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Mathematics, rightly viewed, possesses not only truth, but supreme
beauty — a beauty cold and austere, without appeal to any part of our
weaker nature, without the gorgeous trappings of painting or music, yet
sublimely pure, and capable of a stern perfection such as only the greatest

art can show.

Bertrand Russell
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Preface

If T feel unhappy, I do mathematics to become happy. If T am happy, T do
mathematics to keep happy.

Alfréd Rényi

In this work we study systems of nonlinear parabolic differential equations. In
particular, we consider equations containing nonlocal terms, in other words, func-
tional differential equations. By “nonlocal term” we mean terms which may depend
not only on the value of the unknown at a certain point but also on values at other
points, for example, it may contain a delay or an integral of the unknown on a
domain etc. Such problems may occur in some physical models. For instance, in
some diffusion processes the diffusion coefficient may depend on the unknown in a

nonlocal way, e.g., as in the following equation:

Dyu(t, ) — div <g(/ﬂu(t,z)dac>gradu(t,ac)> = f(t,x) (1)

for t > 0, x € R™ where functions f: (0,00) x R* — R, g: R — R are given and
u: (0,00) x R™ — R is the unknown with initial condition w(0, z) = ¢(z) for z € R™.
One simple example for such diffusion process is, e.g., in population dynamics where
the growing rate may depend on the size of the population, mathematically, on the
integral of the density. Such nonlocal diffusion problems were considered in [21, 22],
further, a related problem, the so-called cross-diffusion was demonstrated in [33].

We mention two other important applications. First, climatology. In [4, 25, 27, 28]
functional differential equations arising in climatology were studied.

The other area where functional differential equations may occur is the modelling
of fluid flow, especially in porous media. A porous medium is a solid medium with lots
of tiny holes (e.g., limestone). The flow of a fluid through the medium is determined
by the large surface of the solid matrix and the closeness of the holes. For a detailed
introduction to this topic, see [7]. If the fluid carries dissolved chemical species,

chemical reactions can occur, see [38]. Among these include reactions that can change

vi



the porosity. This process is modelled by a system of equations that contains three
different types of equations: an ordinary, a parabolic and an elliptic one, see [23, 46].

For some other problems involving nonlocal differential equations, such as trans-
mission problems, see [39, 40, 41], or nonlocal boundary conditions, see [56, 57, 65].

It is worth mentioning some monographs concerning functional differential equa-
tions (by means of mostly semigroups), see [6, 29, 36, 32, 52, 70]. We also note that
instead of equations one may consider nonlocal variational inequalities. That type
of problems occur in elasticity theory, see [12, 31].

In the following, we study two systems of differential equations containig nonlocal
terms. The first one, that will be studied in Chapter 2, consists of equations of
parabolic type that are generalizations of equation (1). We extend the results of [63]
made on a single nonlocal parabolic equation to a system of equations.

The other system is the above mentioned one describing fluid flow in porous
media and consists of three different types of differential equations that will be in-
vestigated in Chapter 3. Some numerical experiments concerning this type of prob-
lem were done in [23, 46], however, correct proof on existence of solutions were not
made (and one can hardly find papers dealing with such kind of systems in rigorous
mathematical way).

The main tool of our further investigations will be the theory of operators of
monotone type. For a detailed explanation of this theory and its applications, see
the classical monographs [15, 20, 24, 35, 44, 55, 71]. However, for the convenience of
the Reader we shall recall some important assertions in Chapter 1. In particular, we
shall apply some results of [8, 17, 43, 48, 49] related to pseudomonotone operators.

By using the above framework we shall show existence of weak solutions in time
interval (0,7") (0 < T" < o0) for both systems, further, asymptotic properties will be
studied such as the boundedness and stabilization (i.e., convergence to equilibrium)
of solutions.

Besides the theoretical investigations of the above systems, we illustrate our
results with a variety of examples.

The results of Chapter 2 and 3 were published by the author in papers [9, 10,

11, 14]. Further, some parts of Section 1.6 are also the author’s results, see [13].
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Chapter 1
Preliminaries

Do not worry about your difficulties in mathematics. I can assure you mine

are still greater.

Albert Einstein

1.1 Inequalities

Calculus has its limits.

Folklore

In the following, the set of real numbers will be denoted by R, further, R* :=
{z € R: x> 0}. The space of all n-tuples (n > 1 integer) of real numbers will be
denoted by R™.

Inequalities will play an important role in estimates. We briefly mention some of

them that will appear later.

Proposition 1.1 (triangle inequality). Let aj,as,...,a, € R, Then

lay 4 ag + -+ an| < ar| + [ag| + -+ [an].

Proposition 1.2. Let ay, as, ..., a, € R¥ and s > 1 be a real number. Then
lar +ag + -+ anl® <07 (Jar ]+ lag)® 4 -+ |an]®) (1.1)
Proposition 1.3. Let ay,as, ..., a, be nonnegative real numbers and s > 1 be a real

number. Then
afay+---+a <nMag fag+ o+ an)t (1.2)



Proposition 1.4 (Young’s inequality). Let p, g be finite conjugate exponents, i.e.,
1<pg< o a’rbd%+5=1. Then for a >0, b >0,
ab < @ + T
p o q
Corollary 1.5 (e-inequality). Let p, q be finite conjugate exponents, i.e., 1 < p,q <
00 and%Jr%: 1. Then fora >0, b >0, ¢ > 0 it holds

ePa? b

ab < .
p elq

Lemma 1.6. Let b, ¢ be arbitrary and s > 0 be a real number. Then

|b]*
|+ 7b|°dr > (1.3)
| o 1)
Proof. The case b = 0 is obvious. Now let b # 0, further, without loss of generality
we may assume ¢ < 0. We have two cases. If ¢ +b > 0, then by dividing interval

[0, 1] with respect to the sign of ¢+ 7b we obtain

1 e 1
/ lc+ 7b)°dr = / b(—C—Tb)sdT-‘r/ (c+ 7b)° dr
Jo Jo -

.
(—c)** + (c+ b)st?
b(s+1)
[bf®
~25(s+1)

In the last estimate we used inequality (1.1). In the other case ¢+ 7b is negative for
all 7 € [0, 1] thus

1 1 s s
/ e+ 7b]*dr > / |70]* dT = ‘b| > 7‘()'
0 0

Note that (1.3) is sharp, we have equality if ¢ = —— O

l\DG“

Proposition 1.7 (Gronwall’s lemma). Let ty < t; be real numbers and ¢, [to, t,] —

R* be continuous functions such that

t1
o0 <K+L- [ ueo)ds
to
holds for ty < t < t, with some positive contants K, L. Then
¢( ) < K. eLffo W(s)ds

fortg <t <t.



1.2 L? spaces, Sobolev spaces, product spaces

Nature laughs at the difficulties of integration.
Pierre-Simon Laplace

We introduce some abstract spaces that will serve for our investigations. For the
details, see, e.g., [1]

Let n > 1 be a fixed natural number and denote by A the n dimensional Lebesgue
measure. We shall always work with this measure so we shall omit the notation dA in
integrals. We use the abbreviations a.e and a.a. for the expressions almost everywhere

and almost all that means except of a set with measure zero.

Definition 1.8. Let 1 < p < oo and  C R” be a A-measurable set. Then L?(Q)

denotes the space of measurable functions u: 2 — R such that

1
[l r (o) == </ \u\”) < 0.
Q

Definition 1.9. If p = oo, one defines the space L>(2) to be the set of A-measurable

functions u: @ — R such that
£l = ess sup f
= inf {b}\l/plfl CNCOQAN) = 0}
=sup{K e R:FACQ: A(A) >0, f(z) > K fora.a. z€ A} <oo.

Definition 1.10. Let 1 < p < oo and €2 C R" be a bounded domain with smooth
boundary. In our further investigations we assume that the boundary is continuously
differentiable (which will be sufficient, see [1].) Denote by D; the distributional
differentiation with respect to the variable x; and let D = (D4, ..., D,) (i.e. Du =
(Dyu, ..., Dyu) is the gradient). Then

WP(Q) = {u € LP(Q): Diu e LP(Q), 1 <i<n},

1
8 P
fullwssey = ([ [l +10u]) "
Q

Let C5°(€2) be the set of infinitely differentiable functions Q: — R with compact

with the norm

support (i.e, identically zero outside of some compact subset of ) then we define
WyP(Q) as the closure of C°(Q) in W'?(Q). Then W, *(Q) is a closed linear sub-
space of WP(Q).



Remark 1.11. In the sequel we use the above norm on W'?(Q) which is equivalent

with the other commonly used norm

1
n P
ullwrogey = ( / {IUI’J+§:IDWI’JD |
Q i=1

The equivalence of the two norms follows from inequalities (1.1) and (1.2).
Theorem 1.12. In case 1 < p < oo, WHP(Q) is a reflevive Banach space.

Theorem 1.13. Let 2 C R™ be a bounded domain with smooth boundary and let
1 < p < oco. Then the embedding WP (Q) — L*(2) is compact.

Definition 1.14. Let 1 < p < oo be a real, N > 1 a natural number and Q C R"
a A-measurable domain. Then (LP(€2))" denotes the set of measurable functions
u = (u®, .. u™):Q — RY such that u® € LP(Q) for every 1 < [ < N. We

introduce on this space the following norm

1

14

HuH(L”(Q))N = (/ \W’) .
Q

Remark 1.15. One can readily verify that the above norm is equivalent with an other
1
N P
commonly used norm Z [|u® |ip(m> . Note that for p = 2, (L*(Q))" is a Hilbert
=1
space with the scalar product

N .
. = (OMO]
V)L = .
(u U)( 2(Q)N Z/ uv
=179

Definition 1.16. Let 1 < p < oo be a real, N > 1 a natural number and 2 C R a
domain with smooth boundary. Then (W!?(£2))" denotes the space of measurable
functions w = (u®, ..., u™): Q — RY such that u® € W'»(Q) for 1 <1< N. We

introduce the following norm on this space

1

;

llullwrp@y~ = (/ ul” + |Du|p> )
Q

where Du = (Dyu®, ..., Dyu™, ..., Dyu®, ... Du™).
Theorem 1.17. In case 1 < p < oo, (WHP(Q))N is a reflevive Banach space.

Theorem 1.18. Let Q@ C R" be a bounded domain with smooth boundary and let
1 <p < oco. Then the embedding (WHP(Q))N — (LP(Q))N is compact.



1.3 Equi-integrability

There are 10 kinds of mathematicians. Those who can think binarily and those

who can’t.
Folklore

Now we introduce a less known theorem about convergences in L? spaces. First
we define the notion of equi-integrability. As before, let 2 C R™ be a A\-measurable

domain and 1 < p < oo a real number.

Definition 1.19. Let (fi)ren a sequence of functions in LP(Q). Suppose that for
every ¢ > 0 there exists a set A. C Q of finite measure and §(¢) > 0 such that for
every k € N it holds

/ Ifil? <e, (1.4)
Q\A.

furthermore, for every measurable set with measure less than d(g) it follows

/ P <e.
S

Then we say that the sequence (fy) is equi-integrable in LP(S2).
Remark 1.20. In case of bounded 2, (1.4) is obviously satisfied with A. = Q.

Remark 1.21. It is worth noting the following. If (f)) and (gx) are sequences in
LP(Q) such that |fx| < |gk| for every k and the sequence (gi) is equi-integrable in
LP(9) then the sequence (fy) is also equi-integrable in LP(2).

Proposition 1.22. If the sequence (fi) is convergent in LP(SY) then it is equi-

integrable.

Theorem 1.23 (Vitali). Suppose that the sequence (fy.) is equi-integrable in LP()
and fi — [ a.e. in Q. Then fr — f in LP(Q) (strongly).

The following theorem of choice is due to Frigyes Riesz.!

Lemma 1.24 (Riesz). Let (fy.) be a Cauchy sequence in LP(Q). Then there exists a
subsequence (fi) C (fi) and f € LP(Q) such that f, — f a.e. in S

Corollary 1.25. Assume that fy — f in LP(Q). Then there exists a subsequence
(fx) C (fx) such that f — f a.e. in Q.

Remark 1.26. Obviously the above statements holds not only for the Lebesgue mea-

sure but for every complete measure space.

IThis statement is a part of the well-known proof of Riesz-Fischer theorem on the completeness

of LP spaces.



1.4 'Weak convergence

Mathematics consists of proving the most obvious thing in the least obvious

way.
George Pdlya
We shall use some properties of the weak convergence listed below.

Theorem 1.27. In a normed space every weakly convergent sequence is bounded.

In a Banach space every weak-star convergent sequence is bounded.

Theorem 1.28. In a reflexive Banach space (especially in a Hilbert space) every

bounded sequence has a weakly convergent subsequence.

Theorem 1.29. Assume that X is a normed space and x, — x weakly in X. Then

2]l x < liminf [z x.
k—oo

1.5 LP(0,T;V) spaces
I was z years old in the year z2. [In reply to a question about his age.]

Augustus de Morgan

We briefly introduce an abstract framework in order to treat evolution problems.

For the details and proofs, see, e.g., [T1].

Definition 1.30. Let V' be a Banach space, further, let 1 < p < oo and 0 < 71" < co.
Then LP(0,7; V) denotes the set of measurable functions u: (0,7) — V such that

[ Mol < o
JO

Remark 1.31. One can define analogously the spaces LP(a, b; V') for arbitrary a < b.

The following theorems remain true in this case.

Theorem 1.32. The space LP(0,T;V') is a Banach space with the norm

1
T P
lallray = ([ Tl ar)”



Theorem 1.33. Let V' be a reflexive Banach space and let p, q be finite conjugate
exponents, i.e., 1 + 1 = 1. Then LP(0,T;V) is a reflexive Banach space with its
dual L(0,T; V*)p, n ?act, a functional v € L9(0,T;V*) acts on w € LP(0,T;V) in
the way
T
[v,u] ::/U (v(t),u(t)) dt.

Remark 1.34. In the sequel, the pairing between the spaces V*and V, further, be-
tween L(0,7;V*) and LP(0,T; V), will be denoted by (-, ), [-, ], respectively.

Let V' be a Banach space and H a (real) Hibert space. Assume that V' C H,
V is dense in H and the embedding V' < H is continuous. Denote by || - ||y the
norm of V and by (-, )y the scalar product of H. Then to every f € H corresponds
an F € V* in the way (F,-) := (f,-)n. Since V is dense in H, the converse is also
true, every f € H is determined by an element I’ € V*. Hence we have a bijection
between H and a subspace of V* thus H C V*. Moreover, it is also clear that the

embedding H — V* is continuous.
Definition 1.35. If the above conditions are satisfied, the triple V- C H C V* is
called an evolution triple.

Definition 1.36. Let u € LP(0,T; V') and assume that there exists v € LI(0,T; V™)
such that for every w € V and ¢ € C§°(0,7),

T i
[ wpe i =~ [ wo.wena

0 0
Then v (which is unique if exists) is called the distributional derivative of u and we
write v = /.
Definition 1.37. Let V. C H C V* be an evolution triple and let W?(0,T;V, H)
be the space of functions u € LP(0,T; V) such that v’ € L?(0,T;V*). We introduce
the norm

lullwrezv,my = l[ulleooryy + 10 o). (1.5)

Theorem 1.38. With the above norm (1.5), WY?(0,T;V, H) is a Banach space.
Theorem 1.39. Let u € W'(0,T;V, H). Then the map [0,T] > t — |lu(t)||} is
continuous, moreover, it is absolutely continuous.
Theorem 1.40. The set WY?(0,T;V, H) is a subset of C([0,T], H), moreover, the
embedding W'?(0,T;V,H) — C([0,T], H) is continuous. Precisely, for every u €
Whe(0,T;V, H) there exists a unique continuous function uw: [0,T] — H such that

u=w a.e in[0,T] and

€ U < st - ) : )
521[3,%{*] ()]l < const - [|ullwrorv,m



Corollary 1.41. If V. C H C V* is an evolution triple and w € WHP(0,T;V, H)
then the value of u(t) makes sense for every t € [0,T] (it is some element of H),
especially u(0) makes sense.

Theorem 1.42 (integration by parts). Let u, v € WHP(0,T;V, H). Then for 0 <
s<t<T,

/t (W' (7),v(m) + (V(7), ul(7)))dr = (u(t), v(t)rr = (u(s), v(s))n-

Corollary 1.43. Let u € WYP(0,T;V, H). Then for 0 < s <t <T,

¢
2/ (W (7), u(m))dr = [[u(®)l[F — lluls)%-
Corollary 1.44. Let u € WH(0,T;V, H) such that u(0) = 0. Then [u',u] > 0.

Remark 1.45. Now we are able to give an abstract formulation of an evolution
problem. Let V' C H C V* be an evolution triple, further, let A: L?(0,7;V) —
L9(0,T;V*) be a (possibly nonlinear) operator and b € L(0,T;V*). For given uy €
H find uw € WY»(0,T;V, H) such that

u+ Alu) =0

By ensuring some special properties of operator A (these properties will be discussed

in Section 1.6) one obtains existence of solutions.

Finally, we mention some embedding theorems related to this topic.

Theorem 1.46 (Minty). Let V. C H C V* be an evolution triple where V is a
reflexive Banach space. Suppose that B is a reflexive Banach space such that V' C
B C V* where the embedding V — B is compact and the embedding B — V*
is continuous. Then the embedding W'P(0,T;V, H) — L*(0,T; B) is compact for
1 <p<oo.

Corollary 1.47. Let Q@ C R" be a bounded domain with smooth boundary, fur-
ther, let 2 < p < oo be a real and N > 1 a natural number. Then the embedding
W (0,75 (W (Q)N, (L2(Q))N) — LP(0, T (LP(2))Y) is compact.

Proof. In case 2 < p < oo, (W'P(Q))N c (L*(Q)N ¢ (W'P(Q)*)V is an evolution
triple and (W'P(Q))" is reflexive thus Theorems 1.18 and 1.46 imply the desired

statement. O

Corollary 1.48. Assume (u) C W2 (0,75 (W(Q)N, (L2(Q))N) such that u, —
u weakly in LP (0, T; (W'P(Q)N) and v}, — o' weakly in L9(0,T; (W'r(Q)*)N).
Then there exists a subsequence (i) C (uy) such that Gy, — w in L?(0,T; (LP(Q2))Y).

8



Proof. Due to the weak convegences, (u;) is bounded in L7 (0, T; (WP (€))") and
(1) is bounded in LP(0,T; (W2(Q)*)") thus the sequence (u;) is bounded in
Whe (0,75 (W(Q))N, (L2(22))Y). By using Corollary 1.47 one has a subsequence
(i) C (ug) which is convergent in LP(0, T’ (LP(Q))™) thus it is also weakly conver-
gent there. Since (uy) is weakly convergent in LP(0, T (W'?(Q))Y) so it is weakly
convergent also in L? (0, T; (L?(€2))™). Now the uniqueness of the weak limit implies
Ty, — u in LP(0,T; (LP(Q))N). |

1.6 Special types of operators

Mathematics is made of 50 percent formulas, 50 percent proofs, and 50 percent

imagination.
Folklore

In the above introduced framework of evolution problems the operators of mono-
tone type play an important role. We define some properties of operators.
Let X be a reflexive Banach space with its dual X*. We use the notation (-, )

for the pairing between X* and X.

Definition 1.49. Consider an operator T: X D D(T) — X*. Then (by using the
terminology of [71])

e T is bounded if it maps bounded sets (of X) into bounded sets (of X*).

e T is hemicontinuous if for arbitrary elements u, v, w € X the map R > A —

(T(u— \v),w) € X is continuous.

o T is demicontinuous if for every sequence (u;) C D(T) with the property
up, — w € D(T) in X it follows that T'(uy) — T'(u) weakly in X*.

o T is monotone if (T'(u) — T(v),u —v) > 0 for every u,v € D(T). If equality

holds only in case of u = v then T is said to be strictly monotone.

T is uniformly monotone if there exist constants p > 1, ¢ > 0 such that

(T(u) = T(v),u—v) > c- |lu—v|P for every u,v € X.

e T is maximal monotone if T is monotone, furthermore, if v € X and b € X*
are such that (b — T'(v),u — v) > 0 for every v € X then T'(u) = b.



o T is pseudomonotone if for every sequence (u;) C D(T) such that uy — u in

X and limsup(7T (ug), u — u) < 0, it follows that klim (T'(ug), up, —u) = 0 and

k—o0
T(uy) — T(u) weakly in X*.
e T is coercive if  lim M =
lullx—oo  ||ullx

Remark 1.50. If T is a linear operator then its monotonicity is equivalent with
(T'(u),u) > 0 for every u € D(T).

An important operator is the operator of the differentiation. Let

L: LP(0,T;V) > D(L) — LY(0,T; V"), Lu=d (1.6)

where
D(L) :={ue LP(0,T;V): v € LU0, T; V*), u(0) = 0}, (1.7)
D(L) :={ue LP(0,T;V): v € LU0, T; V"), u(0) = u(T)}. (1.8)

Theorem 1.51. Let D(L) given by (1.7) or (1.8). Then L (defined by (1.6)) is a

densely defined, closed, maximal monotone linear operator.
The following convergence theorem will be useful in our investigations.

Theorem 1.52. Suppose that (u;) C D(L) (where D(L) is defined by (1.7) or (1.8)
and L is defined by (1.6)) such that wi, — u weakly in LP(0,T;V) and Lu, — v
weakly in L0, T;V*) for some v € L9(0,T;V*). Then u € D(L) and v = Lu.
Further, if D(L) is defined by formula (1.7) then u,(0) — u(0) and ug(T) — w(T)
weakly in H.

Proof. From the definition of the distributional derivative it follows
T T
[ wOwm@yi=- [ wuem,
0 0
for every w € V and ¢ € C§°(0,T). Passing to the limit as k — oo yields

[ @@= [ oo, et

which means exactly that v = «'. Now note that for every w(t) = w € V the

integration by parts formula implies

/ () = / (e (8), w(t) + (0 (1), ua(t))) dt
0 0

= (ue(T) — u(0), w).

10



By the weak convergence of (u},),

/0T<“§W“’> - /0 () = (lT) - u(0), ).

In case D(L) is defined by (1.8), ux(T) — ug(0) = 0 hence from the above limit
relation (u(T) — w(0),w) = 0 follows. This holds for all w € V thus the density
of V in H implies u(0) = w(T'). If D(L) is defined by (1.7) then it follows that
u(T) — w(T) — u(0) weakly in H. By applying integration by parts formula we
obtain

(ue(T), o(T)w) = /0 (@ (1w, ) + (el p(t)u0))

where ¢ € C*>°(0,T) and w € V. Then by passing to the limit it follows

(w(T) — u(0), o(T)w) = /0 (' ()w, u) + (W'p(t)w)) dt.

Now on the right hand side of the above equation we apply integration by parts

formula for both terms. Then we may deduce
(u(T) = u(0), p(T)w) = (u(T), o(T)w) = (u(0), L(0)w).

Choose ¢ € C*(0,00) N C([0,T]) such that ¢(0) = 1 and ¢(T") = 0 then by the
density of V' in H we conclude u(0) = 0. Finally, u,(T) — w(T) — u(0) = u(T)
weakly in H and obviously u;(0) = 0 — 0 = u(0) strongly in H. O

Now we verify a sufficient condition for some of these properties in case of oper-

ators arising in weak formulation of partial differential equations.

Definition 1.53. Suppose that X is a closed subspace of WP(Q2), where  C R

is a domain with smooth boundary and define operator A: X — X* by
(A(u),v) = / (Z a;(z, u(z), Du(z))Dv(x) + (1,0(:17,11,(1;),D71,(x))'1)(.r)> dz (1.9)
o\
where v € X and the following assumptions are fulfilled (a vector ¢ € R™*! will have

the coordinates (&, ..., &)):

(i) Functions a;: @ x R™ — R (i = 0,...,n) have the Carathéodory property,
ie., a;(z,€) is measurable in x € Q for all fixed £ € R, and continuous in
¢ € R™! for a.a. fixed 2 € Q.

(i) There exist constants p > 1, ¢ > 0 and a function ky € L) such that for
a.a. v €  and every £ € R"!,

lai(a, ) < c- [P + k() i=0,...,n.

11



(iii) For a.a. z € Q and every &, & € R™ such that (&1,...,&) # (&1,...,&),

Z (0@(%50-,51-, ) — e o,y 7'§n)) &—&) >0
=1
(iv) There exist a constant c; > 0 and a function ky € L'(2) such that for a.a.
x € Q and every £ € R |

n

ZM%@& > o|€fP — ko(z).

i=0

Theorem 1.54. Suppose that conditions (i)—(iw) hold. Then A is a bounded, demi-

continuous, coercive and pseudomonotone operator.

Proof. For the proof of the boundedness, demicontinuity and coverciveness see, e.g.,

the classical monographs [44, 53, 71]. For the pseudomonotonicity, see [17]. O

Proposition 1.55. Assume p > 2 and conditions (i)—(ii). Further, suppose that

functions a; (i = 0,...,n) are continuously differentiable in variable & and there
exists a constant § > 0 such that for a.a. x € Q, every & € R" (z,...,2,) € R*TL
n n n
DD Dl uz > 60 Y |6l ?a (1.10)
j=0 =0 =0

Then operator A is uniformly monotone.

Proof. Fix z € Q, £,€ € R™! and define functions f;: [0,1] — R by fi(r) =
ai(z,E+7(6—£€)) (i = 0,...,n). Then by applying assumption (1.10) and inequality
(1.3) we may deduce

n n

D e, ) —ai(w, §)(& — &) =D _(f:(1) = £(0)(& — &)

i=0 =0
n 1 n B 5 5 B
=Y [ S D+ rie- )i - E)6 - Ear
i=0 Y0 j=0
n 1 N N _
>5:3 [ lere-re - &yar
i=0 70
g cp
> m\f—f\ .

