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Notation

λ 1-dimensional Lebesgue measure.

λn n-dimensional Lebesgue measure.

diam Diameter of a set.

B(x, r) Closed ball with center x and radius r.

S(x, r) The sphere with center x and radius r.

Hs(A) s-dimensional Hausdorff measure of A.

Hs
δ(A) = inf

{∑
diam(Ai)

s : A ⊂
⋃

Ai; diam(Ai) ≤ δ
}

.

Hs
∞(A) = inf

{∑
diam(Ai)

s : A ⊂
⋃

Ai

}
.

dim Hausdorff dimension.

dimM Upper Minkowski dimension.

dimM Lower Minkowski dimension.

[x] The greatest integer not more than x.

�x� The smallest integer not less than x.

∠(u,v) The angle enclosed by the vectors u and v.
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Márta Táborné Vincze, who taught me the basics and much more. Looking back now, I

realise what a tremendous and selfless work they have done for me and for many other

students.
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Chapter 1

Introduction

The task of guaranteeing given patterns in a sufficiently large set has been a central

problem in various areas of mathematics for a long time. Perhaps the most famous example

is the celebrated theorem of Szemerédi claiming that any sequence of positive integers with

positive upper density contains arbitrarily long arithmetic progressions. Such problems

are often studied in the field of geometric measure theory, as well. The following problem

was proposed by Tamás Keleti. We say that a set A ⊂ R
n contains the angle α if there

exist distinct points P,Q,R ∈ A such that ∠PQR = α. How large (in terms of Hausdorff

dimension) can a compact set A ⊂ R
n be if it does not contain some given angle α? Or

equivalently, how large dimension guarantees that our set must contain α? These questions

will be investigated in Chapter 2.

We also study an approximate version of this problem, where we only want our set to

contain angles close to α rather than contain the exact angle α. This version turns out to

be completely different from the original one, which is best illustrated by the case α = π/2.

If the dimension of our set is greater than 1, then it must contain angles arbitrarily close

to π/2. However, if we want to make sure that it contains the exact angle π/2, then we

need to assume that its dimension is greater than n/2.

Another interesting phenomenon is that different angles show different behaviour. In

the approximate version the angles π/3, π/2 and 2π/3 play special roles, while in the

original version π/2 seems to behave differently than other angles.

One of our goals will be to construct large dimensional sets not containing some angle

α. Our strategy will be that we first construct large discrete sets, which then can be blown

up to large dimensional self-similar sets. Such a discrete set that stands behind one of

our constructions will be the following. Erdős and Füredi used the probabilistic method

to prove that for any δ > 0 there is a constant cδ > 1 such that there exist cn
δ points in

R
n with the property that the angle determined by any three points is less than π/3 + δ.
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This result is related to the next topic studied by this thesis, as well.

We say that a finite set of points is an acute set if any angle determined by three

points of the set is acute. In Chapter 3 we examine the maximal cardinality α(n) of

an n-dimensional acute set. The above result of Erdős and Füredi tells us that α(n) is

exponentially large. (Before their random construction it was conjectured by Danzer and

Grünbaum that α(n) < Cn for some constant C.) The exact value of α(n) is known only

for n ≤ 3. For each n ≥ 4 we improve on the best known lower bound for α(n). We present

different approaches. On one hand, we give a probabilistic proof that α(n) > c ·1.2n. (This

improves the random construction given by Erdős and Füredi.) On the other hand, we

give an almost exponential constructive example which outdoes the random construction

in low dimension (n ≤ 250). Both approaches use the small dimensional examples that

we found partly by hand (n = 4, 5), partly by computer (6 ≤ n ≤ 10).

We also investigate the following variant of this problem: what is the maximal size

κ(n) of an n-dimensional cubic acute set (that is, an acute set contained in the vertex set

of an n-dimensional hypercube). We give an almost exponential constructive lower bound,

and we improve on the best known upper bound.

Finally, in Chapter 4 we show that the Koch curve is tube-null, that is, it can be

covered by strips of arbitrarily small total width. In fact, we prove the following stronger

result: the Koch curve can be decomposed into three sets such that each can be projected

to a line in such a way that the image has Hausdorff dimension less than 1. The proof

contains geometric, combinatorial, algebraic and probabilistic arguments.

Chapter 2 is based on [19] and [20]. The latter is a joint paper with Keleti, Kiss,

Maga, Máthé, Mattila and Strenner. For the sake of completeness some constructions due

to Máthé are also included in this thesis (Section 2.5). Chapter 3 and 4 are based on [21]

and [22], respectively.
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Chapter 2

How large dimension guarantees a

given angle?

An easy consequence of Lebesgue’s density theorem claims that for any Lebesgue measur-

able set A ⊂ R
n with positive Lebesgue measure it holds that a similar copy of any finite

configuration of points can be found in A.

What can be said about infinite configurations? Erdős asked whether there is a se-

quence xn → 0 such that a similar copy of this sequence can be found in every measurable

set A ⊂ R with λ(A) > 0. This question is usually referred to as Erdős similarity problem

and still unsolved.

And what about finite configurations in null sets? The following problem was also

posed by Erdős. How large (in terms of Hausdorff dimension) can a set A ⊂ R
2 be if there

is no equilateral triangle with all three vertices in A? Falconer answered this question by

showing that there exists a compact set A on the plane with Hausdorff dimension 2 such

that A does not contain three points that form an equilateral triangle. In fact, it was

shown in [15, 26, 27] that for any three points in R or in R
2 there exists a compact set

(in R or in R
2) of full Hausdorff dimension, which does not contain a similar copy of the

three points. It is open whether the analogous result holds in higher dimension.

It would be interesting to find patterns, which can be found in every full dimensional

set. In this chapter we investigate such a pattern. We say that a set A ⊂ R
n contains

the angle α if there exist distinct points P,Q,R ∈ A such that ∠PQR = α. Keleti posed

the following question: how large can a set A ⊂ R
n be if it does not contain α? If there

is no restriction on A, then for any given α ∈ [0, π] one can use transfinite recursion to

construct a full dimensional set not containing α, see Section 2.6. The problem is more

interesting, though, if we restrict ourselves to, for example, compact sets. What is the

smallest s for which dim(A) > s implies that A must contain α provided that A ⊂ R
n is
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compact? (Or equivalently, what is the maximal Hausdorff dimension s of a compact set

A ⊂ R
n with the property that A does not contain the angle α?) This minimal (maximal)

value of s will be denoted by C(n, α). It is not hard to show that C(n, α) ≤ n − 1 for

arbitrary α, in other words, if the Hausdorff dimension of a compact set A ⊂ R
n is greater

than n − 1, then A contains every angle α ∈ [0, π]. For α = π/2 we even prove that

compact sets in R
n with Hausdorff dimension greater than �n/2� must contain π/2, that

is C(n, π/2) ≤ �n/2�, see Section 2.4.

As far as lower bounds are concerned, the line segment shows that C(n, α) ≥ 1 for

any α ∈ (0, π). Our first goal is to improve on this obvious lower bound by construct-

ing a compact set of Hausdorff dimension greater than 1 which does not contain some

angle α ∈ (0, π). In Section 2.1 for any δ > 0 we present a self-similar set K ⊂ R
n

of dimension cδn such that all angles contained by A are from the δ-neighbourhood of

the set {0, π/3, π/2, 2π/3, π}. It implies that C(n, α) ≥ c(α)n given that α ∈ (0, π) and

α 	= π/3, π/2, 2π/3.

What about the exceptional angles π/3, π/2, 2π/3? In Section 2.2 we present a more

involved construction of a self-similar set in R
n with dimension c 3

√
n/ log n that contains

neither π/3, nor 2π/3. The constructed sets also avoid a small neighbourhood of π/3

and 2π/3. To be more precise, for any δ > 0 we prove the existence of a set (in some

Euclidean space of sufficiently large dimension) which has dimension cδ−1/ log(δ−1) and

which contains no angle in the δ-neighbourhood of π/3 and 2π/3. This latter result is

essentially sharp: if the dimension of A is at least Cδ−1 log(δ−1) for some δ > 0, then A

must contain an angle in the δ-neighbourhood of π/3 as well in the δ-neighbourhood of

2π/3 (see Section 2.3). (Throughout this chapter c and C denote absolute constants but

different appearances may denote different values.)

Both above constructions (the one for general angles and the one for π/3, 2π/3) are so

called homothetic self-similar sets (see Section 2.1 for details) and have the property that

they avoid not only the given angle α but also a small neighbourhood of α. As Theorem

2.37 will show, one cannot avoid π/2 with such homothetic self-similar sets given that the

dimension of the set is greater than 1. Moreover, it is shown in Section 2.3 that if the

dimension of any set A is greater than 1, then A must contain angles arbitrarily close to

π/2. In other words, it is impossible to construct sets of dimension greater than 1 that

avoid a neighbourhood of π/2.

We outline another type of constructions in Section 2.5. These constructions use num-

ber theoretic methods and they are due to András Máthé. He proves, for example, that

there exist compact sets in R
n with Hausdorff dimension n/2 such that they do not con-

tain the angle π/2. Consequently, C(n, π/2) ≥ n/2. As we have mentioned before,
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C(n, π/2) ≤ �n/2�. In particular, if n is even, we have C(n, π/2) = n/2.

We emphasize the difference between the tasks of finding an angle precisely and finding

it approximately. For example, we can find angles arbitrarily close to π/2 given that the

dimension of our set is greater than 1, while if we want to find the exact angle π/2 in our

set, we need to know that its dimension is greater than n/2.

Sections 2.3, 2.4, 2.6 and parts of Section 2.1 are from [20] and thus joint work with

Keleti, Kiss, Maga, Máthé, Mattila and Strenner. Section 2.2 and parts of Section 2.1 are

from [19]. Section 2.5 contains results due to Máthé.

2.1 Avoiding general angles

In this section we construct sets with the property that any angle contained by the set is

close to one of the following angles: 0, π/3, π/2, 2π/3, π.

First we define homothetic self-similar sets and prove some simple facts about them.

Let us take points P1, . . . , Pm in some Euclidean space R
n. We denote the convex hull of

these points by K0. For every i = 1, . . . , m we take a homothety ϕi with center Pi and scale

factor 0 < qi < 1. Let K be the unique non-empty compact set satisfying K =
⋃

i ϕi(K).

One can get this homothetic self-similar set K by setting

Kr
def
=

m⋃
i=1

ϕi (Kr−1) =
⋃

i1,...,ir

ϕi1 ◦ · · · ◦ ϕir(K0),

then K =
⋂∞

r=1 Kr. We will use the following notations:

dmin = min{|Pi − Pj| : i 	= j}; dmax = max{|Pi − Pj| : i 	= j}; qmax = max{q1, . . . , qm}.

Set η
def
= qmaxdmax/dmin. We will assume that η < 1/2 which clearly implies that the sets

ϕi(K0) (i = 1, . . . ,m) are pairwise disjoint. Therefore the well-known Moran equation for

the dimension s of the self-similar K holds:

qs
1 + · · · + qs

m = 1,

which yields that in the special case q1 = · · · = qm = q the dimension is

s =
log m

log (1/q)
.

For these sets most of the dimension notions (like Hausdorff or Minkowski dimension)

coincide, so for the sake of simplicity in this and the next section we simply say dimension.

The next proposition says that the set of directions in K is close to the set of directions

in {P1, . . . , Pm}.
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Proposition 2.1. Suppose that η = qmaxdmax/dmin < 1/2. Then for any two distinct

points A,B ∈ K there exist i 	= j such that the angle between the vectors A − B and

Pi − Pj is less than πη.

Proof. There exist unique sequences i1, i2, . . . and j1, j2, . . . such that

A ∈ ϕi1 ◦ · · · ◦ ϕir(K) and B ∈ ϕj1 ◦ · · · ◦ ϕjr
(K)

for any positive integer r. Let r be the smallest index with ir 	= jr. Now let ψ be the

homothety defined as ϕi1 ◦ · · · ◦ ϕir−1
= ϕj1 ◦ · · · ◦ ϕjr−1

. Clearly A′ def
= ψ−1(A) ∈ ϕir(K)

and B′ def
= ψ−1(B) ∈ ϕjr

(K). It also follows that A′ − B′ and A − B are parallel (one is a

positive scalar multiple of the other).

So we can assume that A and B are in different level 1 parts of K, that is, there exist

indices i 	= j such that A ∈ ϕi(K) and B ∈ ϕj(K). Thus |A − Pi|, |B − Pj| ≤ qmaxdmax.

Let us now translate the segment PiPj by the vector A − Pi so that Pi goes to A, and

Pj goes to some point Q. Then the angle in question is equal to ∠BAQ. We have

|B−Q| ≤ |A−Pi|+ |B−Pj| ≤ 2qmaxdmax. On the other hand, |A−Q| = |Pi −Pj| ≥ dmin.

Since η < 1/2, it follows that |B − Q| < |A − Q|. Under this condition the angle ∠BAQ

is clearly at most

arcsin

( |B − Q|
|A − Q|

)
≤ arcsin(2η) ≤ πη.

Corollary 2.2. Suppose that η < 1/2. Then for any three distinct points A,B,C of K

there exist indices i1, i2, i3, i4 such that

|∠ABC − ∠(Pi1 − Pi2 , Pi3 − Pi4)| < 2πη.

Proof. Let A,B,C,D ∈ K with A 	= B and C 	= D. We apply the above proposition for

the vectors A − B and C − D. It follows that there exist indices i1, i2, i3, i4 such that

|∠(A − B,C − D) − ∠(Pi1 − Pi2 , Pi3 − Pi4)| < 2πη.

Setting B = D completes the proof.

In [20] this self-similar construction was used in the special case when the points Pi are

the vertices of a regular simplex in R
n. Then m = n+1; dmin = dmax and the possible values

of ∠(Pi1 − Pi2 , Pi3 − Pi4) are 0, π/3, π/2, 2π/3 and π. So setting q1 = · · · = qm = q < 1/2

yields that K has dimension log(n + 1)/ log(1/q) and all the angles contained by K are in

the 2πq-neighbourhood of the set {0, π/3, π/2, 2π/3, π}. So for any angle α not in this set
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there is a constant c(α) such that in R
n a set K of dimension c(α) log(n + 1) can be given

with the property that K does not contain α as an angle.

The following simple observation enables us to do better than that, namely, we show the

existence of a set of dimension c(α)n having the same property. For the above construction

to work, it suffices to know that the distances |Pi −Pj| are approximately the same (equal

with some small error δ). And there are a lot of points in a Euclidean space with this

property: in 1983 Erdős and Füredi proved [12] that for any δ > 0 there exist at least

(1 + cδ2)
n

points in R
n such that the distance of any two is between 1 and 1 + δ. This is

also a special case of the well-known lemma of Johnson and Lindenstrauss which was first

published in 1984 (see Lemma 2.7 in the next section).

