X such that T (u) = v.

By supposing the uniform monotonicity of A, the continuous dependence of so-

lutions follows.

Proposition 1.62. If A : X → X∗ is uniformly monotone then the solution u of

problem A(u) = F is unique and depends continuously on F ∈ X∗.
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Proof. Uniqueness follows from the fact that if A(u1) = F = A(u2) for u1, u2 ∈ X

then 〈A(u1) − A(u2), u1 − u2〉 = 0 and the uniform monotonicity implies u1 = u2.

Now let F1, F2 ∈ X∗ and u1, u2 ∈ X be such that A(ui) = Fi (i = 1, 2). Then

‖u1 − u2‖pX ≤ const · 〈A(u1) − A(u2), u1 − u2〉
≤ const · ‖A(u1) − A(u2)‖X∗ · ‖u1 − u2‖X
= const · ‖F1 − F2‖X∗ · ‖u1 − u2‖X

thus ‖u1−u2‖X ≤ const · ‖F1−F2‖
1

p−1

X∗ which yields the continuous dependence.

In time-dependent (evolution) problems we have operators of type S = L + T

where L : X ⊇ D(L) → X∗ is (the operator of differentiation that is) a densely de-

fined, closed, maximal monotone, linear operator, further, T : X → X∗ is of mono-

tone type.

Definition 1.63. Operator T is pseudomonotone with respect to D(L) if for every

sequence (uk) ⊂ D(L) such that uk → u weakly in X, L(uk) → L(u) weakly in

X∗ and lim sup
k→∞

〈T (uk), uk − u〉 ≤ 0, it follows that lim
k→∞

〈T (uk), uk − u〉 = 0 and

T (uk) → T (u) weakly in X∗.

It is useful to rephrase this definition together with the definition of demiconti-

nuity.

Lemma 1.64 (“subsequence trick”). 2

a) Operator T is demicontinuous if for every sequence (uk) ⊂ D(T ) such that

uk → u ∈ D(T ) in X, there exists a subsequence (ũk) ⊂ (uk) with the property

T (ũ) → T (u) weakly in X∗.

b) Operator T is pseudomonotone with respect to D(L) if for every sequence

(uk) ⊂ D(L) such that uk → u weakly in X, L(uk) → L(u) weakly in X∗

and lim sup
k→∞

〈T (uk), uk − u〉 ≤ 0, there exists a subsequence (ũk) ⊂ (uk) with

the properties lim
k→∞

〈T (ũk), ũk − u〉 = 0 and T (ũk) → T (u) weakly in X∗.

Proof. We show the case a), the other can be treated similarly. We proceed by

contradiction, suppose T is not demicontinuous. Then there exist ε > 0, v ∈ X and

(uk) ⊂ D(T ) such that uk → u ∈ D(T ) in X and 〈T (uk) − T (u), v〉 ≥ ε. But this

implies that there is no (ũk) subsequence of (uk) such that T (ũk) → T (u) holds.

2This idea appears already in the works of Georg Cantor. He used the fact that a real sequence

is convergent if and only if every subsequence of the sequence has a convergent subsequence.
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In time-dependent problems the following theorem will be the key of existence

of solutions, for the proof, see [8].

Theorem 1.65. Let X be a reflexive Banach space and L : X ⊇ D(L) → X∗ a

densely defined, closed, maximal monotone linear operator, further, let T : X → X∗

be bounded, demicontinuous, coercive and pseudomonotone with respect to D(L).

Then (L+ T )(D(L)) = X∗.

By modifying the definition of operator A (see (1.9)) and conditions (i)–(iv)

according to the time variable, one has a theorem analogous to 1.54.

Definition 1.66. Suppose that V is a closed subspace of W 1,p(Ω), where Ω ⊂ R
n

is a domain with smooth boundary and let X = Lp(0, T ;V ) for some 0 < T < ∞
and 2 ≤ p <∞. Define operator A : X → X∗ by

〈A(u), v〉 =

∫
QT

n∑
i=1

ai(t, x, u(t, x), Du(t, x))Div(t, x)dtdx

+

∫
QT

a0(t, x, u(t, x), Du(t, x))v(t, x)dtdx

(1.12)

where QT = (0, T ) × Ω, v ∈ X and the following assumptions are fulfilled (a vector

ξ ∈ R
n+1 will have the coordinates (ξ0, . . . , ξn)):

(i’) Functions ai : QT × R
n+1 → R (i = 0, . . . , n) have the Carathéodory prop-

erty, i.e., ai(t, x, ξ) is measurable in (t, x) ∈ QT for all fixed ξ ∈ R
n+1, and

continuous in ξ ∈ R
n+1 for a.a. fixed (t, x) ∈ QT .

(ii’) There exist constants p > 1, c > 0 and a function k1 ∈ Lq(QT ) such that for

a.a. (t, x) ∈ QT and every ξ ∈ R
n+1,

|ai(t, x, ξ)| ≤ c · |ξ|p−1 + k1(t, x), i = 0, . . . , n.

(iii’) For a.a. (t, x) ∈ QT and every ξ, ξ̃ ∈ R
n+1 such that (ξ1, . . . , ξn) �= (ξ̃1, . . . , ξ̃n),

n∑
i=1

(
ai(t, x, ξ0, ξ1, . . . , ξn) − ai(t, x, ξ0, ξ̃1, . . . , ξ̃n)

)
(ξi − ξ̃i) > 0.

(iv’) There exist a constant c2 > 0 and a function k2 ∈ L1(QT ) such that for a.a.

(t, x) ∈ Ω and every ξ ∈ R
n+1 ,

n∑
i=0

ai(t, x, ξ)ξi ≥ c2|ξ|p − k2(t, x).
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Theorem 1.67. Assume that D(L) is defined by (1.7) or (1.8) and operator L

is given by (1.6) for some 0 < T < ∞ and 2 ≤ p < ∞). Further, assume that

conditions (i’)–(iv’) are satisfied. Then operator A (defined by (1.12)) is bounded,

demicontinuous, coercive and pseudomonotone with respect to D(L).

Idea of the proof. The boundedness and coerciveness are similar to the non-time-

dependent case (see Theorem 1.54). By using Corollary 1.48 instead of Theorem

1.18, the demicontinuity follows similarly to the non-time-dependent case. The pseu-

domonotonicity with respect to D(L) can be proved the same way as the pseu-

domonotonicity for the non-time-dependent case in Theorem 1.54 by replacing The-

orem 1.18 with Corollary 1.48 (see [8]).

18



Chapter 2

A system of parabolic equations

Should I refuse a good dinner simply because I do not understand the process

of digestion? [Criticized for using formal mathematical manipulations, without

understanding how they worked.]

Oliver Heaviside

2.1 Introduction

Obvious is the most dangerous word in mathematics.

Eric Temple Bell

In this chapter we consider the following nonlinear system containingN parabolic

differential equations:

Dtu
(l)(·)

−
n∑
i=1

Di

[
a

(l)
i (·, u(1)(·), . . . , u(N)(·), Du(1)(·), . . . , Du(N)(·);u(1), . . . , u(N))

]

+ a
(l)
0 (·, u(1)(·), . . . , u(N)(·), Du(1)(·), . . . , Du(N)(·);u(1), . . . , u(N))

= f (l)(·),

(2.1)

where (·) stands for the variable (t, x) ∈ (0, T )×Ω and the terms after the symbol “;”

represent the nonloacal variables (l = 1, . . . , N). We pose homogeneous Dirichlet or

Neumann boundary condition. For instance, the homogeneous Neumann boundary

condition is

n∑
i=1

a
(l)
i (t, x, u(1)(t, x), . . . , u(N)(t, x), Du(1)(t, x), . . . , Du(N)(t, x);u(1), . . . , u(N)))νi

= 0
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for x ∈ ∂Ω, t > 0 where ν is the unit normal along the boundary (l = 1, . . . , N).

Clearly, we may assume the boundary conditions to be homogeneous by substracting

a suitable function from the unknown.

Moreover, if ∂Ω = S1∪S2 where S1∩S2 = ∅, then we may pose different boundary

conditions on the elements of the partition.

Some physical motivations to this Chapter were demonstrated in the Preface.

Nonlocal parabolic problems may occur, e.g., in population dynamics, climatology,

fluid flow models, etc. In [21, 22] a simple nonloacal parabolic equation was stud-

ied which is similar to equation (1) shown in the Preface. A generalization of this

equation which is similar to the above was investigated by L. Simon in [63]. These

results were extended to systems of equations in [9].

In what follows, under some assumptions we shall define the weak form of the

above system and prove existence of weak solutions in (0, T ) where 0 < T ≤ ∞,

further, we show some properties of these solutions. Our assumptions are the gen-

eralizations of the classical Léray-Lions conditions. This chapter is devoted to be

familiarized with monotone type operators in nonlinear differential equations. The

gained knowledge will help us to deal with more complicate systems, for instance a

system which contains three types of equations. Such a problem will be studied in

Chapter 3. Some parts of the following section were published in [9].

2.1.1 Notation

To make easier the abstract formulation we introduce some notation. Let Ω ⊂ R
n

be a bounded domain with smooth boundary and let 0 < T <∞, 2 ≤ p <∞ be real

numbers. For brevity, denote QT = (0, T ) × Ω. We use the definition of the space

W 1,p(Ω) as it was introduced in Section 1.2. Denote Vl ⊂ W 1,p(Ω) (l = 1, · · · , N) and

let V = V1 × . . .× VN , H = (L2(Ω))N . Then for fixed T we use the notion of spaces

Lp(0, T ;V ), Lq(0, T ;V ∗),W 1,p(0, T ;V,H) as they were defined in Section 1.5. Briefly,

let X = Lp(0, T ;V ) and Y = Lp(0, T ; (Lp(Ω))N). The distributional derivative of a

function u ∈ Lp(0, T ;V ) will be denoted (if it exists) by Dtu. Precisely, a function

u ∈ Lp(0, T ;V ) has one variable (t ∈ (0, T )), however, it is often convenient to

write it as a function of (t, x) where x ∈ Ω (which sounds logic since the value

of u at each point t is some element of V , i.e., a function depending on x ∈ Ω).

For u ∈ X we shall write u = (u(1), . . . , u(N)) where u(l) ∈ Lp(0, T ;Vl). A vector

ξ ∈ R
(n+1)N will be written in the form ξ = (ζ0, ζ) where ζ0 = (ζ

(1)
0 , . . . , ζ

(N)
0 ) ∈ R

N ,

ζ = (ζ(1), . . . , ζ(N)) ∈ R
nN with ζ(l) = (ζ

(l)
1 , . . . , ζ

(l)
n ) ∈ R

n.

20



2.1.2 Assumptions

Suppose the following

(A1) Functions a
(l)
i : QT × R

(n+1)N × Lp(0, T ;V ) → R (i = 0, . . . , n; l = 1, . . . , N)

have the Carathéodory property for every fixed v ∈ Lp(0, T ;V ), i.e., they

are measurable in (t, x) ∈ QT for every (ζ0, ζ) ∈ R
(n+1)N and continuous in

(ζ0, ζ) ∈ R
(n+1)N for a.a. (t, x) ∈ QT

(A2) There exist bounded operators g1 : Lp(0, T ;V ) → R
+ and k1 : Lp(0, T ;V ) →

Lq(QT ) such that

|a(l)
i (t, x, ζ0, ζ; v)| ≤ g1(v)

(|ζ0|p−1 + |ζ|p−1
)

+ [k1(v)] (t, x)

for a.a. (t, x) ∈ QT , every (ζ0, ζ) ∈ R
(n+1)N and v ∈ Lp(0, T ;V ) (i =

0, . . . , n; l = 1, . . . , N).

(A3) For a.a. (t, x) ∈ QT , every ζ �= ζ̃ ∈ R
nN , ζ0 ∈ R

N and v ∈ Lp(0, T ;V ),

N∑
l=1

n∑
i=1

(
a

(l)
i (t, x, ζ0, ζ; v) − a

(l)
i (t, x, ζ0, ζ̃; v)

)
(ζ

(l)
i − ζ̃

(l)
i ) > 0.

(A4) There exist operators g2 : Lp(0, T ;V ) → R
+ and k2 : Lp(0, T ;V ) → L1(QT )

such that

N∑
l=1

n∑
i=0

a
(l)
i (t, x, ζ0, ζ; v)ζ

(l)
i ≥ g2(v) (|ζ0|p + |ζ|p) − [k2(v)](t, x)

for a.a. (t, x) ∈ QT , every (ζ0, ζ) ∈ R
(n+1)N and v ∈ Lp(0, T ;V ). Further,

operators g2, k2 have the following property:

lim
‖v‖Lp(0,T ;V )→∞

‖v‖p−1
Lp(0,T ;V )

(
g2(v) −

‖k2(v)‖L1(QT )

‖v‖pLp(0,T ;V )

)
= +∞.

(A5) If uk → u weakly in Lp(0, T ;V ) and strongly in Lp(0, T ; (Lp(Ω))N) then for

every i = 0, . . . , n; l = 1, . . . , N ,

lim
k→∞

‖a(l)
i (· , uk(·), Duk(·);uk) − a

(l)
i (· , uk(·), Duk(·);u)‖Lq(QT ) = 0.

(F1) F ∈ Lq(0, T ;V ∗)

Note that assumptions (A1)–(A4) are similar to the classical case (i.e., when

there is no nonlocal term), see [44, 71] or Section 1.6. Condition (A5) means a kind

of “continuity” in the nonlocal variable.
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2.1.3 Weak formulation

Now we may define the weak form of system (2.1). Assuming conditions (A1),

(A2), we may introduce operator A : Lp(0, T ;V ) → Lq(0, T ;V ∗) as follows. For

u = (u(1), . . . , u(N)) ∈ Lp(0, T ;V ) and v = (v(1), . . . , v(N)) ∈ Lp(0, T ;V ) let

[A(u), v] :=
N∑
l=1

∫
QT

n∑
i=1

a
(l)
i (t, x, u(t, x), Du(t, x);u)Div

(l)(t, x)dtdx

+
N∑
l=1

∫
QT

n∑
i=1

a
(l)
0 (t, x, u(t, x), Du(t, x);u)v(l)(t, x)dtdx,

(2.2)

where Di denotes the distributional derivative with respect to the variable xi and

D = (D1, . . . , DN) (see Section 1.2). Further, let D(L) → Lq(0, T ;V ∗) be the oper-

ator of differentiation (see Section 1.5):

D(L) := {u ∈ Lp(0, T ;V ) : Dtu ∈ Lq(0, T ;V ∗), u(0) = 0} , Lu = Dtu. (2.3)

Finally, in condition (F1) we consider general F ∈ Lq(0, T ;V ∗) functionals, but it

may have special form

[F, v] :=
N∑
l=1

∫
QT

f (l)(t, x)v(l)(t, x)dtdx

for v ∈ Lp(0, T ;V ) where f (l) ∈ Lq(QT ) (l = 1, . . . , N).

By the operators above the weak form of system (2.1) is

Lu+ A(u) = F. (2.4)

Note that in equation (2.4) there is a “hidden” initial condition u(0) = 0 which is

given in the domain of L. It is well-known (see, e.g., [44]) that one obtains the above

weak form by taking sufficiently smooth solutions, using Green’s theorem and finally

considering the whole system in the space Lp(0, T ;V ). Clearly, if the boundary condi-

tion is homogeneous Neumann then V = W 1,p(Ω) (since the boundary term vanishes

in Green’s theorem) and if we have homogeneous Dirichlet boundary condition then

V = W 1,p
0 (Ω) (in order to eliminate the boundary term in Green’s theorem). Further,

if we have a partition, for example in one dimension with homogenous Dirichlet and

Neumann boundary conditions then V = {v ∈ W 1,p1(0, 1) : v(0) = 0, Dxv(1) = 0}.

2.2 Weak solutions in (0, T )

A mathematician is a blind man in a dark room looking for a black cat which

isn’t there.

Charles Robert Darwin
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2.2.1 Existence

The following theorem states important properties of A. These will imply exis-

tence of solutions to problem (2.4).

Theorem 2.1. Suppose that conditions (A1)–(A5) are satisfied. Then operator

A : X → X∗ is bounded, demicontinuous, coercive and pseudomonotone with respect

to D(L).

Proof. The proof is based mostly on technics of estimates.

Boundedness. By Hölder’s inequality for i = 1, . . . , n,∣∣∣∣
∫
QT

a
(l)
i (t, x, u(t, x), Du(t, x);u)Div

(l)(t, x)dtdx

∣∣∣∣
≤
(∫

QT

|a(l)
i (t, x, u(t, x), Du(t, x);u)|qdtdx

) 1
q
(∫

QT

|Div
(l)(t, x)|pdtdx

) 1
p

.

(2.5)

(In case i = 0 we replace Div
(l) with v(l).) The right hand side of (2.5) may be

estimated by (A2) and inequality (1.1) which yields(∫
QT

|a(l)
i (t, x, u(t, x), Du(t, x);u)|qdtdx

) 1
q

≤ const ·
(∫

QT

[g1(u)
q (|u(t, x)|p + |Du(t, x)|p) + |[k1(u)](t, x)|q] dtdx

) 1
q

= const ·
(
g1(u)‖u‖

p
q

X + ‖k1(u)‖Lq(QT )

)
.

(2.6)

By summing the above estimates with respect to i and l we obtain

|[A(u), v]| ≤ const ·
(
g1(u)‖u‖

p
q

X + ‖k1(u)‖Lq(QT )

)
‖v‖X . (2.7)

Thus

‖A(u)‖X∗ ≤ const ·
(
g1(u)‖u‖

p
q

X + ‖k1(u)‖Lq(QT )

)
.

Now the boundedness of operators g1 and k1 implies the boundedness of A.

Demicontinuity. Assume that uk → u strongly in X. Then there exists a subse-

quence (for simplicity, it will be denoted as the original sequence) such that uk → u

and Duk → Du for a.e. in QT . We shall show that [A(uk) − A(u), v] → 0 for every

v ∈ X then by using the “subsequence trick” the demicontinuity follows.

Now for fixed w ∈ Lp(0, T ;V ) define operator Aw : X → X∗ by

[Aw(v), z] :=
N∑
l=1

∫
QT

n∑
i=1

a
(l)
i (t, x, v(t, x), Dv(t, x);w)Diz

(l)(t, x)dtdx

+
N∑
l=1

∫
QT

n∑
i=1

a
(l)
0 (t, x, v(t, x), Dv(t, x);w)z(l)(t, x)dtdx
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where z = (z(1), . . . , z(N)) ∈ Lq(0, T ;V ∗). We show that A(uk) − Au(uk) → 0 and

Au(uk)−A(u) → 0 weakly in X∗. By triangle and Hölder’s inequalities it is sufficient

to verify

‖a(l)
i (· , uk(·), Duk(·);uk) − a

(l)
i (· , uk(·), Duk(·);u)‖Lq(QT ) → 0 (2.8)

and

‖a(l)
i (· , uk(·), Duk(·);u) − a

(l)
i (· , u(·), Du(·);u)‖Lq(QT ) → 0. (2.9)

The continuous embedding X → Y and condition (A5) imply (2.8). On the other

hand, from condition (A1) and the almost everywhere convergence of (uk) and (Duk)

it follows

a
(l)
i (t, x, uk(t, x), Duk(t, x);u) → a

(l)
i (t, x, u(t, x), Du(t, x);u) a.e. in QT .

Further,

|a(l)
i (t, x, uk(t, x), Duk(t, x);u)|q

≤ g1(u)
q (|uk(t, x)|p + |Duk(t, x)|p) + |[k1(u)](t, x)|q.

Denote by fk the right hand side of the above equation. Since (uk) is convergent in

X, (fk) is convergent in L1(QT ), consequently, it is equi-integrable in L1(QT ), too.

Hence functions
(
a

(l)
i (· , uk(·), Duk(·);u)

)
k∈N

are equi-integrable in Lq(QT ). Then

by Vitali’s theorem we conclude

lim
k→∞

‖a(l)
i (· , uk(·), Duk(·);u) − a

(l)
i (· , u(·), Du(·);u)‖Lq(QT ) = 0.

Remark 2.2. Observe that we have shown also the fact that A(uk) − Au(uk) → 0

weakly in X∗ and [A(uk) − Au(uk), vk] → 0 for a bounded sequence (vk) in X.

Coerciveness. The first part of condition (A4) implies

[A(u), u] ≥
∫
QT

(
g2(u)|u(t, x)|p + |Du(t, x)|p − [k2(u)](t, x)

)
dtdx

= g2(u)‖u‖pX − ‖k2(u)‖L1(QT ),

(2.10)

thus by using the second part of (A4) we may deduce

lim
‖u‖X→∞

[A(u), u]

‖u‖X ≥ lim
k→∞

[
g2(u)‖u‖p−1

X − ‖k2(u)‖L1(QT )

‖u‖X

]
= +∞.

Pseudomonotonicity. Let us suppose that

uk → u weakly in X and Luk → Lu weakly in X∗, (2.11)

further,

lim sup
k→∞

[A(uk), uk − u] ≤ 0. (2.12)
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By using the “subsequence trick” it is sufficient to show that for a suitable subse-

quence (denoted same as the original)

lim
k→∞

[A(uk), uk − u] = 0 and A(uk) → A(u) weakly in X∗.

Since the embeddingW 1,p(Ω) → Lp(Ω) is compact and (uk) is bounded inX, further,

(Duk) is bounded in X∗ by its weak convergence, then Corollary 1.48 implies the

existence of a subsequence (uk) ⊂ (uk) such that uk → u in Y . Now Remark 2.2

yields

lim
k→∞

[A(uk) − Au(uk), uk − u] = 0. (2.13)

Comparing this with (2.12) it follows

lim sup
k→∞

[Au(uk), uk − u] ≤ 0. (2.14)

Now Theorem 1.67 implies that Au is pseudomonotone with respect to D(L) hence

from conditions (2.11) and (2.14) we obtain

lim
k→∞

[Au(uk), uk − u] = 0 and Au(uk) → Au(u)(= A(u)) weakly in X∗. (2.15)

Whence (2.13) yields lim
k→∞

[A(uk), uk − u] = 0. On the other hand, we have shown in

the proof of demicontinuity that Au(uk)−A(uk) → 0 weakly in X∗, so that by using

the second part of (2.15) we conclude A(uk) → A(u) weakly in X∗. This completes

the proof.

Corollary 2.3. Problem Lu+A(u) = F has got a solution u ∈ W 1,p(0, T ;V,H) for

every F ∈ X∗.

Proof. Since operator L is densely defined, closed, linear and maximal monotone

(see Theorem 1.51), the statement follows from Theorem 1.65. (If in the definition

of the domain of L we pose u(0) = u(T ) instead of u(0) = 0 this Corollary remains

true since Theorem 1.51 applies also in this case.)

2.2.2 Modification of the problem

In this section we modify system (2.1) in order to be able to define the notion

of periodic solutions and prove existence of them. In the following we admit only

delay type of nonlocal variable. We introduce the usual notation. If u ∈ Lp(−a, T ;V )

(T ≥ a) then let ut(s) = u(t+ s) for s ∈ [−a, 0] and t ∈ [0, T ]. Now consider system

Dtu
(l)(·)

−
n∑
i=1

Di

[
a

(l)
i (·, u(1)(·), . . . , u(N)(·), Du(1)(·), . . . , Du(N)(·);u(1)

t , . . . , u
(N)
t )

]

+ a
(l)
0 (·, u(1)(·), . . . , u(N)(·), Du(1)(·), . . . , Du(N)(·);u(1)

t , . . . , u
(N)
t )

= f (l)(·),

(2.16)
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with some boundary condition and initial condition u
(l)
0 (s) = ϕl(s) for s ∈ [−a, 0]

where ϕl ∈ Lp(−a, 0;V ) (l = 1, . . . , N). (As before, the exact form of the boundary

condition determines the space V , see Section 2.1.3.)

We are interested in solutions u ∈ Lp(−a, T ;V ) such that Dtu ∈ Lq(−a, T ;V ∗)

and u is a weak solution of (2.16) for t ∈ (0, T ), further, u(t) = u(t + T ) for

t ∈ [−a, 0]. We shall show existence of this type of solutions and at the end of

Section 2.3.1 we shall extend them to a periodic weak solution of (2.16) in (0,∞)

(see Theorem 2.13).

Now we modify conditions (A1)–(A5) according to the above modification of

equation (2.16).

(A1’) Functions a
(l)
i : QT ×R

(n+1)N ×Lp(−a, 0;V ) → R (i = 0, . . . , n; l = 1, . . . , N)

have the Carathéodory property for every fixed v ∈ Lp(−a, 0;V ), i.e., they

are measurable in (t, x) ∈ QT for every (ζ0, ζ) ∈ R
(n+1)N and continuous in

(ζ0, ζ) ∈ R
(n+1)N for a.a. (t, x) ∈ QT

(A2’) There exist bounded operators g1 : Lp(−a, 0;V ) → R
+ and k1 : Lp(−a, 0;V ) →

Lq(Ω) such that

|a(l)
i (t, x, ζ0, ζ; v)| ≤ g1(v)

(|ζ0|p−1 + |ζ|p−1
)

+ [k1(v)](x)

for a.a. (t, x) ∈ QT , every (ζ0, ζ) ∈ R
(n+1)N and v ∈ Lp(0, T ;V ) (i =

0, . . . , n; l = 1, . . . , N).

(A3’) For a.a. (t, x) ∈ QT , every ζ �= ζ̃ ∈ R
nN , ζ0 ∈ R

N and v ∈ Lp(−a, 0;V ),

N∑
l=1

n∑
i=1

(
a

(l)
i (t, x, ζ0, ζ; v) − a

(l)
i (t, x, ζ0, ζ̃; v)

)
(ζ

(l)
i − ζ̃

(l)
i ) > 0.

(A4’) There exist a constant g2 > 0 and a function k2 ∈ L1(QT ) such that

N∑
l=1

n∑
i=0

a
(l)
i (t, x, ζ0, ζ; v)ζ

(l)
i ≥ g2 (|ζ0|p + |ζ|p) − k2(t, x) (2.17)

for a.a. (t, x) ∈ QT , every (ζ0, ζ) ∈ R
(n+1)N and v ∈ Lp(−a, 0;V ).

(A5’) If uk → u weakly in Lp(−a, T ;V ) and strongly in Lp(−a, T ; (Lp(Ω))N) then

for every i = 0, . . . , n; l = 1, . . . , N ,

lim
k→∞

‖a(l)
i (· , uk(·), Duk(·); (uk−1)t) − a

(l)
i (· , uk(·), Duk(·);ut)‖Lq(QT ) = 0.
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By supposing (A1’), (A2’) we introduce operator Ã : Lp(−a, T ;V ) → Lq(0, T ;V ∗)

as follows. For u = (u(1), . . . , u(N)) ∈ Lp(−a, T ;V ), v = (v(1), . . . , v(N)) ∈ Lp(0, T ;V ),

[Ã(u), v] :=
N∑
l=1

∫
QT

n∑
i=1

a
(l)
i (t, x, u(t, x), Du(t, x);ut)Div

(l)(t, x)dtdx

+
N∑
l=1

∫
QT

n∑
i=1

a
(l)
0 (t, x, u(t, x), Du(t, x);ut)v

(l)(t, x)dtdx.

Further, let L be the operator of differentiation:

D(L) := {u ∈ Lp(0, T ;V ) : Dtu ∈ Lq(0, T ;V ∗), u(0) = u(T )} , Lu = Dtu.

(Notice that contrary to the previous section now we demand periodicity condition

in the domain of L.) Finally, let F ∈ Lq(0, T ;V ∗).

We want to find u ∈ Lp(−a, T ;V ) such that Dtu ∈ Lq(−a, T ;V ∗) and

Lu|(0,T ) + Ã(u) = F (2.18)

u(t) = u(t+ T ) for t ∈ [−a, 0]. (2.19)

In the following if (2.19) holds we say that u is periodic.