Whence after integration we conclude

5 p
(A(ur) = Aluz), ug — ug) > m”ul = ua|k-

12



Now we are able to give some example for the above functions a; such that the

operator A will be uniformly monotone. For more details, see [13].

Proposition 1.56. Let a;(¢) = &|&[P~2 with some p > 2 (i = 0,...,n). Then
operator A defined by (1.9) is uniformly monotone.

Proof. Note that A obviously satisfies conditions (i)—(ii). In this case of a;,
(A(u),v) = / (Z DyuDw|DiulP~% + 7u)|u|”2> dx.
@ \i=1
Simple calculations yield D;a;(€) = (p — 1)|&[P~2 and D;a;(€) = 0 (j # ). Hence
DY Dja@zz = (p— 1)) |G
j=0 i=0 =0
thus Proposition 1.55 implies the uniform monotonicity of A. ]

Proposition 1.57. Let a;(&) = &|(&,...,&)P™2 fori = 1,...,n and ag(§) =
&ol&o|P~2 where p > 2. Then operator A defined by (1.9) is uniformly monotone.

Proof. Obviously, A fulfils also conditions (i)—(ii). Now
(A(u),v)y = / (Z DuDyv|DulP~2 + uv|u|p2) )
2 \i=1

ie., A is the weak form of operator u — A,u + ulu[P=2, where A, is called the

p-Laplacian and has the form

Apu = div(Du|DulP~?). (1.11)
It is easy to see that
D]al(é) = (p - 2)5]61‘(617 s 7‘571)‘1774" for Z] > 01 i 7£ j;
Dzai(f) = ‘(fls s 7571)'[)72 + (p - 2)§z2|(£17 s >£n)|p747 for i > 0;
Djag(§) = Doa;(§) =0, for j > 0,1 >0;
Doao(§) = (p— D&

13



Hence

n n
Dja;ziz; = Z (&1, &)P222 + (p— 1|6 222
j=0 i=0
+ (=2, G DY Gz
j=1 i=1
= Z |(§17 e 7£n)|p_2zi2 + (p - 1)|§U|p_223
i=1
(=Dl &P (Zf&)
n
N (<] i
i=0
thus from Proposition 1.55 it follows that A is uniformly monotone. |

Proposition 1.58. Suppose 2 < p < 4 and let a;(§) = &IEP~2 for0 < i<k <n
and a;(€) = &|(Eriry -, &) P2 for k < i < n. Then operator A defined by (1.9) is
uniformly monotone.

Proof. 1t is easily seen that A also satisfies conditions (i)—(ii). Now for brevity let
(= (£k+17 cee 7$n)~ Clearly,

Dja;(§) = (p — 2)&&1E, for0<i<k 0<j<n j#i
Dja;(€) = (p — 2)&&|¢IP, fork<i<mn, k<j<mn,j#i
Dja;(€) =0, fork<i<n, 0<j<k
Dia;(§) = [§P72 + (p = 2)§7EPP~*, for 0 < i < ks
D;a;(€) = [C[P72 4 (p — 2)E[¢|P4, for k < i < n.
Then
ZZD% )2z = Zlf\p 222+ (p— 2l 422&@%
j=0 i=0 j=0 i=0
+ Z I¢IP=222 + (p — 2)[¢ Z Z &z
i=k+1 j=k+1 i=k+1
k n k 2
Sl S (R (p - 2l (Z%)
i=0 i=k+1 =0
n 2 n k
(-2l ( ) 5) -2t Y Y6
i=k+1 j=k+1 i=0

14



By using the estimate

j=k+1 i=0 G=k+1

n 2 1 k 2
o) )
i=k+1 =0

and the fact that |¢[P~* > [£[P~* since p < 4 we conclude

2
ZZD a;i(§)zizj = Z\ﬂp 22+ Z [CPP222 + = (p 2)|¢P~ 4(2 f;%)

[\

j=0 i=0 i=k+1 i=k+1
1 —4 - —2_2
+ 5 —2)le’ (Z §z> > Z |&:[P~222.
i=0 i=0
Now Proposition 1.55 yields the uniform monotonicity of A. |

Remark 1.59. In case p > 4 one may consider, e.g., the following functions

ai(€) = &l(&o, - EIPTPHGIETT i 0<i <k <n,
ai(€) = &l (Ees, - &) P2+ &l (G, -, &M R <i<on,

where 2 < 7 < 4. Then operator A defined by (1.9) is uniformly monotone.
In non-time-dependent problems the following classical theorem states existence

of solutions.

Theorem 1.60. Let X be a reflexive Banach space. Assume that operator T: X —
X* is bounded, hemicontinuous, pseudomonotone and coercive. Then for every v €

X* there exists u € X such that T'(u) = v.
We can ensure uniqueness by some stronger assumptions.

Theorem 1.61. Let X be a reflexive Banach space. Suppose that operator T: X —
X* is bounded, hemicontinuous, strictly monotone and coercive. Then for every v €

X* there exists a unique u € X such that T'(u) = v.

By supposing the uniform monotonicity of A, the continuous dependence of so-

lutions follows.

Proposition 1.62. If A: X — X* is uniformly monotone then the solution u of
problem A(u) = F is unique and depends continuously on F € X*.

15



Proof. Uniqueness follows from the fact that if A(u;) = F' = A(u) for ui,ups € X
then (A(uy) — A(us),u1 — uz) = 0 and the uniform monotonicity implies u; = us.
Now let Fy, Fy € X* and uy, us € X be such that A(u;) = F; (i = 1,2). Then

[lug — us|f% < const - (A(uy) — Alug), uy — ug)
< const - ||A(ur) — A(uz)|
= const - [|F} — F|

X [Jun = ua x

Xl — sl

_1_
-1

thus |lug — us||x < const- ||Fy — Fy||%." which yields the continuous dependence. [

In time-dependent (evolution) problems we have operators of type S = L + T
where L: X D D(L) — X* is (the operator of differentiation that is) a densely de-
fined, closed, maximal monotone, linear operator, further, 7: X — X* is of mono-

tone type.

Definition 1.63. Operator T' is pseudomonotone with respect to D(L) if for every
sequence (u;) C D(L) such that u, — w weakly in X, L(u;) — L(u) weakly in
X* and limsup(T'(ug), up — u) < 0, it follows that klim (T(ur,), ur, —u) = 0 and
T(uy,) — T(u) weakly in X*.

Tt is useful to rephrase this definition together with the definition of demiconti-

nuity.
Lemma 1.64 (“subsequence trick”). 2

a) Operator T is demicontinuous if for every sequence (uy) C D(T) such that
u, — u € D(T) in X, there exists a subsequence () C (uy) with the property
T(ay — T(u) weakly in X*.

b) Operator T is pseudomonotone with respect to D(L) if for every sequence
(wr) C D(L) such that wy — u weakly in X, L(uy) — L(u) weakly in X*
and limsup(T (uy,), up — u) < 0, there exists a subsequence () C (ug) with

k—o0

the properties klim (T(ag), a, — u) = 0 and T(ay) — T(u) weakly in X*.

Proof. We show the case a), the other can be treated similarly. We proceed by
contradiction, suppose 7" is not demicontinuous. Then there exist € > 0, v € X and
(ug) C D(T) such that up — w € D(T) in X and (T'(uy) — T(u),v) > e. But this
implies that there is no (&) subsequence of (uy) such that T'(@y,) — T'(u) holds. [

2This idea appears already in the works of Georg Cantor. He used the fact that a real sequence

is convergent if and only if every subsequence of the sequence has a convergent subsequence.
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In time-dependent problems the following theorem will be the key of existence

of solutions, for the proof, see [8].

Theorem 1.65. Let X be a reflevive Banach space and L: X 2 D(L) — X* a
densely defined, closed, mazximal monotone linear operator, further, let T: X — X*
be bounded, demicontinuous, coercive and pseudomonotone with respect to D(L).
Then (L +T)(D(L)) = X*.

By modifying the definition of operator A (see (1.9)) and conditions (i)—(iv)

according to the time variable, one has a theorem analogous to 1.54.

Definition 1.66. Suppose that V is a closed subspace of W!?(Q), where ) C R"
is a domain with smooth boundary and let X = L?(0,7;V) for some 0 < T' < oo
and 2 < p < co. Define operator A: X — X* by

(A(u),v) = E:ai(t,a:,u(tw)7 Du(t,z))Dv(t, z)dtdz
9r =1 (1.12)
+/ ao(t, z, u(t, ), Du(t,z))v(t, z)dtdx
Qr

where Q7 = (0,7) x Q, v € X and the following assumptions are fulfilled (a vector
¢ € R™! will have the coordinates (&, ...,&,)):

i) Functions a;: Qr x R™™' — R (i = 0,...,n) have the Carathéodory prop-
(i) e ¥ prop
erty, i.e., a;(t,x, &) is measurable in (t,z) € Qr for all fixed £ € R" and

continuous in £ € R™! for a.a. fixed (¢,2) € Q.

(ii’) There exist constants p > 1, ¢ > 0 and a function k; € L9(Qr) such that for
a.a. (t,2) € Qr and every ¢ € R"+L

lai(t, 2, )] < c- [E77" + ka(t, ), i=0,...,n.

(iii") For a.a. (¢,z) € Q7 and every ¢, € € R™™ such that &1y 6n) # (&1 6n)s

n
> (ailt .66 6) — it 260,61, 16 ) (6 - &) > 0.
i=1
(iv’) There exist a constant ¢; > 0 and a function ks € LI(QT) such that for a.a.
(t,) € Q and every £ € R"H! |

n

Zai(t>$~,f)£i > ool¢” — ka(t, ).

=0
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Theorem 1.67. Assume that D(L) is defined by (1.7) or (1.8) and operator L
is given by (1.6) for some 0 < T < oo and 2 < p < o). Further, assume that
conditions (i’)-(iv’) are satisfied. Then operator A (defined by (1.12)) is bounded,

demicontinuous, coercive and pseudomonotone with respect to D(L).

Idea of the proof. The boundedness and coerciveness are similar to the non-time-
dependent case (see Theorem 1.54). By using Corollary 1.48 instead of Theorem
1.18, the demicontinuity follows similarly to the non-time-dependent case. The pseu-
domonotonicity with respect to D(L) can be proved the same way as the pseu-
domonotonicity for the non-time-dependent case in Theorem 1.54 by replacing The-
orem 1.18 with Corollary 1.48 (see [8]). O
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Chapter 2
A system of parabolic equations

Should I refuse a good dinner simply because I do not understand the process
of digestion? [Criticized for using formal mathematical manipulations, without

understanding how they worked.]

Oliver Heaviside

2.1 Introduction
Obvious is the most dangerous word in mathematics.
Eric Temple Bell

In this chapter we consider the following nonlinear system containing N parabolic

differential equations:

Dl“(l) ()

= f(l)(.%

where (-) stands for the variable (¢,z) € (0,T) x(2 and the terms after the symbol “;”
represent the nonloacal variables (I = 1,..., N). We pose homogeneous Dirichlet or
Neumann boundary condition. For instance, the homogeneous Neumann boundary

condition is
St a,uV (@), ™ (), D (b, ), ..., Du™(t ) ul, L u ™))
i=1
=0
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for € 0Q,t > 0 where v is the unit normal along the boundary (I = 1,...,N).
Clearly, we may assume the boundary conditions to be homogeneous by substracting
a suitable function from the unknown.

Moreover, if 9Q = S;US, where S1NSs = (), then we may pose different boundary
conditions on the elements of the partition.

Some physical motivations to this Chapter were demonstrated in the Preface.
Nonlocal parabolic problems may occur, e.g., in population dynamics, climatology,
fluid flow models, etc. In [21, 22] a simple nonloacal parabolic equation was stud-
ied which is similar to equation (1) shown in the Preface. A generalization of this
equation which is similar to the above was investigated by L. Simon in [63]. These
results were extended to systems of equations in [9].

In what follows, under some assumptions we shall define the weak form of the
above system and prove existence of weak solutions in (0,7) where 0 < T' < oo,
further, we show some properties of these solutions. Our assumptions are the gen-
eralizations of the classical Léray-Lions conditions. This chapter is devoted to be
familiarized with monotone type operators in nonlinear differential equations. The
gained knowledge will help us to deal with more complicate systems, for instance a
system which contains three types of equations. Such a problem will be studied in

Chapter 3. Some parts of the following section were published in [9].

2.1.1 Notation

To make easier the abstract formulation we introduce some notation. Let 2 C R™
be a bounded domain with smooth boundary and let 0 < 7" < 00, 2 < p < oo be real
numbers. For brevity, denote Qr = (0,7) x Q. We use the definition of the space
WLP(Q) as it was introduced in Section 1.2. Denote V; € WhP(Q) (I =1,--- , N) and
let V=V, x...x Vy, H=(L*))N. Then for fixed T we use the notion of spaces
LP(0,T; V), L9(0,T; V*), WP(0,T; V, H) as they were defined in Section 1.5. Briefly,
let X = LP(0,T;V) and Y = LP(0,T; (LP(2))"). The distributional derivative of a
function w € LP(0,T; V') will be denoted (if it exists) by D,u. Precisely, a function
uw € LP(0,T;V) has one variable (t € (0,T)), however, it is often convenient to
write it as a function of (¢,2) where € Q (which sounds logic since the value
of u at each point ¢ is some element of V| i.e., a function depending on = € Q).
For u € X we shall write u = (u®,...,u™) where ) € L?(0,T;V}). A vector
¢ € ROFUN will be written in the form & = ({y, ¢) where ¢, = ((él), . éN)) € RV,
C=(CW,. . .c™M)yeR™W with ¢ = (¢, .., ¢y e rn.
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2.1.2 Assumptions

Suppose the following

(A1) Functions ai”: Qp x ROON 5 12(0,T;V) =R (i=0,...,n; [=1,...,N)
have the Carathéodory property for every fixed v € LP(0,T;V), ie., they
are measurable in (¢, x) € Qr for every (¢,¢) € R"DN and continuous in
(¢o,¢) € RUHIN for aa. (t,2) € Qr

(A2) There exist bounded operators g;: LP(0,T;V) — R* and ky: LP(0,T;V) —
LY(Qr) such that
i (1,2, Go, G 0)| < 91 (0) (166~ +1CP7) + [k (0)] (1, 2)
for a.a. (t,x) € Qr, every ((,¢) € RN and v € LP(0,T;V) (i =
0,...,n; l=1,...,N).
(A3) For a.a. (t,z) € Qr, every ¢ # CeR™, (eRY and v e LP(0,T;V),
N n

ZZ <a§l)(t7‘x7<07 gr U) - al(l)(thvCOv 5, U)) (CL(” - @(l)) > 0.

=1 i=1
(A4) There exist operators go: LP(0,7;V) — RT and ko: LP(0,T;V) — LY (Qr)
such that
N n
22 a2, o) 2 (o) (G + 1) = a0t 2)
=1 i=0

for a.a. (t,z) € Qp, every (¢,¢) € RN and v € LP(0,T;V). Further,

operators gs, ko have the following property:

i p o)l
lim . HUHILIJJ(IO,T;V) <92(v) _mWliiven | _

vl o,7v)— |‘/UHI[)4P(0,T;V)

(A5) If wy — u weakly in LP(0,7;V) and strongly in LP(0,T; (LP(2))V) then for
every i =0,...,n; l=1,...,N,

Jim [l (- (), Due()w) = 0 un(), D) )| aar) = 0.
(F1) F e L0, T;V*)

Note that assumptions (A1)—(A4) are similar to the classical case (i.e., when
there is no nonlocal term), see [44, 71] or Section 1.6. Condition (A5) means a kind

of “continuity” in the nonlocal variable.
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2.1.3 Weak formulation

Now we may define the weak form of system (2.1). Assuming conditions (Al),
(A2), we may introduce operator A: LP(0,T;V) — L9(0,T;V*) as follows. For
w=(uM, ... u™M) e Lr(0,T;V) and v = (00, ... o) € LP(0,T; V) let

N n
[A(u),v] == Z Z o,z ult, z), Du(t, z); u) DO (¢, ) dt da
L (22
+ Z/ Z ag)(t, z,u(t,z), Du(t, z); u)yvO (¢, z)dt dz,
=1 7Qr =1

where D; denotes the distributional derivative with respect to the variable z; and
D = (Dy,...,Dy) (see Section 1.2). Further, let D(L) — L%(0,T;V*) be the oper-

ator of differentiation (see Section 1.5):
D(L) :={u € LP(0,T;V): Dyu € LU0, T;V*), u(0) =0}, Lu=Dwu. (2.3)

Finally, in condition (F1) we consider general F' € L7(0,T; V*) functionals, but it

may have special form
N
[Fiv] = Z/ FO, )00 (¢, ) dt da
=1 /@1

for v e LP(0,T;V) where fO € LY(Qr) (I=1,...,N).

By the operators above the weak form of system (2.1) is
Lu+ A(u) = F. (2.4)

Note that in equation (2.4) there is a “hidden” initial condition «(0) = 0 which is
given in the domain of L. It is well-known (see, e.g., [44]) that one obtains the above
weak form by taking sufficiently smooth solutions, using Green’s theorem and finally
considering the whole system in the space LP(0, T; V). Clearly, if the boundary condi-
tion is homogeneous Neumann then V = W1?(Q) (since the boundary term vanishes
in Green’s theorem) and if we have homogeneous Dirichlet boundary condition then
V = W, () (in order to eliminate the boundary term in Green’s theorem). Further,
if we have a partition, for example in one dimension with homogenous Dirichlet and
Neumann boundary conditions then V = {v € Wr1(0,1) : v(0) = 0, D,v(1) = 0}.

2.2  Weak solutions in (0,7

A mathematician is a blind man in a dark room looking for a black cat which

isn’t there.
Charles Robert Darwin
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2.2.1 Existence

The following theorem states important properties of A. These will imply exis-
tence of solutions to problem (2.4).
Theorem 2.1. Suppose that conditions (A1)-(A5) are satisfied. Then operator
A: X — X* is bounded, demicontinuous, coercive and pseudomonotone with respect

to D(L).

Proof. The proof is based mostly on technics of estimates.

Boundedness. By Holder’s inequality fori =1,...,n

'/ (l)(t z,u(t, x), Du(t, z);u) Do (t, x) dt dz:

) </Q| S Du(t?x);u)lthdxf < /Q D, I)\pdtcﬂ)% o

(In case i = 0 we replace D;u® with v®.) The right hand side of (2.5) may be
estimated by (A2) and inequality (1.1) which yields

(/ \a,(;l)(t7ac,u(t,z),Du(t,z);u)|thd1‘> !
Qr

gconst-( / [gl(u)’l(\u(t,m)|”+|Du(t,x)|”)+|[k1(u,)](t,z)|’1]dtdx>; (2:6)

Qr
= const - (gu()ljull + 1 () o)
By summing the above estimates with respect to i and [ we obtain
P
[AGw), ] < const - (ga(w)Jullk + Ia(w)zagan) Nellx- (27)

Thus
[ A(u)|

f+ (@)oo ) -

Now the boundedness of operators g; and k; implies the boundedness of A.

x+ < const - (gl(u)Hu

Demicontinuity. Assume that u, — u strongly in X. Then there exists a subse-
quence (for simplicity, it will be denoted as the original sequence) such that u, — u
and Duy, — Du for a.e. in Qp. We shall show that [A(uy) — A(u),v] — 0 for every
v € X then by using the “subsequence trick” the demicontinuity follows.

Now for fixed w € LP(0,T; V) define operator A,,: X — X* by

Ayp(v), 2] —Z/ za (t, 2, 0(t, ), Dv(t, z);w) Dz (t, z) dt da:

Qr =1
+ Z/Q Z agl)(t, z,v(t, x), Do(t, z); w)z " (t, z)dt d
T i=1
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where z = (2, ..., 2(M)) € L9(0,T; V*). We show that A(uy) — A,(ug) — 0 and
Ay (ug) — A(u) — 0 weakly in X*. By triangle and Holder’s inequalities it is sufficient
to verify
o (s en(), Dun()sue) = @’ ua (), Dun () Wllaaary = 0 (28)
and
(), D)) = 0l (), Du) W)l = 0. (29)
The continuous embedding X — Y and condition (A5) imply (2.8). On the other

hand, from condition (A1) and the almost everywhere convergence of (uy,) and (Duy,)

it follows
a,gl)(t,x,uk(t,w),Duk(t,x);u) — ay)(t,x,u(t,x),Du(t,:r);u) a.e. in Qr.
Further,

1o (¢, @, ug (¢, z), Dug(t, 2);u)|?

i

< 1) (Juk(t, 2)[" + [ Dug(t, )[7) + |[kr ()] (t, 7).

Denote by fi the right hand side of the above equation. Since (uy,) is convergent in
X, (fr) is convergent in L'(Qr), consequently, it is equi-integrable in L!(Q7), too.
Hence functions (aEl)(- ,uk(-),Duk(-);u))k are equi-integrable in L(Qr). Then
eN
by Vitali’s theorem we conclude
. 1 1
Jim [l (- (), Due();w) = (- ul), Dul);w) | aar) = 0.

Remark 2.2. Observe that we have shown also the fact that A(uy) — A, (ug) — 0
weakly in X* and [A(uy) — Au(ur), ve] — 0 for a bounded sequence (v;) in X.

Coerciveness. The first part of condition (A4) implies

[A(u),u] > / (g2(w)|u(t, )[” + [Du(t, )P — [ka(u)](t, x)) dtdz

(2.10)
= g(w)[lull = k()21
thus by using the second part of (A4) we may deduce
[A(u),u] . { 1 E(w)lpen
lim ———— > lim w)ljul|f% — ————— | = 4o0.
x>0 HUHX [t 92( )H HX HU”X
Pseudomonotonicity. Let us suppose that
u, — u weakly in X and Luy — Lu weakly in X™, (2.11)
further,
lim sup[A(ug), up — u] < 0. (2.12)

k—o0
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By using the “subsequence trick” it is sufficient to show that for a suitable subse-

quence (denoted same as the original)

klim [A(ug),ur —u] =0 and A(ug) — A(u) weakly in X
Since the embedding W'(Q2) — LP(Q) is compact and (uy) is bounded in X, further,
(Duy) is bounded in X* by its weak convergence, then Corollary 1.48 implies the

existence of a subsequence (ug) C (u;) such that uy — w in Y. Now Remark 2.2

yields
klim [A(ug) — Ay (ug), up — u] = 0. (2.13)
Comparing this with (2.12) it follows
lim sup[A, (ug), we —u] < 0. (2.14)
k—o0

Now Theorem 1.67 implies that A, is pseudomonotone with respect to D(L) hence
from conditions (2.11) and (2.14) we obtain

klim [A(ug),u —u] =0 and A,(ur) — Au(u)(= A(u)) weakly in X*. (2.15)
Whence (2.13) yields klim [A(ug), ur — u] = 0. On the other hand, we have shown in
the proof of demicontinuity that A, (uy) — A(ug) — 0 weakly in X*, so that by using
the second part of (2.15) we conclude A(uy) — A(u) weakly in X*. This completes
the proof. |
Corollary 2.3. Problem Lu+ A(u) = I has got a solution u € W'(0,T;V, H) for
every F' e X*.
Proof. Since operator L is densely defined, closed, linear and maximal monotone
(see Theorem 1.51), the statement follows from Theorem 1.65. (If in the definition
of the domain of L we pose u(0) = u(T') instead of u(0) = 0 this Corollary remains

true since Theorem 1.51 applies also in this case.) |

2.2.2 Modification of the problem

In this section we modify system (2.1) in order to be able to define the notion
of periodic solutions and prove existence of them. In the following we admit only
delay type of nonlocal variable. We introduce the usual notation. If u € LP(—a, T; V)
(T > a) then let u,(s) = u(t +s) for s € [—a,0] and t € [0, T]. Now consider system

Du(.)
=D [l a6, u ), D, D)
(2.16)
+af (), u™ ), DU ), D™ sl uf)

=790),
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with some boundary condition and initial condition u{(s) = ¢;(s) for s € [—a, 0]
where ¢, € LP(—a,0;V) (I=1,...,N). (As before, the exact form of the boundary
condition determines the space V, see Section 2.1.3.)

We are interested in solutions u € LP(—a,T; V) such that Dyu € Li(—a,T; V*)
and u is a weak solution of (2.16) for ¢ € (0,7, further, u(t) = wu(t + T') for
t € [—a,0]. We shall show existence of this type of solutions and at the end of
Section 2.3.1 we shall extend them to a periodic weak solution of (2.16) in (0, o)
(see Theorem 2.13).

Now we modify conditions (Al)-(A5) according to the above modification of

equation (2.16).

(A1’) Functions agl): Qp x ROHON 5 12(—q, 0;V) =R (i=0,...,n; [=1,...,N)
have the Carathéodory property for every fixed v € LP(—a,0;V), ie., they
are measurable in (¢, x) € Qr for every (¢,¢) € RN and continuous in
(Co,¢) € ROHDN for aa. (t,2) € Qp

(A2’) There exist bounded operators g : LP(—a,0; V) — R* and ky: LP(—a,0; V) —
L9(Q) such that

ol (¢, 2, Co, G;0)] < g1(0) (16l + CPY) + [ka ()] (2)

for a.a. (t,x) € Qp, every ((p,¢) € ROTIN and v € LP(0,T;V) (i =
0,...,n; l=1,...,N).

(A3") For a.a. (t,z) € Qr, every ¢ #( e RN, (o € RN and v € LP(—a,0; V),

N =n
30 (a2, Go o) = (12,60, 0)) (0 = E0) > 0.
=1 i=1

(A4’) There exist a constant go > 0 and a function ky € L*(Qr) such that

N n
SN a2, 6o, o) 2 g (GOl + ICP) — Ralt,w)  (2.17)

=1 i=0
for a.a. (t,2) € Qr, every ((y,¢) € ROIN and v € LP(—a,0; V).