Now we prove the simple fact that if we have four points with each pair having approx-

imately the same distance, then the angles enclosed by the segments are close to either

π/3 or π/2.

Lemma 2.3. Suppose that the distance of any two of some given points is between 1 and

1+δ for some δ > 0. Then the angle between two arbitrary nonzero vectors with endpoints

from the given set is in the Cδ-neighbourhood of the set {0, π/3, π/2, 2π/3, π}.

Proof. We assume that 0 < δ < 0.1. If the lemma holds under this assumption, then it

must also hold for arbitrary δ > 0 (possibly with some larger C).

Take the endpoints of the two vectors. The set of these endpoints consists of either

two, three or four points.

In the first case the two vectors coincide or they are the negative of each other. So the

enclosed angle is 0 or π.

In the second case the two vectors share exactly one common endpoint which we denote

by A. Let the two other endpoints be B1, B2 and let α = ∠B1AB2. (So the angle enclosed

by the vectors is α or π − α.) By the cosine law we have

cos α =
|A − B1|2 + |A − B2|2 − |B1 − B2|2

2|A − B1||A − B2| .

Using this and the inequalities (1 + δ)2 < 1 + 3δ and 1 − 3δ < 1/(1 + 3δ) we obtain that

1

2
− 3δ <

(1 − 3δ)2

2
≤ 2 − (1 + 3δ)

2(1 + 3δ)
≤ cos α ≤ 2(1 + 3δ) − 1

2
=

1

2
+ 3δ.

Since arccos is a Lipschitz function on the interval [0.2, 0.8], it follows that |α−π/3| < Cδ.

Therefore, in this case the enclosed angle is in the Cδ-neighbourhood of π/3 or 2π/3.

Finally, in the third case we have four distinct points A1, A2, B1, B2. Using coordinates,

one can easily obtain the following formula for the inner product of the vectors A1 − A2

7



and B1 − B2:

〈A1 − A2, B1 − B2〉 =
(|A1 − B2|2 + |A2 − B1|2 − |A1 − B1|2 − |A2 − B2|2

)
/2,

which yields that for the angle β enclosed by A1 − A2 and B1 − B2 it holds that

cos β =
|A1 − B2|2 + |A2 − B1|2 − |A1 − B1|2 − |A2 − B2|2

2|A1 − A2||B1 − B2| .

Using that each distance is between 1 and 1 + δ we obtain that

|cos β| ≤ 2(1 + δ)2 − 2

2
= 2δ + δ2 ≤ 3δ.

It follows that |β − π/2| < Cδ.

In the next theorem we put together the above results to obtain large dimensional sets

with all angles close to the special angles 0, π/3, π/2, 2π/3, π.

Theorem 2.4. There is a δ0 > 0 such that for any 0 < δ ≤ δ0 there exists a self-similar

set in R
n of dimension at least

cδn = cδ2 log−1(1/δ) · n

such that the angle determined by any three points of the set is in the δ-neighbourhood of

the set {0, π/3, π/2, 2π/3, π}.

Proof. Take some real number 0 < δ ≤ 1/3. As we mentioned before Lemma 2.3, there

exist m ≥ (1 + cδ2)n points P1, . . . , Pm ∈ R
n such that the distance of any two of them

is between 1 and 1 + δ. Take the homotheties with center Pi and ratio qi = q = δ, and

consider the corresponding self-similar set K. On one hand, the dimension of K is

log m

log(1/q)
≥ n log(1 + cδ2)

log(1/δ)
≥ c

δ2

log(1/δ)
n.

On the other hand, Lemma 2.3 and Corollary 2.2 imply that any angle in our self-similar

set is in the Cδ-neighbourhood of {0, π/3, π/2, 2π/3, π}. Changing δ to δ/C completes

the proof.

2.2 Avoiding angles π/3 and 2π/3

Our goal in this section is to construct large dimensional sets avoiding the angles π/3 and

2π/3. Again, we will use the self-similar construction described at the beginning of the

previous section. The idea is to find (many) points Pi such that any angle determined

8



by them is in a small neighbourhood of π/3 but avoids an even smaller neighbourhood of

π/3.

We were inspired by the following r-colouring of the complete graph on 2r vertices.

Let C1, . . . , Cr denote the colours and let us associate to each vertex a 0-1 sequence of

length r. Consider the edge between the vertices corresponding to the sequences i1, . . . , ir

and j1, . . . , jr. We colour this edge with Ck where k denotes the first index where the

sequences differ, that is, i1 = j1, . . . , ik−1 = jk−1, ik 	= jk. Let us denote this coloured graph

by Gr = Gr(C1, . . . , Cr). This is a folklore graph colouring showing that the multicolour

Ramsey number Rr(3) is greater than 2r.

One can obtain Gr recursively as well. Consider the colouring Gr−1(C2, . . . , Cr), and

take two copies of this coloured graph. Let the edges going between the two copies be all

coloured with C1. It is easy to see that this way we get Gr(C1, . . . , Cr). This colouring

clearly has the property that there is no monochromatic triangle in the graph. Moreover,

every triangle has two sides with the same colour and a third side with a different colour

of higher index.

The idea is to realize Gr geometrically in the following manner: the vertices of the

graph will be represented by points of a Euclidean space and edges with the same colour

will correspond to equal distances. In the sequel we will show that Gr can be represented

in the above sense. First we prove a simple geometric fact.

Proposition 2.5. Let m be a non-negative integer and R, l be positive real numbers with

R ≤ l/
√

2. Take a (2m + 2)-dimensional sphere S with radius

R′ def
=

√
1

4
l2 +

1

2
R2 ≤

√
1

4
l2 +

1

2

(
l√
2

)2

=
l√
2
.

Then there exist two m-dimensional spheres X ,Y ⊂ S with radius R such that |X−Y | = l

for any X ∈ X and any Y ∈ Y.

Proof. We may assume that S = {P ∈ R
2m+3 : |P | = R′}. Set t

def
=

√
l2 − 2R2/2 and take

the spheres

X def
=

{
X = (x1, . . . , xm+1,−t, 0, . . . , 0) ∈ R

2m+3 : x2
1 + · · · + x2

m+1 = R2
}

,

Y def
=

{
Y = (0, . . . , 0, t, y1, . . . , ym+1) ∈ R

2m+3 : y2
1 + · · · + y2

m+1 = R2
}

.

For any X ∈ X we have |X| =
√

R2 + t2 = R′ and thus X ⊂ S. Similarly, Y ⊂ S. On the

other hand, for any X ∈ X and Y ∈ Y it clearly holds that |X−Y | =
√

R2 + (2t)2 + R2 =

l.

9



Lemma 2.6. Let l1 ≥ l2 ≥ . . . ≥ lr > 0 be a decreasing sequence of positive reals. By

Ir we denote the set of 0-1 sequences of length r. Then 2r points Pi1,...,ir , (i1, . . . , ir) ∈ Ir

can be given in some Euclidean space in such a way that for two distinct 0-1 sequences

(i1, . . . , ir) 	= (j1, . . . , jr) the distance of Pi1,...,ir and Pj1,...,jr
is equal to lk where k denotes

the first index where the sequences differ, that is, i1 = j1, . . . , ik−1 = jk−1, ik 	= jk.

Proof. For the sake of simplicity, we say that the points Pi1,...,ir , (i1, . . . , ir) ∈ Ir have

configuration Pr(l1, . . . , lr) if the distances between the points are as in the claim of the

lemma.

We will prove by induction that there exist points with configuration Pr(l1, . . . , lr)

on a (2r − 2)-dimensional sphere with radius at most l1/
√

2. This is clearly true for

r = 1. Suppose that it holds for r− 1. The induction hypothesis applied for the distances

l2 ≥ . . . ≥ lr yields that there exist points with configuration Pr−1(l2, . . . , lr) on a (2r−1−2)-

dimensional sphere with radius R ≤ l2/
√

2.

Since R ≤ l2/
√

2 ≤ l1/
√

2, Proposition 2.5 implies that there is a (2r − 2)-dimensional

sphere S with some radius R′ ≤ l1/
√

2 such that it contains two (2r−1 − 2)-dimensional

spheres with common radius R such that no matter how we take one point from each

sphere their distance is l1.

We can take a copy of the configuration Pr−1(l2, . . . , lr) on each of these two spheres.

The union of them clearly have configuration Pr(l1, . . . , lr).

Using the above lemma we now construct a large set of points with the property

that any angle determined by them is in a small neighbourhood of π/3 but avoids an

even smaller neighbourhood of π/3. We will need the previously mentioned Johnson-

Lindenstrauss lemma.

Lemma 2.7 (Johnson-Lindenstrauss lemma, [25]). Suppose that m points P1, . . . , Pm are

given in some Euclidean space R
d. For any δ > 0 one can find points P ′

1, . . . , P
′
m in the

�C log m/δ2�-dimensional Euclidean space in such a way that

|Pi − Pj| ≤ |P ′
i − P ′

j | ≤ (1 + δ)|Pi − Pj| (1 ≤ i, j ≤ m).

Theorem 2.8. There exist absolute constants c, C > 0 such that for any positive integer

r and positive real ε < 1, 2r points can be given in the �Cr3/ε2�-dimensional Euclidean

space with the property that for any angle α determined by three given points the following

holds:

c
ε

r
<

∣∣∣α − π

3

∣∣∣ < ε.

Moreover, for any four distinct points A, B, C, D of these points we have∣∣∣∠(A − B,C − D) − π

2

∣∣∣ < ε.

10



Proof. Let λ > 1 be a real number. We use Lemma 2.6 with li = λr−i (i = 1, . . . , r). The

lemma gives us 2r points which have configuration Pr(λ
r−1, . . . , λ, 1). Let us denote the

set of these points by S, and take three distinct points in S. By construction, the triangle

determined by these points has two sides with the same length λs and a third side with a

smaller length λt for some integers 0 ≤ t < s ≤ r − 1. Let this third side be A1A2 and let

B denote the remaining vertex. (That is, |A1 − A2| = λt < λs = |A1 − B| = |A2 − B|.)
Now we apply the Johnson-Lindenstrauss lemma for the points in S with some 0 <

δ < 1; by S ′ we will denote the set of the points obtained. We consider the points

A′
1, A

′
2, B

′ ∈ S ′ corresponding to the points A1, A2, B. Using the fact that (1+δ)2 < 1+3δ

we get that

λ2t ≤ |A′
1 − A′

2|2 < (1 + 3δ)λ2t; λ2s ≤ |A′
i − B′|2 < (1 + 3δ)λ2s (i = 1, 2).

By the cosine law we have

cos (∠A′
1A

′
2B

′) =
|A′

1 − A′
2|2 + |A′

2 − B′|2 − |A′
1 − B′|2

2|A′
1 − A′

2||A′
2 − B′| <

(1 + 3δ) (λ2s + λ2t) − λ2s

2λsλt
=

1

2λs−t
+ 3δ

λ2s + λ2t

2λsλt
≤ 1

2λ
+ 3δ

λr + 1

2
.

Set λ = 1 + cε
r

and δ = cε
36r

with a sufficiently small constant c. Then

λr =
(
1 +

cε

r

)r

< exp(cε) < 1 + 2cε < 2.

Thus

cos (∠A′
1A

′
2B

′) <
1

2λ
+ 3δ

λr + 1

2
<

(
1

2
− λ − 1

2λ

)
+

9

2
δ <

1

2
− cε

4r
+

cε

8r
=

1

2
− cε

8r
.

Since cos is a Lipschitz function with Lipschitz constant 1, it follows that ∠A′
1A

′
2B

′ >

π/3 + cε/8r. The same holds for the angle ∠A′
2A

′
1B

′. Therefore for the third angle in the

triangle we get ∠A′
1B

′A′
2 < π/3 − cε/4r.

On the other hand, the distance of any two points in S ′ is at least 1 and at most

(1+δ)λr−1 < λr < 1+2cε. Now let us take four distinct points A, B, C, D in S ′. As we have

seen in the proof of Lemma 2.3, |∠(ABC) − π/3| < ε and |∠(A − B,C − D) − π/2| < ε

provided that c is sufficiently small.

Finally, by the Johnson-Lindenstrauss lemma the set S ′ is contained in a Euclidean

space of dimension at most �C log(2r)/δ2� = �Cr3/ε2�.

This discrete set of points can be blown up (using the self-similar construction described

in Section 2.1) to a large dimensional set that does not contain the angles π/3 and 2π/3.

11



Theorem 2.9. There exist absolute constants c, C > 0 such that for any 0 < δ < ε < 1

with ε/δ > C there exists a self-similar set of dimension

s ≥ cε/δ

log(1/δ)

in a Euclidean space of dimension

n ≤ Cε

δ3

such that any angle determined by three points of the set is inside the ε-neighbourhood of

{0, π/3, π/2, 2π/3, π} but outside the δ-neighbourhood of {π/3, 2π/3}.

Proof. Set r = [cε/δ]. The previous theorem claims that for

n = �Cr3/ε2� ≤ Cε/δ3; m = 2r,

there exist m points P1, . . . , Pm ∈ R
n such that for any three distinct points Pi, Pj, Pk

2δ <
∣∣∣∠PiPjPk − π

3

∣∣∣ <
ε

2
,

and for any four different points Pi, Pj, Pk, Pl∣∣∣∠(Pi − Pj, Pk − Pl) − π

2

∣∣∣ <
ε

2
.

Now we take the self-similar set of Section 2.1 with qi = q = cδ. The set obtained has

dimension
log m

log(1/(cδ))
≥ cr

log(1/δ)
≥ cε/δ

log(1/δ)
.

Moreover, Corollary 2.2 implies that all the angles occurring in this set are inside the ε-

neighbourhood of {0, π/3, π/2, 2π/3, π} but outside the δ-neighbourhood of {π/3, 2π/3}.

By fixing a small ε and setting δ = c/ 3
√

n in the above theorem, we obtain the following

corollaries.

Corollary 2.10. A self-similar set K ⊂ R
n can be given such that the dimension of K is

at least

s ≥ c 3
√

n

log n
,

and K does not contain the angle π/3 and 2π/3 (moreover, K does not contain any angle

in the c/ 3
√

n-neighbourhood of π/3 and 2π/3).