Theorem 2.4. Let T ≥ a and assume that conditions (A1’)–(A5’) are satisfied.

Then for every F ∈ Lq(0, T ;V ∗) there exists u ∈ Lp(−a, T ;V ) such that Dtu ∈
Lq(−a, T ;V ∗) and (2.18)–(2.19) hold.

Proof. The main idea is to apply the method of successive approximation (known

from the theory of ordinary differential equations). We define a weakly convergent

sequence of approximating solutions and we show that the weak limit of this sequence

will be a solution that fulfills the requirements of the theorem.

To this end, for fixed v ∈ Lp(−a, T ;V ) such that Dtv ∈ Lq(−a, 0;V ∗) and

v(t) = v(t+T ) for t ∈ [−a, 0] we introduce operator Ãv : L
p(0, T ;V ) → Lq(0, T ;V ∗)

as follows:

[Ãv(u), w] :=
N∑
l=1

∫
QT

n∑
i=1

a
(l)
i (s, x, u(s, x), Du(s, x); vt)Diw

(l)(s, x)dsdx

+
N∑
l=1

∫
QT

n∑
i=1

a
(l)
0 (s, x, u(s, x), Du(s, x); vt)w

(l)(s, x)dtdx

where u = (u(1), . . . , u(N)) ∈ Lp(0, T ;V ) and w = (w(1), . . . , w(N)) ∈ Lp(0, T ;V ).

In the following we show that for fixed periodic v ∈ Lp(−a, T ;V ) operator Ãv is

bounded, demicontinuous, coercive and pseudomonotone with respect to D(L). We

proceed the same way as in the proof of Theorem 2.1. Similarly to (2.6), (2.7),

|[Av(u), w]| ≤ const ·
(
g1(vt)‖u‖

p
q

X +

∫ T

0

‖k1(vt)‖L1(Ω)dt

)
‖w‖X .
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Since v is periodic, ‖vt‖Lp(−a,0;V ) is constant (hence bounded) in t ∈ (0, T ) thus

|g1(vt)| and ‖k1(vt)‖L1(Ω) are bounded so the above inequality implies the bounded-

ness of operator Av.

To verify the demicontinuity we pick a sequence (uk) ⊂ Lp(0, T ;V ) such that

uk → u in X. We may assume that uk → u and Duk → Du a.e. in QT thus

a
(l)
i (t, x, uk(t, x), Duk(t, x); vt) → a

(l)
i (t, x, u(t, x), Du(t, x); vt) a.e. in QT .

Further,

|a(l)
i (t, x, uk(t, x), Duk(t, x); vt)|q

≤ g1(vt)
q (|uk(t, x)|p + |Duk(t, x)|p) + |[k1(vt)](x)|q.

The right hand side of the above inequality is equi-integrable in L1(QT ) by the

convergence of (uk) in X and by the periodicity of function v. Whence by Vitali’s

theorem we conclude that

‖a(l)
i (· , uk(·), Duk(·); vt) − a

(l)
i (· , u(·), Du(·); vt)‖Lq(QT ) → 0.

which means [Ãv(uk)−Ãv(u), w] → 0 for every w ∈ X so the demicontinuity follows.

The coerciveness follows by (A4’) similarly to (2.10).

lim
‖u‖X→∞

[Av(u), u]

‖u‖X ≥ lim
k→∞

[
g2‖u‖p−1

X − ‖k2‖L1(QT )

‖u‖X

]
= +∞.

Finally, the pseudomonotonicity with respect to D(L) follows by using the clas-

sical arguments (combining with Theorem 1.48 and the boundedness of vt), see

[17, 44, 71].

Now let us define the sequence of approximating solutions (uk) ⊂ Lp(−a, T ;V )

by using a sequence (ûk) ⊂ Lp(0, T ;V ). Let û0(s) = 0 for s ∈ [0, T ] and u0(s) = 0 for

s ∈ [−a, T ]. Suppose that uk−1 ∈ Lp(−a, T ;V ) such that Dtuk−1 ∈ Lq(−a, T ;V ∗)

and uk−1(t) = uk−1(t+ T ) for t ∈ [−a, 0]. Then let ûk ∈ Lp(0, T ;V ) be a solution of

Lûk + Auk−1
(ûk) = F. (2.20)

Such solutions exist due to Theorem 1.65 and the properties of operator Auk−1
for

fixed periodic uk−1. Let uk(t) = ûk(t) for t ∈ [0, T ] and uk(t) = ûk(t + T ) for

t ∈ [−a, 0]. Then uk is continuous and Dtuk ∈ Lq(−a, T ;V ∗).

Now we show that the sequence (ûk) is bounded in Lp(0, T ;V ) (thus (uk) is

bounded in Lp(−a, T ;V )). Indeed, by integrating (2.17) in QT (analogously to

(2.10)),

[F, ûk] = [Lûk, ûk] + [Auk−1
(ûk), ûk] ≥ g2‖ûk‖pX − ‖k2‖L1(QT ). (2.21)
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Since ûk(0) = ûk(T ), [Lûk, ûk] ≥ 0 whence

‖F‖X∗ ≥ g2‖ûk‖pX − ‖k2‖L1(QT ).

Consequently, (ûk) is bounded in Lp(0, T ;V ). Then due to the periodicity of ûk, (uk)

is bounded in Lp(−a, T ;V ). So by using similar estimates as (2.5), (2.6) one obtains

the boundedness of the sequence (Auk−1
(ûk)) in Lq(0, T ;V ∗). Now from (2.21) we

may deduce

‖Lûk‖X∗ = ‖F‖X∗ − ‖Auk−1
(ûk)‖X∗ ≤ const.

By applying Theorems 1.48 and 1.52 one has a subsequence of (ûk) (for simplicity

denoted as the original) and a function û ∈ Lp(0, T ;V ) such that û(0) = û(T ) and

ûk → û weakly in Lp(0, T ;V ); strongly in Lp(0, T ; (L2(Ω))N)

Lûk → Lû weakly in Lq(0, T ;V ∗).

This implies that for a subsequence ûk → û a.e. in QT . Thus due to the periodic

extension, there exists u ∈ Lp(−a, T ;V ) such that (uk−1)t → ut a.e. in [−a, 0] × Ω

for every t ∈ [0, T ]. Similarly to (2.9), Vitali’s theorem implies

lim
k→∞

‖a(l)
i (· , ûk(·), Dûk(·);ut) − a

(l)
i (· , u(·), Du(·);ut)‖Lq(QT ) = 0.

which means Au(ûk) → Au(u) weakly in Lq(0, T ;V ∗). Finally, by condition (A5’),

‖a(l)
i (· , ûk(·), Dûk(·); (uk−1)t) − a

(l)
i (· , ûk(·), Dûk(·);ut)‖Lq(QT ) → 0

so Auk−1
(ûk) → Au(u) weakly in Lq(0, T ;V ∗) hence Auk−1

(ûk) → A(u) weakly in

Lq(0, T ;V ∗). Now by passing to the limit as k → ∞ from (2.20) we conclude that

Lû + Aû(û) = F , further, by the a.e. convergence ut(s) = û(s + T ) = u(t + T ) for

s ∈ [−a, 0].

2.2.3 Examples

In this section we give examples for functions a
(l)
i which fulfil conditions (A1)-

(A5). We begin with a general form and we finish with concrete examples.

General case

Suppose that functions a
(l)
i (t, x, ζ0, ζ; v) have the form:

a
(l)
i (t, x, ζ0, ζ; v)

= [H(l)(v)](t, x)b
(l)
i (t, x, ζ0, ζ) + [G(l)(v)](t, x)d

(l)
i (t, x, ζ0, ζ) (i �= 0),

(2.22)

a
(l)
0 (t, x, ζ0, ζ; v)

= [H(l)(v)](t, x)b
(l)
0 (t, x, ζ0, ζ) + [G

(l)
0 (v)](t, x)d

(l)
0 (t, x, ζ0, ζ),

(2.23)
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where b
(l)
i , d

(l)
i , H

(l), G(l), G
(l)
0 have the following properties.

(K1) Functions b
(l)
i : QT × R

(n+1)N → R and d
(l)
i : QT × R

(n+1)N → R (i = 1, . . . , n;

l = 1, . . . , N) are of Carathéodory type, i.e., they are measurable in (t, x) ∈
QT for every (ζ0, ζ) ∈ R

(n+1)N and continuous in (ζ0, ζ) ∈ R
(n+1)N for a.a.

(t, x) ∈ QT

(K2) There exist constants c1 > 0, 0 ≤ r < p − 1 and a function k1 ∈ Lq(Ω) such

that

a) |b(l)i (t, x, ζ0, ζ)| ≤ c1(|ζ0|p−1 + |ζ|p−1) + k1(x),

b) |d(l)
i (t, x, ζ0, ζ)| ≤ c1(|ζ0|r + |ζ|r)

for a.a. (t, x) ∈ QT and every (ζ0, ζ) ∈ R
(n+1)N (i = 1, . . . , n; l = 1, . . . , N).

(K3) For a.a. (t, x) ∈ QT , every ζ �= η ∈ R
nN , ζ0 ∈ R

N and l = 1, . . . , N ,

a)
n∑
i=1

(
b
(l)
i (t, x, ζ0, ζ) − b

(l)
i (t, x, ζ0, η)

)
(ζ

(l)
i − η

(l)
i ) > 0,

b)
n∑
i=1

(
d

(l)
i (t, x, ζ0, ζ) − d

(l)
i (t, x, ζ0, η)

)
(ζ

(l)
i − η

(l)
i ) ≥ 0.

(K4) There exist a constant c2 > 0 and a function k2 ∈ L1(Ω) such that

a)
n∑
i=0

b
(l)
i (t, x, ζ0, ζ)ζ

(l)
i ≥ c2(|ζ(l)

0 |p + |ζ(l)|p) − k2(x),

b)
n∑
i=1

d
(l)
i (t, x, ζ0, ζ)ζ

(l)
i ≥ 0

for a.a. (t, x) and every (ζ0, ζ) ∈ R
(n+1)N (l = 1, . . . , N).

(K5) a) Operator H(l) : Lp(0, T ; (Lp(Ω))N) → L∞(QT ) is bounded and continuous

such that [H(l)(v)](t, x) ≥ c3 > 0 holds for a.a. (t, x) ∈ QT and every

v ∈ Lp(0, T ; (Lp(Ω))N).

b) Operators G(l), G
(l)
0 : Lp(0, T ; (Lp(Ω))N) → L

p
p−r−1 (QT ) are bounded and

continuous where r is given in (K2)/b. Further, [G(l)(v)](t, x) ≥ 0 for a.a.

(t, x) ∈ QT , every v ∈ Lp(0, T ; (Lp(Ω))N). In addition,

lim
‖v‖Lp(0,T ;V )→∞

∫
QT

|G(l)
0 (v)(t, x)| p

p−r−1 dtdx

‖v‖pLp(0,T ;V )

= 0, l = 1, . . . , N. (2.24)

Proposition 2.5. Assume conditions (K1)–(K5). Then functions defined in (2.22)–

(2.23) satisfy conditions (A1)–(A5).
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We need a technical lemma.

Lemma 2.6. Let us introduce the following operators:

H(v) =
N∑
l=1

|H(l)(v)|, G(v) =
N∑
l=1

|G(l)(v)|, G0(v) =
N∑
l=1

|G(l)
0 (v)|.

Then operators H, G and G0 fulfil the conditions formulated in (K5) on H(l), G(l)

and G
(l)
0 , respectively.

Proof. Property (2.24) follows easily by using inequality (1.1), the other conditions

are completely trivial.

Proof of Proposition 2.5.

Condition (A1) Condition (K1) immediately implies (A1).

Condition (A2) Let i > 0 and r > 0. Obviously

|[H(l)(v)](t, x)b
(l)
i (t, x, ζ0, ζ)| ≤ ‖H(v)‖L∞(QT )

(
c1
(|ζ0|p−1 + |ζ|p−1

)
+ k1(x)

)
.

On the other hand, by using Young’s inequality with conjugate exponents 1 < p1 =
p− 1

r
<∞ and q1 =

p− 1

p− r − 1
one obtains

|[G(l)(v)](t, x)d
(l)
i (t, x, ζ0, ζ)| ≤ |[G(v)](t, x)d

(l)
i (t, x, ζ0, ζ)|

≤ |d(l)
i (t, x, ζ0, ζ)|p1

p1

+
|[G(v)](t, x)|q1

q1
.

(2.25)

Thus by using (K2)/b and inequality (1.1) we obtain

|[G(l)(v)](t, x)d
(l)
i (t, x, ζ0, ζ)| ≤ const · (|ζ0|rp1 + |ζ|rp1 + |[G(v)](t, x)|q1)

= const · (|ζ0|p−1 + |ζ|p−1 + |[G(v)](t, x)|q1) . (2.26)

Now by combining the above estimates we may deduce

|a(l)
i (t, x, ζ0, ζ; v)| ≤ const · (‖H(v)‖L∞(QT ) + 1

)
(|ζ0|p−1 + |ζ|p−1)

+ const · (‖H(v)‖L∞(QT )k1(x) + |[G(v)](t, x)|q1).
Due to the boundedness of operator H and by the continuous embedding X → Y

it follows that ‖H(·)‖L∞(QT ) is a bounded X → R
+ functional. Further, k1 ∈ Lq(Ω)

implies that ‖H(·)‖L∞(QT )k1 is a bounded X → Lq(QT ) operator. Observe that

q1q = p
p−r−1

so that∫
QT

(|[G(v)](t, x)|q1)q dtdx =

∫
QT

|[G(v)](t, x)| p
p−r−1 dtdx

=
(
‖G(v)‖

L
p

p−r−1 (QT )

) p
p−r−1

.

(2.27)
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Thus |G(·)|q1 is a bounded X → Lq(QT ) operator.

Now let r = 0. Observe that q1 = 1, moreover, from (K2)/b it follows

|d(l)
i (t, x, ζ0, ζ)| ≤ 2c1.

So in this case we also have an inequality similar to (2.26),

|[G(l)(v)](t, x)d
(l)
i (t, x, ζ0, ζ)| ≤ const · |[G(v)](t, x)|q1 .

This completes the proof in case i > 0. Case i = 0 is the same, we only have to

replace G with G0.

Condition (A3) By using condition (K3) and (K5)/a, for every ζ �= η we obtain

N∑
l=1

n∑
i=1

(
a

(l)
i (t, x, ζ0, ζ; v) − a

(l)
i (t, x, ζ0, η; v)

)
(ζ

(l)
i − η

(l)
i )

=
N∑
l=1

[H(l)(v)](t, x)
n∑
i=1

(
b
(l)
i (t, x, ζ0, ζ) − b

(l)
i (t, x, ζ0, η)

)
(ζ

(l)
i − η

(l)
i )

+
N∑
l=1

[G(l)(v)](t, x)
n∑
i=1

(
d

(l)
i (t, x, ζ0, ζ) − d

(l)
i (t, x, ζ0, η)

)
(ζ

(l)
i − η

(l)
i )

> 0.

Condition (A4) Due to (K4) and (K5) it follows

N∑
l=1

n∑
i=0

a
(l)
i (t, x, ζ0, ζ; v)ζ

(l)
i

≥
N∑
l=1

c3c2(|ζ(l)
0 |p + |ζ(l)|p) − c3k2(x) +

N∑
l=1

[G
(l)
0 (v)](t, x)d

(l)
0 (t, x, ζ0, ζ)ζ

(l)
0

≥ c4c3c2(|ζ0|p + |ζ|p) − c3Nk2(x) +
N∑
l=1

[G
(l)
0 (v)](t, x)d

(l)
0 (t, x, ζ0, ζ)ζ

(l)
0 .

(2.28)

In the last estimate we applied inequality (1.1). Put c′ = c4c3c2 and let us investigate

the terms in the last sum. By applying the ε > 0-inequality with exponents p, q and

ε > 0 such that
εp

p
<

c′

3N
it follows

|[G(l)
0 (v)](t, x)d

(l)
0 (t, x, ζ0, ζ)ζ

(l)
0 |

≤ |[G0(v)](t, x)d
(l)
0 (t, x, ζ0, ζ)ζ

(l)
0 |

≤ εp

p
|ζ(l)

0 |p +
ε−q

q
|[G0(v)](t, x)d

(l)
0 (t, x, ζ0, ζ)|q.

(2.29)

The first term on the right hand side of (2.29) may be estimated from above by
c′

3N
(|ζ0|p + |ζ|p). In the second term, the ε-inequality with μ > 0 (defined later)
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and exponents p1, q1 (similarly to (2.25), (2.26)) yields for r > 0

|[G(l)
0 (v)](t, x)d

(l)
0 (t, x, ζ0, ζ)|q

≤ const · (μp1(|ζ0|p−1 + |ζ|p−1) + μ−q1|[G0(v)](t, x)|q1
)q

≤ c∗μp1q (|ζ0|p + |ζ|p) + c∗μ−q1q|[G0(v)](t, x)|q1q.
(2.30)

Now choose μ such that
c∗μp1qε−q

q
<

c′

3N
. Then by substituting (2.29) and (2.30)

into (2.28) one obtains

N∑
l=1

n∑
i=0

a
(l)
i (t, x, ζ0, ζ; v)ζ

(l)
i

≥ c′

3
(|ζ0|p + |ζ|p) − (c3Nk2(x) +Nd∗|[G0(v)](t, x)|q1q).

(2.31)

Put

h(v) := c3Nk2(x) +Nd∗|[G0(v)](t, x)|q1q

then h(v) ∈ L1(QT ) due to (2.27) (and k2 ∈ L1(Ω)). Moreover,

‖h(v)‖L1(QT ) ≤ c3N‖k2‖L1(Ω) +Nd∗
∫
QT

|[G0(v)](t, x)|
p

p−r−1 dtdx.

Note that the this inequality holds also in case r = 0. From Lemma 2.6 it follows

that G0 fulfils (2.24) hence

lim
‖v‖X→∞

‖v‖p−1
X

(
c′

3
− ‖h(v)‖L1(QT )

‖v‖pX

)
= lim

‖v‖X→∞
c′

3
‖v‖p−1

X = +∞.

Condition (A5) Let r > 0. Suppose that uk → u weakly in X and strongly in

Y . Then (uk) is bounded in X therefore
(
b
(l)
i (· , uk(·), Duk(·))

)
k∈N

is bounded in

Lq(QT ), since similarly to (2.6)) one has the estimate∫
QT

|b(l)i (t, x, uk(t, x), Duk(t, x)|qdtdx ≤ const · (‖uk‖pX + ‖k1‖qLq(Ω)) ≤ K.

Further, observe that
(
d

(l)
i (· , uk(·), Duk(·))

)
k∈N

is bounded in L
p
r (QT ), since by

(K2)/b∫
QT

|d(l)
i (t, x, uk(t, x), Duk(t, x))|

p
r dtdx ≤

∫
QT

[
|uk(t, x)|r

p
r + |Duk(t, x)|r

p
r

]
dtdx

= ‖uk‖pX .
Whence by using the continuity of H(l) we may deduce∫

QT

|([H(l)(uk)](t, x) − [H(l)(u)](t, x))b
(l)
i (t, x, uk(t, x), Duk(t, x))|qdtdx

≤ ‖H(l)(uk) −H(l)(u)‖qL∞(QT )

∫
QT

|b(l)i (t, x, uk(t, x), Duk(t, x))|qdtdx

≤ K · ‖H(l)(uk) −H(l)(u)‖L∞(QT )

→ 0 as k → ∞.
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On the other hand, Hölder’s inequality with exponents p1, q1 yields∫
QT

|([G(l)(uk)](t, x) − [G(l)(u)](t, x))d
(l)
i (t, x, uk(t, x), Duk(t, x))|qdtdx

≤
(∫

QT

|d(l)
i (t, x, uk(t, x), Duk(t, x)|

p
p−1

p−1
r dtdx

) 1
p1

×
(∫

QT

|[G(l)(uk)](t, x) − [G(l)(u)](t, x)| p
p−1

p−1
p−r−1 dtdx

) 1
q1

≤ K
1

p1 ‖G(l)(uk) −G(l)(u)‖
p−r−1

p

L
p

p−r−1 (QT )

→ 0 as k → ∞.

This means that

‖a(l)
i (· , uk(·), Duk(·);uk) − a

(l)
i (· , uk(·), Duk(·);u)‖Lq(QT )

≤ const · ‖(H(l)(uk) −H(l)(u))b
(l)
i (· , uk(·), Duk(·))‖Lq(QT )

+ const · ‖(G(l)(uk) −G(l)(u))d
(l)
i (· , uk(·), Duk(·))‖Lq(QT )

→ 0 as k → ∞.

(2.32)

If r = 0 then the first term on the right hand side of (2.32) tends to 0. Since
p

p− r − 1
= q (hence G maps to Lq(QT ) continuously) and |d(l)

i (t, x, ζ0, ζ)| ≤ 2c1

thus

‖(G(l)(uk) −G(l)(u))d
(l)
i (· , uk(·), Duk(·))‖Lq(QT )

≤ 2c1‖(G(l)(uk) −G(l)(u))‖Lq(QT )

→ 0 as k → ∞.

So the second term on the right hand side of (2.32) tends to 0, too. Case i = 0 can

be treated similarly, by replacing G(l) with G
(l)
0 .

Concrete examples

Operator H(l)

Let Φ: R → R be a continuous function such that Φ ≥ c > 0 and introduce the

following operators on Lp(0, T ; (Lp(Ω))N):

[H̃1(v)](t, x) := Φ

(∫
Qt

N∑
j=1

bjv
(j)

)
, where bj ∈ Lq(QT ) (1 ≤ j ≤ N),

[H̃2(v)](t, x) := Φ

([∫
Qt

|v|α
] 1

α

)
, where 1 ≤ α ≤ p.

Proposition 2.7. The above operators H̃i (i = 1, 2) fulfil condition (K5)/a.
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Proof. We start with the case of H̃1. From Hölder’s inequality it follows that bjv
(j) ∈

L1(QT ) so that H̃1 is well-defined and obviously H̃1(v) ≥ c > 0. On the other hand,

if ‖v‖Y ≤ K then∣∣∣∣∣
∫
Qt

N∑
j=1

bjv
(j)

∣∣∣∣∣ ≤
N∑
j=1

∫
QT

|bjv(j)| ≤ K

N∑
j=1

‖bj‖Lq(QT ).

Now the continuity of Φ yields the continuity and boundedness of H̃1. Since, if

vk → v in Lp(0, T ; (Lp(Ω))N) then∣∣∣∣∣
∫
Qt

N∑
j=1

bjv
(j)
k −

∫
Qt

N∑
j=1

bjv
(j)

∣∣∣∣∣ ≤
N∑
j=1

(∫
QT

|bj|q
) 1

q
(∫

QT

|v(j)
k − v(j)|p

) 1
p

→ 0

as k → ∞ therefore by continuity of φ it follows H̃1(vk) → H̃1(v) in L∞(QT ). This

completes the proof.

Clearly, operator H̃2 is well-defined and maps to L∞(QT ) (that can be proved

the same way as above). Now let vk → v in Lp(0, T ; (Lp(Ω))N) then vk → v a.e. in

QT , further, they are equi-integrable in Lα(QT ) for every 1 ≤ α ≤ p. Then Vitali’s

theorem yields the convergence in Lα(QT ) so that H̃2(vk) → H̃2(v), i.e., operator

H̃1 is continuous.

Operators G(l), G
(l)
0

Let ψ : R → R be a continuous function such that |ψ(y)| ≤ c̃ · |y|p−r0−1 holds for

some constants c̃ and 0 ≤ r0 < p − 1. Let us introduce the following operators on

Lp(0, T ; (Lp(Ω))N):

[G̃1(v)](t, x) := ψ

(∫ t

0

N∑
j=1

aj(τ, x)v
(j)(τ, x)dτ

)
,

[G̃2(v)](t, x) := ψ

(∫
Ω

N∑
j=1

aj(t, ξ)v
(j)(t, ξ)dξ

)
,

[G̃3(v)](t, x) := ψ

([∫ t

0

|v(τ, x)|αdτ
] 1

α

)

where aj ∈ L∞(QT ) (1 ≤ j ≤ N) and 1 ≤ α ≤ p.

Proposition 2.8. The above operators G̃i (i = 1, 2, 3) fulfil conditions made on G
(l)
0

in (K5)/b with 0 ≤ r < r0.

Proof. We show the case of operator G̃1, one can prove the other cases similarly.
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Let 0 ≤ r < r0 < p− 1 then obviously∫
QT

|[G̃1(v)](t, x)|
p

p−r−1 dtdx ≤ const ·
∫
QT

(
N∑
j=1

∫ T

0

‖aj‖L∞(QT )|v(j)(τ, x)|dτ
)pλ

dtdx

≤ const ·
∫
QT

(
·
N∑
j=1

∫ T

0

|v(τ, x)|dτ
)pλ

dtdx

= const ·
∫
QT

(∫ T

0

|v(τ, x)|dτ
)pλ

dtdx

where 0 < λ =
p− r0 − 1

p− r − 1
< 1. By using Hölder’s inequality with exponents p1 =

1

λ

and q1 =
p1

p1 − 1
we obtain

∫
QT

(∫ T

0

|v(τ, x)|dτ
)pλ

dtdx

≤ const ·
(∫

QT

(∫ T

0

|v(τ, x)|dτ
)pλ 1

λ

dtdx

)λ

·
(∫

QT

1q1
) 1

q1

= const ·
(∫

QT

(∫ T

0

|v(τ, x)|dτ
)p

dtdx

)λ

Now we may estimate again by Hölder’s inequality and then application of Fubini’s

theorem yields∫
QT

(∫ T

0

|v(τ, x)|dτ
)p

dtdx ≤
∫
QT

[(∫ T

0

|v(τ, x)|pdτ
) 1

p
(∫ T

0

1qdτ

) 1
q

]p
dtdx

= const ·
∫
QT

∫ T

0

|v(τ, x)|pdτ dxdt

= const ·
∫
QT

|v(t, x)|pdtdx

≤ const · ‖v‖pX .
Summarizing the above estimates one obtains∫

QT

|[G̃1(v)](t, x)|
p

p−r−1 dtdx ≤ const · ‖v‖pλX .

Now it is easily seen that G̃1 is a bounded operator which maps to L
p

p−r−1 (QT ).

Further, due to λ− 1 < 0,

lim
‖v‖X→∞

∫
QT

|[G̃1(v)](t, x)|
p

p−r−1 dtdx

‖v‖pX
= lim

‖v‖X→∞
‖v‖p(λ−1)

X = 0.

The continuity of the operator can be proved similarly to the previous theorem.

Remark 2.9. From Lemma 2.6 it follows easily that linear combinations of the above

operators fulfil condtitions (K5)/a and (K5)/b, too.
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Functions b
(l)
i , d

(l)
i

We begin with a little bit general but well-known example. Let b
(l)
i (t, x, ζ0, ζ) :=

b̃
(l)
i (t, x, ζ0, ζ

(l)
i ) (i = 0, . . . , n; l = 1, . . . , N) be such that

(i) function b̃
(l)
i : QT × R

N+1 → R has the Carathéodory property, i.e., it is

measurable in (t, x) ∈ QT for every (ζ0, ζ
(l)
i ) ∈ R

N+1 and continuous in

(ζ0, ζ
(l)
i ) ∈ R

N+1 for a.a. (t, x) ∈ QT ;

(ii) there exist a constant c1 > 0 and a function k1 ∈ Lq(Ω) such that

|b̃(l)i (t, x, ζ0, ζ
(l)
i )| ≤ c1(|ζ0|p−1 + |ζ(l)

i |p−1) + k1(x)

for a.a. (t, x) ∈ QT and every (ζ0, ζ
(l)
i ) ∈ R

N+1;

(iii) function ζ
(l)
i �→ b̃

(l)
i (t, x, ζ0, ζ

(l)
i ) is strictly increasing for a.a. (t, x) ∈ QT and

every ζ0 ∈ R
N ;

(iv) there exist a constant c2 > 0 and a function k2 ∈ L1(Ω)such that

b̃
(l)
i (t, x, ζ0, ζ

(l)
i )ζ

(l)
i ≥ c2|ζ(l)

i |p − k2(x)

for a.a. (t, x) ∈ QT and every (ζ0, ζ
(l)
i ) ∈ R

N+1.