(A5) If up — u weakly in LP(—a,T;V) and strongly in LP(—a, T; (LP(Q))") then
forevery i =0,...,n; l=1,...,N,

tim [|a{ (- ue (), Dug(-); (urmr)e) — a’ (- ur(), Dug(-); )| agar) = 0.

k—oo
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By supposing (A17), (A2’) we introduce operator A: LP(—a, T; V) — L4(0, T; V*)
as follows. Foru = (uV, ... ,u™M) € LP(—a, T; V), v = (v, ... o™ € L2(0,T;V),

[A(u),v] == Z/ Zam t,z, u(t, x), Du(t, z); u) D;o® (¢, x) dt da

Qr =1
+Z/ t z,u(t, z), Du(t, z);u oV (t, x) dt da.
Qr =1

Further, let L be the operator of differentiation:
D(L) :={ue LP(0,T;V): Dy e L0, T;V*), u(0) =u(T)}, Lu= Du.

(Notice that contrary to the previous section now we demand periodicity condition
in the domain of L.) Finally, let F' € L1(0,T; V™).
We want to find u € LP(—a,T; V) such that Dyu € LY(—a,T;V*) and

Lulom + A(u) = F (2.18)
uw(t) =u(t+T) for te[—a,0]. (2.19)

In the following if (2.19) holds we say that u is periodic.

Theorem 2.4. Let T > a and assume that conditions (A1’)-(A5’) are satisfied.
Then for every F € L%(0,T;V*) there exists u € LP(—a,T;V) such that Dyu €
LY(—a,T;V*) and (2.18)—(2.19) hold.

Proof. The main idea is to apply the method of successive approximation (known
from the theory of ordinary differential equations). We define a weakly convergent
sequence of approximating solutions and we show that the weak limit of this sequence
will be a solution that fulfills the requirements of the theorem.

To this end, for fixed v € LP(—a,T;V) such that Dy € L(—a,0;V*) and
v(t) = v(t+T) for t € [—a,0] we introduce operator A,: LP(0,T;V) — Li(0,T; V*)

as follows:

(u),w] := Z/ Zam (s,2,u(s, ), Du(s, z); v)) DawV (s, z) dsdx

Qr =1
+Z/ (s,2,u(s, z), Du(s, z); v)w® (s, z) dt dx
Qor 5
where u = (uV,... u™M) € LP(0,T;V) and w = (w®,...,w™) € L?(0,T;V).
In the following we show that for fixed periodic v € LP(—a,T; V') operator A, is
bounded, demicontinuous, coercive and pseudomonotone with respect to D(L). We

proceed the same way as in the proof of Theorem 2.1. Similarly to (2.6), (2.7),
» T
st < const- (sntoalall + [ (el ) s
0
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Since v is periodic, |[v¢]|Lr(—a0y) is constant (hence bounded) in t € (0,7) thus
|91 (ve)| and ||k (v¢)|| 1) are bounded so the above inequality implies the bounded-
ness of operator A,.

To verify the demicontinuity we pick a sequence (u;) C LP(0,7;V) such that

up — uw in X. We may assume that u, — u and Duy — Du a.e. in Q7 thus

a(l>(t,x,uk(t,m),Duk(t,x);vt) — a£l>(t,az,11,(t,m),Du(t,x);'U,,) a.e. in Qr.

i
Further,

\(JL(Z)(t7 x,ug(t, ), Dug(t, x);v)|?

i

< g1 (o) (Jun(t, )P + [Dur(t, ©)[7) + |[kr ()} ()]

The right hand side of the above inequality is equi-integrable in L'(Qr) by the
convergence of (ux) in X and by the periodicity of function v. Whence by Vitali’s

theorem we conclude that
1ol (- ur(-), Du();v) — a’ (- u(-), Du(-);01) | o) — 0-

which means [A, (u;) — A, (u), w] — 0 for every w € X so the demicontinuity follows.
The coerciveness follows by (A4’) similarly to (2.10).
[Au(w), u]

fullx—o0  [Jullx

%2l 21 @)

= +o00.
flllx

> lim | gofful} " —

Finally, the pseudomonotonicity with respect to D(L) follows by using the clas-
sical arguments (combining with Theorem 1.48 and the boundedness of v;), see
17, 44, 71].

Now let us define the sequence of approximating solutions (u;) C LP(—a,T;V)
by using a sequence (;) C LP(0,T; V). Let @(s) = 0 for s € [0, 7] and u(s) = 0 for
s € [—a,T]. Suppose that uy_1 € LP(—a,T;V) such that Dyug_y € LY(—a,T;V*)
and u_1(t) = up—1(t + T') for t € [—a,0]. Then let 4, € LP(0,T; V) be a solution of

Liy + Ay, (@) = F. (2.20)

Such solutions exist due to Theorem 1.65 and the properties of operator A for

Ug—1
fixed periodic uy_;. Let ug(t) = a(t) for t € [0,T] and u(t) = Gx(t + T) for
t € [—a,0]. Then wy is continuous and Dyuy, € LY(—a, T; V™).

Now we show that the sequence (i) is bounded in LP(0,7;V) (thus (ug) is
bounded in LP(—a,T;V)). Indeed, by integrating (2.17) in @ (analogously to

(2.10)),
[Fyax] = [Lig, ) + [Au,_, (@), @] > gallinl — 12/l zr@q)- (2:21)
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Since 1 (0) = (1), [Ltg, i) > 0 whence

£

x- 2 gl — [kl @)
Consequently, () is bounded in L?(0,T; V). Then due to the periodicity of uy, (u)
is bounded in LP(—a, T; V). So by using similar estimates as (2.5), (2.6) one obtains
the boundedness of the sequence (A, ,(t)) in L%(0,7;V*). Now from (2.21) we
may deduce

|| |

x- = ||F]

xe = [ Au ()]
By applying Theorems 1.48 and 1.52 one has a subsequence of () (for simplicity
denoted as the original) and a function @ € L?(0,T; V) such that 4(0) = 4(T) and

x+ < const.

Gy — @ weakly in LP(0,T;V); strongly in LP(0,T; (L*(2))V)
Liy, — La weakly in L7(0,T; V™).
This implies that for a subsequence ux — @ a.e. in Q7. Thus due to the periodic
extension, there exists u € LP(—a,T; V) such that (uy_1): — w; a.e. in [—a,0] x Q
for every t € [0, 7. Similarly to (2.9), Vitali’s theorem implies
Jim (o (i), Din()sur) — al’ (- u(), Dul:); wn)l|aaer) = 0-
which means A, (i) — A, (u) weakly in L9(0,7; V*). Finally, by condition (A5’),

la? (-, (), Ditw(); (up-1)e) = @’ (-, (), Dia (s uo)l Lagar) — 0
so Ay, (i) — A,(u) weakly in L(0,T;V*) hence A,, ,(ix) — A(u) weakly in
L9(0,7T;V*). Now by passing to the limit as k& — oo from (2.20) we conclude that
Lt + Aa(a) = F, further, by the a.e. convergence u(s) = a(s +T) = u(t + T) for
s € [—a,0].
|

2.2.3 Examples

In this section we give examples for functions a ) which fulfil conditions (A1)-

(A5). We begin with a general form and we finish with concrete examples.

General case

Suppose that functions al (t,z, (o, (;v) have the form:
al(t, 2,6, G 0)
= [HOW)](t, 2)b (1, 2,60, ) + [GVW)](t, 2)d (1, 7,6, C) (i £0),
al (t,x,, G v)
= [HO)](t, )b (t, 2, G0, €) + [GP ()] (t, 2)d (£, 2, G0, C)

(2.22)

(2.23)
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where b\ ", HO G0, GE)” have the following properties.

(K1) Functions bgl): Qr x RODN R and dEl): Qp x ROWDN R (i =1,...,n
[ =1,...,N) are of Carathéodory type, i.e., they are measurable in (t,z) €
Qr for every ({o,¢) € RO*DN and continuous in (¢,¢) € RN for a.a.
(t,x) € Qr

(K2) There exist constants ¢; > 0, 0 < r < p— 1 and a function ky € L(Q) such
that

a) |b£l (t, 2, G0, O)| < (|G~ + [CP7Y) + ka (),
b) 1dP(t, 2, 6o, O < ex (Gl + [¢]7)

for a.a. (t,7) € Qr and every (¢p,¢) € R®HIN (j=1,... n; I =1,...,N).

(K3) For a.a. (t,7) € Qr, every ( #n € R™ G eRYN andl=1,... N,

a‘) Z (bgl)(tvxv COv C) - bgl)(tvxv 4017])) (Ct(l) - 775”) > 07
i=1

b) 3 (260, 0) = d (k. o)) (¢ =) 2 0.

=1
(K4) There exist a constant ¢y > 0 and a function ks € L'(£2) such that

a) Y0 (2,60, O > ea(ICF + [COP) = ka(a),

=0
b) Zdz@(tv z, 407 C)dl) >0
=1
for a.a. (t,2) and every ((y,¢) € ROFIN (1 =1,... N).
(K5) a) Operator HO: LP(0,T; (LP(Q))N) — L®(Qr) is bounded and continuous
such that [HO(v)](t,z) > ¢ > 0 holds for a.a. (t,z) € Qr and every
v e LP(0,T; (LP()N)
b) Operators G Gl) LP(0, T (LP(Q)N) — LP*ILI(QT) are bounded and
continuous where 7 is given in (K2)/b. Further, [G® (v)](t,z) > 0 for a.a.
(t,2) € Qr, every v € LP(0,T; (LP(2))N). In addition,

[ 160w == duas

lim P
lvlle o, 7v)—o0 H””LP(O,T;V)

Proposition 2.5. Assume conditions (K1)-(K5). Then functions defined in (2.22)—
(2.23) satisfy conditions (A1)-(A5).
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‘We need a technical lemma.

Lemma 2.6. Let us introduce the following operators:
N N N
{
H() =3 [HO@)]. G) =160, Golv) = Y1G W)l
=1 (= =1

Then operators H, G and Gy fulfil the conditions formulated in (K5) on H®, GO
and Gm, respectively.

Proof. Property (2.24) follows easily by using inequality (1.1), the other conditions

are completely trivial. O

Proof of Proposition 2.5.
Condition (A1) Condition (K1) immediately implies (A1l).
Condition (A2) Let i > 0 and r > 0. Obviously

IHO @), 2)6 (1,2, 60, O < [ H©)[=(@n) (2 (1677 +16P7) + k(@) -

On the other hand, by using Young’s inequality with conjugate exponents 1 < p; =
p—1 p—1

—— < o0and ¢ = one obtains
r

GO @)t 2)d (¢, 2, o, Q) < [[G)](E ) (¢, 2, 6o, Q)
< |d§l)(t7z,Co7C)|p‘ N \[G(v)](t,x)\q‘. (2.25)
P q1

Thus by using (K2)/b and inequality (1.1) we obtain

GO ()](t, 2)d (£, 2, Co, €)| < comst - (|G + ¢ + |[G(w)](t, 2)|™)

2.26)
= const - (|C0|1771 + ‘C|p71 + HG(U)}(@ZW‘) .

Now by combining the above estimates we may deduce

10 (t, 2, Go, G;0)] < const - (| H(0) [ =in +1) (Gl + 1¢P)
+const - (| H(v) | =@k (&) + [ [G(0)) (¢, 2)[).

Due to the boundedness of operator H and by the continuous embedding X — Y
it follows that ||H ()| 1 (@) is @ bounded X — R functional. Further, ky € L9(Q)
implies that [|H(-)||L@mk1 is a bounded X — L9(Q7) operator. Observe that

q1q = prq so that

[ ey dds = [ 6w ards
Qr Qr (2.27)

(160, )™
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Thus |G(-)|* is a bounded X — L?(Q7) operator.
Now let = 0. Observe that ¢; = 1, moreover, from (K2)/b it follows

[0 (t.2.6o.€)] < 201
So in this case we also have an inequality similar to (2.26),
[GO@)I(t,2)d (L, 2, G, Q)| < const - |[G(v)](t,z)[*.

This completes the proof in case i > 0. Case i = 0 is the same, we only have to
replace G with Go.
Condition (A3) By using condition (K3) and (K5)/a, for every ¢ # n we obtain

53 (610560 — a0t o)) (60— )

=1 i=1

N n
=S OO > (00t 2,60,0) = 0 (82, 60,m)) (= 1)
=1 i=1

N n
+ 30O Y (40 2,60,0) - dP (k. Gom) ) (=0
=1 i=1
> 0.

Condition (A4) Due to (K4) and (K5) it follows

3

N
Z a(l)(f x,Co, C; 11)@-([)

=1 i=
N N
> (6 + 16O — esha(a ZG“ AV, 2,6, 0P (2.28)
=1

> caesca(|Gol? + [C[P) — caNka( +Z[G D (w)](t, 2)dV (¢, 2, ¢, )¢

In the last estimate we applied inequality (1.1). Put ¢ = ¢4c3¢9 and let us investigate
the terms in the last sum. By applying the € > 0-inequality with exponents p, ¢ and

P
e > 0 such that — < — < it follows
p 3N

1GS )]t 2)dS (¢, 2, G, )|
< [[Go)(t, 2)d (¢, 7, 6o, )¢ (2.29)

WW qu%wWMJWx@o

The first term on the right hand side of (2.29) may be estimated from above by
U
N (I¢o|? 4+ 1¢J7). In the second term, the e-inequality with p > 0 (defined later)
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and exponents p1, ¢; (similarly to (2.25), (2.26)) yields for r > 0

G )t 2)dD (1, 2, Go, Q)7
< const - (1P (|G + [CP7Y) + 1| [Go(v)] (¢, z)[ ) (2.30)
< P (1Gol? + [CP) + i1 [Go(v)] (¢, )1

/

¢ ppras=a ¢ o
— < N Then by substituting (2.29) and (2.30)

Now choose g such that
into (2.28) one obtains
N n
SNl (2,60, o)
=1 i=0 (2.31)
C/
2 3 (Il +[¢I7) = (esNky(2) + Nd'|[Go(v)](¢, 2)[ 7).
Put
h(v) := esNky(z) + Nd*|[Go(v)] (L, z)| "
then h(v) € LY(Qr) due to (2.27) (and ke € L'(£2)). Moreover,

A1 @r) < csNIRallire) + Nd*/ I[Go(v))(¢, )| 7= dtda.

Qr

Note that the this inequality holds also in case r = 0. From Lemma 2.6 it follows
that Gy fulfils (2.24) hence

o1 (c h(v)| L1 @r) i

lim  ||v[/5 1<£—H7T = lim —|o|l¥" = +o0.

o]l x =00 H HX 3 HUHI))( o)l x —o0 3 H HX

Condition (A5) Let r > 0. Suppose that u; — u weakly in X and strongly in

Y. Then (uy) is bounded in X therefore (b(l)(- ,uk(-),qu,k(-))) is bounded in
keN

i

L9(Q7), since similarly to (2.6)) one has the estimate
/ 16 (¢, 2, wi(t, ), Dug(t, 2)|"dtda < const - (luell% + NerllFaoy) < K-
Qr
Further, observe that (dl(-l)(~ uk()7Duk())>k ; is bounded in L7 (Qr), since by
€
(K2)/b

/ \dﬁ”(t,x,uk(t,x),Duk(t,x))ﬁdtdIg/ [|uk(t,z)r%+|Duk(t,x)r%] dtda

T Qr
= [Juxl%-

Whence by using the continuity of H? we may deduce

/ [([HO ()]t ) — [HO )] (8, )b (¢, 2, ui (£, ), Dug(t,x))|* dtdw

< NHO () = HO@) 8w 0 / 6 (¢, @, wr(t, 2), Dug(t, x))|"dt d
Qr

<K | HO(ug) — HO(u) | p=(ar)

— 0 ask — oo.
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On the other hand, Holder’s inequality with exponents py, ¢; yields

/ GO o))t ) = (GO ()t )tz 2), Dt ) e

< ([ 0 mnte o), Dunte a7 et )
Qr

X </T GO )] (t,2) — (GO @) () 7577 dtdr) "

< K7 )60 (w) — GOW)|| 7,

LT (Qr)

— 0 as k — oo.
This means that
la (- (), Dur()sur) = al (- ui(-), Dur(-); )| Lagar)
< const - [|(HY (u) = HO@)bP (- un(-), D) o

. . o (2.32)
+const - [[(GO(ur) = GO@) (-, ur(-), Dur( )l )

— 0 ask — oo.
If r = 0 then the first term on the right hand side of (2.32) tends to 0. Since
P = ¢ (hence G maps to L%(Qr) continuously) and \dil)(t,yc, C0,¢)] < 2

p—r—1
thus

G (wr) = GO )d (-, un(-), Dur()zacar)
< 2|6 () = GO(w)) [ oar)
—0 ask — oo.
So the second term on the right hand side of (2.32) tends to 0, too. Case ¢ = 0 can

be treated similarly, by replacing G with G((f). |

Concrete examples
Operator H"
Let @: R — R be a continuous function such that ® > ¢ > 0 and introduce the

following operators on LP(0, T (LP(2))N):

N
[Hy(v)](t,z) =P ( ijv(j)) , where b; € LY(Qr) (1<j<N),
Q5

L)1) = @ ([ | ot ) . where 1< 0 <.

Proposition 2.7. The above operators H; (i =1,2) fulfil condition (K5)/a.
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Proof. We start with the case of Hy. From Holder’s inequality it follows that ij@ €
LY(Qy) so that H; is well-defined and obviously H;(v) > ¢ > 0. On the other hand,
if [Jv]ly < K then

/Qva

t =1

N N
<3 / b0 < K37 10l -
j=17Qr j=1

Now the continuity of ® yields the continuity and boundedness of Hy. Since, if

vg — v in LP(0,T; (LP(Q))Y) then
’ [>u - S| <3 (Lowl) ([ =) 0
Qt j=1 Q j=1 Qr T

t =1

as k — oo therefore by continuity of ¢ it follows Hy(v) — Hy(v) in L(Qr). This
completes the proof.

Clearly, operator H, is well-defined and maps to L>(Q7) (that can be proved
the same way as above). Now let vy — v in LP(0,T; (LP(Q))Y) then v, — v a.e. in
Qr, further, they are equi-integrable in L*(Qr) for every 1 < a < p. Then Vitali’s
theorem yields the convergence in L*(Qr) so that Hy(v,) — Ha(v), i.c., operator

H, is continuous. O

Operators GO, G

P(y)| < - Jy|P~0~L holds for
some constants ¢ and 0 < 7y < p — 1. Let us introduce the following operators on
LP(0, T; (LP()N):

(G4 (v = ( Za] 7, 2) 09 (7 l‘)dT) ,

[Ga(v ( Za; (t, &)Vt 5)d5>

e (/ m%}>

where a; € L*(Qr) (1<j<N) 1<a<p

Proposition 2.8. The above operators G; (i = 1,2,3) fulfil conditions made on G'((]l)
in (K5)/b with 0 < r < rg.

Proof. We show the case of operator G, one can prove the other cases similarly.
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Let 0 <7r <7y <p—1 then obviously

N T 28
/ |[C~¥1(v)](t,x)|v*]')‘*l dtdz < const - / Z la;ll = (@p) |0 (1, 2)|dr | dtdx
Qr Qr \j=1 /0

A

< const - /QT (.Z/OT|U(T, ;L‘)d’]’) dtdx

N
Jj=1
T

. . PA
= const - / (/ [v(T, 1‘)|d7—> dtdz
Qr 0

—rp—1 1
L —— < 1. By using Hoélder’s inequality with exponents p; = X

where 0 < A =
p—r—1

and ¢ = b we obtain
p1—1

A

T P
/ </ \7)(T,m)|d7—> dtdz
Qr 0
T 28 A I
< const - / </ \v(”r,x)|d7'> dtdr | - (/ 1‘71)
Qr 0 Qr
T P A
= const - (/ (/ [v(T, :L')\dT) dtdw)
Qr 0
Now we may estimate again by Holder’s inequality and then application of Fubini’s
theorem yields
T p T H T 7
/ </ [v(T, x)|d7’> dtdr < / </ v(T,x)|pdT> </ 1‘1d”r) dtdx
Qr 0 Qr J0 0

T
= const / / [v(r, z)|Pdr dxdt
7 J0

= const / [v(t, )P dtdx

< const - ||v[%.
Summarizing the above estimates one obtains

/ [[G1(0)](t, 2) |7 dtdz < const - [|v]|3.
T

Now it is easily seen that Gy is a bounded operator which maps to Lv*ffl(QT).
Further, due to A — 1 < 0,

/ G (¢ )

T

=1 dtde

lim = lim [tV =0.
llollx—o0 [[vll% n«»uxmu I

The continuity of the operator can be proved similarly to the previous theorem. [

Remark 2.9. From Lemma 2.6 it follows easily that linear combinations of the above
operators fulfil condtitions (K5)/a and (K5)/b, too.

36



Functions bgl)7 dy)

We begin with a little bit general but well-known example. Let bgl)(t, z,¢o,C) ==
Ey)(tx? Co,(i“)) (i=0,...,n;1=1,...,N) be such that

(i) function l;g”: Qr x R¥*1 — R has the Carathéodory property, i.c., it is
measurable in (t,z) € Qp for every (Co;(i(l)) € RY* and continuous in
(G0, ¢") € RY*Y for aa. (t,2) € Qr:

(ii) there exist a constant ¢; > 0 and a function ky € L9(€2) such that
B0t 2, 60, () < (1o + 1P + ()
for a.a. (t,x) € Qr and every (G, (V) € RN+

(iii) function Qi(l) — Eﬁ”(m,qo,d”) is strictly increasing for a.a. (t,x) € Qr and

every (y € RY;
(iv) there exist a constant ¢, > 0 and a function ks € L'(Q)such that
50,2, 60, ()" > el = a(w)
for a.a. (t,2) € Qr and every (o, ¢") € RN+,

Then b§” obviously fulfils (K1), (K2)/a. Condition (K4)/a follows from inequality
(1.1), further, the monotonicity yields (K3)/a.
Similarly, let dg”(t,z,go,() = Jg”(t,z,go,(;l)) if i # 0 and dél) = dé”(t,x,(o,()
(t=1,...,m;1l=1,...,N) be such that
(i) functions d: Q7 x R¥*! - R and dV: Qr x R*Y — R are of Carathéodory
type;
ii) there exist constants ¢c; > 0, 0 < r < p — 1 and a function k; € LY(Qr) suc
ii) th i 0,0 d a function k; € L9(Q h
that
(¢ 2,6, G < a1l + 16717 + Fa (@),
[ (¢, Go. O < ea(|Gol” + [¢I") + ()

for a.a. (t,2) € Qr and every (¢, ;) € R?Y;

(iii) function ¢ — d”(t, , o, ¢ is nondecreasing and d\” (¢, z, ¢y, 0) = 0 for a.a.
(t,x) € Qr and every (o, (;) € RVTL
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Now conditions (K1), (K2)/b, (K3)/b obviously hold. To prove (K4)/b we only
have to observe that (if ¢ # 0) J,(;l)(t, x, Co, C.(l))(i(l) > 0.

i

The simplest functions which satisfy the above general conditions are
! i DIOT S { { 1)) -
b0 (2,60, ¢y = 1P dP (G, () = ¢l

fori=0,...,n;l=1,...,N and for r > 0. If r =0 let dl@ =0 and d((]l) =1.
Other functions which fulfil the desired conditions (K1)—(K4) (but they do not

fit in the above general case) are the following:

b (t,2,60,Q) = CPICP2 (i #£0), b(t,2,60,€) = (OICOP2 (i £ 0),
D) O p-2 o (-0 p-2
bé (tvIv CO7 C) = C[) |<0|p ; bO (t7$7 C07<) = CO KO |p

and similarly for functions dg” by replacing the exponent p — 2 with » — 1. In case
of the second example one has

Z Db (t, 2, u, Du) = Z Di(Du | Dul P=2) = div(Du®| Du®=2).

i—1 i—1

So we obtain the p-Laplacian (see (1.11)) as the operator A of our original problem.
The above functions obviously satisfy conditions (K1)—(K4).

Case of Theorem 2.4
Let functions a(l)(t7 z, (o, ¢;v) have the form:

i

a(t,,Co, G 0)

1 (1) 1 (1) . (2'33)
= [HO@))(@)b (t, 2,0, ) + [GOW))(2)d" (t, 2,60, C) (i # 0),
a(t,z, 6o, Cv) = [HO ()] ()0 (1, 2, G0, Q) +d (2,60, 0. (2.34)

By applying the arguments of Section 2.2.3 we have

Proposition 2.10. Let T' > a. Suppose that functions by),dl(-l) satisfy (K1)-(K4)
(i = 0,...,m;1 = 1,...,N). Further, HO: LP(—a,0; (LP(Q))N) — L=(Qr) is
bounded and continuous such that [H®(v)|(t,x) > ¢ > 0 holds for a.a. (t,z) €
Qr and every v € LP(—a,0; (LP(Q))N). In addition, GV LP(—a,0; (LP(Q))N) —
L#(QT) is bounded and continuous where r is given in (K2)/b. Then functions
(2.33)(2.34) fulfil conditions (A1’)-(A5’).

g

For functions b(;l)7 d;

i consider the examples found in Section 2.2.3. Further, oper-

ators H®, G may have the following form. Let ®: R — R be a continuous function
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such that ® > ¢ > 0 and introduce the following operators on LP(0, T; (LP(Q))V):
[H,(0)](z) := ® </ Zb 5,1 )ds) , where b; € LYQr) (1 <j<N),

[Ha(0)](t,z) == ® ({/_a ‘U(S7.1L‘)‘ad=9:| Lll) , where 1 <a <p.

Now let 10: R — R be a continuous function such that [¢(y)| < ¢- |y[P~0~* holds
for some constants ¢ and 0 < rg < p — 1. Let us introduce the following operators
on LP(0,T; (LP(Q)N):

[G1(0)](L, ) : </ Za7 (s, )09 (s, x)ds),

[Gaw)](t,2) = ([ / Ry l)

where a; € L®(Qr) (1<j<N)and1<a <p.

