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A tudomány és művészet hazája nem a lét, az „esse”, 

hanem a lehetőség, a „posse”, s ha a létben megnyilvánul, 

attól a lét lesz gazdagabb; a tudomány és művészet részéről 

végtelen alázat, hogy a létben magát megnyilatkoztatni engedi, 

hiszen minden alakot-öltése fogyatékos. 

WEÖRES  SÁNDOR  

 

 

Preface 
 

 

Since the first Venus statues carved by the prehistoric man, artists attempt to reach the 

divine and bring it from the heaven down to the earth, to the community. Similarly, science 

aspires to get acquainted with the phenomena of the world and to understand their nature. As 

no artist has ever been able to capture and artificially reproduce the ultimate Beauty, scientists 

have never found the Truth in its entirety. Art and science, as stated by Sándor Weöres in its 

work entitled Towards completeness, are necessarily incomplete and deficient in our world. 

Nevertheless, science struggles to understand the complex nexus of things for several 

thousand years. Recent methodical improvements, especially the rapidly increasing 

computational capacity and mathematical systems theory enable us to find answers or at least 

approximations for complex questions in a new, complex manner. Prediction of the behavior 

of drug molecules in the human body is one of the most complex questions. It is not 

surprising that pharmacology has not yet solved the problem of capturing the entire 

bioactivity profiles of small-molecule compounds. Consequently, major side effects might 

remain hidden and endanger the patients’ health – or, on the other hand, potentially beneficent 

alternative uses of drugs were rarely recognized. 

The early pharmacologic theories explained drug-effect associations in a mechanistic 

manner, implying that a drug selectively acts on a specific biological target and affects its 

function like a magic bullet (Ehrlich). Now the tide seems to turn: drugs are recognized as 

affecters of complex biological networks. Systems-based approaches are gathering larger and 

larger ground, bringing a holistic view into drug research and giving an opportunity to reveal 

the full effect profiles of drugs. 
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A similar shift of scientific viewpoint occurred in a much smaller but not simpler system: 

a protein. In Emil Fischer’s time, proteins were considered as static objects whose interactions 

with other molecules could be described as the interaction of two complementary shapes, a 

key and a lock. Now, proteins ceased to be purely mechanical objects; they become dynamic, 

“breathing” particles. In contrast with the “molecular machinery” approach, it is now revealed 

that proteins show more flexibility than anything engineered by a human being. The 

Department of Biochemistry (and its ancestor), where my PhD work was carried out, has a 

great tradition of the paradigm of flexibility and the handling of complex problems, from 

Albert Szent-Györgyi to the present work of László Gráf [1]. 

In my thesis, I assess these two levels of complexity. First, I present a newly developed 

approach that attempts to predict hidden effects on known drugs. I also show that protein 

dynamics can be approached with internal viscosity, a specific measure of protein flexibility 

in an interdomain conformational rearrangement. The two topics are related not only in 

complexity but also in the similar treatment needed to process them. In pharmacological 

effect prediction, complex drug-protein interaction patterns and bioactivity profiles must be 

handled that mean an enormous amount of information. Dimension reduction and capturing of 

the important factors are the keys to solve the main problems of pharmacology. On the other 

hand, a single protein possesses an almost infinite complexity. For example, human trypsin 4 

contains 216 amino acid residues. Consider only two conformers for each residue – this will 

result in 2216 possible conformations of this single protein [2]. This practically infinite 

conformational space makes it impossible to understand protein flexibility; dimension 

reduction is needed to find the smaller system in which flexibility can be studied. The 

activation of a human trypsin isoform, fine-tuned by a single residue at a specific position in 

the protein, offers us an ideal model system. 

Therefore, my thesis consists of two parts. In the first part, I present the holistic approach 

which lead to the development of Drug Profile Matching method which is able to 

systematically capture the bioactivity profiles of drug molecules in their entirety. I give a 

short overview of the different branches of in silico pharmacology, highlighting their 

advantages and disadvantages. After that, I present a recent paradigm called 

polypharmacology, i.e., the observation that many drugs affect multiple targets. 

Polypharmacology can bring the long-awaited breakthrough in drug discovery: it is a key to 

understand and catch the full spectrum of pharmacological actions of a compound in the 

human body. I review the latest attempts to exploit polypharmacology in bioactivity 

prediction and protein binding site description. Then, I present our starting hypothesis that 
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interaction profiles of drugs, even if generated in silico, correlate with their bioactivity 

profiles. I present different ways of effect prediction based on polypharmacology: a one-

dimensional method and a more sophisticated, multidimensional one, the so-called Drug 

Profile Matching. Both approaches justify our starting hypothesis and are able to predict full 

effect profiles of drugs with high confidence. I point to our secondary finding that binding site 

geometry plays a minor role in the determination of affinity profiles in general; however, 

there are certain drug categories for which binding site shape is a crucial feature. I prove that 

in silico interaction profiles serve sufficient information for reliable bioactivity prediction 

without the consideration of the interactions of drugs with known targets in vivo. Results of 

in-house developed and independently performed in vitro and cell culture tests of certain 

effect predictions will be discussed. I summarize the recent and the possible future 

applications of Drug Profile Matching, i.e., drug repositioning predictions and bioactivity 

prediction of drug candidates, respectively. 

In the second part, I describe the study of the effect of point mutations on the rate of a 

specific conformational rearrangement. Mutations were introduced in a hinge region playing a 

major role in the activation of human trypsin 4. I prove that the rate of the conformational 

transition of the trypsin mutants is inversely proportional to the solvent viscosity. This 

phenomenon is interpreted in terms of the Kramers’ theory. I conclude that the rate of the 

conformational change during activation is determined by the internal viscosity around this 

hinge site and the flexibility of a protein regarding this specific conformational transition can 

be affected by point mutations at the hinge region. This work is the first study that points to 

the effects of internal friction on the energy barrier of an enzymatic transformation. Since a 

new methodology was needed to study enzymatic reactions in a wide temperature range, we 

developed and applied a novel transient kinetic equipment called heat-jump/stopped flow. 

Based on our recent experiments, we propose that friction compresses the complex features of 

an enzymatic reaction, i.e., the inherent flexibility of a protein and the roughness of the 

potential energy landscape, into a one-dimensional parameter, the internal viscosity. 

In summary, my PhD work comprises the issues of multiparameter systems and their 

common methodical problem, i.e., the experimental selection of the relevant features. 
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Glossary 
 

DOCKING: Computational mapping of the conformational space in order to find the most 

efficient conformation of two interacting molecules, e.g., a drug and a protein. The term 

“most efficient” is evaluated by scoring functions that estimate binding affinity, i.e., the 

strength of interaction between the two compounds. 

POLYPHARMACOLOGY: The binding of a drug to multiple targets. 

MOLECULAR INTERACTION FINGERPRINT (MIF): A vector of calculated binding free energies 

for a compound against a protein set, compared to a vector of reference values. 

MOLECULAR AFFINITY FINGERPRINT (MAF): A vector of calculated binding free energies for a 

set of small molecules against a protein, compared to a vector of reference values. 

INTERACTION PROFILE (IP): A series of in silico calculated binding affinity values for a drug 

against a predefinied set of proteins. This profile reflects the interaction properties of the 

small molecule. 

EFFECT PROFILE (EP): An interpretation of the bioactivity properties of a compound. In this 

work, it refers to a binary fingerprint containing 181 entries for the studied 181 effects. 

PRINCIPAL COMPONENT ANALYSIS (PCA): A mathematical transformation of several possibly 

correlated variables into a smaller number of uncorrelated variables, i.e., the principal 

components. Principal components explain the variance of the data set in a decreasing order. 

LINEAR DISCRIMINANT ANALYSIS (LDA): A commonly used statistical approach to identify 

the best discriminating surfaces in the multidimensional space of feature sets that generate 

complex pattern classes. 

CANONICAL CORRELATION ANALYSIS (CCA): A method to study the relationship between two 

datasets by creating derived variables that are linear composites of the original variables. Its 

principal goal is to simplify complex relationships, while providing some specific insights 

into the underlying structure of the data. 

CANONICAL REDUNDANCY ANALYSIS (CRA): CRA is used to study the “overlap” between 

two sets of variables in terms of explained variance. This approach allows for the 

determination of the amount of variance (or redundancy) that the canonical components 

account for in their own set of variables and in the opposite set of variables. 
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S1 PROTEASE FAMILY: An endopeptidase protein family with a common catalytic mechanism 

which a serine residue is involved in. 

TRUE POSITIVE RATE (TPR): The fraction of true positives out of the positives; also known as 

sensitivity. 

FALSE POSITIVE RATE (FPR): The fraction of true negatives out of the negatives. It can be 

referred to as (1-specificity). 

RECEIVER OPERATING CHARACTERISTIC (ROC): A TPR vs. FPR plot, referring to the 

classification accuracy, helps in decision making. 

AREA UNDER THE CURVE (AUC): Area under a TPR vs. FPR plot, called Area Under the 

Curve (AUC) is the measurement of the accuracy of classification. AUC=1 means perfect 

classification while a random classification results in an AUC value of 0.5. 

TANIMOTO SIMILARITY INDEX: Tanimoto coefficient is a commonly used measurement for the 

comparison of two binary fingerprints with the same length. E.g., for molecules A and B, if 

NA and NB represents the number of “1” entries for compound A and B, respectively, and NAB 

is the number of common “1” entries in both fingerprints, Tanimoto similarity coefficient is 

calculated as:  

T=NAB/ ( NA + NB – NAB) 

Tanimoto dissimilarity is also used: 

TD=1-T. 
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Part I: Drug Discovery by Polypharmacology-

based Interaction Profiling 
 

 

 

Introduction 
 

1. Drug development: an overview 
 

The behavior of a drug molecule in a biological system is immanently ambiguous. From one 

hand, a drug or other xenobiotic affects the biological system, possessing bioactivity and 

toxicity, commonly referred to as pharmacodynamic (PD) events. On the other hand, the 

biological system also acts on the drug by absorbing, distributing, metabolizing and excreting 

it. These actions are collectively named as pharmacokinetic (PK) events. Here, a single 

protein, isolated cells or even an entire human organism can be considered as a biological 

system [3]. Pharmacodynamic and pharmacokinetic events are naturally and necessarily 

interdependent. A drug can affect the PK abilities of an organism, while absorption, 

distribution and elimination determine and modify the spatial and temporal distribution of PD 

events. The situation becomes more complex when one considers metabolism which produces 

compounds with their own PD and PK properties. (Adsorption, distribution, metabolism and 

elimination are often referred collectively to as ADME properties. The abbreviation is 

sometimes extended with a T that stands for toxicity.) 
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Figure 1. Drug development pipelines. A. Traditional drug development. B. Drug repositioning. (After [4], 

modified). 

 

In a nutshell, the aim of drug development is to provide bioactive compounds that show 

beneficent PD and PK properties, in order to restrain human diseases, increase life expectancy 

and elongate the productive lifespan of human beings. To achieve this goal, a pipeline of drug 

development has been evolved during the cca. 100 years of pharmaceutical industry. 

Traditional or de novo drug discovery and development starts with target discovery, a survey 

for a potentially drugable protein (Figure 1a). Actually, only 600 human proteins are 

registered as known targets of the cca. 1,200 small-molecule drugs approved by the U.S. Food 

and Drug Administration (FDA) (own data). Serendipity often helps finding new targets; i.e., 

selective serotonin inhibitors were identified during a screening for antihistamines [5]. In the 

next step, compounds are screened against the target, performing a succession of in silico, in 

vitro, ex vivo and in vivo preclinical screening phases. The active compounds (leads) are 

further optimized in order to develop molecules with better PD/PK properties. After this level, 

clinical screening phases begin [6]. A Phase I clinical study examines the effect of the drug 

candidate in 20-80 human beings and assesses its effectiveness in terms of PD/PK events. If 

the observations are in synchrony with the PD/PK events described before, a Phase II study 

can be performed, involving no more than a few hundred patients. Here, efficacy of the drug 

in a specific therapeutic use is examined and the side effects are monitored. After a 

successfully completed Phase II study, the drug candidate enters Phase III in which a larger 

number of patients are involved. Longer-term safety and efficacy studies are carried out in 

this stage. If a candidate proves its applicability in a specified cure, the registration procedure 

begins and the drug can finally reach the market. The whole procedure takes 10-17 years and 
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the success rate is less than 10%. Nowadays, post-marketization experiences on efficacy and 

adverse events (side effects) are collected and this stage is sometimes referred to as Phase IV. 

The results of pharmaceutical industry are unquestionable; however, there is still room for 

improvement. The simplificative approaches of the past decades are passing away; making 

space to a newly emerging body of complex methodologies. The increasing computational 

capacity enables us to handle biological/medical data of a level of magnitude that was 

impossible even ten years ago. This fruitful tendency in informatics opened the way to 

complex, systems-like approaches that are closer to the organism in their complexity than the 

former attempts. As a mathematical systems theory states, “the scale and the complexity of 

the solution should match the scale and complexity of the problem” [7]. This law stands in 

biology, or more closely, in pharmacology as well. In order to develop appropriate cures for 

complex diseases like cancer, cardiovascular disorders and mental illnesses, complex models 

should be applied. With the blossoming number of public databases and in silico tools, the 

amount of data is not a limiting factor anymore; the question is now “what is valuable”. What 

kind of experiments (including data mining) should be performed in order to describe the PD 

or PK properties of a compound and how can one extract the information needed to catch 

PD/PK events in their entirety? To answer these questions, we first take a look on the 

conventional drug development pipeline and review its actual troubles. Finally, we take a 

glimpse of the field of in silico pharmacology to see the attempts to overcome the concerns 

about drug development. 

 

1.1 Current scientific problems 
 

Generally speaking, prediction of processes or unknown parameters of complex systems, e.g. 

pharmacology is one of the most exciting questions in modern science. Predicting effect 

profiles of drugs and drug candidates is a great challenge. 

Many attempts have been made to unravel the bioactivity profiles in their entirety. In this 

work, I will summarize the different approaches in in silico pharmacology, from the first 

quantitative structure-activity relationships to the novel techniques that try to estimate the 

whole bioactivity pattern of a compound with a series of calculations. In synchrony with the 

recent findings, effect profile of a drug is a complex feature, since a molecule entering the 

organism usually interacts with multiple targets as indicated by the theory of 

polypharmacology [8-10]. Multiple actions may be important for clinical efficacy, especially 
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in case of complex diseases. For example, psychiatric drugs affecting several well-defined 

proteins have high efficacy [11]. The earlier single target-based approaches therefore might 

prove insufficient for identifying the full spectrum of effect profiles (EPs) [7]. 

Hitherto, heuristic and empirical experiences have played the principal role in identifying 

various effects of bioactive molecules. Some recently developed systematic prediction 

methods [12-14] increase the efficiency of drug development and safety control. A logical 

continuation of these approaches would be to relate atomic-level information with bioactivity 

profiles. 

Our working hypothesis was that a feature set must comprise similar complexity to that of 

clinical effect profiles in order to yield systematic information with predictive power for the 

effect profiles [7]. The task was to extract the relevant information stored in complex feature 

sets of drug molecules in order to unravel effect profiles in their entirety. To accomplish this, 

in the present study an atomic-level strategy is introduced for the prediction of the effect 

profiles of drugs by systematic mapping of their molecular interactions. For this, the central 

assumption of polypharmacology is adopted and it is presumed that similar interaction 

profiles (IPs) of molecules are related to their similar biological actions. In order to test this 

assumption empirically, we generated IPs for 1,226 FDA-approved drugs by calculating their 

binding affinities for a set of proteins and the IPs were correlated with the EPs of all drugs. A 

correlation between IPs and EPs would hold out the promise for the discovery of novel effects 

of drugs and prediction of side effects of drug candidates in the development phase. The aims 

of my work are to uncover IP-EP relationships, and to derive general rules for effect 

prediction. Our principal findings were validated statistically and confirmed by a series of 

systematic, unbiased in vitro experiments. 

We were also interested in the importance of a molecular feature, i.e. the shape of protein 

binding sites that build up the IPs. As a secondary aim, this question was assessed by 

combining IPs with geometric descriptors for each protein. We found that, generally, the 

geometry of the binding site is not a pivotal factor in selecting drug targets. Nonetheless, 

based on strong specific associations between certain IPs and specific geometric descriptors, 

the shapes of the binding sites do have a crucial role in virtual drug design for certain drug 

categories. 
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1.2 Current problems from the viewpoint of the pharmacological industry 
 

Extreme cost demands of pharmacological research, combined with its relevance on the life of 

human beings made a strong interdependence of science and industry – an interdependence 

some consider to be unnatural and of hazardous economical and social importance. Presenting 

the industrial point of view in a PhD thesis might seem unusual, but due to this undeniable 

relationship, I believe there is space for these considerations in a pharmacology-related work. 

 
Figure 2. Success rates in clinical phases in different therapeutic categories. (After [15], modified) 

 

The high failure rate of drug candidates [15] due to unexpected adverse reactions and lack 

of expected clinical efficacy have become fundamental problems of drug development. 

Generally, only 11% of the compounds entering to the clinical phase finish as a marketed 

drug (Figure 2). For some therapeutic areas, the rate is even worse (e.g. central nervous 

system agents and oncology). The most abundant reasons for attrition in 2000 are efficacy, 

toxicology and clinical safety issues (26 – 12 %). In 1991, more than 40% of the applications 

failed due to PK/bioavailability problems that were far less abundant in 2000 (less than 10%). 

This fact points to the improvements in PK property prediction in the decade while safety 

issues are still to be overcome. Of course, the more and more rigorous regulatory agency rules 

are also responsible for the different attrition reasons; however, it is clear that clinical safety 

must be the highest standard all time. The failure rate of drug candidates becomes more 

disturbing if we considered that only 5 out of 40,000 molecules tested in animals reach human 

testing [16]. 
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Figure 3A. Drug launch costs before 

and after 2000. Critical path is a term 

applied for clinical phases since financial 

needs and failure probability increases here 

rapidly. Panel B shows the number of drug 

applications submitted to FDA shows a 

decreasing tendency. NME, i.e., new 

medical entity is a compound with new 

molecular structure (instead of a 

modification of a previously existing drug). 

BLA stands for Biologics License 

Applications. [17] 

 

Attached to this fact, drug 

development costs are continuously 

increasing: after 2000, the estimated 

investment needed per successful 

compound reached 1.7 billion dollars 

(from 1.1 billion dollars before 

2000) [17] (Figure 3a). Despite the 

great efforts and resources spent on 

biomedical research, the number of new medical entities is decreasing year-by-year (Figure 

3b). Moreover, a definite bias has been emerged in pharmaceutical industry from de novo 

drug discovery towards drug repositioning or repurposing, a much safer, cheaper and faster 

way of drug development that seeks for new therapeutic applications of existing drugs [4]. In 

this case, many safety and toxicity issues are known from previous tests thus repositioners 

have to prove the efficacy only. Considering that our knowledge is limited even for the well-

studied drugs, it is not unlikely to find new uses for them. Some typical examples were 

sildenafil (repositioned from an antianginal agent to the treatment of male erectile 

dysfunction) and topiramate (from an antiepileptic agent to antiobesity) [4]. Finasteride was 

repositioned from the treatment of prostate enlargement to an anti-baldness agent after the 

discovery that its target, 5α-reductase, is involved in these distinct processes [18]. The feared 

thalidomide, that once caused severe fetal defects by administering as an anti-emesis agent for 

pregnant women, was recently rehabilited as an antileprosy drug [19]. 

Drug repositioning generally needs 5-8 years from discovery to marketization [4] (Figure 

1b). The risk is definitely smaller compared to de novo drug discovery especially when the 
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EC50 value for the new effect, i.e. the concentration of therapeutic applicability, is similar to 

the EC50 value of the already approved effect. Although playing a sure game seems 

economically more rewarding than the hazardous de novo development, focusing on 

repositioning highly reduces the chemical space for searching and, in a larger perspective, 

might result in an even greater decline in drug development. 

Facing this alarming situation, the U. S. Food and Drug Administration (FDA) underlined 

the importance of the application of fast and cost-effective in silico approaches [17]. As FDA 

expressed, the wide-spread usage of in silico filtering/screening methods before in vitro / in 

vivo assays might decrease the number of failed drug candidates in clinical studies (“fail fast, 

fail cheap”). The urgent need of the improvement of efficiency and effectiveness has also 

been highlighted in the 2005 Pharma Report of PriceWaterhouseCoopers and by Eli Lilly at 

the Drug Discovery Technology Conference in Boston [16]. Some recent, unfortunate failures 

of approved drugs like Vioxx (rofecoxib) (www.drugrecalls.com/vioxx.html) [20] point to the 

deficiencies of the animal tests i.e. undesired effects and adverse reactions might remain 

hidden even in thoroughly designed animal studies. Moreover, some adverse reactions cannot 

be detected in animals, e.g. nausea, headache and cognitive impairment. In silico approaches 

based on information collected from human applications (clinical trials, post-market data and 

repositioning claims) can overcome this phenomenon which also strengthens their 

importance. Thus, computer-aided drug discovery and development (CADDD) is able to 

reduce time and cost requirements of different levels of drug development, along the whole 

length of the development pipeline [16, 17]. 

 

2. In silico pharmacology 
 

In silico pharmacology is a rapidly growing area that uses biological and medical data from 

different sources in order to create computational models or simulations for predictions in 

medicine [21]. It uses computational power to streamline drug discovery and development 

process and can be applied throughout the whole drug development pipeline [16]. In this 

section, I present an overview of the different approaches in the field of in silico 

pharmacology, following the classification system published in the excellent work by Ekins et 

al [21, 22], among others. 
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2.1 Quantitative Structure-Activity Relationships 
 

Quantitative Structure-Activity Relationships (QSARs) were the first initiatives in the field of 

in silico pharmacology. Generally, a QSAR is a linear mathematical model that sets up the 

correlation between a set of structural properties and a desired activity/toxicity/ADME 

profile, i.e., a PD/PK event. A typical QSAR model uses a training set of several dozen 

molecules which the tuning of the parameters are done for. Then, the derived QSAR is 

applied on a test compound set that must be similar to the training set in terms of structural 

properties. The reliability of the QSAR function can be calculated from this test set. 

The most widely used QSARs are descriptor-based methods. Descriptors are numerical 

representations of chemical structure. One dimensional descriptors are the most 

straightforward ones, e.g. molecular weight, logP (water/octanol partition coefficient), 

refractivity, number of rotatable bonds, number of H donors and acceptors etc. In contrast 

with their simplicity, a number of good correlations were set up using such descriptors, i.e. the 

QSAR for the possibility of passing the blood-brain barrier, one of the most exiting questions 

in drug development (e.g. [23, 24]). 2D descriptors are based on the topology of the molecule 

and describe their two-dimensional topology, e.g. the Balaban index correlates with the 

branchedness of the compound. 3D descriptors are less common; they can be determined from 

the 3D structure of the molecule thus an aligned set of 3D structures of the applied 

compounds are needed for 3D-QSARs. 

In some cases, rules are used in QSARs instead of structural descriptors. The rule-based 

methods are driven by a large set of available data on the studied biological activity, i.e. the 

possible biotransformation routes of drugs [25]. 

 

2.2 Virtual Ligand Screening 
 

Virtual Ligand Screening (VLS) is the in silico adaptation of High Throughput Screening 

(HTS), the methodology that searches among an enormous number of structurally unrelated 

compounds for the desired activity in vitro or in vivo. HTS techniques yielded far worse 

performances than anticipated before [26] thus pharmaceutical industry quickly introduced 

VLS into the drug development pipeline when computational capacity enabled its 

involvement. To perform VLS, structural information is needed for the ligands and/or for the 

target of interest. 
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2.2.1 Ligand-based VLS strategies 
Ligand-based VLS methods adopt the principle that structurally similar molecules should 

possess similar PD/PK properties [27]. Therefore, molecules in a database are scored based on 

their structural similarity to the known active ligands. Chemical structures are often coded as 

one-dimensional structural fingerprints for easier data handling (e.g. ChemAxon fingerprint, 

[28] ). 

A special case of ligand-based VLS is pharmacophore design. The pharmacophore is, 

according to the extensive and rigorous definition by IUPAC, “the ensemble of steric and 

electronic features that is necessary to ensure the optimal supramolecular interactions with a 

specific biological target structure and to trigger (or block) its biological response. A 

pharmacophore does not represent a real molecule or a real association of functional groups, 

but a purely abstract concept […] can be considered as the largest common denominator 

shared by a set of active molecules.” [29] Pharmacophore design was used in many studies 

[30, 31]. 

 

2.2.2 Target-based VLS strategies 
Target-based screening is one of the most wide-spread in silico pharmacology techniques. The 

structural information on the selected target protein needed to perform target-based screening 

might originate from different sources: 

1. Crystal structure obtained by X-ray crystallography or NMR. 

2. If the crystal structure is unavailable, the structure of a close relative of the protein of 

interest can be used. By homology modeling [32], a model of the protein of interest 

can be fitted to the peptide backbone of the template structure and the side chains can 

be added and minimized in a second step. 

Actually, Protein Data Bank contains more than 63,000 different three-dimensional structures 

of proteins [33]. However, as of 2005, 34.5% of the enzyme structures in PDB correspond to 

only 34 proteins and there is a clear bias towards the soluble proteins, due to methodologic 

issues [34]. Unfortunately, many important pharmacological target proteins are membrane 

receptors that are uneasy to crystallize. Solving the 3D structure of β2-adrenergic receptor was 

a significant breakthrough in 2007 [35]. Not long after, several other pharmacologically 

relevant GPCR structures have been determined [36, 37]. 
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Once one has an experimentally determined or a modeled structure of the target protein, a 

library of smaller ligands can be screened against it. This screening involves two steps: (1) to 

find the best conformation of the ligand in the binding site, and (2) the calculation (or 

estimation) of its binding affinity. The first step, i.e. mapping of the conformational space is 

commonly reffered to as docking while the binding affinity evaluation is called scoring. A 

number of docking and/or scoring programs exist nowadays; for a summary of the most 

widely used softwares and functions see Tables 1 and 2, respectively. Conformational space 

screening can be done through matching algorithm, genetic algorithm, Monte Carlo search or 

incremental construction. E.g., the widely used AutoDock uses a Lamarckian genetic 

algorithm to produce “generations” of possible compound conformations and applies the 

survival of the fittest (i.e., the lowest energy conformation) rule for selection between the 

conformers. Torsional angle data are stored in a “gene” for each molecule and crossing-overs 

and mutations are allowed. 

 

Software Method References 

AutoDock4 Genetic Algorithm [38] 

eHITs Incremental Construction [39, 40] 

Glide 4.0 Hierarchical filters and 

Monte Carlo 

[41-43] 

GOLD 3.1 Genetic Algorithm [44, 45] 

HADDOCK Simulated Annealing [46] 

PatchDock Shape complementarity [47] 
 

Table 1. Commonly used docking softwares. (From [48], modified.) 

 

Scoring Function Software examples Type References 

ChemScore GOLD empirical [49] 

GlideScore Glide empirical [41, 50] 

X-SCORE standalone empirical/consensus [51] 

AutoDock AutoDock force field/empirical [52] 

GoldScore GOLD, CScore force field [53] 

DrugScore standalone knowledge-based [54] 
 

Table 2. Widespread scoring functions. (From [48], modified.) 
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Scoring functions (SFs) (Table 2) can be divided into three groups: empirical functions, 

force field (FF)-based SFs and knowledge-based SFs. Empirical SFs, like X-SCORE and 

ChemScore, usually contain terms estimating the van der Waals, hydrogen-bonding, 

electrostatic and hydrophobic interactions. Freezing of rotatable bonds during binding is also 

taken into consideration. FF-based scoring functions apply modified force fields originally 

developed for molecular dynamics. Some FF-based functions are extended with empirical 

terms like AutoDock4 in which an additional entropy term describes the entropy loss during 

ligand binding. Analysis of crystal structures of ligand-protein complexes led to the 

development of knowledge-based scoring functions. Based on the interaction types and 

occurrences found in crystal structures, a score is calculated for each possible pair of atom 

types. 

Applicability and predictive force of scoring functions are subjects of continuous debate 

in the scientific community [48, 55]. Today, it is accepted that docking programs dock 70-

80% of the ligands correctly [56]. We must mention here that the comparison of different 

docking/scoring methods is inherently difficult. The applied parameters have great importance 

on the results and the level of knowledge of the reviewing authors might be different in case 

of different programs (i.e., the fine-tuning of their own-developed program may be more 

efficient than that of the others). The commonly used rescoring, i.e. the application of 

different SFs to recalculate the binding free energy of a docked conformation, is misleading 

without prior local optimization of the ligand pose in the force field of the new functions. 

Target-based screening techniques were successfully used in many studies, including 

Hetenyi’s work [57] in which a subclass-specific myosin inhibitor, blebbistatin was docked to 

the nucleotide binding site of myosin IIa using blind docking, i.e. the whole protein surface 

was handled as a putative binding site, without predefined constraints [58]. (Generally, only 

the active site of a protein is used in docking simulations.) Even so, the inhibitor found the 

correct binding surface and its calculated conformation matched with the experimentally 

determined one. 

Nevertheless, docking has its backdrops. The method chosen for mapping the 

conformational space and the applied scoring function has a great influence on the reliability 

of the results. The calculation time needed for the ligand increases rapidly with its size and the 

number of rotatable bonds. Handling the flexibility of the ligand and the protein is also a 

problem to be considered, as well as the role of structural waters [58]. A few years ago, only 

ligands were allowed to possess flexibility while the protein was handled as rigid body (e.g., 
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in AutoDock3). This assumption obviously reduced the reliability of the entropic part of the 

binding affinity estimation. In the latest softwares, flexibility is taken into consideration for 

both agents. The imperfectness of scoring functions has been disputed before. And, as always, 

the principle of garbage-in, garbage-out (GIGO) also exists: results can be only as good as 

the input data was. A crystal structure with a low resolution or a bad homology model can 

ruin the screening even before its beginning. If no reliable structural information on the target 

is available, one should consider applying different methods. 

 

2.3 Virtual Affinity Profiling 
 

Virtual Affinity Profiling (VAP), the newest branch of in silico pharmacology, assesses the 

pharmacological (PD/PK) profile of a compound by considering its interactions with a series 

of targets. VAP techniques intrinsically adopt the theory of polypharmacology which states 

that drugs generally act on multiple targets. Since polypharmacology is a topic of outstanding 

interest both in the context of the pharmaceutical industry and this work, it will be discussed 

in details in a following section. 

 

2.3.1 Ligand-based VAP strategies 
One of the first initiatives in this field was PASS (Prediction of Activity Spectra for 

Substances) developed by Poroikov et al [59-61]. PASS applies the biological activity 

spectrum definition by Filimonov, i.e. the list of bioactivity names that are originated from the 

interaction of a compound and an organism [59]. Traces of SARs are observable in PASS 

method as it applies a set of 2D structural descriptors, called “multilevel neighborhoods of 

atoms”, for cca. 250 000 compounds to correlate with more than 565 bioactivities [61]. The 

PASS training set contains 45 466 known biologically active compounds, retrieved by an 

extensive search in literature (as of March, 2002). PASS can be accessed online at 

http://195.178.207.233/PASS/ . 

The main disadvantage of Poroikov’s PASS system is the descriptor used: the relatively 

simple topological descriptor alone has low predictive power; even older QSAR studies 

involved more than one descriptor. On the other hand, PASS can be applied for estimating the 

whole bioactivity profile of a chemical compound which was seriously missing from all 

previous attempts. 
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The term “pharmacological profiling” is introduced in the work of Poulain et al [62]. 

More than 70 pharmacologically important receptors, including benzodiazepine, dopamine, 

serotonin and adrenergic receptors were selected and 48 compounds were in vitro screened 

against them. The obtained IC50 values were handled as an activity vector in “the space of 

pharmacological profiles”, instead of individual observations. SAR approach was adopted on 

these activity vectors, resulting in a more general structure-profile relationship. According to 

the findings, pharmacophore differences correlated well with the obtained pharmacological 

profiles. 

A research group at Pfizer Global Research and Development introduced a technique 

called “biospectra analysis” in 2005 [63]. Here, a portion of the BioPrint database of Cerep 

[64] was used as a source of 92 in vitro binding assay results for 1,567 structurally diverse 

small-molecule compounds. This database contains percent inhibition values determined at 

single 10 μM ligand concentrations against a representative subset of the drugable proteome 

formed mainly by GPCRs, ion channels, kinases and proteinases from a number of protein 

superfamilies. Fliri et al introduced the term “biospectrum” that is the series of the in vitro 

percent inhibition values of a compound against the applied 92 proteins, handled as a 

continuum rather than a series of individual observations, an assumption similar to that of 

Poulain’s (Figure 4). The similarities between the 1,567 biospectra were assessed two 

different ways. The first method resulted in a similarity score compared to a reference 

compound. As an alternative method, hierarchical clustering was applied on the biospectra 

data set. Visual inspection of the generated clusters revealed a relation between biospectra 

similarity and molecular structure similarity between the compounds. When the biospectra of 

four new antifungal agents were added to the initial database, hierarchical clusterization 

resulted in a perfect linkage map in which all newly added molecules appeared in the cluster 

of molecules most similar to them [63]. This phenomenon was observed despite the target 

protein of many applied small molecules were absent from the protein set, including the above 

example of antifungals. In a later study, biospectra of dopamine agents were truncated as their 

respective targets were removed from the protein set and clusterization were repeated using 

six alternate protein set reduced in different ways [13]. The integrity of the resulting clusters 

did not change significantly which shows some robustness of the method; however, this 

robustness was never quantified nor fully discussed in their studies. It is mentioned that the 

applied high ligand concentration leads to “unspecific” binding, describing the binding 

potential of the molecule to the whole protein family instead of its used member solely. 
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Figure 4. The method of biospectra creation [63]. 

 

After connecting biospectra to chemical similarity, a relation to pharmacological effects 

has also been revealed in the case of dopamine agents [13]. Along this way, a relationship was 

determined between biospectra results of 872 medicines and their 240-bit-long binary side 

effect fingerprints [65]. A definite correlation (R=0.79) was observed between the two 

datasets. 

In sum, biospectra describes (but not “identifies” as the authors state in [63]) the structure 

of small-molecule compounds: biospectra similarities can be translated into structural 

similarities. Moreover, the presence of the target proteins in the protein set is not necessary 

for efficient classification. Third, a definite relationship between biospectra and 

pharmacologic effects were revealed. 

The largest intrinsic problem of the methodology is that biospectra are originated from a 

series of in vitro determined inhibition values. In a solution, drugs can interact with the whole 

surface of the receptor, possibly occupying different sites. As a consequence, the 

discriminator surface will not be uniform for the whole drug set, decreasing the comparability 

of the measured inhibition values. Moreover, only strong interactions can be detected by the 



27 
 

applied in vitro binding assays. Weak interactions that might play an important role in the 

generation of drug effect profiles (see later) might remain hidden. Since a large portion of 

possible interactions cannot be detected, the robustness of the method is limited. 

Another disadvantage is the applied hierarchical clusterization as it compresses the 

originally multidimensional diversity of biospectra into one dimension. Theoretically, 92 

dimensions can be considered if the protein set is diverse enough to exclude dimensional 

interdependency. Principal component analysis (PCA) would reveal the underlying 

dimensional structure of biospectra data. 

A third problem of biospectra approach is the weak cost-effectiveness and the 

incompatibility with high throughput screening techniques. Performing a series of in vitro 

binding assays for each candidate would have enormous work time and money requirements 

in drug development, reducing the method’s applicability in the preclinical screening phases. 

(Again, a PCA might offer a possibility to reduce the number of tests needed to produce a 

biospectrum, thus decreasing the cost requirements.) 

A VAP technique was presented by Hetenyi et al in 2003 in which 39 aromatic ligand 

molecules were docked to 31 different proteins using AutoDock3 docking motor with the in-

built scoring function [66]. Comparison of the resulted protein-ligand complexes to the 

experimental results resulted in a good fit in 82% of the 1209 docking runs (RMSD less than 

2 Å) and acceptable fit for the remaining 18% (between 2-3 Å). Calculated binding free 

energy values were transferred into a matrix in which ligands formed rows while energy 

values for different proteins were ordered next to each other. Then, Molecular Interaction 

Fingerprints (MIFs) for each molecule can be calculated as follows: 

MIF=E-EREF 

where MIF stands for Molecular Interaction Fingerprint vector, E is the vector of calculated 

binding free energies on the protein set and EREF is the vector composed by experimental 

reference energies obtained from the protein’s complexes with their original ligands, 

respectively. MIFs form the row vectors of the matrix shown in Figure 5 and represent the 

interaction properties of the ligands to a set of proteins. Similarly, Molecular Affinity 

Fingerprints (MAFs) can be defined for the column vectors of the matrix. (Individual columns 

can be considered as in silico target-based screenings while inspections involving the whole 

set of columns belong to the next group to be discussed, the target-based VAP methods.) As 

the authors proved, MIFs and MAFs are in agreement with fragment and similarity 

considerations. 
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Figure 5. MIF matrix [66]. 

 

Although this study does not involve pharmacological information, its possibility is 

discussed: “MIFs and MAFs calculated on the basis of a larger free energy database may aid 

the exploration of the appropriate biochemical interaction route of any compounds, e.g. by 

automated comparison of their fingerprints with those of ligands of elucidated biochemistry.” 

[66] Compared to the works by Poulain and Fliri, the uniform handling of interaction surfaces 

is secured by using pre-defined docking boxes in which conformational mapping and rotation 

of the ligand can occur while the other parts of the protein are excluded from the calculations. 

Being a pure in silico study, its cost-effectiveness is undoubtable; however, the limitations of 

docking and scoring mentioned above might be considered. 

 

2.3.2 Target-based VAP strategies 
The Structural Interaction Fingerprint (SIFt) method is a good example of target-based VAPs 

[67, 68]. SIFt is a fingerprint representation of seven types of the possible interactions for 

each residue in the binding site of a protein. The seven bits refer to a contact with the ligand, a 

main chain contact, a side chain contact, a polar interaction, a non-polar interaction, and the 

possibility of the residue being a hydrogen bond donor or acceptor, respectively (Figure 6). A 

SIFt therefore represents a single protein-ligand complex. 
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Figure 6. Generation of Structural Interaction Fingerprint in the case of CDK2 and its inhibitor. [67] 

 

An improvement of the method, called pSIFt (profile-SIFt) involves information on more 

ligands bound to the same protein and applies weighted values for each bit [67]. SIFts and 

pSIFts can then be clusterized based on Tanimoto similarity scores (see Glossary) in order to 

compare and cluster the docked poses of ligands for visualization. Or, fingerprints can be 

scored according to their similarity to fingerprints representing experimentally determined 

complexes, in order to dissect active compounds from inactives. 