Then b
(l)
i obviously fulfils (K1), (K2)/a. Condition (K4)/a follows from inequality

(1.1), further, the monotonicity yields (K3)/a.

Similarly, let d
(l)
i (t, x, ζ0, ζ) := d̃

(l)
i (t, x, ζ0, ζ

(l)
i ) if i �= 0 and d

(l)
0 := d

(l)
0 (t, x, ζ0, ζ)

(i = 1, . . . , n; l = 1, . . . , N) be such that

(i) functions d̃
(l)
i : QT × R

N+1 → R and d̃
(l)
0 : QT × R

2N → R are of Carathéodory

type;

(ii) there exist constants c1 > 0, 0 ≤ r < p − 1 and a function k1 ∈ Lq(QT ) such

that

|d̃(l)
i (t, x, ζ0, ζ

(l)
i )| ≤ c1(|ζ0|r + |ζ(l)

i |r) + k1(x),

|d(l)
0 (t, x, ζ0, ζ)| ≤ c1(|ζ0|r + |ζ|r) + k1(x)

for a.a. (t, x) ∈ QT and every (ζ0, ζi) ∈ R
2N ;

(iii) function ζ
(l)
i �→ d̃

(l)
i (t, x, ζ0, ζ

(l)
i ) is nondecreasing and d̃

(l)
i (t, x, ζ0, 0) = 0 for a.a.

(t, x) ∈ QT and every (ζ0, ζi) ∈ R
N+1.
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Now conditions (K1), (K2)/b, (K3)/b obviously hold. To prove (K4)/b we only

have to observe that (if i �= 0) d̃
(l)
i (t, x, ζ0, ζ

(l)
i )ζ

(l)
i ≥ 0.

The simplest functions which satisfy the above general conditions are

b
(l)
i (t, x, ζ0, ζ

(l)
i ) = ζ

(l)
i |ζ(l)

i |p−2, d
(l)
i (t, x, ζ0, ζ

(l)
i ) = ζ

(l)
i |ζ|r−1

for i = 0, . . . , n; l = 1, . . . , N and for r > 0. If r = 0 let d
(l)
i ≡ 0 and d

(l)
0 ≡ 1.

Other functions which fulfil the desired conditions (K1)–(K4) (but they do not

fit in the above general case) are the following:

b
(l)
i (t, x, ζ0, ζ) = ζ

(l)
i |ζ|p−2 (i �= 0),

b
(l)
0 (t, x, ζ0, ζ) = ζ

(l)
0 |ζ0|p−2,

or
b
(l)
i (t, x, ζ0, ζ) = ζ

(l)
i |ζ(l)|p−2 (i �= 0),

b
(l)
0 (t, x, ζ0, ζ) = ζ

(l)
0 |ζ(l)

0 |p−2

and similarly for functions d
(l)
i by replacing the exponent p − 2 with r − 1. In case

of the second example one has

n∑
i=1

Dib
(l)
i (t, x, u,Du) =

n∑
i=1

Di(Diu
(l)|Du(l)|p−2) = div

(
Du(l)|Du(l)|p−2

)
.

So we obtain the p-Laplacian (see (1.11)) as the operator A of our original problem.

The above functions obviously satisfy conditions (K1)–(K4).

Case of Theorem 2.4

Let functions a
(l)
i (t, x, ζ0, ζ; v) have the form:

a
(l)
i (t, x, ζ0, ζ; v)

= [H(l)(v)](x)b
(l)
i (t, x, ζ0, ζ) + [G(l)(v)](x)d

(l)
i (t, x, ζ0, ζ) (i �= 0),

(2.33)

a
(l)
0 (t, x, ζ0, ζ; v) = [H(l)(v)](x)b

(l)
0 (t, x, ζ0, ζ) + d

(l)
0 (t, x, ζ0, ζ). (2.34)

By applying the arguments of Section 2.2.3 we have

Proposition 2.10. Let T ≥ a. Suppose that functions b
(l)
i , d

(l)
i satisfy (K1)–(K4)

(i = 0, . . . , n; l = 1, . . . , N). Further, H(l) : Lp(−a, 0; (Lp(Ω))N) → L∞(QT ) is

bounded and continuous such that [H(l)(v)](t, x) ≥ c3 > 0 holds for a.a. (t, x) ∈
QT and every v ∈ Lp(−a, 0; (Lp(Ω))N). In addition, G(l) : Lp(−a, 0; (Lp(Ω))N) →
L

p
p−r−1 (QT ) is bounded and continuous where r is given in (K2)/b. Then functions

(2.33)–(2.34) fulfil conditions (A1’)–(A5’).

For functions b
(l)
i , d

(l)
i consider the examples found in Section 2.2.3. Further, oper-

ators H(l), G(l) may have the following form. Let Φ: R → R be a continuous function
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such that Φ ≥ c > 0 and introduce the following operators on Lp(0, T ; (Lp(Ω))N):

[H̃1(v)](x) := Φ

(∫ 0

−a

N∑
j=1

bj(s, x)v
(j)(s, x)ds

)
, where bj ∈ Lq(QT ) (1 ≤ j ≤ N),

[H̃2(v)](t, x) := Φ

([∫ 0

−a
|v(s, x)|αds

] 1
α

)
, where 1 ≤ α ≤ p.

Now let ψ : R → R be a continuous function such that |ψ(y)| ≤ c̃ · |y|p−r0−1 holds

for some constants c̃ and 0 ≤ r0 < p − 1. Let us introduce the following operators

on Lp(0, T ; (Lp(Ω))N):

[G̃1(v)](t, x) := ψ

(∫ 0

−a

N∑
j=1

aj(s, x)v
(j)(s, x)ds

)
,

[G̃2(v)](t, x) := ψ

([∫ 0

−a
|v(s, x)|αds

] 1
α

)

where aj ∈ L∞(QT ) (1 ≤ j ≤ N) and 1 ≤ α ≤ p.

Proposition 2.11. The above operators H̃i, G̃i (i = 1, 2) fulfil the conditions posed

on them in Proposition 2.10.

2.3 Solutions in (0,∞)

There’s no sense in being precise when you don’t even know what you’re

talking about.

John von Neumann

In the previous section we showed existence of solutions in the time interval

(0, T ). In what follows, we consider solutions in (0,∞). First of all, we define precisely

the notion of solutions in (0,∞) then we show existence of these solutions and

investigate the long-time behaviour of them. We shall obtain results on boundedness

and stabilization as t→ ∞, see also [61, 64, 65].

2.3.1 Existence

Briefly, denote Q∞ = (0,∞) × Ω. Further, let the space Lploc(0,∞;V ) be the

set of measurable functions u : (0,∞) → V such that u|(0,T ) ∈ Lp(0, T ;V ) for every

0 < T <∞. It is easy to see that if u ∈ Lploc(0,∞;V ) and for every 0 < T <∞ there

exists Dt(u|(0,T )) ∈ Lq(0, T ;V ∗) then Dtu ∈ Lqloc(0,∞;V ∗). Further, we denote by
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Lploc(Q∞) the space of measurable functions v : Q∞ → R such that v|(0,T ) ∈ Lp(QT )

for every 0 < T <∞.

In order to prove existence of weak solutions in (0,∞), one poses:

(Vol) Functions a
(l)
i : Q∞ × R

(n+1)N × Lploc(0,∞;V ) → R (i = 0, . . . , n; l = 1, . . . , N)

have the so-called Volterra property, i.e., a
(l)
i (t, x, ζ0, ζ; , v)|(0,T ) depends only

on v|(0,T ) for every 0 < T <∞.

In addition, we suppose that conditions (A1)–(A5) are satisfied for every T ∈
(0,∞) by functions a

(l)
i (i = 0, . . . , n; l = 1, . . . , N). Precisely, we mean that for every

T ∈ (0,∞), the restriction a
(l)
i |(0,T ) : QT × R × R

(n+1)N × Lp(0, T ;V ) → R, which

may be defined uniquely by the Volterra-property, satisfy the conditions (A1)–(A5)

(not necessarily with the same g1, g2, k1, k2).

Finally, let

(F1∗) F ∈ Lqloc(0,∞;V ∗).

Now for every 0 < T < ∞ define LT : D(LT ) → Lq(0, T ;V ∗) by (2.3). By

supposing the above conditions, for fixed 0 < T < ∞ we may introduce operator

AT : Lp(0, T ;V ) → Lq(0, T ;V ∗) by (2.2) (which will be bounded, demicontinuous,

coercive and pseudomonotone with respect to D(LT )). Due to the Volterry prop-

erty, there is an operator A : Lploc(0,∞;V ) → Lqloc(0,∞;V ∗) such that AT (u|(0,T )) =

A(u)|(0,T ) for every 0 < T <∞ and u ∈ Lploc(0, T ;V ). Similarly, we write FT = F|(0,T )

for every 0 < T <∞.

We say that u ∈ Lploc(0,∞;V ) is a weak solution of (2.1) in (0,∞) if

Dtu+ A(u) = F

or, in other words, if for all 0 < T <∞,

LTu|(0,T ) + AT (u|(0,T )) = FT . (2.35)

(Notice that initial condition u(0) = 0 is included in the above equations.) Observe

that the Volterra property ensures that AT (u|(0,T ))|(0,T̃ ) = AT̃ (u|(0,T̃ )) for every 0 <

T̃ ≤ T < ∞ and u ∈ Lploc(0,∞;V ) thus if u is a solution in (0, T ) then this it is

also a solution in (0, T̃ ). In the sequel we omit the notation |(0,T ) of the restriction

of a function to a certain interval if it is not confusing, since the operators and the

norms contain the information about the space.

Theorem 2.12. Suppose that (Vol), (F1∗) hold, further, conditions (A1)–(A5) are

satisfied for every 0 < T < ∞. Then there exists a weak solution u ∈ Lploc(0,∞;V )

of (2.1) in (0,∞).
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Proof. The main idea is the following. By Corollary 2.3, for every 0 < T < ∞
there exists a solution in (0, T ). Then the weak limit of a suitable weakly convergent

subsequence of these solutions, that were chosen by using a diagonal process, will

be a solution in (0,∞).

We briefly write XT = Lp(0, T ;V ) for 0 < T < ∞. Let (Tk) be a monotone

increasing sequence of positive numbers such that Tk → +∞. Then by Corollary

2.3, for every Tk there exists uk ∈ XTk
∩D(LTk

) such that

LTk
uk + ATk

(uk) = FTk
.

Now we show that for fixed m, the sequence
(
uk|(0,Tm)

)
k�m is bounded in XTm . By

the Volterra property uk|(0,Tm) is a solution in (0, Tm) for k ≥ m, i.e.,

LTmuk + ATm(uk) = FTm .

By applying both sides to uk it follows

[LTmuk, uk] + [ATm(uk), uk] = [FTm , uk].

The first term on the left hand side of the above equation is nonnegative, on the

other hand, |[FTm , uk]| ≤ ‖F‖X∗
Tm

· ‖uk‖XTm
hence

[ATm(uk), uk]

‖uk‖XTm

≤ ‖F‖X∗
Tm
.

Now the coerciveness of ATm in XTm yields the boundedness of
(‖uk‖XTm

)
k�m. Fur-

ther, the boundedness of operator ATm implies the boundedness of the sequence

(ATm(uk))k�m in X∗
Tm

.

Let m = 1. Since (uk) and (AT1(uk)) are bounded sequences in reflexive Banach

spaces, by Theorem 1.28 and Proposition 1.52 there exists a weakly convergent

subsequence (u1,k) ⊂ (uk) and there exist functions u1,∗ ∈ XT1 ∩D(LT1), v1,∗ ∈ X∗
T1

such that

u1,k → u1,∗ weakly in XT1 ,

LT1u1,k → LT1u1,∗ weakly in X∗
T1
,

u1,k(T1) → u1,∗(T1) weakly in H,

AT1(u1,k) → v1,∗ weakly in X∗
T1
.

If (um−1,k)k≥m−1 is given then (um−1,k)k≥m−1, (ATm−1um−1,k)k≥m−1 are bounded in

reflexive Banach spaces XTm−1 , (XTm−1)
∗ thus Theorem 1.28 and Proposition 1.52
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yield a subsequence (um,k) ⊂ (um−1,k) and functions um,∗ ∈ XTm ∩ D(LTm), vm,∗ ∈
X∗
Tm

such that

um,k → um,∗ weakly in XTm , (2.36)

LTmum,k → LTmum,∗ weakly in X∗
Tm
, (2.37)

um,k(Tm) → um,∗(Tm) weakly in H, (2.38)

ATm(um,k) → vm,∗ weakly in X∗
Tm
. (2.39)

It is easy to see that for each fixed l < m the above weak convergences hold in

XTl
, X∗

Tl
, respectively, which implies um,∗|(0,Tl) = ul,∗ and vm,∗|(0,Tl) = vl,∗ for l < m.

Consequently, there exist unique functions u, v : (0,∞) → V such that u|(0,Tm) =

um,∗, v|(0,Tm) = vm,∗ for every m ∈ N. This means that u ∈ Lploc(0,∞;V ) and v ∈
Lqloc(0,∞;V ∗).

Now fix m ∈ N. In the sequel we shall work on interval (0, Tm). We show that u

is a solution in this interval then the proof of the theorem will be complete.

At this point we already know that um,∗ ∈ D(LTm) and LTmum,∗ + vm,∗ = FTm .

It remains to prove vm,∗ = A(um,∗) then um,∗ is a solution in (0, Tm). By (2.39) it

suffices to show that ATm(um,k) → ATm(um,∗) weakly in X∗
Tm

. Now we use the fact

that ATm is a pseudomonotone operator with respect to D(LTm), i.e., (2.36), (2.37)

and

lim sup
k→∞

[ATm(um,k), um,k − um,∗] ≤ 0 (2.40)

imply that ATm(um,k) → ATm(um,∗) weakly in X∗
Tm

. In the following we show that

(2.40) holds. By using (2.39) we may deduce

lim sup
k→∞

[ATm(um,k), um,k − um,∗] = lim sup
k→∞

[ATm(um,k), um,k] − [vm,∗, um,∗]. (2.41)

Further,

[ATm(um,k), um,k] = [FTm , um,k] − [LTmum,k, um,k]

= [FTm , um,k] −
1

2
‖um,k(Tm)‖2

H +
1

2
‖um,k(0)‖2

H .
(2.42)

Now Lemma 1.29 and property (2.38) imply

‖um,∗(Tm)‖H ≤ lim inf
k→∞

‖um,k(Tm)‖H (2.43)

so that by using (2.36) and (2.42) we conclude

lim sup
k→∞

[ATm(um,k), um,k] ≤ [FTm , um,∗] −
1

2
‖um,∗(Tm)‖2

H

= [FTm , um,∗] − [LTmum,∗, um,∗].

The above inequality and (2.41) together yield the desired relation (2.40). The proof

of Theorem 2.12 is complete.
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In the following we are interested in periodic type of solutions in (0,∞). If

the equations describes a periodic process for instance in biology then existence of

periodic solutions is an improtant question. If the nonlocal variable may contain

arbitrary long delay then it is not so clear how to define the notion of periodic

solutions. The Volterra property ensures that at time t the function depends only

on the values before t. The notion of periodicity can make sense, e.g., by assuming

that this delay is less than a certain time interval as in Section 2.2.2 for system

(2.16).

We recall (2.16):

Dtu
(l)(·)

−
n∑
i=1

Di

[
a

(l)
i (·, u(1)(·), . . . , u(N)(·), Du(1)(·), . . . , Du(N)(·);u(1)

t , . . . , u
(N)
t )

]

+ a
(l)
0 (·, u(1)(·), . . . , u(N)(·), Du(1)(·), . . . , Du(N)(·);u(1)

t , . . . , u
(N)
t )

= f (l)(·),

with some boundary condition and initial condition u
(l)
0 (s) = ϕl(s) for s ∈ [−a, 0]

where ϕl ∈ Lp(−a, 0;V ) (l = 1, . . . , N). (As before, the exact form of the boundary

condition determines the space V , see Section 2.1.3.)

By supposing conditions (A1’), (A2’) (see Section 2.2.2) we introduce operator

ÃT : Lp(−a, T ;V ) → Lq(0, T ;V ∗) as follows. For u = (u(1), . . . , u(N)) ∈ Lp(−a, T ;V ),

v = (v(1), . . . , v(N)) ∈ Lp(0, T ;V ),

[ÃT (u), v] :=
N∑
l=1

∫
QT

n∑
i=1

a
(l)
i (t, x, u(t, x), Du(t, x);ut)Div

(l)(t, x)dtdx

+
N∑
l=1

∫
QT

n∑
i=1

a
(l)
0 (t, x, u(t, x), Du(t, x);ut)v

(l)(t, x)dtdx.

Let Ã : Lploc(−a,∞;V ) → Lqloc(0,∞;V ∗) such that Ã(u)|(0,T ) = Ã(u|(0,T )) for every

u ∈ Lploc(−a,∞;V ). In addition, let F ∈ Lqloc(0,∞;V ∗) (and FT = F|(0,T )).

We want to find u ∈ Lploc(−a,∞;V ) such that Dtu ∈ Lqloc(−a,∞;V ∗) and

Dtu|(0,∞) + Ã(u) = F (2.44)

u(t) = u(t+ T ) for t ∈ [−a,∞). (2.45)

Theorem 2.13. Suppose that functions a
(l)
i : Q∞ × R

n+1 × Lp(−a, 0;V ) → R (i =

1, . . . , n; l = 1, . . . , N) satisfy conditions (A1’)–(A5’) in (0, T ) for some T ≥ a,

further, they are T -periodic, i.e.,

a
(l)
i (t+ T, x, ζ0, ζ; v) = a

(l)
i (t, x, ζ0, ζ; v)
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for a.a. (t, x) ∈ Q∞, every (ζ0, ζ) ∈ R
n+1 and v ∈ Lp(−a, 0;V ). Then for every

T -periodic F ∈ Lqloc(0,∞;V ∗) there exists u ∈ Lploc(−a,∞;V ) such that Dtu ∈
Lqloc(−a,∞;V ∗) and (2.44)–(2.45) hold.

Proof. By applying Theorem 2.4 in interval (0, T ), there exist u ∈ Lp(−a, T ;V ) such

that Dtu ∈ Lq(−a, T ;V ∗), further,

Dtu|(0,T ) + ÃT (u) = FT

u(t) = u(t+ T ) for t ∈ [−a,∞).

Now we can apply Theorem 2.4 in interval (T, 2T ) and by the periodicity of u

we obtain the translation of u as solution. By continuing the method on intervals

(kT, (k + 1)T ) we obtain the translations of u which yields a periodic solution such

that (2.44) holds.

2.3.2 Boundedness

In this section we show the boundedness of solutions in (0,∞) formulated in

Theorem 2.12. We modify condition (A4) and assume the boundedness of F.

(A4∗) There exist a constant g2 ∈ R
+ and an operator k2 : Lploc(0,∞;V ) → L1

loc(Q∞)

of Volterra type such that

N∑
l=1

n∑
i=0

a
(l)
i (t, x, ζ0, ζ; v)ζ

(l)
i ≥ g2 (|ζ0|p + |ζ|p) − [k2(v)](t, x)

for a.a. (t, x) ∈ Q∞, every (ζ0, ζ) ∈ R
(n+1)N and v ∈ Lploc(0,∞;V ). Further,

for every T > 0,

lim
‖v‖Lp(0,T ;V )→∞

‖k2(v)‖L1(QT )

‖v‖pLp(0,T ;V )

= 0.

Finally, there exist constants c4 > 0, 0 ≤ p1 < p and a continuous function

ϕ : [0,∞) → R such that lim
τ→∞

ϕ(τ) = 0, further, if v ∈ Lploc(0,∞;V ) and

Dtv ∈ Lqloc(0,∞;V ∗) then for a.a. t ∈ (0,∞),∫
Ω

|[k2(v)](t, x)|dx

≤ c4

(
sup
τ∈[0,t]

‖v(τ)‖p1
(L2(Ω))N + ϕ(t) · sup

τ∈[0,t]

‖v(τ)‖p
(L2(Ω))N + 1

)
.

(2.46)

(F1∗∗) There exists t∗ ∈ (0,∞) such that F|(t∗,∞) ∈ L∞(t∗,∞;V ∗).

Remark 2.14. The suprema in inequality (2.46) exist since v ∈ Lploc(0,∞;V ) and

Dtv ∈ Lqloc(0,∞;V ∗) imply v ∈ C([0, T ], (L2(Ω))N) for every finite T .
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Notice that condition (A4∗) implies (A4) for every 0 < T <∞. Now we have

Theorem 2.15. Assume (Vol), further, suppose that (A1)–(A3), (A5) hold for every

0 < T < ∞, and the modified conditions (A4∗), (F1∗∗) are fulfilled. Then for the

solutions u of problem (2.35) we have u ∈ L∞(0,∞; (L2(Ω))N).

Proof. For brevity, let y(t) = ‖u(t)‖2
H (recall that H = (L2(Ω))N). Note that y ∈

C(0,∞). We shall prove an integral inequality for y. By applying both sides of

equation Dtu(t)+ [A(u)](t) = F(t) to u(t) and integrating on interval (T1, T2) where

t∗ ≤ T1 ≤ T2 <∞ we obtain∫ T2

T1

〈Dtu(t), u(t)〉dt+

∫ T2

T1

〈[A(u)](t), u(t)〉dt =

∫ T2

T1

〈F(t), u(t)〉dt. (2.47)

The first term on the left hand side by Corollary 1.43 has the form∫ T2

T1

〈Dtu(t), u(t)〉dt =
1

2

(‖u(T2)‖2
H − ‖u(T1)‖2

H

)
=

1

2
(y(T2) − y(T1)) . (2.48)

Further, one may estimate the second term from below as

〈[A(u)](t), u(t)〉 ≥
∫

Ω

[
g2 (|u(t, x)|p + |Du(t, x)|p) − [k2(u)](t, x)

]
dx

= g2‖u(t)‖pV −
∫

Ω

[k2(u)](t, x)dx

thus ∫ T2

T1

〈[A(u)](t), u(t)〉 ≥ g2

∫ T2

T1

‖u(t)‖pV dt−
∫ T2

T1

∫
Ω

[k2(u)](t, x)dtdx.

By substituting (2.46) into the above inequality we may deduce

∫ T2

T1

〈[A(u)](t), u(t)〉dt

≥ g2

∫ T2

T1

‖u(t)‖pV − c4

∫ T2

T1

[
sup
τ∈[0,t]

y(τ)
p1
2 + ϕ(t) · sup

τ∈[0,t]

y(τ)
p
2 + 1

]
dt.

(2.49)

Now let us estimate the right hand side of (2.47). Choose ε > 0 such that
εp

p
<

1

2
g2

then by using the ε-inequality and the fact that F ∈ L∞(0,∞;V ∗) we conclude

∫ T2

T1

〈F(t), u(t)〉dt ≤
∫ T2

T1

‖u(t)‖V ‖F(t)‖V ∗ dt

≤
∫ T2

T1

[
εp

p
‖u(t)‖pV +

1

qεq
‖F(t)‖qV ∗

]
dt

≤ 1

2
g2

∫ T2

T1

‖u(t)‖pV dt+
1

qεq

∫ T2

T1

ess sup
(t∗,∞)

‖F‖V ∗ dt.

(2.50)
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Then by substituting (2.48), (2.49), (2.50) into (2.47) one obtains

1

2
(y(T2) − y(T1)) +

1

2
g2

∫ T2

T1

‖u(t)‖pV dt

≤ c′4

∫ T2

T1

[
sup
τ∈[0,t]

y(τ)
p1
2 + ϕ(t) · sup

τ∈[0,t]

y(τ)
p
2 + 1

]
dt.

Finally, the continuous embedding (W 1,p(Ω))N ↪→ (L2(Ω))N implies

y(T2) − y(T1) + d1

∫ T2

T1

y(t)
p
2 dt ≤ d2

∫ T2

T1

[
sup
τ∈[0,t]

y(τ)
p1
2 + ϕ(t) · sup

τ∈[0,t]

y(τ)
p
2 + 1

]
dt

where the constants d1, d2 > 0 do not depend on the choice of (T1, T2). We show

that the above inequality implies the boundedness of y. We prove by contradiction.

Suppose that for every M > 0 there exists tM > 0 such that

M + 1 = y(tM) = sup
τ∈[0,tM ]

y(τ). (2.51)

(So tM is the first point where y attains the value M + 1.) Then by the continuity

of y there exists δ > 0 such that y(t) > M for tM − δ ≤ t ≤ tM . Now by choosing

T1 = tM − δ and T2 = tM in (2.51) it follows

y(tM)−y(tM−δ)+d1δM
p
2 ≤ d2δ(M+1)

p1
2 +d2(M+1)

p
2

∫ tM

tM−δ
ϕ(t)dt+d2δ. (2.52)

On the right hand side y(tM) − y(tM − δ) ≥ 0, further, by the intermediate value

theorem ∫ tM

tM−δ
ϕ(t)dt = δ · sup

t∈[tM−1,tM ]

ϕ(t) = δ · ϕ(t̂)

for some t̂ ∈ [tM − δ, tM ]. Hence by (2.52),

d1

(
M

M + 1

) p
2

≤ d2(M + 1)
p1−p

2 + d2ϕ(t̂) + d2(M + 1)−
p
2 .

Note that the left hand side converges to 1 as M → ∞. On the other hand, p1 < p

and t̂ → ∞ imply that the right hand side tends to 0. That is a contradiction, the

proof our theorem is complete.

Remark 2.16. One may study also non-uniformly parabolic systems, when in condi-

tion (A4∗) instead of a constant g2 one has an operator g2 : Lploc(0,∞;V ) → R
+ not

necessarily bounded from below for all v ∈ Lploc(0,∞;V ), see [67, 68, 69].
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2.3.3 Stabilization

In this part we investigate the asymptotic properties as t→ ∞. In particular, we

are interested in the stabilization of solutions, i.e., the convergence to a stationary

state. To this end, suppose the following.

(A2+) For every v ∈ L∞(0,∞; (L2(Ω))N) there exist a constant cv > 0 and a function

kv ∈ Lq(Ω) such that

|a(l)
i (t, x, ζ0, ζ; v)| ≤ cv

(|ζ0|p−1 + |ζ|p−1
)

+ kv(x)

for a.a. (t, x) ∈ Q∞, every (ζ0, ζ) ∈ R
(n+1)N (i = 0, . . . , n; l = 1, . . . , N).

(A6) There exist Carathéodory functions a
(l)
i,∞ : Ω × R

(n+1)N → R (i = 0, . . . , n; l =

1, . . . , N) such that for every fixed v ∈ Lploc(0,∞;V ) ∩ L∞(0,∞; (L2(Ω))N),

a.a. x ∈ Ω and every (ζ0, ζ) ∈ R
(n+1)N ,

lim
t→∞

a
(l)
i (t, x, ζ0, ζ; v) = a

(l)
i,∞(x, ζ0, ζ). (2.53)

(A7) There exists a constant c5 > 0 such that for a.a. x ∈ Ω, every (ζ0, ζ), (ζ̃0, ζ̃) ∈
R

(n+1)N and v ∈ Lploc(0,∞;V ),

N∑
l=1

n∑
i=0

(
a

(l)
i (t, x, ζ0, ζ; v) − a

(l)
i (t, x, ζ̃0, ζ̃; v)

)
(ζ

(l)
i − ζ̃

(l)
i )

≥ c5

(
|ζ0 − ζ̃0|p + |ζ − ζ̃|p

)
− k3(t, x, ζ0, ζ̃0; v),

(2.54)

where k3 : Q∞ × R × R × Lploc(0,∞;V ) satisfies

lim
t→∞

∫
Ω

k3(t, x, u(t, x), ũ(t, x); v)dx = 0 (2.55)

if u, ũ, v ∈ L∞(0,∞; (L2(Ω))N).