So there exists a compact set in R
n of dimension at least c 3

√
n

log n
that avoids a small

neighbourhood of the angles π/3 and 2π/3. Probably, this result is quite far from being

sharp. However, as we will see in the next section, the following corollary is surprisingly

sharp.
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Corollary 2.11. For any 0 < δ < 1 there exists a self-similar set K of dimension at

least cδ−1/ log(δ−1) in some Euclidean space such that K does not contain any angle in

(π/3 − δ, π/3 + δ) ∪ (2π/3 − δ, 2π/3 + δ).

Finally, we mention that the constructions of this and the previous section have the

additional property that the constructed self-similar sets K avoid α even in the sense that

for any A,B,C,D ∈ K with A 	= B and C 	= D we have ∠(A − B,C − D) 	= α (see the

proof of Corollary 2.2).

2.3 Finding angles close to a given angle

We start this section by proving that a set that does not contain angles near to π/2 must

be very small, it cannot have Hausdorff dimension bigger than 1. This makes π/2 very

special since, as we have seen, the analogous statement would be false for any other angle

α ∈ (0, π).

Theorem 2.12. Any analytic (compact) set A in R
n (n ≥ 2) with Hausdorff dimension

greater than 1 contains angles arbitrarily close to the right angle.

Proof. It is a well-known fact that any analytic set A with positive Hs measure contains a

compact s-set (see e.g. [16, 2.10.47-48]). Consequently, we can assume that 0 < Hs(A) <

∞ for some s > 1. Then for Hs almost all x ∈ A it holds that for almost all (n − 1)-

dimensional hyperplane through x intersect A in a set of dimension s−1 (see Theorem 2.30

of the next section). Let us fix a point x with this property and let y 	= x be an arbitrary

point in A. Since the set of hyperplanes forming an angle at least π/2− δ with the vector

y − x has positive measure for any δ > 0, while the set of exceptional hyperplanes has

measure zero, the theorem follows.

Now we prove the same result for upper Minkowski dimension instead of Hausdorff

dimension. It is well-known that the upper Minkowski dimension is always greater or

equal than the Hausdorff dimension. Hence the following theorem is stronger than the

previous one.

Theorem 2.13. Any set A in R
n (n ≥ 2) with upper Minkowski dimension greater than

1 contains angles arbitrarily close to the right angle.

The upper Minkowski dimension can be defined in many different ways, we will use

the following definition (see [31, Section 5.3] for details).

13



Definition 2.14. By B(x, r) we denote the closed ball with center x ∈ R
n and radius

r. For a non-empty bounded set A ⊂ R
n let P (A, ε) denote the greatest integer k for

which there exist disjoint balls B(xi, ε) with xi ∈ A, i = 1, . . . , k. The upper Minkowski

dimension of A is defined as

dimM(A)
def
= sup{s : lim sup

ε→0+
P (A, ε)εs = ∞}.

Note that we get an equivalent definition if we consider the lim sup for ε’s only in the form

ε = 2−k, k ∈ N.

The next lemma is mainly technical. It roughly says that in a set of large upper

Minkowski dimension one can find many points such that the distance of each pair is more

or less the same.

Lemma 2.15. Suppose that dimM(A) > t for a set A ⊂ R
n and a positive real t. Then for

infinitely many positive integers k it holds that for any integer 0 < l < k there are more

than 2(k−l)t points in A with the property that the distance of any two of them is between

2−k+1 and 2−l+2.

Proof. Let

rk = P (A, 2−k)2−kt.

Due to the previous definition lim supk→∞ rk = ∞. It follows that there are infinitely

many values of k such that rk > rl for all l < k. Let us fix such a k and let 0 < l < k be

arbitrary.

By the definition of rk, there are rk2
kt disjoint balls with radii 2−k and centers in A.

Let S denote the set of the centers of these balls. Clearly the distance of any two of them

is at least 2−k+1.

Similarly, we can find a maximal system of disjoint balls B(xi, 2
−l) with xi ∈ A,

i = 1, . . . , rl2
lt. Consider the balls B(xi, 2

−l+1) of doubled radii. These doubled balls

are covering the whole A (otherwise the original system would not be maximal). By the

pigeonhole principle, one of these doubled balls contains at least

rk2
kt

rl2lt
=

rk

rl

2(k−l)t > 2(k−l)t

points of S. These points clearly have the desired property.

Now we are ready to prove the theorem.

Proof of Theorem 2.13. We can assume that diam(A) > 2. Fix a t such that dimM(A) >

t > 1. Lemma 2.15 tells us that there are arbitrarily large integers k such that for any

14



l < k one can have more than 2(k−l)t points in A such that each distance is between

2−k+1 and 2−l+2. Let S be a set of such points and pick an arbitrary point O ∈ S. Since

diam(A) > 2, there exists a point P ∈ A with OP ≥ 1. Now we project the points of S
to the line OP . There must be two distinct points Q1, Q2 ∈ S such that the distance of

their projection is at most
2−l+2

2(k−l)t
= 2−l+2−(k−l)t,

It follows that

cos ∠(Q2 − Q1, P − O) ≤ 2−l+2−(k−l)t

2−k+1
= 2−(k−l)(t−1)+1.

Since Q1O ≤ 2−l+2 and OP ≥ 1, the angle of the lines OP and Q1P is at most C12
−l with

some constant C1. Combining the previous results we get that

|∠PQ1Q2 − π/2| ≤ C12
−l + C22

−(k−l)(t−1)

with some constants C1, C2. The right hand side can be arbitrarily small since t − 1 is

positive and both l and k − l can be chosen to be large.

Now we try to find angles close to π/3. We will do that by finding three points forming

an almost regular triangle provided that the dimension of the set is sufficiently large.

We will need a simple result from Ramsey theory. Let Rr(3) denote the least positive

integer k for which it holds that no matter how we colour the edges of a complete graph

on k vertices with r colours it contains a monochromatic triangle. The next inequality

can be obtained easily:

Rr(3) ≤ r · Rr−1(3) − (r − 2).

(A more general form of the above inequality can be found in e.g. [17, p. 90, Eq. 2].) It

readily implies the following upper bound for Rr(3).

Lemma 2.16. For any positive integer r ≥ 2

Rr(3) ≤ 3r!,

that is, any complete graph on at least 3r! vertices edge-coloured by r colours contains a

monochromatic triangle.

Using this lemma we can prove the following theorem.

Theorem 2.17. There exists an absolute constant C such that whenever dimM(A) >

Cδ−1 log(δ−1) for some set A ⊂ R
n and δ > 0 the following holds: A contains three points

that form a δ-almost regular triangle, that is, the ratio of the longest and shortest side is

at most 1 + δ.
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As an immediate consequence, we can find angles close to π/3.

Corollary 2.18. Suppose that dimM(A) > Cδ−1 log(δ−1) for some set A ⊂ R
n and δ > 0.

Then A contains angles from the interval (π/3 − δ, π/3] and also from [π/3, π/3 + δ).

Remark 2.19. The above theorem and even the corollary is essentially sharp: in the

previous section we constructed a set with Hausdorff dimension cδ−1/ log(δ−1) and without

any angles from the interval (π/3 − δ, π/3 + δ).

Proof of Theorem 2.17. Let t = Cδ−1 log(δ−1) and apply Lemma 2.15 for l = k − 1. We

obtain at least 2t points in A such that each distance is in the interval [2−k+1, 2−k+3]. Let

a = 2−k+1 and divide [a, 4a] into N = �3
δ
� disjoint intervals of length at most δa. Regard

the points of A as the vertices of a graph. Colour the edges of this graph with N colours

according to which interval contains the distance of the corresponding points.

Easy computation shows that 2t > 3N ! (with a suitable choice of C). Therefore the

above graph contains a monochromatic triangle by Lemma 2.16. It easily follows that the

three corresponding points form a δ-almost regular triangle in R
n.

Remark 2.20. The same proof yields the following: for any positive integer d and positive

real δ there is a number K(d, δ) such that whenever dimM(A) > K(d, δ) for some set A,

one can find d points in A with the property that the ratio of the largest and the smallest

distance among these points is at most 1 + δ. (One needs to use the fact that the Ramsey

number Rr(d) is finite.)

In order to derive similar results for 2π/3 instead of π/3 we show that if large Hausdorff

dimension implies the existence of an angle near α, then it also implies the existence of an

angle near π − α.

Proposition 2.21. Suppose that s = s(α, δ, n) is a positive real number such that any

analytic set A ⊂ R
n with Hs(A) > 0 contains an angle from the interval (α − δ, α + δ).

Then any analytic set B ⊂ R
n with Hs(B) > 0 contains an angle from the interval

(π − α − δ′, π − α + δ′) for any δ′ > δ.

Proof. Again, we can assume that 0 < Hs(B) < ∞. It is well-known that for Hs almost

all x ∈ B the set B ∩ B(x, r) has positive Hs measure for any r > 0 [31, Theorem 6.2]. If

we omit the exceptional points from B, this will be true for every point of the obtained

set. Assume that B had this property in the first place. Then, by the assumptions of the

proposition, any ball around any point of B contains an angle from the δ-neighbourhood

of α.

We define the points Pm, Qm, Rm ∈ B recursively in the following way. Fix a small

ε. First take P0, Q0, R0 such that the angle ∠P0Q0R0 falls into the interval (α − δ, α +
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δ). If the points Pm, Qm, Rm are given, then choose points Pm+1, Qm+1, Rm+1 from the

ε ·min(QmPm, QmRm)-neighbourhood of Pm such that ∠Pm+1Qm+1Rm+1 ∈ (α− δ, α + δ).

We can find two indices k > l such that the angle enclosed by the vectors
−−→
QlPl and

−−−→
QkPk is less than ε. It is clear that if we choose ε sufficiently small, then ∠(Ql, Qk, Rk) ∈
(π − α − δ′, π − α + δ′).

Remark 2.22. Proposition 2.21 holds for δ′ = δ as well. Surprisingly, it even holds for

some δ′ < δ. The reason behind is the following. If every analytic set A ⊂ R
n with

Hs(A) > 0 contains an angle from the interval (α− δ, α + δ), then there necessarily exists

a closed subinterval [α − γ, α + γ] (γ < δ) such that every analytic set A ⊂ R
n with

Hs(A) > 0 contains an angle from the interval [α − γ, α + γ]. We prove this statement at

the end of this section (Theorem 2.25).

Theorem 2.23. There exists an absolute constant C such that any analytic set A ⊂ R
n

with dim(A) > Cδ−1 log(δ−1) contains an angle from the δ-neighbourhood of 2π/3.

Proof. The claim readily follows from Corollary 2.18, Proposition 2.21 and the fact that

the upper Minkowski dimension is greater or equal than the Hausdorff dimension.

To find angles arbitrarily close to 0 and π, it suffices to have infinitely many points.

Proposition 2.24. Any A ⊂ R
n of infinite cardinality contains angles arbitrarily close to

0 and angles arbitrarily close to π.

Sketch of the proof. We claim that given N points in R
n they must contain an angle less

than δ1 = C
n−1

√
N

and an angle greater than π − δ2 with δ2 = C
n−1

√
log N

. The former

follows easily from the pigeonhole principle. The latter is a result of Erdős and Füredi [12,

Theorem 4.3].

In this section we have seen results saying that large dimensional sets contain angles

close to a given angle α ∈ {0, π/3, π/2, 2π/3, π}. Note that in these results the dimension

of the Euclidean space (n) did not play any role. To sum up the results we introduce the

following function C̃ depending on an angle α ∈ [0, π] and a small positive δ.

C̃(α, δ)
def
= sup{dim(A) : A ⊂ R

n for some n; A is analytic;

A does not contain any angle from (α − δ, α + δ)}.

Remark 2.22 implies that C̃ satisfies the symmetry property

C̃(α, δ) = C̃(π − α, δ).
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In Section 2.1 for any positive ε we constructed sets of arbitrarily large dimension such

that all the angles fall into the ε-neighbourhood of the special angles 0, π/3, π/2, 2π/3,

π (Theorem 2.4). So for any angle α other than the special angles C̃(α, δ) = ∞ if δ is

smaller than the distance of α from the special angles. Therefore this construction and

the results of this section give essentially all the values of C̃(α, δ), see the table below.

Table 2.1: Smallest dimensions that guarantee angle in the δ-neighbourhood of α

α C̃(α, δ)

0, π = 0

π/2 = 1

π/3, 2π/3 ≈ 1/δ apart from a multiplicative error C · log(1/δ)

other angles = ∞ provided that δ is sufficiently small

Finally, we prove the following theorem, which was claimed in Remark 2.22.

Theorem 2.25. Suppose that s = s(α, δ, n) is a positive real number such that every

analytic set A ⊂ R
n with Hs(A) > 0 contains an angle from the interval (α − δ, α + δ).

Then there exists a closed subinterval [α − γ, α + γ] (γ < δ) such that every analytic set

A ⊂ R
n with Hs(A) > 0 contains an angle from the interval [α − γ, α + γ].

To prove this theorem, we need two lemmas. For r ∈ (0,∞] let

Hs
r(A) = inf

{ ∞∑
i=1

diam(Ui)
s : diam(Ui) ≤ r, A ⊂ ∪∞

i=1Ui

}
,

thus Hs(A) = limr→0+ Hs
r(A).

Lemma 2.26. Let Ai be a sequence of compact sets converging in the Hausdorff metric

to a set A. Then the following two statements hold.

(i) Hs
∞(A) ≥ lim sup

i→∞
Hs

∞(Ai).

(ii) Suppose that for every i = 1, 2, . . . the set Ai does not contain an angle from [α−δ +

εi, α+δ−εi], where εi → 0+. Then A does not contain an angle from (α−δ, α+δ).

Proof. The first statement is well-known and easy. To prove the second, notice that for

any three points x, y, z of A there exist three points in Ai arbitrarily close to x, y, z, for

sufficiently large i.

The next lemma follows easily from [16, Theorem 2.10.17 (3)]. For the sake of com-

pleteness, we give a short direct proof.
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Lemma 2.27. Let A ⊂ R
n be a compact set satisfying Hs(A) > 0. Then there exists a

ball B such that Hs
∞(A ∩ B) ≥ c · diam(B)s, where c > 0 depends only on s.

Proof. We may suppose without loss of generality that Hs(A) < ∞. (Otherwise we choose

a compact subset of A with positive and finite Hs measure. If the theorem holds for a

subset of A, then it clearly holds for A as well.)

Choose r > 0 so that Hs
r(A) > Hs(A)/2. Cover A by sets Ui of diameter at most

r/2 such that
∑

i diam(Ui)
s ≤ 2Hs(A). Cover each Ui by a ball Bi of radius at most the

diameter of Ui. Then the balls Bi cover A, have diameter at most r, and
∑

i diam(Bi)
s ≤

21+sHs(A).