Chen et al developed a technique called inverse docking where a ligand is screened 

against a large set of protein cavities, in order to reveal potential multiple targets [69]. 

Although the method is extremely resource-demanding, Li et al set up a web server for 

inverse docking, offering a set of binding sites of 700 proteins [70]. 

 

2.4 In silico pharmacology: a short summary 
 

The choice between different applications of in silico pharmacology is basically driven by the 

level of information available on the desired pharmacological effect. If a target protein can be 

assigned and its structure is solved, target-based VLS can be applied. If only the structure of a 

close relative exists, target-based screening might be performed after homology modeling. In 

case of no structural information or unknown target protein, ligand-based VLS (or QSAR) 

might be a good choice if a training set can be built up from a sufficient number of active 

molecules. If a compound possessing a complex profile of desirable effects is targeted, e.g. in 

the case of complex diseases, VAP strategies should be chosen. 
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3. Polypharmacology 
 

Ehrich’s therapeutic goal that a drug generally possesses its actions by modifying the 

functions of a single protein [71] defined the vision of pharmaceutical industry for decades. 

This reductionist approach, i.e., the creation of target-specific “magic bullets” resulted in the 

increasing attrition rates as discussed earlier. As it becomes clearer and clearer nowadays, the 

conception of magic bullets does not stand anymore. Recent evidences showed that many 

drugs act on multiple proteins. E.g., benzodiazepines not only affect GABA-ergic ion 

channels but mitochondrial receptors as well [72]. Mechanism of action of methadone 

involves the GPCR-type μ-opioid receptor and the ion channel NMDA receptor as well [73]. 

Serotonergic drugs can bind to 5-HT receptor subtypes 1,2 and 4-7 (GPCRs) as well as the ion 

channel 5-HT3A [11, 74]. In these cases, no sequence or structural similarity can be found 

between the shared targets of a compound. The promiscuous binding might be involved in 

therapeutic effect or might result in off-target activities leading to side effects. Roth et al 

reported that selectively non-selective (sic) drugs might prove higher efficacy in treatment of 

complex CNS diseases that single-target acting drugs [11]. Applying their terminology, 

multiple-acting “magic shotguns” like clozapine are more effective in treating schizophrenia 

than other agents developed in order to target the receptor that is responsible for the 

beneficent effects of clozapine [75, 76]. A similar observation was made in the case of 

antidepressants [11]. 

One of the most recent success stories is imatinib mesylate (Gleevec), an anticancer agent 

developed as a “magic bullet”, acting only on a single protein. However, it was later 

discovered that it also affects platelet-derived growth factor and c-kit, two other proteins 

involved in the drug’s high efficacy, turning it to a “magic shotgun” [7]. 

Valproic acid also shows high promiscuity: it affects GSK3 kinase, histone deacetylase 

HDAC1, GABA tranaminase prolyl oligopeptidase [77] and cyclooxygenase (COX) [78]. 

This small-molecule drug can therefore be applied for different diseases including epilepsy, 

bipolar disorder, tumors and Alzheimer’s disease. Based on its effect on HDAC1 and the fact 

that this protein is involved in HIV infection, valproic acid has been tested as an adjuvant to 

the highly active anti-retroviral therapy with great success [77]. 

The fact that most of the drugs affect multiple targets rather than acting on one single 

target, is commonly referred to as polypharmacology [8, 10]. As Mestres et al stated, a drug 

interacts with 6 targets in average [79]. E.g., the binding profile of some antipsychotics can be 
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found on Figure 7 [11]. Despite the novelty of polypharmacology, the topic is highly 

addressed and widely discussed in scientific community. Polypharmacology, in contrast with 

previous approaches, brings a holistic view into drug development: drugs of the future should 

affect protein networks instead of focusing on single proteins. “Magic bullets” should be 

replaced by “magic shotguns”. According to mathematical systems theory mentioned earlier, 

the problem and a solution should have the same level of complexity. Consequently, complex 

diseases like mental illnesses and age-related issues could be cured only applying complex 

approaches like polypharmacology. The theory of polypharmacology has been successfully 

adopted for many different complex diseases already. Bolognesi et al reported memoquin, a 

multitarget-type compound against Alzheimer’s disease [80, 81]. Apsel et al developed dual 

inhibitors of tyrosine and phosphoinositide kinases [82]. Nevertheless, polypharmacology is 

rarely used in pharmaceutical industry; probably due to its novelty and the obvious difficulties 

in data evaluation [7]. An important and already applied consequence of polypharmacology is 

that it turned the attention of drug companies to drug repositioning by highlighting potential 

off-target effects of existing drugs as it was demonstrated in the case of valproic acid. 

 



32 
 

 
Figure 7. Promiscuous interaction profiles of certain CNS drugs. [11] 

 

Applying polypharmacology, certain semi-blind approaches have been developed that 

show different levels of ability to systematically screen drugs for hidden therapeutic benefits 

or side effects. 

Campillos et al reported a method based on connecting drug side effect information with 

the probability of sharing a target [12]. Their methodology can be found in Figure 8. Shortly, 

side effect information was derived from public drug labels. Then, a standardizing was 

performed to exclude synonym pairs and a weighing scheme was applied in order to eliminate 

the biasing effect of side effect correlations (i.e., nausea is often associated with vomiting). 
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Figure 8. Target prediction method developed by Campillos et al. [12] 

 

In the next step, a side effect similarity score was calculated between each drug pair, 

compared to a set containing random side effects. Finally, a chemical similarity score was 

defined for each pair and the two similarity measurements, i.e. the side effect and chemical 
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similarity, were combined into one probability value that describes the possibility of sharing a 

target between two given drugs. The functions were tested on a training set collected from 

Matador, DrugBank and PDSP Ki databases, containing 502 FDA-approved drugs with 4,857 

known associated drug-target interactions. A clear-cut correlation was found between side 

effect similarity and the probability of sharing a target (Figure 9a) while a smaller level of 

correlation was detected for 2D Tanimoto similarity data (Figure 9b). Applying the combined 

function on the whole data set, 2,903 drug pairs were identified with at least 25% probability 

of sharing a target. After filtering out the known issues and pairs showing similar chemical 

structures or similar targets, 754 non-obvious drug pairs were obtained. 20 drug pairs were 

tested experimentally and 13 of them were validated with Ki values generally lower than 

10μM. Nine predictions were also confirmed in cell assays. The found relations might have 

therapeutic impact, i.e. the nootropic donepezil was found to possess serotonergic activity, 

similarly to the antidepressant venlafaxine. Indeed, donepezil has already been proposed for 

testing in the treatment of depression. 

 
Figure 9. Target sharing probability vs. side effect similarity (a) and Tanimoto chemical similarity (b). [12] 

 

The authors successfully overcame the noisy nature of side effect data, thus resulting in 

good correlations and high predictive power. (The research group recently reported the 

establishment of a public online side effect database, SIDER. [83]) However, target similarity 

not always refers to side effect similarity, e.g. if a drug can pass the blood-brain barrier but 

the other cannot. Moreover, a shared target not necessarily results in shared side effects due to 

the possibly antagonistic effect of the other targets that masks the presence of a common 

target protein. Applying drug effect information instead of side effect data might produce 

even stronger correlations. 
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Keiser et al presented a systematic prediction method that uses ligand chemical similarity 

in order to clusterize 246 enzymes and receptors [14]. Protein-ligand affinity data were 

obtained from MDL Drug Data Report (MDDR), containing ligand sets for 246 proteins, 

65,241 compounds in sum. The whole similarity half-matrix (65,241*65,241/2) was 

calculated using Daylight fingerprint and Tanimoto similarity coefficients. (Average 

similarity values were determined for the 246 ligand sets as well.) A similarity measurement 

called Single Ensemble Approach (SEA) was introduced to calculate an expectance value (E-

value), i.e. the level of identity of the ligand sets of two activity classes, i.e. receptors: the 

lower the E-value between two receptors, the higher the similarity of their respective ligand 

sets (Figure 10a). 

 

 
Figure 10. Panel A shows the activity classes resembling to dihydrofolate reductase inhibitor (DHFR) class. 

Panel B: a slice of the pharmacological space of proteins based on E-values [14]. 
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Based on the E-values for each activity class pairs, a minimal spanning tree was formed. 

Although the authors used no direct biological information on the enzymes and receptors, 

biologically relevant classification was obtained in which several functional/pharmacological 

groups were separated to individual branches (Figure 10b). This method can be used for 

activity prediction by calculating the chemical similarity values of the query set (one molecule 

or a set of compounds) to the 246 representative ligand sets for the 246 studied activity 

classes, resulting in E-values for the probability of possessing every activity classes. In a later 

work, authors involved FDA-approved and investigational drugs and predicted 6,928 

associations between drugs and targets [84]. After filtering out the trivialities, 3,832 

predictions remained. 184 of them were selected for further investigations; 42 of them turned 

out to be known associations while 30 predicted interactions were tested experimentally. 23 of 

them was confirmed, five of them with Ki values lower than 100 nM. The physiological 

relevance of one prediction was confirmed in knock-out mouse. Surprisingly, many new 

cross-boundary targets were identified and validated. E.g., Delavirdine mesylate, a HIV-1 

reverse transcriptase enzyme inhibitor turned to be a histamine H4 receptor, a GPCR 

antagonist as well; or NMDAR-agent ifenprodil (ion channel) also affects a GPCR, the α2 

adrenergic receptor [84]. 

The significance of the method reported by Keiser et al relies in the fact that 2D chemical 

similarity values of ligands were related with common targets, bridging atomic level 

information of ligands to binding affinity profiles. 

Another way of polypharmacology-driven drug development could be called 

“polypharmacophore” approach. Here, two distinct pharmacophores are linked together by a 

conjugate linker, or common, overlapping or highly integrated pharmacophores are applied 

[85]. 

A special application of profile-based drug development is the administration of drug 

combinations. The combination of amoxicillin and clavulanic acid (marketed in Hungary as 

Aktil Duo) is a widespread example. Amoxicillin inhibits cell wall synthesis while 

clavulanate inhibits β-lactamase, the enzyme responsible for the biotransformation and 

elimination of amoxicillin. Clavulanate maintains the concentration of amoxicillin in the cell 

wall, producing a highly efficient antibacterial drug combination. Although pharmaceutical 

industry tends to avoid drug combinations due to the presumably higher level of their side 

effects, this assumption is not necessarily true. If the simultaneously administered drugs act 

synergistically, the doses of the individual compounds can be dramatically reduced, resulting 
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in larger tolerability [86]. However, PK/PD prediction of administration of drug combinations 

have not been overcame thus far. 

 

4. Protein binding site description 
 

A recent publication by Milletti and Vulpetti points to the application of protein binding site 

descriptors in polypharmacology prediction [87]. The authors developed a new method for 

binding site description, based on the shape-context-based descriptors presented by Belongie 

et al. First, they apply FlapSite for pocket detection and the found sites are extracted into a 

PDB file. Then, the original atom types are converted to relay similarities, e.g. “Hyd” is 

introduced to represent all hydrophobic atoms (C, aromatic C, S). Side chain flexibility is also 

handled by linking rotatable groups into a backbone carbon. Finally, 14 concentric spherical 

layers are defined around each atom and the occurrence of the previously defined atom types 

in these 14 neighborhood zones is collected into fingerprints. After the 3D alignment of 

binding sites, a similarity score is calculated. Based on binding site similarity, promiscuity 

was predicted for 17 inhibitors against 189 kinases for which in vitro inhibition values have 

been determined previously. Receiver operator characteristic (ROC, see Glossary) analysis 

was used to evaluate the results. This process will be presented in Methods in detail; here we 

mention that it is based on the rate of true positives (TPR) and false positives (FPR). A 

positive hit predicted by the method is accepted as “true positive” if it inhibits the given 

kinase with a Kd < 10 μM. The presented approach resulted in an average AUC (see 

Glossary) of 0.64 which belongs to a medium accuracy range and is comparable to two 

ligand-based chemical similarity measurements. 

This work and the aforementioned target-based VAP methods point to the application of 

protein site information in polypharmacology predictions. Binding sites can be characterized 

in a numerous ways, involving topological and/or chemical information: CavBase, 

SiteEngine, IsoCleft, PocketPicker etc. E.g., CavBase defines donor, acceptor, aromatic, 

aliphatic etc. centers in the binding site, based on the amino acid constitution of the pocket 

[88]. PocketPicker uses only geometric information on pocket description and uses atomic 

level information instead of amino acid composition [89]. Although pure geometric similarity 

might be considered as an oversimplification, numerous studies exist that point to the 

efficiency of shape-based descriptors in different fields of in silico drug development [90]. 

For example, finding complementary shapes for the active site of a drugable protein is a 
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starting point of de novo drug design if the target structure is previously determined [91]. 

Fragment positioning and molecule growth methods, together with fragment searches in 

cheminformatics databases produce the primary hits. (These results are evaluated further by 

scoring functions that consider more parameters for a better prediction of ligand-binding 

properties.) A method called Shape signatures describes ligand and protein binding site shapes 

using ray-tracing algorithm, producing one-dimensional histograms for ray-trace segment 

lengths [92]. Zauhar et al demonstrated the suitability of this method in finding shape 

similarities among small-molecule ligands for estrogen and serotonin receptors. Shape-based 

approaches have an important role in the simulation of protein-protein interactions. For 

example, Venkatraman et al reports on the development of a docking algorithm based on 3D 

Zernike Descriptors (i.e., 3D function representations of protein surface) that produced 

outstanding performance compared to other methods [93]. 

 

5. Starting hypothesis and applied methodology 
 

Three levels of information can be distinguished in pharmacology: 

Level 1: atomic-level information: chemical structure and physicochemical properties of the 

ligand and/or protein; 

Level 2: binding affinity information: known activity values of ligands on different proteins; 

Level 3: bioactivity: PK/PD, effect and side effect information. 

The actions of drugs can be translated on each level. If an administered drug enters the 

human body, it will form strong and weak interactions with the members of the proteome, 

thus selecting, discriminating among them. On the other hand, the proteome also 

discriminates among the xenobiotics entered. The result of this two-sided interaction network 

is a binding pattern. This binding pattern is projected at the organism level as a bioactivity 

pattern, i.e., effects and side effects. From this point of view, there is no difference between 

effects and side effects: a desired bioactivity is referred to as “effect” while an undesired 

activity is grouped into the category of “side effects”. As presented before, these are loose 

categories, often being perturbed in drug repositioning. 

The primary aim of this work is the development of a systematic in silico prediction 

method for effect prediction of existing drug molecules (and drug candidates) that is able to 

uncover the whole effect profile of compounds. After the careful reviewing of in silico 

pharmacology, VAP methods were selected, adopting the paradigm of polypharmacology. 
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Campillos et al proved the connection between Levels 2 and 3 while Keiser’s group 

related Levels 1 and 2. Fliri et al demonstrated the connection between Levels 1 and 3 but 

biospectra method is inconvenient and hardly introducible into the drug development pipeline. 

However, the finding that similar binding pattern refers to similar bioactivities [63, 65], might 

be applied to in silico affinity profiles as well. Therefore, in this work, atomic level 

information of small-molecule drugs will be related to drug effect profiles, based on the 

milestone work by Hetenyi et al [66]. Since the calculation method is slightly different from 

the one presented in [66], the term Interaction Profile (IP) will be used henceforth in the text 

instead of MIF. The advantages of the docking-based IP approach are: 

1. Generation of the calculated binding free energies is relatively fast and simple, only 

structural information is needed from the ligands. 

2. Uniform treatment of interactions is secured by the uniform definition of docking 

boxes; consequently, the same discriminator surface can be applied throughout the 

ligand set. No target proteins are required for bioactivity prediction, as presented 

earlier, e.g. [13, 63]. 

3. According to our principal hypothesis that an interaction pattern refers to bioactivity 

pattern, a random set of proteins can be applied to the calculation of interaction 

patterns. 

4. The hypothesis is possible to test by determining the level of correlation between the 

in silico interaction profiles and the effect profiles of drugs. 

5. With the generation of a MIF-like IP matrix, MAFs are also created. Thus, the 

important factors in the determination of binding affinity e.g. protein site geometry 

can be studied on the same interaction profile data set. 

Based on many studies discussed before, ligand chemical similarity calculation is a reasonable 

way to classify pharmacologically targeted proteins and vice versa. Therefore, after 

generating interaction profiles for the drugs, it is reasonable to change our point of view from 

drugs to proteins, i.e., from IPs/MIFs to MAFs, according to the terminology introduced by 

Hetenyi et al. By evaluating the protein-ligand interaction matrix from the proteins’ direction, 

one can determine the factors that play an important role in the determination of binding 

affinities. Despite the promising results pointing to the possibility of biologically meaningful 

clusterings along shape-based and affinity fingerprinting investigations, the connection 

between the affinity profiles and the structural characteristics of protein binding sites still 

remains unclear. Thus, the secondary goal of this study is to investigate the relationship 

between virtual drug screening results (calculated binding free energy values) and the shape 
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of protein binding sites. For this purpose, PocketPicker algorithm was chosen for geometric 

description since it is based on atomic level information which is crucial because the software 

will be applied to calculate similarities in docking boxes that might contain partial residues at 

the box perimeter. Moreover, it produces an easily comparable fingerprint to describe binding 

sites. 

 

5.1 Risk analysis of the initial hypothesis 
 

The chosen methodology has several risks as well: 

1. There is no strict agreement in the scientific community about the reliability of scoring 

functions using during docking therefore at least two different scoring functions must 

be applied to ensure that our findings are not artifacts originated from the scoring. 

However, we mention that the purpose of the scoring function in this study is to 

quantify an interaction between large sets of ligands and proteins in a uniform manner. 

2. Although we presume the opposite, it might turn out that the composition of the 

protein set is of crucial importance. This would ruin the concept of the application of 

in silico binding affinity patterns in bioactivity predictions. If target proteins are 

needed for sufficient predictive power, our method cannot be considered as a ligand-

based VAP approach. 
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Methods 
 

1. Development of the Interaction Profile (IP) database 
 

1.1 Data collection 
 

1,255 FDA-approved drug molecules were extracted from DrugBank database [94] as of June, 

2009 (Appendix 1). A two-step selection was applied: molecules labeled “FDA-approved 

small molecule drug” were separated first (969 entries) and used for preliminary evaluations. 

This list was extended later with “FDA approved drugs” below the molecule size limit of 600 

Da (286 entries). 160 proteins were collected from RCSB Protein Data Bank [33] which met 

the following requirements: 

(1) structure contained ligand, 

(2) resolution better than 2.3 Å, 

(3) complete ligand binding site, 

(4) primary structure was not significantly different from the wild type protein’s 

structure. 

If a structure contained water molecules involved in ligand coordination, its conformation 

was compared with available structures without water. If no significant difference was 

observed around the ligand binding site, the one with better resolution was used. (See 

Appendix 2 for the list of the PDB codes of the applied proteins.) 

 

1.2 Docking preparations 
 

Docking preparations and calculations were performed by AutoDockTools [95] and DOVIS 

2.0 (DOcking-based VIrtual Screening) [96] softwares in case of one and multidimensional 

analyses, respectively (see later), using AutoDock3 (in case of one-dimensional analyses) and 

AutoDock4 docking engines. AutoDock3.0 (for one-dimensional analyses), Autodock4.0 and 

X-SCORE scoring functions were applied [38, 51, 66, 96, 97]. Explicit hydrogens were added 

to the drug molecules and optimization procedures were applied for aromatic rings and for the 

overall 3D structure before docking using AutoDockTools and ChemAxon JChem Base 

softwares (version 5.2.0, 2008) [28, 95]. AutoDock enables the definition of a box in which 

docking calculations are carried out. The docking box was centered to the geometrical center 
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of the original ligand of the protein (as found in the intact PDB file); box size and grid 

spacing were set to 22.5 Å and 0.375 Å (default value), respectively. Protein parts outside the 

box were excluded from the calculations. The applied box size enables each member of the 

drug set to rotate freely in order to find the conformation with the lowest binding free energy 

without steric clashing to the box perimeter. For consistency, no further reductions in box size 

were applied to smaller ligands and the same box was used for geometric characterization of 

the binding site as well. 

 

1.3 Docking 
 

Each drug molecule was docked to each protein, performing 25 runs each. Binding free 

energies were extracted and the minima were imported to a database. Docking runs were 

performed on a Hewlett-Packard cluster of 104 CPUs. 

Three different scoring functions were applied throughout this study. AutoDock3 was 

used for initial one-dimansional evaluation while AutoDock4 and X-SCORE were applied for 

multidimensional investigations. 

For better reliability, redocking was performed instead of rescoring the previously docked 

conformations. Thus, three binding free energy values have been determined. First, 

AutoDock3 was used for an initial screening of a set of 969 FDA-approved drug molecules 

against 89 proteins. Then, the protein set was extended to 160 and the docking procedure was 

repeated applying AutoDock 4 for mapping the conformational space, using either its own 

scoring function or X-SCORE function, on a set consisting of 1,255 compounds. Thus, the 

impact of different scoring functions on the results can be assessed. In the initial phase, 

969*89=86,241 dockings were performed, repeated 25 times for each drug-protein pair, 

docked and scored by AutoDock3. Later, 1,255*160=200,800 dockings were carried out that 

means 200,800*25=5,020,000 individual docking runs both for AutoDock4 and X-SCORE 

scoring. Lowest binding free energy values for each drug-protein pair were extracted and the 

minima were imported to databases (i.e., AutoDock3, AutoDock4 and X-SCORE-based 

results). 
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1.4 Filtering, normalization and centralization 
 

Six binding pockets out of 160 produced outlying binding free energy values throughout the 

applied drug set. Visual inspection revealed that the grid center was misplaced in three of 

them (1hdo, 1mv9, 1uwh), resulting in no or only few atoms in the docking box. On the other 

hand, three binding pockets proved to be too narrow to dock the full drug set (1ryo, 2ibn, and 

1mlw). These six proteins have been removed from the protein set and calculated binding 

energy values on the remaining 154 proteins were applied in further investigations. No drugs 

were excluded due to outlying docking results. 

Normalization and centralization was performed on the IP datasets in order to transform 

the data to a common statistical scale, thereby ensuring that the underlying data vectors reflect 

the molecular interaction profiles instead of the scale parameters (such as the mean and the 

standard deviation) that are more sensitive to measurement errors and outlying observations. 

Before effect prediction, the following normalization/centralization procedure was carried 

out: drugs were considered as cases (1,255 rows) while proteins as variables (154 columns). 

Normalization and centralization were performed row-by-row for each drug as follows: 

 
Where mean is the mean and SD is the standard deviation of the docking energies for a given 

drug. 

For the analysis of the relation between MAF data and the binding site geometry 

descriptor set, drugs were considered as variables (1,255 columns) and proteins as cases (154 

rows). Normalization and centralization were done row-by-row for each protein. 

 

2. Generation of the Effect Profile (EP) matrix 
 

As mentioned above, structural and pharmacological information on 1,255 FDA-approved 

small-molecule drugs were extracted from DrugBank database [94]. This effect list was 

applied to perform a first, initial evaluation of the relationship between AutoDock3-based 

binding affinity and bioactivity data. Then, a list of 559 effects was formed that contains all 

effect entries that appeared on the drug information. Effect entries were further refined in 

order to eliminate initial database inconsistencies (e.g. “GABA agent” was not registered to 

every benzodiazepine). Structural categories often showed incompleteness, e.g. not every 
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phenothiazine was registered as so. Since effect categories with less than 10 registered drugs 

contain insufficient amount of information for meaningful classification, the effect list was 

reduced to 181 categories. Then, a binary matrix was formed that shows the presence or 

absence of the studied 181 effects for each drug. Here, the appearance of an effect for a drug 

is marked with a “1” value and vice versa. 

A preliminary side effect database was formed using adverse reactions data published on 

the official FDA labels of drugs. FDA labels were collected from www.rxlist.com. Database 

inconsistencies were cleared in this database as well (i.e., vomiting/emesis). This database 

was used for the evaluation of certain associations between MIF database and adverse 

reactions. 

 

3. Generation of PocketPicker shape descriptor matrix 
 

In order to analyze the relationship between the MAFs of the proteins and the geometry of 

their binding sites, we used the PocketPicker algorithm [89] to generate 420-dimensional 

fingerprints representing the geometrical features of the binding sites. Originally, the 

algorithm considers the areas of the entire protein located closely to the protein surface. This 

is in contrast to the docking process which aims to find the best fit of a ligand in a well 

defined area of the protein, i.e., in the docking box. Consequently, applying the PocketPicker 

algorithm on the original protein structure might lead to the detection of binding sites outside 

of the docking box. To ensure that the same set of atoms is involved in the MAF matrix 

generation and the PocketPicker description, the atoms of the given protein enclosed by the 

docking box defined above were extracted while preserving their original spatial coordinates. 

PocketPicker algorithm was applied to this set of atoms. This process assures that the 

PocketPicker algorithm characterizes the geometrical features of the docking box only. 

In the first step of the process of PocketPicker fingerprint generation, the degree of 

buriedness of the different areas of the docking box is determined, which in turn provides 

information on how accessible that particular area is. A rectangular grid with 1Å mesh size is 

generated around the protein; each point of this grid is described as a grid probe. Over the 

process of scanning it is determined how many atoms are located in the surroundings of each 

grid probe. This is achieved by placing on each grid probe 30 so-called search rays that are 

distributed in a closely equidistant manner on a sphere. Each search ray is 10 Å long and has a 

width of 0.9 Å. The buriedness value Bu(j), of the given grid probe j is the number of search 



45 
 

rays that hit at least one atom. Grid probes of buriedness value in the range of 15 and 26 are 

recorded and classified into the following six categories: (1) category A: Bu(j) = 15-16, (2) 

category B: Bu(j) = 17-18, (3) category C: Bu(j) = 19-20, (4) category D:  Bu(j) = 21-22, (5) 

category E:  Bu(j) = 23-24, (6) category F:  Bu(j) = 25-26. 

 

 
Figure 11. PocketPicker fingerprint generation. A) Pocket detection: a rectangular grid is generated around 

the protein. Grid points within the protein (black area, b) and grid points far from the protein (white area, a) are 

automatically excluded. Pockets consist of grid points around the protein with proper buriedness (Bu(j)>14). 

(modified based on [89]) B) An example of a pocket represented by small spheres colored according to their 

buriedness values inside a docking box (grey surface, constructed from the PDB structure 1zid) C) The same 

pocket without the protein atoms. D) 420 dimensional vectors are constructed representing the number of grid 

point pairs belonging to a given buriedness category and distance. (E.g.: the 244th dimension contains the number 

of cases where a grid point with buriedness category C is 5 Å away from a grid point of buriedness category D.) 

(Rauscher) 

 

The PocketPicker algorithm characterizes the geometrical features of binding sites on the 

basis of the distribution of the distances between grid points of each buriedness category. 

Therefore, in the second step it is counted how many grid probes of the different buriedness 

categories can be found in a distance of 1 – 20 Å from each grid probe. Considering that there 

are 21 possible combinations of the six buriedness categories (e.g. A-A, A-B, A-C  ... F-F), 

and that the distances are divided into 20 bins covering ranges of 1-20 Å, there are 21 * 20 = 

420 possibilities to record the distance between a pair of grid probes of the same or different 

buriedness types. These possibilities give rise to the 420 components of the PocketPicker 

fingerprints (Figure 11). Therefore, the value of the coordinate of each component provides 

information on how many times it is observed that two grid points of particular buriedness 

types are located within a given distance from each other. The buriedness types of these two 

grid probes and the distance between them are exactly defined by the given component of the 

fingerprint. 
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In summary, the geometrical features covering the shape of the binding site are given by 

the spatial distribution of the pairs of grid probes of different buriedness types. Buriedness 

and distance parameters were assigned to 3 categories for further examinations. In particular, 

A and B type descriptors were considered as representing low; C and D medium; and E and F 

high buriedness levels. Distances between 1-7 Å, 8-14 Å and 15-20 Å were considered as 

representing low, medium and large distance values, respectively, as presented in [98]. 

 

4. One-dimensional analyses assessing the relation between binding affinity 

patterns and bioactivity profiles 
 

4.1 IP-based Drug-Drug Similarity Calculations 
 

A similarity coefficient based on the angle enclosed by two IP vectors was used to calculate 

the IP similarity. These vectors are determined by the docking energy values as coordinates in 

an 89-dimensional space created by the 89 members of the protein set. Cosine angle distance 

coefficient [99] was used to determine the angle between two vectors in the above described 

89-dimensional space as follows: 
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where dAB is the IP distance value between molecules A and B, ai and bi are the docking 

energy values of molecules A and B on the i-th protein of n=89, respectively. 

 

4.2 Validation of effect prediction 
 

Validation of the prediction of pharmacological effects of drugs was carried out on a set of 

969 drug molecules approved by FDA based on the collection of pharmacological data of 

these molecules. 

Accuracy of prediction for a given molecule (Ai) was determined by the following 

function: 

aisii NcNckA /)(*100),(  
where Nsi is the number of the types of effects which appear at least c times and can be found 

both in the effect list of the left out molecule and the list of the k most similar molecules, and 
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Nai is the number of the effects of the left-out molecule. The total average prediction accuracy 

is defined as: 
969

1
969/),(),(

i i ckAckA
 

Confidence (C) of the validation was determined based on the comparison of the sum of 

accuracy values of the real and randomized (see below) datasets. Randomization was 

performed five times. C is calculated as follows: 

100*)/1( realrandom AAC  
where Arandom is the average of average prediction accuracy values calculated from the five 

random datasets and Areal is the average prediction accuracy of the real dataset. 

 

4.2.1 Randomization of the effect dataset 
The confidence of prediction was characterized by the ratio of accuracy of prediction derived 

from the observed and randomized effect databases, respectively. For the generation of 

randomized effect databases known effects belonging to each drug according to DrugBank 

Database were randomized. Randomization of the effects of molecules was performed by 

using two constraints: (1) each molecule had to have at least one effect; (2) none of the 

molecules was allowed to have more than 20 effects. In a hypothetical molecule-effect matrix 

consisting of 969 rows (referring to molecules) and 20 columns (referring to effects) the 2,307 

effect records were distributed randomly by requesting a random cell identifier for a given 

effect record and placing it there if the randomly chosen cell was empty. Five different 

random datasets were created. The distribution of the number of effects of the molecules was 

identical in the case of the empirically observed and the randomized datasets. 

 

4.2.2 Leave-one-out cross-validation 
Leave-one-out cross-validation (LOOCV) technique was used to test and validate the 

prediction method. Using this technique, the effect profile of each drug was chosen as subject 

of prediction at the end of a validation cycle. Thus the quantitative data characterizing the 

confidence of prediction refers to an average value which is calculated based on averaging the 

individual prediction accuracy results. The LOOCV technique was applied for the real and the 

five random datasets. 

Confidence of the prediction increases by decreasing the number of the most similar 

molecules involved in prediction and also by increasing the number of required appearance of 

a specific effect. On the other hand, the number of predicted effects decreases simultaneously. 
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Consequently, in future applications of the method prediction results can be fine-tuned by 

varying the number of required appearances and the number of molecules involved in the 

calculation. 

 

4.3 Effect Prediction 
 

Prediction of new effects of molecules was approached by two different ways. The neighbor-

focused prediction method investigates the overlap of the effects of the IP-neighbors while the 

effect-focused prediction method investigates the overlap of the IP-neighborhood of molecules 

assigned to a given effect. 

 

4.3.1 Neighbor-focused Prediction Method 
According to the neighbor-focused prediction method the prediction started with the 

collection of the 20 nearest IP neighbors (20-NN) of a certain molecule for which the 

prediction was made. Next, a list was compiled by registering all of the effects of the 20 IP 

neighbors, even if they appeared multiple times. It should be noted that the FDA approved 

effects of the studied molecule on this list were ignored. The number of appearance for each 

effect on this list was counted which defines the appearance parameter (c). If a certain effect 

appears at least a predefined c times, it is considered as a new predicted effect for the 

molecule. A prediction confidence value could be determined to each prediction as defined 

earlier. 

The average prediction confidence (CPav) was calculated as follows: 
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where Npi.real is the number of the types of predicted new effects appearing at least c times, 

randompiN .  is the average number of the types of predicted new effects appearing at least c 

times in five different randomized databases in which all effects are randomly reallocated to 

the drugs. 

 

4.3.2 Effect-focused Prediction Method 
One might consider that the lower the number of studied neighbors (k) the higher the 

possibility to exclude effects. Thus the selection of parameter k should not be too restrictive. 
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On the other hand, a large k value might result in a larger number of false positive hits during 

effect prediction. Based on this consideration we selected 20 as a fixed value for parameter k. 

In case of effect-focused prediction method, drugs assigned to each effect were collected, 

and their 20 most MIF-similar drugs were collected into a list. Drugs appearing multiple times 

on this list of most similar drugs are predicted to possess the given effect, in case their effect 

lists did not contain that effect originally. 

 

5. Multidimensional analyses 
 

The Statistical Analysis System for Windows (version 9.2; SAS Institute, Cary, NC) was used 

for computing Type I error probability. The alpha error level of 0.05 (two-sided) was adopted 

for all statistical analyses. 

 

5.1 Principal component analysis 
 

Factor analysis was performed on the set of Molecular Affinity Fingerprints and the structural 

characteristics of the protein binding pockets yielded by the PocketPicker descriptor system. 

The purpose of factor analyses was twofold: 

(1) delineation of the basic underlying structure of the MAF and structural characteristics 

of the target proteins; 

(2) data reduction in order to facilitate further examination of the relationship between 

MAF profiles and the geometric feature set. 

Such a data reduction was needed for subsequent multivariate analyses in case of protein 

binding site analyses since the number of variables exceeded the number of cases, i.e., 154 

proteins of interest (used as “cases”) are paired with 1,255 MAF variables (energy values) and 

405 structural characteristics variables (geometric descriptors). 15 descriptors were omitted 

from the original set of 420 descriptors due to lack of variance. 

For the inspection of the effect of different scoring functions on interaction profile results, 

1,226 drugs were considered as “cases” or “observations” while the protein set of 154 entries 

served as variables. 

A separate factor analysis was conducted for the X-SCORE and AutoDock4 based IP 

energy values, for the X-SCORE based MAF energy values and for the geometric descriptor 

variables, respectively. For the purpose of these analyses, we adopted the principal component 
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method for factor extraction. The extracted factors were subjected to 

ORTHOMAX/PARSIMAX rotation in order to derive a simple structure for helping the 

interpretation. In short, principal component analysis generates new variables in an equal 

number to the original variables. The so-called factors or principle components are orthogonal 

and formed by the linear combination of the original variables that can be characterized by 

their weights in the linear functions, i.e., their loadings. Factors form a new coordinate system 

in which new coordinates, i.e., scores, are assigned to the observations. Dimension reduction 

is achieved by the reduction of the number of factors taken into consideration. 

Variables were allocated to factors according to their highest loading; the threshold 

loadings of 0.4 and -0.4 were chosen to indicate saliency in all factor analyses. For the 

examination of the dimensionality of data based on the factor analysis (i.e., to determine the 

number of factors to be used in further analyses), the average variance criterion was adopted: 

factors were considered as significant if they explained more than the average (>1/154 = 

0.65%) of the total variance individually. This threshold, which corresponds to the Kaiser-

Guttman eigenvalue>1 rule [100], was chosen since it represents the variance accounted for 

by an individual variable by chance based on the intrinsic dimensionality of our data (i.e., the 

smaller of the number of cases or variables in the data). For the implementation of the factor 

analyses, SAS “FACTOR” procedure was applied. 

 

5.2 Canonical correlation analysis 
 

In canonical correlation analysis, variates in one set are formed to describe the correlation 

structure in a different set of variables. Therefore, canonical correlation analysis can be 

considered to be an extension of factor analysis for two separate sets of variables. In 

particular, the objective of this method is to obtain as high correlation as possible between the 

derived variables (here, pairs of variates or ‘factors’ are formed from the two sets) in variable 

set 1 and those in variable set 2. In other words, this technique is an optimal linear method for 

studying interset association: components from the two sets are extracted jointly to be 

maximally correlated with a component of the complementary variable set, within the 

constraint of orthogonality of all components except the correlated pair. 

The statistically significant canonical factor pairs were examined further in order to: 

(1) assess the importance of different scoring functions; 

(2) match the complex pattern structures of IP and effect profile matrices; 
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(3) visualize the relationship between drugs and protein binding sites. 

In case of the canonical correlation analysis of the association between MAFs and protein 

binding site descriptors, PCA factors of the MAF and the PocketPicker descriptor matrices 

with salient canonical loading over 0.25 or below -0.25 were collected in each canonical 

factor pairs. Canonical PCA loading structures were analyzed and in case of the MAF PCA 

factors representatives of the appeared typical drug groups were selected. In case of the 

PocketPicker PCA factors, salient descriptors were collected mapping the concomitant 

buriedness indices within the three distance levels. Proteins having salient canonical scores 

(over 1 and below -1) were also collected. Sign of the loadings was taken into consideration 

for the interpretation. 

The same criteria of saliency were applied for scoring function evaluation. Canonical 

correlation analysis for effect prediction was performed without previous dimension reduction 

by PCA. We mention that a reduced drug set containing 1,226 entries was used for the 

evaluation of IP-EP relationship, due to incomplete effect information in 29 cases. 

 

5.3 Canonical redundancy analysis 
 

Canonical redundancy analysis is used to examine how much of two sets of variables 

“overlap” in terms of explained variance or redundancy. This approach allows the 

determination of the amount of variance (or redundancy) that the canonical components 

(factors) account for in their ‘own set’ of variables, and in the ‘opposite set’ of variables (e.g. 

in case of protein site analysis, how much the individual structural canonical factors explain 

of the total variance of the structural characteristics of the protein binding pockets and of the 

MAF profiles, respectively). 

Canonical redundancy analysis was used to determine the overlap between two dataset 

pairs: 

(1) the AutoDock4 and X-SCORE-based IPs; 

(2) MAFs and PocketPicker structural descriptors. 

In addition to the explained variance associated with the individual canonical factors, we 

also determined total redundancy, i.e., the total amount of explained (predicted) variance of 

one set of variables given the whole predictor set. We note that, unlike canonical correlation, 

redundancy indices are nonsymmetric; in general, by designating one variable set a predictor 

set, the associated redundancy of the other set differs from what it would be if the functions of 
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the two sets were reversed. The F statistic was used for significance testing of correlations 

measured between canonical variate pairs. 

To perform canonical correlation and redundancy analyses, we used the SAS 

“CANCORR” procedure. 