Proposition 2.11. The above operators I:L,Gl (i =1,2) fulfil the conditions posed

on them in Proposition 2.10.

2.3 Solutions in (0, c0)

There’s no sense in being precise when you don’t even know what you're

talking about.
John von Neumann

In the previous section we showed existence of solutions in the time interval
(0, 7). In what follows, we consider solutions in (0, 00). First of all, we define precisely
the notion of solutions in (0,00) then we show existence of these solutions and
investigate the long-time behaviour of them. We shall obtain results on boundedness

and stabilization as ¢t — oo, see also [61, 64, 65].

2.3.1 Existence

Briefly, denote Qo = (0,00) x Q. Further, let the space Lj (0,00;V) be the
set of measurable functions u: (0,00) — V such that u|.r) € LP(0,7;V) for every
0 < T < oo. It is easy to see that if u € Lf, (0,00; V) and for every 0 < T' < oo there
exists Dy (ulor)) € LU0, T;V*) then Dyu € L (0,00; V*). Further, we denote by
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L}, .(Qs) the space of measurable functions v: Qs — R such that v|or) € L*(Qr)
for every 0 < T < oo.

In order to prove existence of weak solutions in (0, 00), one poses:

(Vol) Functions al’: Qo x RFDN 5 [P

b (0,00;V) >R (i=0,...,n;l=1,...,N)
have the so-called Volterra property, i.e., agl)(t,m, C0-¢;,v)|(0,r) depends only

on v|,r) for every 0 < T < oo0.

In addition, we suppose that conditions (A1)—(A5) are satisfied for every T €
(0, 00) by functions agl) (i=0,...,n;l=1,...,N). Precisely, we mean that for every
T € (0,00), the restriction al”|r): Qr x R x ROTDN » [2(0,T;V) — R, which
may be defined uniquely by the Volterra-property, satisfy the conditions (A1)-(A5)
(not necessarily with the same g1, go, k1, k2).

Finally, let

(F1%) F € LY (0,00 V*).

loc

Now for every 0 < T < oo define Ly: D(Ly) — L9%0,T;V*) by (2.3). By
supposing the above conditions, for fixed 0 < 7" < oo we may introduce operator
Ar: LP(0,T;V) — L90,7;V*) by (2.2) (which will be bounded, demicontinuous,
coercive and pseudomonotone with respect to D(Lr)). Due to the Volterry prop-
erty, there is an operator A: L} (0,00; V) — L{ (0, 00; V*) such that Az (ulom) =
A(u)|o,r) forevery 0 < T' < coand w € LY, (0,7; V). Similarly, we write Fr = F|o,1)

for every 0 < T' < oc.
We say that u € L}, (0, 00; V) is a weak solution of (2.1) in (0,00) if

loc
D+ A(u) =F
or, in other words, if for all 0 < T" < oo,
Lrulor) + Ar(ulor) = Fr. (2.35)

(Notice that initial condition «(0) = 0 is included in the above equations.) Observe
that the Volterra property ensures that Az (ulor))l o7 = A7 (ulos) for every 0 <
T <T < ooandué€ L} (0,00;V) thus if u is a solution in (0,7) then this it is
also a solution in (0, T) In the sequel we omit the notation |z of the restriction
of a function to a certain interval if it is not confusing, since the operators and the

norms contain the information about the space.

Theorem 2.12. Suppose that (Vol), (F1*) hold, further, conditions (A1)-(A5) are
satisfied for every 0 < T' < co. Then there exists a weak solution u € LY, (0,00; V)
of (2.1) in (0, 00).

40



Proof. The main idea is the following. By Corollary 2.3, for every 0 < T' < oo
there exists a solution in (0,7"). Then the weak limit of a suitable weakly convergent
subsequence of these solutions, that were chosen by using a diagonal process, will
be a solution in (0, 00).

We briefly write Xy = LP(0,T;V) for 0 < T' < oo. Let (T}) be a monotone
increasing sequence of positive numbers such that 7, — +oo. Then by Corollary
2.3, for every T}, there exists u, € Xg, N D(Ly,) such that

Lqﬂk’Ltg€ + .A'rk (uk) = :TTA-,'

Now we show that for fixed m, the sequence (uk (0,1~m))k>m is bounded in X, . By

the Volterra property |z, is a solution in (0,7,,) for k > m, i.e.,
Ly, ux + A, (ug) = Fr,,,.
By applying both sides to uy it follows
(L, ug, ug] + [Ar, (ur), ur) = [Fr,,, k).

The first term on the left hand side of the above equation is nonnegative, on the

other hand, |[Fr,., uy]| < [Fllx; - lurllxy, hence

[-AT,,, (Uk), uk]

< [|19]
NIl x,,

* .
XTm

Now the coerciveness of Ag,, in Xr,, yields the boundedness of (||ug|xy,, ), Fur-

m

ther, the boundedness of operator A, implies the boundedness of the sequence
(Ar, (W) 0 X7,

Let m = 1. Since (uy,) and (A (ug)) are bounded sequences in reflexive Banach
spaces, by Theorem 1.28 and Proposition 1.52 there exists a weakly convergent
subsequence (u1 ;) C (ux) and there exist functions uy . € Xp, N D(Ly, ), v1,. € Xp,
such that

Uy — Up, weakly in Xy,
Lyyuy g — Lyyug. weakly in X7,
w k(Th) — w1 (Th) weakly in H,

Ar, (ur ) — v, weakly in X7, .

If (W1 ) k>m—1 18 given then (wpm—1k)k>m—1, (A1, Um—1k)k>m—1 are bounded in

reflexive Banach spaces Xr,, ,, (X7, ,)* thus Theorem 1.28 and Proposition 1.52
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yield a subsequence (tmx) C (Um—14) and functions w, . € Xr,, N D(Ly,,), Um s €
X7, such that

Uy — Um . weakly in X, , (2.36)
Ly, U — L, U s weakly in X7 (2.37)
U o (Tn) — Ui (Thn) weakly in H, (2.38)
Az, (tUmk) = Um weakly in X7, . (2.39)

It is easy to see that for each fixed [ < m the above weak convergences hold in
Xr1;, X7,, respectively, which implies tm «|(0.1) = . and vy, .|,y = vi» for I < m.

Consequently, there exist unique functions u,v: (0,00) — V such that u|qr,) =

U U
L (0,00, V).

Now fix m € N. In the sequel we shall work on interval (0,7},). We show that u

(0.T,) = Um,« for every m € N. This means that v € L} (0,00;V) and v €

loc

is a solution in this interval then the proof of the theorem will be complete.
At this point we already know that w,, . € D(Ly,, ) and Ly, U « + U« = F1,,.
It remains to prove vy, . = A(uy.) then wu,, . is a solution in (0,7,,). By (2.39) it
suffices to show that Az, (umi) — Ar, (Un,.) weakly in X7, . Now we use the fact
that A7, is a pseudomonotone operator with respect to D(Lr,,), i.e., (2.36), (2.37)
and
lim sup[ Az, (U k)s Um e — U] <0 (2.40)

k—oo

imply that Ag,, (tmi) — Ag, (ums) weakly in X7 . In the following we show that

m m

(2.40) holds. By using (2.39) we may deduce
lim Sup[‘ATm (um,k)a Um ke — um,*] = lim SUP[ATm (um,k)7 um,k] - [Um.*y um,*]' (241)
k—o0 k—o0

Further,

(A1, (U k), Umi] = [F1 s tm k] = (L1, U ks U k]

1 , 1 ) (2.42)
= Tz ] = 5t (L) g + 5 et (0) -
Now Lemma 1.29 and property (2.38) imply
([Tl < T inf {[atgn (To) | 12 (2.43)

so that by using (2.36) and (2.42) we conclude

. 1
lim SUP[ATm (um,k>) um,k] S [ng7 um,*] - 5 Hum,* (Tm) Hi]

k—o0
= [?Tmy um,*} - [LTm Upp, 55 um,*]'
The above inequality and (2.41) together yield the desired relation (2.40). The proof
of Theorem 2.12 is complete. O
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In the following we are interested in periodic type of solutions in (0,00). If
the equations describes a periodic process for instance in biology then existence of
periodic solutions is an improtant question. If the nonlocal variable may contain
arbitrary long delay then it is not so clear how to define the notion of periodic
solutions. The Volterra property ensures that at time ¢ the function depends only
on the values before t. The notion of periodicity can make sense, e.g., by assuming
that this delay is less than a certain time interval as in Section 2.2.2 for system
(2.16).

We recall (2.16):

Dt ()

+a) (uV (), ™), Da (), D™ (V™)
=700),

with some boundary condition and initial condition uél)(s) = @(s) for s € [—a,0]

where ¢ € LP(—a,0;V) (I=1,...,N). (As before, the exact form of the boundary
condition determines the space V, see Section 2.1.3.)

By supposing conditions (A1’), (A2’) (see Section 2.2.2) we introduce operator
Ap: LP(—a,T; V) — L0, T; V*) as follows. For u = (u, ..., u™M) € LP(—a,T;V),
v= (oW, ... ™) e Lr0,T;V),

N n
[Ag(u),v] = Z Zagl)(t,a:,u(t,z), Du(t, z);u) DO (¢, ) dt da:
=1 /Qr =1
N n
+ Z/ Z agl)(t, z,u(t, z), Du(t, z);u oV (t, z) dt de.
=1 7Qr =
Let A: L} (—a,00; V) — L (0,00; V*) such that A(u)|or = A(ulor) for every

ue L

loc

(—a,00; V). In addition, let F € L{ (0,00; V*) (and Fr = Flo,1))-

loc

We want to find u € Lf) (—a, o0; V) such that D,u € L{ (—a,00; V*) and
Ditt|(0,00) + Alu) = F (2.44)
u(t) =u(t+T) for te[—a,o0). (2.45)

Theorem 2.13. Suppose that functions agl): Qoo x R X [P(=a,0;V) = R (i =
1,...,ml = 1,...,N) satisfy conditions (A1’)-(A5’) in (0,T) for some T > a,
further, they are T-periodic, i.e.,

al(t+ T,2,¢, G v) = al(t,2, o, G 0)
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for a.a. (t,x) € Qw, every ((,¢) € R™™ and v € LP(—a,0;V). Then for every
T-periodic F € L} (0,00;V*) there exists v € L (—a,o00;V) such that Dy €

loc
Ll (—a,00;V*) and (2.44)~(2.45) hold.

Proof. By applying Theorem 2.4 in interval (0, T), there exist u € LP(—a,T; V') such
that Dyu € LY(—a, T; V™), further,

Dyulor) + AJ(U) =Jp
u(t) =u(t+T) for te[—a,o00).

Now we can apply Theorem 2.4 in interval (7,27) and by the periodicity of u
we obtain the translation of u as solution. By continuing the method on intervals
(KT, (k +1)T) we obtain the translations of u which yields a periodic solution such
that (2.44) holds. O

2.3.2 Boundedness

In this section we show the boundedness of solutions in (0,c0) formulated in

Theorem 2.12. We modify condition (A4) and assume the boundedness of F.

(A4*) There exist a constant g, € RT and an operator ky: L} (0,00; V) — L (Qw)
of Volterra type such that

N =n

S a2, G G0 2 g (G + 1K) — ha(0)] (8, 7)

=1 i=0
for a.a. (1,2) € Qu, every (¢, ¢) € RN and v € LF (0,00; V). Further,
for every T' > 0,

k2 () llzr@r) _
Iellzozan—o0 10l 00 1)

Finally, there exist constants ¢; > 0, 0 < p; < p and a continuous function
¢:[0,00) — R such that lim ¢(7) = 0, further, if v € L{ (0,00;V) and
D € LL (0,00; V*) then f;;;fa. t € (0,00),

loc

/ a())(t, )| de
Q
(2.46)

T€[0,t T€[0,t

<y ( SUP] HU(T)H;(D;;(Q))N +(t) - SUP] ”U(T)”i)m(n))w + 1) :

(F1**) There exists ¢, € (0,00) such that F|q, o) € L=(t,, 00, V*).

Remark 2.14. The suprema in inequality (2.46) exist since v € LI (0,00;V) and

loc

Dy € L _(0,00; V*) imply v € C([0,T], (L*(2))Y) for every finite 7.

loc
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Notice that condition (A4*) implies (A4) for every 0 < T' < co. Now we have

Theorem 2.15. Assume (Vol), further, suppose that (A1)—(A3), (A5) hold for every
0 < T < oo, and the modified conditions (A4*), (F1**) are fulfilled. Then for the

solutions u of problem (2.35) we have u € L>(0, co; (L2(Q2))N).

Proof. For brevity, let y(t) = ||u(t)||3 (recall that H = (L*(Q2))"). Note that y €
C'(0,00). We shall prove an integral inequality for y. By applying both sides of
equation Dyu(t) + [A(u)](t) = F(t) to u(t) and integrating on interval (7, T>) where

t, <T) <T, < oo we obtain

T

/2WW@Jm»ﬁ+/W@MMWLMﬂMhi/<ﬂﬂm@ﬁt

Ty Ty Ty

The first term on the left hand side by Corollary 1.43 has the form

[ ate) ey = 5 (1)l = ) ) = 5 (0T) = (7).

1

Further, one may estimate the second term from below as
(A (), u(t)) = / (g2 (Ju(t, )P + |Du(t, 2)|") — [ka(w)] (¢, 2)] dz
Q
/m@m@m
Q

A?M(M)(D>mszmwﬁfLTAWWMMMMm

By substituting (2.46) into the above inequality we may deduce

= go|lu@®)[l7, —

thus

/?mwmmmma

T

T T )
Zm/ wmwf@/ Fwym;+dﬂwwyﬁﬁ+lﬁ
T T |red rel0.4]

Now let us estimate the right hand side of (2.47). Choose € > 0 such that —

p
then by using the e-inequality and the fact that F € L>(0, 00; V*) we conclude

[ e [ i

1

;fﬁwm+ammﬁt

1 T
59/ Hu()\pdt+—/ esssup|\?|

(t«,00)

V*

45
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(2.48)

(2.49)

< 1
2(]2

(2.50)



Then by substituting (2.48), (2.49), (2.50) into (2.47) one obtains

T2

5 0T~ y(1)) + 5 [ uCoae

Ty

T
< cil/ {sup y(T)F 4+ o(t) - sup y(r)% + 1] dt.

T T€[0,t] T€[0,t]

Finally, the continuous embedding (W?(Q))N — (L?(Q))" implies

sup y(r)pTl +o(t) - sup y(r)% + 1] dt

T€[0,t] T€[0,t]

T » T
y(T) - y(T)) + d / y(t)hdt < dy /
T

T

where the constants dy,ds > 0 do not depend on the choice of (T3, T3). We show
that the above inequality implies the boundedness of y. We prove by contradiction.
Suppose that for every M > 0 there exists ¢y > 0 such that

M+1=y(ty) = sup y(7). (2.51)

T€[0,tar]
(So tas is the first point where y attains the value M + 1.) Then by the continuity
of y there exists § > 0 such that y(¢t) > M for t)y — < ¢ < tp. Now by choosing
Ty =ty — d and Ty = ¢y in (2.51) it follows
ty

Y(tar) =yt —8) +di5ME < dy(M +1)% +dy(M+1)} / ot dt+dd. (2.52)

tar—6

On the right hand side y(ty) — y(tar — ) > 0, further, by the intermediate value

theorem

/t Yedt=5- s () =6-o(0)

M=0 teftar—1,tar]
for some £ € [ty — 6, 1], Hence by (2.52),

P

A[ 2 r1—pr ~ r
d <M ~ 1) < do(M 4+ 1) + dop(f) + do(M +1) 75

Note that the left hand side converges to 1 as M — oo. On the other hand, p; < p
and £ — oo imply that the right hand side tends to 0. That is a contradiction, the

proof our theorem is complete. O

Remark 2.16. One may study also non-uniformly parabolic systems, when in condi-
tion (A4*) instead of a constant g, one has an operator go: Li (0,00; V) — R not
necessarily bounded from below for all v € L} (0, 00; V), see [67, 68, 69].

loc
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2.3.3 Stabilization

In this part we investigate the asymptotic properties as t — co. In particular, we

are interested in the stabilization of solutions, i.e., the convergence to a stationary

state. To this end, suppose the following.

(A2%)

(A6

=

(A7)

(F2)

For every v € L*°(0, 00; (L*(€2))") there exist a constant ¢, > 0 and a function
k, € L1(€2) such that

ol (¢, 2, Co, G 0)] < o (10 + 1CP7Y) + k()

for a.a. (t,2) € Qu, every (¢, ¢) € RN (7 =0,... n;l=1,...,N).
There exist Carathéodory functions a SO RODN LR (5=0,...,n; | =
1,...,N) such that for every fixed v € Lfoc((),oo;V) N L>=(0, 00; (LA(Q)N),

a.a. r € 2 and every ((p,() € RODN

(t,2, 6o, Gv) = a2, Co, €). (2.53)

lim agl
t—o00
There exists a constant ¢; > 0 such that for a.a. x € Q, every ((o, (), (50, Z) €
ROFUN and v € LY (0, 00; V),

lt , o lt Civ )*;(l)
21:2;( 2,60, Gv) = a’ (2,60, G0)) (¢ = ) -
> C5 <|<0 - Co‘p + ‘C - g‘p) - k‘3(t1‘r7<07§0;v)7
where k3: Qoo x R x R x LV

loc

(0, 00; V) satisfies
lim [ ks(t,z,u(t,z),a(t,z);v)de =0 (2.55)

t—o0

if u, ,v € L=(0, 005 (L2(Q2))N).

There exists F, € V* such that Ll'un |F(t) — Fuolly= = 0.
—00

Remark 2.17. Precisely, by the convergence s(t) — 0 as t — oo where s: RT — M

is a measurable function and M is a normed space, we mean that for all € > 0 there

exists ¢ such that ||s(t)||y < € for a.a. t > t,.

Now we may define operator A,.: V — V* by

v w = Z/Z(l z v z (I))Diw(l)(x)dx
+Z./ﬂZaé{;(ﬁﬂ,v(x),DU(I))w(l)(z)dI

(2.56)

where v = (v, ... vM) w = (WD, .. wN) e V.

Our main result is
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Theorem 2.18. Assume (Vol). In addition, suppose that conditions (A1)-(A3),
(A5) hold for every 0 < T < oo, further, (A27), (Af*), (AG), (A7), (F2) are
satisfied. Then there exists a unique solution us, € V' of problem
Aoo(“oo) = Fe-
In addition, u., possesses the following stabilization relation:
1121010 Hu,(f) - “/oo”([,z(ﬂ))N =0
where w is a solution of problem (2.35).
Before the proof it is worth emphasizing some properties of operator A...
Lemma 2.19. Operator Ay.: V — V*, defined by (2.56), is bounded, hemicontinu-
ous, uniformly monotone and coercive.

Proof. Let w(t) = w € V then w € L>(0,00; (L*(2))™). From condition (A2%) it
follows

la{ (t, 2, Co, Gw)| < o (Gl + 1CP7Y) + K (). (2.57)

Hence by passing to the limit as ¢ — oo we may deduce
a2 . G0, Q)1 < e (G +1¢P7) 4 k). (2:58)

From the above estimate, the boundedness of operator follows by the classical argu-
ment, see the proof of Theorem 2.1 or the monographs [44, 71].
The hemicontinuity follows from the above estimate, as well. Indeed, let A\, — A

be a real sequence then for arbitrary u, v, w € V,

(Ao (u — \v), w)

= Z Z /Q afllc (z,u(z) — A (z), Du(z) — /\va(z))Diw(l)(z)dx

=1 i=1

N
+ Z a(()f)ao (17 u(x) — M\pv(z), Du(x) — )\kD’U(I))U}(l)(I) dzx.

(2.59)

Clearly, the integrand on the right hand side of the above equation converges point-
wise. Further, by using Young’s inequality combined with inequalities (2.57), (1.1)
we may deduce
\(15’&0(7, u — A\, Du — N\ Do) Dyw?|
1 1
< —|a (&, u — \gv, Du— A D) |4 + =| Dyw® P
q - p
< const - (Ju— M| P79 4 | Du — M| P99 4 |y (w)]? + | Dwl|?
(I \
< const - (|ul” + M|’ + [Dul? + [\ DolP + |k (w)]? + | Dw|?)
< const - (|ul? + |v’ + |Dul? + |Dv|P + |k (w)|? + |[Dw|?) .
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The right hand side of the above inequality consists of functions of L'() thus the
integrands of (2.59) have integrable majorants hence by Lebesgue’s theorem we
conclude

lim (Ao (u — A\pv), w) = (Aoo(u — Av), w)

k—oo
that is exactly the hemicontinuity of A.

Now fix w(t) = w € V. Then for arbitrary v,v, € V it holds

ZZ/ (' t.2, (@), Do(e)sw) = af (¢, . (2), Do (@) w))

=1 i=1
x (D (z) — D" (x))da
N 0 (1)
+lzzl/9 (ao (t,z,v(x), Dv(z);w) — ag (t,x,w(m),Dm(I);w))
x (00 (z) — v (2)) dx
> 05/9(\1)(1) = v,(@)P + |Dv(z) = Doy(2)[") dv — /Qka(t%’U(’JL‘)v’U*(w)?w)d”'

Similarly to the previous paragraph we may use Lebesgue’s theorem thus by applying
(2.53), (2.57) and (2.55), as t — oo it follows

33 [ (60, D) — 0.2, Do)

=1 i=1
x (D (z) — D (x))da
+2/ {JOOC z,v(x), Dv(x)) — agl)w(r vy (), D?)*(T)))
x (v0(x) — oW(z))dx
2 /Q (lv(z) = va(@)[” + [ Dv(z) — Dv.(z)") dz
The above inequality reads in abstract formulation as
(Aoo(v) = Aso(vi), v — 1) > e5ljv — v} (2.60)

for arbitrary v, v, € V, i.e., Ay is uniformly monotone.
The coerciveness follows from the uniform monotonicity. Indeed, by choosing

v, = 0 in the above (2.60) inequality, it follows

(Aoo(v) = Ac(0),v) = cs][v]ly,

" Al (A(0),0)
v),v = 0),v -1
o sl = e > sl (M (0) v

llvllv llellv

Observe that the right hand side of the above inequality tends to 400 as t — +o00

due to p > 1. The proof of the lemma is complete. O
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Proof of Theorem 2.18. By Lemma 2.19 the conditions of Theorem 1.61 are satisfied
thus there exists a unique uo, € V such that A (us) = Feo. Let u be a solution of
problem (2.35) (with arbitrary initial condition) and let y(¢) := / [u(t, @) — oo |* da.
Observe that condition (F2) implies (F1*) so the conditions ofﬂTheorem 2.15 are
fulfilled therefore u € L>(0, 0o; (L*(£2))V) hence y is bounded as well. Note that y is
also continuous that can be readily verified by using the fact u € C([0, 77, (L*(Q2))V).
In the sequel we proceed similarly as in the proof of Theorem 2.15, we verify an
integral inequality for y.
The facts that u is a solution of (2.35) and A (ux) = Fu together yield

Di(ult) = uoo) + [A(W)](t) = Asc(ue) = F(t) = Foo

for a.a. t € (0, 00). One applies both sides of the above equation to (u(t) — e ) then
it follows

(De(ult) = uoo), ult) = too) + ([A(u)](t) = Aco(tieo ), u(t) — tios)

= (F(t) — Foo, u(t) — uso).

(2.61)

The first term on the left hand side is ¢/(¢). Further, let us divide the second term

into two terms by the following way

(AW)]() = Ao (uce), ult) = o) = ([A(w)](t) = [Auluce)](#), u(t) = teo)

(2.62)
F ([Autoo)] (1) = Aco(too), u(t) — too).

where for fixed w € L} (0,00;V) and ¢ > 0, functional [A,(-)](¢): L} (0,00, V) —
L1 (0,00; V*) is given by

([Aw()](®), 2)
N
:Z/Za (t,z,0(t,z), Du(t,z); w) Dz (t, 2) da:

+Z/ﬂZa(()l)(tx,v(t,x),Dv(t,z’);w)z(l)(t,x)dx,
[

b (0,00;V),z € L (0,00; V*). The first term on the right hand side of

the above equation may be estimated from below by using the uniform monotonicity

with v € L

of A, then one obtains

(A1) = [Au(uoo)](8), u(t) = too)

2.63
> cs|lu(t) — us|ly — /Q ky(t, z,u(t, ), use(x); u)da. (2.63)
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Further, by estimating from above the second term on the right hand side of (2.62)
by the e-inequality it follows

|<[ (“oo)](f) - Aoo(“oo)v u(t) - uoo>‘

<< v L A ¢ (264)
<3 Zut) - ool + E”[ u(too )] (£) = Aso (Ues) [V«
Finally, for the right hand side of (2.61) the e-inequality implies
P 1
(F(t) = Foo, ult) — use)| < ?Hu(t) — o[} + Eﬂrf(t) = FoolV- (2.65)

Now choose € > 0 sufficiently small (in fw(’t — < 3 ) then by substituting estimates
p

(2.63), (2.64), (2.65) into (2.61) we conclude

Y1)+ %HU(t) — Uoo[y < comst - [|[Au(uoo) (£) = Ao (uoo) V-

+ const - | F(t) — Fuol|T- (2.66)

+/ ka(t, z,u(t, ), tso(x); u) de.
Q

We claim that the right hand side of the above inequality tends to 0 as t — oo.
Indeed, the convergence of the second term is clear. Further, the third term tends
to 0 by condition (2.55). In addition, Holder’s inequality implies the following upper

estimate of the third term:

H [‘A“(uoo)] (t) — A (uoo)

N n

Z </ ‘ Ot 2, uee(r), Do (), u) — Qlio(x,uoo(:r),Duoo(x))‘qu>é.