We claim that one of these balls Bi satisfies the conditions of the Lemma for c = 2−2−s.

Otherwise we have

Hs
∞(A ∩ Bi) < 2−2−s diam(Bi)

s

for every i. Since the sets A∩Bi have diameter at most r, clearly Hs
r(A∩Bi) = Hs

∞(A∩Bi).

Therefore

Hs
r(A) ≤

∑
i

Hs
r(A ∩ Bi) <

∑
i

2−2−s diam(Bi)
s ≤ 2−2−s21+sHs(A) = Hs(A)/2,

which contradicts the choice of r.

Proof of Theorem 2.25. Suppose on the contrary that there exist analytic sets Ki ⊂ R
n

with Hs(Ki) > 0 such that Ki does not contain an angle from [α−δ+1/i, α+δ−1/i]. We

can clearly assume that the sets Ki are compact. Choose a ball Bi for each compact set Ki

according to Lemma 2.27. Let B be a ball of diameter 1. Let K ′
i be the image of Ki ∩ Bi

under a similarity transformation which maps Bi to the ball B. Thus Hs
∞(K ′

i) ≥ c. Let K

denote the limit of a convergent subsequence of the sets Ki. We can apply Lemma 2.26 to

this subsequence and obtain Hs
∞(K) ≥ c, implying Hs(K) > 0. Also, K does not contain

any angle from the interval (α − δ, α + δ), which is a contradiction.

2.4 Finding a given angle

In this section we give upper bounds for C(n, α) which is defined as follows.

Definition 2.28. If n ≥ 2 is an integer and α ∈ [0, π], then let

C(n, α) = sup{s : ∃A ⊂ R
n compact such that

dim(A) = s and A does not contain the angle α}.
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As we already mentioned, any analytic set A with positive Hs measure contains a com-

pact s-set. Consequently, whenever we want to prove that every compact set of dimension

greater than s contains the angle α, then instead of compactness it is enough to assume

that the set is analytic (or Borel) and on the other hand, we can always suppose that the

given compact or analytic set is a compact t-set for some t > s. Thus C(n, α) can be also

expressed as

C(n, α) = sup{s : ∃A ⊂ R
n analytic such that

dim(A) = s and A does not contain the angle α},

or

C(n, α) = sup{s : ∃A ⊂ R
n compact such that

0 < Hs(A) < ∞ and A does not contain the angle α}.

However, as we prove it in Section 2.6, some assumption about the set is necessary,

otherwise the above function would be n for any α. In fact, for any given n and α we

construct by transfinite recursion a set in R
n with positive Lebesgue outer measure that

does not contain the angle α.

The following theorem, which is the first statement of [31, Theorem 10.11], plays

essential role in some of our proofs.

Notation 2.29. The set of k-dimensional subspaces of R
n will be denoted by G(n, k) and

the natural probability measure on it by γn,k (see e.g. [31] for more details).

Theorem 2.30. If m < s < n and A is an Hs measurable subset of R
n with 0 < Hs(A) <

∞, then

dim
(
A ∩ (W + x)

)
= s − m

for Hs × γn,n−m almost all (x,W ) ∈ A × G(n, n − m).

In two dimensions it says that for Hs almost all x ∈ A, almost all lines through x

intersect A in a set of dimension s− 1. One would expect that this theorem also holds for

half-lines instead of lines. Indeed, Marstrand proved it in [28, Lemma 17]. Although the

lemma only says that it holds for lines, he actually proves it for half-lines. Therefore the

following theorem is also true.

Theorem 2.31. Let 1 < s < 2 and let A ⊂ R
2 be Hs measurable with 0 < Hs(A) < ∞.

For any x ∈ R
2 and ϑ ∈ [0, 2π) let Lx,ϑ = {x + teiϑ : t ≥ 0}. Then

dim
(
A ∩ Lx,ϑ

)
= s − 1

for Hs × λ almost all (x, ϑ) ∈ A × [0, 2π).
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In this section we give estimates to C(n, α). For n = 2 we get the following exact

result.

Theorem 2.32. For any α ∈ [0, π] we have C(2, α) = 1.

Proof. A line has dimension 1 and it contains only the angles 0 and π. A circle also has

dimension 1, but does not contain the angles 0 and π. Therefore C(2, α) ≥ 1 for all

α ∈ [0, π].

For the other direction let α ∈ [0, π] and s > 1 fixed. We have to prove that any

compact s-set contains the angle α. By Theorem 2.31, there exists x ∈ K such that

dim(K ∩Lx,ϑ) = s−1 for almost all ϑ ∈ [0, 2π), where Lx,ϑ = {x+ teiϑ : t ≥ 0}. Hence we

can take ϑ1, ϑ2 ∈ [0, 2π) such that |ϑ1 − ϑ2| = α, and dim(K ∩ Lx,ϑi
) = s − 1 for i = 1, 2.

If xi ∈ Lx,ϑi
\ {x}, then the angle between the vectors x1 − x and x2 − x is α, so indeed,

K contains the angle α.

An analogous theorem holds for higher dimensions.

Theorem 2.33. If n ≥ 2 and α ∈ [0, π], then C(n, α) ≤ n − 1.

Proof. We have already seen the case n = 2, so we may assume that n ≥ 3. It is enough to

show that if s > n−1 and K is a compact s-set, then K contains the angle α. By Theorem

2.30, there exists x ∈ K such that there exists a W ∈ G(n, 2) with dim(B) = s−n+2 > 1

for B
def
= A∩ (W + a). The set B lies in a two-dimensional plane, so we can think of B as

a subset of R
2. Applying Theorem 2.32 completes the proof.

Now we are able to give the exact value of C(n, 0) and C(n, π).

Theorem 2.34. C(n, 0) = C(n, π) = n − 1 for all n ≥ 2.

Proof. One of the inequalities was proven in the previous theorem, while the other one is

shown by the (n − 1)-dimensional sphere.

We prove a better upper bound for C(n, π/2).

Theorem 2.35. If n is even, then C(n, π/2) ≤ n/2. If n is odd, then C(n, π/2) ≤
(n + 1)/2.

Proof. First suppose that n is even. Let s > n/2 and let K be a compact s-set. From

Theorem 2.30 we know that there exists a point x ∈ K such that

dim
(
K ∩ (x + W )

)
= s − n/2 > 0 (2.1)

for γn,n/2 almost all W ∈ G(n, n/2). There exists a W ∈ G(n, n/2) such that (2.1) holds

both for W and W⊥. As (x + W )∩ (x + W⊥) = {x}, by choosing a y ∈ K ∩ (x + W ) and
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z ∈ K ∩ (x + W⊥) such that x 	= y and x 	= z, we find a right angle at x in the triangle

xyz.

Now suppose that n is odd, s > (n + 1)/2 and K is a compact s-set. With a similar

argument we can conclude that ∃x ∈ K and W ∈ G(n, (n + 1)/2) such that dim
(
K ∩

(x + W )
)

= s − (n + 1)/2 > 0 and dim
(
K ∩ (x + W⊥)

)
= s − (n − 1)/2 > 1. If

y ∈ K ∩ (x + W ) \ {x} and z ∈ K ∩ (x + W⊥) \ {x}, then there is again a right angle at

x in the triangle xyz.

Remark 2.36. By the following result of András Máthé the above estimate is sharp if

n is even: for any n there exists a compact set of Hausdorff dimension n/2 in R
n that

does not contain π/2. Therefore if n is even, we have C(n, π/2) = n/2. We outline this

construction in the next section.

Finally, we prove that if we have a homothetic self-similar set K with dim(K) > 1

and the strong separation condition is satisfied, then K must contain the vertices of a

rectangle, in particular, it contains the angle π/2. It means that it is impossible to avoid

π/2 with constructions like the ones presented in Section 2.1 and 2.2.

Theorem 2.37. Let K ⊂ R
n be a homothetic self-similar set, that is, K is compact

and there exist homotheties ϕ1, . . . , ϕm with ratios less than 1 such that K = ϕ1(K) ∪
ϕ2(K)∪· · ·∪ϕm(K). Suppose that the sets ϕi(K) are pairwise disjoint (that is, the strong

separation condition is satisfied). Then K contains four points that form a non-degenerate

rectangle given that dim(K) > 1.

Proof. We begin the proof by defining the following map:

D : K × K \ {(x, x) : x ∈ K} → Sn−1; (x, y) �→ x − y

|x − y| .

We denote the range of D by Range(D). The set Range(D) can be considered as the set

of directions in K. First we are going to prove that if K is such a self-similar set, then

Range(D) is closed.

As we have seen in the proof of Proposition 2.1, for any x, y ∈ K, x 	= y there exist

x′ ∈ ϕi(K) and y′ ∈ ϕj(K) for some i 	= j such that x = ψ(x′) and y = ψ(y′) where ψ is

the composition of finitely many ϕi’s. The important thing for us is that x− y is parallel

to x′ − y′. If d(·, ·) denotes the Euclidean distance, then

min
0≤i<j≤k

d(ϕi(K), ϕj(K)) = c > 0,

so Range(D) actually equals to the image of D restricted to the set K × K \ {(x, y) :

d(x, y) < c}. As this is a compact set, the continuous image is also compact. That is what

we wanted to prove.

22



Next we show that for any v ∈ Sn−1 there exist x, y ∈ K, x 	= y such that the vectors v

and D(x, y) are perpendicular. If this was not true, the compactness of Range(D) would

imply that the orthogonal projection p to a line parallel to v would be a one-to-one map

on K with p−1 being a Lipschitz map on p(K). This would imply dim(K) ≤ 1, which is a

contradiction.

For simplifying our notation, let f
def
= ϕ1, g

def
= ϕ2. The homotheties f ◦g and g ◦f have

the same ratio. Denote their fixed points by P and Q, respectively. Since P 	= Q, there

are x, y ∈ K, x 	= y such that x − y is perpendicular to P − Q. It is easy to check that

the points f(g(x)), f(g(y)), g(f(y)) and g(f(x)) form a non-degenerate rectangle.

2.5 Number theoretic constructions

Although the constructions of this section are due to András Máthé, we include them in

this thesis for the sake of completeness.

The starting point is Falconer’s famous distance set problem. Instead of regarding the

angles contained by our set A, we now consider the set of distances occurring in A, that is

D(A)
def
= {|x − y| : x, y ∈ A} .

Now it does not make much sense to ask whether a particular distance is in D(A) or not.

Instead, we are interested in the size of D(A). The next theorem was proved by Falconer.

Theorem 2.38 (Falconer, [13]). If A ⊂ R
n is an analytic set with dim(A) > n/2 + 1/2,

then the distance set D(A) has positive Lebesgue measure.

Certain improvements have been done by Bourgain [5], Mattila [30] and Wolff [35].

Recently it was proved by Erdoğan that n/2 + 1/2 can be replaced with n/2 + 1/3 in the

above theorem given that n ≥ 3 [11]. It is generally believed that it can be replaced even

with n/2. As we will see, one cannot do better than that.

One can use the above theorem to say something about angles, as well. The following

simple observation is due to Máthé. Let A ⊂ R
n be analytic with dim(A) > n/2 + 3/2.

Let us take an arbitrary point x ∈ A and project the set A from x onto S(x, 1), the unit

sphere centered at x; we denote the image of the projection by Ax ⊂ S(x, 1). It is easy

to see that dim(Ax) ≥ dim(A) − 1 > n/2 + 1/2. Thus Falconer’s theorem yields that

the distance set of Ax has positive Lebesgue measure. However, if y, z ∈ S(x, 1), then

the angle ∠yxz depends only on the distance of y and z. It follows that the set of angles

contained by A has positive Lebesgue measure.

Let us now turn our attention to constructions. First we show how to construct large

dimensional sets with distance set of measure zero. The following construction is due to
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Falconer [13, Theorem 2.4]. Let Ni be a sufficiently fast growing sequence and let κ > 1.

By Eκ we denote the set of those x ∈ [0, 1] for which ∀i ∃mi ∈ Z such that∣∣∣∣x − mi

Ni

∣∣∣∣ ≤ 1

Nκ
i

.

Theorem 2.39. Eκ is a compact set with dim(Eκ) = 1/κ.

For a proof see [14, Theorem 8.15]. The key property of this set is that the Minkowski

sum Eκ + Eκ + . . . + Eκ also has Hausdorff dimension 1/κ.

Now let us consider the set

Aκ = Eκ × Eκ × · · · × Eκ ⊂ R
n.

It can be shown that dim(Aκ) = n/κ. It is not hard to prove that λ(D(Aκ)) = 0 given that

κ > 2. If κ → 2+, then we get compact sets in R
n with Hausdorff dimension arbitrarily

close to n/2 such that their distance sets are null sets. (With a little more effort, one can

construct sets with the same property and of dimension precisely n/2.)

As Máthé proved, the set of angles contained by Aκ has Lebesgue measure zero provided

that κ > 6. It immediately follows that for almost all α ∈ [0, π] we have C(n, α) ≥ n/6.

Moreover, using similar number theoretic techniques, for any given angle α ∈ (0, π)

Máthé constructed sets in R
n of Hausdorff dimension cn that avoid α. Even though the

constructed sets contain angles arbitrarily close to α, they succeed to avoid α. (Recall

that the constructions presented in Section 2.1 and 2.2 had the property that they avoided

not only a certain angle α but also a whole neighbourhood of α.) Here we outline the

construction only for the simplest case α = π/2.

Theorem 2.40 (Máthé, [29]). There exists a compact set K ⊂ R
n such that dim(K) = n/2

and K does not contain the angle π/2.

It follows from Theorem 2.35 that this result is sharp given that n is even.

Sketch of the proof. Let us take the points

P0 = (0, 0, . . . , 0); P1 = (1, 0, . . . , 0); P2 = (0, 1, . . . , 0)

in the n-dimensional Euclidean space; P0P1P2 is clearly a right-angled triangle. As a first

step, we make sure that our set contains no right-angled triangle lying close to P0P1P2.

Let Bi be the closed ball with center Pi and radius 1/100; i = 0, 1, 2. Fix some positive

integer N and consider the following point lattice in the n-dimensional Euclidean space:{(m1

N
,
m2

N
, . . . ,

mn

N

)
: mi ∈ Z

}
.
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The 1/N2+ε-neighbourhood of this lattice will be denoted by L. We take the following

sets:

K0 = B0 ∩ L; K1 = B1 ∩ L; K2 = B2 ∩
(

L +

(
1

2N2
, 0, 0, . . . , 0

))
.