 

5.4 Linear discriminant analysis 
 

Linear discriminant analysis (LDA) is a commonly used statistical approach to find an 

optimal linear transformation for maximizing the between-class variance and minimizing the 

within-class variance, thereby identifying the best discriminating surfaces or "hyperplanes" in 

the multidimensional space of feature sets that generate complex pattern classes. 

Based on the canonical factor pairs of IPs and effect profiles, we calculated the probability 

of each effect for each drug via LDA. Classification functions for each effect were determined 

in order to classify observations into known effect classes based on the IP canonical factors. 

The performance of the classification function was evaluated by estimating the drug-effect 

probability for each drug with regard to each effect and the rate of correct classification for all 

drugs with regard to all effects. In order to accomplish this, each observed IP was plugged in 

the classification function in order to generate the drug-effect probability matrix. 

 

5.5 Validation 
 

In order to evaluate robustness of the effect prediction results, i.e., the extent to which the 

aforementioned effect classification results would generalize to independent data, a cross-

validation with the leave-one-out procedure (LOOCV) was performed. LOOCV, which is also 

called rotation estimation, includes N rounds of validation, where N is the number of 

observations in the sample (i.e., the set of 1,226 drugs). Adopting the standard LOOCV 

approach, one round of validation consisted of three steps: 

(1) partitioning the data set into two complementary subsamples, with N-1 and 1 

observations/drugs, respectively; 

(2) conducting the CCA and LDA to derive the IP-based classification function using the 

subset with N-1 observations; 

(3) computing the drug-effect probability as well as determining (predicting) effect-group 

membership for the set with the single observation. 
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The cross-validation results for each of the originally registered drugs were then combined to 

yield a single average estimate for each effect. 

 

5.6 Receiver Operating Characteristic analysis 
 

Efficacy of the effect classification functions was assessed by Receiver Operating 

Characteristic (ROC) analysis, i.e. determining the true positive rate (TPR) and the false 

positive rate (FPR) for every effect, using the classification function (determined by LDA) 

and a sliding cut-off parameter running from 1 to 0. Molecules are reclassified at each point, 

considering compounds as “positive” if they have larger possibility for an effect than the 

actual cut-off value and “negative” in the opposite case. Positives can be further divided into 

true and false positives depending on the binary value originally assigned to the given drug-

effect pair i.e., if a drug had “1” in the effect profile and produced a classification value larger 

than the cut-off point, it will be considered as “true positive”. True and false negatives can be 

distinguished as well at each step. TPR and FPR are the fraction of true positives among the 

positives and the fraction of false positives among the negatives, respectively and are often 

referred to as sensitivity and (1-specificity). TPR and FPR values for each cut-off point are 

plotted on a two-dimensional graph called ROC curve. A completely random classification 

would result in an ROC curve on the diagonal of the graph, meaning that for every true 

positive hit, a false positive hit also falls into the classification. The better the classification, 

the closer the curve to the (0,1) point of the graph. 

 

5.7 Top Hit Rate calculation 
 

Besides ROC analysis, an alternate evaluation method called Top Hit Rate calculation was 

developed to assess the efficacy of effect classification. Here, the entire set of the 1,226 drugs 

were listed in descending order by their probability value of possessing the given effect, and 

the top of the list was cut at the number of the registered drugs to the studied effect. This top 

list contains registered and not registered drugs of the given effect since the not registered 

drugs can also gain high probability value in the multidimensional validation method and 

registered drugs can have low value. 
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Classification accuracy can be characterized with the proportion of the registered drugs in 

the top list. Therefore, the following Top Hit Rate value was calculated for each of the 181 

effects: 

 
Here, the number of all registered drugs of the given effect equals to the number of drugs in 

the top list, as discussed above. 

 

6. In vitro analyses 
 

In vitro tests were performed on a Hamilton Starlet Liquid Handling Workstation (Hamilton 

Robotics, Bonaduz, Switzerland). Spectroscopic measurements were carried out on BMG 

FluoStar Optima (Offenburg, Germany). Commercially available assay kits were used for the 

measurements and the robot was programmed according to the manufacturers’ instructions. 

The selected drugs were initially tested at 500 μM concentration and certain drugs were 

further tested to determine the Kd values. Each data point is an average of two independent 

measurements. 

ACE inhibition was tested using the ACE Kit-WST from Dojindo Molecular 

Technologies, Inc. (Kumamoto, Japan, Cat. No. A502-10). 3-hydroxybutyril-glycil-glycil-

glycine is utilized as a substrate in this kit and under the actions of ACE and aminoacylase it 

is converted into 3-hydroxybutyric acid. In the development step it is further oxidized into 

acetoacetate by the action of 3-hydroxybutyrate dehydrogenase. At the same time, the 

cofactor, NAD+ is converted into the reduced form NADH. During the oxidation of NADH to 

NAD+ a water-soluble tetrazolium salt is reduced coupled with an electron mediator and 

generates a yellow formazan. Tested drugs were incubated at the given concentrations with 

enzyme working solution and the substrate for 60 min at 37°C. In the next step indicator 

working solution was added to the reactions, the plate was incubated at room temperature for 

10 minutes and read at 450 nm. Captopril was used as a control for inhibition. 

COX inhibition was investigated using the COX Inhibitor Screening Assay Kit from 

Cayman Chemical Co. (Cayman Europe, Tallinn, Estonia; Cat. No. 560131). Briefly, this 

enzyme immunoassay kit quantifies the inhibition of COX-1 and COX-2 activities by 

measuring the formation of prostanoid products from the substrate arachidonic acid. Tested 

drugs were preincubated at the given concentrations with enzymes COX-1 and COX-2 for 10 
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minutes at 37°C. Reactions were started by adding the substrate, then incubated for 2 minutes 

at 37°C and stopped by 1M HCl. Prostaglandin screening was performed on a 96-well 

microplate coated with mouse anti-rabbit IgG. COX reaction samples were mixed with an 

AChE-linked tracer and the antiserum then incubated for 18 hours at room temperature. The 

washed plate was developed by Ellman’s reagent for 60 minutes and read at 400nm. Aspirin 

was used as a control for inhibition. 

In vitro tests were carried out by Ágnes Peragovics, László Végner, Balázs Jelinek and 

András Málnási-Csizmadia. 

 

6.1 Materials 
 

Aminosalicylic acid, furosemide, monobenzone, nitrofurazone and nitroxoline were 

purchased from Aldrich, maraviroc from AvaChem, chlorambucil, clavulanate, ethacrynic 

acid, flucytosine, furazolidone, latamoxef (moxalactam), lipoic acid, nitrofurantoin, 

novobiocin, paclitaxel, penicillin V, phenazopyridine and tinidazole from Fluka, carbenicillin 

from Merck, chlormezanone and chlorphenesin from MP Biomedicals, dasatinib and 

tipranavir from Santa Cruz Biotechnology, acitretin, alpha-linolenic acid, aspartame, aspirin, 

azithromycin, captopril, estrone-sulfate, flutamide, gemfibrozil, L-carnitine, lomustine, L-

proline, metronidazole, milrinone, nalidixic acid, nateglinide, nelfinavir, nilutamide, penicillin 

G, pyridoxal phosphate, telmisartan, ticarcillin and valproic acid from Sigma, benzyl benzoate 

and biotin from Sigma-Aldrich and ambenonium from Tocris Bioscience. 

Predicted ACE inhibitors pentosan polysulfate, polystyrene sulfonate and udenafil were 

commercially not available at the time of testing. Astemizole was omitted from testing 

because it was withdrawn from the market in most countries. 

Predicted COX inhibitors aminohippurate, amlexanox, bexarotene, phenprocoumon, 

procarbazine, rosoxacin, stepronin, tolcapone and valrubicin were commercially not available 

at the time of testing. Gentian violet and sodium lauryl sulfate were excluded from testing due 

to their limited clinical applicability. 

 

7. Cell culture D1, D2, α1B, α2A and β1 assays 
 

Cell culture assays were performed independently by Euroscreen S. A., Brussels, Belgium, 

according to the company’s internal protocols. Amiloride and minoxidil were tested in 
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duplicate for agonist and antagonist activities on the human adrenergic α1B, α2A, β1 and D2 

receptors using the Aequorin assay, and on the D1 receptor using the cAMP HTRF assay. 

Activities were provided as percentages of total activities of the company’s reference 

compounds. 
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Results and Discussion 
 

Considering the enormous mass and the complexity of data used in this study, Results and 

Discussion sections are merged in order to improve readability. 

 Two evaluation strategies were applied in order to study the relationship between the IP 

and EP datasets. The first method is a so-called one-dimensional analysis, a simple approach 

based on the one-dimensional distance between IPs of drug pairs in a multidimensional space. 

Its advantage is the clear, straightforward logic. To assess the applicability of in silico affinity 

data in bioactivity predictions, an in silico screening was performed using AutoDock3 

docking and scoring for 969 FDA-approved drug molecules and a set of 89 proteins. A linear 

distance measurement was introduced in order to create an IP similarity matrix for the small-

molecule drugs. Effect data were extracted from DrugBank without further refinement. Side 

effect data were collected manually for each drug from FDA drug labels. Based on IP 

similarity considerations, two different one-dimensional effect prediction methods were 

developed and validated using leave-one-out cross-validation. 

After the promising initial results, the docking procedure was repeated applying the 

improved AutoDock4 scoring function. Results were reproduced using the more reliable X-

SCORE function as well. On this data set, a multidimensional analysis procedure was 

performed. This methodology overcomes the inaccurate handling of the dimension reduction 

problem occurred in the previous analyses (see later in details). Here, principal component 

analyses were done in order to determine the dimensionality of the resulted IP data sets and 

the factor structure was examined. Canonical correlation and redundancy analyses were 

performed to determine the relation between the binding affinity values originated from the 

two scoring functions. Based on these results, X-SCORE data were chosen for determining 

the correlation between the IP data and the effect profiles. DrugBank based effect categories 

were refined and extended manually. Side effect data were omitted due to the high level of 

noise. Canonical correlations were done between the whole IP set and each binary effect 

patterns. Then, linear discriminant analysis was carried out for each effect in order to develop 

a classification function that calculates the probability that a given drug will possess the 

studied effect. Accuracy of the acquired classification functions was assessed by Receiver 

Operating Characteristic analysis. Robustness of the classification was determined by leave-

one-out cross-validation for each effect. Finally, several drugs and effects were selected for 

deep analysis. Here, retrospective literature analyses were done to reveal the validity of “false 
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positives” of the classification. If no data was available, in vitro tests were carried out for 

falsification or justification. 

The diversity of the applied protein set was also examined to check the validity of our 

assumption that the protein set is diverse enough to mimic the proteome. Moreover, in order 

to determine the importance of binding site geometry on binding affinity results, factor 

structures of MAF and PocketPicker geometric descriptor data sets were assessed by PCA. 

Then, canonical correlation analysis and redundancy analysis was applied to calculate the 

level of correlation and the explained variances between the sets, respectively. Finally, the 

canonical factor structure was examined in order to derive clear rules describing the 

connection between protein affinity data and binding site shape [98]. 

 

1. One-dimensional analyses 
 

The basis of the one-dimensional analyses is the pairwise similarity between two IPs, 

considered as vectors in a multidimensional space. The approach is called one-dimensional 

since the distance of the two IP vectors is a one-dimensional measure. The advantage of this 

measure is that it reflects the pattern of the binding energy values in the profile more than the 

actual binding affinity values. I.e., if two drugs possess the same interaction pattern but with 

different average binding affinity, their vector distance will be relatively small, suggesting 

that the two compounds are similar from a polypharmacologic point of view. (On the other 

hand, a single miscalculated docking energy value can cause significant error in the distance 

measurement.) 
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Figure 12. Summary of the IP generation and the IP similarity calculations. Drugs A and X are docked to 

the 89 members of the protein set. Their respective IPs (with color-coded energy values, ranging from green to 

red, i.e., from lower to higher binding free energy values, respectively) are compared and a pairwise similarity 

value is calculated. Based on these values, similarity lists are created for each drug, containing the remaining set 

of molecules in a decreasing order of similarity. 

 

In these examinations, structural and pharmacological data of 969 FDA approved drug 

molecules were collected from the DrugBank Database. The 2,307 effect and 28,919 adverse 

reaction records of these drug molecules were manually categorized and organized into 

relational databases, resulting in an effect and an adverse reaction dataset. Interaction patterns 

of the drug molecules were generated with 969 * 89 = 86,241 docking runs, each repeated 25 

times. The calculated lowest binding free energies of each protein-drug complex were 

collected and organized into a matrix. The 89 docking energies of each drug constitute the 

row vectors of the IP matrix. Then, we compared the IPs with each other in order to generate 

an IP distance matrix. Comparability of IPs is assured by the identical discriminator surface 

for all of the studied molecules because they were only allowed to interact with the selected 

surface regions of each protein. In order to quantify the similarity between two IPs we 

introduce an IP Distance Value (d) based on cosine angle distance indexed by the angle 

enclosed by two IP vectors, ranging from 0 (most similar) to 180 (least similar). It is 

important to note that IP Distance Value refers to the binding profile similarity irrespective of 

the general binding strength of certain drugs to the whole protein set. For each molecule, a 

similarity rank list was generated (Figure 12). The similarity rank list was built on the basis of 
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the IP Distance Value (d): the smaller the value of d, the higher the position on the list. 

Different k-NN (k nearest neighbors) were generated from these lists (Figure 12). 

 

1.1 Validation 
 

Analysis of the relation of the IP and effect databases was performed applying the leave-

one-out cross-validation technique. A selected molecule was treated as a reference and its 

effects were predicted based on the effects of molecules having similar IPs to this reference 

molecule (Figure 13a) as determined before. Every effect of this set of IP-similar molecules 

was compiled into a list and the number of times an effect appears on this list was counted 

(Figure 13a). The effects which appear at a prespecified number of times (i.e., the predicted 

effects) were matched to the known effects of the reference molecule. The prediction 

accuracy of effects is the ratio of the predicted and known effects (Figure 13b). In order to 

determine the confidence of the prediction, we generated random effect databases, and then 

performed the same prediction procedure on them. The high values of a confidence measure 

calculated from the ratio of the effect prediction accuracy of real and random databases 

throughout the whole database suggest that IPs correlate with observed effects (Figure 13c) as 

expected. E.g., using the first 20 neighbors of any molecule and considering effects as “real” 

or “true positive” if they appear at least two times, 36.7% of the registered effects can be 

recovered for any drug. Applying a random database, only 8% of the known effects are 

regained (Figure 13b). Increase of the applied neighbors will increase the accuracy values, 

e.g. considering double appearance for 30 neighbors, 44.1% and 13.2% of the known effects 

are recognized in a real and a random dataset, respectively. On the other hand, more “false 

positives” will appear. However, if we aggravate the appearance threshold up to at least four 

appearances for 20 neighbors, the accuracy values will decrease to 15% and 0.7% for the real 

and random datasets, respectively (Figure 13b). Although these values seem to be small, one 

must consider that the confidence of the prediction increases by increasing the appearance 

threshold. In this case, applying 20 neighbors and at least two appearances, the confidence 

value is 78% while it increases to 95.4% if the threshold is set to at least four appearances. To 

sum up, increasing the number of considered neighbors and decreasing the appearance 

threshold results in an increase of the ratio of the regained effects while the confidence 

decreases. Reducing the number of neighbors or increasing the threshold has the opposite 

effect: accuracy decreases but confidence increases, resulting in a lower number of regained 
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effects but with higher confidence. These parameters (i.e., the appearance threshold and the 

number of neighbors) should be fine-tuned for effect prediction. 

Furthermore, we validated the method by using a subset of drug molecules whose target 

protein is not represented in the docking protein set (809 molecules). Similar results were 

obtained between the validations of this drug subset and the set containing 969 drugs (Figure 

13c inset). This demonstrates that the predictive power of the one-dimensional method is 

independent of the presence of the drug targets on the discriminator surface. Therefore, this is 

the first evidence that our in silico interaction pattern based effect prediction method is not a 

target-based (target-specific) approach. 

 
Figure 13. Validation of the effect prediction method based on IP similarity. Panel (a) shows the schematic 

summary of the validation procedure. The validation of effect prediction of the one-dimensional method was 

carried out by the leave-one-out cross-validation technique, using the real and five randomized datasets. The 

prediction model contains two variables: k: the number of most similar molecules to the reference molecule 

according to the k-NN queries, c: the effects that appeared minimum twice (circle), three (up-triangle), four 

(down-triangle) or five (diamond) times in the list created from summing up the effects of the most similar 

molecules. Solid and open symbols represent data calculated from real and randomized datasets, respectively. 

Accuracy of prediction for a given molecule (Ai) and total average prediction accuracy (A(k,c)) were determined 
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as described in Methods. A (k,1), A (k,2), A (k,3), A (k,4), A (k,5) of the real (solid symbols) and the average of 

A (k,c) values of the randomized datasets (open symbols) are plotted with error bars (standard error of the mean), 

as a function of k on panel B. Panel C shows the confidence values plotted as a function of k. Inset shows the 

confidence values for the 20 most similar neighbors of each drug (k=20), in the case of the whole (circle) and the 

reduced drug set (cross). The reduced set consists of molecules whose target proteins are not included in the set 

of 89 proteins (969 and 809 drugs, respectively). 

 

1.2 Effect prediction 
 

Two one-dimensional approaches have been developed to predict new effects for the 

approved drug molecules (Figure 14). 

 
Figure 14. Schematic summary of the two IP similarity-based prediction methods. 
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The first one called neighbor-focused prediction method (Figure 14a) applies the same 

procedure as the presented validation process except for that the predicted effects are not 

matched with the approved effects. In this case, the close IP neighbors (k=20) of a studied 

drug molecule are listed and their effects are collected. The appearance of each effect is 

counted (parameter creal). The same process was applied on the five randomized effect 

databases which were used in the validation step in order to determine the average value of 

crandom.  In order to determine the confidence of the prediction (CP) on a certain drug and 

effect the following equation was applied: 

real

random
P c

c
C 1

 
The alternative, effect-focused prediction method is based on finding common members in 

the lists of IP-similar molecules of drugs associated with particular effects (Figure 14b). Here, 

drugs associated with a certain effect were collected. Then a list was formed from the 20 most 

IP-similar drugs of the collected drugs. Drugs originally associated with the studied effect 

were excluded from the list. Drugs which appeared multiple times in this list were indicated to 

have this effect. 

The method was subjected to a detailed validation process in order to ensure that our 

approach can be used for effect prediction. With regard to the main objective of the project, 

i.e., to discover and confirm new effects for approved drugs, our results show that 838 and 

267 new hitherto unrevealed effects were predicted with average prediction confidence values 

(CP av) over 80% (c  5) and 90% (c  6), respectively (Figure 15). 
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Figure 15. Distribution of predicted new effects based on the neighbor-focused prediction method. Inset 

shows the average prediction confidence (CPav) calculated as follows: 
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where Npi.real is the number of the types of predicted new effects appearing at least c times (black bars on the 

main figure), randompiN .  is the average number of the types of predicted new effects appearing at least c times in 

five different randomized databases (grey bars on the main figure) in which all effects are randomly reallocated 

to the drugs. The last three data points (open symbol) are virtually 100% because randompiN .  was zero in these 

cases. 

 

1.3 Summary and further optimization possibilities 
 

With the aforementioned good empirical validation results in mind, it was realized that 

many aspects of this initial IP-based prediction can be further improved.  For example, 

currently available phenotypic characterizations of complex drug effect/adverse reaction 

profiles that underlie the prediction are incomplete. These factors, in turn, are expected to lead 

to suboptimal prediction. However, due to its expandability, our system can be supplemented 

with emerging knowledge on hitherto unknown clinical effects of marketed drugs and 

information on newly approved drugs. Decision rules can be optimized, and relationships 

between MIF-similar drugs and bioactivity profiles can be characterized better. The predictive 

power of the approach can be enhanced by applying statistical methods that are able to 

overcome the dimensionality problem of IPs. The neighborhood-based similarity lists applied 

here inherently reduce the multidimensional nature of the IP data, forcing multidimensional 

structures into a potentially misleading measurement. For example, if a drug’s closest 

neighbors form two distinct and well-defined clusters in the space of the applied protein set 

with similar average distances, the neighborhood list will consist of elements almost randomly 

picked from the two non-related groups. The one-dimensional distance parameter is a 

reasonable descriptor for molecules A-B and A-C but it contains no data of the B-C distance. 

Consequently, the information represented by the two subgroups will be blurred. Therefore, 

this distance cannot be applied for “mapping” the interaction pattern space. To overcome this 

issue, a new multidimensional approach was introduced. 

Together with the development of a more thorough effect classification/prediction system, 

it was decided to introduce a larger protein set that might prove higher diversity than the 
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originally used 89 molecules. 71 new proteins were selected based on the same selection 

criteria, thus extending the protein set to 160 entries (although 6 of them were removed before 

the analyses, see Methods). We also extended the drug set with molecules below 600 Da and 

labeled “FDA-approved drug” in DrugBank, collecting 286 new entries, resulting in 1,255 

drugs. 

During the one-dimensional evaluation of the results, AutoDock4 was launched that 

performed better than the older version we used [101]. DOVIS, a newly presented docking 

manager engineered by the Biotechnology High Performance Computing Software 

Applications Institute (U.S. Army Medical Research and Materiel Command) enabled the 

parallelization of docking jobs on multiprocessor systems that resulted in one magnitude 

acceleration of the calculation speed. The two scoring functions implemented in DOVIS, i.e. 

AutoDock4 and X-SCORE, served an opportunity to compare two widely used scoring 

functions and to assess the importance of scoring on the results. Based on its superior 

properties to AutoDock3, DOVIS was chosen to perform the new docking runs needed for the 

detailed analysis. Considering the aforementioned backdrops of rescoring, complete 

redocking was carried out for producing the AutoDock4 and X-SCORE based data matrices 

as well. 

 

2. Multidimensional analyses 
 

IPs and effect profiles were generated based on structural and pharmacological information on 

1,226 FDA-approved small-molecule drugs this time (Figure 17, Appendix 1). Effect profiles 

(EPs) were extracted from the DrugBank database and stored as a row vector for each drug 

with binary entries, comprising 559 effect categories that were reduced to 181 by excluding 

effects with a low number of registered drugs. X-SCORE and Autodock4 scoring functions 

were used to calculate the corresponding binding affinity values of the 1,226*154 drug-

protein complexes as described in Methods. The binding affinity values were piped into the IP 

vectors. The IP and EP vectors were collected into matrices and used as input databases in the 

subsequent investigations (Figure 16). 

Before proceeding with the analysis of IP-EP correlation, the extended protein set was 

subjected to a diversity analysis. Moreover, the importance of protein binding site geometry 

was also assessed. The effect of different scoring functions on the binding affinity data matrix 

was studied in order to choose the scoring function that is more suitable for further analyses. 
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Based on the results, X-SCORE scoring function was applied for multidimensional analyses 

assessing the IP-EP association. 

 
Figure 16. Graphical summary of the Drug Profile Matching method: from the atomic structures to 

the effect probability matrix. A drug molecule is docked to a set of 154 proteins and the calculated binding free 

energies are entered into a row vector, i.e. the Interaction Profile (IP). IPs of the 1,226 studied drugs form the IP 

matrix. The Effect Pattern (EP) matrix contains the therapeutic effects of the drugs in a binary coded form (blue 

and white cells represent the presence and the absence of a given effect from the 181 categories, respectively). 

Then, canonical correlation analysis is performed in order to generate highly correlating factor pairs that serve as 

the input for linear discriminant analysis. This way, classification functions are produced that yield the 

probability for each drug-effect pair, resulting in the effect probability matrix. Note that the values in this matrix 

are continuous. 
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2.1 Protein diversity analysis 
 

We assume that an IP vector with a diverse set of proteins used in the present study models 

the interactions formed by a given drug with the human proteome. To check this assumption, 

the diversity of the protein set was calculated from the similarity values of the binding site 

geometry descriptors obtained from PocketPicker software. 95.5% (11,252 out of 11,781) of 

the values in the protein-protein dissimilarity half-matrix are above the dissimilarity threshold 

published in [89], suggesting a fairly diverse set of proteins. 

 

2.2 Analysis of the importance of binding site geometry 
 

To address the question whether the geometrical parameters of the protein binding sites are 

important in determining drug-protein binding properties [98], large data matrices were 

assembled from both sides, i.e. the interactions of 154 proteins and 1,255 FDA-approved 

small-molecule drugs were studied while protein binding site shapes were described using 

405 geometrical parameters. The same set of atoms isolated from each protein and centered to 

the gravity center of the natural ligand was applied in docking simulations and binding site 

description procedure as well. The size of the docking box was set to ensure that even the 

largest members of the drug set have enough space for finding the lowest-energy 

conformation. Box sizes were not adjusted to smaller ligands, keeping consistent treatment of 

proteins our priority. 

 

2.2.1 PCA of molecular affinity profiles of target proteins 
As described in the Methods, PCA with ORTHOMAX/PARSIMAX rotation of the molecular 

affinity fingerprints was conducted in order to determine the underlying factor structure of the 

MAF profiles. Table 3 displays the explained variances for the first 40 factors resulted by the 

factor analysis. 

 

Factor 

Number 

Explained 

Variance 

Cumulative 

Explained 

Variance 

1 0.1816 0.1816 

2 0.0768 0.2584 

3 0.0574 0.3158 

4 0.0382 0.3539 

5 0.0322 0.3861 

6 0.0309 0.4171 

7 0.0247 0.4417 
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8 0.0236 0.4653 

9 0.0197 0.4850 

10 0.0181 0.5032 

11 0.0169 0.5200 

12 0.0164 0.5364 

13 0.0147 0.5511 

14 0.0139 0.5650 

15 0.0127 0.5777 

16 0.0123 0.5900 

17 0.0118 0.6018 

18 0.0113 0.6131 

19 0.0107 0.6239 

20 0.0105 0.6344 

21 0.0100 0.6443 

22 0.0089 0.6533 

23 0.0087 0.6619 

24 0.0082 0.6702 

25 0.0080 0.6781 

26 0.0078 0.6860 

27 0.0073 0.6933 

28 0.0070 0.7003 

29 0.0069 0.7072 

30 0.0068 0.7139 

31 0.0064 0.7203 

32 0.0063 0.7266 

33 0.0061 0.7327 

34 0.0059 0.7386 

35 0.0058 0.7444 

36 0.0056 0.7500 

37 0.0053 0.7553 

38 0.0052 0.7605 

39 0.0051 0.7656 

40 0.0050 0.7706 

 

Table 3. Explained Variances of PCA Factors obtained from the MAF Matrix. The first 40 factors obtained from 

the factor analysis of the MAF profiles of 154 target proteins are displayed. 30 factors were retained in 

accordance with the average variance criterion (i.e., explaining individually more than 1/154=0.65% of the total 

variance). They explain cumulatively 71.4% of the total variance. 

 

Overall, 30 factors explained 71.4% of the total variance of the MAF energy values and were 

retained for subsequent analyses. 90% of the total variance is explained by using 78 factors of 

the theoretically possible 154 factors with nonzero eigenvalues. To investigate the 

performance of the orthogonal rotation procedure in terms of achieving a simple structure, we 

examined the number of salient loadings for each of the individual factors retained for further 

analyses. Figure 17 shows the distribution of the number of salient loadings for each of the 30 

retained factors. The number of salient loadings varied between 10 and 35 for the individual 

factors, indicating that simple structure was achieved since the rotated factors contained only 

a small subset of the original variables. 
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Figure 17. Number of salient loadings across the 30 PCA factors of the MAF matrix. 30 factors were 

obtained from the matrix of the Molecular Affinity Fingerprints (MAFs) of target proteins by principal 

component analysis (PCA). The number of salient loadings (i.e., loadings with a value of > 0.4 or ≤ -0.4) varied 

between 10 and 35 for the individual factors, indicating a simple factor structure since the number of variables in 

the original MAF matrix was 1,255. 

 

2.2.2 PCA of the geometric characteristics of protein binding sites 
Analogous to the analysis of the MAF fingerprints, PCA analysis with 

ORTHOMAX/PARSIMAX rotation was performed for the full set of 405 variables 

comprised in the PocketPicker descriptor matrix. Explained variances for the first 40 factors 

resulted by the factor analysis are displayed in Table 4. Analogous to the approach adopted 

for the PCA analysis of the molecular affinity fingerprints of the 154 proteins, we determined 

the number of factors that explained at least 0.65% of the total variance individually. As 

indicated by Table 4, this criterion resulted in 13 factors which explained cumulatively 94.1% 

of the total variance. Altogether, 5 factors, respectively, explained >5% of the total variance 

of the geometric descriptors. Furthermore, 9 factors of the theoretically possible total of 154 

factors with nonzero eigenvalues accounted for 90% of the total variance. We note that 116 

factors explained 100% of the variation of the full set of PocketPicker descriptors (n=405). 
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Factor 

Number 

Explained 

Variance 

Cumulative 

Explained 

Variance 

1 0.3847 0.3847 

2 0.2359 0.6206 

3 0.0818 0.7024 

4 0.0544 0.7568 

5 0.0524 0.8091 

6 0.0377 0.8469 

7 0.0257 0.8726 

8 0.0180 0.8906 

9 0.0136 0.9042 

10 0.0120 0.9162 

11 0.0100 0.9262 

12 0.0078 0.9340 

13 0.0074 0.9414 

14 0.0057 0.9471 

15 0.0049 0.9520 

16 0.0041 0.9561 

17 0.0038 0.9599 

18 0.0029 0.9628 

19 0.0029 0.9657 

20 0.0028 0.9685 

21 0.0025 0.9709 

22 0.0022 0.9732 

23 0.002 0.9752 

24 0.0019 0.9771 

25 0.0017 0.9788 

26 0.0016 0.9804 

27 0.0015 0.9819 

28 0.0012 0.9831 

29 0.0012 0.9843 

30 0.0011 0.9854 

31 0.0009 0.9863 

32 0.0009 0.9872 

33 0.0008 0.9880 

34 0.0007 0.9888 

35 0.0007 0.9895 

36 0.0006 0.9901 

37 0.0006 0.9908 

38 0.0006 0.9913 

39 0.0005 0.9919 

40 0.0005 0.9924 

 

Table 4. Explained Variances of PCA Factors obtained from the PocketPicker Descriptor Matrix. The first 40 

factors obtained from the factor analysis of the geometric features of the binding sites of 154 target proteins are 

shown. 13 factors were retained in accordance with the average variance criterion (i.e., explaining > 

1/154=0.65% of the total variance). Cumulatively, they explain 94.1% of the total variance. 

 

Similar to the PCA of the MAF profiles, the performance of the orthogonal rotation 

procedure in achieving a simple structure was examined through the number of salient 

loadings for each of the individual factors. Figure 18 shows the distribution of the number of 
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salient loadings across the first 13 factors. As shown by the Figure, it varied between 42 and 

75 across the individual factors. Again, similar to the PCA analysis of the MAF profiles, such 

a distribution of salient loadings reflects a simple structure since the rotated factors contained 

only a small subset of the original variables. 

 

 
Figure 18. Number of salient loadings across the 13 PCA factors of the PocketPicker descriptor matrix. 13 

factors were obtained from the matrix of geometric features of the binding sites of target proteins by PCA. The 

number of salient loadings (i.e., loadings with a value of > 0.4 or ≤ -0.4) varied between 45 and 72 for the 

individual factors which reflect a simple factor structure since the original PocketPicker descriptor matrix 

contained 405 variables. 
 

2.2.3 Comparison of the factorial structure of molecular affinity profiles 

and geometric characteristics of protein binding sites 
Figure 19 displays superimposed Scree plots based on the MAF fingerprints and the 

PocketPicker-based geometric descriptors, respectively. As shown by the cumulative variance 

of MAF factors and PocketPicker factors, explained variances for the PocketPicker factors 

saturate much faster than for the MAFs. Accordingly, Molecular Affinity Fingerprints 

consisting of the 1255 energy values for each protein can be described by substantially more 

parameters (factors) than the set of PocketPicker descriptors. This result reflects the fact that 

the energy values of the drugs are more heterogeneous as compared to the geometries of the 

protein pockets, which can be characterized by 13 underlying geometric descriptor factors 

effectively (with approximately 94% of the variance explained; in contrast to the 55% of the 

variance explained by the same number of factors for the MAF fingerprints, see Table 3). A 

similar observation was made by other groups [102, 103] including Favia et al who studied 
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the interactions between 27 members of a protein family and approximately 1,000 compounds 

including their natural ligands. They found that binding affinities vary in a wide range even 

within clusters of structurally similar molecules, docked to a set of structurally and 

evolutionary related proteins [103]. 

 

 
Figure 19. Superimposed Scree plots based on the MAF fingerprints and the PocketPicker descriptors. 

Cumulative variance explained by the PCA factors for the geometric descriptor matrix based on PocketPicker 

(circle) saturates much faster than the cumulative variance for the MAF profiles (square), suggesting that the 

MAF matrix has more complex structure. The first 40 factors of both matrices are plotted. 

 

2.2.4 Canonical Correlation Analysis 
Relationship between molecular affinity profiles of target proteins and structural properties of 

their respective binding sites was investigated by canonical correlation and canonical 

redundancy analyses. For the purpose of these analyses, factor scores from the set of 30 and 

13 factors from the PCA of MAF and PocketPicker descriptors, respectively, were used as 

input variables. 

 

Canonical 

Factor 

Pair 

Canonical 

R 
F statistic p 

Structure of Canonical Factor Pairs 

MAF Factor PocketPicker Factor 

I. 0.87 2.17 <0.0001 6, 12 , -19 5, 8, 9, 10, 11, 12 

II. 0.84 1.74 <0.0001 -7, -15, -16, 28, -30 1, 2, -12 

III. 0.77 1.34 =0.0004 -8, 9, 18 -1, 2, 5, -12 
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Table 5. Canonical correlations and component structure for canonical factor pairs between the MAF and 

PocketPicker matrices. Canonical correlation analysis between the PCA factors of the MAF profiles of target 

proteins and the geometric characteristics of their respective binding sites indicated a statistically significant 

association for 3 pairs of canonical factors.  PCA factors of the MAF and the PocketPicker matrices with salient 

canonical loading (>0.25 or < -0.25) are shown for each of these canonical factor pairs. (Negative signs indicate 

negative loading.) 

 

Results of CCA indicated statistically significant multivariate relationships between the 

two sets (Table 5). In particular, the first 3 canonical correlations with a value of 0.87, 0.84, 

and 0.77, respectively, reached statistical significance. Canonical factor structure for the first 

three canonical factor pairs is shown in Table 5. As shown by the table, relatively small 

number of the underlying principal components attain saliency in the canonical factor pairs of 

the MAF and geometric descriptors (3, 5 and 3 for MAF; 6, 3 and 4 for PocketPicker 

geometric descriptors) based on the threshold loadings of 0.25 and -0.25 applied for these 

examinations. 

Despite the close multivariate association between the two sets of variables, redundancy 

analysis indicated that canonical components of MAF factor fingerprints associated with the 

first 3 canonical correlations explained approximately 15.9% of the total variance of the 

geometric descriptor factor set (Table 6). Analogously, results of the canonical redundancy 

analysis revealed that canonical components of the corresponding PocketPicker descriptor 

factors (associated with the first 3 canonical correlations) explained approximately 6.9% of 

the total variance of the MAF factor set. In addition, the theoretically possible 13 canonical 

components with nonzero eigenvalue explained 13% of the total variance of the MAF factor 

fingerprints; the analogous value for the PocketPicker descriptor factors using 13 canonical 

components with nonzero eigenvalue was 100%. 

 

Variance of the MAF Variables Explained by 

Canonical 
Variable 
Number 

Their Own Canonical 
Variables Canonical 

R-Square 

The Opposite 
Canonical Variables 

Proportion Cumulative 
Proportion Proportion Cumulative 

Proportion 
1 0.0333 0.0333 0.7638 0.0255 0.0255 
2 0.0333 0.0667 0.7122 0.0237 0.0492 
3 0.0333 0.1000 0.5852 0.0195 0.0687 
4 0.0333 0.1333 0.4275 0.0142 0.0830 
5 0.0333 0.1667 0.3403 0.0113 0.0943 
6 0.0333 0.2000 0.2952 0.0098 0.1041 



74 
 

7 0.0333 0.2333 0.2362 0.0079 0.1120 
8 0.0333 0.2667 0.1811 0.0060 0.1181 
9 0.0333 0.3000 0.1238 0.0041 0.1222 

10 0.0333 0.3333 0.1168 0.0039 0.1261 
11 0.0333 0.3667 0.0833 0.0028 0.1288 
12 0.0333 0.4000 0.0180 0.0006 0.1294 
13 0.0333 0.4333 0.0129 0.0004 0.1299 

Variance of the PocketPicker Variables Explained by 

Canonical 
Variable 
Number 

Their Own Canonical 
Variables Canonical 

R-Square 
 

The Opposite 
Canonical Variables 

Proportion Cumulative 
Proportion Proportion Cumulative 

Proportion 
1 0.0769 0.0769 0.7638 0.0588 0.0588 
2 0.0769 0.1538 0.7122 0.0548 0.1135 
3 0.0769 0.2308 0.5852 0.0450 0.1586 
4 0.0769 0.3077 0.4275 0.0329 0.1914 
5 0.0769 0.3846 0.3403 0.0262 0.2176 
6 0.0769 0.4615 0.2952 0.0227 0.2403 
7 0.0769 0.5385 0.2362 0.0182 0.2585 
8 0.0769 0.6154 0.1811 0.0139 0.2724 
9 0.0769 0.6923 0.1238 0.0095 0.2819 

10 0.0769 0.7692 0.1168 0.0090 0.2909 
11 0.0769 0.8462 0.0833 0.0064 0.2973 
12 0.0769 0.9231 0.0180 0.0014 0.2987 
13 0.0769 1.0000 0.0129 0.0010 0.2997 

 

Table 6. Results of the Canonical Redundancy Analysis. Proportion of the variance of PCA factor sets 

(yielded by the MAF and the PocketPicker matrices, respectively) explained by the canonical variates obtained 

from the same and from the other matrix, respectively. According to the canonical correlation analysis, the first 3 

canonical variables reached significance. 

 

Salient components of the three statistically significant canonical factor pairs were 

examined in order to further interpret our findings. 