(F2) There exists F∞ ∈ V ∗ such that lim
t→∞

‖F(t) − F∞‖V ∗ = 0.

Remark 2.17. Precisely, by the convergence s(t) → 0 as t → ∞ where s : R
+ → M

is a measurable function and M is a normed space, we mean that for all ε > 0 there

exists t0 such that ‖s(t)‖M ≤ ε for a.a. t > t0.

Now we may define operator A∞ : V → V ∗ by

〈A∞(v), w〉 :=
N∑
l=1

∫
Ω

n∑
i=1

a
(l)
i,∞(x, v(x), Dv(x))Diw

(l)(x)dx

+
N∑
l=1

∫
Ω

n∑
i=1

a
(l)
0,∞(x, v(x), Dv(x))w(l)(x)dx

(2.56)

where v = (v(1), . . . , v(N)), w = (w(1), . . . , w(N)) ∈ V .

Our main result is
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Theorem 2.18. Assume (Vol). In addition, suppose that conditions (A1)–(A3),

(A5) hold for every 0 < T < ∞, further, (A2+), (A4∗), (A6), (A7), (F2) are

satisfied. Then there exists a unique solution u∞ ∈ V of problem

A∞(u∞) = F∞.

In addition, u∞ possesses the following stabilization relation:

lim
t→∞

‖u(t) − u∞‖(L2(Ω))N = 0

where u is a solution of problem (2.35).

Before the proof it is worth emphasizing some properties of operator A∞.

Lemma 2.19. Operator A∞ : V → V ∗, defined by (2.56), is bounded, hemicontinu-

ous, uniformly monotone and coercive.

Proof. Let w(t) ≡ w ∈ V then w ∈ L∞(0,∞; (L2(Ω))N). From condition (A2+) it

follows

|a(l)
i (t, x, ζ0, ζ;w)| ≤ cw

(|ζ0|p−1 + |ζ|p−1
)

+ kw(x). (2.57)

Hence by passing to the limit as t→ ∞ we may deduce

|a(l)
i,∞(x, ζ0, ζ)| ≤ cw

(|ζ0|p−1 + |ζ|p−1
)

+ kw(x). (2.58)

From the above estimate, the boundedness of operator follows by the classical argu-

ment, see the proof of Theorem 2.1 or the monographs [44, 71].

The hemicontinuity follows from the above estimate, as well. Indeed, let λk → λ

be a real sequence then for arbitrary u, v, w ∈ V ,

〈A∞(u− λkv), w〉

=
N∑
l=1

n∑
i=1

∫
Ω

a
(l)
i,∞

(
x, u(x) − λkv(x), Du(x) − λkDv(x)

)
Diw

(l)(x)dx

+
N∑
l=1

a
(l)
0,∞

(
x, u(x) − λkv(x), Du(x) − λkDv(x)

)
w(l)(x)dx.

(2.59)

Clearly, the integrand on the right hand side of the above equation converges point-

wise. Further, by using Young’s inequality combined with inequalities (2.57), (1.1)

we may deduce

|a(l)
i,∞(x, u− λkv,Du− λkDv)Diw

(l)|
≤ 1

q
|a(l)
i,∞(x, u− λkv,Du− λkDv)|q +

1

p
|Diw

(l)|p

≤ const · (|u− λk|(p−1)q + |Du− λkv|(p−1)q + |k1(w)|q + |Dw|p)
≤ const · (|u|p + |λkv|p + |Du|p + |λkDv|p + |k1(w)|q + |Dw|p)
≤ const · (|u|p + |v|p + |Du|p + |Dv|p + |k1(w)|q + |Dw|p) .
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The right hand side of the above inequality consists of functions of L1(Ω) thus the

integrands of (2.59) have integrable majorants hence by Lebesgue’s theorem we

conclude

lim
k→∞

〈A∞(u− λkv), w〉 = 〈A∞(u− λv), w〉
that is exactly the hemicontinuity of A∞.

Now fix w(t) ≡ w ∈ V . Then for arbitrary v, v∗ ∈ V it holds

N∑
l=1

n∑
i=1

∫
Ω

(
a

(l)
i (t, x, v(x), Dv(x);w) − a

(l)
i (t, x, v∗(x), Dv∗(x);w)

)

× (Div
(l)(x) −Div

(l)
∗ (x))dx

+
N∑
l=1

∫
Ω

(
a

(l)
0 (t, x, v(x), Dv(x);w) − a

(l)
0 (t, x, v∗(x), Dv∗(x);w)

)

× (v(l)(x) − v(l)
∗ (x))dx

≥ c5

∫
Ω

(|v(x) − v∗(x)|p + |Dv(x) −Dv∗(x)|p) dx−
∫

Ω

k3(t, x, v(x), v∗(x);w)dx.

Similarly to the previous paragraph we may use Lebesgue’s theorem thus by applying

(2.53), (2.57) and (2.55), as t→ ∞ it follows

N∑
l=1

n∑
i=1

∫
Ω

(
a

(l)
i,∞(x, v(x), Dv(x)) − a

(l)
i,∞(x, v∗(x), Dv∗(x))

)

× (Div
(l)(x) −Div

(l)
∗ (x))dx

+
N∑
l=1

∫
Ω

(
a

(l)
0,∞(x, v(x), Dv(x)) − a

(l)
0,∞(x, v∗(x), Dv∗(x))

)

× (v(l)(x) − v(l)
∗ (x))dx

≥ c5

∫
Ω

(|v(x) − v∗(x)|p + |Dv(x) −Dv∗(x)|p) dx.

The above inequality reads in abstract formulation as

〈A∞(v) − A∞(v∗), v − v∗〉 ≥ c5‖v − v∗‖pV (2.60)

for arbitrary v, v∗ ∈ V , i.e., A∞ is uniformly monotone.

The coerciveness follows from the uniform monotonicity. Indeed, by choosing

v∗ = 0 in the above (2.60) inequality, it follows

〈A∞(v) − A∞(0), v〉 ≥ c5‖v‖pV ,

hence
〈A∞(v), v〉

‖v‖V ≥ c5‖v‖p−1
V − 〈A∞(0), v〉

‖v‖V ≥ c5‖v‖p−1
V − ‖A∞(0)‖V ∗ .

Observe that the right hand side of the above inequality tends to +∞ as t → +∞
due to p > 1. The proof of the lemma is complete.
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Proof of Theorem 2.18. By Lemma 2.19 the conditions of Theorem 1.61 are satisfied

thus there exists a unique u∞ ∈ V such that A∞(u∞) = F∞. Let u be a solution of

problem (2.35) (with arbitrary initial condition) and let y(t) :=

∫
Ω

|u(t, x)−u∞|2dx.
Observe that condition (F2) implies (F1∗) so the conditions of Theorem 2.15 are

fulfilled therefore u ∈ L∞(0,∞; (L2(Ω))N) hence y is bounded as well. Note that y is

also continuous that can be readily verified by using the fact u ∈ C([0, T ], (L2(Ω))N).

In the sequel we proceed similarly as in the proof of Theorem 2.15, we verify an

integral inequality for y.

The facts that u is a solution of (2.35) and A∞(u∞) = F∞ together yield

Dt(u(t) − u∞) + [A(u)](t) − A∞(u∞) = F(t) − F∞

for a.a. t ∈ (0,∞). One applies both sides of the above equation to (u(t)−u∞) then

it follows

〈Dt(u(t) − u∞), u(t) − u∞〉 + 〈[A(u)](t) − A∞(u∞), u(t) − u∞〉
= 〈F(t) − F∞, u(t) − u∞〉.

(2.61)

The first term on the left hand side is y′(t). Further, let us divide the second term

into two terms by the following way

〈[A(u)](t) − A∞(u∞), u(t) − u∞〉 = 〈[A(u)](t) − [Au(u∞)](t), u(t) − u∞〉
+ 〈[Au(u∞)](t) − A∞(u∞), u(t) − u∞〉.

(2.62)

where for fixed w ∈ Lploc(0,∞;V ) and t > 0, functional [Aw(·)](t) : Lploc(0,∞;V ) →
Lqloc(0,∞;V ∗) is given by

〈[Aw(v)](t), z〉

:=
N∑
l=1

∫
Ω

n∑
i=1

a
(l)
i (t, x, v(t, x), Dv(t, x);w)Diz

(l)(t, x)dx

+
N∑
l=1

∫
Ω

n∑
i=1

a
(l)
0 (t, x, v(t, x), Dv(t, x);w)z(l)(t, x)dx,

with v ∈ Lploc(0,∞;V ), z ∈ Lqloc(0,∞;V ∗). The first term on the right hand side of

the above equation may be estimated from below by using the uniform monotonicity

of A∞, then one obtains

〈[A(u)](t) − [Au(u∞)](t), u(t) − u∞〉
≥ c5‖u(t) − u∞‖pV −

∫
Ω

k3(t, x, u(t, x), u∞(x);u)dx.
(2.63)
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Further, by estimating from above the second term on the right hand side of (2.62)

by the ε-inequality it follows

|〈[Au(u∞)](t) − A∞(u∞), u(t) − u∞〉|
≤ εp

p
‖u(t) − u∞‖pV +

1

qεq
‖[Au(u∞)](t) − A∞(u∞)‖qV ∗ .

(2.64)

Finally, for the right hand side of (2.61) the ε-inequality implies

|〈F(t) − F∞, u(t) − u∞〉| ≤ εp

p
‖u(t) − u∞‖pV +

1

qεq
‖F(t) − F∞‖qV ∗ . (2.65)

Now choose ε > 0 sufficiently small (in fact,
εp

p
<
c5
3

) then by substituting estimates

(2.63), (2.64), (2.65) into (2.61) we conclude

y′(t) +
c5
3
‖u(t) − u∞‖pV ≤ const · ‖[Au(u∞)](t) − A∞(u∞)‖qV ∗

+ const · ‖F(t) − F∞‖qV ∗

+

∫
Ω

k3(t, x, u(t, x), u∞(x);u)dx.

(2.66)

We claim that the right hand side of the above inequality tends to 0 as t → ∞.

Indeed, the convergence of the second term is clear. Further, the third term tends

to 0 by condition (2.55). In addition, Hölder’s inequality implies the following upper

estimate of the third term:

‖[Au(u∞)](t) − A∞(u∞)‖V ∗

≤
N∑
l=1

n∑
i=0

(∫
Ω

∣∣∣a(l)
i (t, x, u∞(x), Du∞(x), u) − a

(l)
i,∞(x, u∞(x), Du∞(x))

∣∣∣q dx)
1
q

.

The integrands on the right hand side of the above estime converge pointwise to 0

by (2.53), moreover, due to (2.58) and (2.57), they have integrable majorants. Thus

Lebesgue’s theorem yields

lim
t→∞

‖[Au(u∞)](t) − A∞(u∞)‖qV ∗ = 0.

So we have proved that

y′(t) +
c5
3
‖u(t) − u∞‖pV ≤ φ(t)

where c > 0 and φ(t) → 0 as t → +∞. Note that the embedding (W 1,p(Ω))N ↪→
(L2(Ω))N is continuous thus it follows with some constant c > 0 that

y′(t) + c · y(t) p
2 ≤ φ(t). (2.67)

We show that the above inequality implies y(t) → 0 as t→ ∞. We proceed similarly

as in the proof of Theorem 2.15, we prove by contradiction. Suppose that there
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exists a nonnegative sequence tk → ∞ and ε > 0 such that y(tk) > ε. Then the

set M = {t ∈ R
+ : y(t) > ε} is non-empty and it has arbitrary large elements. On

the other hand, it is an open set by the continuity of y so there exist countably

many open intervals (ak, bk) such that ∪∞
k=1(ak, bk) = M . By the continuity of y,

y(ak) = y(bk) = ε for every k. Thus by integrating (2.67) on (ak, bk) it follows

cε
p
2 (ak − bk) ≤ c

∫ bk

ak

y(s)
p
2 ds ≤

∫ bk

ak

φ(s)ds ≤ ‖φ‖L∞(ak,bk)(ak − bk)

that is a contradiction since φ(t) → 0 as t→ ∞.

Remark 2.20. Since operator A∞ is uniformly monotone, Proposition 1.62 implies

that u∞ depends continuously on F∞.

One may study the “speed” of the above convergences. We pose concrete formulae

on the convergences in conditions (A6), (A7), (F2), namely,

(Est) There exist constants k∗ ≥ 0, β > 1 such that

‖a(l)
i (t, ·, u(·), Du(·); v) − a

(l)
i,∞(·, u(·), Du(·))‖qLq(Ω) ≤ k∗t−β, (2.68)

for a.a. t ∈ (0,∞) and every u ∈ V , v ∈ L∞(0,∞; (L2(Ω))N) (i = 0, . . . , n; l =

1, . . . , N),

∫
Ω

|k3(t, x, u(t, x), ũ(t, x); v)|dx ≤ k∗t−β, (2.69)

for a.a. t ∈ (0,∞) and every u, ũ, v ∈ L∞(0,∞; (L2(Ω))N),

‖F(t) − F∞‖qV ∗ ≤ k∗t−β. (2.70)

Proposition 2.21. Assume (Vol). In addition (A1)–(A3), (A5) hold for every 0 <

T < ∞, further, assumptions (A2+), (A4∗), (A6), (A7), (F2) are satisfied with

further assumption (Est). Then for the solutions u, u∞ formulated in Theorem 2.18,

y(t) =

∫
Ω

|u(t, x) − u∞(x)|2dx has the asymptotics

∫ ∞

t

y(s)αds ≤ const · t 1
1−α

for t > 0 sufficiently large where

α = max

{
p

2
, 1 +

1

β − 1

}
. (2.71)
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Proof. Our starting equation is (2.66). Clearly, assumption (Est) and the continuous

embedding (W 1,p(Ω))N ↪→ (L2(Ω))N imply (with some constant c∗ > 0)

y′(t) + c∗ · y(t) p
2 ≤ const · t−β.

By using the fact y(t) → 0 as t → ∞ that was proved in the previous theorem,

integrating the above inequality in the interval (t,∞) (with t sufficiently large), we

obtain

c∗
∫ ∞

t

y(s)αds ≤ c∗
∫ ∞

t

y(s)
p
2 ds ≤ const · t

−β+1

β − 1
+ y(t).

Now denote g(t) = t−β+1. Observe that α ≥ 1 +
1

β − 1
implies for t ≥ 1 that

∫ ∞

t

g(s)αds =
tα(−β+1)+1

α(β − 1) − 1
≤ g(t)

α(β − 1) − 1
.

Thus ∫ ∞

t

(y(s) + g(s))αds ≤ const

∫ ∞

t

y(s)αds+ const

∫ ∞

t

g(s)αds

≤ const · (y(t) + g(t)).

Put

h(t) =

∫ ∞

t

(y(s) + g(s))αds

then h′(t) = −(y(t) + g(t))α whence h(t)α ≤ −c̃ · h′(t) for some constant c̃ > 0.

Consequently,

h(t) ≤ const · t 1
1−α

so by the nonnegativity of function g we conclude∫ ∞

t

y(t)α ≤ const · t 1
1−α .

2.3.4 Examples

In this part we show some examples which fulfil the conditions of the preceding

theorems.
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Case of Theorem 2.12

Suppose that functions a
(l)
i : Q∞ × R

(n+1)N × Lploc(0,∞;V ) → R have the form

(2.22)–(2.23), i.e.,

a
(l)
i (t, x, ζ0, ζ; v)

= [H(l)(v)](t, x)b
(l)
i (t, x, ζ0, ζ) + [G(l)(v)](t, x)d

(l)
i (t, x, ζ0, ζ) if (i �= 0),

(2.72)

a
(l)
0 (t, x, ζ0, ζ; v)

= [H(l)(v)](t, x)b
(l)
0 (t, x, ζ0, ζ) + [G

(l)
0 (v)](t, x)d

(l)
0 (t, x, ζ0, ζ).

(2.73)

Assume that functions b
(l)
i , d

(l)
i (i = 0, . . . , n; l = 1, . . . , N) satisfy conditions (K1)–

(K4) for all 0 < T < ∞ (in the same sense as for functions a
(l)
i mentioned before

Theorem 2.12). Further, operators

H(l) : Lploc

(
0,∞; (Lp(Ω))N

) → L∞
loc(Q∞),

G(l), G
(l)
0 : Lploc

(
0,∞; (Lp(Ω))N

) → L
p

p−1−r

loc (Q∞)

are of Volterra type. The restrictions H(l)(v)|Lp(0,T ;(Lp(Ω))N ) : L
p(0, T ; (Lp(Ω))N) →

L∞(QT ), G(l)|Lp(0,T ;(Lp(Ω))N ), G
(l)
0 |Lp(0,T ;(Lp(Ω))N ) : L

p(0, T ; (Lp(Ω))N) → L
p

p−r−1 (QT )

are bounded and continuous for every 0 < T < ∞ (where r is given in (K2)).

Finally, [H(l)(v)](t, x) ≥ c3, [G(l)(v)](t, x) ≥ 0 for a.a. (t, x) ∈ Q∞ and (2.24)

holds for every 0 < T < ∞. Then one can easily see that the above functions

(2.72)–(2.73) satisfy the conditions of Theorem 2.35. By extending the concrete

examples for H(l), G(l), G
(l)
0 , b

(l)
i , d

(l)
i given in Section 2.2.3 to all t ∈ (0,∞) (from

t ∈ (0, T )) they will satisfy the above conditions. E.g., define the following operators

on Lp(0, T ; (Lp(Ω))N):

[H̃(v)](t, x) := Φ

(∫
Qt

N∑
j=1

bjv
(j)

)
,

[G̃(v)](t, x) := ψ

([∫ t

0

|v(τ, x)|αdτ
] 1

α

)

where 1 ≤ α ≤ p, bj ∈ Lq(QT ) (1 ≤ j ≤ N), further, Φ, ψ : R → R are continuous

functions such that Φ ≥ c > 0, |ψ(y)| ≤ c̃ · |y|p−r0−1 holds for some constants c̃ and

0 ≤ r0 < p− 1.
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Case of Theorem 2.13

Let T ≥ a. Assume that functions a
(l)
i : Q∞×Ω×R

(n+1)N ×Lploc(−a,∞;V ) → R

have the form (2.22)–(2.23), i.e.,

a
(l)
i (t, x, ζ0, ζ; v)

= [H(l)(v)](x)b
(l)
i (t, x, ζ0, ζ) + [G(l)(v)](x)d

(l)
i (t, x, ζ0, ζ) if (i �= 0),

(2.74)

a
(l)
0 (t, x, ζ0, ζ; v) = [H(l)(v)](x)b

(l)
0 (t, x, ζ0, ζ) + d

(l)
0 (t, x, ζ0, ζ). (2.75)

Suppose that (the restrictions of) functions b
(l)
i , d

(l)
i (i = 0, . . . , n; l = 1, . . . , N)

satisfy conditions (K1)–(K4) in (0, T ) and they are T -periodic, (i.e., b
(l)
i (t, x, ζ0, ζ) =

b
(l)
i (t+ T, x, ζ0, ζ) for t ∈ (−a,∞) and similarly for d

(l)
i ). Further, operators

H(l) : Lp
(− a, 0; (Lp(Ω))N

) → L∞(QT ),

G(l) : Lp
(− a, 0; (Lp(Ω))N

) → L
p

p−1−r (QT )

are bounded and continuous (where r is given in (K2)) and [H(l)(v)](t, x) ≥ c3,

[G(l)(v)](t, x) ≥ 0 for a.a. (t, x) ∈ Q∞. Then one can easily see that the above

functions (2.74)–(2.75) satisfy the conditions of Theorem 2.13. For such operators

see Section 2.2.3. For periodic b
(l)
i consider, e.g., functions

b
(l)
i (t, x, ζ0, ζ) = k(t, x)ζ

(l)
i |ζ|p−2 (i �= 0),

b
(l)
0 (t, x, ζ0, ζ) = k(t, x)ζ

(l)
0 |ζ0|p−2,

and similarly for functions d
(l)
i by replacing the exponent p− 2 with r − 1 where k

is a T -periodic function in L∞).

Case of Theorem 2.15

Consider functions (2.72)–(2.73). By using our earlier investigations on these

functions, see estimate (2.31), we have

N∑
l=1

n∑
i=0

a
(l)
i (t, x, ζ0, ζ; v)ζ

(l)
i

≥ c′

3
(|ζ0|p + |ζ|p) − (c3Nk2(x) +Nd∗|[G0(v)](t, x)|q1q).

with some positive constants c′3, c3 and G0 =
N∑
l=1

G
(l)
0 . Put

h(v) := c3Nk2(x) +Nd∗|[G0(v)](t, x)|q1q

then

‖h(v)‖L1(QT ) ≤ c3N‖k2‖L1(Ω) +Nd∗
∫
QT

|[G0(v)](t, x)|
p

p−r−1 dtdx.
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We showed that this implies (3.8) by (2.24). Now assume that there exist a constant

c4 > 0 and a function ϕ : (0,∞) → R such that lim
τ→∞

ϕ(τ) = 0 and if v ∈ Lploc(0,∞;V )

then for a.a. (t ∈ (0,∞)∫
Ω

|[G(l)
0 (v)](t, x)| p

p−1−r dx ≤ c4

(
sup
τ∈[0,t]

‖v(τ)‖p1H + ϕ(t) sup
τ∈[0,t]

‖v(τ)‖pH + 1

)
. (2.76)

Then it is clear that condition (A4∗) is satisfied. In the following we give some

examples fulfilling the above condition (2.76).

Let the continuous functions ψ, χ, ϕ : [0,∞) → R be such that |ψ(τ)| ≤ const ·
|τ |p−1−r0 , |χ(τ)| ≤ const · |τ |p−1−r and lim

τ→∞
ϕ(τ) = 0 where 0 ≤ r < r0 < p − 1.

Then consider operators defined on Lploc

(
0, T ; (Lp(Ω))N

)
by

[G̃1(v)](t, x) := ψ

⎛
⎝
∣∣∣∣∣
∫

Ω

N∑
j=1

aj(t, ξ)|v(j)(t, ξ)|αdξ
∣∣∣∣∣

1
α

⎞
⎠ ,

[G̃2(v)](t, x) := ϕ(t)χ

⎛
⎝
∣∣∣∣∣
∫

Ω

N∑
j=1

aj(t, ξ)|v(j)(t, ξ)|2dξ
∣∣∣∣∣

1
2

⎞
⎠

where aj ∈ L∞(Q∞) (1 ≤ j ≤ N), 0 < α ≤ 2.

Proposition 2.22. The above G̃1, G̃2 have the property (2.76).

Proof. First consider operator G̃1. It is clear that

|[G̃1(v)](t, x)|
p

p−1−r ≤ const ·
(

N∑
j=1

∫
Ω

‖aj‖L∞(Q∞)|v(j)(t, ξ)|αdξ
) pλ

α

≤ const ·
(

N∑
j=1

∫
Ω

|v(j)(t, ξ)|αdξ
) pλ

α

= const ·
(∫

Ω

|v(t, ξ)|αdξ
) pλ

α

,

where 0 < λ =
p− 1 − r0
p− 1 − r

< 1. By applying Hölder’s inequality it follows

∫
Ω

|v(t, x)|αdx ≤
(∫

Ω

|v(t, x)|α 2
α dx

)α
2

·
(∫

Ω

1

) 2−α
2

= const · ‖v(t)‖αH .

(In case α = 2 the above inequality is obvious.) Thus

[G̃1(v)](t, x)|
p

p−1−r ≤ const · ‖v(t)‖pλH
hence ∫

Ω

[G̃1(v)](t, x)|
p

p−1−r dx ≤ const · ‖v(t)‖pλH ≤ const · sup
τ∈[0,t]

‖v(τ)‖pλH .

This means that operator G̃1 have the property (2.76) with p1 = pλ.

The case of G̃2 can be treated similarly.
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Case of Theorem 2.18

Let the functions in (2.72)–(2.73) have the form

b
(l)
i (t, x, ζ0, ζ) := ζ

(l)
i |ζ(l)|p−2, (i �= 0), (2.77)

b
(l)
0 (t, x, ζ0, ζ) := ζ

(l)
0 |ζ(l)

0 |p−2, (2.78)

d
(l)
i (t, x, ζ0, ζ) :≡ 0, (i = 1, . . . , n); l = 1, . . . , N) (2.79)

d
(l)
0 (t, x, ζ0, ζ) :≡ 1 (l = 1, . . . , N) (2.80)

In addition, define the following operators on Lploc(0, T ; (Lp(Ω))N):

[H(l)(v)](t, x) := k(x), (2.81)

[G
(l)
0 (v)](t, x) := ϕ(t) · χ

⎛
⎝[∫

Ω

N∑
j=1

aj(t, ξ)|v(j)(t, ξ)|2dξ
] 1

2

⎞
⎠ (2.82)

where k ∈ L∞(Ω) such that k(x) ≥ c∗ > 0, further, aj ∈ L∞(Q∞) (1 ≤ j ≤ N),

ϕ, χ : [0,∞) → R are nonnegative functions such that lim
τ→∞

ϕ(τ) = 0, χ(τ) ≤
const · |τ |p−1. (Due to (2.80) we do not need operators G(l).)

Now we show that these functions satisfy the conditions of Theorem 2.18. Ob-

viously, conditions (A1∗) holds with cv = 1 and kv = k, further, (A6) is ful-

filled due to (2.82) since the second factor of the product on the right hand side

is bounded. Moreover, (2.58) holds, too, since H(l)(v), G(l)(v) ∈ L∞(Q∞) for ev-

ery Lploc(0, T ; (Lp(Ω))N). Thus a
(l)
i (i = 0, . . . , n) can be estimated from above by

const · (|ζ(l)
0 |p−1 + |ζ(l)|p−1

)
. Furthermore, it is obvious that a

(l)
i,∞ = k · b(l)i for

i = 0, . . . , n.

Property (2.54) follows from Proposition 1.57. Indeed,

N∑
l=1

n∑
i=0

(
a

(l)
i (t, x, ζ0, ζ; v) − a

(l)
i (t, x, η0, η; v)

)
(ζ

(l)
i − η

(l)
i )

=
N∑
l=1

[H(l)(v)](t, x)
n∑
i=1

(
ζ

(l)
i |ζ(l)|p−2 − η(l)|η(l)

i |p−2
)

(ζ
(l)
i − η

(l)
i )

+
N∑
l=1

[H(l)(v)](t, x)
(
ζ

(l)
0 |ζ(l)

0 |p−2 − η
(l)
0 |η(l)

0 |p−2
)

+
N∑
l=1

[G
(l)
0 (v)](t, x)(ζ

(l)
0 − η

(l)
0 )

≥ c∗ ·
N∑
l=1

(
|ζ(l) − η(l)|p + |ζ(l)

0 − η
(l)
0 |p

)
+

N∑
l=1

[G
(l)
0 (v)](t, x)(ζ

(l)
0 − η

(l)
0 ).

(2.83)

The second term on right hand side of the above relation can be estimated from

above by the ε-inequality, if ε > 0 is small enough (especially,
εp

p
≤ c∗

2N
) then by
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using the estimate in the proof of Proposition 2.22 we may deduce

|[G(l)
0 (v)](t, x)(ζ

(l)
0 − η

(l)
0 )|

≤ εp

p
|ζ(l)

0 − η
(l)
0 |p +

1

εqq
|[G(l)

0 (v)](t, x)|q

≤ c∗

2N
|ζ(l)

0 − η
(l)
0 |p + c′ · |ϕ(t)|q sup

τ∈[0,t]

(∫
Ω

|v(τ, x)|2dx
) p

2

.