=1 i=

V=

The integrands on the right hand side of the above estime converge pointwise to 0
by (2.53), moreover, due to (2.58) and (2.57), they have integrable majorants. Thus

Lebesgue’s theorem yields

lim {[[Ay (o)) () = Aco(ttoo) [~ = 0.

t—o0

So we have proved that

¢
y(t) + §5H“(t) — o[, < B(2)

where ¢ > 0 and ¢(t) — 0 as t — +oo. Note that the embedding (W1#(Q))N

(L*(Q))N is continuous thus it follows with some constant ¢ > 0 that

P
2

Y() +cy(t)f < o(0). (2.67)

We show that the above inequality implies y(¢) — 0 as t — oo. We proceed similarly

as in the proof of Theorem 2.15, we prove by contradiction. Suppose that there
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exists a nonnegative sequence ¢, — oo and ¢ > 0 such that y(¢;) > . Then the
set M = {t € R" : y(t) > €} is non-empty and it has arbitrary large elements. On
the other hand, it is an open set by the continuity of y so there exist countably
many open intervals (ay,bx) such that U2, (ag,br) = M. By the continuity of y,
y(ay) = y(bx) = € for every k. Thus by integrating (2.67) on (ag, by) it follows

br b
cet(ap—bi) < / y(s)kds < / 6(5)ds < (8]l apne) (0 — by)
ay

ay
that is a contradiction since ¢(t) — 0 as t — oo. O

Remark 2.20. Since operator Ay, is uniformly monotone, Proposition 1.62 implies

that u. depends continuously on F.

One may study the “speed” of the above convergences. We pose concrete formulae

on the convergences in conditions (AG), (A7), (F2), namely,
(Est) There exist constants k* > 0, # > 1 such that
1 ! .
lai? (-, (), Du();0) = Ao (o), D)oy < K7 (268)

i

for a.a. t € (0,00) and every u € V, v € L=(0,00; (L*(Q)N) (i =0,...,n;l =
17"':N)7

/ lks(t, 2, u(t, ), a(t,x);v)|do < k*t77, (2.69)
Q
for a.a. t € (0,00) and every u, @, v € L=(0, 00; (L*(2))N),

[19(£) = Fool

¢ <EktP (2.70)

Proposition 2.21. Assume (Vol). In addition (A1)-(A3), (A5) hold for every 0 <
T < oo, further, assumptions (A2"), (A4*), (AG), (A7), (F2) are satisfied with
further assumption (Est). Then for the solutions u,us formulated in Theorem 2.18,

y(t) = | |u(t,x) — us(x)|*dz has the asymptotics
Q

> 1
/ y(s)*ds < const - tT—=
¢

fort >0 sufficiently large where

a:max{g,l-‘rﬁ}. (2.71)
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Proof. Our starting equation is (2.66). Clearly, assumption (Est) and the continuous
embedding (W'?(Q))V — (L*(2))" imply (with some constant c¢* > 0)

Y (1) +¢ - y(t)? < const - 177

By using the fact y(t) — 0 as ¢ — oo that was proved in the previous theorem,
integrating the above inequality in the interval (¢, 00) (with ¢ sufficiently large), we
obtain

ge's) 00 » t—{j+1
c*/ y(s)%ds < c*/ y(s)2ds < const - 71 + y(t).
¢ t -

1
Now denote g(t) = t~#*1. Observe that a > 1 + ——— implies for ¢ > 1 that

f—1
oo a(=p+1)+1
| storas = JZ? - 1))— e
Thus
[ )+ oo as < const [ gty const [ g(s)as
] : ¢
< const - (y(¢) + g(t)).
Put

h(t) = / () + g(s)ds

then A'(t) = —(y(t) + g(¢))* whence h(t)* < —¢- I/(t) for some constant ¢ > 0.
Consequently,
h(t) < const - tTa

so by the nonnegativity of function g we conclude

> 1
/ y(t)* < const - tT-=.
¢

2.3.4 Examples

In this part we show some examples which fulfil the conditions of the preceding

theorems.
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Case of Theorem 2.12

Suppose that functions a{”: Q. x ROTDN x L¥ (0,00; V) — R have the form
(2.22)-(2.23), i

a(t, 2, o, G 0)

(2.72)
= [HO @)t 20 (t, 7,6, ) + (GO @)1, 2)d (¢, 2, G0, Q) i (i #0),
a(l) x,Cp, (v
0 (t7 7<7<r ) (273)

= [HO))(t, )b (t, 2,60, ) + [G (0)](t, 2)dY (1, 2, o, €)

Assume that functions b,@, d,ﬁ“ (i=0,...,m1=1,...,N) satisty conditions (K1)

(O]

(K4) for all 0 < T < oo (in the same sense as for functions a;’ mentioned before

Theorem 2.12). Further, operators

H(Z) LIUL(O Q3 (L (Q))N) - Li):L(QOO)v

GU)’ G Lﬁ)c (07 005 (LP(Q»N) - Ll’;x:l " (Qoo)

are of Volterra type. The restrictiona HOW)| oo zwyy : LP(O, T5 (LP(Q))N) —
L2(Qr), GY|poomiwry~ |Lp(oT (@) LP(0,T; (L”(Q)) ) — Li=1(Qr)
are bounded and contlnuous for every 0 < T' < oo (where r is given in (K2)).
Finally, [HO()](t,2) > ¢c3, [GO()](t,z) > 0 for aa. (t,7) € Q. and (2.24)
holds for every 0 < 7" < oo. Then one can easily see that the above functions
(2.72)-(2.73) satisty the conditions of Theorem 2.35. By extending the concrete
examples for H(l),G(l),Gél),bgl),dgl) given in Section 2.2.3 to all ¢t € (0,00) (from

€ (0,7)) they will satisfy the above conditions. E.g., define the following operators
on LP(0,T; (LP(Q)N):

[ ()](t,2) (/Q S, w)

t ] 1
[G(0)](t,z) = (|:/|’U7'Id7':|>
where 1 <o <p, b; € LY(Qr) (1 <5< N) further, ®,¢: R — R are continuous
functions such that ® > ¢ > 0, |[(y)] < ¢-|y/P~°~! holds for some constants ¢ and

0<ro<p-1.
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Case of Theorem 2.13

Let T > a. Assume that functions agl): Qoo X QX RUFDN x [P (—q,00;V) — R
have the form (2.22)-(2.23), i.e.,

ai(’l) (t7 €z, C(Jr C U)

1 0 ! 0 o (2.74)
= [HO)@) (¢, 2,6, O) + [ (@)d] (1.2, ) i (i #0).
af (t,2,Go, G:0) = [HO @)](@)bg (1.2, 0. O) +df (£.2.0.0). (2.75)

OB

satisfy conditions (K1)-(K4) in (0,7) and they are T-periodic, (i.e., bl@(t7 z,¢o,C) =
bg”(t +T,2,¢,¢) for t € (—a,00) and similarly for dlm). Further, operators

O =0,...ml=1..N)

Suppose that (the restrictions of) functions b;”, d;

HO: 17— a,0; (L7 (2))V) — L™(Qr),

GO L (= a,0;(LP(Q)N) — L= (Qr)
are bounded and continuous (where r is given in (K2)) and [H®(v)](t,2) > cs,
[GOW)](t,2) > 0 for a.a. (t,2) € Qu. Then one can easily see that the above
functions (2.74)-(2.75) satisfy the conditions of Theorem 2.13. For such operators
see Section 2.2.3. For periodic bgl) consider, e.g., functions

W0t .60, Q) = Kt 2) G2 (i #0),

0 (1,60, ) = Kt )¢5 6ol 2,

and similarly for functions dgl) by replacing the exponent p — 2 with r — 1 where k

is a T-periodic function in L>).

Case of Theorem 2.15

Consider functions (2.72)-(2.73). By using our earlier investigations on these

functions, see estimate (2.31), we have

N n
330l Go o)

2 5 (16" + [¢7) = (eaNka(z) + Nd*[[Go(v)](t, 2)|"7).

N
with some positive constants ¢4, c5 and G = Z Gél). Put
1=1

h(v) = csNa() + Na*|[Go(v)] (¢, 2) [

then
10010 < exN el + N [ [[Gu(w)l, )| = drd

T
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We showed that this implies (3.8) by (2.24). Now assume that there exist a constant
¢4 > 0 and a function ¢: (0, 00) — Rsuch that lim ¢(7) = 0andifv € L} (0,00;V)
then for a.a. (t € (0,00)

/ G )t )7 da < e <p lo(r) 1% + o(t) sup [[o(r)[l% + 1) . (2.76)
Q T€0,t] T€0,t]

Then it is clear that condition (A4*) is satisfied. In the following we give some
examples fulfilling the above condition (2.76).

Let the continuous functions ¥, x, ¢: [0,00) — R be such that |¢(7)| < const -
|7|P=t=ro |x(7)] < const - |7|P717" and lim (1) = 0 where 0 < r < rp < p— 1.
Then consider operators defined on Lj . ((; ? (LP(Q2))N) by

)

[Gh(0)](t, ) == '/Z“JtHU(J tg)\adg

W=

[Ga()](t, ) ==

N
[ S aeolvieopds
ot

where a; € L®(Qs) (1<j<N), 0<a <2,

Proposition 2.22. The above Gy, G5 have the property (2.76).

Proof. First consider operator Gy. Tt is clear that

>

2

N o
[G1 ()] (t, )| < const - (Z / IajlLw<%>|v‘”<tff)'ad£>
j=1

PA
N 3

< const - (Z/ |1)(j)(t,§)”d§>
e

PA

= const - (/ [v(t, )| D‘df) ,

-1
pi < 1. By applying Holder’s inequality it follows

p—1—r

where 0 < A =

2—a

/Q|v(t,x)\“da:§ (/ﬂw(t,zna%dz)% . (/Q 1)T — const - [[u(®)|[%.

(In case «« = 2 the above inequality is obvious.) Thus
[C1()](¢,2) |7 < comst - [u(®)]I7}
hence

/[G J(t, 2)|7 1 da < const - ||u(t )2 < const - Sl[lp] ()2
T€E[0,t

This means that operator G; have the property (2.76) with p; = pA.

The case of G5 can be treated similarly. |
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Case of Theorem 2.18

Let the functions in (2.72)—(2.73) have the form

b0 (1,60, 0) = G2, (i £ 0), (2.77)
bO(t 2,60, ) = ¢l P2, (2.78)
A, 2,¢,¢) =0, (i=1,...,n);l=1,...,N) (2.79)
4 (t,2,60,C) =1 (I=1,...,N) (2.80)
In addition, define the following operators on L (0,7 (LP(Q))N):
HOW)(F, ) = k(x), (251)
G (W)](t, ) = o [/"Eja (£, (t,€) Qdé (2.82)
where k € L%(Q) such that k(xz) > ¢* > 0, further, a; € L™ ) (1<j<N),
©, x:[0,00) — R are nonnegative functions such that hm ga( ) =0, x(r) <

T—00

const - |7[P~1. (Due to (2.80) we do not need operators GU.)

Now we show that these functions satisfy the conditions of Theorem 2.18. Ob-
viously, conditions (A1*) holds with ¢, = 1 and k, = k, further, (A6) is ful-
filled due to (2.82) since the second factor of the product on the right hand side
is bounded. Moreover, (2.58) holds, too, since H(v),GV(v) € L*(Q.) for ev-
ery L7 (0,77 (LP(2))Y). Thus a(l) (¢ = 0,...,n) can be estimated from above by
const - (Kél)\p’l + [¢®[7=1). Furthermore, it is obvious that a; O = kb for
i=0,...,n

Property (2.54) follows from Proposition 1.57. Indeed,

ZZ ( Dt x, o, Gv) — (L(’)(t7.”L',’I/0,T];7J)> (D =y

=1 i=0

N n
:ZW%wa@%W*w%Wﬁ@”l>

+Zw” ta) (1602 = nd il 2) (2.83)

SO — 1)
=1

N N
>3 (160 =m0+ 16 =) + S @I )G~ nl).
=1

=1
The second term on right hand side of the above relation can be ebtlIIldted from
2P

above by the e-inequality, if € > 0 is small enough (especially, E < ;—N) then by
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using the estimate in the proof of Proposition 2.22 we may deduce

G )t )" — né”)\

PN
< _ P
<2160 - P + GOl s
(l) )p / q 2
< +c - bup(/sz dz)
< Sl =l s ([ o)
Let
J
i- ()|* sup </ [v(T,x \zd:v) = ks(t, x, Go, mos v) = ks(z;v). (2.85)
N T€[0,t]
Then by applying (2.84) we may estimate from below the left hand side of (2.83) as
follows
N N
¢y <|<<l> 0P 4~ ,/él)|p) + 3160w (€ — 50y
=1 =1

(2.86)

w\(‘

i (160 =m0 + 16" =) + ka(t:v)
>c (|Cf 0l + 1Go = mol") + ks(t: v).

Since llinolc o(t) =0, Llil&/gkg(t;’u)dx = 0if v € L®(0, 00; (L*(2))Y). So condition

(AT) also holds.

Case of Proposition 2.21

We repeat the example of the previous section and we add further assumptions

on them. So let the functions in (2.72)—(2.73) have the form

b, G, Q) 1= GUICOPE, (i £ 0), (2:87)
(8 .Co, ) = 1612, (2.88)
d(t,2,¢,¢0) =0, (i=1,...,n);l=1,...,N) (2.89)
At 2,6, 0) =1 (I=1,...,N) (2.90)
In addition, define the following operators on Lt (0, T; (LP(Q2))N):
[HO)](t,7) == k(x), (2.91)

1

N 2
(G @)(t,2) = (t)  x [ / >t Ot )P (2.92)

where k € L%(Q) such that k(z) > ¢* > 0, further, a; € L®(Q~) (1 < j < N),
@, X: [0,00) — R are nonnegative functions such that (1) = const - 777, y(1) <
const - |7|P~!. (Due to (2.80) we do not need operators G(1).)
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We show that the above functions satisfy condition (2.68)-(2.69). Obviously,
(2.68) holds for i > 0, further, if u,v € L>(0, 0o; (L2(2)") then
GO @)t 2)dg (12, Go, O <2 Ju(t, )P gy < comst -7
thus (due to ¢ > 1)
H[Gél)(v)](t, -)dgl)(t., = 1))H%q(ﬂ) < const - t 777 < const - 7
so that (2.68) holds also in case i = 0.
Now we may repeat the deduction of (2.84), (2.85), (2.86) and we obtain that

function k3 included in condition (2.69) may be chosen as follows:

/
btas0) = o) = o sup ([ )
N T7€[0,t]
Whence
/ |ks(x;v)|dx < const - t? < const - t 7
Q
so condition (2.69) is also satisfied.
Remark 2.23. Generally, condition (2.68) is satisfied, e.g., if
0" (1,2, o, G 0) = (2, o, O < @GP + 1P
for every v € L>(0, 00; (L?(22))") where ®(t) < const - .
Condition (2.69) is fulfilled, e. g in the following general case. Suppose that we

have al@ such that agl) (l) (l =1,...,N) and there exists a constant c5 > 0

such that for a.a. z € Q, every ((0, ¢) € R("“ N and v € L} (0,00; V),

N n
3> (aﬁl)(t-, 2,60, G v) — al (t, 2,10, m; v)) (=)

=1 i=1

N
2 (@G- ) @ -y O

= ¢5 (|G —mol” + ¢ —nl").
Further, there is a continuous function ¢): R — R such that |¢)(¢)| < const - t=# and
1@ (t, 2, o, G 0)| < D) (1G] +1) (2.94)

for a.a. (t,2) € Qo and every (¢, ¢) € RV* v € L0, 00; (L2(Q))™)). Then (2.69)
holds. Indeed, by (2.93),

ZZ(@I (t, 2, Co, G;0) — al (¢, 2,1, s 0 )) (€ —piy

1=1 i=0

> (
,ZK (t, 2, (o, (i) *ag)(t T, 10, 1; v)) (Cél) 777(()1))"

nol” +1¢ = nl”)
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Further, by (2.94) for . =1,..., N,

‘/Q (ag>(tvﬂ?7<o7 o) —a(t, ., &, D&y U)) (G = o)

< w(ﬂ/ﬁ(lcol + 1ol +2) (1ol + 1ol
< const - w(t) [ (P + 1l + 1)
So that function k3 can be chosen as follows:
ka(t, 2, Coymo; 0) = EW(1)(G + 3 +1)
with some positive constant & Now for u, @ € L>(0, 00; (L*(Q2))V) it follows
/ﬂ|k3(t,x,u(t,x),ﬂ(t,z);v)\dw

< ap()(L A+ flult, Iz + @t ) Ezonn)
< const - =9

so that (2.69) holds.
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Chapter 3

A system containig three types of

equations

If only T had the theorems! Then I should find the proofs easily enough.

Georg Friedrich Bernhard Riemann

3.1 Introduction

That sometimes clear. . . and sometimes vague stuff. . . which is. . . mathematics.
Imre Lakatos

This chapter is devoted to the investigation of a nonlinear system which consists
of there different types of differential equations: an ordinary, a parabolic and an
elliptic one. This kind of problem is motivated by a model of fluid flow in porous
medium. A porous medium, roughly speaking, is a solid medium with lots of tiny
holes. For example think of limestone. Such medium consists of two parts, the solid
matrix and the holes. The flow of a fluid through the medium is influenced by the
relatively large surface of the solid matrix and the closeness of the holes. If the fluid
carries dissolved chemical species, a variety of chemical reactions can occur. Among
these include reactions that can change the porosity. This process was modelled by

J. Logan, M. R. Petersen, T. S. Shores in [46] by the following system of equations
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in one dimension:

w(t, x)Dyu(t, x)

= D,a(v(t, ) u.(t, 2)) + K(w(t, 2))Dep(t, x)u,(t, x) — ku(t, x)g(w(t, ) 3.)
Dyw(t, ) = bu(t,z)g(w(t, x)) (3.2)

Dy (K (w(t,2))Dap(t, z)) = bu(t, z)g(w(t, z)), (3.3)

v(t,x) = —K(w(t,x))Dyp(t, z) (3.4)

for ¢ > 0, z € (0,1) with initial and boundary conditions

u(0,z) = up(z), w(0,z)=wo(z) ze€(0,1),
u(t,0) =ui(t), Dyu(t,1)=0 t>0,
p(t,0) =1, p(t,1)=0 t>0

where w is the porosity, u is the concentration of the dissolved chemical solute
carried by the fluid, p is the pressure, v is the velocity, further, «, k, b are given
constants, K and ¢ are given real functions. For the details of making this model
and on flow in such media, see the monograph [7] and papers [23, 46]. Observe that
v is explicitly given by w and p in equation (3.4) thus we may eliminate equation
(3.4) by substituting it into (3.1). Further, for fixed u equation (3.2) is an ordinary
differential equation with respect to the function w; for fixed w and p equation (3.1)
is a parabolic problem with respect to the function u; and for fixed w and u equation
(3.3) is an elliptic problem with respect to the function p.

This argument shows that the above system is a hybrid evolutionary/elliptic
problem thus theorems of “classical” systems of partial differential equations do
not work. In [23] a similar model was considered by using the method of Rothe,
further, some numerical experiments were done, however correct proof on existence
of solutions was not made (and one can hardly find papers dealing with such kind
of systems in rigorous mathematical way).

In what follows, we investigate a generalization of this model where also the
main parts may contain functional dependence on the unknown functions. We show
existence and some properties of weak solutions by using the theory of operators of
monotone type.

The main idea consists of two parts. First the choice of the appropriate spaces for
the weak solutions (for the elliptic equation it will be not the usual space because of
the time dependence). The second is the idea of the proof which is to apply the so-
called successive approximation (known, e.g., from the theory of ordinary differential

equations) and combine this with some methods of the theory of monotone operators
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that were demonstrated in the previous chapters. Especially, we lean on the results
of Chapter 2. Finally, some examples are given. Most of the following part was

published by the author in papers [10, 11, 14].

3.1.1 Notation

We introduce some further notation and for the convenience of the reader we
repeat some earlier one of Section 2.1.1 that we shall use in the sequel.

Let 2 C R™ be a bounded domain with smooth boundary (for example, contin-
uously differentiable is sufficient), further, let 0 < 7' < 00, 2 < py,p2 < 00 be real
numbers. As before, we use the notation Qr := (0,7) X Q, Qs = (0,00) x Q and the
notion of the Sobolev space W'#i(Q) (i = 1,2). In addition, let V; be a closed linear
subspace of the space Wi (Q) which contains W, (Q) and let X, := L (0,T; V;).
The pairing between V;* and V;, further, between X;* and X; will be denoted by (-, -)
and [, ], respectively, as before. As in the previous chapter we use the convention
that a function v € L?(0,T; V) can be considered also as a function with variables

(t,2) (however v has only a time variable t).

3.1.2 Formulation of the problem

Let us consider the following system of equations:

Dw(t,z) = f(t,x,w(t, z),u(t,x);u), w(0, ) = wo(x), (3.5)
Dyu(t, x)
_ ; D; [ai(t,z,w(t, ), u(t,z), Du(t,x), p(t,z), Dp(t, x);w, u, p)] 36)
+ ao(t, z,w(t, z),u(t,x), Du(t, z),p(t,z), Dp(t, z);w, u, p)
:g(t,ib), ’LL(O,JJ) =0,
Z Dy[bi(t, z,w(t, z),u(t, z), p(t, x), Dp(t, z);w, u, p)]
- (3.7)

+ bo(t, x,w(t, z),u(t,x), p(t,z), Dp(t, x);w, u, p)
= h(t,x)
with homogeneuos Dirichlet or Neumann type boundary condition (we may assume
them to be homogeneuos by subtracting a suitable function). (The variable p is
written by boldface letter for the purpose of distinguishing it from exponents py, ps.)
Moreover, if 9Q = S} U Sy where S; NSy = () then we may pose different boundary
conditions on the elements of the partition. That is the case in the model (3.1)—(3.4)

where the partitions are the endpoints of the interval [0, 1].
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Functions a;, b;, f may contain nonlocal dependence on the unknown functions
w, u, p which are written after the symbol “;”. The above system is a generalization
of the model (3.1)—(3.4). Indeed, as we mentioned in the introduction, v can be
eliminated form (3.1)-(3.4), further, in Proposition 3.5 we shall show that due to
some assumptions the solution w of equation (3.1) is strictly positive hence we can
divide equation (3.1) by w. By using the observation that the above equations are
three types of differential equations we pose natural conditions on functions a;, b;,

f, g, h to ensure existence of weak solutions to the above system.

3.1.3 Assumptions

In what follows, &, (o, (), (no,n) refer to the variables w, (u, Du) and (p, Dp),

respectively, further, w, v; and v to the nonlocal dependence on w, u and p.

(A1) For fixed (w,vy,v2) € L=(Qr) x X1 x Xy functions a;: Qp x R x R™ x R"+1 x
L>*(Qr) x X1 x Xo — R (i = 0,...,n) have the Carathéodory property, i.e.,
they are measurable in (¢, ) € Qr for every (€, (p,(,1m0,n) € R x R x R*HL
and continuous in (&, (o, ¢, Mo, 1) € R x R™ x R*! for a.a. (t,2) € Q.

(A2) There exists a continuous function ¢;: R — R* and bounded operators c¢; :
L®(Qr) x X1 x Xo = RT Kyt L™®(Qr) x X3 x X5 — L9(Qr) such that

lai(t, 2, &, Co, ¢, M0, 13w, 01, v2)|
P2 P2
< aa(w, o, v)er(€) (1ol ™ + G~ + ol + | + [k (w, v, w)](1,2))

for a.a. (t,2) € Qr, every (£,(0,¢,m0,n) € R x R™ x R™™ and (w, vy, v,) €
L>®(Qr) x X1 x X5 (i =0,...,n).

(A3) There exists a positive constant C' such that for a.a. (t,2) € Qr, every
(&€, C,m0,m), (€60, Cm0,m) € R X R x R™ ! and (w, vy, v9) € L¥(Qr) X
X1 x Xy

n

> (st .6,Gor s w01, ) = a2, €, o Gy 0, 1, 2)) (G = )

i=1

>C-[¢— (.

(A4) There exist a constant ¢, > 0, a continuous function v: R — R and bounded
operators I': L=(Qr) — L=(Qr), ko: X1 — L*(Qr) such that

n

Z ai(t, . &, Co, € Mo, 7 W, V1, V2)G;

i=0

= e ([Gl" +[¢17) = (O (w)](¢, ) [ka(01)](E, )
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for a.a. (t,x) € Qr and every (&, (o, ¢, m0,n) € R x R x R (w, 01, 05) €
L®(Qr) x X1 x Xs. Further,

52 (vi)ll 22 (@)
lonllx, —+oe [lun|f,

=0. (3.8)

(A5) If (wy) is bounded in L*(Q7), wp — w a.e. in Q7 and uy — u weakly in X,

strongly in LP'(Qr), further, p, — p strongly in X, then
i+ Wi, Uy Dug, Pres DPys Wi gy Pr) — (-, i, i, Dy, Prey Dpgs w, u, p) — 0
in L% (QT)

(B1) For fixed (w, vy, v2) € L®(Qr) x X; X Xy functions b;: Qp x R x R x R™*! x
L>(Qr) x X1 x Xo — R (i =0,...,n) have the Carathéodory property, i.e.,
they are measurable in (¢,z) € Qr for every (£, o, m0,1) € R x R x R™" and
continuous in (&, o, 10,7) € R x R x R™! for a.a. (t,2) € Qr.

(B2) There exist a continuous function ¢ : R — RT and bounded operators ¢; :
Lo(Qr) X X1 x Xy — RY, ks L®(Qr) X Xy x Xy — L2(Qy) such that

[bi(t, . €, Cos o, 150, 01, v2)|
. ) - o oo
< &y (w, v1,v2)¢1(8) (\'V;OV’Z L P2t + |Gl + [kl(’w7ful,1)2)](t,x)>

for a.a. (t,z) € Qr and every (§,Go,m0.m) € R x R x R™, (w,v1,05) €
L*(Qr) x X1 x X5 (i=0,....n).