If we take a point Qi from each Ki, then ∠Q1Q0Q2 	= π/2, which can be seen easily by

computing the scalar product 〈Q1 − Q0, Q2 − Q0〉. Now let us consider the set

K0 ∪ K1 ∪ K2 ∪ (Rn \ (B0 ∪ B1 ∪ B2)) . (2.2)

As we have just seen, this set has the property that it contains no right-angled triangles

lying close to P0P1P2.

Note that in the above argument we can replace P0P1P2 by any right-angled triangle

with all three vertices having rational coordinates. Let us take the set (2.2) for each of

these countably many triangles (we might use different N ’s for different triangles). The

intersection of these sets clearly contains no right angle at all. It can be also shown that if

we choose the N ’s carefully, then the intersection will have Hausdorff dimension n/(2+ε).

(It is not hard to modify this proof in such a way that the Hausdorff dimension of the

constructed set is precisely n/2.)

Finally, to sum up the results of this and the previous section, we gathered the best

known bounds for C(n, α) in the following table.

Table 2.2: Best known bounds for C(n, α)

α lower bound upper bound

0, π n − 1 n − 1

α ∈ (0, π); α 	= π/2 cn n − 1

π/2 n/2 �n/2�

2.6 A construction using transfinite recursion

Now we show that if we allowed arbitrary sets in Definition 2.28, then C(n, α) would be

n.

Theorem 2.41. Let n ≥ 2. For any α ∈ [0, π] there exists H ⊂ R
n such that H does not

contain the angle α, and H has positive Lebesgue outer measure. In particular, dim(H) =

n.
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Proof. Take a well-ordering {Bβ : β < c} of the Borel null-sets of R
n (with respect to the

n-dimensional Lebesgue measure). We will construct a sequence of points {xβ : β < c} of

R
n using transfinite recursion, and define H as {xβ : β < c}.

We introduce the following notation. If y, z ∈ R
n and y 	= z, then

Cyz
def
= {x ∈ R

n \ {y, z} : the angle between x − y and z − y is α} ∪ {y, z};
Dyz

def
= {x ∈ R

n \ {y, z} : the angle between y − x and z − x is α} ∪ {y, z}.

Cyz is a cone with vertex y, while Dyz has the property that a 2-dimensional plane con-

taining y and z intersects it in the union of two circular arcs going between y and z. When

α = 0 or π, both sets are degenerate: Cyz becomes a half-line, Dyz becomes a segment or

the union of two half-lines.

First we show that if v is a vector such that the angle between v and z − y is not α

or π − α, then any line l parallel to v intersects Cyz in at most two points. Let x ∈ l be

arbitrary. Then l = {x + tv : t ∈ R}. Suppose that t0 ∈ R such that x + t0v ∈ Cyz. Then

cos2 α =
〈(x + t0v) − y, z − y〉2
|(x + t0v) − y|2|z − y|2 =

p1(t0)

p2(t0)
,

where p1(t) and p2(t) are polynomials of degree 2, with leading coefficients 〈v, z − y〉2 and

|v|2|z − y|2, respectively. The number t0 is a root of

p(t)
def
= p2(t) cos2 α − p1(t),

which has degree 2, as the coefficient of t2 is

|v|2|z − y|2 cos2 α − 〈v, z − y〉2 	= 0.

Hence p(t) has at most two roots which means that l intersects Cyz in at most two points.

Similarly, we prove that if Dyz is non-degenerate, then any line l intersects it in at

most four points. Let l = {x + tv : t ∈ R} again, and suppose that x + t0v ∈ Dyz for some

t0 ∈ R. Then

cos2 α =
〈y − (x + t0v), z − (x + t0v)〉2
|y − (x + t0v)|2|z − (x + t0v)|2 =

p1(t0)

p2(t0)
,

where p1(t) and p2(t) now denote polynomials of degree 4. Again, t0 is a root of the

polynomial p2(t) cos2 α−p1(t) which has degree exactly 4 as the leading coefficient of both

p1 and p2 are |v|4, and cos2 α 	= 1. As it has at most four roots, we are done. When Dyz is

degenerate, any line that does not go through both y and z intersects Dyz in at most one

point.

Now we move on to the construction. Suppose that β < c and we have already defined

xγ for all γ < β. Let Hβ = {xγ : γ < β}.
We want the point xβ to satisfy the following properties:
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(i) xβ /∈ Cyz for any y, z ∈ Hβ with y 	= z;

(ii) xβ /∈ Dyz for any y, z ∈ Hβ with y 	= z;

(iii) xβ /∈ Bβ.

If we prove that it is possible to define xβ this way, then we are done, because (i) and

(ii) guarantee that the resulting set H will not contain the angle α, while (iii) ensures that

H will not be a null set as each null set is contained by a Borel null set.

First we show that there is a direction v ∈ Sn−1 such that each line parallel to v

intersects the set

Aβ
def
=

⋃
y,z∈Hβ ,y 	=z

(Cyz ∪ Dyz)

in less than c points. We say that v is good for Cyz (or Dyz) if each line parallel to v

intersects Cyz (or Dyz) in less than c points. We have already shown that for each Dyz

there are at most two v ∈ Sn−1 which are not good for Dyz. Therefore there are less than

c directions that are not good for some Dyz.

For a fixed y and z the set of directions which are not good for Cyz is

{v ∈ Sn−1 : 〈v, z − y〉 = ±|z − y| cos α} = Sn−1 ∩ (Σy−z ∪ Σz−y),

where Σw denotes the hyperplane {x ∈ R
n : 〈x,w〉 = |w| cos α} for w ∈ R

n \ {0}. First,

suppose that α 	= π/2, whence 0 /∈ Σw. Take arbitrary v1 and v2 with v2 	= ±v1, and

denote the two-dimensional plane {sv1 + tv2 : s, t ∈ R} by F . The set C
def
= Sn−1 ∩ F is

an ordinary circle. It is clear that the set Sn−1 ∩ Σw ∩ C = Sn−1 ∩ (Σw ∩ F ) has at most

two elements for all w ∈ R
n \ {0}, because Σw ∩ F is an at most one-dimensional affine

subspace of R
n as 0 /∈ Σw. From this we can conclude that there are less than c points on

C which are not good for some Cyz, hence there is a point on C which is good for every

Cyz and Dyz.

This method does not work if α = π/2. In this case take a subset V of Sn−1 such that

card(V ) = c and no n distinct elements of V are linearly dependent. For example, the

set U = {(1, t, . . . , tn−1) : t ∈ [0, 1]} does not contain n distinct points which are linearly

dependent (their determinant is a Vandermonde determinant), so we may get a good V

by normalizing each u ∈ U to u/|u|. As Σw goes through the origin in this case, it can

contain at most n − 1 points of V . It follows that the union of the hyperplanes Σy−z and

Σz−y can cover only less than c points of V (y, z ∈ Hβ, y 	= z). Hence there exists a v ∈ V

which is good for every Cyz and Dyz in this case, too.

Take such a v. The only thing we need to prove in order to finish the proof of the

theorem is that Aβ ∪Bβ 	= R
n. Taking a Cartesian coordinate system with one axis in the
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direction of v, and applying Fubini’s Theorem for the characteristic function of Bβ gives

that H1(lx ∩ Bβ) = 0 for almost all x ∈ {v}⊥, where lx denotes the line {x + tv : t ∈ R}.
We also have card(lx ∩ Aβ) < c for all x ∈ {v}⊥, therefore it remains to show that the

complement of a null set of R has cardinality c. But this is clear, as the complement of a

null set contains a compact set with positive measure, which is the union of a non-empty

perfect set and a countable set.
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Chapter 3

Acute sets in Euclidean spaces

Around 1950 Erdős conjectured that given more than 2d points in R
d there must be three

of them determining an obtuse angle. The vertices of the d-dimensional cube show that

2d points exist such that the angle determined by any three of them is at most π/2.

In 1962 Danzer and Grünbaum proved this conjecture [10] (their proof can also be

found in [2]). They posed the following question in the same paper: what is the maximal

number of points in R
d such that all angles determined are acute (in other words, this

time we want to exclude right angles as well as obtuse angles). A set of such points will

be called an acute set or acute d-set in the sequel.

The exclusion of right angles seemed to decrease the maximal number of points dra-

matically: they could only give 2d − 1 points, and they conjectured that this is the best

possible. However, this was only proved for d = 2, 3. (For the non-trivial case d = 3, see

Croft [8], Schütte [33], Grünbaum [18].)

Then in 1983 Erdős and Füredi disproved the conjecture of Danzer and Grünbaum.

They used the probabilistic method to show the existence of an acute d-set of cardinality

exponential in d. Their idea was to choose random points from the vertex set of the

d-dimensional unit cube, that is {0, 1}d. Actually they even proved the following result:

for any fixed δ > 0 there exist exponentially many points in R
d with the property that

the angle determined by any three points is less than π/3 + δ. We used this result in the

previous chapter to construct large dimensional sets such that each angle contained by the

sets is close to one of the angles 0, π/3, π/2, 2π/3, π.

We denote the maximal size of acute sets in R
d and in {0, 1}d by α(d) and κ(d),

respectively; clearly α(d) ≥ κ(d). Our goal in this chapter is to give good bounds for

α(d) and κ(d). The random construction of Erdős and Füredi implied the following lower
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bound for κ(d) (thus for α(d) as well)

κ(d) >
1

2

(
2√
3

)d

> 0.5 · 1.154d. (3.1)

The best known lower bound both for α(d) and for κ(d) (for large values of d) is due to

Ackerman and Ben-Zwi from 2009 [1]. They improved (3.1) with a multiplicative factor√
d:

α(d) ≥ κ(d) > c
√

d

(
2√
3

)d

. (3.2)

In Section 3.1 we modify the random construction of Erdős and Füredi to get

α(d) > c

(
10

√
144

23

)d

> c · 1.2d. (3.3)

A different approach can be found in Section 3.2 where we recursively construct acute

sets. These constructions outdo (3.3) up to dimension 250. In Theorem 3.18 we will show

that this constructive lower bound is almost exponential in the following sense: given any

positive integer r, for infinitely many values of d we have an acute d-set of cardinality at

least

exp(d/ log log · · · log︸ ︷︷ ︸
r

(d)).

See Table 3.2 in Section 3.4 for the best known lower bounds of α(d) (d ≤ 84). These

bounds are new results except for d ≤ 3.

Both the probabilistic and the constructive approach use small dimensional acute sets

as building blocks. So it is crucial for us to construct small dimensional acute sets of large

Table 3.1: Results for α(d) (d ≤ 10)

dim(d) D,G [10] Bevan[3] Our result

2 = 3

3 = 5

4 ≥ 7 ≥ 8

5 ≥ 9 ≥ 12

6 ≥ 11 ≥ 16

7 ≥ 13 ≥ 14 ≥ 20

8 ≥ 15 ≥ 16 ≥ 23

9 ≥ 17 ≥ 19 ≥ 27

10 ≥ 19 ≥ 23 ≥ 31

30



cardinality. In Section 3.3 we present an acute set of 8 points in R
4 and an acute set of

12 points in R
5 (disproving the conjecture of Danzer and Grünbaum for d ≥ 4 already).

We used computer to find acute sets in dimension 6 ≤ d ≤ 10, for details see Section

3.3. Table 3.1 shows our results compared to the construction of Danzer and Grünbaum

(2d − 1) and the examples found by Bevan using computer.

As far as κ(d) is concerned, in large dimension (3.2) is still the best known lower bound.

Bevan used computer to determine the exact values of κ(d) for d ≤ 9 [3]. He also gave a

recursive construction improving upon the random constructions in low dimension. The

constructive approach of Section 3.2 yields a lower bound not only for α(d) but also for

κ(d), which further improves the bounds of Bevan in low dimension. Table 3.3 in Section

3.4 shows the best known lower bounds for κ(d) (d ≤ 82). These bounds are new results

except for d ≤ 12 and d = 27.

The following notion plays an important role in both approaches.

Definition 3.1. A triple A,B,C of three points in R
d will be called bad if for each integer

1 ≤ i ≤ d the i-th coordinate of B equals the i-th coordinate of A or C.

We denote by κn(d) the maximal size of a set S ⊂ {0, 1, . . . , n − 1}d that contains no

bad triples. It is easy to see that κ2(d) = κ(d) but our main motivation to investigate

κn(d) is that we can use sets without bad triples to construct acute sets recursively (see

Lemma 3.2). We give an upper bound for κn(d) (Theorem 3.8) and two different lower

bounds (Theorem 3.3 and 3.12). In the special case n = 2 the upper bound yields that

κ(d) ≤ 3(
√

2)d−1,

which improves the bound
√

2
(√

3
)d

given by Erdős and Füredi in [12]. Note that for

α(d) the best known upper bound is 2d − 1.

Although we can make no contribution to it, we mention that there is an affine variant

of this problem. A finite set H in R
d is called strictly antipodal if for any two distinct

points P,Q ∈ H there exist two parallel hyperplanes, one through P and the other through

Q, such that all other points of H lie strictly between them. Let α′(d) denote the maximal

cardinality of a d-dimensional strictly antipodal set. An acute set is strictly antipodal,

thus α′(d) ≥ α(d). For α′(d) Talata gave the following constructive lower bound [34]:

α′(d) ≥ 4
√

5
d
/4 > 0.25 · 1.495d.

A weaker result (also due to Talata) can be found in [4, Lemma 9.11.2].

This chapter is based on [21].
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3.1 The probabilistic approach

As we have mentioned, in 1983 Erdős and Füredi proved the existence of an acute d-set of

exponential cardinality [12]. Since then their proof has become a well-known example to

demonstrate the probabilistic method. In this section we use similar arguments to prove

a better lower bound for α(d).

We shall study the following problem: what is the maximal cardinality κn(d) of a set

S ⊂ {0, 1, . . . , n − 1}d that contains no bad triples? (Recall Definition 3.1.)

In the case n = 2, given three distinct points A,B,C ∈ {0, 1}d, ∠ABC = π/2 holds if

and only if A,B,C is a bad triple, otherwise ∠ABC < π/2. So a set S ⊂ {0, 1}d contains

no bad triples if and only if S is an acute set, thus κ2(d) = κ(d).

If n > 2, then a triple being bad still implies that the angle determined by the triple is

π/2 but we can get right angles from good triples as well, moreover, we can even get obtuse

angles. So for n > 2 the above problem is not directly related to acute sets. However, the

following simple lemma shows how one can use sets without bad triples to construct acute

sets recursively.