Factor pair I contained benzodiazepines, barbiturates and morphine derivatives with high 

positive scores from the MAF side and a fairly homogenous distribution of PocketPicker 

descriptors associated with low, medium and high values of buriedness and distance (Figure 

20a). There were no detectable correlations with short-distance, low-buriedness or distant, 

highly buried descriptors (white blocks). High negative scores were observed for several 

drugs including proton pump inhibitors and others that do not form any cohesive groups. 
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Factor pair II contained phenotiazines, tricyclic antidepressants and certain large 

molecules (e.g., antibiotics) with negative scores on the MAF factor side while beta-lactams 

and antiviral agents participated with positive scores in this factor. On the PocketPicker factor 

side, low and medium buriedness values, associated with low and medium distances, were 

observed with positive scores. Large distance descriptors in association with medium 

buriedness levels displayed a negative correlation. 

On the MAF factor side of factor pair III, compact molecules (amino acids, tertiary 

amines, antihistamines) produced positive correlation, in contrast with molecules that have 

elongated chains which yielded negative correlation. From the PocketPicker side, medium 

and large buriedness and small/medium distance values obtained positive scores while small 

(and medium) buriedness values associated with small, medium and especially large distances 

had a negative correlation. 

Overall, because of the abundance of medium/large buriedness and small/medium 

distance values, we conclude that canonical factor pair III is associated with narrow, deep 

binding sites. This is supported by the fact that descriptors associated with large distances and 

low buriedness values have negative correlation. Deep, narrow pockets are in good agreement 

with the shapes of the drug molecules responsible for the salients of the MAF side of 

canonical factor pair III since small, compact molecules have positive correlation while 

elongated compounds have negative correlation. Figure 20b shows the binding pockets of the 

proteins responsible for the salients on the PocketPicker side. These pockets correlate well 

with the hypothesized overall shape discussed above. Factor pair II points to medium-sized 

binding sites as they can be described with small/medium distance parameters and the 

anticorrelation of parameters coding large distances. Large molecules showed a negative 

correlation as well; however, this relationship is not as straightforward as in the case of factor 

pair III. (See Figure 20b for the binding pockets.) Due to the fact that a wide range of 

PocketPicker descriptors from different classes are represented in the salients of factor pair I, 

no specific association can be identified in this case. The reason for the suspicious appearance 

of different structural classes of GABAA-acting pharmaceuticals – e.g. benzodiazepines, 

barbiturates and morphine derivatives – requires further investigation since the binding 

pockets of this group possess different shape properties (i.e., elongated and highly branched 

structures can be found here as well). 
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Figure 20. Visual summary of the results of canonical correlation between the MAF and PocketPicker 

descriptor matrices. a. Three statistically significant canonical factor pairs were obtained with the correlation 

values of 0.87, 0.84 and 0.77, respectively. Canonical correlation (R value) for each factor pair is shown in the 

middle part. Representative molecules for the MAF factors are shown on the left panel (orange and blue 

background for positive and negative salients, respectively). Distribution of PocketPicker salients is shown on 

the right panel. The six different buriedness levels are represented by the letters A-F, with F representing the 

highest level of buriedness while distance parameters were collected into three groups (1-7 Å, 8-14 Å, 15-20 Å). 

Orange and blue colors stand for the positive and negative salients, respectively. White blocks represent the 

absence of a given descriptor pair within a given distance. See text for details of analysis. Abbreviations: BZDs: 

benzodiazepines; Morph.: morphine derivatives; Barb.: barbiturates; PPIs: proton pump inhibitors; Phen: 

phenotiazines; TCAs: tricyclic antidepressants. Panel b: Shapes of protein binding pockets represented with high 

scores among the first three canonical factor pairs. Positive and negative salients are represented by orange and 

blue boxes. Binding site shapes are represented with colored balls positioned in a 1Å-spaced grid with deeper 
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blue representing a higher level of buriedness. Protein surfaces were removed for better view of the binding 

pockets in most cases excluding flat, surface sites e.g. 2pk4. 

As shown by the figure, proteins of the positive salients of factor III have narrow, deep binding pockets 

while negative salients contain shallow, small pockets (1aj6, 1apy) and wide, extensive binding sites (2fvv, 

3fap). Factor II proteins can be described as having binding sites of medium size and width. Based on the 

distribution of salient loadings of PocketPicker variables, factor I proteins do not form a coherent group.   

Elongated (1d3g), branching (1zsx, 2p0a) and bulky binding sites (2cca) belong to this factor. 

 

Our examination of the relation between MAFs and the binding site shape descriptor 

matrix indicates that the MAF matrix has a complex structure that is correlated with the 

geometry of the ligand molecules and the protein itself; however, it cannot be sufficiently 

described by binding site shape descriptors. Binding pocket shape does not play a principal 

role in the determination of the affinity profiles of proteins except for few specific cases 

discussed above. Since the MAF profile reflects to the target specificity of ligand binding 

sites we can conclude that the shape of the binding site is not a key factor to select drug 

targets. Protein binding sites can be characterized through other more complex descriptors 

that take additional variables into consideration, for example electrostatic interactions [88, 

104]. Our findings are in agreement with a recent study where NMDA receptor antagonists 

were selected from a library of 8.8 million compounds, applying different virtual screening 

methods i.e. 2D descriptor-based filtering, molecular docking, QSAR pharmacophore 

hypothesis and 3D shape search [105]. The best positive hits from each approach were further 

evaluated by in vitro tests. Comparing the four approaches, the 3D-shape-based one gave the 

worst hit rates while docking produced the highest number of successfully validated 

compounds. 

From another perspective, our results suggest that the shapes of the binding sites could 

have an impact in virtual drug design for a few drug categories such as morphine derivatives, 

benzodiazepines, barbiturates and antihistamines, where they strongly correlate with the MAF 

profiles [98]. 

 

2.2.5 Sensitivity Analysis: the importance of different scoring functions 
 

In order to compare the binding free energy values obtained by using AutoDock4 and X-

SCORE scoring functions, principle component analyses and canonical correlation analyses 

were carried out on the two datasets. 
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Principle component analyses were performed on the IP datasets obtained by using 

AutoDock4 and X-SCORE scoring functions, respectively. The 1,226 variables (i.e., the 

drugs) were transformed into 152 factors explaining 99.92% of the total variance in case of 

the AutoDock4 results. X-SCORE values resulted in 154 factors, explaining 99.16% of the 

total variance. Consequently, the two datasets show a similar level of complexity. 

Canonical correlation analysis between the two datasets revealed 14 significant factor 

pairs by applying the Kaiser-Gutman eigenvalue criterion. The largest and the smallest 

obtained correlation values were 0.97 and 0.72, respectively, suggesting that a high degree of 

correlation exists between the datasets based on the different scoring functions. 

Consequently, the complexity of the binding free energy data originated from the two 

scoring functions is similar and a clear correlation can be seen between them. Based on these 

results, both scoring functions seem to be suitable for further analyses. However, based on the 

relatively high acceptance of X-SCORE in the literature [51, 106], this scoring function was 

chosen. 

To determine the robustness of our findings on the importance of shape in binding affinity 

determination and to study the impact of the applied scoring function on the results, data 

evaluation was carried out on both datasets. We note that, in contrast to scoring functions 

used for evaluating docking results, the PocketPicker algorithm shows no stochasticity as it 

describes binding pockets in a fully reproducible manner while scoring functions are only 

able to find local minima on the energy landscape, depending greatly on the initial 

conformation and the applied parameters of searching and scoring methods [48]. Therefore 

we decided to evaluate the reliability of docking results but not the geometric descriptive 

method. 

There was no significant difference between the canonical correlation analyses based on 

X-SCORE or AutoDock4 set and the PocketPicker descriptor matrix. Three significant factor 

pairs were obtained in both cases. For AutoDock4 data, canonical R values were 0.83, 0.70 

and 0.66 for the three factor pairs, respectively. The canonical redundancy analyses also 

revealed consistency between the two approaches. The significant PocketPicker factors 

explain 8.54% of the variance of the AutoDock4-based MAF factor set while this factor set 

explains 12.5% of the variance of the PocketPicker descriptors. The results suggest that our 

principal findings are robust both in terms of the close association and the moderate amount 

of explained variance observed in the case of the original dataset. In summary, we showed 

that our findings may reflect from the intrinsic properties of protein binding sites and drug 

molecules and are not artifacts of the applied methodology. [98] 
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2.3 Multidimensional IP-EP correlation 
 

In order to match the complex pattern structures of IPs and effect profiles, canonical 

correlation analyses were performed between them and the basic underlying factor pair that 

show maximal correlation was identified. We calculated the probability of each effect for 

each drug based on the drug’s IP by linear discriminant analyses, producing a classification 

function for all effects. As shown by Figure 21, each observed IP was plugged in the 

classification function in order to generate the drug-effect probability matrix. 

To avoid confusion with the previous prediction attempts, this newly introduced 

multidimensional method is referred to as Drug Profile Matching throughout this section. 

 
Figure 21. Mechanism of the multidimensional effect prediction. First, canonical correlation analysis is 

performed on the IP matrix and a selected effect category (bottom arrows), resulting in a vector pair that are the 

linear combinations of the original interaction matrix and effect vector, respectively. Then, linear discriminant 

analysis is conducted in order to generate a classification function that calculates the probability that a given 

drug will possess the studied effect. This analysis is repeated for the studied 181 effect, producing a recalculated 

effect probability matrix. (Note that probability values in this matrix are continuous.) Comparison of the original 

and the recalculated vector of an effect category (top arrows) reveals the true positive hits (i.e., the matches; 
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highlighted with red) and the “false” positives that can be considered as predictions (differences; highlighted 

with light blue). 

 

2.3.1 Assessing Accuracy 
Receiver Operating Characteristic (ROC) curves were examined first in order to quantitatively 

assess the potential clinical relevance of the drug-effect probability values (Figure 22). ROC 

analysis characterizes classification performance in terms of true positive rate and false 

positive rate of drug-effect classification. ROC curves allow the fine-tuning of the detection 

threshold in order to optimize for TPR and/or FPR. Area Under the ROC Curve, i.e., the AUC 

value characterizes classification accuracy: an AUC close to 1 indicates high-accuracy 

classification while a random guess classification would result in a diagonal ROC, yielding an 

AUC value of 0.5 (see Figure 22a for selected examples). 

 
Figure 22a. Representative ROC curves. ROC curve provides a characterization of classification accuracy; 

here, ROCs of the “Tetracycline” (best classification), “ACE inhibitor”, “COX inhibitor” and “Antineoplastic 

agent” (our most inefficient classification) effect categories are shown (dotted, dashed, dash-dotted and short-

dotted lines, respectively). The gray diagonal line represents classification based on random guess. The inset 

shows an enlarged portion of the upper left region of the plot. Panel b shows the AUC histogram, i.e., the 

distribution of the Area Under the Curve (AUC) values for the studied 181 effects. Results suggest that near-

perfect classification was obtained in most cases. 

 

Figure 22b shows the distribution of the AUCs for the entire effect set. 82% of the effects 

resulted in an AUC value larger than 0.95, indicating that an excellent classification was 

obtained (see Appendix 4 for the complete list of the studied effects). Certain structure-based 

effect categories resulted in the best AUC values: progestins, barbiturates, sulphonylureas and 

tetracyclins (10-17 registered drugs, AUC=1.000 in all cases). This is reasonable and 
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expected since these molecules share a large amount of chemotype features and the 

pharmacologically relevant classification for this query type has been proved by other groups 

(e.g. [63]). However, it is much more interesting that molecules showing less chemical 

similarity but sharing a target also produced outstanding AUC values, e.g. Angiotensin-

converting enzyme (ACE) inhibitors (14 registered elements, AUC=0.999) and Serotonin 

reuptake inhibitors (21 drugs, AUC=0.997). Similarly good results were observed even for 

physiological effects that can be achieved by different mechanisms. For example, 

Antiparkinson agents can affect monoamine-oxidase, catechol-O-methyl transferase or the 

dopamine receptors. This category yielded an AUC of 0.971 (30 registered entries). The case 

is similar for Vasoconstrictors (42 drugs, AUC=0.963). The lowest AUC values were 

observed in the case of the two most populated effect categories, i.e., Anti-infective agents 

(219 registered drugs, AUC=0.869) and Antineoplastic agents (120 registered drugs, 

AUC=0.859). These categories summarize large groups of distinct effects regarding the 

mechanisms of action. Nevertheless, even they were classified with an acceptable accuracy. 

As a summary, we can conclude that our method performs accurate classifications even in 

case there is no chemical similarity between the compounds registered to a given effect. 

We mention that a moderate linear correlation with an R2 of 0.655 was observed between 

the number of the registered drugs to an effect and the respective AUC value: the smaller the 

number of the assigned drugs the higher the AUC value. It is not surprising considering the 

fact that in a complex system that can be described by many parameters, it is easy to find 

those parameters that separate a smaller group of observations from the rest of the data in the 

parameters’ multidimensional space. Therefore, AUC solely is not sufficient for the 

description of the predictive power of the Drug Profile Matching method and a careful 

independent validation should also be performed. 

 
Figure 23. Distribution of the Top Hit Rate values among the 181 studied effects. 
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From another perspective, we introduced Top Hit Rate as an alternate accuracy 

measurement. Let us consider an effect ROC curve as it was based upon a list of drugs 

ordered by descending probability values, regardless of their original FDA effect registration. 

High classification accuracy value is obtained in case the registered drugs of the given effect 

appear on the top of the list, meaning a high TPR/FPR value. If we cut the list at the number 

of the registered drugs to the given effect, irrespective of the fact that true or false positives 

appeared on the top of the list, we can calculate the ratio of true positives in this top list, i.e., 

the Top Hit Rate. The distribution of Top Hit Rates can be found on Figure 23. We found 

that, in average, 66% of the registered drugs appear on this top list. If we consider this 

number, two thirds of the registered drugs are in the top 2.6% of the list, since in average 32 

out of 1,226 drugs belong to an effect. 

 

2.3.2 Leave-one-out validation 
To check the validity of the effect classification obtained by Drug Profile Matching, an 

independent cross-validation with the leave-one-out procedure was performed, similarly to 

the case of the one-dimensional analysis presented earlier (Figure 24a). 
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Figure 24. Leave-one-out validation of a selected effect category is schematically summarized on panel a. 

First, the IP and EP entries of a drug originally registered to the studied effect are removed. Then, the effect 

probability value of this drug is calculated from the classification function based on the remaining set of 

molecules and the same process is repeated for each drug. Panel b shows the mean probability values for the 181 

studied effect categories, obtained from leave-one-out validation. Dark gray bars refer to the mean probability 

values of the whole set of drugs registered to the given effect; light gray bars represent the upper 75%, i.e. the 

subset performing the best 75% of the calculated probability values. The average of the probability values for all 

categories is 0.47 which is a high value compared to a randomized EP list which results in an average probability 

value of 0.026. Panel c presents the Mean probability values for some selected effect categories. Dark and light 

gray bars represent the same values as for the previous panel. Abbreviations: anti-i. a. – anti-inflammatory agent, 

ant. – antagonist, antineopl. a. – antineoplastic agent, antiasthm. – antiasthmatic agent. 

 

Each drug was examined whether its registered effects can be identified based on its IP profile 

and a classification function derived from the IPs and effect profiles of the other molecules 

registered to the studied effect. For each effect we calculated a mean probability value, i.e., 

the mean of the calculated probabilities for the drugs registered to the given effect (Appendix 
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3). High obtained mean probability value indicates the method’s robustness that is the 

resistance of the classification system against the loss of information due to the removal of 

each molecule entry, one by one, when the classification rules are established during the 

validation. Figures 24b and c show the mean probability values for the studied 181 effects and 

some selected examples. The majority (51.9%) of the studied effects are validated by a mean 

probability value larger than 0.5. In average, this is a 25.1-fold increase compared to a 

random classification based on the prior probability of each of the 181 effect categories (see 

Appendix 3 for the values for each effect category). A closer look at the studied effects 

reveals even 40-80-fold enrichment values compared to a random set. 

We observed that for certain effects, a small number of the registered drugs were validated 

with low probability, which may reflect the existence of subgroups within the effect 

categories.  Therefore, we also present the mean probability values for the upper 75% of the 

drugs (Figures 24b, c, Appendix 3). We found that, applying this portion of the drugs, 71% of 

the effects have a mean probability value above 0.5. 

If we examine the mean probabilities of different effect categories, the highest values 

belong to effects based on a high degree of structural similarity among their registered 

compounds, as expected. E.g., barbiturates, benzodiazepines and steroidal anti-inflammatory 

agents result in mean probability values of 0.995, 0.895 and 0.961, respectively. However, 

effect categories based on common target protein still show rather high mean probability 

values (e.g., 0.673 and 0.605 for cyclooxygenase (COX) inhibitors and dopamine antagonists, 

respectively), similarly to the observations taken in the previous section. Finally, clinical 

effect categories encompassing an extensive set of drugs with different mechanisms of action 

also could be characterized by fairly high mean probability values (e.g., 0.587, 0.573 and 

0.520 for antipsychotics, antidepressants and antihypertensive agents, respectively) (Figure 

20C, Appendix 3). Mean probability values show no dependence on the number of drugs 

registered to the effects. 

Although many aforementioned studies underline that the presence of target proteins is 

unnecessary for relevant classification, and it was proved using one-dimensional analysis on 

our system, it can be hypothesized that the classification function of Drug Profile Matching 

might be affected by the presence of target proteins. In our dataset, only two known targets 

are present which are involved in the mechanisms of the 181 effects studied in a 

multidimensional way: angiotensin-converting enzyme (ACE) and cholinesterase. 

Examination of the respective classification functions revealed that the canonical loadings of 

the target proteins for the concerned effects are in the same range than those of the other 
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proteins in the docking set: -0.18 and -0.39 for angiotensin-converting enzyme (1uze; ACE 

inhibitor effect) and cholinesterase (1p0p; Cholinesterase inhibitor effect), respectively. This 

finding indicates that the classification functions are practically unaffected by the small 

number of included targets and this is in a good agreement with our one-dimensional 

evaluation study (Figure 13c inset). 

 

3. Case studies 
 

Theoretically, four groups of drugs can be distinguished based on structure-activity 

correlations (Figure 25): 

(1) Molecules which show high similarities both in their respective IPs and chemical 

structures. 

(2) Molecules showing similar IPs but small structural similarity. These drugs form a 

group of structurally unrelated compounds with similar mechanism of action. 

Revealing such groups is of crucial importance in drug design nowadays, therefore 

this might become the most interesting and promising application of Drug Profile 

Matching method. 

(3) Molecules with high structural but low IP similarity might hurt the earlier presented 

finding that structurally similar molecules should possess similar pharmacologic 

properties. In our study, no such group was identified. 

(4) Finally, molecules with low structural and IP similarity show unrelated molecules with 

both different structures and actions. 

In the next section, we introduce three case examples from group 2, revealing the 

pharmacologic correlations between the compounds. 

 
Figure 25. Four types of drugs considering structural and interaction pattern similarities. 
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3.1 Ziprasidone 
 

In a manner analogous to the effect prediction, we observed that side effects can also be 

related to the IPs. For example, IP similarities can be used to predict the prolongation of the 

QT interval, a potentially fatal cardiovascular side effect. (QT is a characteristic part of ECG 

which contains the QRS complex reflecting to cardiac depolarization and T-wave referring to 

repolarization. Prolongation of QT interval is a serious side effect which might lead to fatal 

cardiac arrhythmias e. g. torsades de pointes.) Psychiatric patients are at high risk of 

cardiovascular disease, and therefore it is important to define the adverse reactions of 

psychiatric drugs which are related to QT prolongation [107]. This side effect has been 

described previously in case of 9 out of 13 drug molecules in the close IP neighborhood of 

ziprasidone, a prototypical antipsychotic agent in the FDA database that causes QT 

prolongation. We investigated whether the pharmacological profile (not only the effect 

profile) of ziprasidone can be predicted based on the profiles of its thirteen closest IP 

neighbor molecules. These molecules represent a structurally diverse set; their Tanimoto 

dissimilarity values to ziprasidone range from 0.754 to 0.973, suggesting a minimal level of 

chemical similarity. Table 7 summarizes the predicted and the published effects, mechanisms 

of action and Phase 1 metabolizing isoenzymes (representative enzymes responsible for direct 

decomposition of drugs in liver) of ziprasidone. We found that two out of the three effects of 

ziprasidone were found multiple times in the effect list of the neighboring molecules. As an 

extension of the one-dimensional prediction method, we checked whether the metabolism and 

mechanisms of actions of ziprasidone can be predicted based on these properties of the 

neighborhood (data were collected from DrugBank Database). All types of mechanisms and 

Phase 1 metabolizing isoenzymes were predicted. 

 PREDICTED PROPERTY PUBLISHED PROPERTY 

EFFECT 
(DRUG 

CATEGORY) 

Adrenerg Agents Antipsychotics 
Anesthetics Dopamine Antagonists 
Anti-anxiety Agents Serotonin Antagonists 
Antiemetics  
Antihypertensive Agents  
Antipsychotics  
Dopamine Antagonists  

PHASE 1 
METABOLIZING 

ENZYME 

Cytochrome P450 3A4 (CYP3A4) Cytochrome P450 3A4 (CYP3A4) 
Cytochrome P450 2D6 (CYP2D6) Cytochrome P450 2D6 (CYP2D6) 
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MECHANISM OF 
ACTION 

Adrenergic Agents Adrenergic Agents 
Dopamine Antagonism Dopamine Antagonism 
Histamine Antagonism Histamine Antagonism 
Serotonin Antagonism Serotonin Antagonism 

 

Table 7. Prediction of effects and mechanisms of action of ziprasidone. Predictions were based on the 

pharmacological properties of the thirteen most similar IP-neighbors of ziprasidone. Predicted properties are 

listed if they appeared on the lists of the effects, Phase 1 metabolizing enzymes and mechanisms of the neighbor 

molecules multiple times. Two effects out of three were predicted successfully. Almost all hits of unpublished 

effects are related with the mechanisms and most common adverse reactions of ziprasidone. Note that all four 

mechanisms of action were predicted correctly. Evidence exists that ziprasidone inhibits CYP2D6 in vitro [108]. 

 

3.2 Bromodiphenhydramine 
 

The second example is bromodiphenhydramine, an antihistamine and antitussive agent. The 

effect-focused prediction method resulted in the following effect profile for this drug: 

Norepinephrine-Reuptake Inhibitors (NARIs), Selective Serotonin Reuptake Inhibitors 

(SSRIs), Tricyclic Antidepressive Agents, Histamine H1 Antagonists, Selective Serotonin 

Agonists, Antidepressive Agents, Amebicides, Local Anesthetics, Second-Generation 

Antidepressive Agents, Antitussive Agents. The antihistaminic property of 

bromodiphenhydramine was validated by one-dimensional and multidimensional approaches, 

as well as its antitussive properties. Moreover, the definite SSRI/NARI antidepressive profile 

we predicted was in accordance with the published effect profile of bromodiphenhydramine. 

Indeed, due to these effects, a structural relative of bromodiphenhydramine was used as a 

starting point in the development of fluoxetine [109] (Prozac) which has been one of the most 

popular antidepressive drugs in the world. It is important to point out that these effects of 

bromodiphenhydramine were successfully identified by our method despite the fact that none 

of the target proteins were represented on the discriminator surface. 

 

3.3 Valproic acid 
 

The third example is the examination of the neighborhood of the previously presented 

valproic acid, a well-known, promiscuous anticonvulsant and antiepileptic agent. 

Metronidazole, a nitroimidazole derivative is the closest neighbor of valproic acid based on IP 

similarity; it is used for the treatment of infections caused by anaerobic bacteria or protozoa, 



88 
 

Helicobacter pylori infections in peptic ulcer disease etc. Acetylsalicylic acid, the second 

closest neighbor, is the best-known non-steroidal anti-inflammatory drug (NSAID) molecule 

on the market which has analgesic, antipyretic and antirheumatic actions. NSAIDs act as 

cyclooxygenase (COX) inhibitors [110]. COX converts arachidonic acid into prostaglandins 

which are involved in physiological (e.g. platelet aggregation) and pathological mechanisms 

(e.g. inflammation, fever, pain). IP neighborhood of valproic acid shows that 14 out of the 

closest 30 molecules (IP similarity value ≤ 4.9) belong to the group of NSAIDs 

(acetylsalicylic acid is the closest one). We analyzed the pharmacological profiles of the first 

30 neighbors and found that the higher the degree of IP similarity the more common the 

effects and adverse reactions of the neighbor drugs with valproic acid. These findings for the 

first three molecules are summarized in Appendix 4. 

 

4. Experimental confirmations 
 

Using the developed one-dimensional effect prediction methods and the multidimensional 

classification functions, probability values were assigned for each drug-effect pair in our 

dataset. For many drugs, a number of unregistered effects were detected with high probability. 

These "false positive" hits can be indicative of hidden effects which potentially could be used 

for new drug effect predictions. In order to test these findings, in two selected effect 

categories all predictions exceeding a certain probability threshold were verified by in vitro 

tests and literature data. For two other compounds, cell culture tests were carried out to justify 

our predictions. 

 

4.1 ACE Inhibitors 
 

First, the inhibition of ACE was selected to investigate the predictive power of Drug Profile 

Matching, our multidimensional evaluation system. ACE inhibitors are widespread 

antihypertensive agents also used for the treatment of congestive heart failure and diabetic 

nephropathy [111, 112]. 

The following criteria were considered in the selection of this effect: 

(1) robustness and accuracy values of classification functions, 

(2) the importance of the therapeutic effects and 

(3) availability of an in vitro test kit. 
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The effect category “ACE Inhibitor” is a good representative of the upper region of 

classification accuracy (0.998) while its robustness value belongs to the medium range (0.44). 

For the ROC curve, see Figure 22a. Its respective enrichment value, i.e. the mean/random 

mean is 36 (Appendix 4). 

Here, the prediction acceptance threshold was set to a level above which all 14 originally 

registered drugs were classified as positive. 19 “false” positives appeared among them (Figure 

26a, c, Table 8). Retrospective literature analysis revealed that for 3 of the predicted 

compounds, i.e., candoxatril, carvedilol and nebivolol, the effect of interest was described 

earlier [113-116]. L-proline, tipranavir, dasatinib, novobiocin, nelfinavir and telmisartan 

showed the predicted activity in the in vitro tests, resulting in 20-97% inhibition at 500 μM. 

ACE inhibition curves were determined for the three strongest agents, i.e., telmisartan, L-

proline and novobiocin. The strongest ACE inhibitory activity (Kd = 6 μM) was observed for 

telmisartan which is registered as an angiotensin II receptor antagonist, without mentioning it 

as an ACE inhibitor in the literature. The observed Kd value to ACE is comparable to the peak 

plasma concentration of telmisartan which is around 10μM, according to [117]. 

Interestingly, L-proline also produced a definite activity with a Kd of 86 μM. Visual 

inspection of the chemical structures of the common ACE inhibitors e.g. captopril reveals that 

they contain a proline moiety; however, there is no published evidence that would support the 

importance of this moiety in their pharmacologic actions. 

The aminocoumarin antibiotic novobiocin possessed a moderate ACE inhibition (Kd = 

167 μM). 

Altogether, 60% of the ACE inhibitory predictions were confirmed by literature and in 

vitro tests. 

DB code Drug name Class Probability Tested Active 
Inhibition % 

at 500 M Ref. 

DB00722 Lisinopril 1 1.000 
DB00542 Benazepril 1 1.000 
DB00519 Trandolapril 1 1.000 
DB00966 Telmisartan 0 1.000 + + 97,2 
DB00492 Fosinopril 1 0.999 
DB00790 Perindopril 1 0.997 
DB01340 Cilazapril 1 0.994 
DB01089 Deserpidine 1 0.993 
DB00881 Quinapril 1 0.894 
DB00691 Moexipril 1 0.875 
DB01197 Captopril 1 0.779 
DB00584 Enalapril 1 0.624 
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DB01348 Spirapril 1 0.510 
DB01229 Paclitaxel 0 0.419 + - 
DB04570 Latamoxef 0 0.410 + - 
DB00172 L-proline 0 0.384 + + 93,3 
DB04835 Maraviroc 0 0.369 + - 
DB00932 Tipranavir 0 0.293 + + 20* 
DB01254 Dasatinib 0 0.175 + + 46,1 
DB01051 Novobiocin 0 0.157 + + 74,5 
DB00686 Pentosan polysulfate 0 0.141 - 
DB00220 Nelfinavir 0 0.101 + + 47,9 
DB00178 Ramipril 1 0.087 
DB01122 Ambenonium 0 0.076 + - 
DB00616 Candoxatril 0 0.066 - + [113] 
DB01136 Carvedilol 0 0.060 - + [114] 
DB06267 Udenafil 0 0.057 - 
DB00637 Astemizole 0 0.055 - 
DB00698 Nitrofurantoin 0 0.049 + - 
DB01344 Polystyrene sulfonate 0 0.048 - 
DB00766 Clavulanate 0 0.036 + - 

DB04861 Nebivolol 0 0.029 - + 
[115, 
116] 

DB01180 Rescinnamine 1 0.021 
 
Table 8. Results of the ACE inhibitory effect classification function and the in vitro tests. Class 1 is formed by 

the drugs originally registered as ACE inhibitors (14) while Class 0 entries are false positive hits (19) that were 

further examined. For three cases, the effect identified by Drug Profile Matching is verified by the literature. 

Four of the predictions were excluded from the experiments due to commercial unavailability or withdrawal 

from the market. Six of the twelve compounds suitable for the tests showed inhibitory effect on ACE.  

Inhibition% values measured at 500 μM are displayed. Each data is an average of two independent 

measurements. A star refers to the uncertainty of the data point, originated from solubility issues. Positive hits 

confirmed by literature or in vitro tests are highlighted with red. 
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Figure 26. In vitro ACE inhibition test results. a. ACE inhibition values with standard deviation for the 

tested and active compounds. 500 μM drug concentrations were applied in each case. Altogether, six of the 

twelve compounds suitable for the tests showed inhibitory effect on ACE. Panel b. ACE inhibition curves for 

the three compounds possessing the highest inhibition activity: telmisartan (square; solid line), L-proline (circle; 

dashed line) and novobiocin (triangle; dotted line). 
 

4.2 COX Inhibitors 
 

COX inhibitors possess anti-inflammatory activity and are also used worldwide (23). This 

effect category yielded an AUC of 0.982 (Figure 22a) and a mean probability value of 0.673 

(Appendix 3). These values are in the upper region therefore they make this effect category as 

a good example to evaluate the predictions. The enrichment value for COX inhibitors is 22.3 

(the random dataset resulted in a mean probability value of 0.03). 

In case of COX inhibitors, the prediction threshold was set to a level above which 90% of 

the registered COX inhibitors appeared as positives (33 out of 37, Table 9). Among them, 54 

compounds were considered as “false” positives. The COX inhibitory properties for valproic 

acid, alpha-linolenic acid, oxybenzone and ciclopirox were confirmed in the literature [78, 

118-121]. Valproic acid was described as a selective COX-2 inhibitor [78]. Two other 

compounds, ticlopidine and azathioprine are known as “tested but inactive” [122, 123]. 

Eleven drugs were excluded from tests due to lack of commercial availability or limited 

importance. 

Totally, 39 compounds were tested for COX inhibition activity and 18 drugs yielded 

positive results. Since the studied effect category does not specify which of the two 
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isoenzymes is affected by the compound, COX-1 and COX-2 isoforms were also tested for all 

cases. Overall, 47% of the predicted COX inhibitors showed the predicted activity (Figure 

27b, d). Nitroxoline, alpha-linolenic acid, captopril, flutamide and nilutamide were found to 

be the strongest inhibitors in the test set. 

COX inhibition curves of captopril (COX-1 and COX-2), nitroxoline (COX-2) and alpha-

linolenic acid (COX-1) were determined. Captopril showed a reduced COX-1 and COX-2 

inhibitory effect at high concentrations; its Kd values were 18 and 13μM for the two COX 

isoenzymes. This is comparable to the results of the classical COX inhibitor aspirin 

determined in our laboratory earlier (Kd, COX-1=62μM and Kd, COX-2=52μM; data not shown). 

Linolenic acid showed a Kd of 4 μM for COX-1 and based on the inhibition results 

measured at 500 μM for COX-1, this compound possesses a strong, non-selective COX 

inhibition. This finding fits well to the results of Ren and Chung [120, 121]. Here, the authors 

proved that this compound has an anti-inflammatory effect through different mechanisms, 

including COX-2 inhibition while COX-1 was not mentioned. Thus, we extended the 

knowledge about the multi-target anti-inflammatory properties of alpha-linolenic acid. 

Nitroxoline, a special antibiotic showed a Kd of 1 μM for COX-2 and also seems to be an 

extremely strong non-selective COX inhibitor. 

Valproic acid was also tested in order to reproduce the literature-based result [78]. It was 

confirmed that the compound possesses a moderate, selective COX-2 inhibition. 

DB code Drug name Class Probability Tested Active 

Inhibition % 

Ref. 

at 500 M 
COX1 COX2 

DB00936 Salicyclic acid 1 1.000 
DB00784 Mefenamic acid 1 1.000 
DB00244 Mesalazine 1 1.000 
DB01600 Tiaprofenic acid 1 1.000 
DB00573 Fenoprofen 1 1.000 
DB01399 Salsalate 1 1.000 
DB00861 Diflunisal 1 1.000 
DB04552 Niflumic acid 1 1.000 
DB00939 Meclofenamic acid 1 1.000 
DB00586 Diclofenac 1 1.000 
DB01283 Lumiracoxib 1 1.000 
DB01009 Ketoprofen 1 1.000 
DB01250 Olsalazine 1 1.000 
DB00712 Flurbiprofen 1 1.000 
DB00465 Ketorolac 1 1.000 
DB00121 Biotin 0 1.000 + - 
DB00788 Naproxen 1 1.000 
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DB00945 Aspirin 1 1.000 
DB00821 Carprofen 1 1.000 
DB00233 Aminosalicylic acid 0 1.000 + + 0 32,5 
DB00870 Suprofen 1 1.000 
DB01014 Balsalazide 1 0.999 
DB00499 Flutamide 0 0.999 + + 100 100 
DB00336 Nitrofurazone 0 0.999 + + 90,8 98,0 
DB00991 Oxaprozin 1 0.999 
DB00313 Valproic acid 0 0.998 + + 0 46,5 [78] 
DB00500 Tolmetin 1 0.998 
DB00166 Lipoic acid 0 0.998 + + 94,5 76,4 
DB01050 Ibuprofen 1 0.998 
DB00963 Bromfenac 1 0.997 
DB00600 Monobenzone 0 0.997 + + 86,1 53,6 
DB01241 Gemfibrozil 0 0.996 + - 
DB00323 Tolcapone 0 0.995 - 
DB00749 Etodolac 1 0.987 
DB00814 Meloxicam 1 0.982 
DB00676 Benzyl benzoate 0 0.981 + + 0 41,1 
DB00461 Nabumetone 1 0.979 
DB00817 Rosoxacin 0 0.979 - 
DB00328 Indomethacin 1 0.975 
DB00695 Furosemide 0 0.967 + + 36,0 0 
DB01099 Flucytosine 0 0.966 + - 
DB01053 Penicillin G 0 0.965 + - 
DB01423 Stepronin 0 0.962 - 
DB01178 Chlormezanone 0 0.947 + - 
DB00614 Furazolidone 0 0.940 + - 
DB01607 Ticarcillin 0 0.932 + - 
DB01422 Nitroxoline 0 0.922 + + 97,0 99,2 
DB00911 Tinidazole 0 0.900 + - 
DB00345 Aminohippurate 0 0.877 - 
DB00482 Celecoxib 1 0.860 
DB01206 Lomustine 0 0.837 + - 
DB00208 Ticlopidine 0 0.820 - - [123] 
DB00946 Phenprocoumon 0 0.819 - 
DB01168 Procarbazine 0 0.809 - 
DB01428 Oxybenzone 0 0.792 - + [119] 
DB00406 Gentian violet 0 0.791 - 
DB00554 Piroxicam 1 0.775 
DB00665 Nilutamide 0 0.771 + + 98,8 97,6 
DB00235 Milrinone 0 0.744 + - 
DB01188 Ciclopirox 0 0.742 - + [118] 

DB00132 Alpha-linolenic acid 0 0.738 + + 99,8 95,7 
[120, 
121] 

DB00291 Chlorambucil 0 0.694 + - 
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DB01424 Aminophenazone 1 0.679 
DB01438 Phenazopyridine 0 0.646 + + 22,7 66,7 
DB00417 Penicillin V 0 0.644 + - 
DB00815 Sodium lauryl sulfate 0 0.617 - 
DB01025 Amlexanox 0 0.600 - 
DB00207 Azithromycin 0 0.582 + + 68,1 99,1 
DB00286 Estrone sulfate 0 0.577 + - 
DB00385 Valrubicin 0 0.569 - 
DB00903 Ethacrynic acid 0 0.567 + - 
DB00578 Carbenicillin 0 0.565 + - 
DB00916 Metronidazole 0 0.558 + + 0 16,5 
DB00731 Nateglinide 0 0.541 + - 
DB00583 L-carnitine 0 0.510 + - 
DB00459 Acitretin 0 0.508 + - 
DB00307 Bexarotene 0 0.505 - 
DB00779 Nalidixic acid 0 0.504 + + 33,5 87,8 
DB00605 Sulindac 1 0.499 
DB00172 L-proline 0 0.476 + - 
DB00316 Acetaminophen 1 0.472 
DB00993 Azathioprine 0 0.441 - - [122] 
DB00114 Pyridoxal phosphate 0 0.436 + - 
DB00698 Nitrofurantoin 0 0.424 + + 65,5 40,8 
DB01197 Captopril 0 0.422 + + 48,2 61,3 
DB00856 Chlorphenesin 0 0.418 + + 0 47,4 
DB00168 Aspartame 0 0.402 + - 

 
Table 9. Results of the COX inhibitory effect classification function and the in vitro tests. Drugs belonging 

to Class 1 are originally registered as COX inhibitors (33) while Class 0 entries are false positive hits (54) that 

were further examined. Percent inhibition values at 500 μM on both isoforms are listed, each data is an average 

of two independent measurements. Positive hits confirmed by literature and/or in vitro tests are highlighted with 

red.  
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Figure 27. In vitro COX inhibition test results. Panel a. COX inhibition values with standard deviation for 

the tested and active compounds. 500 μM drug concentrations were applied in each case. Inhibitory effects on 

COX-1 and COX-2 enzymes are marked with dark and light gray bars, respectively. A missing bar signifies no 

observed activity. After excluding the known COX agents and the commercially unavailable drugs, 39 

compounds were tested for COX inhibition activity. The 18 presented drugs yielded positive in vitro results. 

Panel b. COX inhibition curves for alpha-linolenic acid (COX-1) (up-triangle mark with short-dashed line), 

nitroxoline (COX-2) (down-triangle mark with dashed line) and captopril (COX-1, COX-2) (square mark with 

solid line and circle mark with dotted line, respectively). 