(2.84)

Let

c′

N
· |ϕ(t)|q sup

τ∈[0,t]

(∫
Ω

|v(τ, x)|2dx
) p

2

:= k3(t, x, ζ0, η0; v) = k3(x; v). (2.85)

Then by applying (2.84) we may estimate from below the left hand side of (2.83) as

follows

c∗ ·
N∑
l=1

(
|ζ(l) − η(l)|p + |ζ(l)

0 − η
(l)
0 |p

)
+

N∑
l=1

[G
(l)
0 (v)](t, x)(ζ

(l)
0 − η

(l)
0 )

≥ c∗

2
·
N∑
l=1

(
|ζ(l) − η(l)|p + |ζ(l)

0 − η
(l)
0 |p

)
+ k3(t; v)

≥ c̃ · (|ζ − η|p + |ζ0 − η0|p) + k3(t; v).

(2.86)

Since lim
t→∞

ϕ(t) = 0, lim
t→∞

∫
Ω

k3(t; v)dx = 0 if v ∈ L∞(0,∞; (L2(Ω))N). So condition

(A7) also holds.

Case of Proposition 2.21

We repeat the example of the previous section and we add further assumptions

on them. So let the functions in (2.72)–(2.73) have the form

b
(l)
i (t, x, ζ0, ζ) := ζ

(l)
i |ζ(l)|p−2, (i �= 0), (2.87)

b
(l)
0 (t, x, ζ0, ζ) := ζ

(l)
0 |ζ(l)

0 |p−2, (2.88)

d
(l)
i (t, x, ζ0, ζ) :≡ 0, (i = 1, . . . , n); l = 1, . . . , N) (2.89)

d
(l)
0 (t, x, ζ0, ζ) :≡ 1 (l = 1, . . . , N) (2.90)

In addition, define the following operators on Lploc(0, T ; (Lp(Ω))N):

[H(l)(v)](t, x) := k(x), (2.91)

[G
(l)
0 (v)](t, x) := ϕ(t) · χ

⎛
⎝[∫

Ω

N∑
j=1

aj(t, ξ)|v(j)(t, ξ)|2dξ
] 1

2

⎞
⎠ (2.92)

where k ∈ L∞(Ω) such that k(x) ≥ c∗ > 0, further, aj ∈ L∞(Q∞) (1 ≤ j ≤ N),

ϕ, χ : [0,∞) → R are nonnegative functions such that ϕ(τ) = const · τ−β, χ(τ) ≤
const · |τ |p−1. (Due to (2.80) we do not need operators G(l).)
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We show that the above functions satisfy condition (2.68)–(2.69). Obviously,

(2.68) holds for i > 0, further, if u, v ∈ L∞(0,∞; (L2(Ω)N) then

|[G(l)
0 (v)](t, x)d

(l)
0 (t, x, ζ0, ζ)| ≤ t−βq · ‖v(t, ·)‖p−1

(L2(Ω))N ≤ const · t−βq

thus (due to q > 1)

‖[G(l)
0 (v)](t, ·)d(l)

0 (t, ·; v)‖qLq(Ω) ≤ const · t−βq ≤ const · t−β

so that (2.68) holds also in case i = 0.

Now we may repeat the deduction of (2.84), (2.85), (2.86) and we obtain that

function k3 included in condition (2.69) may be chosen as follows:

k3(x; v) := k3(t, x, ζ0, η0; v) :=
c′

N
· |ϕ(t)|q sup

τ∈[0,t]

(∫
Ω

|v(τ, x)|2dx
) p

2

.

Whence ∫
Ω

|k3(x; v)|dx ≤ const · t−β ≤ const · t−β

so condition (2.69) is also satisfied.

Remark 2.23. Generally, condition (2.68) is satisfied, e.g., if

|a(l)
i (t, x, ζ0, ζ; v) − a

(l)
i,∞(x, ζ0, ζ)| ≤ Φ(t)(|ζ0|p−1 + |ζ|p−1)

for every v ∈ L∞(0,∞; (L2(Ω))N) where Φ(t) ≤ const · t−β
q .

Condition (2.69) is fulfilled, e.g., in the following general case. Suppose that we

have a
(l)
i such that a

(l)
0 = â

(l)
0 + ā

(l)
0 (l = 1, . . . , N) and there exists a constant c5 > 0

such that for a.a. x ∈ Ω, every (ζ0, ζ) ∈ R
(n+1)N and v ∈ Lploc(0,∞;V ),

N∑
l=1

n∑
i=1

(
a

(l)
i (t, x, ζ0, ζ; v) − a

(l)
i (t, x, η0, η; v)

)
(ζ

(l)
i − η

(l)
i )

+
N∑
l=1

(
â

(l)
0 (t, x, ζ0, ζ; v) − â

(l)
0 (t, x, η0, η; v)

)
(ζ

(l)
0 − η

(l)
0 )

≥ c5 (|ζ0 − η0|p + |ζ − η|p) .

(2.93)

Further, there is a continuous function ψ : R → R such that |ψ(t)| ≤ const · t−β and

|ā(l)
i (t, x, ζ0, ζ; v)| ≤ ψ(t)(|ζ0| + 1) (2.94)

for a.a. (t, x) ∈ Q∞ and every (ζ0, ζ) ∈ R
N+1, v ∈ L∞(0,∞; (L2(Ω))N)). Then (2.69)

holds. Indeed, by (2.93),

N∑
l=1

n∑
i=0

(
a

(l)
i (t, x, ζ0, ζ; v) − a

(l)
i (t, x, η0, η; v)

)
(ζ

(l)
i − η

(l)
i )

≥ c5 (|ζ0 − η0|p + |ζ − η|p)

−
N∑
l=1

∣∣∣(ā(l)
0 (t, x, ζ0, ζ; v) − ā

(l)
0 (t, x, η0, η; v)

)
(ζ

(l)
0 − η

(l)
0 )

∣∣∣ .
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Further, by (2.94) for l = 1, . . . , N ,∣∣∣∣
∫

Ω

(
ā

(l)
0 (t, x, ζ0, ζ; v) − ā

(l)
0 (t, x, ζ̃0, Dζ̃0; v)

)
(ζ0 − ζ̃0)

∣∣∣∣
≤ ψ(t)

∫
Ω

(|ζ0| + |ζ̃0| + 2)(|ζ0| + |ζ̃0|)

≤ const · ψ(t)

∫
Ω

(|ζ|2 + |ζ̃0|2 + 1).

So that function k3 can be chosen as follows:

k3(t, x, ζ0, η0; v) = c̃ψ(t)(ζ2
0 + η2

0 + 1)

with some positive constant c̃. Now for u, ũ ∈ L∞(0,∞; (L2(Ω))N) it follows∫
Ω

|k3(t, x, u(t, x), ũ(t, x); v)|dx

≤ c̃ψ(t)(1 + ‖u(t, ·)‖2
(L2(Ω))N + ‖ũ(t, ·)‖2

(L2(Ω))N )

≤ const · t−β

so that (2.69) holds.

60



Chapter 3

A system containig three types of

equations

If only I had the theorems! Then I should find the proofs easily enough.

Georg Friedrich Bernhard Riemann

3.1 Introduction

That sometimes clear. . . and sometimes vague stuff. . . which is. . . mathematics.

Imre Lakatos

This chapter is devoted to the investigation of a nonlinear system which consists

of there different types of differential equations: an ordinary, a parabolic and an

elliptic one. This kind of problem is motivated by a model of fluid flow in porous

medium. A porous medium, roughly speaking, is a solid medium with lots of tiny

holes. For example think of limestone. Such medium consists of two parts, the solid

matrix and the holes. The flow of a fluid through the medium is influenced by the

relatively large surface of the solid matrix and the closeness of the holes. If the fluid

carries dissolved chemical species, a variety of chemical reactions can occur. Among

these include reactions that can change the porosity. This process was modelled by

J. Logan, M. R. Petersen, T. S. Shores in [46] by the following system of equations
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in one dimension:

ω(t, x)Dtu(t, x)

= Dxα(|v(t, x)|ux(t, x)) +K(ω(t, x))Dxp(t, x)ux(t, x) − ku(t, x)g(ω(t, x))
(3.1)

Dtω(t, x) = bu(t, x)g(ω(t, x)) (3.2)

Dx(K(ω(t, x))Dxp(t, x)) = bu(t, x)g(ω(t, x)), (3.3)

v(t, x) = −K(ω(t, x))Dxp(t, x) (3.4)

for t > 0, x ∈ (0, 1) with initial and boundary conditions

u(0, x) = u0(x), ω(0, x) = ω0(x) x ∈ (0, 1),

u(t, 0) = u1(t), Dxu(t, 1) = 0 t > 0,

p(t, 0) = 1, p(t, 1) = 0 t > 0

where ω is the porosity, u is the concentration of the dissolved chemical solute

carried by the fluid, p is the pressure, v is the velocity, further, α, k, b are given

constants, K and g are given real functions. For the details of making this model

and on flow in such media, see the monograph [7] and papers [23, 46]. Observe that

v is explicitly given by ω and p in equation (3.4) thus we may eliminate equation

(3.4) by substituting it into (3.1). Further, for fixed u equation (3.2) is an ordinary

differential equation with respect to the function ω; for fixed ω and p equation (3.1)

is a parabolic problem with respect to the function u; and for fixed ω and u equation

(3.3) is an elliptic problem with respect to the function p.

This argument shows that the above system is a hybrid evolutionary/elliptic

problem thus theorems of “classical” systems of partial differential equations do

not work. In [23] a similar model was considered by using the method of Rothe,

further, some numerical experiments were done, however correct proof on existence

of solutions was not made (and one can hardly find papers dealing with such kind

of systems in rigorous mathematical way).

In what follows, we investigate a generalization of this model where also the

main parts may contain functional dependence on the unknown functions. We show

existence and some properties of weak solutions by using the theory of operators of

monotone type.

The main idea consists of two parts. First the choice of the appropriate spaces for

the weak solutions (for the elliptic equation it will be not the usual space because of

the time dependence). The second is the idea of the proof which is to apply the so-

called successive approximation (known, e.g., from the theory of ordinary differential

equations) and combine this with some methods of the theory of monotone operators
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that were demonstrated in the previous chapters. Especially, we lean on the results

of Chapter 2. Finally, some examples are given. Most of the following part was

published by the author in papers [10, 11, 14].

3.1.1 Notation

We introduce some further notation and for the convenience of the reader we

repeat some earlier one of Section 2.1.1 that we shall use in the sequel.

Let Ω ⊂ R
n be a bounded domain with smooth boundary (for example, contin-

uously differentiable is sufficient), further, let 0 < T < ∞, 2 ≤ p1, p2 < ∞ be real

numbers. As before, we use the notation QT := (0, T )×Ω, Q∞ := (0,∞)×Ω and the

notion of the Sobolev space W 1,pi(Ω) (i = 1, 2). In addition, let Vi be a closed linear

subspace of the space W 1,pi(Ω) which contains W 1,pi
0 (Ω) and let Xi := Lpi(0, T ;Vi).

The pairing between V ∗
i and Vi, further, between X∗

i and Xi will be denoted by 〈·, ·〉
and [·, ·], respectively, as before. As in the previous chapter we use the convention

that a function v ∈ Lp(0, T ;V ) can be considered also as a function with variables

(t, x) (however v has only a time variable t).

3.1.2 Formulation of the problem

Let us consider the following system of equations:

Dtω(t, x) = f(t, x, ω(t, x), u(t, x);u), ω(0, x) = ω0(x), (3.5)

Dtu(t, x)

−
n∑
i=1

Di [ai(t, x, ω(t, x), u(t, x), Du(t, x),p(t, x), Dp(t, x);ω, u,p)]

+ a0(t, x, ω(t, x), u(t, x), Du(t, x),p(t, x), Dp(t, x);ω, u,p)

= g(t, x), u(0, x) = 0,

(3.6)

n∑
i=1

Di[bi(t, x, ω(t, x), u(t, x),p(t, x), Dp(t, x);ω, u,p)]

+ b0(t, x, ω(t, x), u(t, x),p(t, x), Dp(t, x);ω, u,p)

= h(t, x)

(3.7)

with homogeneuos Dirichlet or Neumann type boundary condition (we may assume

them to be homogeneuos by subtracting a suitable function). (The variable p is

written by boldface letter for the purpose of distinguishing it from exponents p1, p2.)

Moreover, if ∂Ω = S1 ∪ S2 where S1 ∩ S2 = ∅ then we may pose different boundary

conditions on the elements of the partition. That is the case in the model (3.1)–(3.4)

where the partitions are the endpoints of the interval [0, 1].
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Functions ai, bi, f may contain nonlocal dependence on the unknown functions

ω, u,p which are written after the symbol “;”. The above system is a generalization

of the model (3.1)–(3.4). Indeed, as we mentioned in the introduction, v can be

eliminated form (3.1)–(3.4), further, in Proposition 3.5 we shall show that due to

some assumptions the solution ω of equation (3.1) is strictly positive hence we can

divide equation (3.1) by ω. By using the observation that the above equations are

three types of differential equations we pose natural conditions on functions ai, bi,

f , g, h to ensure existence of weak solutions to the above system.

3.1.3 Assumptions

In what follows, ξ, (ζ0, ζ), (η0, η) refer to the variables ω, (u,Du) and (p, Dp),

respectively, further, w, v1 and v2 to the nonlocal dependence on ω, u and p.

(A1) For fixed (w, v1, v2) ∈ L∞(QT )×X1×X2 functions ai : QT×R×R
n+1×R

n+1×
L∞(QT ) ×X1 ×X2 → R (i = 0, . . . , n) have the Carathéodory property, i.e.,

they are measurable in (t, x) ∈ QT for every (ξ, ζ0, ζ, η0, η) ∈ R×R
n+1 ×R

n+1

and continuous in (ξ, ζ0, ζ, η0, η) ∈ R × R
n+1 × R

n+1 for a.a. (t, x) ∈ QT .

(A2) There exists a continuous function c1 : R → R
+ and bounded operators c1 :

L∞(QT ) ×X1 ×X2 → R
+, k1 : L∞(QT ) ×X1 ×X2 → Lq1(QT ) such that

|ai(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2)|
≤ c1(w, v1, v2)c1(ξ)

(
|ζ0|p1−1 + |ζ|p1−1 + |η0|

p2
q1 + |η|

p2
q1 + [k1(w, v1, v2)](t, x)

)
,

for a.a. (t, x) ∈ QT , every (ξ, ζ0, ζ, η0, η) ∈ R × R
n+1 × R

n+1 and (w, v1, v2) ∈
L∞(QT ) ×X1 ×X2 (i = 0, . . . , n).

(A3) There exists a positive constant C such that for a.a. (t, x) ∈ QT , every

(ξ, ζ0, ζ, η0, η), (ξ, ζ0, ζ̃, η0, η) ∈ R × R
n+1 × R

n+1 and (w, v1, v2) ∈ L∞(QT ) ×
X1 ×X2

n∑
i=1

(
ai(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2) − ai(t, x, ξ, ζ0, ζ̃, η0, η;w, v1, v2)

)
(ζi − ζ̃i)

≥ C · |ζ − ζ̃|p1 .

(A4) There exist a constant c2 > 0, a continuous function γ : R → R and bounded

operators Γ: L∞(QT ) → L∞(QT ), k2 : X1 → L1(QT ) such that

n∑
i=0

ai(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2)ζi

≥ c2 (|ζ0|p1 + |ζ|p1) − γ(ξ)[Γ(w)](t, x)[k2(v1)](t, x)
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for a.a. (t, x) ∈ QT and every (ξ, ζ0, ζ, η0, η) ∈ R × R
n+1 × R

n+1, (w, v1, v2) ∈
L∞(QT ) ×X1 ×X2. Further,

lim
‖v1‖X1

→+∞
‖k2(v1)‖L1(QT )

‖v1‖p1X1

= 0. (3.8)

(A5) If (ωk) is bounded in L∞(QT ), ωk → ω a.e. in QT and uk → u weakly in X1,

strongly in Lp1(QT ), further, pk → p strongly in X2 then

ai(·, ωk, uk, Duk,pk, Dpk;ωk, uk,pk) − ai(·, ωk, uk, Duk,pk, Dpk;ω, u,p) → 0

in Lq1(QT ).

(B1) For fixed (w, v1, v2) ∈ L∞(QT ) ×X1 ×X2 functions bi : QT × R × R × R
n+1 ×

L∞(QT ) ×X1 ×X2 → R (i = 0, . . . , n) have the Carathéodory property, i.e.,

they are measurable in (t, x) ∈ QT for every (ξ, ζ0, η0, η) ∈ R × R × R
n+1 and

continuous in (ξ, ζ0, η0, η) ∈ R × R × R
n+1 for a.a. (t, x) ∈ QT .

(B2) There exist a continuous function ĉ1 : R → R
+ and bounded operators ĉ1 :

L∞(QT ) ×X1 ×X2 → R
+, k̂1 : L∞(QT ) ×X1 ×X2 → Lq2(QT ) such that

|bi(t, x, ξ, ζ0, η0, η;w, v1, v2)|
≤ ĉ1(w, v1, v2)ĉ1(ξ)

(
|η0|p2−1 + |η|p2−1 + |ζ0|

p1
q2 + [k̂1(w, v1, v2)](t, x)

)
for a.a. (t, x) ∈ QT and every (ξ, ζ0, η0, η) ∈ R × R × R

n+1, (w, v1, v2) ∈
L∞(QT ) ×X1 ×X2 (i = 0, . . . , n).

(B3) There exists a constant Ĉ > 0 such that for a.a. (t, x) ∈ QT , every (ξ, ζ0, η0, η),

(ξ, ζ0, η̃0, η̃) ∈ R × R × R
n+1 and (w, v1, v2) ∈ L∞(QT ) ×X1 ×X2

n∑
i=0

(bi(t, x, ξ, ζ0, η0, η;w, v1, v2) − bi(t, x, ξ, ζ0, η̃0, η̃;w, v1, v2)) (ηi − η̃i)

≥ Ĉ · (|η0 − η̃0|p2 + |η − η̃|p2) .

(B4) There exist a constant ĉ2 > 0, a continuous function γ̂ : R → R and bounded

operators Γ̂ : L∞(QT ) → L∞(QT ), k̂2 : X2 → L1(QT ) such that

n∑
i=0

bi(t, x, ξ, ζ0, η0, η;w, v1, v2)ηi

≥ ĉ2 (|η0|p2 + |η|p2) − γ̂(ξ)[Γ̂(w)](t, x)
(
|ζ0|p1 + [k̂2(v2)](t, x)

)
for a.a. (t, x) ∈ QT , and every (ξ, ζ0, η0, η) ∈ R × R × R

n+1, (w, v1, v2) ∈
L∞(QT ) ×X1 ×X2. Further,

lim
‖v2‖X2

→∞
‖k̂2(v2)‖L1(QT )

‖v2‖p2X2

= 0. (3.9)
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(B5) If (ωk) is bounded in L∞(QT ), ωk → ω a.e. in QT and uk → u weakly in X1,

strongly in Lp1(QT ), further, pk → p weakly in X2 then

bi(·, ωk, uk,pk, Dpk;ωk, uk,pk) − bi(·, ωk, uk,pk, Dpk;ω, u,p) → 0

in Lq2(QT ).

(F1) For fixed v1 ∈ X1, function f : QT ×R
2 ×X1 → R is a Carathéodory function,

i.e., it is measurable in (t, x) ∈ QT for every (ξ, ζ0) ∈ R
2 and continuous in

(ξ, ζ0) ∈ R
2 for a.a. (t, x) ∈ QT . Further, there exists a bounded operator

K1 : X1 → R
+ such that

(i) for every bounded set I ⊂ R there is a continuous function K1 : R → R
+

satisfying |K1(ζ0)| ≤ d1|ζ0|
p1
q2 +d2 for every ζ0 ∈ R, with some nonnegative

constants d1, d2 (depending on I),

(ii) for a.a. (t, x) ∈ QT , every (ξ, ζ0), (ξ̃, ζ0) ∈ I × R and every v1 ∈ X1,

|f(t, x, ξ, ζ0; v1) − f(t, x, ξ̃, ζ0; v1)| ≤ K1(v1)K1(ζ0) · |ξ − ξ̃|.

(F2) There exist a bounded operator K2 : X1 → R
+ and a continuous function

K2 : R → R
+ such that for a.a. (t, x) ∈ QT , every (ξ, ζ0), (ξ, ζ̃0) ∈ R

2 and

v1 ∈ X1,

|f(t, x, ξ, ζ0; v1) − f(t, x, ξ, ζ̃0; v1)| ≤ K2(v1)K2(ξ) · |ζ0 − ζ̃0|.

(F3) There exists ω∗ ∈ L∞(Ω) such that for a.a. (t, x) ∈ QT , every (ξ, ζ0) ∈ R
2 and

v1 ∈ X1,

(ξ − ω∗(x)) · f(t, x, ξ, ζ0; v1) ≤ 0.

(F4) If (ωk) is bounded in L∞(QT ) and uk → u strongly in Lp1(QT ) then

lim
k→∞

‖f(·, ωk, uk;uk) − f(·, ωk, uk;u)‖L1(QT ) = 0.

(G1) G ∈ X∗
1 .

(H1) H ∈ X∗
2 .
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3.1.4 Weak formulation

If the above assumptions are satisfied we may define operators A : L∞(QT ) ×
X1 ×X2 → X∗

1 , B : L∞(QT ) ×X1 ×X2 → X∗
2 as follows:

[A(ω, u,p), v1]

:=

∫
QT

n∑
i=1

ai(t, x, ω(t, x), u(t, x), Du(t, x),p(t, x), Dp(t, x);ω, u,p)

×Div1(t, x)dtdx

+

∫
QT

a0(t, x, ω(t, x), u(t, x), Du(t, x),p(t, x), Dp(t, x);ω, u,p)

× v1(t, x)dtdx,

(3.10)

[B(ω, u,p), v2]

:=

∫
QT

n∑
i=1

bi(t, x, ω(t, x), u(t, x),p(t, x), Dp(t, x);ω, u,p)

×Div2(t, x)dtdx

+

∫
QT

b0(t, x, ω(t, x), u(t, x),p(t, x), Dp(t, x);ω, u,p)v2(t, x)dtdx,

(3.11)

for vi ∈ Xi (i = 1, 2). In addition, let us introduce the operator of differentiation

L : D(L) → X∗
1 by the formula

D(L) = {u ∈ X1 : Dtu ∈ X∗
1 , u(0) = 0}, Lu = Dtu. (3.12)

By using the operators above and functionals given in (G1), (H1) we define the weak

form of system (3.5)–(3.7) as

ω(t, x) = ω0(x) +

∫ t

0

f(s, x, ω(s, x), u(s, x);u)ds a.e. in QT (3.13)

Lu+ A(ω, u,p) = G (3.14)

B(ω, u,p) = H. (3.15)

Note that in (3.15) there is a “hidden” initial condition u(0) = 0 which is given in the

domain of L. One obtains the above weak forms by using Green’s formula as it was

explained in Section 2.1.3. If the boundary condition is homogeneous Neumann type

then Vi = W 1,pi(Ω) and if in case of homogeneous Dirichlet boundary condition then

Vi = W 1,pi
0 (Ω). Further, if we have a partition, for example in one dimension with

homogenous Dirichlet and Neumann boundary conditions, as in model (3.1)–(3.4),

then Vi = {v ∈ W 1,pi(0, 1) : v(0) = 0, Dxv(1) = 0}.
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3.2 Weak solutions in (0, T )

Science is a differential equation. Religion is a boundary condition.

Alan Mathison Turing

3.2.1 Existence

In this section we prove

Theorem 3.1. Suppose that conditions (A1)–(A5), (B1)–(B5), (F1)–(F4), (G1),

(H1) are fulfilled. Then for every ω0 ∈ L∞(Ω) there exists a solution ω ∈ L∞(QT ),

u ∈ D(L), p ∈ Lp2(0, T ;V2) of problem (3.13)–(3.15).

Before the proof we formulate some statements related to the solvability of the

above equations (3.13)–(3.15).

Proposition 3.2. Assume that conditions (F1), (F3) are satisfied. Then for ev-

ery fixed u ∈ X1 and ω0 ∈ L∞(Ω) there exists a unique solution ω ∈ L∞(QT ) of

the integral equation (3.13). Further, the solution u satisfies estimate ‖ω‖L∞(QT ) ≤
‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω).

Proof. Let us make an observation that we shall use many times. Namely, from

(F3) and the continuity of f in variable ξ it follows f(t, x, ω∗(x), ζ0; v1) = 0 for a.a.

(t, x) ∈ QT , every ζ0 ∈ R and v1 ∈ X1. Assume that ω is a solution of (3.13) for

some fixed u ∈ X1. Then it is continuous in variable t (moreover, it is absolutely

continuous). Now fix a point x ∈ Ω. If ω(t0, x) > ω∗(x) for some t0 ∈ (0, T ) then

ω(t, x) > ω∗(x) for all t ∈ [t0, t0 + ε] where ε is sufficiently small. Then by condition

(F3) it follows f(t, x, ω(t, x), u(t, x); v1) ≤ 0 whence

ω(t, x) = ω0(x) +

∫ t

0

f(s, x, ω(s, x), u(s, x); v1)ds

= ω0(x) +

∫ t0

0

f(s, x, ω(s, x), u(s, x); v1)ds

+

∫ t

t0

f(s, x, ω(s, x), u(s, x); v1)ds

≤ ω0(x) +

∫ t0

0

f(s, x, ω(s, x), u(s, x); v1)ds

= ω(t0, x),

that is, ω is decreasing in variable t. Similarly to this, if ω(t0, x) < ω∗(x) for some t0 >

0 then ω is locally increasing in t. Now it is easily seen that ω(t, x) ∈ [ω∗(x), ω0(x)]
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(or [ω0(x), ω
∗(x)]) for a.a. (t, x) ∈ QT thus |ω(t, x)| ≤ |ω0(x)| + |ω∗(x)| for a.a.

(t, x) ∈ QT hence ‖ω‖L∞(QT ) ≤ ‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω).

Now let us define a function f̃ : QT × R
2 ×X1 → R by

f̃(t, x, ξ, ζ0; v1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f(t, x, ξ, ζ0; v1), if |ξ| ≤ cω0,ω∗ ,

f(t, x, cω0,ω∗ , ζ0; v1), if ξ ≥ cω0,ω∗ ,

f(t, x,−cω0,ω∗ , ζ0; v1), if ξ ≤ −cω0,ω∗ ,

with the constant cω0,ω∗ = ‖ω0‖L∞(Ω)+‖ω∗‖L∞(Ω) and consider the following problem

instead of (3.13):

ω(t, x) = ω0(x) +

∫ t

0

f̃(s, x, ω(s, x), u(s, x);u)ds, for a.a. (t, x) ∈ QT . (3.16)

Obviously f̃ also fulfils condition (F2), (F3), further, by choosing interval I =

[−cω0,ω∗ , cω0,ω∗ ] in condition (F1) then with some functions K1, K1 it follows

|f̃(t, x, ξ, ζ0; v1) − f̃(t, x, ξ̃, ζ0; v1)| ≤ K1(v1)K1(ζ0) · |ξ − ξ̃|

for a.a. (t, x) ∈ QT , every ξ, ξ̃, ζ0 ∈ R, v1 ∈ X1. Indeed, f was extended as

a constant function outside of I. This means that function f̃ satisfies condition

(F1) globally. Clearly, if problem (3.16) has got a solution ω then ‖ω‖L∞(QT ) ≤
‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω). Since f̃ equals with f on interval I, every solution of (3.16)

is a solution of (3.13) and converse. From the above arguments we conclude that it

is sufficient to show that the problem (3.16) has a unique solution ω ∈ L∞(QT ). In

other words, we may assume that condition (F1) is fulfilled by function f , globally

in ξ.