(B3) There exists a constant C' > 0 such that for a.a. (t,z) € Qr, every (&, Co, 70, 7),
(&,Co,70,7) € R x R x R and (w, vy, v9) € L®(Qr) x X1 X Xy

n

Z (bi(t7 z, 67 CO: Mo, 15 W, V1, 7)2) - bi(t7 Z, E Cos ﬁOv ﬁ; W, Uy, 'U2)) (nt - ﬁl)

i=0

> C - (o = ol + I —7il") -

(B4) There exist a constant & > 0, a continuous function 4: R — R and bounded
operators I': L®(Qg) — L®(Qr), ka: Xy — L'(Qr) such that

Z bi(t, @, &, Co, Mo, 15w, V1, V)1

i=0

> &3 (Il + ") ~ 3@, 2) ([l + Batel(r )
for a.a. (t,) € Qp, and every (,(o,m0,m) € R x R x R (w,vy,v9) €
L>(Qr) x X1 x Xy. Further,

[l &2 (va2)ll 21 )
ool —oo  [lua|l%,

=0. (3.9)
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(B5) If (wy) is bounded in L®(Qr), wy — w a.e. in Qp and u, — u weakly in X7,
strongly in LP'(Q7), further, p, — p weakly in X5 then

bi(+, Wk, Uk, Py DPk; Wk Uk, Pr) — bi(+, Wk, Uk, Pi, DPr; W, u, p) — 0

in L2(Qr).

(F1) For fixed v; € Xy, function f: Qr x R? x X; — R is a Carathéodory function,
i.e., it is measurable in (t,r) € Qr for every (£,¢y) € R? and continuous in
(€,¢p) € R? for a.a. (t,7) € Qr. Further, there exists a bounded operator
Ki: X; — RT such that

(i) for every bounded set I C R there is a continuous function K;: R — R*
P

satisfying | K ({p)] < d1|(0|$+d2 for every (y € R, with some nonnegative

constants dy, dy (depending on I)

(i) for a.a. (t,z) € Qr, every (£, ), (€,¢) € I x R and every vy € X7,
‘f(t,l',f, CO! vl) - f(t7I7£~7 CO:,,Ul)I < :Kl(vl)Kl(CO) ) |£ - é‘

(F2) There exist a bounded operator Ky: X; — RT and a continuous function
Ky: R — R* such that for a.a. (t,2) € Qr, every (£,¢), (£,¢) € R? and
(o S )(17

|£(t, 2, €, Cosvn) — f(t, 2, € Coson)| < Ka(v1) Ka(€) - |Go — ol

(F3) There exists w* € L>(Q) such that for a.a. (t,x) € Qr, every (&, () € R? and
v € Xy,
(€ =w™(x)) - ft,2,§ Cosv1) 0.

(F4) If (wy) is bounded in L>(Qr) and uj, — w strongly in LP*(Qr) then
klglolo S (s wp s wg) — (- Wi wis w) || L1 (@p) = 0.

(G1) G € X;.

(H1) H € X;.
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3.1.4 Weak formulation

If the above assumptions are satisfied we may define operators A: L*>(Qr) %
X1 X Xo — X{, B: L®(Qr) x X1 x Xo — X as follows:

[A(w7 U, p)v Ul]
= /(; Zai(t,z,w(t,x),u(t,x)7 Du(t,z),p(t,z), Dp(t,z); w, u, p)
x Dy (t, z)dtdx (3.10)
+/ ao(t, z,w(t,x),u(t, ), Du(t,z),p(t,x), Dp(t, z);w, u, p)
x vy (t, x)dtdz,
[B(w, u, p)7 ’UQ]
= Zbi(t,z,w(t, x),u(t,z),p(t,z), Dp(t,x);w, u, p)
or i1 (3.11)
X Dyvo(t, x) dtdx
+/ bo(t, z,w(t,x), u(t,z),p(t,z), Dp(t, x);w, u, p)va(t, x)dtdz,
Qr

for v; € X; (¢ = 1,2). In addition, let us introduce the operator of differentiation
L:D(L) — X{ by the formula

D(L) ={ue Xi: Dyu e X7, u(0) = 0}, Lu = Dyu. (3.12)

By using the operators above and functionals given in (G1), (H1) we define the weak
form of system (3.5)(3.7) as

w(t,x) = wo(x) + /O/f(s,x,w(s,x),u(s,z);u)ds a.e. in Qr (3.13)
Lu+ A(w,u,p) =G (3.14)
B(w,u,p) = H. (3.15)

Note that in (3.15) there is a “hidden” initial condition u(0) = 0 which is given in the
domain of L. One obtains the above weak forms by using Green’s formula as it was
explained in Section 2.1.3. If the boundary condition is homogeneous Neumann type
then V; = W?i(Q) and if in case of homogeneous Dirichlet boundary condition then
Vi = VVOl Pi(Q). Further, if we have a partition, for example in one dimension with
homogenous Dirichlet and Neumann boundary conditions, as in model (3.1)—(3.4),
then V; = {v € W'»i(0,1) : v(0) = 0, D,v(1) = 0}.
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3.2 Weak solutions in (0,7)

Science is a differential equation. Religion is a boundary condition.

Alan Mathison Turing

3.2.1 Existence

In this section we prove

Theorem 3.1. Suppose that conditions (A1)-(A5), (B1)-(B5), (F1)-(F4), (G1),
(H1) are fulfilled. Then for every wy € L*®(QY) there exists a solution w € L®(Qr),
we D(L), p € LP(0,T;V,) of problem (3.13)(3.15).

Before the proof we formulate some statements related to the solvability of the
above equations (3.13)-(3.15).

Proposition 3.2. Assume that conditions (F1), (F3) are satisfied. Then for ev-
ery fited u € X7 and wy € L®(Q) there exists a unique solution w € L>(Qr) of

the integral equation (3.13). Further, the solution u satisfies estimate ||w|| Lo (gr) <

llwollLoe (@) + [[w*[[ oo (-

Proof. Let us make an observation that we shall use many times. Namely, from
(F3) and the continuity of fin variable £ it follows f(¢,z, w*(x),(o;v1) = 0 for a.a.
(t,z) € Qp, every ¢y € R and v; € X;. Assume that w is a solution of (3.13) for
some fixed u € Xj. Then it is continuous in variable ¢ (moreover, it is absolutely
continuous). Now fix a point x € Q. If w(tg,z) > w*(z) for some ¢y, € (0,7) then
w(t,z) > w*(x) for all ¢t € [ty,to + ¢] where ¢ is sufficiently small. Then by condition
(F3) it follows f(t,z,w(t, x),u(t,z);v1) < 0 whence

w(t, z) = wo(x) + /Dtf(s’I7“’(87I)7u(s,x);v1)ds
— (o) +/0t0f(s,x,w(‘q?x)"u(sw);vl)ds
+/ﬂ:f(s,x,w(s,x)ﬂ(s,x);vl)ds

= w(t07 .’I})7

that is, w is decreasing in variable ¢. Similarly to this, if w(tp, z) < w*(x) for some to >

0 then w is locally increasing in ¢. Now it is easily seen that w(t, z) € [w* (), wo(x)]
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(or [wo(z),w*(z)]) for a.a. (t,z) € Qr thus |w(t,z)| < |wo(z)] + |w*(x)| for a.a.
(t,2) € Qr hence [lw[z=@r) < llwollze@) + [lw”[l < 0)-
Now let us define a function f: Q7 x R? x X; — R by

f(t,(L'7§7<0;1)1), if ‘f‘ S Cug,w* s
f(tvxvgv CO;/U1) = f(t,x,cuu,w,fo?vl)v if E 2 Cuwo,w* s

f(t,iE, 7Cwn,w*7<0§vl)7 1f f S 76&10,&1*1

with the constant ¢,y .+ = [|wo|| Lo (@) + |w* || = (@) and consider the following problem
instead of (3.13):

w(t,z) = wo(x) +/O f(s,2z,w(s,2),u(s, z);u)ds, foraa. (t,x)€ Qr. (3.16)

Obviously f also fulfils condition (F2), (F3), further, by choosing interval [ =

[—Cuwgw*s Cupw+] in condition (F1) then with some functions Ky, K5 it follows

|F(t, 2, € Goivn) = f(t, 2, Goyn)| < Ka(v1) K1 (Go) - 1€ — €]

for a.a. (t,x) € Qr, every £,€, ¢y € R, v; € X;. Indeed, f was extended as
a constant function outside of /. This means that function f satisfies condition
(F1) globally. Clearly, if problem (3.16) has got a solution w then ||wl||r~g) <
lwoll ooy + [|w* ||z (. Since f equals with f on interval I, every solution of (3.16)
is a solution of (3.13) and converse. From the above arguments we conclude that it
is sufficient to show that the problem (3.16) has a unique solution w € L>(Qr). In
other words, we may assume that condition (F1) is fulfilled by function f, globally
in &.

Existence. We use the method of successive approximation. Fix u € X;. Let

wo(t, z) == wo(z) ((t,z) € Qr) and define wy(t, z) as follows:

w1 (t, @) == wo(x)+/0 f(s,z, wi(s, x),u(s, z);u)ds. (3.17)

Now fix a point = € 2. We show that

k41
t P2

[k + 1))

k+1

T,u

(3.18)

‘wk+1(t7x) - U‘)k(tﬂx)‘ < Cuwgw* * €

with the above defined ¢, o = |lwo|| L (@) + [|w* | (@) and with a suitable constant
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Czu > 0. We proceed by induction on k. For k = 0 we have
|wi(t, ) — wolt, z)]

/: f(s,z,wo(2), ul(s, z);u)ds

/ (f(s,z,wo(), u(s, x);u) — f(s,z,w"(x),u(s, z);u)) ds

0

< / 196, () K (u(s, )| - [wo() — ' (@)

t
< (leollieq@) + [ i) - / 196, (u) K s, ) ds.

By using condition (F1), Holder’s inequality and the fact that u € X it follows

/0 |Ky (u) Ky (u(s, x))|ds

< (/OT|K1(U)K1(u(37x))\42ds>é‘ (/Ot m)f’%

1

t a .
< </ (dafuts, )% + )™ ds) %K) £ (3.19)
0
o 1 N
< const - (/ (lu(s, z)[" + 1) ds) XKy (w)] -tz
A 0
= Cpp - tP2.

The above two estimates yield (3.18) for k = 0.

Now let us suppose that estimate (3.18) holds for k — 1. Then condition (F1),
the assumption of induction and (3.19) imply

|wi1(t, @) — wi(t, 7))
< /O’|f($7$7wk(571')7U(S,l‘);u) — f(s,x w1 (s, ), uls, z);u)|ds

< / K () K (s, 2))] - [, ) — wnn (s, 2) s
t Ky(u) K (u(s, z -chwwc’;u- 8£1 ds
</< (W) K (5, 2))] - Cupar - (Wz)

T 5 tgh o
< cwo_,fci’?u- (/0 |J<1(11,)K1(u(s,z))|’12ds> . </0 Eds)

k+1

t p2
[(k+ 1))

The induction is complete. Estimate (3.18) yields

. K+l
< Cup Cau

k+1 L

. Tr2
‘wk'+l(t7‘/[) - wk(t7l)| < Z Cug,w* C;,u L —0
i=k+1 (i) 2
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as k,l — oo for a.a. (t,z) € Qr. Whence (wi(t,z)) is a Cauchy sequence for a.a.
(t,x) € Qr, therefore it is convergent to some w(t, x), wy — w a.e. in @7, moreover,
wi(+,x) = w(-, ) in L=(0,T) for a.a. z € 2. We show that w is a solution of equation
(3.13). It is clear that left hand side of the recurrence (3.17) converges to w a.e. in
Q7 thus it suffices to show that the right hand side of (3.17) a.e. tends to the right

hand side of equation (3.13). But this is true since

] / (s, l5,2), (s, ) 0) — (5, ans,2), (s, ) ) ds

< [/ Bl ) o) — (s, ds

< [ iR )lds ol 2) el

<cpu T 7 . lw(-,z) = wi(-, @) Loy = 0 as k — oo.
Uniqueness. Assume that w,& € L>(Qr) are solutions of (3.13). Then by (F1)

|w(t, x) — &(t, z)]

< /; [f(s,z,w(s, @), u(s, x);u) — f(s,x,0(s, x),ul(s, x);u)|ds

< [ sl ) s, 2) = 005, ds

t P2
< 15Kl 2Dl - ([ 1o(s.0) = ot ds)
0
hence
lw(t,x) — ot x)[P? < & / |w(s,z) — (s, z)[Pds.

Gronwall’s lemma yields |w(t,z) — @(t,z)| = 0 for a.a. (t,2) € Qr, ie, w=0. O

Proposition 3.3. Assume (F1)-(F4) and let (u,) C X1, further, for every k € N
let wy be the solution of (3.13) corresponding to u = wy. If uxy — w in LP*(Qr) then

wp — w a.e. in Qr where w is the solution of (3.13) corresponding to u.

Proof. The strong convergence of (uy) in LPY(Qr) implies ug(-,z) — u(-,z) in
LP(0,T) for a.a. € Q (for a suitable subsequence). Fix such a point z € Q.
By Proposition 3.2 (wy) is bounded in L*®(Q7). Further,

o (t,2) — w(t, )]
< /0 [f(s, 2, wi(s, z), up(s, x);u) — f(s,z,wi(s, @), ur(s, x);u)|ds
+/0 [f(s,z,wi(s, @), up(s, z);u) — f(s,z,w(s, x),uls, x);u)|ds.
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The first integral converges to 0 for a.a. z € Q by condition (F4) (for a subsequence).
In what follows, we show that the second integral tends to 0 as well. Indeed, by
conditions (F1)—(F2),

/0 [f(s,z, wi(s, z),up(s, x);u) — f(s,z,w(s, x),u(s,x);u)|ds
< /0 [5C1 (u) K (ug (s, )| - |wi(s, ) — w(s, x)|ds

+/0 | Ko (u) Ka(w(s, x))| - Jur(s,z) —u(s,x)|ds

< </ot |9, (w) K (ug (s, 2)) | d5> . (/Ot |wi (s, ) — w(s, z”m) G .

+ 115 (w) Ko (w (-, 2)) [l Lo, - /0 Jun(s, ) — u(s, z)| ds.

By choosing u = uy, and ¢ = T in estimate (3.19) and by using the convergence of
ug(+, ) in LP*(0,T) we conclude that the first term containing uy on the right hand
side of the above inequality is bounded. In addition, the continuity of function K,

implies that || Xo(u) Ko (w(-, 2)) | L= (0,r) is finite. From the above arguments it follows
o (t,2) — wlt, )
¢
< const - /0 wi (s, 2) — w(s, @) ds + const - [Jug(-, 2) — ul-, @)1 g 1) + 7 (ur, wi)

where the remainder term r(uy,wy) tends to 0 as k& — oo. Thus Gronwall’s lemma

yields
|wi(t, @) — w(t, )P < const - (Huk(,z) —u(, @) + 7’(uk,wk)>

where the right hand side tends to 0 as & — oo which immediately implies the
desired a.e. convergence of (wy) (for a subsequence, which is sufficient due to the

“subsequence trick”). |

Remark 3.4. Since (wy,) is bounded in L=(Qr) and convergent a.e. in Qr, Lebesgue’s

theorem implies its strong convergence in L*(Qr) for arbitrary 1 < a < oo.

Proposition 3.5. Suppose conditions (F1)-(F3), further, |wo| > 0 a.e. in Q and
wy - w* > 0 (that is, they have the same sign). Then for the solution w of (3.13),
|w(t,z)| > 0 holds for a.a. (t,z) € Qr.

Proof. Fix a point 2 € Q. Without loss of generality we may assume that wy(z) > 0.
First suppose w*(x) > 0. In the proof of Proposition 3.2 we have shown that
w(t,z) € [w*(x),wo(x)] (or w(t,z) € [wo(z),w*(x)]) for a.a. ¢t € [0,T], consequently,
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w(t,r) > min(w*(x),wy(z)) > 0. Now suppose that w*(z) = 0. Define t* :=
inf {t > 0:w(t,x) =0}. Then w(t,z) > 0 for every t < t*. By using conditions
(F1), (F3) it follows that for £ > w*(z) =0, {, € R, f(t,2,&,¢0) > —K1(()&. Then
for a.a. t € (0,t%),

()= [tz w(t, ), u(t,x);u) > =Ky (u) Ky (ult, z))w(t, ).

(Note that w is absolutely continuous in variable t thus for a.a. (¢,z) € Qr there

exists w'(f, z).) Due to the definition of t* we may divide by w(¢, z) which yields

w’(t7 _[)
w(t, ) > =Ky (u) Ky (u(t, x)).

Observe that the left hand side of the previous inequality equals to (logw(¢, )’ thus
by integrating the inequality in (0,¢) we obtain

¢
logw(t,z) — logwy(z) > 7/ Ky (u) K (u(s, z))ds.
0
By taking the exponential of both sides it follows
w(t, z) > wo(@) - e~ Jo Tr@Ei(ulsa))ds

The above estimate implies w(t,z) > 0 a.e. in [0,T]. The case wy(z) < 0 can be

treated similarly. ]

Remark 3.6. This proposition shows that if |wo| is positive a.e. in Qr, further, wy

and w* has the same sign in a.e. Qr, then for the solution w of (3.13), — is a.e.

finite. Consequently, operator A and B might depend on terms which contain .
The above proof also shows that if the modulus of the initial value wy is a.e. great“(;r
than a positive constant, further, |w*| is greater then a positive lower bound, or K7 is
bounded, then the absolute value of the solution w of equation (3.13) is also greater

1
than a positive constant a.e. in Q7 thus — € L>(Qr).
w

Proposition 3.7. Assume conditions (A1)-(A5). Then for every fizedw € L®(Qr),
p € X and G € X7 there exists a solution u € D(L) of problem Lu+A(w,u,p) = G.

Proof. The proof follows from Theorem 2.1 and Theorem 1.65, since for fixed w €
L>*(Qr) and p € X, conditions (A1)—(A5) are the same conditions as (A1)—(A5)
in Section 2.1.2 thus operator A(w,-,p): X; — X; is bounded, demicontinuous,

coercive and pseudomonotone with respect to D(L). O

Proposition 3.8. Suppose that (B1)-(B5) hold. Then for every fived w € L®(Qr),
u € X and H € X there exists a solution p € Xy of problem B(w,u,p) = H.
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Proof. We show that for fixed w € L™(Qr), u € X; operator B(w,u,-): Xo — X;
is bounded, demicontinuous, pseudomonotone and coercive. Then Theorem 1.54
implies the existence of solutions to equation B(w,u,p) = H for every H € X;. The
boundedness, demicontinuity and coerciveness follows by the same arguments as in
the proof of Theorem 2.1, since for fixed w € L>®(Qr), v1 € X; assumptions (B1)-
(B4) are the same as conditions (A1)—(A4) in Section 2.1.2. Now fix w € L®(Qr),
u € X;. Introduce operator Bp: Xy — X for fixed vy € Xy by

[BUQ (p)% 22]

= Z bi(t,z,w(t, x), u(t,z), p(t, x), Dp(t, x); w, u, v2) Diza(t, x) dt dz
Qr =1

+/ bo(t, z,w(t, ), u(t,z),p(t,x), Dp(t, x);w, u, v2)za(t, ) dt dzx
"
where z5 € Xs,. To verify the pseudomonotonicity suppose that p, — p weakly in

XQ and
lim sup[B(w, u, pi), pi — p] < 0.

k—o0

Condition (B5) implies that
bi(+, w, u, pr; Dpy; w, 1, Pr) — bi(+, w, u, pr, Dpgsw, u, p) — 0

in L%(Qr) thus

B(w,u,py) — Bp(pk) —0 in X; and (3.20)
Jim [B(w,u, pi) = Bp(pr), i — p] = 0. (3.21)

From Theorem 1.54 it follows that for fixed p € X, operator ép is pseudomonotone

(since then conditions (B1)—(B4) are the same as (i)—(iv) in Section 1.6). So that

Jim [Bp(pr), px —p] = 0 and Bp(pr) = Bp(p) = B(w,u, p).
Hence by (3.20), (3.21) we conclude

lim [B(w, u, px), P —P] = 0 and

k—oo

B(w,u,pi) — B(w, u,p)
which means the pseudomonotonicity of operator B(w, u, -). O

Proof of Theorem 3.1. We define sequences of approximate solutions of problem
(3.13)—(3.15) and we show the boundedness of these sequences. Then the weak limits
of suitable chosen weakly convergent subsequences will be the solutions. For simplic-

ity, in the proof we omit the variable (¢, z) of functions a;, b; if it is not confusing.
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Step 1: approximation. Define sequences (wy), (ux), (px) as follows. Let wy(t, )
=uo(t, ) = polt,z) =0 ((t,2) € Qr) and for k= 0,1,... let wii1, urr1, Pria be a

solutions of the equations :

t
wWi1(t, ) = wo(x) +/ f(s,x,wpra(s, @), ug(s, x);u)ds  (3.22)

0
L1 4+ A(wp, w1, pr) = G (3.23)
B(wk7'uk7pk+]) =H. (324)

By Propositions 3.2, 3.7, 3.8 there exist solutions w1 € L¥(Qr), urt1 € Xi,

Pr+1 € X so we obtain the sequences (wy) C L®(Qr), (ug) C X, (pr) C Xa.

Step 2: boundedness. We show that the above defined sequences are bounded.

By Proposition 3.2, for fixed wy € L*(Q2) the solution of equation (3.22) satisfies

estimate ||wii1 || (@) < llwoll Lo (@) + lw* || (q) thus (wy) is bounded in L>(Qr)
Now by choosing the test function v = wuy,; in (3.23), further, by using condition

(A4) and the monotonicity of operator L one obtains
(G, upg1] = [Lttggr, ] + [A(wp, Urrr, Pr), Ues1]

> ¢, / (gl + (D' — ()T @k ()

Qr
~1 12 (i)l 1 @
|l x, (uumu&z — Iy i) T @) | ze(@r) - e 9 )
|\U/c+1||x1

>0

Thus by the boundedness of (wy) we conclude for some K > 0 that
ko (u
1%, (1 -K- [ACREDIATCR Hl)";l(QT)) < const.
a5,

Now (3.8) implies the boundedness of (uy) in Xj.

The boundedness of (py) in X, follows by similar arguments as above by using
condition (B4) and the boundedness of the sequences (wy), (ug).

We need also the boundedness of the sequence (Luy,) in X;. To this end, we use

Holder’s inequality and obtain for arbitrary v € X,
[[A(wr, 1, Pr), V]|

n
< <Z |ai(wk»uk+17Duk+17pk7Dpk?‘*)k-,uk+17pk)”L‘11(QT)> ol x, -

=0

From condition (A2) it follows for all ¢

l|lai(w, Ursr, Duggr, Pr, DPrs Wi, U1, Pre) || Ly (@)

< const - ¢y (wi)er (Wi, g1, Pr) (lurp 5, + P&l + kL (@rs wers, Pa)l Lo @) -
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Therefore, by the boundedness of the sequences (wy), (ur), (px) and the boundedness

of operators ¢y, ¢1, ko we conclude
[[Lugsr, v]| = [[A(wg, wetr, Pr) + G, v]| < const - ||v]| x,

so (Luy) is a bounded sequence in X7.

Step 3: convergence. Due to the boundedness of the sequences (uy), (Lug), (Px)
(in reflexive Banach spaces) each has a weakly convergent subsequence, further,
by applying Corollary 1.48 it follows that there exist subsequences (which will be
denoted, for simplicity, as the original sequences) and functions u € X, p € X,
such that

u, — u weakly in Xy, strongly in LP*(Qr), a.e. in Qr;

pr — p weakly in X.

In what follows, we show that w,u,p are solutions of problem (3.13)-(3.15).

Since u, — u in LP'(Qr), further, wyy; is the solution of equation (3.22), by
Proposition 3.3 it follows that wy — w a.e. in Qr for some w € L*®(Qr) such that
functions w, u satisfy the integral equation (3.13).

Now let us consider equation (3.24). We show that py — p in X». To this end,
let us introduce operator B: L>(Qr) x X1 x Xy x L=(Qr) x X1 x Xy — X3 by

[B(wv u,p;w, v, 1)2)7 22]
= Z bi(t, x,w(t,x), u(t,x),p(t,z), Dp(t,x); w, v1,vs) D;zo(t, x) dt dx
Qr =1

+ / bO(t7 z, W(tv I)v ’U,(t, l‘), p(t7 ﬁ)a Dp(tx I); w, vy, UZ)ZZ(tv I) dtdz
Qr
for z, € X5. Observe B(w,u, p) = B(w, u, p;w, u, p). Condition (B3) yields
[B(wh, s P13 w, w, P) — B(wi, e, P;w, 1, P), Pt — ) > C [P — IR, (3.25)
On the left hand side of the above inequality we have the following decomposition:

[B(w, g, Prr1;ws 4, P) — Bwk, g, P;w, 1, P), Pt — P)

= [B(Wk; Uk, Prt1; Wk Uk, Prt1)s Prr1 — D)

B(wmumpkﬂ;%uap) - B(wkﬁum pk+1§wkyuk7pk+])7 Pk+1 — P] (3-26)

+
+ [B(w,u, p;w, u, p) — B(wg, uk, P;w, U, P), Prs1 — P
— [B(w,u, p;w,u, p), Prs1 — PJ.