 

4.3 Cell culture tests 
Drugs developing adrenergic and dopaminergic effects are in the special focus of interest of 

our collaborators. We therefore selected amiloride and minoxidil for in vivo screens on the 

basis that they were the only adrenergic and dopaminergic predictions made by the one-

dimensional effect-focused prediction method. They resulted in high prediction confidence 

values (CP > 95% and 90% for each activity of amiloride and minoxidil, respectively) using 
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the neighbor-focused prediction method as well. D1, D2, α1B, α2A and β1 receptor agonist and 

antagonist activities were investigated in an independent study performed by EuroScreen, Ltd. 

(Figure 28). 

 
Figure 28. In vivo test results of amiloride and minoxidil. Different dopaminergic and adrenergic activities 

determined for amiloride (stripped bars) and minoxidil (filled bars). Abbreviations: AG – agonism, ANT – 

antagonism. 

 

Amiloride, a sodium channel blocker diuretic agent produced strong α1B antagonism (98 %, 

applying 50 μM of drug; Kd = 13.7 μM) and smaller D1, α2A and β1 antagonism (76, 29 and 21 

% respectively; applying 50 μM of amiloride except the D1 antagonism test where 100 μM 

was used; Kd D1 = 51.2 μM). On the other hand, the peripheral vasodilator minoxidil showed 

some level of α1B and α2A antagonist effect (24 and 16 %, respectively; applying 25 μM of 

drug). 

It is noteworthy that none of these effect categories were overrepresented in our database; 

specifically, adrenergic and dopaminergic effect related categories were registered in the 

unrefined effect list 64 (2.77 %) and 30 (1.30 %) times, respectively. 

 

5. Summary 
 

The presented examples highlight several important features of our method: 

1. A clear association was revealed between IP and EP datasets, irrespective of the 

complexity of the applied evaluation method, i.e., one- or multidimensional data analyses. 
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2. The method allows a highly efficient identification of similarities in effects and 

mechanisms of action despite structural diversity. 

3. The diversity of the applied protein set was large enough to obtain significant 

correlation between the IP and EP datasets. 

4. Different scoring functions provided similar binding affinity patterns in terms of the 

level of canonical correlation between the IPs based on the different scoring functions and 

the binding site geometry descriptor data). A high level of correlation was obtained for the 

AutoDock4 and the X-SCORE-based IP set. 

5. Target proteins are not necessarily for effect prediction as it was proved using one-

dimensional (validation results based on an alternate, reduced protein set) and 

multidimensional analyses (canonical loading analysis of target proteins in the 

classification functions). 

6. Several case studies, in vitro and cell culture tests were carried out to evaluate our 

predictions. Our approach, even applying the one-dimensional evaluation, was able to 

predict pharmacokinetic properties of ziprasidone, pointing to the possible future 

expansion of the method from PD towards PK event prediction. More than 50% of the 

ACE and COX inhibitory predictions were confirmed in vitro. The predicted adrenergic 

and dopaminergic profile of two compounds were also confirmed. 

As a conclusion, our analyses revealed a strong predictive power of the IP-based effect 

prediction. 
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Part II: Internal viscosity: 

the role of hinge residues in trypsin activation 
 

 

 

Introduction 
 

In Part II, the complex problem of protein flexibility was studied in the model system of the 

activation of human trypsin 4. During activation, four distinct regions of the protein undergo 

conformational change. This conformational rearrangement is a single-step, irreversible 

reaction in the applied conditions and it is coupled with an intrinsic fluorescence signal 

change, making the trypsin activation a suitable model system for assessing the question of 

flexibility. The protein parts involved in the conformational change, i.e., the activation 

domain is bordered by hinge glycines that secure the large conformational freedom needed for 

the rearrangement. In this study, the kinetic and thermodynamic parameters of the activation 

were modified by introducing side chains with different sizes at a hinge position. We 

examined the temperature and external viscosity dependence of the rate of the conformational 

change and evaluated the results applying Kramer’s theory. Based on this, a measure 

reflecting protein flexibility, i.e., the internal viscosity parameter of the activation of the wild 

type trypsin and two hinge mutants were determined. Our results suggest that the flexibility of 

the studied protein can be modulated by introducing point mutations in the hinge region. 

Trypsin, a prototype of the S1 family of the serine proteases, is synthesized in an inactive 

zymogen form and is activated by proteolytic cleavage of the activation peptide. The -amino 

group of the newly formed N terminus, Ile16 (chymotrypsinogen numbering) forms a 

stabilizing salt bridge with the Asp194 side chain carboxylate group which triggers a 

conformational change leading to the active enzyme [124-126]. This structural change affects 

a distinct region of the protein, i.e., 15% of the molecule, while 85% of the structures of the 

active and inactive forms are identical (Figure 1). Four peptide segments, collectively referred 
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to as the activation domain, undergo large conformational rearrangement: 16-19, 142-152 (the 

autolysis loop), 184-194 and 216-223 (these latter two form the substrate binding pocket and 

the oxyanion hole). The conformational change completes the formation of the oxyanion hole. 

This structural rearrangement can also be triggered by a pH-jump from pH 11.0 to pH 8.0 

[127-129] and monitored by measuring the intrinsic fluorescence of the enzyme [130]. 

 
Figure 1. Superimposed structure of bovine trypsinogen (PDB ID: 1tgn) and human trypsin 4 (PDB ID: 

1h4w) visualized using software DeepView-spdv 3.7 [131]. The peptide backbone segment of human trypsin 4 

whose conformation differs from the conformation of bovine trypsinogen (gray) corresponding to the activation 

domain is shown as a colored ribbon. The 16-19 peptide segment is shown in yellow, the 142-152 segment is 

colored purple and the 184-194 and 216-223 segments are represented by a blue and a black ribbon, respectively. 

The backbone of residue 193, which goes through large dihedral angle transition in the course of activation is 

shown in green. Tryptophan residues are also highlighted, Trp141, 215 and 221 that might account for the 

fluorescence intensity change during the conformational change are colored red, while Trp51 and Trp237 is 

shown in orange (chymotrypsin numbering system is used to identify the residues). 

 

Targeted molecular dynamics simulations of trypsinogen to trypsin transition showed that 

the largest changes in main chain dihedral angles occur at certain glycine residues among 

which Gly19, Gly142, Gly184, Gly193 and Gly216 border the activation domain peptides 

[132]. These glycine residues exhibit larger Φ and/or Ψ angle changes than the surrounding 

residues, as due to the absence of a side chain the rotation around the C-C and C-N bonds 

becomes energetically most favorable. Based on this finding, it is presumable that these 

glycines play an important role in the activation process, acting as hinges for the 

conformational change and the 4 peptide segments move as more rigid units. The presence of 
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glycines at conserved positions of the activation domain seems to promote the conformational 

transition. As a consequence, replacement a hinge residue, e.g. Gly193 by an amino acid 

possessing a bulky side chain is supposed to have significant effect on the rate and 

thermodynamics of the conformational change upon activation. Position 193 is well 

conserved among serine proteases: it is occupied by a glycine residue except for rare 

examples. One of these exceptional enzymes is human trypsin 4 possessing an arginine at this 

position. 

The sequence of the main substeps upon activation of bovine and rat chymotrypsinogen 

was deduced based on molecular dynamics simulations [133]. The conformational changes in 

the backbone of residue 192 trigger the reorientation of Gly193 towards the substrate binding 

site and a rotation around the C-C bond of Asp194 of ~180°. Consequently, a cavity is left 

behind that allows the penetration of Ile16 into the core of the molecule and the formation of 

the salt bridge between Ile16 and Asp194. 

In order to study protein flexilibity in an experimental system with reduced 

dimensionality, we sought for a system where the change in the protein conformation is a 

single-step first-order transition, accompanied by an intrinsic signal change in the protein. The 

rearrangement of the activation domain of human trypsin 4 upon activation meets all these 

criteria and this enzyme is biochemically well characterized [134]. Our aim was to study the 

effect of point mutations R193G/A/Y/F in the hinge on the rate of the conformational change 

and characterize the thermodynamics of this structural rearrangement. We expressed wild 

type human trypsinogen 4 and its R193G/A/Y/F mutants and monitored their conformational 

change upon activation in pH-jump stopped flow experiments by detecting the intrinsic 

fluorescence change. We found that this conformational transition is highly affected by the 

mutations at position 193, and that its rate constant decreases with the size of the sidechain. 

We also studied the temperature dependence of the rate constant of the transition in the 5-

38°C range with a conventional stopped flow apparatus. We developed a new heat-

jump/stopped-flow setup which allowed the extension of the Arrhenius plots up to 60°C. Due 

to the relatively narrow temperature tolerance of enzymes, Arrhenius and van’t Hoff plots can 

be determined only in narrow temperature ranges. The consequence is that the accuracy and 

confidence level of the calculated thermodynamic parameters are very low. In contrast, by 

using our newly developed technique [135], Arrhenius plots can be determined in a wider 

temperature range. This apparatus was applied to perform transient kinetic measurements 

between 34 and 60°C. [136] 
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Thermodynamic analysis revealed that the R193G/A/Y/F mutants differ only in the pre-

exponential term of the Arrhenius equation, while the activation energy is unaffected by the 

mutations. Solvent viscosity dependence of the rate of the conformational transition of the 

R193G and R193A mutants was also determined. It was revealed that the rate of is inversely 

proportional to the solvent viscosity. This phenomenon is interpreted in terms of the Kramers’ 

theory. Based on our results, we conclude that the rate of conformational change during 

activation of trypsinogen site 193 mutants is determined by the internal molecular friction 

around this hinge site. [136] 

 

Aims 
 

The main aim of this work was to characterize the thermodynamics of a special 

monomolecular structural rearrangement and to unravel the role of the internal viscosity by 

introducing residues with different sizes at a specific hinge point [136]. 

The development of a novel heat-jump/stopped flow was our secondary aim since using 

this equipment, the available temperature range for the studied enzyme reaction can be 

extended and the accuracy of Arrhenius plots can be improved [135]. 
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Materials and methods 
 

1. Development of heat-jump/stopped-flow 
 

1.1 Heat-jump/stopped-flow apparatus 

 
The modified stopped-flow apparatus is based on a KinTek 2004 Stopped Flow apparatus. 

The schematic representation of the heat-jump/stopped-flow can be seen in Figure 2. The 

apparatus is equipped with two thermo-controllers (Supertech STC05A). One of them is 

responsible for adjusting the temperature of the cuvette while the other adjusts the 

temperature of the so-called heating loop. The heating loop is a 55 μL Teflon loop built in a 

heating element (resistor based heating element, max 12V, 3A, 36W) including a high-tech 

thermo-sensor (Dallas Semiconsuctor DS1820) controller. The heating loop is connected to 

the mixing chamber with a 50 μL Teflon tube. 100 μL shot volume is sufficient to wash out 

the hot buffer from the heating loop and get into the 25 μL cuvette. The cuvette house is 

heated by a heating element (resistor based heating element, maximum 24V, 4A, 96W) 

including a similar thermo-sensor which was tightly fixed to the bottom surface of the cuvette 

house. The temperature of cuvette is detected directly by a thermo-sensor attached to the wall 

of the cuvette. Asymmetric mixing of the reactants is applied in order to reach the appropriate 

temperature of the reaction: 1 and 5 ml syringes were used and both were incubated at 20°C, 

controlled by a water circulator. The 5 ml syringe contained the non-heat-sensitive reactant 

while the 1 ml syringe was filled with the heat-sensitive reactant (regularly, the enzyme). The 

non-heat-sensitive reactant flows to the cuvette through an inserted heating loop. The 

temperature of the heating loop is adjusted to a higher temperature than the reaction 

temperature. The cuvette chamber is heated to the reaction temperature. Temperature 

calibration of the novel setup is carried out using NATA to ensure that the thermo controllers 

are adjusted correctly and thus the temperature of the reaction mixture is identical to the 

temperature of the cuvette. 
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1.2 Calibration of the adjusted temperature pairs of the heating loop and the 

cuvette house 

 
NATA was used to establish correct temperature pairs for both heating elements, utilizing the 

temperature dependence of the intensity of tryptophan fluorescence. Both syringes contained 

50 μM NATA and different experimental temperatures were generated with the heat-

jump/stopped flow apparatus. The constant fluorescence intensity of NATA indicated that 

correct temperature pair values were adjusted by the thermo-controllers. Temperature-pairs to 

be adjusted were determined for the experimental temperatures in the range of 20-70 °C. 

 

1.3 Dead Time Determination 

 
Dead time determination was based on the NBS-NATA reaction as described in [137, 138]. 

280 nm excitation wavelength was applied with 5 nm slit width. On the emission side a 340 

nm interference filter was used. In these experiments phosphate buffer (140 mM NaCl, 2.7 

mM KCl, 10.1 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.3) was applied. Measurements were 

carried out at 23°C applying 18 ml/s flow rate and the traces were recorded with a 

photomultiplier set to 694 V. The applied concentrations were as follows: 42 μM NATA was 

mixed with 33, 83, 167, 417, 833 and 1667 μM NBS. Single exponentials were fitted to the 

transients. The delay between the intercept of the fitted exponentials and the first data point 

that joins the fitted exponentials provides an estimate of the instrumental dead time at the 

applied flow rate. 

 

2. Mutagenesis and expression of human trypsinogen 4 variants 
 

Wild type human trypsinogen 4 was cloned as described previously [139]. The R193G mutant 

clone was generated as reported by Tóth et al [134]. The R193F and R193Y mutant clones 

were generous gifts from Dr. László Szilágyi (Department of Biochemistry, Eötvös Loránd 

University). The amino acid substitutions at position 193 were generated by the megaprimer 

mutagenesis method. Trypsinogens were expressed, renatured and activated, purified and 

purity was assessed as described previously [134]. The enzymes were dialyzed against 2.5 

mM HCl and stored at -20°C. The concentration of the prepared enzymes were determined by 
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active site titration with 4-methylumbelliferyl 4-guanidinobenzoate or based on their 

absorbance at 280 nm using the theoretical extinction coefficient ε280 = 40570 M-1cm-1. 

Mutagenesis and expression were carried out by Júlia Tóth. 

 

3. Steady state kinetic measurements 
 

3.1 Determination of kcat and Km 

 
Measurements were carried out with 0.5-2 nM enzymes on Z-Gly-Pro-Arg-pNA substrate in 

50 mM Tricine, 10 mM CaCl2 pH 8.0 buffer at 20.0 °C. Substrate stock solutions were 

prepared in dimethylformamide, and the final concentration of DMF in the assays was less 

than 1%. Hydrolysis of the substrate was monitored by measuring the generation of the 

paranitroanilin product at 405 nm using a Shimadzu UV-2101PC spectrophotometer. Initial 

velocities were measured at 6 different substrate concentrations in the range of 5-250 M. 

Three parallel measurements were carried out for each data points. The values of kcat, Km and 

kcat/Km were determined from the parameters of the hyperbolas fitted to the initial velocities 

plotted against substrate concentration. 

Steady state measurements were carried out by Péter Medveczky. 

 

4. Transient kinetic measurements 
 

4.1 Stopped flow measurements 

 
Transients were recorded on a SF-2004 instrument (KinTek Corp.) equipped with a 450-watt 

Hg-Xe super-quiet lamp (Hamamatsu Corp.). Tryptophans were excited at 297 nm with a 

bandwidth of 2 nm and fluorescent emission was detected with a photomultiplier set to 700 V 

voltage through a 340 nm interference filter (Comar Instruments). The dead time of the 

stopped flow apparatus is 1 ms. The applied flow rate was 12 ml/sec and 40 l shot volumes 

were mixed at 1:1 ratio. 1-4 M enzymes in 20 mM CABS, 10 mM CaCl2 pH 11.0 were 

mixed with 100 mM Tricine, 10 mM CaCl2 pH 8.0 and the fluorescence emission intensity 

increase was monitored. The rate of the conformational change was measured with this setup 

in the 5-38 °C temperature range in 3 °C increments. The pHs of the buffers were adjusted at 
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room temperature to different pH values to give the final value pH 8.0 ± 0.1 pH (and that pH 

≥ 11.0) at the different experimental temperatures. 

 

4.2. Heat-jump/stopped-flow experiments 

 
Measurements were carried out on the novel heat-jump/stopped-flow instrument developed in 

our laboratory [135]. The enzyme was kept at 20 °C until mixing with the pH 8.0 buffer 

which flows through a heated loop. 20 l enzyme in 20 mM CABS, 10 mM CaCl2 pH 11.0 

was mixed with 100 l 100 mM Tricine, 10 mM CaCl2 pH 8.0 and the fluorescent emission 

change was detected. The pHs of the buffers were adjusted at room temperature to yield the 

final value at the different experimental temperatures as described above. The 1:5 mixing 

ratio enables a greater temperature-jump and at the same time allows keeping the enzyme at 

non-denaturing temperatures until the reaction. 

 

4.3. Determination of dependence of the rate constants on the relative 

external viscosity 

 
Stopped flow measurements were carried out at 20.0 °C using buffers 10 mM CABS, 5 mM 

CaCl2, pH 11.0 and 50 mM Tricine, 5 mM CaCl2, pH 8.0 supplemented with viscogen to 

yield different relative viscosities. Maltose was applied as a viscogen in the concentration 

range of 0-1.46 M resulting in relative viscosities of 1-8.18 [140]. Maltose increases the 

relative viscosity to the greatest extent while reducing the dielectric constant of the solvent 

most slightly as compared to other frequently used viscogens, e.g. fructose and ethylene 

glycol. The concentration of the buffers was reduced compared to the other measurements as 

ionic strength influences the viscosity. Other experimental settings were the same as 

described in the “Stopped flow measurements” section. 

 

4.4 Kinetic and thermodynamic analysis 

 
5-8 recorded transient traces were averaged and analyzed by fitting to single or double 

exponential functions using the KinTek software (KinTek Corp.) and OriginLab v7.5 

(MicroCal Software). Thermodynamic profiles were analyzed by fitting exponential functions 
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following  to the plots of the observed rate constants (k) versus temperature 

(T). The parameters of the fitted function can be directly corresponded to the parameters of 

the Arrhenius equation without linearization (y = k, a = A, b = -Ea/R, x = T). 

Temperature dependence of a reaction rate constant is described by the Arrhenius 

equation [141]: 

 

       (Eq. 1) 

 

where k is the rate constant, A is the preexponential term, Ea stands for the activation energy 

of the process, R is the gas constant and T is the absolute temperature. Kramers’ theory is a 

conventional theoretical approach to describe the effect of friction on the rate constants of 

unimolecular reactions in the condensed phase [142]. In this model the chemical reaction is 

modelled by a particle with a diffusive one-dimensional motion from a potential well over a 

barrier. Based on Kramers’ rate theory, the preexponential term of the Arrhenius equation 

contains a friction parameter which is determined dominantly by viscosity and the rate 

constant is inversely proportional to this friction. 

Ansari and co-workers modified this approach for proteins by separating the friction into 

two sources of friction because only a part of the protein interacts with the solvent molecules 

[143]. One of these terms is the friction of the solvent (external friction) restraining the 

motion of the atoms on the surface of the protein and the other term is the internal friction of 

the protein hindering the motion of the protein atoms relative to each other. The following 

equation was stated to describe this model: 

 

       (Eq. 2) 

 

where η is the external (solvent) viscosity and σ is a parameter with units of viscosity that 

determines the internal friction of the protein (henceforth, internal viscosity), C includes the 

viscosity independent parameters. The solvent friction, according to Stokes’ law, is 

proportional to the solvents viscosity. Based on this analogy, the internal molecular friction 

can also be referred to as the internal viscosity of the protein, and this viscosity-like parameter 

has units of viscosity. However, in contrast with (solvent) viscosity, this internal viscosity 

belongs to a specific structural change. 

)/exp( xbay
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Assuming that the activation energy does not depend on the viscosity at constant 

temperature, modification of equation 2 results in: 

 

       (Eq. 3) 

 

where C’ includes . The linearized form of equation 3 will then be the 

following: 

 

       (Eq. 4) 

 

As a consequence, plotting 1/k against the external viscosity gives a linear function, and the 

local internal friction of the protein can be deduced from its intercept multiplied by the 

reciprocal of the slope. In other words, at constant temperature (Equation 4), the internal 

friction can be calculated by the extrapolation of the rate constant to zero external viscosity (η 

= 0 cP): 

 

        (Eq. 5) 

 

Thus by measuring the rate of the conformational change as a function of the relative 

viscosity of the reaction buffer, the local internal friction of a protein can be determined. 
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Results 
 

1. Principle and construction of the heat-jump/stopped-flow 
 

In a conventional stopped-flow apparatus, reactants are rapidly pushed from two syringes (A 

and B) through a small mixing chamber into the cuvette where they combine. Then the 

reaction mixture reaches the cuvette through a short tube. The progress of the chemical 

reaction can be detected in the cuvette by an optical signal. Detection is started after the quick 

stop of the pistons but the reaction starts immediately as the reactants are mixed. Aging of the 

reaction mixture on the way from the mixing chamber to the cuvette causes the so-called dead 

time of the apparatus. Typically, the dead time of a stopped flow instrument is on the ms time 

scale which is short enough to investigate most of the enzymatic reactions. The syringes and 

the cuvette house are adjusted to the same temperature by a water circulator. The applied 

temperature is limited by the temperature sensitivity of the reactants because keeping at high 

temperature for longer times would denature them already in the syringe before the reaction 

starts. 

The schematic view of the heat-jump/stopped-flow instrument is presented in Figure 2. In 

this equipment, the enzyme and its substrate are stored in syringes A and B at native 

temperature by using water bath temperature control and the cuvette is kept at the 

experimental temperature by means of an inserted heating element and temperature 

controllers. A heating loop is inserted between the substrate syringe (syringe B) and the 

mixing chamber in which the substrate (the non-heat-sensitive reactant) can be heated to 

higher temperature than the reaction temperature. The temperature of the heating loop is 

controlled by another thermo-controller. The temperature of the enzyme syringe (syringe A) 

and the heating loop are adjusted so that the mixture of the enzyme solution and the high-

temperature substrate solution gives the reaction temperature. The temperature of the cuvette 

house is adjusted to the temperature of the mixture of the cold (heat-sensitive) and the hot 

reactant to keep the cuvette (reaction chamber) at a constant temperature during the reaction. 

Mixing of the reactants yields the new, high temperature of the reaction mixture, 

consequently the dead time of the measurement and the heat-jump are the same and is 

determined by the mixing time of the stopped-flow, which is 1 ms (Figure 3b). In order to 

achieve high temperature-jumps asymmetric mixing is applied: one volume of heat-sensitive 
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cold reactant (e.g. enzyme in syringe A) is mixed with five volumes of non-heat-sensitive hot 

reactant (e.g. substrate in syringe B). 

 
Figure 2. Schematic set-up of the heat-jump/stopped-flow apparatus. The heat-sensitive reactant (enzyme) 

is loaded into syringe A and the non-heat-sensitive reactant is loaded into syringe B both thermostated to 20 °C 

(indicated by blue). Upon the stopped flow push the non-heat-senitive reactant flows through a heating loop, in 

which it is heated above the reaction temperature (indicated by red). The enzyme and the hot reactant combine in 

the mixing chamber and they contribute to the new reaction temperature (indicated by orange) according to their 

temperatures and volumes. The process of the reaction at an elevated experimental temperature can be monitored 

in the cuvette using e.g. spectroscopic signals. 

 

In a typical experiment after the first push of the drive syringes, the solution from the 

substrate syringe (syringe B) reaches the heating loop inserted before the mixing chamber, 

where the substrate solution can be warmed up even to 80-90 ºC. Due to the second push, the 

hot substrate solution from the heating loop and the colder enzyme solution (from syringe A) 

combine in the mixing chamber. The solutions of reactants contribute to the developing 

temperature according to their volumes thus even 40-50 ºC temperature-jump of the enzyme 
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solution can be achieved immediately. While the reaction proceeds, the next portion of the 

substrate solution warms up in the heating loop, so the next shot is also appropriate for the 

forthcoming measurement. 

Goldmann and Geeves suggested an arrangement called slow temperature-jump in which 

the syringes are kept at low temperature and the mixed cold reactants are shot into the hot 

cuvette [144]. Using this technique the temperature equilibration of the reaction mixture takes 

150 ms. Verkman et al. constructed another equipment called stopped-flow temperature-jump 

which has 60 ms dead time [145]. The long dead times of these instruments severely limit 

their applicability. In comparison the dead time of the novel heat-jump/stopped-flow is much 

shorter because the reaction temperature is set upon mixing instead of warming up. 

 

1.1 Calibration of heat jump stopped flow 

 
To take advantage of the heat dependence of fluorescence, our system was calibrated to 

ensure that the temperature of the mixed solution and the cuvette are the same. Since the rate 

of reactions and the intensity of fluorescence are temperature sensitive, temperature 

equilibration of the reaction mixture in the cuvette during the courses of the reaction would 

cause artifacts. Fluorophores like NATA are useful to calibrate the temperatures of the 

reaction mixture and the cuvette house to the same value. During calibration, NATA was 

loaded into the cold syringe A and rapidly mixed with hot buffer pushed through the heating 

loop inserted between syringe B and the mixing chamber. Change in fluorescence intensity of 

NATA in the cuvette indicated that the temperature of the reaction mixture and the cuvette 

were not identical right after mixing and temperature re-equilibration occurred in the cuvette. 

Fluorescence intensity decrease indicates that the reaction mixture was colder than the cuvette 

and the solution warmed up in the cuvette and vice versa (Figure 3a). Constant fluorescence 

intensity indicated that the temperature of the cuvette and the reaction mixture was the same. 

The time constant of temperature equilibration in our system was determined to be 1.2 

second. Since the temperature dependence of fluorescence intensity of NATA is sensitive 

enough to calibrate our system with 0.1°C accuracy, temperature pairs to be set by the 

temperature controllers can be easily determined for each experimental temperature. 

The main advantage of this setup is that the fast heat-jump occurs simultaneously with 

the rapid mixing of the reactants so dead time of mixing and heat-jump are identical if the 

temperatures of reaction mixture and the cuvette are identical. We found that modification of 
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the conventional stopped-flow apparatus did not increase the dead time which was determined 

with the reaction of NATA and NBS to be 0.9-1 ms (Figure 3b). 

 
Figure 3. Temperature calibration of the heating elements (panel A) and determination of the dead time of 

the heat-jump/stopped-flow apparatus (panel B). A: Heat-jump/stopped-flow fluorescence records on mixing 50 

μM NATA thermostated to 25 °C with hot buffer thermostated to 58 °C, 60 and 62 °C then pushed into a 52 °C 

cuvette house. Fluorescent intensity increase indicates that the temperature of the reaction mixture was higher 

than the temperature of the cuvette and vice versa. Constant fluorescence intensity suggests that the temperature 

of the reaction mixture was identical to the temperature of the cuvette. B: Heat-jump/stopped-flow records on the 

reaction of NATA with increasing concentrations of NBS at 25 °C to determine mixing dead time. Instrumental 

dead time was determined to be 0.9 ms. 

 

2. Internal viscosity: the role of hinge residues in trypsin activation 

 

2.1 Enzymatic activity of human trypsin 4 and its mutants at position 193 

 
In order to test whether the enzymatic activity of the R193G/A/Y/F trypsin variants is affected 

by the mutations, their catalytic activity of amide bond hydrolysis was measured on Z-Gly-

Pro-Arg-pNA substrate. The determined values for the Michaelis-Menten parameters are 

summarized in Table 1. Our data show that the mutations caused only slight changes in the 

kcat and Km values. The greatest change in the Km is within 50% and for the kcat value it does 

not exceed 30%. The kcat value increases upon replacement of the glycine with a more bulky 

residue, and the degree of this increase correlates with the size of the sidechain. The same 

observation holds also for the Km value. The greatest change in the kcat/Km value upon these 

amino acid substitutions is 30%, thus these site 193 variants can all be considered as active 

enzymes. These results indicate that both substrate binding and catalysis of hydrolysis of Z-

Gly-Pro-Arg-pNA are only moderately affected by these mutations. 
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 kcat (s-1) Km (μM) kcat/Km (s-1μM-1) 

R193G 110 ± 10 13.5 ± 2.5 8.17 ± 1.68 

R193A 124 ± 4 19.8 ± 3.2 6.23 ±1.02 

WT 158 ± 8 25.2 ± 0.6 6.27 ±0.36 

R193F 162 ± 5 27.4 ± 6.7 5.90 ±1.45 

R193Y 133 ± 6 21.3 ± 6.1 6.21 ± 1.80 
 
Table 1. Hydrolysis of Z-Gly-Pro-Arg-pNA amide substrate by wild type human trypsin 4 and its 193-

variants. Assays were performed in 50 mM Tricine, 10 mM CaCl2 pH 8.0 at 20.0 °C as described under 

Materials and methods. The values of the Michaelis-Menten parameters represent the mean ± SEM of 3 

measurements. Errors of kcat/Kms were calculated taking the propagation of error into account. 

 

2.2 Kinetic analysis of the conformational change during pH-jump activation 

 
The rate of the conformational rearrangement in the course of activation was measured by 

following the intrinsic tryptophan fluorescent intensity change of the proteins in pH-jump 

stopped-flow experiments. One of the syringes of the stopped flow contained the enzyme in a 

buffer with a relatively low buffer capacity at pH 11 and the other syringe contained a buffer 

with high buffer capacity at pH 8.0. The pH of the solution after mixing was 8.0 ± 0.1. Our 

data show that the rates of the conformational change are affected by the mutations at position 

193. The rate constants at 20.0 °C for the site 193 variants are as follows: k R193G = 1.66 s-1, k 

R193A = 0.20 s-1, k WT = 0.077 s-1, k R193Y = 0.13 s-1, k R193F = 0.090 s-1. We note that burst 

phases were detected for wild type human trypsin 4, the R193Y and the R193F mutants with 

amplitudes between 11-16% of the total fluorescence change and rate constants 7-17 times 

larger than that of the analyzed dominant phases. 

 

2.3 Thermodynamic analysis of the conformational change during pH-jump 

activation 
 

2.3.1 Temperature dependence of the conformational transition 
Temperature dependence of the rate constants was also measured in order to study the 

thermodynamics of the conformational change during activation. Thermodynamic parameters 
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for the conformational change were derived from the non-linearized Arrhenius plots (k plotted 

against T) and are summarized in Table 2. The Arrhenius plots (ln k plotted against 1/T) were 

linear in the temperature range of 5-45 °C (Figure 4). No significant differences were found in 

the reliability of fitting when the Kramers’ equation corrected with the temperature 

dependence of the viscosity of water was fitted to the data. Our most important finding is that 

the Arrhenius plots are parallel for the site 193 variants of human trypsin 4. Consequently, the 

activation energy (Ea) of the conformational transition is not affected by the amino acid 

substitutions. Thus exponents ‘b’ of the fitted exponential functions, i.e., the slope of the 

linearized Arrhenius plots are practically the same (Figure 4, Table 2). The largest difference 

in the activation energies was found between wild type and the R193F mutant human trypsin 

4 amounting to 4%. The activation energies of the rest of the mutants differed only by 0.8-

2%. In contrast, the intercepts of the linearized Arrhenius plots for these enzyme variants 

differ significantly, suggesting that these mutations selectively alter the preexponential term 

of the Arrhenius equation. The greatest difference in the preexponential terms was observed 

in case of the R193G and R193F mutants (26-fold; Table 2). 

 
Figure 4. Arrhenius plots for the rate constants of the conformational change during activation for wild 

type human trypsin 4 (up-triangle) and its site 193 variants R193G (closed and open squares), R193A (closed 

and open circles), R193F (down-triangle) and R193Y (diamond), determined by stopped-flow and heat-

jump/stopped-flow experiments. The rate of the conformational change was measured with the conventional 

stopped-flow setup in the 5-38 °C temperature range in 3 °C increments (closed marks). In the 34-60 °C 

temperature range the novel heat-jump/stopped-flow equipment was applied to extend the Arrhenius plots of 

R193G and R193A variants (open marks). Thermodynamic parameters were determined from the parameters of 

the fitted exponential functions following  as described in Materials and methods. )/exp( xbay
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 R193G R193A WT R193F R193Y 

b* 
-(10.4 ± 

0.4) ×103 
-(10.7 ± 

0.2) ×103 
-(10.8 ± 

0.3) ×103 
-(10.3 ± 

0.2) ×103 
-(10.5 ± 

0.3) ×103 

Ea 
(kJmol-1) 

86.5 ± 3.4 
88.7 ± 
1.6 

89.5 ± 
2.4 

85.7 ± 
1.9 

87.2 ± 
2.7 

a* = A 
3.95 × 

1015 
1.12 × 

1015 
6.50 × 

1014 
1.49 × 

1014 
4.40 × 

1014 
 
Table 2. Thermodynamic parameters derived from the non-linearized Arrhenius plots of wild type human 

trypsin 4 and its 193-variants. The rate of the conformational change during pH-jump activation was measured 

with a stopped flow apparatus monitoring the intrinsic fluorescent emission change of the proteins. Experimental 

conditions were as described under Materials and methods. Reaction rates were measured in the temperature 

range of 6-38 °C (or 6-60 °C in the case of R193G and R193A mutants) in 3 °C increments. Rate constants were 

plotted against temperature, and the exponential function following  was fitted to the data. 

Thermodynamic parameters were derived from the parameters ‘a’ and ‘b’ of the fitted functions as described 

under Materials and methods. Values represent the mean and ± SEM of the parameters for the fitted linear 

functions. 

 

By developing a novel heat-jump/stopped-flow setup, we were able to extend the 

Arrhenius plots up to 60 °C. Deviations from the linear function could be observed above 45 

°C which indicate another reaction step. It has to be noted, however, that denaturation 

happens on the ten seconds time scale at 45-60 °C (which could be detected by the decline of 

the fluorescence intensity) while the activation process is more than an order of magnitude 

faster at these temperatures. 

 

2.3.2 External viscosity dependence of the conformational transition 
To investigate the effects of these mutations on the preexponential term in more detail, we 

also performed experiments in which the relative viscosity of the buffers was varied. The 

question was if the rate constant of a conformational change decreases as the solvent viscosity 

is increased as predicted by the Kramers’ theory. To answer this question, pH-jump stopped-

flow measurements were carried out on the wild type trypsin 4 and its R193G and R193A 

mutants in buffers of different relative viscosity from 1 to 8.18 at 20°C. The increased solvent 

viscosity caused dramatic effect on the rate constants of the pH-jump induced conformational 

change of both mutants (Figure 5); e.g., at relative external viscosity of 2 the rate constants 

decreased by 45% and 36% for the R193G and R193A mutants, respectively. 

)/exp(* xbay
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Figure 5. Stopped flow records 

on exposing human trypsin 4 R193G 

(a) and R193A mutant (b) to a pH-

jump from pH 11.0 to pH 8.0 in 

buffers of different relative viscosity. 

Single exponentials were fit to the 

recorded traces. The rate constant of 

the conformational transition 

decreased as the solvent viscosity 

was increased by the viscogen. The 

observed rate constants for the 

presented traces are the following: 

kR193G relative viscosity 1 = 1.65 s-1, kR193G 

relative viscosity 4.4 = 0.39 s-1, kR193A relative 

viscosity 1 = 0.22 s-1 and kR193A relative 

viscosity 2.2 = 0.095 s-1. 

 

 

 

 

 

 

2.3.3 Relative internal viscosity values of R193A/G mutants and wild type 

trypsin 4 
We found hyperbolic relations between the observed rate constants and the external viscosity 

for the wild type enzyme and both mutants which confirm the validity of Kramers’ theory 

applied to this conformational change between two structurally definite conformers. 

Reciprocal values of the rate constants were plotted against the relative external solvent 

viscosity and linear functions were fitted to the data (Figure 6). 
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Figure 6. Dependence of the rate constants of the conformational change during activation on the external 

viscosity of the wild type human trypsin 4 (up-triangle) and its R193A (square and R193G (circle) mutants. 

Stopped flow measurements were carried out at 20.0 °C using buffers 10 mM CABS, 5 mM CaCl2, pH 11.0 and 

50 mM Tricine, 5 mM CaCl2, pH 8.0, supplemented with 0-1.46 M maltose as viscogen to yield different relative 

viscosities from 1 to 8.18. 1/k was plotted against the relative external viscosity and linear functions were fitted 

to the measured data. Relative internal molecular frictions were calculated from the intercept and the slope of the 

linear fits according to Equation 4. 

 

The parameters of the fitted linear functions and internal viscosities, calculated according 

to Eq. 5, are presented in Table 3. Our data show that the relative internal viscosity of the 

R193A mutant is 3-fold greater compared to the R193G mutant, the relative internal viscosity 

of the arginine possessing counterpart is 6-fold greater relative to the glycine mutant and 2-

fold greater than that of the alanine mutant (σ R193G = 0.27, σ R193A = 0.81, σ WT = 1.67). These 

data clearly suggest that a bulkier amino acid at the hinge region locally increases the 

molecular friction in the protein resulting in an increase of the steric hindrance for a specific 

conformational change. 

 R193G R193A WT 

Slope 0.575 ± 0.05 3.07 ± 0.25 8.13 ± 1.09 

Intercept 0.156 ± 0.187 2.48 ± 0.67 13.56 ± 1.67 

Relative internal viscosity 0.27 0.81 1.67 
 

Table 3- Relative internal viscosity of R193G and R193A mutant and wild-type human trypsin 4 derived 

from the viscosity dependence of the reaction rate of the conformational change during activation. The internal 

viscosity of the proteins was calculated according to Equation 4. Values for the intercepts and slopes represent 

the mean and standard deviation of the fitted linear functions.  
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Discussion 
 

The goal of this work was to determine if the rate and thermodynamics of the conformational 

change during pH-jump induced activation of trypsinogen is affected by the character of the 

residue at one of the hinge positions. We therefore investigated the temperature and viscosity 

dependence of the conformational change during activation in human trypsin 4 and its 

R193G/A/F/Y mutants in pH-jump stopped flow experiments. These amino acids at position 

193 allowed different degree of freedom for the hinge around which the conformational 

rearrangement occurs. 

 

1. Advantages of tryptophan signal detection 
 

Human trypsin 4 possesses five tryptophan residues: Trp221 is located inside of segment 216-

223, while Trp141 and Trp215 are located in the close vicinity of peptide segments 142-152 

and 216-223 that are involved in the conformational transition of activation. These native 

tryptophans are appropriate probes to monitor the structural rearrangement induced by the 

pH-jump activation, as their fluorescence intensity increases significantly during this process. 