Existence. We use the method of successive approximation. Fix u ∈ X1. Let

ω0(t, x) := ω0(x) ((t, x) ∈ QT ) and define wk(t, x) as follows:

ωk+1(t, x) := ω0(x) +

∫ t

0

f(s, x, ωk(s, x), u(s, x);u)ds. (3.17)

Now fix a point x ∈ Ω. We show that

|ωk+1(t, x) − ωk(t, x)| ≤ cω0,ω∗ · ck+1
x,u

t
k+1
p2

[(k + 1)!]
1

p2

(3.18)

with the above defined cω0,ω∗ = ‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω) and with a suitable constant
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cx,u > 0. We proceed by induction on k. For k = 0 we have

|ω1(t, x) − ω0(t, x)|

=

∣∣∣∣
∫ t

0

f(s, x, ω0(x), u(s, x);u)ds

∣∣∣∣
=

∣∣∣∣
∫ t

0

(f(s, x, ω0(x), u(s, x);u) − f(s, x, ω∗(x), u(s, x);u)) ds

∣∣∣∣
≤
∫ t

0

|K1(u)K1(u(s, x))| · |ω0(x) − ω∗(x)|ds

≤ (‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω)

) · ∫ t

0

|K1(u)K1(u(s, x))|ds.

By using condition (F1), Hölder’s inequality and the fact that u ∈ X1 it follows∫ t

0

|K1(u)K1(u(s, x))|ds

≤
(∫ T

0

|K1(u)K1(u(s, x))|q2 ds
) 1

q2

·
(∫ t

0

1p2
) 1

p2

≤
(∫ t

0

(
d1|u(s, x)|

p1
q2 + d2

)q2
ds

) 1
q2 · |K1(u)| · t

1
p2

≤ const ·
(∫ T

0

(|u(s, x)|p1 + 1) ds

) 1
q2

· |K1(u)| · t
1

p2

= cx,u · t
1

p2 .

(3.19)

The above two estimates yield (3.18) for k = 0.

Now let us suppose that estimate (3.18) holds for k − 1. Then condition (F1),

the assumption of induction and (3.19) imply

|ωk+1(t, x) − ωk(t, x)|

≤
∫ t

0

|f(s, x, ωk(s, x), u(s, x);u) − f(s, x, ωk−1(s, x), u(s, x);u)|ds

≤
∫ t

0

|K1(u)K1(u(s, x))| · |ωk(s, x) − ωk−1(s, x)|ds

≤
∫ t

0

(
|K1(u)K1(u(s, x))| · cω0,ω∗ · ckx,u ·

s
k
p2

(k!)
1

p2

)
ds

≤ cω0,ω∗ckx,u ·
(∫ T

0

|K1(u)K1(u(s, x))|q2 ds
) 1

q2

·
(∫ t

0

sk

k!
ds

) 1
p2

≤ cω0,ω∗ck+1
x,u · t

k+1
p2

[(k + 1)!]
1

p2

.

The induction is complete. Estimate (3.18) yields

|ωk+l(t, x) − ωk(t, x)| ≤
k+l∑

i=k+1

cω0,ω∗ · cix,u
T

i
p2

(i!)
1

p2

→ 0
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as k, l → ∞ for a.a. (t, x) ∈ QT . Whence (ωk(t, x)) is a Cauchy sequence for a.a.

(t, x) ∈ QT , therefore it is convergent to some ω(t, x), ωk → ω a.e. in QT , moreover,

ωk(·, x) → ω(·, x) in L∞(0, T ) for a.a. x ∈ Ω. We show that ω is a solution of equation

(3.13). It is clear that left hand side of the recurrence (3.17) converges to ω a.e. in

QT thus it suffices to show that the right hand side of (3.17) a.e. tends to the right

hand side of equation (3.13). But this is true since∣∣∣∣
∫ t

0

(f(s, x, ω(s, x), u(s, x);u) − f(s, x, ωk(s, x), u(s, x);u))ds

∣∣∣∣
≤
∫ t

0

|K1(u)K1(u(s, x))| · |ω(s, x) − ωk(s, x)|ds

≤
∫ T

0

|K1(u)K1(u(s, x))|ds · ‖ω(·, x) − ωk(·, x)‖L∞(0,T )

≤ cx,u · T
1

p2 · ‖ω(·, x) − ωk(·, x)‖L∞(0,T ) → 0 as k → ∞.

Uniqueness. Assume that ω, ω̃ ∈ L∞(QT ) are solutions of (3.13). Then by (F1)

|ω(t, x) − ω̃(t, x)|

≤
∫ t

0

|f(s, x, ω(s, x), u(s, x);u) − f(s, x, ω̃(s, x), u(s, x);u)|ds

≤
∫ t

0

|K1(u)K1(u(s, x))| · |ω(s, x) − ω̃(s, x)|ds

≤ ‖K1(u)K1(u(·, x))‖Lq2 (QT ) ·
(∫ t

0

|ω(s, x) − ω̃(s, x)|p2 ds
) 1

p2

hence

|ω(t, x) − ω̃(t, x)|p2 ≤ cp2x,u ·
∫ t

0

|ω(s, x) − ω̃(s, x)|p2 ds.

Gronwall’s lemma yields |ω(t, x) − ω̃(t, x)| = 0 for a.a. (t, x) ∈ QT , i.e., ω = ω̃.

Proposition 3.3. Assume (F1)–(F4) and let (uk) ⊂ X1, further, for every k ∈ N

let ωk be the solution of (3.13) corresponding to u = uk. If uk → u in Lp1(QT ) then

ωk → ω a.e. in QT where ω is the solution of (3.13) corresponding to u.

Proof. The strong convergence of (uk) in Lp1(QT ) implies uk(·, x) → u(·, x) in

Lp1(0, T ) for a.a. x ∈ Ω (for a suitable subsequence). Fix such a point x ∈ Ω.

By Proposition 3.2 (ωk) is bounded in L∞(QT ). Further,

|ωk(t, x) − ω(t, x)|

≤
∫ t

0

|f(s, x, ωk(s, x), uk(s, x);uk) − f(s, x, ωk(s, x), uk(s, x);u)|ds

+

∫ t

0

|f(s, x, ωk(s, x), uk(s, x);u) − f(s, x, ω(s, x), u(s, x);u)|ds.
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The first integral converges to 0 for a.a. x ∈ Ω by condition (F4) (for a subsequence).

In what follows, we show that the second integral tends to 0 as well. Indeed, by

conditions (F1)–(F2),∫ t

0

|f(s, x, ωk(s, x), uk(s, x);u) − f(s, x, ω(s, x), u(s, x);u)|ds

≤
∫ t

0

|K1(u)K1(uk(s, x))| · |ωk(s, x) − ω(s, x)|ds

+

∫ t

0

|K2(u)K2(ω(s, x))| · |uk(s, x) − u(s, x)|ds

≤
(∫ t

0

|K1(u)K1(uk(s, x))|q2 ds
) 1

q2 ·
(∫ t

0

|ωk(s, x) − ω(s, x)|p2
) 1

p2

ds

+ ‖K2(u)K2(ω(·, x))‖L∞(0,T ) ·
∫ T

0

|uk(s, x) − u(s, x)|ds.

By choosing u = uk and t = T in estimate (3.19) and by using the convergence of

uk(·, x) in Lp1(0, T ) we conclude that the first term containing uk on the right hand

side of the above inequality is bounded. In addition, the continuity of function K2

implies that ‖K2(u)K2(ω(·, x))‖L∞(0,T ) is finite. From the above arguments it follows

|ωk(t, x) − ω(t, x)|p2

≤ const ·
∫ t

0

|ωk(s, x) − ω(s, x)|p2 ds+ const · ‖uk(·, x) − u(·, x)‖p2L1(0,T ) + r(uk, ωk)

where the remainder term r(uk, ωk) tends to 0 as k → ∞. Thus Gronwall’s lemma

yields

|ωk(t, x) − ω(t, x)|p2 ≤ const ·
(
‖uk(·, x) − u(·, x)‖p2L1(0,T ) + r(uk, ωk)

)
where the right hand side tends to 0 as k → ∞ which immediately implies the

desired a.e. convergence of (ωk) (for a subsequence, which is sufficient due to the

“subsequence trick”).

Remark 3.4. Since (ωk) is bounded in L∞(QT ) and convergent a.e. in QT , Lebesgue’s

theorem implies its strong convergence in Lα(QT ) for arbitrary 1 ≤ α <∞.

Proposition 3.5. Suppose conditions (F1)–(F3), further, |w0| > 0 a.e. in Ω and

ω0 · ω∗ ≥ 0 (that is, they have the same sign). Then for the solution ω of (3.13),

|ω(t, x)| > 0 holds for a.a. (t, x) ∈ QT .

Proof. Fix a point x ∈ Ω. Without loss of generality we may assume that ω0(x) > 0.

First suppose ω∗(x) > 0. In the proof of Proposition 3.2 we have shown that

ω(t, x) ∈ [ω∗(x), ω0(x)] (or ω(t, x) ∈ [ω0(x), ω
∗(x)]) for a.a. t ∈ [0, T ], consequently,
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ω(t, x) ≥ min(ω∗(x), ω0(x)) > 0. Now suppose that ω∗(x) = 0. Define t∗ :=

inf {t > 0 : ω(t, x) = 0}. Then ω(t, x) > 0 for every t < t∗. By using conditions

(F1), (F3) it follows that for ξ > ω∗(x) = 0, ζ0 ∈ R, f(t, x, ξ, ζ0) ≥ −K1(ζ0)ξ. Then

for a.a. t ∈ (0, t∗),

ω′(t, x) = f(t, x, ω(t, x), u(t, x);u) ≥ −K1(u)K1(u(t, x))ω(t, x).

(Note that ω is absolutely continuous in variable t thus for a.a. (t, x) ∈ QT there

exists ω′(t, x).) Due to the definition of t∗ we may divide by ω(t, x) which yields

ω′(t, x)
ω(t, x)

≥ −K1(u)K1(u(t, x)).

Observe that the left hand side of the previous inequality equals to (logω(t, x))′ thus

by integrating the inequality in (0, t) we obtain

logω(t, x) − logω0(x) ≥ −
∫ t

0

K1(u)K1(u(s, x))ds.

By taking the exponential of both sides it follows

ω(t, x) ≥ ω0(x) · e−
∫ t
0 K1(u)K1(u(s,x))ds.

The above estimate implies ω(t, x) > 0 a.e. in [0, T ]. The case ω0(x) < 0 can be

treated similarly.

Remark 3.6. This proposition shows that if |ω0| is positive a.e. in QT , further, ω0

and ω∗ has the same sign in a.e. QT , then for the solution ω of (3.13),
1

ω
is a.e.

finite. Consequently, operator A and B might depend on terms which contain
1

ω
.

The above proof also shows that if the modulus of the initial value ω0 is a.e. greater

than a positive constant, further, |ω∗| is greater then a positive lower bound, or K1 is

bounded, then the absolute value of the solution ω of equation (3.13) is also greater

than a positive constant a.e. in QT thus
1

ω
∈ L∞(QT ).

Proposition 3.7. Assume conditions (A1)–(A5). Then for every fixed ω ∈ L∞(QT ),

p ∈ X2 and G ∈ X∗
1 there exists a solution u ∈ D(L) of problem Lu+A(ω, u,p) = G.

Proof. The proof follows from Theorem 2.1 and Theorem 1.65, since for fixed ω ∈
L∞(QT ) and p ∈ X2 conditions (A1)–(A5) are the same conditions as (A1)–(A5)

in Section 2.1.2 thus operator A(ω, ·,p) : X1 → X∗
1 is bounded, demicontinuous,

coercive and pseudomonotone with respect to D(L).

Proposition 3.8. Suppose that (B1)–(B5) hold. Then for every fixed ω ∈ L∞(QT ),

u ∈ X1 and H ∈ X∗
2 there exists a solution p ∈ X2 of problem B(ω, u,p) = H.
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Proof. We show that for fixed ω ∈ L∞(QT ), u ∈ X1 operator B(ω, u, ·) : X2 → X∗
2

is bounded, demicontinuous, pseudomonotone and coercive. Then Theorem 1.54

implies the existence of solutions to equation B(ω, u,p) = H for every H ∈ X∗
2 . The

boundedness, demicontinuity and coerciveness follows by the same arguments as in

the proof of Theorem 2.1, since for fixed ω ∈ L∞(QT ), v1 ∈ X1 assumptions (B1)–

(B4) are the same as conditions (A1)–(A4) in Section 2.1.2. Now fix ω ∈ L∞(QT ),

u ∈ X1. Introduce operator B̂p : X2 → X∗
2 for fixed v2 ∈ X2 by

[B̂v2(p), z2]

:=

∫
QT

n∑
i=1

bi(t, x, ω(t, x), u(t, x),p(t, x), Dp(t, x);ω, u, v2)Diz2(t, x)dtdx

+

∫
QT

b0(t, x, ω(t, x), u(t, x),p(t, x), Dp(t, x);ω, u, v2)z2(t, x)dtdx

where z2 ∈ X2. To verify the pseudomonotonicity suppose that pk → p weakly in

X2 and

lim sup
k→∞

[B(ω, u,pk),pk − p] ≤ 0.

Condition (B5) implies that

bi(·, ω, u,pk, Dpk;ω, u,pk) − bi(·, ω, u,pk, Dpk;ω, u,p) → 0

in Lq2(QT ) thus

B(ω, u,pk) − B̂p(pk) → 0 in X∗
2 and (3.20)

lim
k→∞

[B(ω, u,pk) − B̂p(pk),pk − p] = 0. (3.21)

From Theorem 1.54 it follows that for fixed p ∈ X2 operator B̂p is pseudomonotone

(since then conditions (B1)–(B4) are the same as (i)–(iv) in Section 1.6). So that

lim
k→∞

[B̂p(pk),pk − p] = 0 and B̂p(pk) → B̂p(p) = B(ω, u,p).

Hence by (3.20), (3.21) we conclude

lim
k→∞

[B(ω, u,pk),pk − p] = 0 and

B(ω, u,pk) → B(ω, u,p)

which means the pseudomonotonicity of operator B(ω, u, ·).

Proof of Theorem 3.1. We define sequences of approximate solutions of problem

(3.13)–(3.15) and we show the boundedness of these sequences. Then the weak limits

of suitable chosen weakly convergent subsequences will be the solutions. For simplic-

ity, in the proof we omit the variable (t, x) of functions ai, bi if it is not confusing.
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Step 1: approximation. Define sequences (ωk), (uk), (pk) as follows. Let ω0(t, x)

≡ u0(t, x) ≡ p0(t, x) ≡ 0 ((t, x) ∈ QT ) and for k = 0, 1, . . . let ωk+1, uk+1,pk+1 be a

solutions of the equations :

ωk+1(t, x) = ω0(x) +

∫ t

0

f(s, x, ωk+1(s, x), uk(s, x);uk)ds (3.22)

Luk+1 + A(ωk, uk+1,pk) = G (3.23)

B(ωk, uk,pk+1) = H. (3.24)

By Propositions 3.2, 3.7, 3.8 there exist solutions ωk+1 ∈ L∞(QT ), uk+1 ∈ X1,

pk+1 ∈ X2 so we obtain the sequences (ωk) ⊂ L∞(QT ), (uk) ⊂ X1, (pk) ⊂ X2.

Step 2: boundedness. We show that the above defined sequences are bounded.

By Proposition 3.2, for fixed ω0 ∈ L∞(Ω) the solution of equation (3.22) satisfies

estimate ‖ωk+1‖L∞(QT ) ≤ ‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω) thus (ωk) is bounded in L∞(QT )

Now by choosing the test function v = uk+1 in (3.23), further, by using condition

(A4) and the monotonicity of operator L one obtains

[G, uk+1] = [Luk+1, uk+1] + [A(ωk, uk+1,pk), uk+1]

≥ c2

∫
QT

(|uk+1|p1 + |Duk+1|p1 − γ(ωk)Γ(ωk)k2(uk+1))

≥ c2‖uk+1‖X1

(
‖uk+1‖p1−1

X1
− ‖γ(ωk)Γ(ωk)‖L∞(QT ) ·

‖k2(uk+1)‖L1(QT )

‖uk+1‖X1

)
.

Thus by the boundedness of (ωk) we conclude for some K > 0 that

‖uk+1‖p1−1
X1

(
1 −K · ‖k2(uk+1)‖L1(QT )

‖uk+1‖p1X1

)
≤ const.

Now (3.8) implies the boundedness of (uk) in X1.

The boundedness of (pk) in X2 follows by similar arguments as above by using

condition (B4) and the boundedness of the sequences (ωk), (uk).

We need also the boundedness of the sequence (Luk) in X∗
1 . To this end, we use

Hölder’s inequality and obtain for arbitrary v ∈ X1

|[A(ωk, uk+1,pk), v]|

≤
(

n∑
i=0

‖ai(ωk, uk+1, Duk+1,pk, Dpk;ωk, uk+1,pk)‖Lq1 (QT )

)
· ‖v‖X1 .

From condition (A2) it follows for all i

‖ai(ωk, uk+1, Duk+1,pk, Dpk;ωk, uk+1,pk)‖Lq1 (QT )

≤ const · c1(ωk)c1(ωk, uk+1,pk)
(‖uk+1‖p1X1

+ ‖pk‖p2X2
+ ‖k1(ωk, uk+1,pk)‖Lq1 (QT )

)
.
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Therefore, by the boundedness of the sequences (ωk), (uk), (pk) and the boundedness

of operators c1, c1, k2 we conclude

|[Luk+1, v]| = |[A(ωk, uk+1,pk) +G, v]| ≤ const · ‖v‖X1

so (Luk) is a bounded sequence in X∗
1 .

Step 3: convergence. Due to the boundedness of the sequences (uk), (Luk), (pk)

(in reflexive Banach spaces) each has a weakly convergent subsequence, further,

by applying Corollary 1.48 it follows that there exist subsequences (which will be

denoted, for simplicity, as the original sequences) and functions u ∈ X1, p ∈ X2

such that

uk → u weakly in X1, strongly in Lp1(QT ), a.e. in QT ;

pk → p weakly in X2.

In what follows, we show that ω, u,p are solutions of problem (3.13)–(3.15).

Since uk → u in Lp1(QT ), further, ωk+1 is the solution of equation (3.22), by

Proposition 3.3 it follows that ωk → ω a.e. in QT for some ω ∈ L∞(QT ) such that

functions ω, u satisfy the integral equation (3.13).

Now let us consider equation (3.24). We show that pk → p in X2. To this end,

let us introduce operator B̃ : L∞(QT ) ×X1 ×X2 × L∞(QT ) ×X1 ×X2 → X∗
2 by

[B̃(ω, u,p;w, v1, v2), z2]

:=

∫
QT

n∑
i=1

bi(t, x, ω(t, x), u(t, x),p(t, x), Dp(t, x);w, v1, v2)Diz2(t, x)dtdx

+

∫
QT

b0(t, x, ω(t, x), u(t, x),p(t, x), Dp(t, x);w, v1, v2)z2(t, x)dtdx

for z2 ∈ X2. Observe B(ω, u,p) = B̃(ω, u,p;ω, u,p). Condition (B3) yields

[B̃(ωk, uk,pk+1;ω, u,p)− B̃(ωk, uk,p;ω, u,p),pk+1 −p] ≥ Ĉ · ‖pk+1 −p‖p2X2
. (3.25)

On the left hand side of the above inequality we have the following decomposition:

[B̃(ωk, uk,pk+1;ω, u,p) − B̃(ωk, uk,p;ω, u,p),pk+1 − p]

= [B̃(ωk, uk,pk+1;ωk, uk,pk+1),pk+1 − p]

+ [B̃(ωk, uk,pk+1;ω, u,p) − B̃(ωk, uk,pk+1;ωk, uk,pk+1),pk+1 − p]

+ [B̃(ω, u,p;ω, u,p) − B̃(ωk, uk,p;ω, u,p),pk+1 − p]

− [B̃(ω, u,p;ω, u,p),pk+1 − p].

(3.26)

Now we show that each term on the right hand side tends to 0 which implies by

(3.25) the strong convergence of (pk). Clearly, B̃(ωk, uk,pk+1;ωk, uk,pk+1) = H,
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further, pk+1 → p weakly in X2 which yield the convergence of the first and the last

term. In addition, it is easily seen that condition (B5) implies the convergence of

the second term on the right hand side of (3.26). In order to verify the convergence

of the third term, observe that

|[B̃(ωk, uk,p;ω, u,p) − B̃(ω, u,p;ω, u,p),pk+1 − p]|

≤
n∑
i=0

‖bi(ωk, uk,p, Dp;ω, u,p) − bi(ω, u,p, Dp;ω, u,p)‖Lq2 (QT )

× ‖pk+1 − p‖X2

(3.27)

and by condition (B2) it follows

|bi(ωk, uk,p, Dp;ω, u,p) − bi(ω, u,p, Dp;ω, u,p)|q2
≤ const · |̂c1(ω, u,p)|q2 · (|ĉ1(ωk)|q2 + |ĉ1(ω)|q2)
×
(
|p|p2 + |Dp|p2 + |uk|p1 + |u|p1 + |k̂1(ω, u,p)|q2

)
.

(3.28)

The boundedness of (ωk) in L∞(QT ) and the convergence of (uk) in Lp1(QT ) implies

the equi-integrability of the left hand side of the above inequality. In addition, the left

hand side a.e. converges to 0, therefore by Vitali’s theorem it converges in L1(QT ) to

the zero function. Thus (because of the boundedness of (pk)) the right hand side of

(3.27) tends to 0. Hence all terms on the right hand side of equation (3.26) converges

to 0 so we have shown that pk+1 → p in X2.

Now we show that B(ωk, uk,pk+1) → B(ω, u,p) weakly in X∗
2 . Then from recur-

rence (3.24) we obtain B(ω, u,p) = H, i.e., ω, u,p are solutions of problem (3.15).

Consider the decomposition

B̃(ωk, uk,pk+1) −B(ω, u,p)

= (B(ωk, uk,pk+1;ωk, uk,pk+1) − B̃(ωk, uk,pk+1;ω, u,p))

+ (B̃(ωk, uk,pk+1;ω, u,p) − B̃(ω, u,p;ω, u,p)).

(3.29)

Observe that the second term on the right hand side converges to zero by Vitali’s

theorem, one may use similar estimates as (3.27), (3.28). Further, the first term

tends to 0 by condition (B5).

Consequently, the right hand side of (3.29) converges to 0 thus

B(ωk, uk,pk+1) −B(ω, u,p) → 0 weakly in X∗
2 .

In the case of equation (3.23) we apply similar arguments as above. We introduce
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operator Ã : L∞(QT ) ×X1 ×X2 × L∞(QT ) ×X1 ×X2 → X∗
1 by

[Ã(ω, u,p;w, v1, v2), z2]

:=

∫
QT

n∑
i=1

ai(t, x, ω(t, x), u(t, x), Du(t, x),p(t, x), Dp(t, x);w, v1, v2)Diz2(t, x)dtdx

+

∫
QT

a0(t, x, ω(t, x), u(t, x), Du(t, x),p(t, x), Dp(t, x);w, v1, v2)z2(t, x)dtdx

for z1 ∈ X1. Note that A(ω, u,p) = Ã(ω, u,p;ω, u,p). We have already shown the

fact that Luk+1 → Lu weakly in X∗
1 thus it remains to verify that

Ã(ωk, uk+1,pk;ωk, uk+1,pk) → Ã(ω, u,p;ω, u,p) = A(ω, u,p)

weakly in X∗
1 then recurrence (3.23) yields (3.14). To this end, we show that uk → u

strongly in X1. Since it is already shown that uk → u in Lp1(QT ) it suffices to show

that Duk → Du in Lp1(QT ). Now by the monotonicity of operator L,

[Luk+1 − Lu, uk+1 − u]

+ [Ã(ωk, uk+1,pk;ω, u,p) − Ã(ωk, u,pk;ω, u,p);uk+1 − u]

≥
n∑
i=1

∫
QT

[
(ai(ωk, uk+1, Duk+1,pk, Dpk;ω, u,p)

− ai(ωk, uk+1, Du,pk, Dpk;ω, u,p)) × (Diuk+1 −Diu)
]

+
n∑
i=1

∫
QT

[
(ai(ωk, uk+1, Du,pk, Dpk;ω, u,p)

− ai(ωk, u,Du,pk, Dpk;ω, u,p) × (Diuk+1 −Diu)
]

+

∫
QT

(a0(ωk, uk+1, Duk+1,pk, Dpk;ω, u,p)

− a0(ωk, u,Du,pk, Dpk;ω, u,p) × (uk+1 − u)
]
.

(3.30)

Observe that by condition (A3) the first term on the right hand side of the above

inequality is greater than C · ‖Duk+1 − Duk‖p1Lp1 (QT ). We show that the left hand

side and the second, third integrals on the right hand side converge to 0, then the

convergence of (Duk) in Lp1(QT ) immediately follows. Consider the decomposition

[Luk+1 − Lu, uk+1 − u] + [Ã(ωk, uk+1,pk, ω, u,p) − Ã(ωk, u,pk;ω, u,p), uk+1 − u]

= [Luk+1 + Ã(ωk, uk+1,pk;ωk, uk+1,pk), uk+1 − u] − [Lu, uk+1 − u]

+ [Ã(ωk, uk+1,pk;ω, u,p) − Ã(ωk, uk+1,pk;ωk, uk+1,pk), uk+1 − u]

+ [Ã(ω, u,p;ω, u,p) − Ã(ωk, u,pk;ω, u,p), uk+1 − u]

− [Ã(ω, u,p;ω, u,p), uk+1 − u].
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The first term on the right hand side equals to [G, uk+1−u] because of the recurrence

(3.23). By the weak convergence of (uk) the first two and the fifth terms tend to 0 as

k → ∞. Condition (A5) implies the convergence to 0 of the third term (similarly to

the case of the decomposition (3.26)). Finally, by condition (A2), the a.e. convergence

of (ωk), the strong convergence of (pk), it is easy to see (similarly to the case of

operator B, see (3.26)) that the fourth term also tends to 0. Further, the above

arguments imply that the left hand side of (3.30) tends to 0. Now turn to the

integrals of the right hand side of (3.30). Clearly,

(ai(ωk, uk+1, Du,pk, Dpk;ω, u,p) − ai(ωk, u,Du,pk, Dpk);ω, u,p) → 0

a.e. in QT , further,

|ai(ωk, uk+1, Du,pk, Dpk;ω, u,p) − ai(ωk, u,Du,pk, Dpk;ω, u,p)|q1
≤ const · |c1(ω, u,p)c1(ωk)|
× (|uk+1|p1 + |u|p1 + |Du|p1 + |pk|p2 + |Dpk|p2 + |k1(ω, u,p)|q1)

where the right hand side converges in L1(QT ). Hence by Vitali’s theorem the second

integral on the right hand side of (3.30) tends to 0. In order to verify the convergence

of the last integral on the right hand side of (3.30), we use Hölder’s inequality and

condition (A2) and we conclude∣∣∣∣
∫
QT

(a0(ωk, uk+1, Duk+1,pk, Dpk;ω, u,p)

− a0(ωk, u,Du,pk, Dpk;ω, u,p)(uk+1 − u)

∣∣∣∣
≤ const · ‖c1(ω, u,p)c1(ωk)‖L∞(QT )

×
(
‖uk+1‖

p1
q1
X1

+ ‖u‖
p1
q1
X1

+ ‖pk‖
p2
q1
X2

+ ‖k1(ωk, uk+1,pk)‖Lq1 (QT )

)
‖uk+1 − u‖Lp1 (QT ).