Lemma 3.2. Suppose that H = {h0, h1, . . . , hn−1} ⊂ R
m is an acute m-set of cardinality

n. If S ⊂ {0, 1, . . . , n − 1}d contains no bad triples, then the set

HS def
= {(hi1 , hi2 , . . . , hid) : (i1, i2, . . . , id) ∈ S} ⊂ H ×H× . . . ×H︸ ︷︷ ︸

d

⊂ R
md

is an acute (md)-set. Consequently,

α(md) ≥ κα(m)(d) and κ(md) ≥ κκ(m)(d). (3.4)

Proof. Take three distinct points of S:

i = (i1, i2, . . . , id); j = (j1, j2, . . . , jd); k = (k1, k2, . . . , kd),

and the corresponding points in HS:

hi = (hi1 , hi2 , . . . , hid) ; hj = (hj1 , hj2 , . . . , hjd
) ; hk = (hk1

, hk2
, . . . , hkd

) .

We show that ∠hihjhk is acute by proving that the scalar product

〈hi − hj, hk − hj〉 =
d∑

r=1

〈hir − hjr
, hkr

− hjr
〉

is positive. Since H is an acute set, the summands on the right-hand side are positive

with the exception of those where jr equals ir or kr, in which case the r-th summand is 0.

This cannot happen for each r though, else i, j, k would be a bad triple in S.

32



To prove (3.4) we set |H| = n = α(m) and |S| = κn(d) = κα(m)(d). Then α(md) ≥
|HS| = |S| = κα(m)(d). A similar argument works for κ(md). (Note that if H ⊂ {0, 1}m,

then HS ⊂ {0, 1}md.)

In view of the above lemma, it would be useful to construct large sets without bad

triples. One possibility is using the probabilistic method. The next theorem is a general-

ization of the original random construction of Erdős and Füredi.

Theorem 3.3.

κn(d) >
1

2

(
n2

2n − 1

) d
2

>
1

2

(n

2

) d
2

=

(
1

2

) d+2

2

n
d
2 .

Proof. For a positive integer m, we take 2m (independent and uniformly distributed)

random points in {0, 1, . . . , n − 1}d: A1, A2, . . . , A2m. What is the probability that the

triple A1, A2, A3 is bad? For a fixed i, the probability that the i-th coordinate of A2 is

equal to the i-th coordinate of A1 or A3 is clearly (2n−1)/n2. These events are independent

so the probability that this holds for every i (that is to say A1, A2, A3 is a bad triple) is

p =

(
2n − 1

n2

)d

.

We get the same probability for all triples, thus the expected value of the number of bad

triples is

3

(
2m

3

)
p =

2m(2m − 1)(2m − 2)

2
p < 4m3p ≤ m, where we set m =

⌊
1

2
√

p

⌋
.

Consequently, the 2m random points determine less than m bad triples with positive

probability. Now we take out one point from each bad triple. Then the remaining at least

m + 1 points obviously contain no bad triples. So we have proved that there exist

m + 1 >
1

2
√

p
=

1

2

(√
n2

2n − 1

)d

points in {0, 1}d without a bad triple. (Note that the original 2m random points might

contain duplicated points. However, a triple of the form A,A,B is always bad, thus the

final (at least) m + 1 points contain no duplicated points.)

Combining Lemma 3.2 and Theorem 3.3 we readily get the following.

Corollary 3.4. Suppose that we have an m-dimensional acute set of size n. Then for any

positive integer t

α(mt) >
1

2

(√
n2

2n − 1

)t

,
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which yields the following lower bound in general dimension:

α(d) ≥ α

(
m

⌊
d

m

⌋)
>

1

2

(
2m

√
n2

2n − 1

)m� d
m�

≥ c

(
2m

√
n2

2n − 1

)d

.

Using this corollary with m = 5 and n = 12 (see Example 3.26 for a 5-dimensional

acute set with 12 points) we obtain the following.

Theorem 3.5.

α(d) > c

(
10

√
144

23

)d

> c · 1.2d,

that is, there exist at least c · 1.2d points in R
d such that any angle determined by three of

these points is acute. (If d is divisible by 5, then c can be chosen to be 1/2, for general d

we need to use a somewhat smaller c.)

Remark 3.6. We remark that one can improve the above result with a factor
√

d by using

the method suggested by Ackerman and Ben-Zwi in [1].

Remark 3.7. We could have applied Corollary 3.4 with any specific acute set. The larger

the value 2m
√

n2/(2n − 1) is, the better the lower bound we obtain. For m = 1, 2, 3 the

largest values of n are known.

m = 1

n = 2

}
2

√
4

3
≈ 1.154

m = 2

n = 3

}
4

√
9

5
≈ 1.158

m = 3

n = 5

}
6

√
25

9
≈ 1.185

We will construct small dimensional acute sets in Section 3.3 (see Table 3.1 for the results).

For m = 4, 5, 6 these constructions yield the following values for 2m
√

n2/(2n − 1).

m = 4

n = 8

}
8

√
64

15
≈ 1.198

m = 5

n = 12

}
10

√
144

23
≈ 1.201

m = 6

n = 16

}
12

√
256

31
≈ 1.192

However, we do not know whether these acute sets are optimal or not. If we found an

acute set of 9 points in R
4, 13 points in R

5 or 18 points in R
6, we could immediately

improve Theorem 3.5.

3.2 The constructive approach

3.2.1 On the maximal cardinality of sets without bad triples

Lemma 3.2 of the previous section shows how sets without bad triples (recall Definition

3.1) can be used to construct acute sets. In this subsection we investigate the maximal
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cardinality κn(d) of a set in {0, 1, . . . , n − 1}d containing no bad triples. We have already

seen a probabilistic lower bound for κn(d) (Theorem 3.3). Now we first give an upper

bound. As we will see it, this upper bound is essentially sharp if n is large enough

(compared to d).

Theorem 3.8. For even d

κn(d) ≤ 2nd/2,

and for odd d

κn(d) ≤ n(d+1)/2 + n(d−1)/2.

Proof. Suppose that S ⊂ {0, 1, . . . , n − 1}d contains no bad triples. Let 0 < r < d be an

integer, and consider the following two projections:

π1 ((x1, . . . , xd)) = (x1, . . . , xr) ; π2 ((x1, . . . , xd)) = (xr+1, . . . , xd).

Now we take the set

S0
def
= {x ∈ S : ∃y ∈ (S \ {x}) π1(x) = π1(y)} .

By definition π1 is injective on S \ S0, thus |S \ S0| ≤ nr. We claim that π2 is injective on

S0, so |S0| ≤ nd−r. Otherwise there would exist x, y ∈ S0 such that π2(x) = π2(y). Since

y ∈ S0, there exists z ∈ S such that π1(y) = π1(z). It follows that the triple x, y, z is bad,

contradiction.

Consequently, |S| ≤ nr + nd−r. Setting r =
⌊

d
2

⌋
we get the desired upper bound.

Setting n = 2 and using that κ2(d) = κ(d) the next corollary readily follows.

Corollary 3.9. For even d

κ(d) ≤ 2(d+2)/2 = 2
(√

2
)d

,

and for odd d

κ(d) ≤ 2(d+1)/2 + 2(d−1)/2 =
3√
2

(√
2
)d

.

This corollary improves the upper bound
√

2(
√

3)d given by Erdős and Füredi in [12].

(We note though that they proved not only that a subset of {0, 1}d of size larger than√
2(
√

3)d must contain three points determining a right angle but they also showed that

such a set cannot be strictly antipodal which is a stronger assertion.)

If n is a prime power greater than d, then the following constructive method gives better

lower bound than the random construction of the previous section. We will need matrices

over finite fields with the property that every square submatrix of theirs is invertible. In

coding theory the so-called Cauchy matrices are used for that purpose.
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Definition 3.10. Let Fq denote the finite field of order q. A k × l matrix A over Fq is

called a Cauchy matrix if it can be written in the form

Ai,j
def
= (xi − yj)

−1 (i = 1, . . . , k; j = 1, . . . , l), (3.5)

where x1, . . . , xk, y1, . . . , yl ∈ Fq and xi 	= yj for any pair of indices i, j.

In the case k = l = r, the determinant of a Cauchy matrix A is given by

det(A) =

∏
i<j (xi − xj)

∏
i<j (yi − yj)∏

1≤i,j≤r (xi − yj)
.

This well-known fact can be easily proved by induction. It follows that A is invertible

provided that the elements x1, . . . , xr, y1, . . . , yr are pairwise distinct.

Lemma 3.11. Let q be a prime power and k, l be positive integers. Suppose that q ≥ k+ l.

Then there exists a k × l matrix over Fq any square submatrix of which is invertible.

Proof. Let x1, . . . , xk, y1, . . . , yl be pairwise distinct elements of Fq, and take the k × l

Cauchy matrix A as in (3.5). Clearly, every submatrix of A is also a Cauchy matrix thus

the determinant of every square submatrix of A is invertible.

Now let k + l = d ≥ 2 and n be a prime power greater than or equal to d. Due to the

lemma, there exists a k × l matrix A over the field Fn such that each square submatrix of

A is invertible. Let us think of {0, 1, . . . , n−1}d as the d-dimensional vector space F
d
n. We

define an Fn-linear subspace of F
d
n: take all points (x,Ax) ∈ F

d
n as x runs through F

l
n (thus

Ax ∈ F
k
n). This is an l-dimensional subspace consisting nl points. We claim that each of

its points has at least k + 1 nonzero coordinates. We prove this by contradiction. Assume

that there is a point (x,Ax) which has at most k nonzero coordinates. Let the number of

nonzero coordinates of x be r. It follows that the number of nonzero coordinates of Ax

is at most k − r, in other words, Ax has at least r zero coordinates. Consequently, A has

an r × r submatrix which takes a vector with nonzero elements to the null vector. This

contradicts the assumption that every square submatrix is invertible.

Setting k =
⌊

d
2

⌋
and l =

⌈
d
2

⌉
we get a subspace of dimension

⌈
d
2

⌉
, every point of

which has at least
⌊

d
2

⌋
+ 1 > d

2
nonzero coordinates. We claim that this subspace

does not contain bad triples. Indeed, taking distinct points x1, x2, x3 ∈ R
l, the points

(x1 − x2, A(x1 − x2)) and (x3 − x2, A(x3 − x2)) are elements of the subspace, thus both

have more than d
2

nonzero coordinates which means that there is a coordinate where both

of them take nonzero value. We have proved the following theorem.

Theorem 3.12. If d ≥ 2 is an integer and n ≥ d is a prime power, then

κn(d) ≥ n� d
2�.
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If n is not a prime power, then there exists no finite field of order n. We can still

consider matrices over the ring Zn = Z/nZ. If we could find a
⌊

d
2

⌋ × ⌈
d
2

⌉
matrix with

all of its square submatrices invertible, it would imply the existence of a set without bad

triples and of cardinality n� d
2�. For example, in the case d = 3 the matrix (1 1) over Zn

is clearly good for any n so the next theorem follows.

Theorem 3.13. For arbitrary positive integer n it holds that κn(3) ≥ n2.

Proof. We can prove this directly by taking all points in the form (i, j, i+ j) where i, j run

through Zn (addition is meant modulo n). Clearly, there are no bad triples among these

n2 points.

Finally we show that the upper bound given in Theorem 3.8 is sharp apart from a

constant factor provided that n ≥ d3.

Theorem 3.14. Suppose that n ≥ d3 for some positive integers n, d ≥ 2. If n is sufficiently

large, then κn(d) > n� d
2�/64.

Proof. Let k be the unique positive integer for which k3 ≤ n < (k + 1)3. Obviously k ≥ d.

If k is large enough, then there is a prime number q between the consecutive cubes (k−1)3

and k3 [24, 7]. Since q ≥ d, by Theorem 3.12 we can find a set S ⊂ {0, 1, . . . , q − 1}d ⊂
{0, 1, . . . , n − 1}d such that S contains no bad triples and

|S| ≥ q� d
2� > (k − 1)3� d

2� >

(
k − 1

k + 1

)3� d
2�

n� d
2� ≥

(
k − 1

k + 1

)3� k
2�

n� d
2� ≥ 1

64
n� d

2�,

where the last inequality holds because the expression ((k − 1)/(k + 1))� k
2� takes its min-

imum value at k = 3. (For k = 2 and k = 3 it equals 1/3 and 1/4, respectively, and it

is monotone increasing for even values of k as well as for odd values of k, which follows

easily from the well-known fact that ((k − 1)/(k + 1))k is monotone increasing.)

Remark 3.15. The claim that there is a prime number between any two consecutive

cubes (k − 1)3 and k3 has been only verified if k is large enough. It is widely conjectured

though that the claim holds for any k > 1. If this was true, we could omit the condition

that n should be sufficiently large in the theorem.

3.2.2 Constructive lower bounds for α(d) and κ(d)

Random constructions of acute sets (as the original one of Erdős and Füredi or the one

given in Section 3.1) give exponential lower bound for α(d). However, these only prove

existence without telling us exactly how to find such large acute sets. Also, one can give

better (constructive) lower bound if the dimension is small.
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The first (non-linear) constructive lower bound is due to Bevan[3]:

α(d) ≥ κ(d) > exp (cdμ) , where μ =
log 2

log 3
= 0.631... (3.6)

For small d this is a better bound than the probabilistic ones.

Our goal in this section is to obtain even better constructive bounds. The key will be

the next theorem which follows readily from Lemma 3.2, Theorem 3.12 and Theorem 3.13

setting d = 2s − 1. (In fact, the special case s = 2 was already proved by Bevan, see [3,

Theorem 4.2]. He obtained (3.6) by the repeated application of this special case.)

Theorem 3.16. Let s ≥ 2 be an integer, and suppose that n ≥ 2s − 1 is a prime power.

(In the case s = 2 the theorem holds for arbitrary positive integer n.) If H ⊂ R
m is an

acute m-set of cardinality n, then we can choose ns points of the set

H× · · · × H︸ ︷︷ ︸
2s−1

⊂ R
(2s−1)m

that form an acute set.

Remark 3.17. If H is cubic (that is, H ⊂ {0, 1}m), then the obtained acute set is also

cubic (that is, it is in {0, 1}(2s−1)m).

Now we start with an acute set H of prime power cardinality and we apply the previous

theorem with the largest possible s. Then we do the same for the obtained larger acute

set (the cardinality of which is also a prime power). How large acute sets do we get if we

keep doing this? For the sake of simplicity, let us start with the d0 = 4 dimensional acute

set of size n0 = 8 that we will construct in Section 3.3. Let us denote the dimension and

the size of the acute set we obtain in the k-th step by dk and nk, respectively. Clearly nk

is a power of 2, thus at step (k + 1) we can apply Theorem 3.16 with sk = nk/2. Setting

uk = log2 nk we get the following:

dk+1 = dk(2sk − 1) < dknk; nk+1 = nsk

k = n
nk/2
k ;

uk+1 = uk(nk/2) = uk2
uk−1 ≥ 2 · 2uk−1 = 2uk .