The tryptophan-based detection method has several advances compared to ligand-binding 

assays: this reaction follows first order kinetics, intrinsic fluorescence detection gives a direct 

read-out, and it even has greater sensitivity thus requires less protein. 

 

2. Evaluation of the observed rate constants 
 

Trypsin undergoes a reversible conformational change during pH-jump from an inactive 

zymogen-like structure at pH 11.0 to the active conformation at pH 8.0. Therefore, the 

observed rate constant measured by monitoring the intrinsic fluorescence change of the 

protein is the sum of the forward and reverse rate constant for the reaction. However, the 

equilibria at pH 8.0 are highly shifted towards the forward direction as it was shown for rat 

trypsin [146] thus the contribution of the reverse rate constant to the observed rate constant is 

negligible. Therefore, the transition is practically irreversible and the observed rate constant 

can be considered as the forward rate constant. 
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3. Structural consequences of the replacement of R193G with a bulkier residue 
 

Activation domain peptides are bordered by glycine residues acting as hinges during 

activation. The values for the peptide backbone dihedral angles at Gly193 are Φ = -148.7° and 

Ψ = 18.1° in bovine trypsinogen (PDB ID: 1tgb), while in bovine trypsin (PDB ID: 2ptn) 

these values change to Φ = 105.4° and Ψ = -19.1°. The atomic structure of human trypsin 4 

complexed with benzamidine has been resolved and it was shown that in spite of the G193R 

mutation, the overall fold of the molecule is highly similar to that of human trypsin 1 having a 

glycine at this position [139]. Earlier studies suggest that substitution of Gly193 with an 

amino acid having a bulkier side chain does not perturb significantly the overall fold of the 

molecule [147, 148]. Although there is only a slight structural change in the peptide backbone 

conformation, we supposed that some other dynamics-related physical parameter to be 

characterized might affect the rate of conformational change during activation in trypsin site 

193 variants. 

In the presented study we mutated R193 of human trypsin 4 to glycine, alanine, 

phenylalanine and tyrosine. These mutations did not cause large perturbation in the steady 

state enzyme kinetic values on Z-Gly-Pro-Arg-pNA substrate (Table 1). Besides from being 

one of the hinge residues during the activation, residue 193 has an important role in substrate 

binding and enzyme catalysis. The amido group of residue at position 193 is part of the 

oxyanion hole which stabilizes the developing tetrahedral intermediates during catalysis, thus 

the substitution of Gly193 slightly influences the kcat value. These results suggest that the 

substrate binding pocket and the geometry of the oxyanion hole are not perturbed 

significantly by these mutations. 

 

4. The effects of a bulkier residue at position 193 on the kinetic and 

thermodynamic parameters of the conformational transition 
 

The rate of the conformational transition during pH-jump induced activation of wild type and 

R193G/A/F/Y mutant human trypsin 4 was measured by monitoring the intrinsic fluorescent 

intensity change of the proteins in stopped-flow experiments. The rates of the conformational 

change are influenced by the mutations at position 193, and the values correlate with the size 

of the sidechain. The temperature dependences of the rate of pH induced activation were also 

determined. Strikingly, we found that the Arrhenius plots of the reactions were parallel for all 
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of the mutants. This phenomenon was investigated in a wide temperature range (between 5 °C 

and 60 °C) applying a new stopped flow equipment called heat-jump/stopped-flow developed 

in our lab. The wide temperature range allowed us to improve the reliability that the 

Arrhenius plots are parallels. These results suggest that activation energies are identical and 

the thermodynamic parameters for these trypsin mutants differ only in the preexponential 

term. Further important observation is that the larger the size of the substituted amino acid 

side chains at position 193 the smaller the value of the preexponential term. This aspect of the 

results indicates that restricting the conformational freedom of the hinge affects the 

preexponential term and not the activation energy. 

Eyring-Polanyi transition state theory is a simplified model and it is adequate only for the 

description of temperature dependence of reactions in gas phases. As biomolecular reactions 

take place in the condensed phase and have complex multidimensional potential energy 

surfaces, and in a generalised transition state theory a transmission coefficient is required in 

the preexponential term [149], Kramers’ theory is an appropriate and relatively simple 

approach for the description of reactions of complex molecules in condensed phase [150]. As 

stated in the work of Frauenfelder and co-workers, if the reaction rate depends strongly on 

solvent viscosity, data can be assessed using Kramers’ theory. In the work of Beece et al the 

ligand binding of protoheme and myoglobin was studied in solvents in which the viscosity 

was varied over a wide range postulating that the solvent affects the protein reaction 

predominantly through the solvent viscosity [151]. This experimental approach is in 

agreement with the idea that protein barriers have dynamic origins. The transition state theory 

is valid only in a limited region of solvent viscosity, below 1 mP, thus the application of this 

theory to reactions even in aqueous solutions is uncertain, and rather Kramers’ theory is 

appropriate. The phenomenon that the rate constant of a reaction is inversely proportional to 

the solvent viscosity is consistent with Kramers’ theory. 

To analyze the effect of the preexponential term on the rate of a structural rearrangement 

in detail, we examined whether the rate of the conformational transition is affected by the 

viscosity of the solvent. Kramers’ equation predicts a hyperbolic dependence of the rate 

constants on solvent viscosity (Eq. 4). We measured the rate of the conformational change in 

buffers of different relative viscosity using maltose as a viscogen. Our data clearly show that 

the rate constant depends on the viscosity of the solvent (Figure 5), even at relatively low 

viscogen concentrations where the perturbation of charged-charged interactions were 

insignificant by the slightly decreased dielectric constant of the solutions. Furthermore, we 

found that the relation is hyperbolic, thus 1/k plotted against the relative external viscosity 
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yields a linear function (Figure 6), which strongly indicates that Kramers’ theory is an 

appropriate framework for the description of rates of enzyme conformational transitions under 

native conditions. 

 

5. Internal viscosity of the trypsin hinge mutants 
 

On the basis of the work of Ansari et al (Eq. 2) [143], the internal friction of a protein can be 

calculated by determining the dependence of the rate constant on the external viscosity and 

extrapolating to zero external viscosity (Eq. 5). We determined the viscosity dependence of 

the rate constant using the R193G and R193A mutant and linear functions were fitted to the 

plot of 1/k versus relative external viscosity. We found that both the slope and intercept of 

these linear functions are different in these mutants (Figure 6). The calculated internal 

viscosity of the alanine mutant is increased threefold as compared to the glycine mutant 

(Table 3). We conclude that the bulkier sidechain of alanine allows less conformational 

freedom for the peptide backbone in the conformational transition as compared to glycine 

which can be revealed as an increase in a viscosity-like parameter defined as internal 

viscosity. Also interesting, that this viscosity-like parameter is slightly lower than water 

viscosity which indicates relatively low restriction by the hinge region. Ansari et al 

determined σ=4.1 cP in myoglobin related to conformational change after ligand dissociation. 

This parameter is larger than we found in trypsin during its conformational change of 

activation. In myoglobin, relatively ordered water in the cavity of the protein may play an 

important role in the studied reaction which may increase the value of internal viscosity. 

Nevertheless, it has to be emphasized that internal viscosity is not a general parameter of the 

protein but it is associated with a specific conformational rearrangement.  

In summary, our results illustrate that a specific conformational rearrangement of an 

enzyme is a Kramers’ type reaction under native conditions. Furthermore, our data show that 

internal friction, therefore protein flexibility, can be modified specifically by mutations, in 

this way modulating the mobility of the hinge around which the structural change occurs. 
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Conclusions 
 

Two levels of complexity were addressed in my thesis. In the first part, I presented an 

approach to predict the effect profiles of drug molecules. Then, I assessed protein flexibility 

by determining the internal viscosity of an interdomain conformational rearrangement. The 

methodology applied to process the two problems was different: from one hand, a number of 

statistical evaluation methods were used, combined with a small amount of experimental tests 

carried out to confirm the predicted bioactivity properties for certain drugs. On the other hand, 

an extensive experimental methodology was applied to study the effect of temperature and 

solvent viscosity on the rate of a specific conformational change, including the development 

of a novel combined heat-jump/stopped-flow equipment. Nevertheless, we were facing the 

same theoretical problem in both cases, i.e., the handling of complexity and the challenge of 

the extraction of the relevant features of a system in order to synchronize the found 

connections with a solid scientific model. In the case of protein flexibility, a model system 

was needed in which the problem of flexibility could be studied and modified specifically. In 

the case of bioactivity prediction, the issue of complexity was overcome by statistical 

analyses that enabled to reduce the dimensionality of the data without information loss that 

would lead to impaired prediction power. 

Polypharmacology is a newly emerging approach which reflects the high complexity of 

the mechanism of actions of drugs. This aspect of pharmacology has not been fully exploited 

in drug development. Consequently, the entire effect profiles of drugs and drug candidates 

have remained unrevealed. We hypothesized that complex molecular feature sets of drugs 

correlate with the known part of effect profiles and may therefore provide predictive power to 

reveal the entire effect profiles of drugs. 

 We collected the structural data and registered effect profiles of all small-molecule drugs. 

Interactions to a series of non-target protein sites of each drug were calculated and an 

interaction pattern matrix was constructed. One-dimensional and multidimensional analyses 

unveiled a strong correlation between the effect profiles and IPs and this relationship was 

confirmed by independent validation. These findings allowed us to develop a robust and 

systematic effect prediction method, named Drug Profile Matching. In vitro analyses of tested 

effect categories further supported the accuracy and the robustness of the prediction. 

 To our knowledge this is the first method which directly relates distant levels of 

information, i.e., the information from the atomic interactions with the information from 
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physiological effects. Moreover, unlike other similarity-based approaches [14, 84], no direct 

topological similarity information on drug molecules is involved; therefore, our approach is 

able to detect effect profile similarities even in the case of limited structural similarity 

between compounds. IPs, binding affinities of drugs to the same series of surfaces, mostly 

represent non-target interactions that cannot be measured experimentally because of the 

possible weak bindings. Nevertheless, these types of interactions might play an important role 

in the mechanism of actions in the organisms and could be considered as a key factor in 

polypharmacology. 

The Drug Profile Matching method can be improved via different ways. After producing 

outstanding performance in effect re-prediction and prediction, the most interesting 

development would be the integration of side effect information into the interaction profile 

based bioactivity classification. The preliminary results presented before point to the possible 

application of Drug Profile Matching in this field. A number of publicly available sources for 

side effect information exist, e.g. SIDER at sideeffects.embl.de, maintained by the European 

Molecular Biology Laboratory [83]. Beside effect and adverse event data, target protein 

information could also been involved in the predictions. By the combination of these data 

sources, i.e. the effect, side effect and target data, a combined bioactivity profile predicting 

system can be set up. Our group has recently begun construction on this system, called 

Multicorrelated Drug Profile (MCDP), in parallel with a direction suggested by Fliri et al 

[152]. Prediction of drug metabolism, i.e. biotransformation by CYP isoforms, is also a topic 

of high interest. The Drug Profile Matching therefore offers an opportunity for systematic and 

rapid screening of approved drugs in order to discover new therapeutic indications and safety 

risks. 

Moving away from approved drugs, the prediction system can be extended to druglike 

molecules as well. In this case, a new set of classification functions must be developed since 

the presented ones are trained and tested on the set of the existing drugs. Up to 2010, one 

hundred thousand druglike molecules were docked to the whole protein set and their 

respective IPs were generated. Processing of this huge set of data and getting more generally 

applicable effect classification rules are the next quests of our research group. After producing 

the generalized classification functions, Drug Profile Matching can be a valuable aid in the 

prediction of the pharmacological effect profiles of drug candidate molecules with high 

probability, thereby offering a novel approach for lead molecule design and optimization as 

well. As shown above, the good predictive power of the method holds out the promise for its 

use with marketed drugs or as a preclinical screen, bringing substantial improvement in the 
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efficacy of future drug development and expediting the development process from drug 

discovery to marketing. 

The examination of MAFs and binding site shape descriptors revealed that, except for few 

specific cases, the shapes of the binding pockets have relatively low weights in the 

determination of the affinity profiles of proteins. Since the MAF profile is closely related to 

the target specificity of ligand binding sites we can conclude that the shape of the binding site 

is not a pivotal factor in selecting drug targets. Nonetheless, based on strong specific 

associations between certain MAF profiles and specific geometric descriptors we identified, 

the shapes of the binding sites do have a crucial role in virtual drug design for certain drug 

categories, including morphine derivatives, benzodiazepines, barbiturates and antihistamines. 

Therefore we conclude that the application of shape-based drug design methodologies might 

prove better performance on this drug set than that for others. 

In Part II, the role of internal friction, thus, the role of protein flexibility was studied in the 

model system of human trypsinogen 4 activation. Upon activation, distinct regions of the 

protein, bordered by hinge glycine residues, undergo conformational change. Since we 

presumed that rigidification of the hinge regions affect the rate of activation, we introduced 

side chains with different characters at a hinge position and studied their effects on the rate 

constant of conformational change. To analyze the thermodynamics of the reaction, 

temperature dependence of the reaction rate constants were examined in a wide temperature 

range using a novel heat-jump/stopped-flow apparatus developed in our laboratory. We found 

that an increase in the size of the side chain is associated with the decrease of the reaction rate 

constant. Our data show that the mutations do not affect the activation energy (the exponential 

term) of the reaction, but they significantly alter the preexponential term of the Arrhenius 

expression. The effect of solvent viscosity on the rate constants of the conformational change 

during activation of the 193G and 193A mutants were determined and evaluated by Kramers’ 

theory. Based on this, we determined the internal viscosity parameter of the activation of the 

wild type trypsin and its R193A and R193G mutants experimentally. Therefore, we propose 

that the reaction rate of the studied conformational transition is regulated by the internal 

molecular friction which can be specifically modulated by mutagenesis in the hinge region. 
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Appendices 
 

Appendix 1 

 

List of the names and DrugBank codes of the applied drugs. 

 

DB code Drug name DB code Drug name 
DB00114 Pyridoxal phosphate DB00780 Phenelzine 
DB00116 Tetrahydrofolic acid DB00782 Propantheline 
DB00117 L-histidine DB00783 Estradiol 
DB00118 S-adenosylmethionine DB00784 Mefenamic acid 
DB00119 Pyruvic acid DB00786 Marimastat 
DB00120 L-phenylalanine DB00787 Aciclovir 
DB00121 Biotin DB00788 Naproxen 
DB00122 Choline DB00790 Perindopril 
DB00123 L-lysine DB00791 Uracil mustard 
DB00125 L-arginine DB00792 Tripelennamine 
DB00126 Vitamin C DB00793 Haloprogin 
DB00127 Spermine DB00794 Primidone 
DB00128 L-aspartic acid DB00795 Sulfasalazine 
DB00129 L-ornithine DB00796 Candesartan 
DB00130 L-glutamine DB00797 Tolazoline 
DB00131 Adenosine monophosphate DB00798 Gentamicin 
DB00132 Alpha-linolenic acid DB00799 Tazarotene 
DB00133 L-serine DB00800 Fenoldopam 
DB00134 L-methionine DB00801 Halazepam 
DB00135 L-tyrosine DB00802 Alfentanil 
DB00136 Calcitriol DB00804 Dicyclomine 
DB00137 Xanthophyll DB00805 Minaprine 
DB00138 L-cystine DB00806 Pentoxifylline 
DB00139 Succinic acid DB00807 Proparacaine 
DB00140 Riboflavin DB00808 Indapamide 
DB00141 N-acetyl-D-glucosamine DB00809 Tropicamide 
DB00142 L-glutamic acid DB00810 Biperiden 
DB00143 Glutathione DB00811 Ribavirin 
DB00144 Phosphatidylserine DB00812 Phenylbutazone 
DB00145 Glycine DB00813 Fentanyl 
DB00146 Calcidiol DB00814 Meloxicam 
DB00147 Pyridoxal DB00815 Sodium lauryl sulfate 
DB00148 Creatine DB00816 Orciprenaline 
DB00149 L-leucine DB00817 Rosoxacin 
DB00150 L-tryptophan DB00818 Propofol 
DB00151 L-cysteine DB00819 Acetazolamide 
DB00152 Thiamine DB00820 Tadalafil 
DB00153 Ergocalciferol DB00821 Carprofen 
DB00154 Gamma-homolinolenic acid DB00822 Disulfiram 
DB00155 L-citrulline DB00823 Ethynodiol diacetate 
DB00156 L-threonine DB00824 Enprofylline 



125 
 

DB00158 Folic Acid DB00825 Menthol 
DB00159 Icosapent DB00826 Natamycin 
DB00160 L-alanine DB00827 Cinoxacin 
DB00161 L-valine DB00828 Fosfomycin 
DB00162 Vitamin A DB00829 Diazepam 
DB00163 Vitamin E DB00830 Phenmetrazine 
DB00165 Pyridoxine DB00831 Trifluoperazine 
DB00166 Lipoic acid DB00832 Phensuximide 
DB00167 L-isoleucine DB00833 Cefaclor 
DB00168 Aspartame DB00834 Mifepristone 
DB00169 Cholecalciferol DB00835 Brompheniramine 
DB00170 Menadione DB00836 Loperamide 
DB00171 Adenosine triphosphate DB00837 Progabide 
DB00172 L-proline DB00838 Clocortolone 
DB00173 Adenine DB00839 Tolazamide 
DB00174 L-asparagine DB00841 Dobutamine 
DB00175 Pravastatin DB00842 Oxazepam 
DB00176 Fluvoxamine DB00843 Donepezil 
DB00177 Valsartan DB00844 Nalbuphine 
DB00178 Ramipril DB00845 Clofazimine 
DB00179 Masoprocol DB00846 Flurandrenolide 
DB00180 Flunisolide DB00847 Cysteamine 
DB00181 Baclofen DB00848 Levamisole 
DB00183 Pentagastrin DB00849 Methylphenobarbital 
DB00184 Nicotine DB00850 Perphenazine 
DB00185 Cevimeline DB00851 Dacarbazine 
DB00186 Lorazepam DB00852 Pseudoephedrine 
DB00187 Esmolol DB00853 Temozolomide 
DB00188 Bortezomib DB00854 Levorphanol 
DB00189 Ethchlorvynol DB00855 Aminolevulinic acid 
DB00190 Carbidopa DB00856 Chlorphenesin 
DB00191 Phentermine DB00857 Terbinafine 
DB00192 Indecainide DB00858 Dromostanolone 
DB00193 Tramadol DB00859 Penicillamine 
DB00194 Vidarabine DB00860 Prednisolone 
DB00195 Betaxolol DB00861 Diflunisal 
DB00196 Fluconazole DB00862 Vardenafil 
DB00198 Oseltamivir DB00863 Ranitidine 
DB00199 Erythromycin DB00864 Tacrolimus 
DB00201 Caffeine DB00865 Benzphetamine 
DB00202 Succinylcholine DB00866 Alprenolol 
DB00203 Sildenafil DB00867 Ritodrine 
DB00204 Dofetilide DB00869 Dorzolamide 
DB00205 Pyrimethamine DB00870 Suprofen 
DB00206 Reserpine DB00871 Terbutaline 
DB00207 Azithromycin DB00872 Conivaptan 
DB00208 Ticlopidine DB00873 Loteprednol etabonate 
DB00209 Trospium DB00874 Guaifenesin 
DB00210 Adapalene DB00875 Flupenthixol 
DB00211 Midodrine DB00876 Eprosartan 
DB00212 Remikiren DB00878 Chlorhexidine 
DB00213 Pantoprazole DB00879 Emtricitabine 
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DB00214 Torasemide DB00880 Chlorothiazide 
DB00215 Citalopram DB00881 Quinapril 
DB00216 Eletriptan DB00882 Clomifene 
DB00217 Bethanidine DB00883 Isosorbide dinitrate 
DB00218 Moxifloxacin DB00884 Risedronate 
DB00219 Oxyphenonium DB00885 Pemirolast 
DB00220 Nelfinavir DB00887 Bumetanide 
DB00221 Isoetharine DB00888 Mechlorethamine 
DB00222 Glimepiride DB00889 Granisetron 
DB00223 Diflorasone DB00890 Dienestrol 
DB00224 Indinavir DB00891 Sulfapyridine 
DB00225 Gadodiamide DB00892 Oxybuprocaine 
DB00226 Guanadrel sulfate DB00894 Testolactone 
DB00227 Lovastatin DB00895 Benzylpenicilloyl polylysine 
DB00228 Enflurane DB00896 Rimexolone 
DB00229 Cefotiam DB00897 Triazolam 
DB00230 Pregabalin DB00898 Ethanol 
DB00231 Temazepam DB00899 Remifentanil 
DB00232 Methyclothiazide DB00900 Didanosine 
DB00233 Aminosalicylic acid DB00902 Methdilazine 
DB00234 Reboxetine DB00903 Ethacrynic acid 
DB00235 Milrinone DB00904 Ondansetron 
DB00236 Pipobroman DB00905 Bimatoprost 
DB00237 Butabarbital DB00906 Tiagabine 
DB00238 Nevirapine DB00907 Cocaine 
DB00239 Oxiconazole DB00908 Quinidine 
DB00240 Alclometasone DB00909 Zonisamide 
DB00241 Butalbital DB00910 Paricalcitol 
DB00242 Cladribine DB00911 Tinidazole 
DB00243 Ranolazine DB00912 Repaglinide 
DB00244 Mesalazine DB00913 Anileridine 
DB00245 Benztropine DB00914 Phenformin 
DB00246 Ziprasidone DB00915 Amantadine 
DB00247 Methysergide DB00916 Metronidazole 
DB00248 Cabergoline DB00917 Dinoprostone 
DB00249 Idoxuridine DB00918 Almotriptan 
DB00250 Dapsone DB00919 Spectinomycin 
DB00251 Terconazole DB00920 Ketotifen 
DB00252 Phenytoin DB00921 Buprenorphine 
DB00253 Medrysone DB00922 Levosimendan 
DB00254 Doxycycline DB00923 Ceforanide 
DB00255 Diethylstilbestrol DB00924 Cyclobenzaprine 
DB00256 Lymecycline DB00925 Phenoxybenzamine 
DB00257 Clotrimazole DB00927 Famotidine 
DB00258 Calcium acetate DB00928 Azacitidine 
DB00259 Sulfanilamide DB00929 Misoprostol 
DB00260 Cycloserine DB00931 Methacycline 
DB00261 Anagrelide DB00932 Tipranavir 
DB00262 Carmustine DB00933 Mesoridazine 
DB00263 Sulfisoxazole DB00934 Maprotiline 
DB00264 Metoprolol DB00935 Oxymetazoline 
DB00265 Crotamiton DB00936 Salicyclic acid 
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DB00266 Dicumarol DB00937 Diethylpropion 
DB00267 Cefmenoxime DB00938 Salmeterol 
DB00268 Ropinirole DB00939 Meclofenamic acid 
DB00269 Chlorotrianisene DB00940 Methantheline 
DB00270 Isradipine DB00941 Hexafluronium bromide 
DB00271 Diatrizoate DB00942 Cycrimine 
DB00272 Betazole DB00943 Zalcitabine 
DB00273 Topiramate DB00944 Demecarium bromide 
DB00274 Cefmetazole DB00945 Aspirin 
DB00275 Olmesartan DB00946 Phenprocoumon 
DB00276 Amsacrine DB00947 Fulvestrant 
DB00277 Theophylline DB00948 Mezlocillin 
DB00278 Argatroban DB00949 Felbamate 
DB00279 Liothyronine DB00950 Fexofenadine 
DB00280 Disopyramide DB00951 Isoniazid 
DB00281 Lidocaine DB00952 Naratriptan 
DB00282 Pamidronate DB00953 Rizatriptan 
DB00283 Clemastine DB00954 Dirithromycin 
DB00284 Acarbose DB00955 Netilmicin 
DB00285 Venlafaxine DB00956 Hydrocodone 
DB00286 Estrone sulfate DB00957 Norgestimate 
DB00287 Travoprost DB00958 Carboplatin 
DB00288 Amcinonide DB00959 Methylprednisolone 
DB00289 Atomoxetine DB00960 Pindolol 
DB00291 Chlorambucil DB00961 Mepivacaine 
DB00292 Etomidate DB00962 Zaleplon 
DB00293 Raltitrexed DB00963 Bromfenac 
DB00294 Etonogestrel DB00964 Apraclonidine 
DB00295 Morphine DB00966 Telmisartan 
DB00296 Ropivacaine DB00967 Desloratadine 
DB00298 Dapiprazole DB00968 Methyldopa 
DB00299 Penciclovir DB00969 Alosetron 
DB00300 Tenofovir DB00972 Azelastine 
DB00301 Flucloxacillin DB00973 Ezetimibe 
DB00302 Tranexamic acid DB00974 Edetic acid 
DB00303 Ertapenem DB00975 Dipyridamole 
DB00304 Desogestrel DB00976 Telithromycin 
DB00305 Mitomycin DB00977 Ethinyl estradiol 
DB00306 Talbutal DB00978 Lomefloxacin 
DB00307 Bexarotene DB00979 Cyclopentolate 
DB00308 Ibutilide DB00980 Ramelteon 
DB00309 Vindesine DB00981 Physostigmine 
DB00310 Chlorthalidone DB00983 Formoterol 
DB00311 Ethoxzolamide DB00984 Nandrolone 
DB00312 Pentobarbital DB00986 Glycopyrrolate 
DB00313 Valproic acid DB00987 Cytarabine 
DB00315 Zolmitriptan DB00988 Dopamine 
DB00316 Acetaminophen DB00989 Rivastigmine 
DB00317 Gefitinib DB00990 Exemestane 
DB00318 Codeine DB00991 Oxaprozin 
DB00319 Piperacillin DB00992 Methyl aminolevulinate 
DB00320 Dihydroergotamine DB00993 Azathioprine 
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DB00321 Amitriptyline DB00996 Gabapentin 
DB00322 Floxuridine DB00997 Doxorubicin 
DB00323 Tolcapone DB00998 Frovatriptan 
DB00324 Fluorometholone DB00999 Hydrochlorothiazide 
DB00326 Calcium gluceptate DB01000 Cyclacillin 
DB00327 Hydromorphone DB01001 Salbutamol 
DB00328 Indomethacin DB01002 Levobupivacaine 
DB00330 Ethambutol DB01003 Cromoglicate 
DB00331 Metformin DB01004 Ganciclovir 
DB00332 Ipratropium DB01005 Hydroxyurea 
DB00333 Methadone DB01006 Letrozole 
DB00334 Olanzapine DB01007 Tioconazole 
DB00335 Atenolol DB01008 Busulfan 
DB00336 Nitrofurazone DB01009 Ketoprofen 
DB00337 Pimecrolimus DB01010 Edrophonium 
DB00339 Pyrazinamide DB01011 Metyrapone 
DB00340 Metixene DB01012 Cinacalcet 
DB00341 Cetirizine DB01013 Clobetasol 
DB00342 Terfenadine DB01014 Balsalazide 
DB00343 Diltiazem DB01015 Sulfamethoxazole 
DB00344 Protriptyline DB01016 Glibenclamide 
DB00345 Aminohippurate DB01017 Minocycline 
DB00346 Alfuzosin DB01018 Guanfacine 
DB00347 Trimethadione DB01019 Bethanechol 
DB00348 Nitisinone DB01020 Isosorbide mononitrate 
DB00349 Clobazam DB01021 Trichlormethiazide 
DB00350 Minoxidil DB01022 Phytonadione 
DB00351 Megestrol DB01023 Felodipine 
DB00352 Thioguanine DB01024 Mycophenolic acid 
DB00353 Methylergonovine DB01025 Amlexanox 
DB00354 Buclizine DB01026 Ketoconazole 
DB00355 Aztreonam DB01028 Methoxyflurane 
DB00356 Chlorzoxazone DB01029 Irbesartan 
DB00357 Aminoglutethimide DB01030 Topotecan 
DB00358 Mefloquine DB01031 Ethinamate 
DB00359 Sulfadiazine DB01032 Probenecid 
DB00360 Tetrahydrobiopterin DB01033 Mercaptopurine 
DB00361 Vinorelbine DB01034 Cerulenin 
DB00363 Clozapine DB01035 Procainamide 
DB00365 Grepafloxacin DB01036 Tolterodine 
DB00366 Doxylamine DB01037 Selegiline 
DB00367 Levonorgestrel DB01038 Carphenazine 
DB00368 Norepinephrine DB01039 Fenofibrate 
DB00369 Cidofovir DB01040 Hydroxystilbamidine isethionate 
DB00370 Mirtazapine DB01041 Thalidomide 
DB00371 Meprobamate DB01042 Melphalan 
DB00372 Thiethylperazine DB01043 Memantine 
DB00373 Timolol DB01044 Gatifloxacin 
DB00374 Treprostinil DB01046 Lubiprostone 
DB00375 Colestipol DB01047 Fluocinonide 
DB00376 Trihexyphenidyl DB01048 Abacavir 
DB00377 Palonosetron DB01049 Ergoloid mesylate 
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DB00378 Dydrogesterone DB01050 Ibuprofen 
DB00379 Mexiletine DB01051 Novobiocin 
DB00380 Dexrazoxane DB01053 Penicillin G 
DB00381 Amlodipine DB01054 Nitrendipine 
DB00382 Tacrine DB01055 Mimosine 
DB00383 Oxyphencyclimine DB01056 Tocainide 
DB00384 Triamterene DB01057 Echothiophate iodide 
DB00385 Valrubicin DB01058 Praziquantel 
DB00387 Procyclidine DB01059 Norfloxacin 
DB00388 Phenylephrine DB01060 Amoxicillin 
DB00389 Carbimazole DB01061 Azlocillin 
DB00390 Digoxin DB01062 Oxybutynin 
DB00391 Sulpiride DB01063 Acetophenazine 
DB00392 Ethopropazine DB01064 Isoproterenol 
DB00393 Nimodipine DB01065 Melatonin 
DB00394 Beclomethasone DB01066 Cefditoren 
DB00395 Carisoprodol DB01067 Glipizide 
DB00396 Progesterone DB01068 Clonazepam 
DB00397 Phenylpropanolamine DB01069 Promethazine 
DB00398 Sorafenib DB01070 Dihydrotachysterol 
DB00399 Zoledronate DB01071 Mequitazine 
DB00400 Griseofulvin DB01072 Atazanavir 
DB00401 Nisoldipine DB01073 Fludarabine 
DB00402 Eszopiclone DB01074 Perhexiline 
DB00404 Alprazolam DB01075 Diphenhydramine 
DB00405 Dexbrompheniramine DB01076 Atorvastatin 
DB00406 Gentian violet DB01077 Etidronic acid 
DB00408 Loxapine DB01080 Vigabatrin 
DB00409 Remoxipride DB01081 Diphenoxylate 
DB00410 Mupirocin DB01082 Streptomycin 
DB00411 Carbachol DB01083 Orlistat 
DB00412 Rosiglitazone DB01084 Emedastine 
DB00413 Pramipexole DB01085 Pilocarpine 
DB00414 Acetohexamide DB01086 Benzocaine 
DB00415 Ampicillin DB01087 Primaquine 
DB00417 Penicillin V DB01088 Iloprost 
DB00418 Secobarbital DB01089 Deserpidine 
DB00419 Miglustat DB01090 Pentolinium 
DB00420 Promazine DB01091 Butenafine 
DB00421 Spironolactone DB01092 Ouabain 
DB00422 Methylphenidate DB01093 Dimethyl sulfoxide 
DB00423 Methocarbamol DB01094 Hesperetin 
DB00424 Hyoscyamine DB01095 Fluvastatin 
DB00425 Zolpidem DB01096 Oxamniquine 
DB00426 Famciclovir DB01097 Leflunomide 
DB00427 Triprolidine DB01098 Rosuvastatin 
DB00428 Streptozocin DB01099 Flucytosine 
DB00429 Carboprost tromethamine DB01100 Pimozide 
DB00430 Cefpiramide DB01101 Capecitabine 
DB00431 Lindane DB01102 Arbutamine 
DB00432 Trifluridine DB01103 Quinacrine 
DB00433 Prochlorperazine DB01104 Sertraline 
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DB00434 Cyproheptadine DB01105 Sibutramine 
DB00436 Bendroflumethiazide DB01106 Levocabastine 
DB00437 Allopurinol DB01107 Methyprylon 
DB00438 Ceftazidime DB01108 Trilostane 
DB00440 Trimethoprim DB01110 Miconazole 
DB00441 Gemcitabine DB01112 Cefuroxime 
DB00442 Entecavir DB01113 Papaverine 
DB00443 Betamethasone DB01114 Chlorpheniramine 
DB00444 Teniposide DB01115 Nifedipine 
DB00445 Epirubicin DB01116 Trimethaphan 
DB00446 Chloramphenicol DB01117 Atovaquone 
DB00447 Loracarbef DB01118 Amiodarone 
DB00448 Lansoprazole DB01119 Diazoxide 
DB00449 Dipivefrin DB01120 Gliclazide 
DB00450 Droperidol DB01121 Phenacemide 
DB00451 Levothyroxine DB01122 Ambenonium 
DB00452 Framycetin DB01123 Proflavine 
DB00453 Clomocycline DB01124 Tolbutamide 
DB00454 Meperidine DB01125 Anisindione 
DB00455 Loratadine DB01126 Dutasteride 
DB00456 Cefalotin DB01127 Econazole 
DB00457 Prazosin DB01128 Bicalutamide 
DB00458 Imipramine DB01129 Rabeprazole 
DB00459 Acitretin DB01130 Prednicarbate 
DB00460 Verteporfin DB01131 Proguanil 
DB00461 Nabumetone DB01132 Pioglitazone 
DB00462 Methylscopolamine DB01133 Tiludronate 
DB00463 Metharbital DB01134 Desoxycorticosterone pivalate 
DB00464 Sodium tetradecyl sulfate DB01136 Carvedilol 
DB00465 Ketorolac DB01137 Levofloxacin 
DB00466 Picrotoxin DB01138 Sulfinpyrazone 
DB00467 Enoxacin DB01139 Cephapirin 
DB00468 Quinine DB01140 Cefadroxil 
DB00469 Tenoxicam DB01142 Doxepin 
DB00470 Marinol DB01143 Amifostine 
DB00471 Montelukast DB01144 Dichlorphenamide 
DB00472 Fluoxetine DB01145 Sulfoxone 
DB00473 Hexylcaine DB01146 Diphenylpyraline 
DB00474 Methohexital DB01147 Cloxacillin 
DB00475 Chlordiazepoxide DB01148 Flavoxate 
DB00476 Duloxetine DB01149 Nefazodone 
DB00477 Chlorpromazine DB01150 Cefprozil 
DB00478 Rimantadine DB01151 Desipramine 
DB00479 Amikacin DB01153 Sertaconazole 
DB00480 Lenalidomide DB01154 Thiamylal 
DB00481 Raloxifene DB01155 Gemifloxacin 
DB00482 Celecoxib DB01156 Bupropion 
DB00483 Gallamine triethiodide DB01157 Trimetrexate 
DB00484 Brimonidine DB01158 Bretylium 
DB00485 Dicloxacillin DB01159 Halothane 
DB00486 Nabilone DB01160 Dinoprost tromethamine 
DB00487 Pefloxacin DB01161 Chloroprocaine 
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DB00488 Altretamine DB01162 Terazosin 
DB00489 Sotalol DB01165 Ofloxacin 
DB00490 Buspirone DB01166 Cilostazol 
DB00491 Miglitol DB01167 Itraconazole 
DB00492 Fosinopril DB01168 Procarbazine 
DB00493 Cefotaxime DB01170 Guanethidine 
DB00494 Entacapone DB01171 Moclobemide 
DB00495 Zidovudine DB01172 Kanamycin 
DB00496 Darifenacin DB01173 Orphenadrine 
DB00497 Oxycodone DB01174 Phenobarbital 
DB00498 Phenindione DB01175 Escitalopram 
DB00499 Flutamide DB01176 Cyclizine 
DB00500 Tolmetin DB01177 Idarubicin 
DB00501 Cimetidine DB01178 Chlormezanone 
DB00502 Haloperidol DB01179 Podofilox 
DB00503 Ritonavir DB01180 Rescinnamine 
DB00504 Levallorphan DB01181 Ifosfamide 
DB00505 Tridihexethyl DB01182 Propafenone 
DB00507 Nitazoxanide DB01183 Naloxone 
DB00508 Triflupromazine DB01184 Domperidone 
DB00513 Aminocaproic acid DB01185 Fluoxymesterone 
DB00514 Dextromethorphan DB01186 Pergolide 
DB00517 Anisotropine methylbromide DB01187 Iophendylate 
DB00518 Albendazole DB01188 Ciclopirox 
DB00519 Trandolapril DB01189 Desflurane 
DB00521 Carteolol DB01190 Clindamycin 
DB00522 Bentiromide DB01191 Dexfenfluramine 
DB00524 Metolazone DB01192 Oxymorphone 
DB00525 Tolnaftate DB01193 Acebutolol 
DB00526 Oxaliplatin DB01194 Brinzolamide 
DB00527 Dibucaine DB01195 Flecainide 
DB00528 Lercanidipine DB01196 Estramustine 
DB00529 Foscarnet DB01197 Captopril 
DB00530 Erlotinib DB01199 Tubocurarine 
DB00531 Cyclophosphamide DB01200 Bromocriptine 
DB00532 Mephenytoin DB01202 Levetiracetam 
DB00535 Cefdinir DB01203 Nadolol 
DB00536 Guanidine DB01204 Mitoxantrone 
DB00537 Ciprofloxacin DB01205 Flumazenil 
DB00539 Toremifene DB01206 Lomustine 
DB00540 Nortriptyline DB01207 Ridogrel 
DB00541 Vincristine DB01208 Sparfloxacin 
DB00542 Benazepril DB01209 Dezocine 
DB00543 Amoxapine DB01210 Levobunolol 
DB00544 Fluorouracil DB01212 Ceftriaxone 
DB00545 Pyridostigmine DB01213 Fomepizole 
DB00546 Adinazolam DB01214 Metipranolol 
DB00547 Desoximetasone DB01215 Estazolam 
DB00548 Azelaic acid DB01216 Finasteride 
DB00549 Zafirlukast DB01217 Anastrozole 
DB00550 Propylthiouracil DB01218 Halofantrine 
DB00551 Acetohydroxamic acid DB01219 Dantrolene 
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DB00552 Pentostatin DB01220 Rifaximin 
DB00553 Methoxsalen DB01221 Ketamine 
DB00554 Piroxicam DB01222 Budesonide 
DB00555 Lamotrigine DB01224 Quetiapine 
DB00556 Perflutren DB01227 Levomethadyl acetate 
DB00557 Hydroxyzine DB01228 Encainide 
DB00558 Zanamivir DB01229 Paclitaxel 
DB00559 Bosentan DB01231 Diphenidol 
DB00560 Tigecycline DB01232 Saquinavir 
DB00561 Doxapram DB01233 Metoclopramide 
DB00562 Benzthiazide DB01234 Dexamethasone 
DB00563 Methotrexate DB01235 Levodopa 
DB00564 Carbamazepine DB01236 Sevoflurane 
DB00566 Succimer DB01237 Bromodiphenhydramine 
DB00567 Cephalexin DB01238 Aripiprazole 
DB00568 Cinnarizine DB01239 Chlorprothixene 
DB00570 Vinblastine DB01240 Epoprostenol 
DB00571 Propranolol DB01241 Gemfibrozil 
DB00572 Atropine DB01242 Clomipramine 
DB00573 Fenoprofen DB01243 Chloroxine 
DB00575 Clonidine DB01244 Bepridil 
DB00576 Sulfamethizole DB01245 Decamethonium 
DB00577 Valaciclovir DB01246 Trimeprazine 
DB00578 Carbenicillin DB01247 Isocarboxazid 
DB00579 Mazindol DB01248 Docetaxel 
DB00581 Lactulose DB01250 Olsalazine 
DB00582 Voriconazole DB01251 Gliquidone 
DB00583 L-carnitine DB01252 Mitiglinide 
DB00584 Enalapril DB01253 Ergonovine 
DB00585 Nizatidine DB01254 Dasatinib 
DB00586 Diclofenac DB01255 Lisdexamfetamine 
DB00587 Cinalukast DB01256 Retapamulin 
DB00588 Fluticasone propionate DB01258 Aliskiren 
DB00589 Lisuride DB01259 Lapatinib 
DB00590 Doxazosin DB01260 Desonide 
DB00591 Fluocinolone acetonide DB01261 Sitagliptin 
DB00592 Piperazine DB01262 Decitabine 
DB00593 Ethosuximide DB01264 Darunavir 
DB00594 Amiloride DB01265 Telbivudine 
DB00595 Oxytetracycline DB01267 Paliperidone 
DB00596 Halobetasol propionate DB01268 Sunitinib 
DB00597 Gadoteridol DB01273 Varenicline 
DB00598 Labetalol DB01274 Arformoterol 
DB00599 Thiopental DB01275 Hydralazine 
DB00600 Monobenzone DB01280 Nelarabine 
DB00601 Linezolid DB01283 Lumiracoxib 
DB00603 Medroxyprogesterone DB01288 Fenoterol 
DB00604 Cisapride DB01289 Glisoxepide 
DB00605 Sulindac DB01291 Pirbuterol 
DB00606 Cyclothiazide DB01295 Bevantolol 
DB00607 Nafcillin DB01296 Glucosamine 
DB00608 Chloroquine DB01297 Practolol 
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DB00609 Ethionamide DB01298 Sulfacytine 
DB00610 Metaraminol DB01299 Sulfadoxine 
DB00611 Butorphanol DB01301 Rolitetracycline 
DB00612 Bisoprolol DB01319 Fosamprenavir 
DB00613 Amodiaquine DB01320 Fosphenytoin 
DB00614 Furazolidone DB01324 Polythiazide 
DB00616 Candoxatril DB01325 Quinethazone 
DB00617 Paramethadione DB01326 Cefamandole 
DB00618 Demeclocycline DB01327 Cefazolin 
DB00619 Imatinib DB01328 Cefonicid 
DB00620 Triamcinolone DB01330 Cefotetan 
DB00621 Oxandrolone DB01331 Cefoxitin 
DB00622 Nicardipine DB01332 Ceftizoxime 
DB00623 Fluphenazine DB01333 Cefradine 
DB00624 Testosterone DB01340 Cilazapril 
DB00625 Efavirenz DB01342 Forasartan 
DB00627 Niacin DB01344 Polystyrene sulfonate 
DB00628 Clorazepate DB01348 Spirapril 
DB00629 Guanabenz DB01349 Tasosartan 
DB00630 Alendronate DB01351 Amobarbital 
DB00631 Clofarabine DB01352 Aprobarbital 
DB00632 Docosanol DB01353 Butethal 
DB00633 Dexmedetomidine DB01354 Heptabarbital 
DB00634 Sulfacetamide DB01355 Hexobarbital 
DB00635 Prednisone DB01357 Mestranol 
DB00636 Clofibrate DB01359 Penbutolol 
DB00637 Astemizole DB01364 Ephedrine 
DB00639 Butoconazole DB01365 Mephentermine 
DB00640 Adenosine DB01366 Procaterol 
DB00641 Simvastatin DB01367 Rasagiline 
DB00642 Pemetrexed DB01380 Cortisone acetate 
DB00643 Mebendazole DB01382 Glycodiazine 
DB00645 Dyclonine DB01384 Paramethasone 
DB00647 Propoxyphene DB01392 Yohimbine 
DB00648 Mitotane DB01393 Bezafibrate 
DB00649 Stavudine DB01394 Colchicine 
DB00650 Leucovorin DB01395 Drospirenone 
DB00651 Dyphylline DB01399 Salsalate 
DB00652 Pentazocine DB01400 Neostigmine 
DB00654 Latanoprost DB01403 Methotrimeprazine 
DB00655 Estrone DB01406 Danazol 
DB00656 Trazodone DB01407 Clenbuterol 
DB00657 Mecamylamine DB01408 Bambuterol 
DB00659 Acamprosate DB01409 Tiotropium 
DB00660 Metaxalone DB01410 Ciclesonide 
DB00661 Verapamil DB01411 Pranlukast 
DB00662 Trimethobenzamide DB01412 Theobromine 
DB00663 Flumethasone pivalate DB01413 Cefepime 
DB00664 Sulfametopyrazine DB01414 Cefacetrile 
DB00665 Nilutamide DB01415 Ceftibuten 
DB00667 Histamine Phosphate DB01416 Cefpodoxime 
DB00668 Epinephrine DB01418 Acenocoumarol 
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DB00669 Sumatriptan DB01419 Antrafenine 
DB00670 Pirenzepine DB01420 Testosterone propionate 
DB00671 Cefixime DB01422 Nitroxoline 
DB00672 Chlorpropamide DB01423 Stepronin 
DB00673 Aprepitant DB01424 Aminophenazone 
DB00674 Galantamine DB01425 Alizapride 
DB00675 Tamoxifen DB01426 Ajmaline 
DB00676 Benzyl benzoate DB01427 Amrinone 
DB00677 Isoflurophate DB01428 Oxybenzone 
DB00678 Losartan DB01429 Aprindine 
DB00679 Thioridazine DB01430 Almitrine 
DB00680 Moricizine DB01431 Allylestrenol 
DB00682 Warfarin DB01435 Antipyrine 
DB00683 Midazolam DB01436 Alfacalcidol 
DB00684 Tobramycin DB01437 Glutethimide 
DB00685 Trovafloxacin DB01438 Phenazopyridine 
DB00686 Pentosan polysulfate DB01440 Gamma hydroxybutyric acid 
DB00687 Fludrocortisone DB01463 Fencamfamine 
DB00688 Mycophenolate mofetil DB01544 Flunitrazepam 
DB00689 Cephaloglycin DB01558 Bromazepam 
DB00690 Flurazepam DB01559 Clotiazepam 
DB00691 Moexipril DB01567 Fludiazepam 
DB00692 Phentolamine DB01576 Dextroamphetamine 
DB00693 Fluorescein DB01577 Methamphetamine 
DB00694 Daunorubicin DB01579 Phendimetrazine 
DB00695 Furosemide DB01580 Oxprenolol 
DB00696 Ergotamine DB01581 Sulfamerazine 
DB00697 Tizanidine DB01582 Sulfamethazine 
DB00698 Nitrofurantoin DB01586 Ursodeoxycholic acid 
DB00699 Nicergoline DB01587 Ketazolam 
DB00700 Eplerenone DB01588 Prazepam 
DB00701 Amprenavir DB01589 Quazepam 
DB00703 Methazolamide DB01591 Solifenacin 
DB00704 Naltrexone DB01594 Cinolazepam 
DB00705 Delavirdine DB01595 Nitrazepam 
DB00706 Tamsulosin DB01597 Cilastatin 
DB00708 Sufentanil DB01598 Imipenem 
DB00709 Lamivudine DB01599 Probucol 
DB00710 Ibandronate DB01600 Tiaprofenic acid 
DB00711 Diethylcarbamazine DB01602 Bacampicillin 
DB00712 Flurbiprofen DB01603 Meticillin 
DB00714 Apomorphine DB01604 Pivampicillin 
DB00715 Paroxetine DB01605 Pivmecillinam 
DB00716 Nedocromil DB01606 Tazobactam 
DB00717 Norethindrone DB01607 Ticarcillin 
DB00718 Adefovir dipivoxil DB01608 Propericiazine 
DB00719 Azatadine DB01609 Deferasirox 
DB00720 Clodronate DB01610 Valganciclovir 
DB00721 Procaine DB01611 Hydroxychloroquine 
DB00722 Lisinopril DB01612 Amyl nitrite 
DB00723 Methoxamine DB01613 Erythrityl tetranitrate 
DB00724 Imiquimod DB01614 Acepromazine 
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DB00725 Homatropine methylbromide DB01615 Aceprometazine 
DB00726 Trimipramine DB01616 Alverine 
DB00727 Nitroglycerin DB01618 Molindone 
DB00728 Rocuronium DB01619 Phenindamine 
DB00729 Diphemanil methylsulfate DB01620 Pheniramine 
DB00730 Thiabendazole DB01621 Pipotiazine 
DB00731 Nateglinide DB01622 Thioproperazine 
DB00733 Pralidoxime DB01623 Thiothixene 
DB00734 Risperidone DB01624 Zuclopenthixol 
DB00735 Naftifine DB01625 Isopropamide 
DB00736 Esomeprazole DB01626 Pargyline 
DB00737 Meclizine DB01627 Lincomycin 
DB00738 Pentamidine DB01628 Etoricoxib 
DB00739 Hetacillin DB02300 Calcipotriol 
DB00740 Riluzole DB02546 Vorinostat 
DB00741 Hydrocortisone DB02703 Fusidic acid 
DB00742 Mannitol DB04552 Niflumic acid 
DB00744 Zileuton DB04570 Latamoxef 
DB00745 Modafinil DB04573 Estriol 
DB00746 Deferoxamine DB04575 Quinestrol 
DB00747 Scopolamine DB04794 Bifonazole 
DB00748 Carbinoxamine DB04835 Maraviroc 
DB00749 Etodolac DB04837 Chlophedianol 
DB00750 Prilocaine DB04838 Cyclandelate 
DB00751 Epinastine DB04839 Cyproterone 
DB00752 Tranylcypromine DB04840 Debrisoquin 
DB00753 Isoflurane DB04841 Flunarizine 
DB00754 Ethotoin DB04842 Fluspirilene 
DB00755 Tretinoin DB04843 Mepenzolate 
DB00756 Hexachlorophene DB04844 Tetrabenazine 
DB00757 Dolasetron DB04861 Nebivolol 
DB00758 Clopidogrel DB04878 Voglibose 
DB00759 Tetracycline DB04880 Enoximone 
DB00760 Meropenem DB04890 Bepotastine 
DB00762 Irinotecan DB04896 Milnacipran 
DB00763 Methimazole DB04898 Ximelagatran 
DB00764 Mometasone DB04930 Permethrin 
DB00765 Metyrosine DB04942 Tamibarotene 
DB00766 Clavulanate DB04948 Lofexidine 
DB00767 Benzquinamide DB04967 Lucanthone 
DB00768 Olopatadine DB05245 Silver sulfadiazine 
DB00769 Hydrocortamate DB05246 Methsuximide 
DB00770 Alprostadil DB06144 Sertindole 
DB00771 Clidinium DB06148 Mianserin 
DB00772 Malathion DB06151 Acetylcysteine 
DB00773 Etoposide DB06155 Rimonabant 
DB00774 Hydroflumethiazide DB06262 Droxidopa 
DB00775 Tirofiban DB06267 Udenafil 
DB00776 Oxcarbazepine DB06274 Alvimopan 
DB00777 Propiomazine DB06288 Amisulpride 
DB00778 Roxithromycin DB06439 Tyloxapol 
DB00779 Nalidixic acid DB06689 Ethanolamine oleate 
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Appendix 2 