Now we show that each term on the right hand side tends to 0 which implies by

(3.25) the strong convergence of (px). Clearly, B(wg,ur, Prs1; Wk, Uk, Pri1) = H,
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further, prr1 — p weakly in Xy which yield the convergence of the first and the last
term. In addition, it is easily seen that condition (B5) implies the convergence of
the second term on the right hand side of (3.26). In order to verify the convergence

of the third term, observe that
|[B(wr, uk, p;w, u, p) = B(w, u, p;w, u, p), Prs1 — b
< llbi(wr, wk, P, Dp; w, u, p) — bi(w, u, p, DP;w, u, P)| Le2(@r) (3.27)
i=0

X ||Prs1 — Pllxe

and by condition (B2) it follows

|bi(wk, uk, P, DP; w, u, ) — bi(w, u, p, Dp; w, u, p)|*
< const - [¢1(w, u, P)|? - (|1 (wi)]® + [é1(w)[*) (3.28)

x (1P + DRI + Jun + [ul?" + [l (w0, u,p)[*)

The boundedness of (wy) in L>®(Qr) and the convergence of (u) in LP*(Qr) implies
the equi-integrability of the left hand side of the above inequality. In addition, the left
hand side a.e. converges to 0, therefore by Vitali’s theorem it converges in L*(Qr) to
the zero function. Thus (because of the boundedness of (py)) the right hand side of
(3.27) tends to 0. Hence all terms on the right hand side of equation (3.26) converges
to 0 so we have shown that pyy1 — p in Xs.

Now we show that B(wg, ug, Pr+1) — B(w,u, p) weakly in X;;. Then from recur-
rence (3.24) we obtain B(w,u,p) = H, i.e., w,u,p are solutions of problem (3.15).
Consider the decomposition

B(Wk, Ur, Pr+1) — B(w,u, p)
= (B(wk, s Prs1 @i, Uk, Prs1) — By, ug, Pryr; w, v, p)) (3:29)

+ (B(Wk, g, Prt1; w0, u, P) — B(w, u, p;w, u, p)).

Observe that the second term on the right hand side converges to zero by Vitali’s
theorem, one may use similar estimates as (3.27), (3.28). Further, the first term
tends to 0 by condition (B5).

Consequently, the right hand side of (3.29) converges to 0 thus

B(wg, wg, Prt+1) — B(w,u, p) — 0 weakly in X7.

In the case of equation (3.23) we apply similar arguments as above. We introduce
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operator A: L>®(Qr) x X1 x Xo X L®(Qr) x X1 x Xy — X} by

[Aw, u, p;w, v1,v2), 22
::/ Zai(t,r,w(t,x),u(t,m),Du(t,x),p(t,x),Dp(t,Jz);u),vl,vz)DizZ(t,x)dtdx
Qr =1

+ / ao(t, z,w(t,x), u(t, z), Du(t,z), p(t, z), Dp(t, x); w, vy, v9)29(t, ) dt dx:
T

for z; € X;. Note that A(w,u,p) = A(w,u, p;w,u,p). We have already shown the

fact that Luyq — Lu weakly in X7 thus it remains to verify that

Alwrs g1, Pr; wrs g1, P) — Alw, u, p;w, u, p) = A(w, u, )
weakly in X then recurrence (3.23) yields (3.14). To this end, we show that u, — u
strongly in Xj. Since it is already shown that w, — u in LP*(Qr) it suffices to show

that Duy — Du in LP'(Qr). Now by the monotonicity of operator L,

[LUHl — Lu,upqy — U]

+ [AN(WIM Up11, Pi; W, U, P) — A(Wm“-, Pk W, U, P); Ukyr — U

n

> Z/ [(@i(wk, wkt1, Dugyr, Pr, Dpy; w, u, p)
i=1 E

— ai(Wk, Ueg1, Du, P, Dpi;w, u, p)) X (D1 — D,,uﬂ

noo. (3.30)
+ Z/ [(a,,;(wk, p+1, Du, py, Dpgiw, u, p)
i=1 T

— a;(wy, u, Du, pr, Dpr;w, u, p) X (Diugyy — Di”)]
+/ (ao(wWr, Ups1, DUgi1, Pr, DPr; w, u, P)
.
— ap(wy, w, Du, Py, Dpg; w, 4, p) X (ups1 — u)].

Observe that by condition (A3) the first term on the right hand side of the above
inequality is greater than C' - ||Duyyq — DukHi‘pl(QTy We show that the left hand
side and the second, third integrals on the right hand side converge to 0, then the

convergence of (Duy) in L' (Qr) immediately follows. Consider the decomposition

[Lugi1 — Luy upq — u] + [A(wk71zk+1,pk,w,u7 p) — A(wk7u, Pk; W, U, P), U1 — U
= [Lugs1 + A(Wk,uk+],pk;wk7,U/k+]7p]€)7,uk+] — u] — [Lu, upy1 — uf

+ [A(wmukﬂ;m;%% p) — A(WbUk+17pk§wk'7uk+17pk)7uk+1 — ul

+ [A(w, 1, p;w, 1, p) — A(wg, u, Pr; w, U, P), Ups1 — 1]

- [A(wvuvp;w7u7p)7uk+l - u]
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The first term on the right hand side equals to [G, w11 —u] because of the recurrence
(3.23). By the weak convergence of (uy) the first two and the fifth terms tend to 0 as
k — oo. Condition (A5) implies the convergence to 0 of the third term (similarly to
the case of the decomposition (3.26)). Finally, by condition (A2), the a.e. convergence
of (wk), the strong convergence of (py), it is easy to see (similarly to the case of
operator B, see (3.26)) that the fourth term also tends to 0. Further, the above
arguments imply that the left hand side of (3.30) tends to 0. Now turn to the
integrals of the right hand side of (3.30). Clearly,

(ai(wk, w1, Du, P, DPg; w, w, p) — i (Wi, w, Du, py, Dpg)iw, u, p) — 0
a.e. in Qr, further,

|ai(Wr, wrer 1, Du, Pre, DPrs w, u, p) — ai(w, u, Du, pr, Dppsw, u, p)|*
< const - [¢1(w, u, p)er(wy)]
X (Juksa [P+ [ul™ + [Dul”* + |pg[” + [ Dpg[™ + [k1 (w, u, p)|*)
where the right hand side converges in L*(Qr). Hence by Vitali’s theorem the second
integral on the right hand side of (3.30) tends to 0. In order to verify the convergence

of the last integral on the right hand side of (3.30), we use Holder’s inequality and

condition (A2) and we conclude

‘/ (ao(wr, Urs1, Dugr1, Pr, DPr;w, u, p)
T

— ao(wk, u, Du, Py, Dpp; w, u, P) (Ups1 — )
< const - [[er(w, u, P)er(wi) | 2 (@r)

2y Bl P2
x (H“kHH;(ll +llullx, + el %, + (1A (Wk'vuk+l7pk)||L"1(QT)) [urr =l @r)-

By the strong convergence of (py) in X, and (uy) in L (Qr) and by the boundedness
of (ug) in X it follows that the right hand side tends to 0.

Now the weak convergence A(wy, urr1, Pr) — A(w,u,p) in X5 follows easily by
condition (A2), by the strong convergences of the sequences and by Vitali’s theorem
(the same way as in the case of operator B). So we have shown that w,u,p are
solutions of problem (3.14).

Summarizing, we have verified that w,u, p are solutions of system (3.13)-(3.15),

the proof of the theorem is complete. ]
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3.2.2 Examples

We show some examples for functions satisfying conditions (A1l)—(A5), (B1)-

(B5). Let functions a;, b; have the form

bi(t, &, Co, Mo, 5w, 1, V2)

= [s(w)](t, @)\ (vn)](t, @) [0 (v2)](t, 2) R(€)S (Go)mil (mo, )|~ (3.33)

ai(t, 7, &, Co, G, Mo, 5 W, 01, UZ)
= [m(w)](t, 2)[p(v1)](t, 2) [ (va)] (£, 2) P()Q(m0, )G P2 (331)
+ [F ()] (t, 2)[@(0)] (8 2) PEGIC" T, if i #0,
ao(t, x, &, Co, . 1o, 1 W, vy, V2)
= [r(w)](t, 2)[p(v)](t, 2) [ (v2)] (£, ) P(€)Q(mo, Mol > (3:32)
+ [Fo(w)](t, ) [@o(v1)](t, 2) Po(§)GolGo| ™,

+ [R(w)](t, 2)[D(v)) (8, 2) RE)ml (o, )7, i = 0, m,

where 1 <7; <p; —1 (i =1,2) and the following hold.

(E1) )

Operators m: L>(Qr) — L®(Qr), ¢: LP(Qr) — L®(Qr), ¢¥: Xy —
L*°(Qr) are bounded, ¢ and v are continuous, further, if (wy) is bounded
in L>®(Qr) and wp — w a.e. in Qp then m(wy) — 7(w) in L*(Qr). In
addition, P € C(R), @ € C(R*"*1)NL>®(R"*!) and there exists a positive
lower bound for the values of m, ¢, ¥, P, Q.
Operators 7, 70: L®(Qr) — L>®(Qr), ¢,%0: LM(Qr) — L#T*(QT)
are bounded, ¢ and ¢y are continuous, further, if (wy) is bounded in
L>®(Qr) and wy — w a.e. in Q7 then 7(wy) — 7(w) and To(wy) — To(w)
in L*°(Qr). In addition, P.Pc C(R), operators 7, ¢ and function P are
nonnegative and

[ et

T ]

lim
l[orll ¢y o0 1],

Operators k: L™(Qr) — L®(Qr), A\: L (Qr) — L®(Qr), ¥: LP*(Qr)
— L*®(Qr) are bounded, A and ¥ are continuous, further, if (wy) is
bounded in L®(Qr) and w;, — w ae. in Qr then k(wy) — k(w) in
L>(Qr). In addition, R € C(R), S € C(R) N L*(R) and there exists a
positive lower bound for the values of k, A\, 9, R, S.

Operators 7: L®(Qr) — L®(Qr) and 9: LP*(Qr) — Lpzpfi;zl*l(QT) are
bounded, 4 is continuous, function R € C(R), further, if (w,) is bounded
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in L>®(Qr) and wy — w a.e. in Qr then &(w,) — F(w) in L¥(Qr). In

addition, operators &, 9 and function Rk € C (R) are nonnegative and

~ 9—1
[ 1t
Qr

lim -
l[va]l x5 —-+00 [lva %,

=0.

Proposition 3.9. Assume that (E1)-(E2) hold, then functions (3.31)~(3.33) fulfil
conditions (A1)-(A5), (B1)-(B5).

By using Young’s and Holder’s inequality it is not difficult to prove the above
statement. One may use the same arguments as in Section 2.2.3 since the above

conditions are analogous to the assumptions there.

Operators , 7, 7y, K, K may have the form [r(w)](t,z) = |w|?, where 1 < 3.
Qt
Further, operators ¢, A may have one of the forms

[v(v)](tw):<1>< /tw) or q>< / d)

where 1 < 3 <py,d € L™"(Qr), P € C(R) and ® > const > 0. Similarly, ¢ may be

written in the form
H) or ¥ (/ dyv+ d2|Dv\>
Q¢

W)t ) =¥ ( /Q It

where 1 < 8 < py, d1,dy € L2(Qr), ¥ € C(R) and ¥ > const > 0 For ¢ consider

/Ot d(s,z)v(s,z)ds) :

/d(t:ﬂ)v(t,z)dx , or

' (DO \v<s,z)|,f,ds} )

where d € L>®(Qr), 1 < 3 < py, o e C(R), & >0 and @(7)| < const - |7|P*~"17 L In

the case of @y one has similar examples as for ¢ above, except ® does not have to

‘B+|Dv

(=N

KR

[P(W)](t,x) =

be nonnegative.

For operators 9,7 we may consider similar examples as for ©, ¢ above, by re-
placing exponents p; with py and r; with ro.

It is not difficult to show that the above operators fulfil conditions (E1)-(E2),
one can show it by similar arguments as for the examples in Section 2.2.3.

As an example for function f consider, e.g.,

ft 2,6, Gov) = =[p()](t, ) fi(E 2) f2(60) (€ — w" ()

where ¢: LP'(Qr) — L*®(Qr) is bounded and nonnegative, further, f; € L>(Qr),

P
f2: R — R are nonnegative, Lipschitz continuous and f»((y) < const - (o] a,
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3.3 Solutions in (0, c0)
Mathematics is the art of giving the same name to different things.
Jules Henri Poincaré

In the previous section we have proved existence of solutions for all finite time
interval (0, 7). In what follows, we shall show existence of weak solutions in (0, co).

We write briefly X° = LV

pi.(0,00;V;) (i = 1,2) (this space was introduced in Section

2.3.1). In the following we suppose

(Vol) Functions a;: Qo X R X R x R x L2 () X X x X — R, b Qoo X
RxRXR™ X L (Qu) X XX X - R (i=0,...,n) and f: Qo x R? X

loc

L2 (Qoo) X X7° — R have the Volterra property, i.e., for every 0 < T' < oo the

o), bilt,z,&, Coumo, 5w, vy, v2)

and f(t,z,€, Co:w)|(o,r) depend only on (w

restrictions a;(t, z, &, Co, €, Mo, 7 W, V1, V2) 1)

(0,1, V1 ‘(O‘T)v 712|(0.T))-

Besides the Volterra property we assume that conditions (A1)—-(A5), (B1)—~(B5),
(F1), (F2), (F4) hold for every 0 < T' < oo in the sense that their restrictions to
(0,T) (that can be defined by the Volterra property, see (Vol) above) satisfy these
conditions (not necessarily with the same c1, k1, ¢2, k2 etc.). Further, (F3) holds with

the same w*, i.e.,

(F3*) There exists w* € L>(Q) such that for a.a. (t,2) € Qu, every (£, () € R? and
U] € Xl«,
(€ = w(@) - f(t, 2,€, Goivr) 0.

Finally, let

(G1) G e L™

loc

(0, 00; V})

(H1*) %€ € LE (0, 00; V).

loc

Now we may define the weak form of (3.5)—(3.7) in (0, 00). For fixed 0 < T' < oo
we introduce operators Ar: L®(Qr) x X1 x Xy — X7 and Br: L>®(Qr) x X; X
Xy — X5, Ly: D(Ly) — L%(0,T;Vy") by formulae (3.10)-(3.12). In addition, let
Sr =79
property there exists operators A: LS (Qs) X X{° x X5° — LI (0,00; V) and
B L2 (Quo) X X7° x X5° — L{ (0, 00; V) such that Ar(w,u, p) = A(w,u, p)|01):
Br(w,u,p) = B(w,u,p)|omn) for every 0 < T < oo and (w,u,p) € Li5.(Qo) X
LI (0,00, V1) X L2 (0,00; Vo) We say that w € L2 (Qoo),u € LI (0,00;V4),p €

loc loc

or € X{,Hy = H|omr € X5 for every 0 < T < oco. By the Volterra
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Li2 (0, 00; V3) is a weak solution of (3.5)-(3.7) in (0,00) if for all 0 < T < oo,

ulo,r) € D(Ly) and (for the restrictions of the functions to (0,7))

w(t,z) = wo(z) + /Otf(s,x,w(s,x),u(s,x);u)ds (t,z) € Qr (3.34)
Lyu+ Ar(w,u,p) = Gr (3.35)
Br(w,u,p) = Hr. (3.36)

(As in the previous chapter we omit the notation | if it is not confusing, since
the operators and the norms contain the information about the space). Observe that
(as for the problem of the previous chapter) the Volterra property ensures that if
w,u, p is a solution in (0,7") for some T' then these functions are solutions in (0,7
forall T < T.

Theorem 3.10. Assume (Vol). Further, suppose that conditions (A1)-(A5), (B1)-
(B5), (F1), (F2), (F4) hold for every 0 < T < oo (in the above explained sense), and
(F3), (G1*), (HI*) are staisfied. Then there exist weak solutions w € L®(Qu), u €
L (0,00; Vi), p € LiZ.(0, 00; V3) to problem (3.34)-(3.36).

loc loc

Proof. The main idea is the same as in the proof of Theorem 2.12. By Theorem 3.1,
for every 0 < T < oo there exist solutions in (0,7). Then the limit of some weakly
convergent subsequences of the solutions which was choosen by a diagonal method
will be a solution in (0, c0).

Let (7}) be a monotone increasing sequence of positive numbers such that 7j, —
+00. Then by Theorem 3.1, for every T, there exists a solution of (3.34)-(3.35), i.e.,
there are wy, € L®(Q7r,), wp € LP(0,Ty; V1), pr € LP*(0, Ty; Va) such that

t
wi(t, ) = wo(w) + / s,z wi(s, @), up(s, z); ug)ds
0
Loy uy + Agy (Wi, w, Pr) = 9,
3Tk (wvaLk»Pk) = j‘ka.

By applying Proposition 3.2 it follows

w*

lwrll (@) < llwollzoe(oy + [lw™ [ zo=()- (3.37)

Further, by following the proof of Theorem 3.1 (with (0,7") = (0,7,,)) one obtains
for fixed m € N the boundedness of the sequences (ug), (Lz,,u;) and (py) in spaces
X7, (XTm)* and XJ™, respectively.

Now let m = 1. Since (uy), (Lnug), (pr) are bounded sequences in reflexive

Banach spaces X7', (X{1)*, X', respectively, there exist subsequences (uj;) C
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(ug), (Prx) C (px) and functions uy, € X7' N D(Ly,), pr. € X2* such that

Uy — U, weakly in XlT‘,
Lyyuy g — Lyyuy, weakly in (X7)*,

Pis — Pi. weakly in XJ'.

If (w1 k) k>m—1 is already given then sequences (wm—1.x)k>m—1, (L1, Um—14)k>m—15
. . Tn— Tn— Tn—
(Pm—1k)k>m—1 are bounded in reflexive spaces X;™ ', (X;™ )", X,™ " thus there
: : Tin
exist subsequences (1) C (Um-1k), (Pmx) C (Pm—1,) and functions w,, . € X;™N

D(Lz,), Pms € X3 such that

U ke — U weakly in A)(le7
L, U — L1, U weakly in (X;fm)*7

pm,k - pm,* Weakly in XZTm'

It is clear that for cach fixed [ < m the above weak convergences hold in X7t
(X;”)*7 X;”, respectively, which yields tm|0n) = s and Pplom) = w. for
I < m. Consequently, there exist unique functions u: (0,00) — Vi,p: (0,00) — V3
such that ul(o.7,,) = Ums Plo7) = Pmy and um. € D(Lg,) for every m € N.
This means that u € L} (0, 00; V1), u|o) € D(Lr) for every 0 < T < oo and p €

loc
p2
L loc

(0, 00; V3). Consider the “diagonal” sequences (uy) = (uk), (Pr) = (Prx) and
the corresponding sequence (wy). Observe that u, — u weakly in XlT""7 Dyuy, — Dyu
weakly in (X IT”")*7 Pr — p weakly in X2T ™ for each fixed m. Thus by Corollary 1.48
we may assume that u;, — uw in LP'(Qr,,). Then from Proposition 3.2, 3.3 it follows
that for every m there exists wy,, € L®(Qr,,) such that (wy) — wy,. a.e. in Qnp,

and
Win i (t, ) = wo(x) +/ F(8, @, Wi (5,2), Uk (S, T) s Ui )ds  (t,x) € Q.
0

Since for every fixed w,, . the solution of the above equation is unique, further,
functions (u,.) are the restrictions of the function u to (0, 7;,), we cocnclude that

there exists a unique w € LY (Qoo) such that wy, . = w|,r,,) for every m and

w(t,z) = wo(z) + /t f(s,z,w(s,z),u(s,z);u)ds (t,2) € Qu.
0
By (3.37), w € L®(Qx). Now fix m € N. Then we may deduce from the above
arguments that
wp — w ae. in Qp,
u, — u weakly in X7 strongly in L' (Qr,,), a.c. in Qr,,;
Ly, uy, — Ly, u weakly in (X7™)*;

pr — p weakly in X,™.
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By applying word for word Step 3 of the proof of Theorem 3.1, the above conver-

gences imply that u; — u strongly in X{"‘, Pt — Pm,« strongly in XQT and

Ly, u+ Ag,, (w,u,p) = 91,
Br,, (w,u,p) = Hr,,.

This means that w, u, p are solutions in (0, 00) so the proof of the theorem is com-

plete. |

3.3.1 Boundedness

Now we show that under some further assumptions, the solutions, formulated in
Theorem 3.10, are bounded (in appropriate norms) in the time interval (0, c0). First

suppose

(A4*) There exist a constant ¢; > 0, a continuous function v: R — R and bounded
operators I': L& (Quo) — L®(Q), kot X7° — LY(Q) of Volterra type such that

loc

Z%‘(E &, €0, €, 70, 13 W, V1, 02)G

i=0

> ¢ (|Gl + ™) = V(O (w)] () [ka(v1)] ()

for a.a. (t,2) € Qr and every (&,Co,(,m0,m) € R x R x R (w, vy, 05) €
L>®(Qr) x X; x X,. Further, for every 0 < T < oo and K > 0 there
is a constant L > 0 such that ||D(w)||i=@), [|k2(v1)]lze@) < K whenever

[lw]os | 2o @r): V1] 0, | x, < L. In addition, for every 0 < T' < oo

K2 (w)ller@r) _
[lo1]]x, =00 ”Ulﬂg(ll

0.

Finally, there exist constants «; > 0,0, < p; and a continuous function
x1: R — R such that tlin;xl(t) = 0, further, if v; € L (0,00;V;) and
Dyvy € L (0, 00; Vi) then for a.a. t € (0, 00),

loc

/Q\[kz(vl)](tw)ldﬂf <a {SUP] o1 (D12 0y + x1(2) sup l[or (M7 o) + 1] :
T€|0,

T€[0,t

(B4*) There exist a constant ¢, > 0, a continuous function 4: R — R and operators
[ L2(Quo) — L°(), kot X3° — LX) of Volterry type such that

loc

n
D bt w, € Coymo, 15w, v, v

i=0

> & (ol + In”) = 3L @))(@) (1001 + o (w)](a))
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for a.a. (t,2) € Qu, and every (£,(p,m0,m) € R x R x R™ (w,v1,v9) €
L (Qoo) X X7° x X5°. Further, for every 0 < T < oo and K > 0 there exists
a constant L > 0 such that [|T'(w)]| e (a), Hkg(UQ)HLI(Q) < L. In addition, for
every 0 < 7T < oo

Hi‘v‘z(Uz)HLl(Qr)

osllx, =00 [lu2llB, =0
Finally, there exist constants as > 0,02 < ps and a continuous function
X2: R — R such that tli>nolo X2(t) = 0, further, if v, € L2 (0, 00; V3) then for a.a.
t € (0,00),

ko (02))(t, ) dr < s [ess sup ua(r) 182 + xa(t) ess sup [[oa ()| + 1

Q T€[0,t] TE[ 1

(G1*) There exists ¢, such that §

(ta,00) € L*>(t., 00; Vl*)'
(H1**) There exists , such that Hl (4, 00) € L2 (Hs, 005 V).

Remark 3.11. The suprema in condition (A4*) make sense since v € L (0, 00; V1)

and Dy € L (0, 00; V7*) implies that v € C([0, 00), L*()).

loc

loc

Theorem 3.12. Assume (Vol), further suppose that conditions (A1)-(A3), (A5),
(B1)-(B3), (B5), (F1), (F2), (F4) are staisfied for every 0 < T < oo. In addition,
(F3*), (A4*), (B4*), (G1**), (HI**) are fulfilled. Then for the solutions w,u,p of
problem (3.34)~(3.36), w € L®(Qu), u € L=(0,00; L2(Q)), p € L>(0, 00; Vo) hold.

Proof. In Theorem 3.1 we have verified that w € L®(Q.) (which was a trivial
consequence of (3.37)). In the following let y(t) = ||u(t, )HL2 q)- First note that
u € C([0,T], L*()) thus y is continuous in [0,7]. We show that y is bounded
n (0,00). Since u is a solution of (3.35) for all 0 < T < oo, thus for arbitrary
te <Ty <Ty < oo,

/T Y(Duult), ult)) dt +/ (A, u, p))(2), u()) dt = / S, u)d. (3.38)
On the right hand side the £ > 0-inequality yields

/ 1Tz<9<t>.,u<t>>dt </ @i:nu(tmﬁ (t )||v*> a

T EPl
< / <—|\u(t)|\€,‘l +c(e)) dt.
Jy P

By using Corollary 1.43, condition (A4*) on the left hand side of (3.38), further,
by applying the above estimate with sufficiently small & on the right hand side, it
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follows (similarly as in the proof of Theorem 2.15)
1 I
5 0T ~y(T) + 5 [yt
2 2 /.

T
< const/ / |:sup y(T)F 4+ xa(t) sup y(7)7 + 1| dedt.
n Jo

r€[0,t]) T€[0,¢]

The above inequality implies the boundedness of y, one may prove it by contradic-
tion, the same way as in Theorem 2.15.