It follows that dk+1/uk+1 ≤ 2dk/uk so

dk ≤ d0

u0

uk2
k =

4

3
2kuk.

It yields that in dimension dk we get an acute set of size

nk = 2uk ≥ 2(3/4)2−kdk .
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Due to the factor 2−k in the exponent, nk is not exponential in dk. However, the inequality

uk+1 ≥ 2uk implies that uk grows extremely fast (and so does nk and dk) which means that

nk is almost exponential. For instance, we can easily obtain that for any positive integer

r there exists k0 such that for k ≥ k0 it holds that

nk > exp(dk/ log log · · · log︸ ︷︷ ︸
r

(dk)).

We have given a constructive proof of the following theorem.

Theorem 3.18. For any positive integer r we have infinitely many values of d such that

α(d) > exp(d/ log log · · · log︸ ︷︷ ︸
r

d).

We can also get a constructive lower bound for κ(d). We do the same iterated process

but this time we start with an acute set in {0, 1}d0 . (For instance, we can set d0 = 3 and

n0 = 4.) Then the acute set obtained in step k will be in {0, 1}dk . This way we get an

almost exponential lower bound for κ(d) as well.

However, Theorem 3.16 gives acute sets only in certain dimensions. In the remainder

of this section we consider the problems investigated so far in a slightly more general

setting to get large acute sets in any dimension. (The proofs of these more general results

are essentially the same as the original ones. Thus we could have considered this general

setting in the first place, but for the sake of better understanding we opted not to.)

Let n1, n2, . . . , nd ≥ 2 be positive integers and consider the n1 × · · · × nd lattice, that

is the set {0, 1, . . . , n1 − 1} × · · · × {0, 1, . . . , nd − 1}. What is the maximal cardinality of

a subset S of the n1 × · · · × nd lattice containing no bad triples?

We claim that if n ≥ max{n1, . . . , nd} and the set S0 ⊂ {0, 1, . . . , n − 1}d contains no

bad triples, then we can get a set in the n1 × · · · × nd lattice without bad triples and of

cardinality at least
n1

n
· · · nd

n
|S0| .

Indeed, starting with the n × . . . × n lattice, we replace the n’s one-by-one with the ni’s;

in each step we keep those ni sections that contain the biggest part of S0. Combining this

argument with Theorem 3.12 and 3.13 we get the following for the odd case d = 2s − 1.

Theorem 3.19. Let s ≥ 2, and suppose that n ≥ 2s−1 is a prime power (in the case s = 2

the theorem holds for arbitrary positive integer n). For positive integers n1, . . . , n2s−1 ≤ n

in the n1×n2×· · ·×n2s−1 lattice at least �n1n2 · · ·n2s−1/n
s−1� points can be chosen without

any bad triple.

Also, one can get a more general version of Lemma 3.2 with the same proof.
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Lemma 3.20. Suppose that the set Ht = {ht
0, h

t
1, . . . , h

t
nt−1} ⊂ R

mt is acute for each

1 ≤ t ≤ d. If S ⊂ {0, 1, . . . , n1 − 1} × · · · × {0, 1, . . . , nd − 1} contains no bad triples, then

the set{(
h1

i1
, h2

i2
, . . . , hd

id

)
: (i1, i2, . . . , id) ∈ S

} ⊂ H1 ×H2 × · · · × Hd ⊂ R
m1+···+md

is an (m1 + · · · + md)-dimensional acute set.

Putting these results together we obtain a more general form of Theorem 3.16.

Theorem 3.21. Let s ≥ 2, and suppose that n ≥ 2s−1 is a prime power (in the case s = 2

the theorem holds for arbitrary positive integer n). Assume that for each t = 1, . . . , 2s− 1

we have an acute set of nt ≤ n points in R
mt. Then in R

m1+···+m2s−1 there exists an acute

set of cardinality at least ⌈
n1n2 · · ·n2s−1/n

s−1
⌉
.

The obtained acute set is cubic provided that all acute sets used are cubic.

Remark 3.22. We also note that in the case s = 3 the theorem can be applied for n = 4

as well. Consider the 4-element field F4 = {0, 1, a, b}. Then the 2 × 3 matrix

A =

(
1 1 1

1 a b

)
has no singular square submatrix which implies that Theorem 3.12 holds for d = 5;n = 4,

thus Theorem 3.19 and Theorem 3.21 hold for s = 3;n = 4.

Now we can use the small dimensional acute sets of Section 3.3 as building blocks to

build higher dimensional acute sets by Theorem 3.21. Table 3.2 in Section 3.4 shows the

lower bounds we get this way for d ≤ 84. (We could keep doing that for larger values of

d and up to dimension 250 we would get better bound than the probabilistic one given in

Section 3.1.) These bounds are all new results except for d ≤ 3.

We can do the same for κ(d), see Table 3.3 in Section 3.4 for d ≤ 82. This method

outdoes the random construction up to dimension 200. (We need small dimensional cubic

acute sets as building blocks. We use the ones found by Bevan who used computer to

determine the exact values of κ(d) for d ≤ 9. He also used a recursive construction to

obtain bounds for larger d’s. His method is similar but less effective: our results are better

for d ≥ 13; d 	= 27. In dimension d = 63 we get a cubic acute set of size 65536. This is

almost ten times bigger than the one Bevan obtained which contains 6561 points.)

Tables 3.4 and 3.5 in Section 3.5 compare the probabilistic and constructive lower

bounds for α(d) and κ(d).

Finally we prove the simple fact that α(d) is strictly monotone increasing. We will

need this fact in Table 3.2.
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Lemma 3.23. α(d + 1) > α(d) holds for any positive integer d.

Proof. Assume that we have an acute set H = {x1, . . . , xn} ⊂ R
d. Let P be the convex

hull of H and y be any point in P \ H. We claim that ∠yxixj < π/2 for any i 	= j. Let

Hi,j be the hyperplane that is perpendicular to the segment xixj and goes through xi. Let

Si,j be the open half-space bounded by Hi,j that contains xj. For a point z ∈ R
d the angle

∠zxixj is acute if and only if z ∈ Si,j. It follows that H \ {xi} ⊂ Si,j while xi lies on the

boundary of Si,j. Thus y ∈ P \ {xi} ⊂ Si,j which implies that ∠yxixj < π/2.

Now let us consider the usual embedding of R
d into R

d+1 and let v denote the unit

vector (0, . . . , 0, 1). Consider the point yt = y + tv for sufficiently large t. It is easy to see

that ∠ytxixj < π/2 still holds, but now even the angles ∠xiy
txj are acute. It follows that

H ∪ {yt} ⊂ R
d+1 is an acute set.

Remark 3.24. For κ(d) it is only known that κ(d + 2) > κ(d) [3, Theorem 4.1]. In Table

3.3 we will refer to this result as almost strict monotonicity.

3.3 Small dimensional acute sets

In this section we construct acute sets in dimension m = 4, 5 and use computer to find

such sets for 6 ≤ m ≤ 10. These small dimensional examples are important because the

random construction of Section 3.1 and the recursive construction of Section 3.2 use them

to find higher dimensional acute sets of large cardinality.

Danzer and Grünbaum presented an acute set of 2m − 1 points in R
m [10]. It is also

known that for m = 2, 3 this is the best possible [8, 33, 18]. Bevan used computer to find

small dimensional acute sets by generating random points on the unit sphere. For m ≥ 7

he found more than 2m − 1 points [3].

Our approach starts similarly as the construction of Danzer and Grünbaum. We con-

sider the following 2m − 2 points in R
m:

P±1
i = (0, . . . , 0, ±1︸︷︷︸

i-th

, 0, . . . , 0) (i = 1, 2, . . . , m − 1).

What angles do these points determine? Clearly, ∠P−1
i P±1

j P+1
i = π/2 for i 	= j and all

other angles are acute. We can get rid of the right angles by slightly perturbing the points

in the following manner:

P̃±1
i = (0, . . . , 0, ±1︸︷︷︸

i-th

, 0, . . . , 0, εi) (i = 1, 2, . . . , m − 1),

where ε1, ε2, . . . , εm−1 are pairwise distinct real numbers.
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Our goal is to complement the points P̃±1
i with some additional points such that they

still form an acute set. In fact, we will complement the points P±1
i such that all new

angles are acute. (Then changing points P±1
i to P̃±1

i we get an acute set provided that

the εi’s are small enough.)

Under what condition can a point x = (x1, . . . , xm) be added in the above sense?

Simple computation shows that the exact condition is

‖x‖ > 1 and |xi| + |xj| < 1 for 1 ≤ i, j ≤ m − 1; i 	= j. (3.7)

For example, the point A = (0, . . . , 0, a) can be added for a > 1. This way we get an

acute set of size 2m − 1. Basically, this was the construction of Danzer and Grünbaum.

We know that this is the best possible for m = 2, 3. However, we can do better if m ≥ 4.

Suppose that we have two points x = (x1, . . . , xm) and y = (y1, . . . , ym) both satisfying

(3.7) (that is, they can be separately added). Both points can be added (at the same time)

if and only if

|xi + yi| < 1 + 〈x,y〉 and |xi − yi| < min
(‖x‖2 , ‖y‖2)− 〈x,y〉 for 1 ≤ i ≤ m − 1. (3.8)

We can find two such points in the following simple form: A1 = (a1, a1, . . . , a1, a2) and

A2 = (−a1,−a1, . . . ,−a1, a2). Then points A1 and A2 can be added if and only if

1

m − 1
< a1 <

1

2
and a2

2 >
∣∣1 − (m − 1)a2

1

∣∣ . (3.9)

Such a1 and a2 clearly exist if m ≥ 4.

Example 3.25. For sufficiently small and pairwise distinct εi’s the 8 points below form

an acute set in R
4.

( 1 0 0 ε1 )

( −1 0 0 ε1 )

( 0 1 0 ε2 )

( 0 −1 0 ε2 )

( 0 0 1 ε3 )

( 0 0 −1 ε3 )

( 0.4 0.4 0.4 1 )

( −0.4 −0.4 −0.4 1 )

For m = 5, we can even add four points of the following form:

A1 = (a1, a1, a1, a1, a2); A2 = (−a1,−a1,−a1,−a1, a2);

B1 = (b1, b1,−b1,−b1,−b2); B2 = (−b1,−b1, b1, b1,−b2).

We have seen that 1/4 < a1, b1 < 1/2 must hold so we set a1 = 1/4 + δ and b1 = 1/2 − δ.

Then we set a2 =
√

3/2 and b2 = 2
√

δ so that ‖Ai‖ and ‖Bi‖ are slightly bigger than 1.
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Example 3.26. Let us fix a positive real number δ < 1/48 and consider the points below.

A1 = ( 1/4 + δ 1/4 + δ 1/4 + δ 1/4 + δ
√

3/2 )

A2 = ( −1/4 − δ −1/4 − δ −1/4 − δ −1/4 − δ
√

3/2 )

B1 = ( 1/2 − δ 1/2 − δ −1/2 + δ −1/2 + δ −2
√

δ )

B2 = ( −1/2 + δ −1/2 + δ 1/2 − δ 1/2 − δ −2
√

δ )

Then the set {P̃±1
i : i = 1, 2, 3, 4} ∪ {A1, A2, B1, B2} is an acute set of 12 points in R

5

assuming that εi’s are sufficiently small and pairwise distinct.

(This specific example is important because the random method presented in Section 3.1

gives the best result starting from this example.)

Proof. We need to prove that A1, A2, B1, B2 can be added to P±1
i ’s in such a way that all

new angles are acute. First we prove that any pair of these 4 points can be added. Since

each of them satisfies (3.7), we only have to check that each pair satisfies (3.8). For the

pair A1, A2 it is done since they satisfy (3.9). It goes similarly for the pair B1, B2. For the

pairs Ai, Bj (3.8) yields the condition 3/4 < 1 −√
3δ ⇔ δ < 1/48.

Now we have checked all new angles except those that are determined by three new

points. The squares of the distances between the 4 new points are:

d(A1, A2)
2 = 1 + 8δ + 16δ2; d(B1, B2)

2 = 4− 16δ + 16δ2; d(Ai, Bj)
2 = 2 + 2

√
3δ + 2δ + 8δ2.

Now for any triangle in {A1, A2, B1, B2} the square of the length of each side is less than

the sum of the squares of the two other side lengths which means that the triangle is

acute-angled.

For m ≥ 6 we used computer to find additional points. We generated random points

on the sphere with radius 1+δ and we added the point whenever it was possible. Table 3.1

shows the cardinality of acute sets we found this way compared to previous results. Below

the reader can find examples for m = 6, 7, 8. For m ≥ 11, the recursive construction

presented in Section 3.2 gives better result than the computer search (see Table 3.2 in

Section 3.4 for the best known lower bounds of α(d) for d ≤ 84).
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The following 16 points form an acute 6-set.

( . . . 0 ±999 0 . . . εi )

( −88 2 −244 −35 124 −957 )

( 1 −448 −458 −482 485 349 )

( −537 364 −358 −227 −426 466 )

( −386 473 494 −420 455 −18 )

( 455 467 −47 490 296 494 )

( 435 411 −431 −533 −39 −413 )

The following 20 points form an acute 7-set.

( . . . 0 ±999 0 . . . 0 εi )

( −398 −425 −271 548 316 −191 −389 )

( −29 174 −320 278 322 250 789 )

( −413 −261 −498 −295 −263 −288 524 )

( 453 −273 −380 −241 −493 438 −288 )

( −224 473 −260 −410 73 319 −619 )

( −398 28 348 475 −511 479 60 )

( −117 −420 377 −422 548 386 199 )

( 506 −444 490 292 −233 −409 −20 )

The following 23 points form an acute 8-set.

( 0 . . . 0 ±999 0 . . . 0 εi )

( −403 160 381 120 −438 470 435 −226 )

( −3 470 −158 −424 −375 423 233 447 )

( −456 349 387 −135 −32 −538 −438 145 )

( 166 −170 −16 286 −35 −314 188 853 )

( 239 −281 451 −297 −521 255 −454 173 )

( 271 273 438 −543 204 446 148 −321 )

( 384 149 −408 476 −499 116 −195 −370 )

( −239 −414 −499 −151 −230 −273 99 −603 )

( 563 410 93 219 −399 −415 354 26 )

(The εi’s denote small and pairwise distinct real numbers.)
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3.4 Best known bounds in low dimension

The following tables show the best known lower bounds for α(d) and κ(d). Beside the di-

mension and the bound itself, we stated the value of s, n and the product n1 · · ·n2s−1/n
s−1

with which Theorem 3.21 is applied. From the ni’s the reader can easily obtain the mi’s.