 

List of the names and the Protein Data Bank entries of the used proteins. 

 

PDB code Protein name 
13gs Glutathione S-transferase pi 
1a3b Prothrombin 
1aj0 Dihydropteroate synthase 
1aj6 DNA topoisomerase II 
1apy Human aspartylglucosaminidase 
1aq1 Human cyclin dependent kinase 2 
1auk Human arylsulfatase A 
1b2y Pancreatic alpha-amylase precursor 
1b3d Stromelysin-1 
1bj4 Serine hydroxymethyltransferase, cytosolic 
1bj5 Human serum albumin 
1blc Beta-lactamase 

1bwc Glutathione reductase (mitochondrial) 
1bzm Carbonic anhydrase I 
1c5o Urokinase type plasminogen activator 
1cjf Profilin 
1cjy Enoyl-[acyl-carrier-protein] reductase 
1d3g Human dihydroorotate dehidrogenase 
1dfv Human neutrophil gelatinase 
1dkf Retinoic acid receptor alpha 
1dug Glutathione S-transferase from Schistosoma japonicum 
1e51 Delta-aminolevulinic acid dehydratase 
1ewf Bactericidal permeability-increasing protein 
1exa Retinoic acid receptor gamma-2 
1ezf Human squalene synthase 
1f0x D-lactate dehydrogenase 
1f5f Sex hormone-binding globulin precursor 
1fcy Retinoic acid receptor gamma-1 
1fj4 3-oxoacyl-[acyl-carrier-protein] synthase I 
1fkd FK506-binding protein 1A 

1g3m Human estrogen sulfotransferase 
1g9v Hemoglobin 
1gkc Matrix metalloprotease 9 
1hck Human cyclin-dependent kinase 2 
1hcn Human chorionic gondadotropin 
1hrn Renin 
1hso Alcohol dehydrogenase alpha chain 
1hsz Alcohol dehydrogenase beta chain 
1ht0 Alcohol dehydrogenase gamma chain 
1hur Human ADP-ribosylation factor 1 
1hvr HIV-1 protease 
1ig3 Thiamine pyrophosphokinase 
1j3j Bifunctional dihydrofolate reductase-thymidylate synthase 
1j8u Phenylalanine-4-hydroxylase 
1jmo Prothrombin 
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1k0e Para-aminobenzoate synthase component I 
1kfy Fumarate reductase flavoprotein subunit 
1ki0 Human angiostatin 
1kpg Cyclopropane-fatty-acyl-phospholipid synthase 1 
1ksp DNA polymerase I 
1kvo Human phospholipase A2 
1l7z Calmodulin 
1lo6 Human kallikrein 6 
1lpb Pancreatic triacylglycerol lipase precursor 
1lpg Coagulation factor X 
1lxi Bone morphogenic protein 7 

1mf8 Calcineurin B subunit isoform 1 
1mp8 Focal adhesion kinase 
1mzs 3-oxoacyl-[acyl-carrier-protein] synthase III 
1n52 Cap binding complex 
1n5u Serum albumin precursor 
1nhz Glucocorticoid receptor 
1nrg Pyridoxine-5'-phosphate oxidase 
1of1 Thymidine kinase 
1okc ADP/ATP carrier protein heart isoform T1 
1opb Retinol-binding protein II 
1oq5 Carbonic anhydrase II 
1oth Human ornithine transcarbamoylase 
1p0p Cholinesterase 
1p60 Deoxycytidine kinase 
1ph0 Tyrosine-protein phosphatase, non-receptor type 1 
1qh5 Human glyoxalase II 
1qkm Human oestrogen receptor beta 
1qon Acetylcholinesterase precursor 
1r1h Enkephalinase 
1r5l Human alpha-tocopherol transfer protein 
1r9o Cytochrome P4502C9 
1rbp Plasma retinol-binding protein 
1ro9 cAMP phosphodiesterase 
1rsz Purine nucleoside phosphorylase 
1rwx Caspase-1 precursor 
1s1d Human apyrase 
1s2c Prostaglandin D2 11-ketoreductase 
1s3v Dihydrofolate reductase 
1sr7 Progesterone receptor hormone 
1sz7 Human BET3 
1t46 Mast/stem cell growth factor receptor precursor 
1t65 Androgen receptor 
1uae UDP-N-acetylglucosamine 1-carboxyvinyltransferase 
1uhl Retinoic acid receptor RXR-beta 
1uze Angiotensin-converting enzyme 
1v97 Xanthine oxidase 
1w6k Human oxidosqualene cyclase 
1x9d Human class I alpha-1,2-mannosidase 
1x9n DNA ligase I 
1xap Retinoic acid receptor beta 
1xkk Epidermal growth factor receptor precursor 
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1xpc Estrogen receptor 
1xzx Thyroid hormone receptor beta-1 
1y6a Vascular endothelial growth factor receptor 2 precursor 
1yb5 Human zeta-crystallin 
1ytv Vasopressin V1a receptor 
1z57 Human CLK1 
1zcm Human calpain protease 
1zd3 Human soluble epoxide hydrolase 
1zid Enoyl-[acyl-carrier-protein] reductase 
1zx0 Human guanidinoacetate N-methyltransferase 
1zxm Human topo IIa ATPase/AMP-PNP 
1zy7 Human adenosine deaminase that acts on RNA 
1zsq Miotubularin-related protein 2 
1zsx Human potassium channel Kv beta subunit 
2a1h Human mitochondrial branched chain aminotransferase 
2a3i Mineralocorticoid receptor 
2a5d Human ADP-ribosylation factor 6 
2aax Mineralocorticoid receptor 
2aeb Human arginase I 
2afw Human glutaminyl cyclase 
2ag4 GM2-activator protein 
2aid HIV-1 reverse transcriptase 
2avd Human catechol-O-methyltransferase 
2axm Heparin-binding growth factor 1 precursor 
2axn Human inducible form 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 
2az5 Tumor necrosis factor alpha 
2b2u Human CDH1 
2bat Neuraminidase 
2bka CC3 
2bm2 Human beta-II tryptase 
2bxs Monoamine oxidase A 
2c67 Monoamine oxidase B 
2cbz Human multidrug resistance protein 1 
2cca Peroxidase/catalase T 
2cjz Human protein tyrosine phosphatase PTPN5 

2cmd E. coli malate dehydrogenase 
2cmw Human casein kinase 1 gamma-1 
2d0t Human indoleamine 2,3-dioxygenase 
2f4j Proto-oncogene tyrosine-protein kinase ABL1 
2f6q Human peroxisomal delta3, delta2 enoyl CoA isomerase 
2fbr Transthyretin precursor 
2fvv Human diphosphoinositol polyphosphate phosphohydrolase 1 
2fy3 Human choline acetyltransferase 
2g5r Siglec-7 
2g72 Human phenylethanolamine N-methyltransferase 
2gwh Human sulfotranferase SULT1C2 
2h7j Cathepsin S 
2ipx Human fibrillarin 
2iwz Human mitochondrial beta-ketoacyl ACP synthase 
2jis Human cysteine sulfinic acid decarboxylase 

2oaz Human methionine aminopeptidase-2 
2ozu Human MYST histone acetyltransferase 3 
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2p0a Human synapsin III 
2p54 PPAR alpha 
2pk4 Human plasminogen kringle 
3fap FKBP12-rapamycin complex-associated protein 
3nos Nitric-oxide synthase, endothelial 
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Appendix 3 

 

Prediction and validation properties of the studied 181 effect categories. Mean value for a random 

classification was calculated by dividing the number of registrered drugs to a given effect by 1,226, 

the total number of drugs. 

 

Effect Number  
of drugs 

Accuracy Leave-one-out validation probability value 

AUC   Mean 
Mean of 

the upper 
75% 

Mean for a 
random 

classification   

Mean/ 
random 

mean 

Mean/random 
mean for the 

upper 75% 

2-Hydroxy-3-aminopropoxy 
derivative 21 0.9942 0.6488 0.8714 0.0171 37.9 50.5 

Adrenergic agent 133 0.9037 0.6165 0.7812 0.1085 5.7 7.6 
Adrenergic agonist 38 0.9657 0.6181 0.8300 0.0310 19.9 26.6 
Adrenergic alpha-agonist 20 0.9908 0.5755 0.7672 0.0163 35.3 47.0 
Adrenergic alpha-antagonist 28 0.9766 0.4035 0.5325 0.0228 17.7 23.6 
Adrenergic antagonist 62 0.9468 0.5920 0.7507 0.0506 11.7 15.6 
Adrenergic beta-agonist 17 0.9937 0.6037 0.8237 0.0139 43.5 58.0 
Adrenergic beta-antagonist 23 0.9957 0.6214 0.8173 0.0188 33.1 44.2 
Adrenergic uptake inhibitor 19 0.9880 0.3700 0.5008 0.0155 23.9 31.8 
Alkylating agent 17 0.9946 0.3077 0.4359 0.0139 22.2 29.6 
Amphetamine 17 0.9730 0.5698 0.8072 0.0139 41.1 54.8 
Analgesic agent 94 0.8908 0.5210 0.6825 0.0767 6.8 9.1 
Analgesic agent, non-

narcotic 13 0.9715 0.1113 0.1608 0.0106 10.5 14.0 
Analgesic agent, opioid 23 0.9891 0.5881 0.7954 0.0188 31.3 41.8 
Anesthetic agent 45 0.9502 0.4641 0.6159 0.0367 12.6 16.9 
Anesthetic agent, 

intravenous 12 0.9942 0.2465 0.3287 0.0098 25.2 33.6 
Anesthetic agent, local 25 0.9822 0.4394 0.6010 0.0204 21.5 28.7 
Angiotensin-converting 

enzyme inhibitor 14 0.9984 0.4401 0.5986 0.0122 36.0 48.0 
Anthelmintic agent 10 0.9989 0.1784 0.2549 0.0082 21.9 29.2 
Anti-allergic agent 63 0.9195 0.5683 0.7436 0.0514 11.1 14.7 
Antianginal agent 21 0.9684 0.2166 0.7500 0.0171 12.6 16.9 
Anti-anxiety agent 50 0.9348 0.5564 0.4322 0.0408 13.6 18.2 
Antiarrhythmic agent 51 0.9256 0.4833 0.7198 0.0416 11.6 15.5 
Antiasthmatic agent 31 0.9718 0.3838 0.6573 0.0253 15.2 20.2 
Antibacterial agent 129 0.9367 0.6647 0.7330 0.1052 6.3 8.4 
Antibiotic 135 0.9313 0.6503 0.0543 0.1101 5.9 7.9 
Anticholesteremic agent 13 0.9892 0.4454 0.4994 0.0106 42.0 56.0 
Anticoagulant 12 0.9966 0.0259 0.7417 0.0098 2.6 3.5 
Anticonvulsant 60 0.9390 0.5990 0.4471 0.0489 12.2 16.3 
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Antidepressant 40 0.9593 0.5725 0.4192 0.0326 17.5 23.4 
Antidepressant, second-

generation 14 0.9991 0.2219 0.3727 0.0114 19.4 25.9 
Anti-dyskinesia agent 26 0.9704 0.3178 0.3033 0.0212 15.0 20.0 
Anti-emetic agent 49 0.9537 0.5519 0.6391 0.0400 13.8 18.4 
Antifungal agent 31 0.9777 0.2789 0.5104 0.0253 11.0 14.7 
Antiglaucoma agent 23 0.9872 0.3344 0.8541 0.0188 17.8 23.8 
Anti-HIV agent 25 0.9864 0.4758 0.8382 0.0204 23.3 31.1 
Antihypertensive agent 113 0.8956 0.5203 0.6415 0.0922 5.6 7.5 
Antihypocalcemic agent 14 0.9747 0.4187 0.0346 0.0114 36.7 48.9 
Anti-infective agent 219 0.8686 0.5782 0.7907 0.1786 3.2 4.3 
Anti-infective agent, local 13 0.9907 0.0376 0.7494 0.0106 3.5 4.7 
Anti-infective agent, urinary 14 0.9875 0.3567 0.3095 0.0114 31.2 41.6 
Anti-inflammatory agent 104 0.9036 0.5679 0.3728 0.0848 6.7 8.9 
Antimalarial agent 19 0.9802 0.3247 0.4513 0.0155 21.0 27.9 
Antimanic agent 12 0.9944 0.0191 0.6638 0.0098 2.0 2.6 
Antimetabolite 31 0.9512 0.5168 0.5862 0.0253 20.4 27.3 
Anti-migraine agent 19 0.9546 0.3295 0.4405 0.0155 21.3 28.3 
Antimitotic agent 10 0.9977 0.1387 0.0253 0.0082 17.0 22.7 
Antimuscarinic agent 36 0.9825 0.6366 0.6965 0.0294 21.7 28.9 
Antineoplastic agent 120 0.8585 0.4635 0.1982 0.0979 4.7 6.3 
Antineoplastic agent, 

alkylating 15 0.9990 0.3530 0.8135 0.0122 28.9 38.5 
Antineoplastic agent, 

antimetabolite 15 0.9894 0.2150 0.5950 0.0122 17.6 23.4 
Antineoplastic agent, 

hormonal 20 0.9869 0.4051 0.4813 0.0163 24.8 33.1 
Anti-obesity agent 12 0.9908 0.3144 0.2932 0.0098 32.1 42.8 
Antioxidant 10 0.9874 0.0139 0.5371 0.0082 1.7 2.3 
Antiparkinson agent 30 0.9711 0.3847 0.0199 0.0245 15.7 21.0 
Antiprotozoal agent 19 0.9848 0.1861 0.5221 0.0155 12.0 16.0 
Antipruritic agent 41 0.9414 0.492 0.2525 0.0334 14.7 19.6 
Antipsychotic 45 0.9418 0.5869 0.6616 0.0367 16.0 21.3 
Antipyretic 25 0.9793 0.6511 0.7885 0.0204 31.9 42.6 
Antirheumatic agent 18 0.9558 0.1723 0.9024 0.0147 11.7 15.6 
Antispasmodic agent 26 0.9854 0.6094 0.2386 0.0212 28.7 38.3 
Antitussive 10 0.9951 0.3521 0.8224 0.0082 43.2 57.6 
Anti-ulcer agent 26 0.9809 0.2754 0.5029 0.0212 13.0 17.3 
Antiviral agent 48 0.9770 0.5038 0.6572 0.0392 12.9 17.2 
Barbiturate 17 1.0000 0.9953 1.0000 0.0139 71.8 95.7 
Benzimidazole 12 0.9967 0.2378 0.3171 0.0098 24.3 32.4 
Benzodiazepine 25 0.9995 0.8950 1.0000 0.0204 43.9 58.5 
Beta-lactame antibiotic 56 0.9939 0.7990 0.9905 0.0457 17.5 23.3 
Bone density conservation 

agent 18 0.9715 0.4389 0.6077 0.0147 29.9 39.9 
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Bronchodilator agent 31 0.9587 0.3911 0.5220 0.0253 15.5 20.6 
Calcium channel agent 31 0.9511 0.3786 0.5098 0.0253 15.0 20.0 
Calcium channel blocker 29 0.9662 0.3866 0.5324 0.0237 16.3 21.8 
Carbohydrate derivative 21 0.9992 0.4824 0.6752 0.0171 28.2 37.6 
Cardiotonic agent 14 0.9922 0.2916 0.4083 0.0114 25.5 34.0 
Cardiovascular agent 19 0.9881 0.3433 0.4657 0.0155 22.2 29.5 
Catecholamine 11 0.9942 0.6160 0.8469 0.0090 68.7 91.5 
Cell wall synthesis inhibitor 58 0.9821 0.7535 0.9707 0.0473 15.9 21.2 
Central nervous system 

agent 26 0.9707 0.3362 0.4598 0.0212 15.9 21.1 
Central nervous system 

stimulant 13 0.9846 0.3845 0.5554 0.0106 36.3 48.3 
Cephalosporin 32 0.9936 0.7018 0.9256 0.0261 26.9 35.9 
Cholinergic agent 43 0.9452 0.5340 0.7085 0.0351 15.2 20.3 
Cholinergic antagonist 38 0.9551 0.5898 0.7749 0.0310 19.0 25.4 
Cholinesterase inhibitor 14 0.9955 0.1605 0.2247 0.0114 14.1 18.7 
Contraceptive agent 13 0.9997 0.7201 0.9641 0.0106 67.9 90.5 
Corticosteroid 31 0.9978 0.8994 0.9995 0.0253 35.6 47.4 
Corticosteroid, topical 12 0.9966 0.6550 0.8723 0.0098 66.9 89.2 
Cyclooxygenase inhibitor 37 0.9817 0.6730 0.9087 0.0302 22.3 29.7 
Depressant 37 0.9198 0.4986 0.6821 0.0302 16.5 22.0 
Dermatologic agent 18 0.9891 0.2639 0.3650 0.0147 18.0 24.0 
Dihydropyridine 10 0.9995 0.6420 0.9171 0.0082 78.7 104.9 
Diuretic 29 0.9646 0.4986 0.6881 0.0237 21.1 28.1 
Dopamine agent 76 0.9259 0.5696 0.7362 0.0620 9.2 12.3 
Dopamine agonist 11 0.9969 0.1801 0.2475 0.0090 20.1 26.8 
Dopamine antagonist 45 0.9652 0.6045 0.8057 0.0367 16.5 22.0 
Dopamine uptake inhibitor 14 0.9921 0.1331 0.1860 0.0114 11.7 15.5 
Ergoline derivative 11 0.9999 0.4524 0.6221 0.0090 50.4 67.2 
Ergosterol synthesis 

inhibitor 12 0.9982 0.1465 0.1947 0.0098 15.0 20.0 
Estrogen 11 0.9993 0.4901 0.6732 0.0090 54.6 72.8 
Ethanolamine derivative 34 0.9211 0.3046 0.4110 0.0277 11.0 14.6 
Fluoroquinolone 13 0.9999 0.9230 1.0000 0.0106 87.0 116.1 
Folic acid antagonist 19 0.9796 0.5754 0.7805 0.0155 37.1 49.5 
GABA agent 69 0.9580 0.7098 0.9230 0.0563 12.6 16.8 
Gastrointestinal agent 12 0.9896 0.1099 0.1466 0.0098 11.2 15.0 
Glucocorticoid 31 0.9983 0.9040 0.9996 0.0253 35.8 47.7 
Glutamate receptor 

antagonist 20 0.9769 0.2999 0.3999 0.0163 18.4 24.5 
Guanidine derivative 23 0.9863 0.5197 0.7030 0.0188 27.7 36.9 
Histamine agent 74 0.9301 0.6606 0.8505 0.0604 10.9 14.6 
Histamine antagonist 71 0.9283 0.6619 0.8511 0.0579 11.4 15.2 
Histamine H1 antagonist 49 0.9737 0.6566 0.8516 0.0400 16.4 21.9 
Histamine H1 antagonist, 10 0.9989 0.2074 0.2961 0.0082 25.4 33.9 
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non-sedating 
Hormone replacement 

agent 11 0.9990 0.2916 0.4008 0.0090 32.5 43.3 
Hypnotic and/or sedative 63 0.9602 0.6423 0.8518 0.0514 12.5 16.7 
Hypoglycemic agent 22 0.9858 0.4364 0.5956 0.0179 24.3 32.4 
Imidazole derivative 36 0.9729 0.3502 0.4593 0.0294 11.9 15.9 
Immunosuppressive agent 29 0.9734 0.3778 0.5210 0.0237 16.0 21.3 
Indole derivative 20 0.9794 0.3432 0.4566 0.0163 21.0 28.1 
Muscarinic agent 39 0.9818 0.6065 0.7818 0.0318 19.1 25.4 
Muscle relaxant 62 0.9232 0.5066 0.6741 0.0506 10.0 13.4 
Muscle relaxant, central 13 0.9945 0.1238 0.1789 0.0106 11.7 15.6 
Muscle relaxant, skeletal 36 0.9612 0.5731 0.7640 0.0294 19.5 26.0 
Narcotic 22 0.9892 0.6088 0.8369 0.0179 33.9 45.2 
Neuroprotective agent 13 0.9785 0.0123 0.0177 0.0106 1.2 1.5 
Neurotransmitter uptake 

inhibitor 43 0.9522 0.5795 0.7552 0.0351 16.5 22.0 
Nitro compound 26 0.9929 0.6883 0.9352 0.0212 32.5 43.3 
Nonsteroidal anti-

inflammatory agent 71 0.9267 0.4938 0.6438 0.0579 8.5 11.4 
Norepinephrine reuptake 

inhibitor 16 0.9949 0.4894 0.6520 0.0131 37.5 50.0 
Nucleic acid synthesis 

inhibitor 86 0.9280 0.5633 0.7456 0.0701 8.0 10.7 
Nucleoside or nucleotide 23 0.9979 0.7272 0.9599 0.0188 38.8 51.7 
Nucleoside or nucleotide 

analogue 15 0.9990 0.4733 0.6454 0.0122 38.7 51.6 
Opiate agent 31 0.9912 0.5960 0.8024 0.0253 23.6 31.4 
Opiate agonist 27 0.9884 0.6181 0.8322 0.0220 28.1 37.4 
Opioid 22 0.9929 0.6529 0.8977 0.0179 36.4 48.5 
Parasympatholytic 18 0.9963 0.4366 0.5913 0.0147 29.7 39.6 
Parasympathomimetic 12 0.9972 0.2974 0.3965 0.0098 30.4 40.5 
Penicillin 20 0.9995 0.7437 0.8963 0.0163 45.6 60.8 
Phenothiazine 25 0.9974 0.9101 0.9990 0.0204 44.6 59.5 
Phosphodiesterase inhibitor 16 0.9939 0.1666 0.2220 0.0131 12.8 17.0 
Piperazine derivative 58 0.9710 0.6615 0.8577 0.0473 14.0 18.6 
Piperidine derivative 68 0.9423 0.5752 0.7286 0.0555 10.4 13.8 
Platelet aggregation 

inhibitor 17 0.9882 0.0351 0.0494 0.0139 2.5 3.4 
Potassium channel agent 18 0.9901 0.3758 0.5199 0.0147 25.6 34.1 
Potassium channel blocker 16 0.9935 0.4107 0.5454 0.0131 31.5 42.0 
Progestin 12 1.0000 0.8355 0.9576 0.0098 85.4 113.8 
Prostaglandin 8 0.9923 0.0417 0.0556 0.0065 6.4 8.5 
Prostaglandin derivative 12 0.9967 0.3578 0.4766 0.0098 36.6 48.7 
Protein synthesis inhibitor 32 0.9861 0.5126 0.6832 0.0261 19.6 26.2 
Purine derivative 12 0.9918 0.5476 0.7302 0.0098 55.9 74.6 
Pyridine derivative 50 0.9234 0.3532 0.4650 0.0408 8.7 11.5 
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Pyrimidine derivative 18 0.9718 0.0767 0.1062 0.0147 5.2 7.0 
Quaternary amine 39 0.9722 0.4599 0.6131 0.0318 14.5 19.3 
Quinoline derivative 14 0.9877 0.2551 0.3570 0.0114 22.3 29.8 
Quinolone 16 0.9990 0.8699 1.0000 0.0131 66.7 88.9 
Respiratory depressant 10 0.9968 0.5089 0.7270 0.0082 62.4 83.2 
Respiratory smooth muscle 

relaxant 14 0.9937 0.4645 0.6499 0.0114 40.7 54.2 
Respiratory system agent 43 0.9356 0.4629 0.6142 0.0351 13.2 17.6 
Reverse transcriptase 

inhibitor 14 0.9900 0.3775 0.5281 0.0114 33.1 44.1 
Serotonin agent 63 0.9568 0.5719 0.7265 0.0514 11.1 14.8 
Serotonin agonist 13 0.9978 0.6344 0.9028 0.0106 59.8 79.8 
Serotonin antagonist 31 0.9813 0.4992 0.6625 0.0253 19.7 26.3 
Serotonin reuptake inhibitor 21 0.9972 0.4714 0.6320 0.0171 27.5 36.7 
Sodium channel blocker 39 0.9298 0.3872 0.5176 0.0318 12.2 16.2 
Sodium chloride symporter 

inhibitor 13 0.9975 0.6236 0.8791 0.0106 58.8 78.4 
Steroidal 74 0.9956 0.8656 0.9989 0.0604 14.3 19.1 
Steroidal anti-inflammatory 

agent 33 0.9995 0.9611 0.9999 0.0269 35.7 47.6 
Stimulant 17 0.9782 0.3476 0.4924 0.0139 25.1 33.4 
Sulfonamide 80 0.9548 0.6260 0.7928 0.0653 9.6 12.8 
Sulfone 17 0.9863 0.1137 0.1609 0.0139 8.2 10.9 
Sulfonylurea 11 1.0000 0.4405 0.5910 0.0090 49.1 65.5 
Sympatholytic 24 0.9726 0.4370 0.5823 0.0196 22.3 29.8 
Sympathomimetic 33 0.9794 0.6028 0.8280 0.0269 22.4 29.9 
Tetracycline 10 1.0000 0.7011 0.9993 0.0082 86.0 114.6 
Tetrazole derivative 20 0.9641 0.5519 0.7352 0.0163 33.8 45.1 
Thiazide 12 0.9978 0.6055 0.8004 0.0098 61.9 82.5 
Thiazole 22 0.9959 0.5631 0.7736 0.0179 31.4 41.8 
Tocolytic agent 11 0.9947 0.3098 0.4260 0.0090 34.5 46.0 
Triazole derivative 16 0.9659 0.4133 0.5510 0.0131 31.7 42.2 
Tricyclic antidepressant 14 0.9960 0.7065 0.9875 0.0114 61.9 82.5 
Trifluormethyl derivative 36 0.9346 0.3159 0.4181 0.0294 10.8 14.3 
Tropane derivative 11 0.9998 0.494 0.6780 0.0090 55.1 73.4 
Vasoconstrictor 42 0.9628 0.5535 0.7387 0.0343 16.2 21.5 
Vasodilator 78 0.9056 0.4399 0.5723 0.0636 6.9 9.2 
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Appendix 4 

 

Pharmacologic comparison of valproic acid, metronidazole and acetylsalicylic acid. 