It remains to show that p € L*°(0,00; V4). The proof goes the same way as in
the previous part (moreover it is simpler since there is no derivative with respect
to t), by using condition (B4*) and the boundedness of w, from B(w,u,p) = K it

follows
@)Y

_ (3.39)
< const <|u(t)|2L2(Q) o3 sup IP(T)IIT; + xa(t) ess sup eIV, + 1> :
T€[0,t

T€|0,

We show that the above inequality implies p € L>(0,00;V3). Since p is not
necessarily continuous we may not apply the arguments of the proof of Theorem
2.15 word for word, we have to generalize it to measurable functions. Supposing that
p is not bounded, the sequence (ess sup,e, 1) ([|P(£)[lvz)nen has got a subsequence
(M},) which tends to +o0 increasingly. Denote by A the intervals corresponding
to Mj. Then for every k there exists a measurable subset By, C A; with positive
measure such that [|p(t)||y, > My — 1 a.e. in By,. Now by integrating inequality
(3.39) on By, the above estimates on p and the boundedness of Hu(t)Hi?(Q) yield
(similarly to (2.52))

(M), — 1)P2XN(By) < dsMPX(By) + d3A1£2/\(Bk)/ X2 (t)dt + ds\(By)

By
where A\(By) is the measure of By and x»2(t) — 0 as ¢ — +oo. By using the fact
that A(By) < 1 we may deduce / X2(t)dt — 0 as k — oco. Since My, — +oo, by
JB
the same arguments as at the end gf the proof of Theorem 2.15 we may arrive to a

contradiction. The proof of Theorem 3.12 is complete. ]

3.3.2 Stabilization

In this section we consider a special case of problem (3.34)-(3.36), namely, let
pr=pr=pthus g =q=q, Vi=V =V, X* =L} (0,00;V)). In what follows,
we prove stabilization of the solutions, that is, we show the convergence of solutions

as t — oo to some stationary solutions. We need some further assumptions:
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(A2%) For every w € L®(Qu),v1 € XN L0, 00; L*(£2)), v € XN L=(0, 00; V),
there exist a constant c(y,v,u) > 0 and a function Ay, v,) € LY(2) such that
lai(t, 2, €, Go, €, 10, 15w, 01, v2)]|
N p1—1 p1—1 2 I .
< o) ([ +CPT 4 [mol ™ + 0% + Ko ) (7) )
for a.a. (t,z) € Qr, every (&,¢o, ¢, m0,m) € R x R x R"™ (1 =0,...,n).
(A6) There exist Carathéodory functions a;e: Q@ X R x R*™ x R — R (i =

0,...,n) such that for a.a. z € Q and every (o, (,70,7) € R X R" x R x R",
EER, we L®(Qu),v1 € XN L>®(0,00; L*(Q)),v9 € X®° N L0, 00; V),
Jim ai(t, 2, €, Co, G o0, 75w, 01, 02) = 0 (2, €7, o, €, 0, )-
§—¢*
(B2%) For every w € L®(Qw),v1 € XN L®(0,00; L2()),v2 € XN L>®(0,00; V),
there exist a constant ¢(,, ., ;) > 0 and a function /AC(W,1 ) € L(€2) such that
[bi(t, 2, &, Coy oy 75w, V1, 02) |
. _ _ noos
S C(wahUQ) <|7]0‘p2 ! + |77‘p2 ! + ICO“D + k(w,vlqm)(l‘))
for a.a. (t,2) € Qr and every (£,{p,70,17) ER x R x R*! (i =0,...,n).
(B6) There exist Carathéodory functions b; o QX RXRxR"™ - R (i =0,...,n)

such that for a.a. x € Q and every ((p,m0,17) € R x R"™ ¢ € R, w €
Lo(Qu), 01 € X N L0, 00; L2(Q)), v5 € X N L(0, 00; V),
tliﬂolo bi(t, @, &, Co, Mo, 15w, V1, V2) = bioo(T, €7, o, 05 7)-
§—=¢
(AB) There exists a positive constant € such that for a.a. (t,z) € Q and every
€ ER, (G0, G0 ), (G0, G,y ) € RXR" X RXR™, w0 € L*(Quc), v1, 0 € X,

n

> (ui(t:x7§7(07<:770-,7]?'UJ7’U1-,'U2) —ai(t, 2, &G, €, ﬁoﬂ?;wm,vz)) G—G)

=0
+ Z <bi(t~,%f7 Cos M0, 13 w5 w1, v2) = bi(t, @, €, 4:07770:77;1077)17@2)) (i — 70:)
=0
> € (16— ol +1¢ = & + o = ol” + In = P
= 1(t, 2, o, Co, Mo, los w, V1, v2).

where 7 Qoo X RZXR? X L®(Qo) X X x X — R such that for w € L®(Q.,),
u, i, p, p € L>(0, 00; L3(2)),

lim [ 7t ult, o), a(t, 2), plt, ), Bt 2); w, v, p)d = 0.

taoo' Q
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(F5) For every fixed v € XN L>(0, 00; L*(2)) there is a constant m > 0 such that
(€ — W (@) f(t, 2, Goiv) < —m(€ - w'(x))?
for a.a. (t,7) € Qo and every (£, () € R

(G2) There exists Goo € V* such that flim 15(t) — Seollv+ = 0.

(H2) There exists Hs € V* such that Ilim [|H(t) — Hool|v+ = 0.
l—00

Remark 3.13. In conditions (A6), (B6) by the convergence of measurable functions

we mean the same as in Remark 2.17.

Now introduce A : L¥(Q) x V x V — V* and By: L¥(Q) x V x V — V* by
{Aso(w,u, p),v) = /ﬂgaim(%w(ﬂﬂ)w(l‘), Du(z),p(x), Dp(x))Div(z)dx
+/ﬂao,oo(xﬁw(x),utv),Du(x)m(f%Dp(x))v(x)dm
(Boo(w, u,p),v) : = /QZ:bi,oc(rnw(ﬂz)m(w),p(w),Dp(w))Dw(w)dr

+ / b (@,0(2), u(2), (2), Dp(2))o(z) da,
forveV.

Theorem 3.14. Assume (Vol), further, suppose that conditions (A1)-(A3), (A5),
(B1)-(B3), (B5), (F1), (F2), (F4) hold for every 0 < T < co. In addition, (F3*),
(A2Y), (A4*), (B2Y), (B4*), (A6), (B6), (AB), (F5), (G2), (H2) are satisfied. Then
there exist unique us € V,poo € V' such that the solutions w,u,p of (3.34)—(3.36)

possess the following convergence relations:

lw(t, ) = wllz=@) < llwoll @™,

t+1

u(t) — uy in L*(9), / lu(s) — uso|l} ds — 0,
¢

-1

t+1
/ Ip(s) — Pl ds — 0.
t—1

In addition,

Boo(“)*vuocvpoo) = He. (341)

Proof. Let w,u,p be solution of (3.13)—(3.15) in (0, 00) then from Theorem 3.12 it
follows w € L®(Qx), u € L=(0,00; L*(Q)), p € L=(0, 00; V3).

89



First we show that w(t,-) — w* in L>°(Q) as t — oo. Fix z € Q and assume
wo(x) > w*(z). By using similar arguments as in the proof of Proposition 3.5 we

obtain w(t, z) > w*(x) for ¢t > 0. Then condition (F5*) yields
ftz,w(t,z),u(t,z);u) < —m(w(t, z) — w*(z)).
Since w is absolutely continuous, it is a.e. differentiable in Q) so
(tx) = f(tz,w(t,z),ult,z);u) < —m(w(t,z) — w*(z)).
By the positivity of w — w* it follows

W't x)
— < -m
w(t,x) —w*(z) —
hence

w(t,r) — w*(z) < wo(x)e ™.

When wy(z) < w*(x) one has estimate
()™ < wlt, 1) — (@)

thus
llw(t, ) = wllz=() < llwollze@e™

Before the proof of the other convergences we note the following. By fixing w €
Lioe(Qoo), v1,v2 € X™ in condition (A2),

b2 P2
Jas(t,, €, Gor G o, w0, v, w)] < - (€) (Gl + G + Pl + [l + k()

for a.a. (t,2) € Qu, every (o, ¢), (n0,n) € R"! with constant ¢ = c(w, vy, v9) and
function ky = ki (w, v1,v9) € LY(2). Now passing to the limit as t — oo yields

i0e (€, Gos o) < €+ 1(€) (160~ + 1P~ + Il -+ [l -+ h(a)

so functions a; ~, can be estimated similarly as functions a; in condition (A2). Func-
tions b; o can be estimated similarly.

Now we show that problem (3.40)—(3.41) has got a unique solution u., € V,ps €
V for fixed w* € L*°()). By using similar arguments as in the proof of Lemma 2.19
it follows that operator (Ae, Boo): V XV — (V x V)* is bounded, hemicontinuous,
coercive and uniformly monotone. So that there exist unique o, poo € V satistying
(3.40)(3.41) Aco(ties) + Boo(Poo) = Goo + Heo. Thus by choosing u = 0 and p = 0
it follows that s, P are unique solutions of (3.40)(3.41).

90



In order to show the desired convergences we prove an integral inequality for u
and p. From equations (3.34)—(3.36) and (3.40)—(3.41) it follows
<9(t) - 9007“(75) - uoo> + <j{(t) - g{oovp(t) - poc>
= (Dy(u(t) — teo), u(t) — Uoo)
+ (A @, 0, P)] () = Acc (W, o, Poo), u(t) — o)
+ <[3(u,u,p)(w7 u, p)}(t) - 3oo("*‘)*y Uoo) poo)7 p(t) - poo>

(3.42)

where for fixed (w, v1,vs) € L2 (Quo) X X x X and ¢ > 0 operator [A(y,u)](t):
L (Qoo) X X x X — V* is given by

<[‘A(7U‘U1,’Uz) (u} u, p)} (t)v Z>

:AZai(t, z,w(t,z),u(t,x), Du(t,z), p(t,x), Dp(t, x); w, vy, ve) D;z(x)dx

+/ao(t,x,w(t,x),u(t,x),Du(t,x),p(t,x),Dp(t,x);w,vl,vg)z(x)dx
Q

with z € V. Operator By, ) is given in the same manner. Observe that the first
1
term on the left hand side of the above equation equals to §y/(t) where y(t) =
(u(t) — us)? (note that y is bounded in [0,00) by Theorem 3.12). Now consider
Q
the following decomposition on the right side of (3.42):

(Awup (@, u,P)](t) = As (@, o, Poo), ult) — tco)
+ ([Bwwp (@, u, P)](t) = Boo(w”, Usc, Poo), P(E) — Pc)
= ([Awup) W 4, P (1) = [A(wup) (W tioos Poo)] (), u(t) = tioo)
F ([ B ) (@, 1, P)(E) = [Boup) (W) oo, Poo)] (), P(E) — Poo)
+ ([Awum) (@, oo, Poo) (1) = Asc (W, oo, Pos ), u(t) — too)
F ([Boum) (@) too, Poo)](t) = Boo (W, oo, Po), P(E) — Peo)-

(3.43)

By using the e-inequality and condition (AB) on the right hand side of the above

inequality we have

<[‘A(wyu=P) (UJ7 u, p)] (t) - [‘A(wﬂhp) (‘W Uoo, pDC)] (t)r u(t) - uoc>
+ <[’B(w,u=P) (W7 Uu, p)](t) - [B(w,u,p) (Wv Uoos poo}}(t)a p(t) - pw)
> € (Jlult) = usollt + IP(t) — PollV)

epP eP
— —JJu(t) — use |t — —||Pp(t) — Poollt (3.44)
) flu(t) i » [p(t) %
1 .
- qEqH[‘AwaP)@u “ompocn(f) 7‘A:>O(w sucxnpw)‘ C‘I/*
1 .
- *qEqH["B (@s:0) (W Uoos Poo)| (1) = Boo (W™, Uos, Poo)[[{--
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We show that last two terms on the right hand side of (3.44) converge to 0 as t — oco.
Clearly,

H[‘A(w,u,p)(“-’vuompoc)](t) = Ao (W, Uso, pm)H(‘I/*
n

< Z/ Ja;(t,w(t), oo, Do, Poos DPoo; W, Uy P) = i 00 (W Uoos Diteo, Pooy DPoo) |
i=0 /&

The integrand on the right hand side of the above estimate is a.e. convergent in 2
as t — oo by condition (A6) since w(t,z) — w*(x) for a.a. x € Q. Further, condition
(A2) implis
|ai(t: Yy W(t~, ')a Uoo Duocv Poos Dpoo; W, u, P) - ai,oo(w*a Uoo, Duooy Poos Dpoc)‘q
< const - ([ler (@)= (@u) + ller (@)l (0))
X ([t |’ + [Dttcc|” + [Poc|” + [ DPoc]” + [lFa[| o)
where the right hand side is integrable in L'(2) thus Lebesgue’s theorem yields

1A 0.9 (@, oo Poo) ] (F) — Aco (@, oo, Poc) [[f+ — 0
as t — 0o. The convergence of the last term in (3.44) can be proved similarly, by
using (B2*), (B6*).
Finally, the left hand side of (3.42) may be estimated as follows

[(9(8) = Goor () — )| + 1 (3(1) = How, u(t) — )|
< =) = sl + = lp(0) = Pl (3.45)

1 1 )
—1G(t) = Guo|” + —||FH(t) — Ho||¥
+ 580 = Sulf + 1900 ~ 9l

Now, by choosing sufficiently small ¢ in (3.45) and by using (3.43), (3.44) and

the above convergences we obtain
y'(t) + const - [|u(t) — us |}, + const - [|[p(t) — poolly < ¢(2) (3.46)

where ¢(t) — 0 ast — oo and the constants are positive. By applying the continuous
embedding W1?(Q) — L*(Q) it follows
Y/ (1) + const - y(t)% + const - [|p(t) — pool’ < (1)
Now by using the arguments of the proof of Theorem 2.18 one may show that
this inequality implies flim y(t) = 0.
By integrating (3.46) over (T'— 1,7 + 1) we conclude
T+1

(T +1) = y(T — 1) + const - / ut) — oo [ dt

T—-1

T+1 T+1
+ const / Ip() = poclll dt < / 6(¢) dt.
T-1

T-1
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Clearly the right hand side tends to 0 as 7' — oo, and by the convergence of y(t),
yT+1)—y(T—1)—0 as T — oo.
which yields the desired convergences. The proof of stabilization is complete. |
As in the previous chapter, we may give explicit convergence “speed”. Suppose
(Est) There exist constants k* > 0, 3 > 1 such that

Hai(t% '#w(tv ) u()7 Du()7 ()7 Dp('); w, V1, U2)
- ai,oc('v“)* ')a u(), D“(')v P('), Dp('))”iq(n)
<kt
Hbi(ts K w(tx ')7 u() p(')v Dp('); w, vy, UZ)
= biso(w*(t, ), ul), p(-), Dp("))|

q
Vv

<kt

for every w € L®(Qu), u,p € V,v1,v9 € L=(0,00; L*(Q)) if w(t,:) — w* in
LOC(QOC) (2- = 07 e 7n)7

[ Ittt 0,0, 0. 0) B 2w, 2) o < R
Q
for a.a. t € (0,00) and every w € L=(Q), u, @, p, P, 1, V2 € L=(0, 00; L2()),

Hg(t) - goc‘
[[FH(#) = Hool

LSk,

*1—03
. <kt

Proposition 3.15. Assume (Vol), further, conditions (A1)-(A3), (A5), (B1)-(B3),
(B5), (F1), (F2), (F}) hold for every 0 < T < oo. In addition, (F3*), (A2%),
(A4*), (B2Y), (B4*), (A6), (B6), (AB), (F5), (G2), (H2) are satisfied with further
assumption (Est). Then for the solutions u, u., formulated in Theorem 3.14, y(t) :=

lu(t) — usll? and 2(t) := ||p(t) — Pucll¥ has the asymptotic property

/ y(s)*ds +/ 2(s)“ds < const - s
t t

holds for t > 0 sufficiently large and for

p 1
= ms¢ L T O
« IIldX{27 + 1}
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Proof. Fix v as above. Then as in the proof of Proposition 2.21, assumptions (I)
(III) imply
' (t) + const - y(£)* + const - z(£)% < const - t 7,

By integrating on interval (¢,00) (with ¢ sufficiently large) it follows
/ (¢ y(s)™ + ¢ 2(5)) ds <t 4 y(t) <P 4 y(t) + 2(1).
t

Now one proceeds as in the above mentioned proof and one may deduce a differential

inequality which implies the desired estimate. O

3.3.3 Examples

Now we give some examples satisfying Theorem 3.10, 3.12, 3.14. By using argu-
ments of Sections 2.2.3 and 2.3.4, one can easily see that the examples below satisfy

each condition of the theorems.

Case of Theorem 3.10

It is clear that examples (3.31)—(3.33) fulfil the conditions of the above theo-
rem if operators m, 7, To, K, K1 Lie(Qoo) — Lo (Qso), @ /\ I (Qs) — Lis(Qso),
¥, 19 Lloc(Qm) = Lig(Qw): 500t L (Qeo) — Llilc e I(QOO) b: Lo Q) —
Lﬁfc 2 722 () are of Volterra type and conditions (E1)-(E2) are satisfied for all

finite " > 0. E.g., the operators given after Proposition 3.9 serve as examples for

the above.

Case of Theorem 3.12

If some further assumptions are satisfied then example (3.31)-(3.33) fulfil the
conditions of Theorem 3.12. Suppose that the conditions above hold, in addition

/ H@O(Ul)](t,x”%dz
Q

T€[0,t] T€[0,t]

< |:css sup [|vy (7 )Hu(g) +xa(t )oq@ sup ||vy (7 )”?‘2(9) +1

for all v; € L*

loc

(Qoo) with some constants oy > 0, 0 < p; and function x;: R — R
such that llm x1(t) = 0, further, similar condition holds for 9 (by changing the
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indeces from 1 to 2, and L*(Q) to V4). For example, operator ¢, may have the form

[¢(v)] (/dm f:LdI)
Pt </ d(t, )1t x)|ﬁdx> or

[B(0)](t,2) = xa(t) o (Uﬂ \d(tw)\lv(tw)lzdx} é) ;

where d € L®(Qu), 1 < 8 < 2, &, 8, x1 € C(R) and |®(7)| < const - |r[Pr-a1—1,
|®o(7)| < const - |7[Pr~"171 lim yy (1) = 0.

T—00

Case of Theorem 3.14
Now consider for ¢ = 0, ...,n the following:

ai(t, @, &, Go, € Mo, 15w, U1, Ua)

= [m(w)](t, 2)[p(vn)](t, 2) [P ()] (t, 2) PE)Gl (o ¢ 0 m) P72,
bi(t, @, €, Co. 0. 75w, 01, 02)
= [s(w)](t, 2)[A(w)](t, 2) [9(v2)] (8, @) R(E)mil (Coy 10, ) [P~

(3.47)

(3.48)

Suppose

(B3) a) Operators 7 Li5(Qne) — L5 (Quc)s 9103 (@) — L35(Que) ae of
Volterra type, further, for every 0 < T' < oo, m: L¥(Qr) — L>*(Qr),
o, LP(Qr) — L*°(Qr) are bounded, ¢ and 1 are continuous, and if
(wg) is bounded in L*(Qr) and wy — w a.e. in Qp then m(wy) — 7m(w) in
L>(Qr). In addition, P € C(R), and there exists a positive lower bound

for the values of 7, ¢, ¥, P

b) There exist Mo, Yoo, Voo € L®(£2) such that for every w € L™(Qx), v1 €
X% (1 L%(0, 005 L3(Q)), vs € X N L=(0, 00, V),

Jim [ (w)](2, ) = Too [ L2() = 0,

}ggc Ip(w)](t, ) = ocllioe(@) = 0,
Jn ([ (v2)](E, ) = Yoolloe(@) = 0.

(E4) a) Operators k: L2 (Qe) — Lo (Qo), X\ 0: Li) (Qoo) — LS (Quo) are of
Volterra type, further, for every 0 < T' < oo, k: L¥(Qr) — L>®(Qr),
A\ LP(Qr) — L®(Qr) are bounded, A and o are continuous, and if
(wy) is bounded in L>®(Qr) and wy, — w a.e. in Qr then r(wy) — K(w) in
L>®(Qr). In addition, R € C'(R), and there exists a positive lower bound
for the values of k, \, ¥, R.
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b) There exist Koo, Ao, Voo € L(Q) such that for every w € L®(Qx),v1 €
XN L=(0,00; L2()),v2 € X N L>(0,00; V)

Jim [[[5(w)](t, <) = Fooll (@) = 0,
Jim @], ) — Aoy =0,
flgg} I[P (v2)(t, -) = Dol Lo () = 0.

By using similar arguments as in Sections 2.2.3, 2.3.4 and Proposition 1.58 we

obtain

Proposition 3.16. Suppose 2 < p < 4 and (E3)-(E4). Then the above (3.47)—
(3.48) functions satisfy conditions (A1)-(A3), (A4*), (A5)-(A6), (A2"), (B1)-(B3),
(Bf*). (B5)~(B6), (B2"), (AB) with py = py = p.

Consider
ai(t, ., &, o, €, 1o, 1 W, V1, V2)
= Gil(Co, QI + [ (w)](t, 2)[d(v1)] (8, 2) P(€)Gil (Go, G, 0, )72,
bi(t, @, &, Co, mo, 115 W, V1, v2)
= Gil(mo, M~ + [s(w)](¢, 2) (8, 2) [0 (v2)] (¢, ) R(E)mil (Go, 70, m) [~
where 2 < r <4 < p and (E3)-(E4) hold then it is easy to see that these functions

satisfy conditions (A1)-(A3), (A4*), (A5)-(A6), (B1)-(B6), (AB) with p; = py =
p > max{2,r}. E.g., operators 7, ¢ may have the form

(3.49)

(3.50)

[r())(t,2) = x(#) | |w]’ + 7o (2)
Q

e )](t,2) = K1) / jd(t, ) [o(t, D) do + o),

where [lim x(t) =0, llim X(t)=0and d € L*(Qx),1 < 8 < 2. The other operators
[—00 —00
may have similar form.

As an example for function f consider, e.g.,

F(t,2,, o o) = —(€ - w*(x) / lo(t, 2) P da

where 1 < 3 < 2.
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Case of Proposition 3.15

Now let functions a;, b; have the form:

ai(t, ., €, o, ¢, Mo, 13w, v1, v2) = P(E)G(Co, €m0, m) P2,
ao(t, 2, €, o, €, 1o, M3 w, 01, 02) = P(E)Gol(Co, €m0, )P

+olt) X ([ / a<t,e>\v1<t,f>|2df} ) ,

bi(t, 2, &, Co.mo, M3 w, v1,v2) = R(Emi| (o, mo. 1) [P
bo(t, T, 67 C(]a Mo, 15 W, V1, ’U2) = R(§)771|(<0 o, n)‘p*?

Lo ( [ / b(t,mvz(t,s)w&} )

where a,b € L>®(Q), ¢, %, x,X: [0,00) — R are nonnegative functions such that
(1), 8(1) < const - 777 x(7), x(7) < const - |7[P!. By using the arguments of
Section 2.2.3, 2.3.4 and Remark 2.23 one can show that the above functions fulfil
the conditions of Proposition 3.15.
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Summary

Every human activity, good or bad, except mathematics, must come to an

end.
Paul Erdés

In this dissertation, we study systems of nonlinear parabolic differential equa-
tions that may contain nonlocal dependence on the unknowns. Such problems may
occur, e.g., in diffusion processes (heat or population) where the diffusion coefficient
may depend on the unknowns in a nonlocal way. For example, in population dy-
namics the growing rate of a population may depend on the size of the population,
mathematically, on the integral of the density.

The mathematical background of our investigation is the theory of operators of
monotone type. We demonstrate and apply some methods of this theory to study
two types of systems. The first type consists of parabolic equations and the second
type contains three different types of equations: an ordinary, a parabolic and an
elliptic one. The latter problem can be considered as a generalization of a fluid flow
model in porous medium.

For both systems we show, under suitable conditions, existence of weak solutions
in time interval (0,7) where 0 < 7" < oco. In addition, we study the long-time
behaviour of the solutions. Boundedness and stabilization, i.e., the convergence to
equilibrium as ¢ — oo is shown. An estimate on the rate of this convergence is given.
For a modified problem we prove existence of periodic solutions. Besides theoretical
results, we illustrate our assertions with some examples.

The results on the first system are based on the works of the author’s supervisor
made on this topic. These results are applied to the second type of system. In
this case the method of finding weak solutions, which is the so-called successive
approximation, and the choice of the space of solutions is a new idea which differs
from the usual tools concerning the topic of monotone operators.

The topic of further research may be some numerical investigations. For the
second model these may be especially relevant since the successive approximation

serves as a numerical method.
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ésszefoglalés

Minden, ami emberi, akar rossz, akdr jo, elébb-utébb véget ér. Kivéve a

matematikat.
Erdés Pél

E munkban nemlinedris differencidlegyenletek olyan rendszereivel foglalkozunk,
amelyek az ismeretlen fiiggvényektdl nemlokalis médon (azaz nem csak adott pont-
beli értékeiktdl) is fiigghetnek. Ilyen tipusi problémak eléfordulhatnak tobbek kézott
olyan (héterjedési vagy populdciédinamikai) diffiziés folyamatokban, amelyekben
a diffuzidés egyiithaté az ismeretlenektél nemlokalisan fiigg. Példaul egy populacid
novekedési rataja fiigghet a populdcié méretétol, azaz a stiriiségének integraljatol.

Vizsgélataink 6 matematikai eszk6ze a monoton tipusi operatorok elmélete. Be-
mutatunk és alkalmazunk néhdny médszert e témakorbél két specidlis nemlinedris
differenciél-egyenletrendszer tanulmanyozasara. Az egyik csupa parabolikus egyen-
letbol 4116 rendszer, a masik harom kiilonbozé tipusi egyenletbdl all: egy kdzonséges,
egy parabolikus és egy elliptikus differencidlegyenletbdl. Ez utébbi probléma egy
porézus kozegbeli folyadékaramlasi modell dltalanositdsaként foghaté fel.

Mindkét rendszer esetében megfelel6 feltételek mellett belatjuk gyenge megoldas
létezését véges és végtelen iddintervallumon. Megvizsgaljuk a megoldédsok aszimp-
totikus tulajdonsdgait: a korldtossdgot és a t — oo esetén vald stabilizaciot, azaz
egy staciondarius allapothoz val6 konvergencidt. A konvergencia sebességére becslést
is adunk. Ezt kévetéen modositjuk a kiinduldsi problémat, hogy értelmezhessiik peri-
odikus megoldas fogalmat és igazoljuk létezéstiket. Mindezek mellett eredményeinket
példakkal egészitjik ki.

Az els6 tipust rendszer esetében eredményeink a szerzd témavezetdje éltal e
témakorben kapott kordbbi eredmények folytatdsai. A mdsik rendszer esetében az
alapterek irodalomban megszokottdl eltéré megvalasztédsa, illetve a szukcessziv ap-
proximacié moédszerének alkalmazédsa lesz a vizsgdlataink kulcsa.

Tovéabbi kutatas targyat képezheti az egyenletek numerikus szempontbdl valo
vizsgélata. Ez a mdsodik rendszer esetében kiilonésen érdekes, hiszen a szukcessziv

approximacié numerikus modszerként is hasznédlhato.
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