By the strong convergence of (pk) inX2 and (uk) in Lp1(QT ) and by the boundedness

of (uk) in X1 it follows that the right hand side tends to 0.

Now the weak convergence A(ωk, uk+1,pk) → A(ω, u,p) in X∗
1 follows easily by

condition (A2), by the strong convergences of the sequences and by Vitali’s theorem

(the same way as in the case of operator B). So we have shown that ω, u,p are

solutions of problem (3.14).

Summarizing, we have verified that ω, u,p are solutions of system (3.13)–(3.15),

the proof of the theorem is complete.
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3.2.2 Examples

We show some examples for functions satisfying conditions (A1)–(A5), (B1)–

(B5). Let functions ai, bi have the form

ai(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2)

= [π(w)](t, x)[ϕ(v1)](t, x)[ψ(v2)](t, x)P (ξ)Q(η0, η)ζi|ζ|p1−2

+ [π̃(w)](t, x)[ϕ̃(v1)](t, x)P̃ (ξ)ζi|ζ|r1−1, if i �= 0,

(3.31)

a0(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2)

= [π(w)](t, x)[ϕ(v1)](t, x)[ψ(v2)](t, x)P (ξ)Q(η0, η)ζ0|ζ0|p1−2

+ [π̃0(w)](t, x)[ϕ̃0(v1)](t, x)P̃0(ξ)ζ0|ζ0|r1−1,

(3.32)

bi(t, x, ξ, ζ0, η0, η;w, v1, v2)

= [κ(w)](t, x)[λ(v1)](t, x)[ϑ(v2)](t, x)R(ξ)S(ζ0)ηi|(η0, η)|p2−2

+ [κ̃(w)](t, x)[ϑ̃(v2)](t, x)R̃(ξ)ηi|(η0, η)|r2−1, i = 0, . . . , n,

(3.33)

where 1 ≤ ri < pi − 1 (i = 1, 2) and the following hold.

(E1) a) Operators π : L∞(QT ) → L∞(QT ), ϕ : Lp1(QT ) → L∞(QT ), ψ : X2 →
L∞(QT ) are bounded, ϕ and ψ are continuous, further, if (ωk) is bounded

in L∞(QT ) and ωk → ω a.e. in QT then π(ωk) → π(ω) in L∞(QT ). In

addition, P ∈ C(R), Q ∈ C(Rn+1)∩L∞(Rn+1) and there exists a positive

lower bound for the values of π, ϕ, ψ, P,Q.

b) Operators π̃, π̃0 : L∞(QT ) → L∞(QT ), ϕ̃, ϕ̃0 : Lp1(QT ) → L
p1−1

p1−r1−1 (QT )

are bounded, ϕ̃ and ϕ̃0 are continuous, further, if (ωk) is bounded in

L∞(QT ) and ωk → ω a.e. in QT then π̃(ωk) → π̃(ω) and π̃0(ωk) → π̃0(ω)

in L∞(QT ). In addition, P̃ , P̃0 ∈ C(R), operators π̃, ϕ̃ and function P̃ are

nonnegative and

lim
‖v1‖X1

→+∞

∫
QT

|ϕ̃0(v1)|
p1−1

p1−r1−1

‖v1‖p1X1

= 0.

(E2) a) Operators κ : L∞(QT ) → L∞(QT ), λ : Lp1(QT ) → L∞(QT ), ϑ : Lp2(QT )

→ L∞(QT ) are bounded, λ and ϑ are continuous, further, if (ωk) is

bounded in L∞(QT ) and ωk → ω a.e. in QT then κ(ωk) → κ(ω) in

L∞(QT ). In addition, R ∈ C(R), S ∈ C(R) ∩ L∞(R) and there exists a

positive lower bound for the values of κ, λ, ϑ,R, S.

b) Operators κ̃ : L∞(QT ) → L∞(QT ) and ϑ̃ : Lp2(QT ) → L
p2−1

p2−r2−1 (QT ) are

bounded, ϑ̃ is continuous, function R̃ ∈ C(R), further, if (ωk) is bounded
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in L∞(QT ) and ωk → ω a.e. in QT then κ̃(ωk) → κ̃(ω) in L∞(QT ). In

addition, operators κ̃, ϑ̃ and function R̃ ∈ C(R) are nonnegative and

lim
‖v2‖X2

→+∞

∫
QT

|ϑ̃(v2)|
p2−1

p2−r2−1

‖v2‖p2X2

= 0.

Proposition 3.9. Assume that (E1)-(E2) hold, then functions (3.31)–(3.33) fulfil

conditions (A1)–(A5), (B1)–(B5).

By using Young’s and Hölder’s inequality it is not difficult to prove the above

statement. One may use the same arguments as in Section 2.2.3 since the above

conditions are analogous to the assumptions there.

Operators π, π̃, π̃0, κ, κ̃ may have the form [π(w)](t, x) =

∫
Qt

|w|β, where 1 ≤ β.

Further, operators ϕ, λ may have one of the forms

[ϕ(v)](t, x) = Φ

(∫
Qt

|v|β
)

or Φ

(∫
Qt

dv

)

where 1 ≤ β ≤ p1, d ∈ Lq1(QT ), Φ ∈ C(R) and Φ ≥ const > 0. Similarly, ψ may be

written in the form

[ψ(v)](t, x) = Ψ

(∫
Qt

|v|β + |Dv|β
)

or Ψ

(∫
Qt

d1v + d2|Dv|
)

where 1 ≤ β ≤ p2, d1, d2 ∈ Lq2(QT ), Ψ ∈ C(R) and Ψ ≥ const > 0 For ϕ̃ consider

[ϕ̃(v)](t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Φ̃

(∫ t

0

d(s, x)v(s, x)ds

)
,

Φ̃

(∫
Ω

d(t, x)v(t, x)dx

)
, or

Φ̃

([∫ t

0

|v(s, x)|β ds
] 1

β

)

where d ∈ L∞(QT ), 1 ≤ β ≤ p1, Φ̃ ∈ C(R), Φ̃ ≥ 0 and |Φ̃(τ)| ≤ const · |τ |p1−r1−1. In

the case of ϕ̃0 one has similar examples as for ϕ̃ above, except Φ̃ does not have to

be nonnegative.

For operators ϑ, ϑ̃ we may consider similar examples as for ϕ, ϕ̃ above, by re-

placing exponents p1 with p2 and r1 with r2.

It is not difficult to show that the above operators fulfil conditions (E1)–(E2),

one can show it by similar arguments as for the examples in Section 2.2.3.

As an example for function f consider, e.g.,

f(t, x, ξ, ζ0; v) = −[ϕ(v)](t, x)f1(t, x)f2(ζ0)(ξ − ω∗(x))

where ϕ : Lp1(QT ) → L∞(QT ) is bounded and nonnegative, further, f1 ∈ L∞(QT ),

f2 : R → R are nonnegative, Lipschitz continuous and f2(ζ0) ≤ const · |ζ0|
p1
q2 .
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3.3 Solutions in (0,∞)

Mathematics is the art of giving the same name to different things.

Jules Henri Poincaré

In the previous section we have proved existence of solutions for all finite time

interval (0, T ). In what follows, we shall show existence of weak solutions in (0,∞).

We write briefly X∞
i = Lpi

loc(0,∞;Vi) (i = 1, 2) (this space was introduced in Section

2.3.1). In the following we suppose

(Vol) Functions ai : Q∞ ×R×R
n+1 ×R

n+1 ×L∞
loc(Q∞)×X∞

1 ×X∞
2 → R, bi : Q∞ ×

R×R×R
n+1 ×L∞

loc(Q∞)×X∞
1 ×X∞

2 → R (i = 0, . . . , n) and f : Q∞ ×R
2 ×

L∞
loc(Q∞)×X∞

1 → R have the Volterra property, i.e., for every 0 < T <∞ the

restrictions ai(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2)|(0,T ), bi(t, x, ξ, ζ0, η0, η;w, v1, v2)|(0,T )

and f(t, x, ξ, ζ0;w)|(0,T ) depend only on (w|(0,T ), v1|(0,T ), v2|(0,T )).

Besides the Volterra property we assume that conditions (A1)–(A5), (B1)–(B5),

(F1), (F2), (F4) hold for every 0 < T < ∞ in the sense that their restrictions to

(0, T ) (that can be defined by the Volterra property, see (Vol) above) satisfy these

conditions (not necessarily with the same c1, k1, c2, k2 etc.). Further, (F3) holds with

the same ω∗, i.e.,

(F3∗) There exists ω∗ ∈ L∞(Ω) such that for a.a. (t, x) ∈ Q∞, every (ξ, ζ0) ∈ R
2 and

v1 ∈ X1,

(ξ − ω∗(x)) · f(t, x, ξ, ζ0; v1) ≤ 0.

Finally, let

(G1∗) G ∈ Lq1loc(0,∞;V ∗
1 )

(H1∗) H ∈ Lq2loc(0,∞;V ∗
2 ).

Now we may define the weak form of (3.5)–(3.7) in (0,∞). For fixed 0 < T <∞
we introduce operators AT : L∞(QT ) × X1 × X2 → X∗

1 and BT : L∞(QT ) × X1 ×
X2 → X∗

2 , LT : D(LT ) → Lq1(0, T ;V ∗
1 ) by formulae (3.10)–(3.12). In addition, let

GT = G|(0,T ) ∈ X∗
1 ,HT = H|(0,T ) ∈ X∗

2 for every 0 < T < ∞. By the Volterra

property there exists operators A : L∞
loc(Q∞) × X∞

1 × X∞
2 → Lq1loc(0,∞;V ∗

1 ) and

B : L∞
loc(Q∞)×X∞

1 ×X∞
2 → Lq2loc(0,∞;V ∗

2 ) such that AT (ω, u,p) = A(ω, u,p)|(0,T ),

BT (ω, u,p) = B(ω, u,p)|(0,T ) for every 0 < T < ∞ and (ω, u,p) ∈ L∞
loc(Q∞) ×

Lp1loc(0,∞;V1) × Lp2loc(0,∞;V2) We say that ω ∈ L∞
loc(Q∞), u ∈ Lp1loc(0,∞;V1),p ∈
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Lp2loc(0,∞;V2) is a weak solution of (3.5)–(3.7) in (0,∞) if for all 0 < T < ∞,

u|(0,T ) ∈ D(LT ) and (for the restrictions of the functions to (0, T ))

ω(t, x) = ω0(x) +

∫ t

0

f(s, x, ω(s, x), u(s, x);u)ds (t, x) ∈ QT (3.34)

LTu+ AT (ω, u,p) = GT (3.35)

BT (ω, u,p) = HT . (3.36)

(As in the previous chapter we omit the notation |(0,T ) if it is not confusing, since

the operators and the norms contain the information about the space). Observe that

(as for the problem of the previous chapter) the Volterra property ensures that if

ω, u,p is a solution in (0, T ) for some T then these functions are solutions in (0, T̃ )

for all T̃ < T .

Theorem 3.10. Assume (Vol). Further, suppose that conditions (A1)–(A5), (B1)–

(B5), (F1), (F2), (F4) hold for every 0 < T <∞ (in the above explained sense), and

(F3∗), (G1∗), (H1∗) are staisfied. Then there exist weak solutions ω ∈ L∞(Q∞), u ∈
Lp1loc(0,∞;V1),p ∈ Lp2loc(0,∞;V2) to problem (3.34)–(3.36).

Proof. The main idea is the same as in the proof of Theorem 2.12. By Theorem 3.1,

for every 0 < T < ∞ there exist solutions in (0, T ). Then the limit of some weakly

convergent subsequences of the solutions which was choosen by a diagonal method

will be a solution in (0,∞).

Let (Tk) be a monotone increasing sequence of positive numbers such that Tk →
+∞. Then by Theorem 3.1, for every Tk there exists a solution of (3.34)-(3.35), i.e.,

there are ωk ∈ L∞(QTk
), uk ∈ Lp1(0, Tk;V1), pk ∈ Lp2(0, Tk;V2) such that

ωk(t, x) = ω0(x) +

∫ t

0

f(s, x, ωk(s, x), uk(s, x);uk)ds

LTk
uk + ATk

(ωk, uk,pk) = GTk

BTk
(ωk, uk,pk) = HTk

.

By applying Proposition 3.2 it follows

‖ωk‖L∞(QTm ) ≤ ‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω). (3.37)

Further, by following the proof of Theorem 3.1 (with (0, T ) = (0, Tm)) one obtains

for fixed m ∈ N the boundedness of the sequences (uk), (LTmuk) and (pk) in spaces

XTm
1 , (XTm

1 )∗ and XTm
2 , respectively.

Now let m = 1. Since (uk), (LT1uk), (pk) are bounded sequences in reflexive

Banach spaces XT1
1 , (XT1

1 )∗, XT1
2 , respectively, there exist subsequences (u1,k) ⊂
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(uk), (p1,k) ⊂ (pk) and functions u1,∗ ∈ XT1
1 ∩D(LT1), p1,∗ ∈ XT1

2 such that

u1,k → u1,∗ weakly in XT1
1 ,

LT1u1,k → LT1u1,∗ weakly in (XT1
1 )∗,

p1,k → p1,∗ weakly in XT1
2 .

If (um−1,k)k≥m−1 is already given then sequences (um−1,k)k≥m−1, (LTm−1um−1,k)k≥m−1,

(pm−1,k)k≥m−1 are bounded in reflexive spaces X
Tm−1

1 , (X
Tm−1

1 )∗, XTm−1

2 thus there

exist subsequences (um,k) ⊂ (um−1,k), (pm,k) ⊂ (pm−1,k) and functions um,∗ ∈ XTm
1 ∩

D(LTm),pm,∗ ∈ XTm
2 such that

um,k → um,∗ weakly in XTm
1 ,

LTmum,k → LTmum,∗ weakly in (XTm
1 )∗,

pm,k → pm,∗ weakly in XTm
2 .

It is clear that for each fixed l < m the above weak convergences hold in XTl
1 ,

(XTl
1 )∗, XTl

2 , respectively, which yields um,∗|(0,Tl) = ul,∗ and pm,∗|(0,Tl) = ul,∗ for

l < m. Consequently, there exist unique functions u : (0,∞) → V1,p : (0,∞) → V2

such that u|(0,Tm) = um,∗, p|(0,Tm) = pm,∗ and um,∗ ∈ D(LTm) for every m ∈ N.

This means that u ∈ Lp1loc(0,∞;V1), u|(0,T ) ∈ D(LT ) for every 0 < T < ∞ and p ∈
Lp2loc(0,∞;V2). Consider the “diagonal” sequences (uk) = (uk,k), (pk) = (pk,k) and

the corresponding sequence (ωk). Observe that uk → u weakly in XTm
1 , Dtuk → Dtu

weakly in (XTm
1 )∗, pk → p weakly in XTm

2 for each fixed m. Thus by Corollary 1.48

we may assume that uk → u in Lp1(QTm). Then from Proposition 3.2, 3.3 it follows

that for every m there exists ωm,∗ ∈ L∞(QTm) such that (ωk) → ωm,∗ a.e. in QTm

and

ωm,∗(t, x) = ω0(x) +

∫ t

0

f(s, x, ωm,∗(s, x), um,∗(s, x);um,∗)ds (t, x) ∈ QTm .

Since for every fixed um,∗ the solution of the above equation is unique, further,

functions (um,∗) are the restrictions of the function u to (0, Tm), we cocnclude that

there exists a unique ω ∈ L∞
loc(Q∞) such that ωm,∗ = ω|(0,Tm) for every m and

ω(t, x) = ω0(x) +

∫ t

0

f(s, x, ω(s, x), u(s, x);u)ds (t, x) ∈ Q∞.

By (3.37), ω ∈ L∞(Q∞). Now fix m ∈ N. Then we may deduce from the above

arguments that

ωk → ω a.e. in QTm

uk → u weakly in XTm
1 , strongly in Lp1(QTm), a.e. in QTm ;

LTmuk → LTmu weakly in (XTm
1 )∗;

pk → p weakly in XTm
2 .
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By applying word for word Step 3 of the proof of Theorem 3.1, the above conver-

gences imply that uk → u strongly in XTm
1 , pk → pm,∗ strongly in XTm

2 and

LTmu+ ATm(ω, u,p) = GTm

BTm(ω, u,p) = HTm .

This means that ω, u,p are solutions in (0,∞) so the proof of the theorem is com-

plete.

3.3.1 Boundedness

Now we show that under some further assumptions, the solutions, formulated in

Theorem 3.10, are bounded (in appropriate norms) in the time interval (0,∞). First

suppose

(A4∗) There exist a constant c2 > 0, a continuous function γ : R → R and bounded

operators Γ: L∞
loc(Q∞) → L∞(Ω), k2 : X∞

1 → L1(Ω) of Volterra type such that

n∑
i=0

ai(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2)ζi

≥ c2 (|ζ0|p1 + |ζ|p1) − γ(ξ)[Γ(w)](x)[k2(v1)](x)

for a.a. (t, x) ∈ QT and every (ξ, ζ0, ζ, η0, η) ∈ R × R
n+1 × R

n+1, (w, v1, v2) ∈
L∞(QT ) × X1 × X2. Further, for every 0 < T < ∞ and K > 0 there

is a constant L > 0 such that ‖Γ(w)‖L∞(Ω), ‖k2(v1)‖Lq(Ω) ≤ K whenever

‖w|QT
‖L∞(QT ), ‖v1|(0,T )‖X1 ≤ L. In addition, for every 0 < T <∞

lim
‖v1‖X1

→+∞
‖k2(v1)‖L1(QT )

‖v1‖p1X1

= 0.

Finally, there exist constants α1 > 0, �1 < p1 and a continuous function

χ1 : R → R such that lim
t→∞

χ1(t) = 0, further, if v1 ∈ Lp1loc(0,∞;V1) and

Dtv1 ∈ Lq1loc(0,∞;V ∗
1 ) then for a.a. t ∈ (0,∞),

∫
Ω

|[k2(v1)](t, x)|dx ≤ α1

[
sup
τ∈[0,t]

‖v1(τ)‖
1L2(Ω) + χ1(t) sup
τ∈[0,t]

‖v1(τ)‖p1L2(Ω) + 1

]
.

(B4∗) There exist a constant ĉ2 > 0, a continuous function γ̂ : R → R and operators

Γ̂ : L∞
loc(Q∞) → L∞(Ω), k̂2 : X∞

2 → L1(Ω) of Volterry type such that

n∑
i=0

bi(t, x, ξ, ζ0, η0, η;w, v1, v2)ηi

≥ ĉ2 (|η0|p2 + |η|p2) − γ̂(ξ)[Γ̂(w)](x)
(
|ζ0|p1 + [k̂2(v2)](x)

)
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for a.a. (t, x) ∈ Q∞, and every (ξ, ζ0, η0, η) ∈ R × R × R
n+1, (w, v1, v2) ∈

L∞
loc(Q∞) ×X∞

1 ×X∞
2 . Further, for every 0 < T <∞ and K > 0 there exists

a constant L > 0 such that ‖Γ̂(w)‖L∞(Ω), ‖k̂2(v2)‖L1(Ω) ≤ L. In addition, for

every 0 < T <∞
lim

‖v2‖X2
→∞

‖k̂2(v2)‖L1(QT )

‖v2‖p2X2

= 0.

Finally, there exist constants α2 > 0, �2 < p2 and a continuous function

χ2 : R → R such that lim
t→∞

χ2(t) = 0, further, if v2 ∈ Lp2loc(0,∞;V2) then for a.a.

t ∈ (0,∞),

∫
Ω

|[k̂2(v2)](t, x)|dx ≤ α2

[
ess sup
τ∈[0,t]

‖v2(τ)‖
2V2
+ χ2(t) ess sup

τ∈[0,t]

‖v2(τ)‖p2V2
+ 1

]
.

(G1∗∗) There exists t∗ such that G|(t∗,∞) ∈ L∞(t∗,∞;V ∗
1 ).

(H1∗∗) There exists t̂∗ such that H|(t̂∗,∞) ∈ L∞(t̃∗,∞;V ∗
2 ).

Remark 3.11. The suprema in condition (A4∗) make sense since v ∈ Lp1loc(0,∞;V1)

and Dtv ∈ Lq1loc(0,∞;V ∗
1 ) implies that v ∈ C([0,∞), L2(Ω)).

Theorem 3.12. Assume (Vol), further suppose that conditions (A1)–(A3), (A5),

(B1)–(B3), (B5), (F1), (F2), (F4) are staisfied for every 0 < T < ∞. In addition,

(F3∗), (A4∗), (B4∗), (G1∗∗), (H1∗∗) are fulfilled. Then for the solutions ω, u,p of

problem (3.34)–(3.36), ω ∈ L∞(Q∞), u ∈ L∞(0,∞;L2(Ω)), p ∈ L∞(0,∞;V2) hold.

Proof. In Theorem 3.1 we have verified that ω ∈ L∞(Q∞) (which was a trivial

consequence of (3.37)). In the following let y(t) = ‖u(t, ·)‖2
L2(Ω). First note that

u ∈ C([0, T ], L2(Ω)) thus y is continuous in [0, T ]. We show that y is bounded

in (0,∞). Since u is a solution of (3.35) for all 0 < T < ∞, thus for arbitrary

t∗ < T1 < T2 <∞,∫ T2

T1

〈Dtu(t), u(t)〉dt+

∫ T2

T1

〈[A(ω, u,p)](t), u(t)〉dt =

∫ T2

T1

〈G(t), u(t)〉dt. (3.38)

On the right hand side the ε > 0-inequality yields∫ T2

T1

〈G(t), u(t)〉dt ≤
∫ T2

T1

(
εp1

p1

‖u(t)‖p1V1
+

1

q1εq1
‖[G(t)‖V ∗

1

)
dt

≤
∫ T2

T1

(
εp1

p1

‖u(t)‖p1V1
+ c(ε)

)
dt.

By using Corollary 1.43, condition (A4∗) on the left hand side of (3.38), further,

by applying the above estimate with sufficiently small ε on the right hand side, it
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follows (similarly as in the proof of Theorem 2.15)

1

2
(y(T1) − y(T2)) +

1

2
c2

∫ T2

T1

y
p1
2 dt

≤ const

∫ T2

T1

∫
Ω

[
sup
τ∈[0,t]

y(τ)
�1
2 + χ1(t) sup

τ∈[0,t]

y(τ)
p1
2 + 1

]
dxdt.

The above inequality implies the boundedness of y, one may prove it by contradic-

tion, the same way as in Theorem 2.15.

It remains to show that p ∈ L∞(0,∞;V2). The proof goes the same way as in

the previous part (moreover it is simpler since there is no derivative with respect

to t), by using condition (B4∗) and the boundedness of ω, from B(ω, u,p) = H it

follows

‖p(t)‖p2V2

≤ const

(
‖u(t)‖2

L2(Ω) + ess sup
τ∈[0,t]

‖p(τ)‖
2V2
+ χ2(t) ess sup

τ∈[0,t]

‖p(τ)‖p2V2
+ 1

)
.

(3.39)

We show that the above inequality implies p ∈ L∞(0,∞;V2). Since p is not

necessarily continuous we may not apply the arguments of the proof of Theorem

2.15 word for word, we have to generalize it to measurable functions. Supposing that

p is not bounded, the sequence (ess supt∈[n,n+1])(‖p(t)‖V2)n∈N has got a subsequence

(Mk) which tends to +∞ increasingly. Denote by Ak the intervals corresponding

to Mk. Then for every k there exists a measurable subset Bk ⊂ Ak with positive

measure such that ‖p(t)‖V2 > Mk − 1 a.e. in Bk. Now by integrating inequality

(3.39) on Bk, the above estimates on p and the boundedness of ‖u(t)‖2
L2(Ω) yield

(similarly to (2.52))

(Mk − 1)p2λ(Bk) ≤ d3M

2
k λ(Bk) + d3M

p2
k λ(Bk)

∫
Bk

χ2(t)dt+ d3λ(Bk)

where λ(Bk) is the measure of Bk and χ2(t) → 0 as t → +∞. By using the fact

that λ(Bk) ≤ 1 we may deduce

∫
Bk

χ2(t)dt → 0 as k → ∞. Since Mk → +∞, by

the same arguments as at the end of the proof of Theorem 2.15 we may arrive to a

contradiction. The proof of Theorem 3.12 is complete.

3.3.2 Stabilization

In this section we consider a special case of problem (3.34)–(3.36), namely, let

p1 = p2 = p (thus q1 = q2 = q, V1 = V2 = V , X∞ = Lploc(0,∞;V )). In what follows,

we prove stabilization of the solutions, that is, we show the convergence of solutions

as t→ ∞ to some stationary solutions. We need some further assumptions:
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(A2+) For every w ∈ L∞(Q∞), v1 ∈ X∞ ∩L∞(0,∞;L2(Ω)), v2 ∈ X∞ ∩L∞(0,∞;V ),

there exist a constant c(w,v1,v2) > 0 and a function k(w,v1,v2) ∈ Lq(Ω) such that

|ai(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2)|
≤ c(w,v1,v2)

(
|ζ0|p1−1 + |ζ|p1−1 + |η0|

p2
q1 + |η|

p2
q1 + k(w,v1,v2)(x)

)
,

for a.a. (t, x) ∈ QT , every (ξ, ζ0, ζ, η0, η) ∈ R × R
n+1 × R

n+1 (i = 0, . . . , n).

(A6) There exist Carathéodory functions ai,∞ : Ω × R × R
n+1 × R

n+1 → R (i =

0, . . . , n) such that for a.a. x ∈ Ω and every (ζ0, ζ, η0, η) ∈ R × R
n × R × R

n,

ξ∗ ∈ R, w ∈ L∞(Q∞), v1 ∈ X∞ ∩ L∞(0,∞;L2(Ω)), v2 ∈ X∞ ∩ L∞(0,∞;V ),

lim
t→∞
ξ→ξ∗

ai(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2) = ai,∞(x, ξ∗, ζ0, ζ, η0, η).

(B2+) For every w ∈ L∞(Q∞), v1 ∈ X∞ ∩L∞(0,∞;L2(Ω)), v2 ∈ X∞ ∩L∞(0,∞;V ),

there exist a constant ĉ(w,v1,v2) > 0 and a function k̂(w,v1,v2) ∈ Lq(Ω) such that

|bi(t, x, ξ, ζ0, η0, η;w, v1, v2)|
≤ ĉ(w,v1,v2)

(
|η0|p2−1 + |η|p2−1 + |ζ0|

p1
q2 + k̂(w,v1,v2)(x)

)
for a.a. (t, x) ∈ QT and every (ξ, ζ0, η0, η) ∈ R × R × R

n+1 (i = 0, . . . , n).

(B6) There exist Carathéodory functions bi,∞ : Ω×R×R×R
n+1 → R (i = 0, . . . , n)

such that for a.a. x ∈ Ω and every (ζ0, η0, η) ∈ R × R
n+1, ξ∗ ∈ R, w ∈

L∞(Q∞), v1 ∈ X∞ ∩ L∞(0,∞;L2(Ω)), v2 ∈ X∞ ∩ L∞(0,∞;V ),

lim
t→∞
ξ→ξ∗

bi(t, x, ξ, ζ0, η0, η;w, v1, v2) = bi,∞(x, ξ∗, ζ0, η0, η).