Effect 

Drug 

Valproic Acid 

 

 
 

Metronidazole 

 

 
 

Acetylsalicylic Acid 

 

 

EF
FE

C
TS

 /S
ID

E 
EF

FE
C

TS
 

Hyperammonemia 

with lethargy, vomiting 

and changes in mental 

status 

Hyperammonemic 

encephalopathy [153] 

 

 

 

Reye’s syndrome: 

Heavy vomiting, 

Generalized 

lethargy, 

Hyperammonemia 

[154] 

Convulsions Known side effect Known side effect 
Symptom of Aspirin 

overdose 

COX inhibition Yes [78] Yes (Figure 27a) Yes [110] 

Strong psychiatric 

effects 

Confusion 

Incoordination 

Abnormal dreams 

Personality disorder 

Abnormal thinking 

Emotional lability 

Aggression 

Hyperactivity 

Psychosis 

Depression 

 

 

Confusion 

Incoordination 

 

 

 

Irritability 

 

 

 

Depression 

 
One report about relief 

of previously developed 

Confusion 

 

Abnormal dreams 

 

Irrational behaviour 

Irritability 

Aggression 
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psychiatric symptoms 

after metronidazole 

treatment [155] 

 

 

 

Taste perversion Known side effect Known side effect  

Hearing loss, tinnitus Known side effect  

 

Known side effect 

 

Renal effects 

Dysuria 

Polyuria 

Urinary incontinence 

Urinary frequency 

Dysuria 

Polyuria 

Urinary 

incontinence 

 

Mitochondrial damage 

and hepatotoxicity 

mechanisms 

CoA sequestration; 

 

Inhibition of β–

oxidation enzymes; 

 

Opening of 

mitochondrial 

permeability 

transition pores  

which leads to 

apoptosis [156] 

Described in 

overdose 

CoA sequestration; 

 

 

Opening of 

mitochondrial 

permeability 

transition pores 

which leads to 

apoptosis [156] 

Cytochrome P450 

isoenzyme inhibition 
CYP 2C9 [157] CYP 2C9 [157] CYP 2C9 (?) [158] 

Elongated bleeding 

time 
Known side effect  Known side effect 

A
PP

LI
C

A
TI

O
N

S 

 

Suitability in migraine 

treatment 

 

Yes [159]  Yes 

Anticonvulsive effect Yes  
Effective in large 

doses (mice); 
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potentiates the 

effects of valproic 

acid [160] 

Antimicrobial effect 

Yes [161] 

 

Note that diarrhea is a 

common side effect 

(13-23%) 

Strong 

Yes; 

Heliobacter pylori 

infections can be 

treated with Aspirin 

[162] 

Co-administration 

With acetylsalicylic 

acid: 

co-administration 

should be avoided 

With acetylsalicylic 

acid: 

synergistic effects 

 

Blank cells mean no data. 
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Summary 
 

The primary aim of my PhD work was to develop an in silico system for the prediction of 

bioactivity properties of small-molecule compounds. The approach of Virtual Affinity 

Profiling was selected, adopting the recent paradigm of polypharmacology, i.e., the 

observation that drugs generally act on multiple proteins. Our starting hypothesis was that the 

in silico generated interaction profile of a drug, i.e., a series of calculated binding free energy 

values for a set of proteins, correlates with the bioactivity properties of the drug. We also 

assumed that no target proteins are needed to obtain a high level of correlation between the 

interaction profiles and the effect profiles since the interactions of a drug with a structurally 

diverse protein set mimics the possible interaction pattern with the human proteome. 

To test our hypothesis, structural and effect information on 1,255 FDA-approves small-

molecule drugs were collected and in silico interaction profiles were generated for the whole 

drug set against 154 proteins. The correlation between the resulting interaction profile 

database and the effect profile database of the drugs were statistically examined and a clear 

association was revealed, giving an opportunity to validate our system and to perform effect 

predictions. In order to check the diversity of the applied protein set, we also investigated the 

relationship between the virtual drug screening results and the shape of the protein binding 

sites and revealed that binding site geometry has a minor role in the description of affinity 

profiles in general. We also proved that relevant effect predictions can be performed 

regardless of the use of known target proteins. 

Based on the quantitative correlations between the interaction profiles and effect profiles, 

hidden effects can be revealed for the existing drugs and their entire effect profiles can be 

predicted as presented in my thesis. The accuracy and the robustness of the effect prediction 

method, called Drug Profile Matching, were evaluated by successful in vitro analyses. The 

good predictive power of our approach gives an opportunity to its use with marketed drugs or 

as a preclinical screen, increasing the efficacy of drug development. 

I also present another problem with a high level of complexity, i.e., the role of protein 

flexibility in a specific conformational rearrangement. Based on our findings, we deduce that 

flexibility can be quantitatively modified by introducing point mutations in a single dedicated 

site of the protein. 
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Összefoglalás (Summary in Hungarian) 
 

Doktori munkám fő célkitűzése egy olyan in silico rendszer felépítése volt, mely képes 

kismolekulás vegyületek bioaktivitási profiljának előrejelzésére a polifarmakológiai 

paradigma alkalmazásával, tehát arra a megfigyelésre támaszkodva, hogy a gyógyszerek 

többsége nem egy, hanem több célfehérjére hat. Kiindulási hipotézisünk az volt, hogy egy in 

silico előállított interakciós mintázat szoros összefüggést mutat a gyógyszer bioaktivitási 

mintázatával. (Az interakciós mintázat egy kötési energiaértékekből álló egydimenziós vektor, 

mely a gyógyszer kölcsönhatási erősségét jelzi egy sor fehérjéhez.) Feltételeztük továbbá, 

hogy a célfehérjéknek nem kell szerepelniük a mintázat előállításához használt 

fehérjekészletben, mert egy szerkezetileg diverz készlet képes mimikálni azt a kölcsönhatási 

profilt, amit a gyógyszer az emberi proteommal alakít ki. 

Feltevéseink igazolására 1255 jelenleg használt gyógyszer szerkezeti és bioaktivitási 

adatait összegeztük, és elkészítettük az in silico interakciós mintázatukat 154 fehérjével 

szemben. Szignifikáns korrelációt találtunk az előállított adatbázisok, tehát az interakciós és a 

hatásadatbázis között, amely lehetőséget adott a módszer validálására és új hatások 

predikciójára. Ellenőriztük a használt fehérjekészlet diverzitását, és megvizsgáltuk a 

zsebgeometria hatását a kötési mintázatokra. Kimutattuk, hogy az ismert célfehérjék hiánya 

nem befolyásolja a módszer predikciós erősségét. 

A feltárt kvantitatív összefüggések felhasználásával az ismert gyógyszerek eddig rejtett 

hatásai azonosíthatók. Ezáltal lehetőség nyílik a szerek teljes hatásprofiljának előrejelzésére, 

amint azt a dolgozatomban részletesen bemutatom. A predikciós módszer pontosságát és 

robosztusságát számos sikeres in vitro teszttel igazoltuk. Mindezek figyelembevételével 

megállapítottuk, hogy megközelítésünk a gyógyszerfejlesztés számos pontján hozhat jelentős 

előrelépést: nem csak a forgalomban lévő szerek új hatásainak és mellékhatásainak 

felderítésében, de gyógyszerjelölt molekulák nagy áteresztőképességű preklinikai 

vizsgálatában is. 

Dolgozatomban bemutatok egy másik komplex problémát is, a fehérje flexibilitásának 

szerepét egy specifikus konformációs átmenetben. Tripszin modellrendszerünkben végzett 

vizsgálataink alapján arra a következtetésre jutottunk, hogy a protein flexibilitása 

kvantitatívan módosítható specifikusan elhelyezett pontmutációk segítségével. 



 
 

References 
 

 

1. Gráf L: The structural basis of serine protease action: the fourth dimension. In: 

Natural Sciences and Human Thought. Edited by Zwilling R. Heidelberg: Springer-

Verlag; 1995: 139-148. 

2. Frauenfelder H, Chen G, Berendzen J, Fenimore PW, Jansson H, McMahon BH, Stroe 

IR, Swenson J, Young RD: A unified model of protein dynamics. Proc Natl Acad 

Sci U S A 2009, 106(13):5129-5134. 

3. Testa B, Kramer SD: The biochemistry of drug metabolism--an introduction: part 

1. Principles and overview. Chem Biodivers 2006, 3(10):1053-1101. 

4. Ashburn TT, Thor KB: Drug repositioning: identifying and developing new uses 

for existing drugs. Nat Rev Drug Discov 2004, 3(8):673-683. 

5. Lindsay MA: Finding new drug targets in the 21st century. Drug Discov Today 

2005, 10(23-24):1683-1687. 

6. Temple R: Current definitions of phases of investigation and the role of the FDA 

in the conduct of clinical trials. Am Heart J 2000, 139(4):S133-135. 

7. Pujol A, Mosca R, Farres J, Aloy P: Unveiling the role of network and systems 

biology in drug discovery. Trends Pharmacol Sci 2010, 31(3):115-123. 

8. Hopkins AL: Network pharmacology. Nat Biotechnol 2007, 25(10):1110-1111. 

9. Hopkins AL: Network pharmacology: the next paradigm in drug discovery. Nat 

Chem Biol 2008, 4(11):682-690. 

10. Hopkins AL, Mason JS, Overington JP: Can we rationally design promiscuous 

drugs? Curr Opin Struct Biol 2006, 16(1):127-136. 

11. Roth BL, Sheffler DJ, Kroeze WK: Magic shotguns versus magic bullets: 

selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev 

Drug Discov 2004, 3(4):353-359. 

12. Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P: Drug target identification 

using side-effect similarity. Science 2008, 321(5886):263-266. 

13. Fliri AF, Loging WT, Thadeio PF, Volkmann RA: Biospectra analysis: model 

proteome characterizations for linking molecular structure and biological 

response. J Med Chem 2005, 48(22):6918-6925. 



II 
 

14. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK: Relating 

protein pharmacology by ligand chemistry. Nat Biotechnol 2007, 25(2):197-206. 

15. Kola I, Landis J: Can the pharmaceutical industry reduce attrition rates? Nat Rev 

Drug Discov 2004, 3(8):711-715. 

16. Kapetanovic IM: Computer-aided drug discovery and development (CADDD): in 

silico-chemico-biological approach. Chem Biol Interact 2008, 171(2):165-176. 

17. Innovation or Stagnation: Challenge and Opportunity on the Critical Path to 

New Medical Products. In.: Food and Drug Administration; 2004. 

18. Ekman P: Finasteride in the treatment of benign prostatic hypertrophy: an 

update. New indications for finasteride therapy. Scand J Urol Nephrol Suppl 1999, 

203:15-20. 

19. Cleach LL, Bocquet H, Roujeau JC: Reactions and interactions of some commonly 

used systemic drugs in dermatology. Dermatol Clin 1998, 16(2):421-429. 

20. Painful lessons. Nat Rev Drug Discov 2005, 4(10):800-803. 

21. Ekins S, Mestres J, Testa B: In silico pharmacology for drug discovery: methods 

for virtual ligand screening and profiling. Br J Pharmacol 2007, 152(1):9-20. 

22. Ekins S, Mestres J, Testa B: In silico pharmacology for drug discovery: 

applications to targets and beyond. Br J Pharmacol 2007, 152(1):21-37. 

23. Clark DE: In silico prediction of blood-brain barrier permeation. Drug Discov 

Today 2003, 8(20):927-933. 

24. Fu XC, Wang GP, Shan HL, Liang WQ, Gao JQ: Predicting blood-brain barrier 

penetration from molecular weight and number of polar atoms. Eur J Pharm 

Biopharm 2008, 70(2):462-466. 

25. Langowski J, Long A: Computer systems for the prediction of xenobiotic 

metabolism. Adv Drug Deliv Rev 2002, 54(3):407-415. 

26. Lahana R: How many leads from HTS? Drug Discov Today 1999, 4(10):447-448. 

27. Johnson M, Maggiora, GM: Concepts and Applications Molecular Similarity. New 

York: John Wiley & Sons; 2006. 

28. Csizmadia F: JChem: Java applets and modules supporting chemical database 

handling from web browsers. J Chem Inf Comput Sci 2000, 40(2):323-324. 

29. Wermuth C, Ganellin CR, Lindberg P, Mitscher L: Glossary of terms used in 

medicinal chemistry (IUPAC recommendations 1998). Pure Appl Chem 1998, 

70:1129-1143. 



III 
 

30. Kurogi Y, Guner OF: Pharmacophore modeling and three-dimensional database 

searching for drug design using catalyst. Curr Med Chem 2001, 8(9):1035-1055. 

31. Nicklaus MC, Neamati N, Hong H, Mazumder A, Sunder S, Chen J, Milne GW, 

Pommier Y: HIV-1 integrase pharmacophore: discovery of inhibitors through 

three-dimensional database searching. J Med Chem 1997, 40(6):920-929. 

32. Cavasotto CN, Phatak SS: Homology modeling in drug discovery: current trends 

and applications. Drug Discov Today 2009, 14(13-14):676-683. 

33. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, 

Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000, 28(1):235-242. 

34. Mestres J: Representativity of target families in the Protein Data Bank: impact 

for family-directed structure-based drug discovery. Drug Discov Today 2005, 

10(23-24):1629-1637. 

35. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, 

Choi HJ, Yao XJ, Weis WI, Stevens RC et al: GPCR engineering yields high-

resolution structural insights into beta2-adrenergic receptor function. Science 

2007, 318(5854):1266-1273. 

36. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, 

Stevens RC: The 2.6 angstrom crystal structure of a human A2A adenosine 

receptor bound to an antagonist. Science 2008, 322(5905):1211-1217. 

37. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson 

R, Leslie AG, Tate CG, Schertler GF: Structure of a beta1-adrenergic G-protein-

coupled receptor. Nature 2008, 454(7203):486-491. 

38. Huey R, Morris GM, Olson AJ, Goodsell DS: A semiempirical free energy force 

field with charge-based desolvation. J Comput Chem 2007, 28(6):1145-1152. 

39. Zsoldos Z, Reid D, Simon A, Sadjad BS, Johnson AP: eHiTS: an innovative 

approach to the docking and scoring function problems. Curr Protein Pept Sci 

2006, 7(5):421-435. 

40. Zsoldos Z, Reid D, Simon A, Sadjad SB, Johnson AP: eHiTS: a new fast, exhaustive 

flexible ligand docking system. J Mol Graph Model 2007, 26(1):198-212. 

41. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, 

Knoll EH, Shelley M, Perry JK et al: Glide: a new approach for rapid, accurate 

docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 

2004, 47(7):1739-1749. 



IV 
 

42. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL: 

Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment 

factors in database screening. J Med Chem 2004, 47(7):1750-1759. 

43. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R: Novel procedure for 

modeling ligand/receptor induced fit effects. J Med Chem 2006, 49(2):534-553. 

44. Verdonk ML, Chessari G, Cole JC, Hartshorn MJ, Murray CW, Nissink JW, Taylor 

RD, Taylor R: Modeling water molecules in protein-ligand docking using GOLD. 

J Med Chem 2005, 48(20):6504-6515. 

45. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD: Improved protein-

ligand docking using GOLD. Proteins 2003, 52(4):609-623. 

46. Dominguez C, Boelens R, Bonvin AM: HADDOCK: a protein-protein docking 

approach based on biochemical or biophysical information. J Am Chem Soc 2003, 

125(7):1731-1737. 

47. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ: PatchDock and 

SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 2005, 

33(Web Server issue):W363-367. 

48. Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR: Towards the 

development of universal, fast and highly accurate docking/scoring methods: a 

long way to go. Br J Pharmacol 2008, 153 Suppl 1:S7-26. 

49. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP: Empirical scoring 

functions: I. The development of a fast empirical scoring function to estimate the 

binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 1997, 

11(5):425-445. 

50. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, 

Sanschagrin PC, Mainz DT: Extra precision glide: docking and scoring 

incorporating a model of hydrophobic enclosure for protein-ligand complexes. J 

Med Chem 2006, 49(21):6177-6196. 

51. Wang R, Lai L, Wang S: Further development and validation of empirical scoring 

functions for structure-based binding affinity prediction. J Comput Aided Mol Des 

2002, 16(1):11-26. 

52. G.M. Morris DSG, R.S. Halliday, R. Huey, W.E. Hart,  R.K. Belew, A.J. Olson: 

Automated docking using a Lamarckian genetic algorithm and an empirical 

binding free energy function. J Comp Chem 1999, 19(14):1639-1662. 



V 
 

53. Jones G, Willett P, Glen RC, Leach AR, Taylor R: Development and validation of a 

genetic algorithm for flexible docking. J Mol Biol 1997, 267(3):727-748. 

54. Velec HF, Gohlke H, Klebe G: DrugScore(CSD)-knowledge-based scoring function 

derived from small molecule crystal data with superior recognition rate of near-

native ligand poses and better affinity prediction. J Med Chem 2005, 48(20):6296-

6303. 

55. Cole JC, Murray CW, Nissink JW, Taylor RD, Taylor R: Comparing protein-ligand 

docking programs is difficult. Proteins 2005, 60(3):325-332. 

56. Congreve M, Murray CW, Blundell TL: Structural biology and drug discovery. 

Drug Discov Today 2005, 10(13):895-907. 

57. Kovacs M, Toth J, Hetenyi C, Malnasi-Csizmadia A, Sellers JR: Mechanism of 

blebbistatin inhibition of myosin II. J Biol Chem 2004, 279(34):35557-35563. 

58. Hetenyi C, van der Spoel D: Efficient docking of peptides to proteins without prior 

knowledge of the binding site. Protein Sci 2002, 11(7):1729-1737. 

59. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V: PASS: prediction of 

activity spectra for biologically active substances. Bioinformatics 2000, 16(8):747-

748. 

60. Poroikov VV, Filimonov DA, Borodina YV, Lagunin AA, Kos A: Robustness of 

biological activity spectra predicting by computer program PASS for 

noncongeneric sets of chemical compounds. J Chem Inf Comput Sci 2000, 

40(6):1349-1355. 

61. Poroikov VV, Filimonov DA, Ihlenfeldt WD, Gloriozova TA, Lagunin AA, Borodina 

YV, Stepanchikova AV, Nicklaus MC: PASS biological activity spectrum 

predictions in the enhanced open NCI database browser. J Chem Inf Comput Sci 

2003, 43(1):228-236. 

62. Poulain R, Horvath D, Bonnet B, Eckhoff C, Chapelain B, Bodinier MC, Deprez B: 

From hit to lead. Combining two complementary methods for focused library 

design. Application to mu opiate ligands. J Med Chem 2001, 44(21):3378-3390. 

63. Fliri AF, Loging WT, Thadeio PF, Volkmann RA: Biological spectra analysis: 

Linking biological activity profiles to molecular structure. Proc Natl Acad Sci U S 

A 2005, 102(2):261-266. 

64. Krejsa CM, Horvath D, Rogalski SL, Penzotti JE, Mao B, Barbosa F, Migeon JC: 

Predicting ADME properties and side effects: the BioPrint approach. Curr Opin 

Drug Discov Devel 2003, 6(4):470-480. 



VI 
 

65. Fliri AF, Loging WT, Thadeio PF, Volkmann RA: Analysis of drug-induced effect 

patterns to link structure and side effects of medicines. Nat Chem Biol 2005, 

1(7):389-397. 

66. Hetenyi C, Maran U, Karelson M: A comprehensive docking study on the 

selectivity of binding of aromatic compounds to proteins. J Chem Inf Comput Sci 

2003, 43(5):1576-1583. 

67. Brewerton SC: The use of protein-ligand interaction fingerprints in docking. Curr 

Opin Drug Discov Devel 2008, 11(3):356-364. 

68. Deng Z, Chuaqui C, Singh J: Structural interaction fingerprint (SIFt): a novel 

method for analyzing three-dimensional protein-ligand binding interactions. J 

Med Chem 2004, 47(2):337-344. 

69. Toledo-Sherman LM, Chen D: High-throughput virtual screening for drug 

discovery in parallel. Curr Opin Drug Discov Devel 2002, 5(3):414-421. 

70. Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Luo X, Zhu W, Chen K, Shen J et al: 

TarFisDock: a web server for identifying drug targets with docking approach. 

Nucleic Acids Res 2006, 34(Web Server issue):W219-224. 

71. Ehrlich P: The theory and practice of chemotherapy. Folia Serologica 1911, 7:697-

714. 

72. Krueger KE: Peripheral-type benzodiazepine receptors: a second site of action for 

benzodiazepines. Neuropsychopharmacology 1991, 4(4):237-244. 

73. Ebert B, Andersen S, Krogsgaard-Larsen P: Ketobemidone, methadone and 

pethidine are non-competitive N-methyl-D-aspartate (NMDA) antagonists in the 

rat cortex and spinal cord. Neurosci Lett 1995, 187(3):165-168. 

74. Kroeze WK, Kristiansen K, Roth BL: Molecular biology of serotonin receptors 

structure and function at the molecular level. Curr Top Med Chem 2002, 2(6):507-

528. 

75. Bristow LJ, Kramer MS, Kulagowski J, Patel S, Ragan CI, Seabrook GR: 

Schizophrenia and L-745,870, a novel dopamine D4 receptor antagonist. Trends 

Pharmacol Sci 1997, 18(6):186-188. 

76. Truffinet P, Tamminga CA, Fabre LF, Meltzer HY, Riviere ME, Papillon-Downey C: 

Placebo-controlled study of the D4/5-HT2A antagonist fananserin in the 

treatment of schizophrenia. Am J Psychiatry 1999, 156(3):419-425. 

77. Terbach N, Williams RS: Structure-function studies for the panacea, valproic acid. 

Biochem Soc Trans 2009, 37(Pt 5):1126-1132. 



VII 
 

78. Bosetti F, Weerasinghe GR, Rosenberger TA, Rapoport SI: Valproic acid down-

regulates the conversion of arachidonic acid to eicosanoids via cyclooxygenase-1 

and -2 in rat brain. J Neurochem 2003, 85(3):690-696. 

79. Mestres J, Gregori-Puigjane E, Valverde S, Sole RV: The topology of drug-target 

interaction networks: implicit dependence on drug properties and target families. 

Mol Biosyst 2009, 5(9):1051-1057. 

80. Bolognesi ML, Cavalli A, Melchiorre C: Memoquin: a multi-target-directed ligand 

as an innovative therapeutic opportunity for Alzheimer's disease. 

Neurotherapeutics 2009, 6(1):152-162. 

81. Bolognesi ML, Rosini M, Andrisano V, Bartolini M, Minarini A, Tumiatti V, 

Melchiorre C: MTDL design strategy in the context of Alzheimer's disease: from 

lipocrine to memoquin and beyond. Curr Pharm Des 2009, 15(6):601-613. 

82. Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, Hoffman R, 

Williams RL, Shokat KM, Knight ZA: Targeted polypharmacology: discovery of 

dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol 2008, 

4(11):691-699. 

83. Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P: A side effect resource to 

capture phenotypic effects of drugs. Mol Syst Biol 2010, 6:343. 

84. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer 

MB, Matos RC, Tran TB et al: Predicting new molecular targets for known drugs. 

Nature 2009, 462(7270):175-181. 

85. Morphy R, Rankovic Z: Designed multiple ligands. An emerging drug discovery 

paradigm. J Med Chem 2005, 48(21):6523-6543. 

86. Zimmermann GR, Lehar J, Keith CT: Multi-target therapeutics: when the whole is 

greater than the sum of the parts. Drug Discov Today 2007, 12(1-2):34-42. 

87. Milletti F, Vulpetti A: Predicting polypharmacology by binding site similarity: 

from kinases to the protein universe. J Chem Inf Model 2010, 50(8):1418-1431. 

88. Schmitt S, Kuhn D, Klebe G: A new method to detect related function among 

proteins independent of sequence and fold homology. J Mol Biol 2002, 323(2):387-

406. 

89. Weisel M, Proschak E, Schneider G: PocketPicker: analysis of ligand binding-sites 

with shape descriptors. Chem Cent J 2007, 1:7. 

90. Kortagere S, Krasowski MD, Ekins S: The importance of discerning shape in 

molecular pharmacology. Trends Pharmacol Sci 2009, 30(3):138-147. 



VIII 
 

91. Joseph-McCarthy D: Computational approaches to structure-based ligand design. 

Pharmacol Ther 1999, 84(2):179-191. 

92. Zauhar RJ, Moyna G, Tian L, Li Z, Welsh WJ: Shape signatures: a new approach to 

computer-aided ligand- and receptor-based drug design. J Med Chem 2003, 

46(26):5674-5690. 

93. Venkatraman V, Chakravarthy PR, Kihara D: Application of 3D Zernike descriptors 

to shape-based ligand similarity searching. J Cheminform 2009, 1:19. 

94. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali 

M: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic 

Acids Res 2008, 36(Database issue):D901-906. 

95. Morris GM, Huey R, Olson AJ: Using AutoDock for ligand-receptor docking. Curr 

Protoc Bioinformatics 2008, Chapter 8:Unit 8 14. 

96. Jiang X, Kumar K, Hu X, Wallqvist A, Reifman J: DOVIS 2.0: an efficient and easy 

to use parallel virtual screening tool based on AutoDock 4.0. Chem Cent J 2008, 

2:18. 

97. Morris G, Goodsell D, Halliday R, Huey R, Hart W, Belew R, Olson A: Automated 

docking using a Lamarckian genetic algorithm and an empirical binding free 

energy function. J Comp Chem 1999, 19(14):1639-1662. 

98. Simon Z, Vigh-Smeller M, Peragovics A, Csukly G, Zahoranszky-Kohalmi G, 

Rauscher AA, Jelinek B, Hari P, Bitter I, Malnasi-Csizmadia A, Czobor P: Relating 

the shape of protein binding sites to binding affinity profiles: is there an 

association? BMC Struct Biol 2010, 10:32. 

99. Qian G, Sural, S, Gu, Y, Pramanik, S: Similarity between Euclidean and cosine 

angle distance for nearest neighbor queries. Journal of the American Society for 

Information Science 1999, 60(9):772-778. 

100. Guttman L: Some necessary conditions for common factor analysis. Psychometrika 

1954, 19:149-161. 

101. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ: 

AutoDock4 and AutoDockTools4: Automated docking with selective receptor 

flexibility. J Comput Chem 2009, 30(16):2785-2791. 

102. Dessailly BH, Lensink MF, Orengo CA, Wodak SJ: LigASite--a database of 

biologically relevant binding sites in proteins with known apo-structures. Nucleic 

Acids Res 2008, 36(Database issue):D667-673. 



IX 
 

103. Favia AD, Nobeli I, Glaser F, Thornton JM: Molecular docking for substrate 

identification: the short-chain dehydrogenases/reductases. J Mol Biol 2008, 

375(3):855-874. 

104. Schalon C, Surgand JS, Kellenberger E, Rognan D: A simple and fuzzy method to 

align and compare druggable ligand-binding sites. Proteins 2008, 71(4):1755-

1778. 

105. Krueger BA, Weil T, Schneider G: Comparative virtual screening and novelty 

detection for NMDA-GlycineB antagonists. J Comput Aided Mol Des 2009, 

23(12):869-881. 

106. McInnes C: Virtual screening strategies in drug discovery. Curr Opin Chem Biol 

2007, 11(5):494-502. 

107. Glassman AH: Schizophrenia, antipsychotic drugs, and cardiovascular disease. J 

Clin Psychiatry 2005, 66 Suppl 6:5-10. 

108. Prakash C, Kamel A, Cui D, Whalen RD, Miceli JJ, Tweedie D: Identification of the 

major human liver cytochrome P450 isoform(s) responsible for the formation of 

the primary metabolites of ziprasidone and prediction of possible drug 

interactions. Br J Clin Pharmacol 2000, 49 Suppl 1:35S-42S. 

109. Wong DT, Bymaster FP, Engleman EA: Prozac (fluoxetine, Lilly 110140), the first 

selective serotonin uptake inhibitor and an antidepressant drug: twenty years 

since its first publication. Life Sci 1995, 57(5):411-441. 

110. Vane JR: Inhibition of prostaglandin synthesis as a mechanism of action for 

aspirin-like drugs. Nat New Biol 1971, 231(25):232-235. 

111. Ferreira SH: Angiotensin converting enzyme: history and relevance. Semin 

Perinatol 2000, 24(1):7-10. 

112. Hackam DG, Khan NA, Hemmelgarn BR, Rabkin SW, Touyz RM, Campbell NR, 

Padwal R, Campbell TS, Lindsay MP, Hill MD et al: The 2010 Canadian 

Hypertension Education Program recommendations for the management of 

hypertension: part 2 - therapy. Can J Cardiol 2010, 26(5):249-258. 

113. DrugBank sheet of Candoxatril. In. 

114. Cohen Solal A, Jondeau G, Beauvais F, Berdeaux A: Beneficial effects of carvedilol 

on angiotensin-converting enzyme activity and renin plasma levels in patients 

with chronic heart failure. Eur J Heart Fail 2004, 6(4):463-466. 



X 
 

115. Flordellis CS, Goumenos D, Kourounis G, Tsementzis SA, Paris H, Vlachojiannis J: 

The shift in the "paradigm" of the pharmacology of hypertension. Curr Top Med 

Chem 2004, 4(4):487-498. 

116. Margulies KB, Perrella MA, McKinley LJ, Burnett JC, Jr.: Angiotensin inhibition 

potentiates the renal responses to neutral endopeptidase inhibition in dogs with 

congestive heart failure. J Clin Invest 1991, 88(5):1636-1642. 

117. Borvendég J, Polák G, Váradi A: Hatóanyagok, készítmények, terápia. Fókuszban 

a keringési rendszer. Budapest: Melinda; 2004. 

118. DrugBank sheet of Ciclopirox. In. 

119. Jannesson L, Birkhed D, Scherl D, Gaffar A, Renvert S: Effect of oxybenzone on 

PGE2-production in vitro and on plaque and gingivitis in vivo. J Clin Periodontol 

2004, 31(2):91-94. 

120. Ren J, Chung SH: Anti-inflammatory effect of alpha-linolenic acid and its mode of 

action through the inhibition of nitric oxide production and inducible nitric oxide 

synthase gene expression via NF-kappaB and mitogen-activated protein kinase 

pathways. J Agric Food Chem 2007, 55(13):5073-5080. 

121. Ren J, Han EJ, Chung SH: In vivo and in vitro anti-inflammatory activities of 

alpha-linolenic acid isolated from Actinidia polygama fruits. Arch Pharm Res 

2007, 30(6):708-714. 

122. Naveh N, Weissman C, Dottan SA: Azathioprine's inhibitory effect on 

prostaglandin E2 production is not via cyclooxygenase inhibition. Biochem 

Biophys Res Commun 1988, 157(2):727-732. 

123. Sharis PJ, Cannon CP, Loscalzo J: The antiplatelet effects of ticlopidine and 

clopidogrel. Ann Intern Med 1998, 129(5):394-405. 

124. Birktoft JJ, Kraut J, Freer ST: A detailed structural comparison between the charge 

relay system in chymotrypsinogen and in alpha-chymotrypsin. Biochemistry 1976, 

15(20):4481-4485. 

125. Huber R: Structural basis of the activation and action of trypsin 14. Acc Chem Res 

1978(11):114-122. 

126. Kossiakoff AA, Chambers JL, Kay LM, Stroud RM: Structure of bovine 

trypsinogen at 1.9 A resolution. Biochemistry 1977, 16(4):654-664. 

127. Fersht AR, Renard M: pH dependence of chymotrypsin catalysis. Appendix: 

substrate binding to dimeric alpha-chymotrypsin studied by x-ray diffraction 

and the equilibrium method. Biochemistry 1974, 13(7):1416-1426. 



XI 
 

128. Heremans L, Heremans K: Raman spectroscopic study of the changes in secondary 

structure of chymotrypsin: effect of pH and pressure on the salt bridge. Biochim 

Biophys Acta 1989, 999(2):192-197. 

129. Stoesz JD, Lumry RW: Refolding transition of alpha-chymotrypsin: pH and salt 

dependence. Biochemistry 1978, 17(18):3693-3699. 

130. Verheyden G, Matrai J, Volckaert G, Engelborghs Y: A fluorescence stopped-flow 

kinetic study of the conformational activation of alpha-chymotrypsin and several 

mutants. Protein Sci 2004, 13(9):2533-2540. 

131. Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment 

for comparative protein modeling. Electrophoresis 1997, 18(15):2714-2723. 

132. Brunger AT, Huber R, Karplus M: Trypsinogen-trypsin transition: a molecular 

dynamics study of induced conformational change in the activation domain. 

Biochemistry 1987, 26(16):5153-5162. 

133. Matrai J, Verheyden G, Kruger P, Engelborghs Y: Simulation of the activation of 

alpha-chymotrypsin: analysis of the pathway and role of the propeptide. Protein 

Sci 2004, 13(12):3139-3150. 

134. Toth J, Gombos L, Simon Z, Medveczky P, Szilagyi L, Graf L, Malnasi-Csizmadia A: 

Thermodynamic analysis reveals structural rearrangement during the acylation 

step in human trypsin 4 on 4-methylumbelliferyl 4-guanidinobenzoate substrate 

analogue. J Biol Chem 2006, 281(18):12596-12602. 

135. Kintses B, Simon Z, Gyimesi M, Toth J, Jelinek B, Niedetzky C, Kovacs M, Malnasi-

Csizmadia A: Enzyme kinetics above denaturation temperature: a temperature-

jump/stopped-flow apparatus. Biophys J 2006, 91(12):4605-4610. 

136. Toth J, Simon Z, Medveczky P, Gombos L, Jelinek B, Szilagyi L, Graf L, Malnasi-

Csizmadia A: Site directed mutagenesis at position 193 of human trypsin 4 alters 

the rate of conformational change during activation: role of local internal 

viscosity in protein dynamics. Proteins 2007, 67(4):1119-1127. 

137. Kovacs M, Malnasi-Csizmadia A, Woolley RJ, Bagshaw CR: Analysis of nucleotide 

binding to Dictyostelium myosin II motor domains containing a single 

tryptophan near the active site. J Biol Chem 2002, 277(32):28459-28467. 

138. Peterman BF: Measurement of the dead time of a fluorescence stopped-flow 

instrument. Anal Biochem 1979, 93(2):442-444. 



XII 
 

139. Katona G, Berglund GI, Hajdu J, Graf L, Szilagyi L: Crystal structure reveals basis 

for the inhibitor resistance of human brain trypsin. J Mol Biol 2002, 315(5):1209-

1218. 

140. Weast R: CRC Handbook of Chemistry and Physics, 69 edn. Boca Raton: CRC; 

1988. 

141. Arrhenius S: Über die Reaktiongeschwindigkeit bei der Inversion von Rohzucker 

durch Sauren. Z Phys Chem 1889(4):226-248. 

142. Kramers H: Brownian motion in a field of force and the diffusion model of 

chemical reactions. Physica 1940(7):284-304. 

143. Ansari A, Jones CM, Henry ER, Hofrichter J, Eaton WA: The role of solvent 

viscosity in the dynamics of protein conformational changes. Science 1992, 

256(5065):1796-1798. 

144. Goldmann WH, Geeves MA: A "slow" temperature jump apparatus built from a 

stopped-flow machine. Anal Biochem 1991, 192(1):55-58. 

145. Verkman AS, Dix JA, Pandiscio AA: A simple stopped-flow temperature-jump 

apparatus. Anal Biochem 1981, 117(1):164-169. 

146. Hedstrom L, Lin TY, Fast W: Hydrophobic interactions control zymogen 

activation in the trypsin family of serine proteases. Biochemistry 1996, 

35(14):4515-4523. 

147. Bobofchak KM, Pineda AO, Mathews FS, Di Cera E: Energetic and structural 

consequences of perturbing Gly-193 in the oxyanion hole of serine proteases. J 

Biol Chem 2005, 280(27):25644-25650. 

148. Zivelin A, Ogawa T, Bulvik S, Landau M, Toomey JR, Lane J, Seligsohn U, Gailani 

D: Severe factor XI deficiency caused by a Gly555 to Glu mutation (factor XI-

Glu555): a cross-reactive material positive variant defective in factor IX 

activation. J Thromb Haemost 2004, 2(10):1782-1789. 

149. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG: How enzymes work: analysis by 

modern rate theory and computer simulations. Science 2004, 303(5655):186-195. 

150. Frauenfelder H, Wolynes PG: Rate theories and puzzles of hemeprotein kinetics. 

Science 1985, 229(4711):337-345. 

151. Beece D, Eisenstein L, Frauenfelder H, Good D, Marden MC, Reinisch L, Reynolds 

AH, Sorensen LB, Yue KT: Solvent viscosity and protein dynamics. Biochemistry 

1980, 19(23):5147-5157. 



XIII 
 

152. Fliri AF, Loging WT, Volkmann RA: Analysis of System Structure-Function 

Relationships. ChemMedChem 2007, 2(12):1774-1782. 

153. Alqahtani S, Federico P, Myers RP: A case of valproate-induced hyperammonemic 

encephalopathy: look beyond the liver. Cmaj 2007, 177(6):568-569. 

154. Belay ED, Bresee JS, Holman RC, Khan AS, Shahriari A, Schonberger LB: Reye's 

syndrome in the United States from 1981 through 1997. N Engl J Med 1999, 

340(18):1377-1382. 

155. Sandler RH, Bolte ER, Chez MG, Schrift MJ: Relief of psychiatric symptoms in a 

patient with Crohn's disease after metronidazole therapy. Clin Infect Dis 2000, 

30(1):213-214. 

156. Pessayre D, Mansouri A, Haouzi D, Fromenty B: Hepatotoxicity due to 

mitochondrial dysfunction. Cell Biol Toxicol 1999, 15(6):367-373. 

157. Lee SY, Lee ST, Kim JW: Contributions of CYP2C9/CYP2C19 genotypes and 

drug interaction to the phenytoin treatment in the Korean epileptic patients in 

the clinical setting. J Biochem Mol Biol 2007, 40(3):448-452. 

158. Miners JO, Birkett DJ: Cytochrome P4502C9: an enzyme of major importance in 

human drug metabolism. Br J Clin Pharmacol 1998, 45(6):525-538. 

159. Leniger T, Pageler L, Stude P, Diener HC, Limmroth V: Comparison of intravenous 

valproate with intravenous lysine-acetylsalicylic acid in acute migraine attacks. 

Headache 2005, 45(1):42-46. 

160. Srivastava AK, Gupta YK: Aspirin modulates the anticonvulsant effect of 

diazepam and sodium valproate in pentylenetetrazole and maximal electroshock 

induced seizures in mice. Indian J Physiol Pharmacol 2001, 45(4):475-480. 

161. Esiobu N, Hoosein N: An assessment of the in vitro antimicrobial effects of two 

antiepileptic drugs--sodium valproate and phenytoin. Antonie Van Leeuwenhoek 

2003, 83(1):63-68. 

162. Wang WH, Wong WM, Dailidiene D, Berg DE, Gu Q, Lai KC, Lam SK, Wong BC: 

Aspirin inhibits the growth of Helicobacter pylori and enhances its susceptibility 

to antimicrobial agents. Gut 2003, 52(4):490-495. 

 

 