(AB) There exists a positive constant C such that for a.a. (t, x) ∈ Q∞ and every

ξ ∈ R, (ζ0, ζ, η0, η), (ζ̃0, ζ̃, η̃0, η̃) ∈ R×R
n×R×R

n, w ∈ L∞(Q∞), v1, v2 ∈ X∞,

n∑
i=0

(
ai(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2) − ai(t, x, ξ, ζ̃0, ζ̃, η̃0, η̃;w, v1, v2)

)
(ζi − ζ̃i)

+
n∑
i=0

(
bi(t, x, ξ, ζ0, η0, η;w, v1, v2) − bi(t, x, ξ, ζ̃0, η̃0, η̃;w, v1, v2)

)
(ηi − η̃i)

≥ C ·
(
|ζ0 − ζ̃0|p + |ζ − ζ̃|p + |η0 − η̃0|p + |η − η̃|p

)
− r(t, x, ζ0, ζ̃0, η0, η̃0;w, v1, v2).

where r : Q∞×R
2×R

2×L∞(Q∞)×X∞×X∞ → R such that for w ∈ L∞(Q∞),

u, ũ,p, p̃ ∈ L∞(0,∞;L2(Ω)),

lim
t→∞

∫
Ω

r(t, x, u(t, x), ũ(t, x),p(t, x), p̃(t, x);w, u,p)dx = 0.
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(F5) For every fixed v ∈ X∞∩L∞(0,∞;L2(Ω)) there is a constant m > 0 such that

(ξ − ω∗(x))f(t, x, ξ, ζ0; v) ≤ −m(ξ − ω∗(x))2

for a.a. (t, x) ∈ Q∞ and every (ξ, ζ0) ∈ R
2.

(G2) There exists G∞ ∈ V ∗ such that lim
t→∞

‖G(t) − G∞‖V ∗ = 0.

(H2) There exists H∞ ∈ V ∗ such that lim
t→∞

‖H(t) − H∞‖V ∗ = 0.

Remark 3.13. In conditions (A6), (B6) by the convergence of measurable functions

we mean the same as in Remark 2.17.

Now introduce A∞ : L∞(Ω) × V × V → V ∗ and B∞ : L∞(Ω) × V × V → V ∗ by

〈A∞(ω, u,p), v〉 :=

∫
Ω

n∑
i=1

ai,∞(x, ω(x), u(x), Du(x),p(x), Dp(x))Div(x)dx

+

∫
Ω

a0,∞(x, ω(x), u(x), Du(x),p(x), Dp(x))v(x)dx,

〈B∞(ω, u,p), v〉 : =

∫
Ω

n∑
i=1

bi,∞(x, ω(x), u(x),p(x), Dp(x))Div(x)dx

+

∫
Ω

b0,∞(x, ω(x), u(x),p(x), Dp(x))v(x)dx,

for v ∈ V .

Theorem 3.14. Assume (Vol), further, suppose that conditions (A1)–(A3), (A5),

(B1)–(B3), (B5), (F1), (F2), (F4) hold for every 0 < T < ∞. In addition, (F3∗),

(A2+), (A4∗), (B2+), (B4∗), (A6), (B6), (AB), (F5), (G2), (H2) are satisfied. Then

there exist unique u∞ ∈ V,p∞ ∈ V such that the solutions ω, u,p of (3.34)–(3.36)

possess the following convergence relations:

‖ω(t, ·) − ω∗‖L∞(Ω) ≤ ‖ω0‖L∞(Ω)e
−mt,

u(t) → u∞ in L2(Ω),

∫ t+1

t−1

‖u(s) − u∞‖pV ds→ 0,∫ t+1

t−1

‖p(s) − p∞‖pV ds→ 0.

In addition,

A∞(ω∗, u∞,p∞) = G∞ (3.40)

B∞(ω∗, u∞,p∞) = H∞. (3.41)

Proof. Let ω, u,p be solution of (3.13)–(3.15) in (0,∞) then from Theorem 3.12 it

follows ω ∈ L∞(Q∞), u ∈ L∞(0,∞;L2(Ω)), p ∈ L∞(0,∞;V2).
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First we show that ω(t, ·) → ω∗ in L∞(Ω) as t → ∞. Fix x ∈ Ω and assume

ω0(x) > ω∗(x). By using similar arguments as in the proof of Proposition 3.5 we

obtain ω(t, x) > ω∗(x) for t > 0. Then condition (F5∗) yields

f(t, x, ω(t, x), u(t, x);u) ≤ −m(ω(t, x) − ω∗(x)).

Since ω is absolutely continuous, it is a.e. differentiable in Q∞ so

ω′(t, x) = f(t, x, ω(t, x), u(t, x);u) ≤ −m(ω(t, x) − ω∗(x)).

By the positivity of ω − ω∗ it follows

ω′(t, x)
ω(t, x) − ω∗(x)

≤ −m

hence

ω(t, x) − ω∗(x) ≤ ω0(x)e
−mt.

When ω0(x) < ω∗(x) one has estimate

−ω0(x)e
−mt ≤ ω(t, x) − ω∗(x)

thus

‖ω(t, ·) − ω∗‖L∞(Ω) ≤ ‖ω0‖L∞(Ω)e
−mt.

Before the proof of the other convergences we note the following. By fixing w ∈
Lloc(Q∞), v1, v2 ∈ X∞ in condition (A2),

|ai(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2)| ≤ c · c1(ξ)
(
|ζ0|p1−1 + |ζ|p1−1 + |η0|

p2
q1 + |η|

p2
q1 + k1(x)

)
for a.a. (t, x) ∈ Q∞, every (ζ0, ζ), (η0, η) ∈ R

n+1 with constant c = c(w, v1, v2) and

function k1 = k1(w, v1, v2) ∈ Lq(Ω). Now passing to the limit as t→ ∞ yields

|ai,∞(x, ξ, ζ0, ζ, η0, η)| ≤ c · c1(ξ)
(
|ζ0|p1−1 + |ζ|p1−1 + |η0|

p2
q1 + |η|

p2
q1 + k1(x)

)
so functions ai,∞ can be estimated similarly as functions ai in condition (A2). Func-

tions bi,∞ can be estimated similarly.

Now we show that problem (3.40)–(3.41) has got a unique solution u∞ ∈ V,p∞ ∈
V for fixed ω∗ ∈ L∞(Ω). By using similar arguments as in the proof of Lemma 2.19

it follows that operator (A∞,B∞) : V ×V → (V ×V )∗ is bounded, hemicontinuous,

coercive and uniformly monotone. So that there exist unique u∞,p∞ ∈ V satisfying

(3.40)–(3.41) A∞(u∞) + B∞(p∞) = G∞ + H∞. Thus by choosing u = 0 and p = 0

it follows that u∞,p∞ are unique solutions of (3.40)–(3.41).
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In order to show the desired convergences we prove an integral inequality for u

and p. From equations (3.34)–(3.36) and (3.40)–(3.41) it follows

〈G(t) − G∞, u(t) − u∞〉 + 〈H(t) − H∞,p(t) − p∞〉
= 〈Dt(u(t) − u∞), u(t) − u∞〉

+ 〈[A(ω,u,p)(ω, u,p)](t) − A∞(ω∗, u∞,p∞), u(t) − u∞〉
+ 〈[B(ω,u,p)(ω, u,p)](t) − B∞(ω∗, u∞,p∞),p(t) − p∞〉

(3.42)

where for fixed (w, v1, v2) ∈ L∞
loc(Q∞)×X∞×X∞ and t > 0 operator [A(w,v1,v2)](t) :

L∞
loc(Q∞) ×X∞ ×X∞ → V ∗ is given by

〈[A(w,v1,v2)(ω, u,p)](t), z〉

:=

∫
Ω

n∑
i=1

ai(t, x, ω(t, x), u(t, x), Du(t, x),p(t, x), Dp(t, x);w, v1, v2)Diz(x)dx

+

∫
Ω

a0(t, x, ω(t, x), u(t, x), Du(t, x),p(t, x), Dp(t, x);w, v1, v2)z(x)dx

with z ∈ V . Operator B(w,v1,v2) is given in the same manner. Observe that the first

term on the left hand side of the above equation equals to
1

2
y′(t) where y(t) =∫

Ω

(u(t) − u∞)2 (note that y is bounded in [0,∞) by Theorem 3.12). Now consider

the following decomposition on the right side of (3.42):

〈[A(ω,u,p)(ω, u,p)](t) − A∞(ω∗, u∞,p∞), u(t) − u∞〉
+ 〈[B(ω,u,p)(ω, u,p)](t) −B∞(ω∗, u∞,p∞),p(t) − p∞〉

= 〈[A(ω,u,p)(ω, u,p)](t) − [A(ω,u,p)(ω, u∞,p∞)](t), u(t) − u∞〉
+ 〈[B(ω,u,p)(ω, u,p)](t) − [B(ω,u,p)(ω, u∞,p∞)](t),p(t) − p∞〉
+ 〈[A(ω,u,p)(ω, u∞,p∞)](t) − A∞(ω∗, u∞,p∞), u(t) − u∞〉
+ 〈[B(ω,u,p)(ω, u∞,p∞)](t) − B∞(ω∗, u∞,p∞),p(t) − p∞〉.

(3.43)

By using the ε-inequality and condition (AB) on the right hand side of the above

inequality we have

〈[A(ω,u,p)(ω, u,p)](t) − [A(ω,u,p)(ω, u∞,p∞)](t), u(t) − u∞〉
+ 〈[B(ω,u,p)(ω, u,p)](t) − [B(ω,u,p)(ω, u∞,p∞)](t),p(t) − p∞〉

≥ C · (‖u(t) − u∞‖pV + ‖p(t) − p∞‖pV )

− εp

p
‖u(t) − u∞‖pV − εp

p
‖p(t) − p∞‖pV

− 1

qεq
‖[A(ω,u,p)(ω, u∞,p∞)](t) − A∞(ω∗, u∞,p∞)‖qV ∗

− 1

qεq
‖[B(ω,u,p)(ω, u∞,p∞)](t) − B∞(ω∗, u∞,p∞)‖qV ∗ .

(3.44)
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We show that last two terms on the right hand side of (3.44) converge to 0 as t→ ∞.

Clearly,

‖[A(ω,u,p)(ω, u∞,p∞)](t) − A∞(ω∗, u∞,p∞)‖qV ∗

≤
n∑
i=0

∫
Ω

|ai(t, ω(t), u∞, Du∞,p∞, Dp∞;ω, u,p) − ai,∞(ω∗, u∞, Du∞,p∞, Dp∞)|q.

The integrand on the right hand side of the above estimate is a.e. convergent in Ω

as t→ ∞ by condition (A6) since ω(t, x) → ω∗(x) for a.a. x ∈ Ω. Further, condition

(A2) implis

|ai(t, ·, ω(t, ·), u∞, Du∞,p∞, Dp∞;ω, u,p) − ai,∞(ω∗, u∞, Du∞,p∞, Dp∞)|q

≤ const · (‖c1(ω)‖L∞(Q∞) + ‖c1(ω∗)‖L∞(Q∞)

)
× (|u∞|p + |Du∞|p + |p∞|p + |Dp∞|p + ‖k1‖Lq(Ω))

where the right hand side is integrable in L1(Ω) thus Lebesgue’s theorem yields

‖[A(ω,u,p)(ω, u∞,p∞)](t) − A∞(ω, u∞,p∞)‖qV ∗ → 0

as t → ∞. The convergence of the last term in (3.44) can be proved similarly, by

using (B2∗), (B6∗).

Finally, the left hand side of (3.42) may be estimated as follows

|〈G(t) − G∞, u(t) − u∞〉| + |〈H(t) − H∞, u(t) − u∞〉|
≤ εp

p
‖u(t) − u∞‖pV +

εp

p
‖p(t) − p∞‖pV

+
1

qεq
‖G(t) − G∞‖pV +

1

qεq
‖H(t) − H∞‖pV

(3.45)

Now, by choosing sufficiently small ε in (3.45) and by using (3.43), (3.44) and

the above convergences we obtain

y′(t) + const · ‖u(t) − u∞‖pV + const · ‖p(t) − p∞‖pV ≤ φ(t) (3.46)

where φ(t) → 0 as t→ ∞ and the constants are positive. By applying the continuous

embedding W 1,p(Ω) ↪→ L2(Ω) it follows

y′(t) + const · y(t) p
2 + const · ‖p(t) − p∞‖pV ≤ φ(t)

Now by using the arguments of the proof of Theorem 2.18 one may show that

this inequality implies lim
t→∞

y(t) = 0.

By integrating (3.46) over (T − 1, T + 1) we conclude

y(T + 1) − y(T − 1) + const ·
∫ T+1

T−1

‖u(t) − u∞‖pV dt

+ const

∫ T+1

T−1

‖p(t) − p∞‖pV dt ≤
∫ T+1

T−1

φ(t)dt.

92



Clearly the right hand side tends to 0 as T → ∞, and by the convergence of y(t),

y(T + 1) − y(T − 1) → 0 as T → ∞.

which yields the desired convergences. The proof of stabilization is complete.

As in the previous chapter, we may give explicit convergence “speed”. Suppose

(Est) There exist constants k∗ > 0, β > 1 such that

∥∥ai(t, ·, ω(t, ·), u(·), Du(·),p(·), Dp(·);w, v1, v2)

− ai,∞(·, ω∗(·), u(·), Du(·),p(·), Dp(·))∥∥q
Lq(Ω)

≤ k∗t−β,∥∥bi(t, ·, ω(t, ·), u(·),p(·), Dp(·);w, v1, v2)

− bi,∞(·, ω∗(t, ·), u(·),p(·), Dp(·))∥∥q
V ∗

≤ k∗t−β,

for every w ∈ L∞(Q∞), u,p ∈ V, v1, v2 ∈ L∞(0,∞;L2(Ω)) if ω(t, ·) → ω∗ in

L∞(Q∞) (i = 0, . . . , n),

∫
Ω

|r(t, x, u(t, x), ũ(t, x),p(t, x), p̃(t, x);w, v1, v2)|dx ≤ k∗t−β

for a.a. t ∈ (0,∞) and every w ∈ L∞(Q∞), u, ũ,p, p̃, v1, v2 ∈ L∞(0,∞;L2(Ω)),

‖G(t) − G∞‖qV ∗ ≤ k∗t−β,

‖H(t) − H∞‖qV ∗ ≤ k∗t−β.

Proposition 3.15. Assume (Vol), further, conditions (A1)–(A3), (A5), (B1)–(B3),

(B5), (F1), (F2), (F4) hold for every 0 < T < ∞. In addition, (F3∗), (A2+),

(A4∗), (B2+), (B4∗), (A6), (B6), (AB), (F5), (G2), (H2) are satisfied with further

assumption (Est). Then for the solutions u, u∞ formulated in Theorem 3.14, y(t) :=

‖u(t) − u∞‖2
V and z(t) := ‖p(t) − p∞‖2

V has the asymptotic property∫ ∞

t

y(s)αds+

∫ ∞

t

z(s)αds ≤ const · t 1
1−α

holds for t > 0 sufficiently large and for

α = max

{
p

2
, 1 +

1

β − 1

}
.
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Proof. Fix α as above. Then as in the proof of Proposition 2.21, assumptions (I)—

(III) imply

y′(t) + const · y(t) p
2 + const · z(t) p

2 ≤ const · t−β.
By integrating on interval (t,∞) (with t sufficiently large) it follows∫ ∞

t

(c∗ · y(s)α + c∗ · z(s)α) ds ≤ t−β+1 + y(t) ≤ t−β+1 + y(t) + z(t).

Now one proceeds as in the above mentioned proof and one may deduce a differential

inequality which implies the desired estimate.

3.3.3 Examples

Now we give some examples satisfying Theorem 3.10, 3.12, 3.14. By using argu-

ments of Sections 2.2.3 and 2.3.4, one can easily see that the examples below satisfy

each condition of the theorems.

Case of Theorem 3.10

It is clear that examples (3.31)–(3.33) fulfil the conditions of the above theo-

rem if operators π, π̃, π̃0, κ, κ̃ : L∞
loc(Q∞) → L∞

loc(Q∞), ϕ, λ : Lp1loc(Q∞) → L∞
loc(Q∞),

ψ, ϑ : Lp2loc(Q∞) → L∞
loc(Q∞), ϕ̃, ϕ̃0 : Lp1loc(Q∞) → L

p1−1
p1−r1−1

loc (Q∞), ϑ̃ : Lp2loc(Q∞) →
L

p2−1
p2−r2−1

loc (Q∞) are of Volterra type and conditions (E1)–(E2) are satisfied for all

finite T > 0. E.g., the operators given after Proposition 3.9 serve as examples for

the above.

Case of Theorem 3.12

If some further assumptions are satisfied then example (3.31)–(3.33) fulfil the

conditions of Theorem 3.12. Suppose that the conditions above hold, in addition∫
Ω

|[ϕ̃0(v1)](t, x)|
p1−1

p1−r1−1 dx

≤ α1

[
ess sup
τ∈[0,t]

‖v1(τ)‖
1L2(Ω) + χ1(t) ess sup
τ∈[0,t]

‖v1(τ)‖p1L2(Ω) + 1

]

for all v1 ∈ Lp1loc(Q∞) with some constants α1 > 0, �1 < p1 and function χ1 : R → R

such that lim
t→∞

χ1(t) = 0, further, similar condition holds for ϑ̃ (by changing the
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indeces from 1 to 2, and L2(Ω) to V2). For example, operator ϕ̃0 may have the form

[ϕ̃(v)](t, x) = Φ̃

(∫
Ω

d(t, x)v(t, x)dx

)
,

[ϕ̃(v)](t, x) = Φ̃

(∫
Ω

|d(t, x)||v(t, x)|β dx
)

or

[ϕ̃(v)](t, x) = χ1(t)Φ̃0

([∫
Ω

|d(t, x)||v(t, x)|2dx
] 1

β

)
,

where d ∈ L∞(Q∞), 1 ≤ β ≤ 2, Φ̃, Φ̃0, χ1 ∈ C(R) and |Φ̃(τ)| ≤ const · |τ |p1−
1−1,

|Φ̃0(τ)| ≤ const · |τ |p1−r1−1, lim
τ→∞

χ1(τ) = 0.

Case of Theorem 3.14

Now consider for i = 0, . . . , n the following:

ai(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2)

= [π(w)](t, x)[ϕ(v1)](t, x)[ψ(v2)](t, x)P (ξ)ζi|(ζ0, ζ, η0, η)|p−2,
(3.47)

bi(t, x, ξ, ζ0, η0, η;w, v1, v2)

= [κ(w)](t, x)[λ(v1)](t, x)[ϑ(v2)](t, x)R(ξ)ηi|(ζ0, η0, η)|p−2.
(3.48)

Suppose

(E3) a) Operators π : L∞
loc(Q∞) → L∞

loc(Q∞), ϕ, ψ : Lploc(Q∞) → L∞
loc(Q∞) are of

Volterra type, further, for every 0 < T < ∞, π : L∞(QT ) → L∞(QT ),

ϕ, ψ : Lp(QT ) → L∞(QT ) are bounded, ϕ and ψ are continuous, and if

(ωk) is bounded in L∞(QT ) and ωk → ω a.e. in QT then π(ωk) → π(ω) in

L∞(QT ). In addition, P ∈ C(R), and there exists a positive lower bound

for the values of π, ϕ, ψ, P .

b) There exist π∞, ϕ∞, ψ∞ ∈ L∞(Ω) such that for every w ∈ L∞(Q∞), v1 ∈
X∞ ∩ L∞(0,∞;L2(Ω)), v2 ∈ X∞ ∩ L∞(0,∞;V ),

lim
t→∞

‖[π(w)](t, ·) − π∞‖L∞(Ω) = 0,

lim
t→∞

‖[ϕ(v1)](t, ·) − ϕ∞‖L∞(Ω) = 0,

lim
t→∞

‖[ψ(v2)](t, ·) − ψ∞‖L∞(Ω) = 0.

(E4) a) Operators κ : L∞
loc(Q∞) → L∞

loc(Q∞), λ, ϑ : Lploc(Q∞) → L∞
loc(Q∞) are of

Volterra type, further, for every 0 < T < ∞, κ : L∞(QT ) → L∞(QT ),

λ, ϑ : Lp(QT ) → L∞(QT ) are bounded, λ and ϑ are continuous, and if

(ωk) is bounded in L∞(QT ) and ωk → ω a.e. in QT then κ(ωk) → κ(ω) in

L∞(QT ). In addition, R ∈ C(R), and there exists a positive lower bound

for the values of κ, λ, ϑ,R.
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b) There exist κ∞, λ∞, ϑ∞ ∈ L∞(Ω) such that for every w ∈ L∞(Q∞), v1 ∈
X∞ ∩ L∞(0,∞;L2(Ω)), v2 ∈ X∞ ∩ L∞(0,∞;V )

lim
t→∞

‖[κ(w)](t, ·) − κ∞‖L∞(Ω) = 0,

lim
t→∞

‖[λ(v1)](t, ·) − λ∞‖L∞(Ω) = 0,

lim
t→∞

‖[ϑ(v2)](t, ·) − ϑ∞‖L∞(Ω) = 0.

By using similar arguments as in Sections 2.2.3, 2.3.4 and Proposition 1.58 we

obtain

Proposition 3.16. Suppose 2 ≤ p ≤ 4 and (E3)–(E4). Then the above (3.47)–

(3.48) functions satisfy conditions (A1)–(A3), (A4∗), (A5)–(A6), (A2+), (B1)–(B3),

(B4∗), (B5)–(B6), (B2+), (AB) with p1 = p2 = p.

Consider

ai(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2)

= ζi|(ζ0, ζ)|p−2 + [π(w)](t, x)[φ(v1)](t, x)P (ξ)ζi|(ζ0, ζ, η0, η)|r−2,
(3.49)

bi(t, x, ξ, ζ0, η0, η;w, v1, v2)

= ζi|(η0, η)|p−2 + [κ(w)](t, x)(t, x)[ϑ(v2)](t, x)R(ξ)ηi|(ζ0, η0, η)|r−2
(3.50)

where 2 ≤ r ≤ 4 < p and (E3)–(E4) hold then it is easy to see that these functions

satisfy conditions (A1)–(A3), (A4∗), (A5)–(A6), (B1)–(B6), (AB) with p1 = p2 =

p ≥ max{2, r}. E.g., operators π, ϕ may have the form

[π(w)](t, x) = χ(t)

∫
Qt

|w|β + π∞(x)

[ϕ(v)](t, x) = χ̃(t)

∫
Ω

|d(t, x)||v(t, x)|β dx+ ϕ∞(x),

where lim
t→∞

χ(t) = 0, lim
t→∞

χ̃(t) = 0 and d ∈ L∞(Q∞), 1 ≤ β ≤ 2. The other operators

may have similar form.

As an example for function f consider, e.g.,

f(t, x, ξ, ζ0; v) = −(ξ − ω∗(x))
∫

Ω

|v(t, x)|β dx

where 1 ≤ β ≤ 2.
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Case of Proposition 3.15

Now let functions ai, bi have the form:

ai(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2) = P (ξ)ζi|(ζ0, ζ, η0, η)|p−2,

a0(t, x, ξ, ζ0, ζ, η0, η;w, v1, v2) = P (ξ)ζ0|(ζ0, ζ, η0, η)|p−2

+ ϕ(t) · χ
([∫

Ω

a(t, ξ)|v1(t, ξ)|2dξ
] 1

2

)
,

bi(t, x, ξ, ζ0, η0, η;w, v1, v2) = R(ξ)ηi|(ζ0, η0, η)|p−2

b0(t, x, ξ, ζ0, η0, η;w, v1, v2) = R(ξ)ηi|(ζ0, η0, η)|p−2

+ ϕ̃(t) · χ̃
([∫

Ω

b(t, ξ)|v2(t, ξ)|2dξ
] 1

2

)

where a, b ∈ L∞(Ω), ϕ, ϕ̃, χ, χ̃ : [0,∞) → R are nonnegative functions such that

ϕ(τ), ϕ̃(τ) ≤ const · τ−β, χ(τ), χ̃(τ) ≤ const · |τ |p−1. By using the arguments of

Section 2.2.3, 2.3.4 and Remark 2.23 one can show that the above functions fulfil

the conditions of Proposition 3.15.
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Summary

Every human activity, good or bad, except mathematics, must come to an

end.

Paul Erdős

In this dissertation, we study systems of nonlinear parabolic differential equa-

tions that may contain nonlocal dependence on the unknowns. Such problems may

occur, e.g., in diffusion processes (heat or population) where the diffusion coefficient

may depend on the unknowns in a nonlocal way. For example, in population dy-

namics the growing rate of a population may depend on the size of the population,

mathematically, on the integral of the density.

The mathematical background of our investigation is the theory of operators of

monotone type. We demonstrate and apply some methods of this theory to study

two types of systems. The first type consists of parabolic equations and the second

type contains three different types of equations: an ordinary, a parabolic and an

elliptic one. The latter problem can be considered as a generalization of a fluid flow

model in porous medium.

For both systems we show, under suitable conditions, existence of weak solutions

in time interval (0, T ) where 0 < T ≤ ∞. In addition, we study the long-time

behaviour of the solutions. Boundedness and stabilization, i.e., the convergence to

equilibrium as t→ ∞ is shown. An estimate on the rate of this convergence is given.

For a modified problem we prove existence of periodic solutions. Besides theoretical

results, we illustrate our assertions with some examples.

The results on the first system are based on the works of the author’s supervisor

made on this topic. These results are applied to the second type of system. In

this case the method of finding weak solutions, which is the so-called successive

approximation, and the choice of the space of solutions is a new idea which differs

from the usual tools concerning the topic of monotone operators.

The topic of further research may be some numerical investigations. For the

second model these may be especially relevant since the successive approximation

serves as a numerical method.
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Összefoglalás

Minden, ami emberi, akár rossz, akár jó, előbb-utóbb véget ér. Kivéve a

matematikát.

Erdős Pál

E munkban nemlineáris differenciálegyenletek olyan rendszereivel foglalkozunk,

amelyek az ismeretlen függvényektől nemlokális módon (azaz nem csak adott pont-

beli értékeiktől) is függhetnek. Ilyen t́ıpusú problémák előfordulhatnak többek között

olyan (hőterjedési vagy populációdinamikai) diffúziós folyamatokban, amelyekben

a diffúziós együtható az ismeretlenektől nemlokálisan függ. Például egy populáció

növekedési rátája függhet a populáció méretétől, azaz a sűrűségének integráljától.

Vizsgálataink fő matematikai eszköze a monoton t́ıpusú operátorok elmélete. Be-

mutatunk és alkalmazunk néhány módszert e témakörből két speciális nemlineáris

differenciál-egyenletrendszer tanulmányozására. Az egyik csupa parabolikus egyen-

letből álló rendszer, a másik három különböző t́ıpusú egyenletből áll: egy közönséges,

egy parabolikus és egy elliptikus differenciálegyenletből. Ez utóbbi probléma egy

porózus közegbeli folyadékáramlási modell általánośıtásaként fogható fel.

Mindkét rendszer esetében megfelelő feltételek mellett belátjuk gyenge megoldás

létezését véges és végtelen időintervallumon. Megvizsgáljuk a megoldások aszimp-

totikus tulajdonságait: a korlátosságot és a t → ∞ esetén való stabilizációt, azaz

egy stacionárius állapothoz való konvergenciát. A konvergencia sebességére becslést

is adunk. Ezt követően módośıtjuk a kiindulási problémát, hogy értelmezhessük peri-

odikus megoldás fogalmát és igazoljuk létezésüket. Mindezek mellett eredményeinket

példákkal egésźıtjük ki.

Az első t́ıpusú rendszer esetében eredményeink a szerző témavezetője által e

témakörben kapott korábbi eredmények folytatásai. A másik rendszer esetében az

alapterek irodalomban megszokottól eltérő megválasztása, illetve a szukcessźıv ap-

proximáció módszerének alkalmazása lesz a vizsgálataink kulcsa.

További kutatás tárgyát képezheti az egyenletek numerikus szempontból való

vizsgálata. Ez a második rendszer esetében különösen érdekes, hiszen a szukcessźıv

approximáció numerikus módszerként is használható.
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