Str. mon. and a. str. mon. stand for strict monotonicity (cf. Lemma 3.23) and almost

strict monotonicity (cf. Remark 3.24).

For example, in dimension 39 in Table 3.2 we see that s = 5 and n = 9. (Note that n

is indeed a prime power and n ≥ 2s − 1 holds.) The expression 86 · 93/94 means that we

need to apply Theorem 3.21 with n1 = n2 = . . . = n6 = 8 and n7 = n8 = n9 = 9. (Note

that they are all indeed at most n.) Then for each i we take the smallest dimension mi in

which we have an acute set containing at least ni points. In our case the corresponding

dimensions are m1 = m2 = . . . = m6 = 4 and m7 = m8 = m9 = 5. Consequently, the

total dimension is 6 · 4 + 3 · 5 = 39. We obtain that in R
39 there exists an acute set of

cardinality at least �86 · 93/94� = 29128.

Recall that in the case s = 2 we can take arbitrary n (it does not need to be a prime

power). Also, according to Remark 3.22, in the case s = 3 we can have n = 4 (even though

n ≥ 2s − 1 does not hold). See dimension 13 and 15 in Table 3.3.
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Table 3.2: Best known lower bound for α(d) (1 ≤ d ≤ 84)

dim l. b. s n

1 2

2 3

3 5

4 8 construction

5 12 construction

6 16 computer

7 20 computer

8 23 computer

9 27 computer

10 31 computer

11 40 2 8 51 · 82/81

12 64 2 8 83/81

13 65 str. mon.

14 96 2 12 81 · 122/121

15 144 2 12 123/121

16 145 str. mon.

17 192 2 16 121 · 162/161

18 256 2 16 163/161

19 320 3 8 51 · 84/82

20 512 3 8 85/82

21 513 str. mon.

22 514 str. mon.

23 704 3 11 82 · 113/112

24 982 3 13 81 · 124/132

25 1473 3 13 125/132

26 1600 4 8 52 · 85/83

27 2560 4 8 51 · 86/83

28 4096 4 8 87/83

29 4097 str. mon.

30 4098 str. mon.

31 4099 str. mon.

32 5632 4 11 83 · 114/113

33 7744 4 11 82 · 115/113

34 10873 4 13 81 · 126/133

35 16310 4 13 127/133

36 20457 5 9 89/94

37 23015 5 9 88 · 91/94

38 25891 5 9 87 · 92/94

39 29128 5 9 86 · 93/94

40 36864 4 16 122 · 165/163

41 49152 4 16 121 · 166/163

42 65536 4 16 167/163

dim l. b. s n

43 85184 5 11 82 · 117/114

44 120439 5 13 81 · 128/134

45 180659 5 13 129/134

46 195714 5 13 128 · 131/134

47 212023 5 13 127 · 132/134

48 229692 5 13 126 · 133/134

49 262144 6 11 86 · 115/115

50 360448 6 11 85 · 116/115

51 495616 6 11 84 · 117/115

52 681472 6 11 83 · 118/115

53 937024 6 11 82 · 119/115

54 1334092 6 13 81 · 1210/135

55 2001138 6 13 1211/135

56 2167900 6 13 1210 · 131/135

57 2348558 6 13 129 · 132/135

58 2544271 6 13 128 · 133/135

59 2756293 6 13 127 · 134/135

60 2985984 6 16 126 · 165/165

61 4378558 7 13 84 · 129/136

62 6567837 7 13 83 · 1210/136

63 9851755 7 13 82 · 1211/136

64 14777632 7 13 81 · 1212/136

65 22166447 7 13 1213/136

66 24013651 7 13 1212 · 131/136

67 26014789 7 13 1211 · 132/136

68 28182688 7 13 1210 · 133/136

69 30531245 7 13 129 · 134/136

70 33075516 7 13 128 · 135/136

71 35831808 7 16 127 · 166/166

72 47775744 7 16 126 · 167/166

73 63700992 7 16 125 · 168/166

74 84934656 7 16 124 · 169/166

75 113246208 7 16 123 · 1610/166

76 150994944 7 16 122 · 1611/166

77 201326592 7 16 121 · 1612/166

78 268435456 7 16 1613/166

79 268435457 str. mon.

80 268435458 str. mon.

81 322486272 8 16 129 · 166/167

82 429981696 8 16 128 · 167/167

83 573308928 8 16 127 · 168/167

84 764411904 8 16 126 · 169/167
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Table 3.3: Best known lower bound for κ(d) (1 ≤ d ≤ 82)

dim l. b. s n

1 2

2 2

3 4

4 5 Bevan

5 6 Bevan

6 8 Bevan

7 9 Bevan

8 10 Bevan

9 16 2 4 43/41

10 16

11 20 2 5 41 · 52/51

12 25 2 5 53/51

13 32 3 4 21 · 44/42

14 32

15 64 3 4 45/42

16 64

17 65 a. str. mon.

18 80 3 5 42 · 53/52

19 100 3 5 41 · 54/52

20 125 3 5 55/52

21 125

22 126 a. str. mon.

23 126

24 133 3 7 51 · 64/72

25 160 3 8 41 · 51 · 83/82

26 200 3 8 52 · 83/82

27 256 2 16 163/161

28 320 3 8 51 · 84/82

29 384 3 8 61 · 84/82

30 512 3 8 85/82

31 512

32 513 a. str. mon.

33 576 3 9 82 · 93/92

34 681 4 7 51 · 66/73

35 817 4 7 67/73

36 1024 4 8 42 · 85/83

37 1280 4 8 41 · 51 · 85/83

38 1600 4 8 52 · 85/83

39 2048 4 8 41 · 86/83

40 2560 4 8 51 · 86/83

41 3072 4 8 61 · 86/83

dim l. b. s n

42 4096 4 8 87/83

43 4096

44 4097 a. str. mon.

45 4097

46 4608 4 9 83 · 94/93

47 5184 4 9 82 · 95/93

48 5832 4 9 81 · 96/93

49 6561 4 9 97/93

50 7991 5 9 52 · 87/94

51 10229 5 9 41 · 88/94

52 12786 5 9 51 · 88/94

53 15343 5 9 61 · 88/94

54 20457 5 9 89/94

55 23015 5 9 88 · 91/94

56 25891 5 9 87 · 92/94

57 29128 5 9 86 · 93/94

58 32768 5 9 85 · 94/94

59 36864 5 9 84 · 95/94

60 41472 5 9 83 · 96/94

61 46656 5 9 82 · 97/94

62 52488 5 9 81 · 98/94

63 65536 4 16 167/163

64 65536

65 65537 a. str. mon.

66 65537

67 65538 a. str. mon.

68 67505 6 11 89 · 92/115

69 75943 6 11 88 · 93/115

70 85436 6 11 87 · 94/115

71 102400 5 16 52 · 167/164

72 131072 5 16 41 · 81 · 167/164

73 163840 5 16 51 · 81 · 167/164

74 196608 5 16 61 · 81 · 167/164

75 262144 5 16 41 · 168/164

76 327680 5 16 51 · 168/164

77 393216 5 16 61 · 168/164

78 524288 5 16 81 · 168/164

79 589824 5 16 91 · 168/164

80 655360 5 16 101 · 168/164

81 1048576 5 16 169/164

82 1048576
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3.5 Comparing the two approaches

Finally, we compare the lower bounds given by the probabilistic and the constructive

approach. For a small m we take an m-dimensional acute set of prime power cardinality

n, then we apply Theorem 3.16 with the largest possible s to get an acute set of size ns

in dimension d = (2s − 1)n. Then we compare this to the probabilistic bound α(d) >

(1/2)(144/23)d/10 (in fact, we obtained this result only for d divisible by 5; for general

d it only holds with a somewhat smaller constant factor). For the sake of simplicity we

consider the base-10 logarithm of the bounds. (See Table 3.2 for values of n used here.)

Table 3.4: Comparing constructive and probabilistic lower bound of α(d)

m n s dimension constructive l.b. probabilistic l.b.

d = (2s − 1)m s lg n lg 1
2

+ d
10

lg 144
23

4 8 4 28 3.61 1.92

5 11 6 55 6.24 4.08

6 16 8 90 9.63 6.86

7 19 10 133 12.78 10.29

8 23 12 184 16.34 14.35

9 27 14 243 20.03 19.05

10 31 16 310 23.86 24.39

11 37 19 407 29.79 32.12

12 64 32 756 57.79 59.92

We can do the same for κ(d). We apply Theorem 3.16 for small dimensional acute

sets in {0, 1}d with the largest possible s and compare what we get to the bound κ(d) >

(1/2)(4/3)d/2 given by Erdős and Füredi. (See Table 3.3 for values of n used here.)

Table 3.5: Comparing constructive and probabilistic lower bound of κ(d)

m n s dimension constructive l.b. probabilistic l.b.

d = (2s − 1)m s lg n lg 1
2

+ d
2
lg 4

3

4 5 3 20 2.09 0.94

6 8 4 42 3.61 2.32

9 16 8 135 9.63 8.13

11 19 10 209 12.78 12.75

12 25 13 300 18.17 18.43

13 32 16 403 24.08 24.87

15 64 32 945 57.79 58.73
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Chapter 4

The Koch curve is tube-null

In this chapter we show that the Koch curve is tube-null, that is, it can be covered by

strips of arbitrarily small total width. In fact, we prove the following stronger result: the

Koch curve can be decomposed into three sets such that each can be projected to a line

in such a way that the image has Hausdorff dimension less than 1. The proof contains

geometric, combinatorial, algebraic and probabilistic arguments. This chapter is based on

[22].

4.1 Tube-nullity

In R
n an infinite tube is the closed r-neighbourhood of l for some positive real r and some

straight line l. The tube-measure of a set E ⊂ R
n is defined as

μ(E) = inf

{∑
i

γn−1r
n−1
i :

⋃
i

Ti ⊃ E

}
,

where Ti is a tube with cross-sectional radius ri, and γn−1 denotes the volume of the unit

ball of R
n−1. The set E is called tube-null if μ(E) = 0.

Csörnyei and Wisewell showed that the only μ-measurable sets are the tube-null sets

and their complements [9]. Tube-null sets come up in Fourier analysis: Carbery, Soria

and Vargas proved that every tube-null set is a “set of divergence” for the localisation

problem [6]. From this point of view, it could be useful to see non-trivial examples for

tube-null sets. In many cases, it is hard to tell whether a set is tube-null or not (even for

simple sets). The following question was posed by, among others, Marianna Csörnyei: is

the Koch snowflake curve tube-null?

In this chapter we answer this question affirmatively. In the plane tubes are infinite

strips and tube-nullity simply means the existence of a covering with strips of arbitrarily

small total width. Actually, we will prove more than that. For some s < 1 we will
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show that K can be covered by strips such that the sum of the s-powers of the widths is

arbitrarily small, and we will get such coverings by using strips in only three directions.

This will give a decomposition of the Koch curve into three sets, each of which can be

projected to a line in such a way that the image has Hausdorff dimension less than 1.

Theorem 4.1. The Koch curve K is tube-null, that is, it can be covered by strips of

arbitrarily small total width.

Moreover, there exists a decomposition K = K0 ∪ K1 ∪ K2 and projections π0, π1, π2

such that the Hausdorff dimension of πi(Ki) is less than 1 for i = 0, 1, 2.

We mention that in a conference talk T.C. O’Neil proved that a certain variant of the

Koch curve (which uses only right angles) is tube-null [32]. He also asked whether this

holds for the Koch curve.

4.2 Covering the Koch curve with strips

Let A0A1A2 be an equilateral triangle with side length 2/
√

3 so that each height of the

triangle is 1. This is our level 0 triangle. Let ei be the line that is parallel to Ai+1Ai+2

and goes through Ai (indices are cyclic). The strip bounded by the lines Ai+1Ai+2 and ei

is the level 0 strip in direction i. For some positive integer n we decompose this strip into

3n strips with equal width 3−n. These strips will be called the level n strips in direction i.

The boundary lines of these strips (in all three directions) determine a triangle grid. The

triangles in this grid are called level n triangles.

Let us consider the Koch curve K connecting A1 with A2 and contained in the triangle

A0A1A2. It is a self-similar set: it is the union of 4n pieces, each similar to K. Each of

these level n pieces is contained in one of the level n triangle of the grid and connects two

vertices of that triangle.

Our goal is to find a collection of level n strips such that they cover K and they have

a small total width. For a level n strip we define its covering number as the number of

level n pieces covered by the strip (see Figure 4.1). The idea is to use strips with large

covering number. The next lemma shows that each piece is covered by at least one strip

with a large covering number.

Lemma 4.2. For each level n piece (at least) one of the three level n strips through this

piece contains at least 2n/3 level n pieces.

Proof. For an arbitrary level n piece take all three level n strips covering this piece. It

is sufficient to prove that the product of the covering numbers of these strips is at least
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Figure 4.1: The covering numbers corresponding to level 2 strips
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2n. We prove this by induction on n. It clearly holds for n = 0. For arbitrary n ≥ 1, a

level n piece can be viewed as a level (n − 1) piece in one of the four level 1 pieces. Due

to the reflection symmetry of K the level n strip in direction 0 covers at least twice as

many level n pieces in the whole curve as it covers in any of the level 1 pieces. For the

other two directions, we simply use the fact that the strips cover at least as many pieces

in K as in a level 1 piece. It follows that the product is at least the double of the product

corresponding to the same piece when it is considered as a level (n − 1) piece of a level 1

piece, which completes the proof.

Now take all level n strips that contain at least 2n/3 pieces. The lemma yields that

these strips cover K. Our goal is to prove that the number of such strips is very small

(compared to 3n). Since the width of a level n strip is 3−n, this would imply that the total

width is also very small.

For a given strip we distinguish two different ways it can cover a piece. A piece connects

two points lying on the border lines of the strip. If these endpoints lie on the same border

line, then we say that it is a border piece. If, on the other hand, its endpoints are on

different border lines, then it is a crossing piece. Note that a piece can have different types

when covered by different strips. In fact, for each level n piece out of the three level n

strips covering the piece, two cover it as a crossing piece and one covers it as a border
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piece.

To every strip we associate a two dimensional vector called the covering vector, the first

and second coordinate of which denotes the number of border and the number of crossing

pieces in the strip, respectively. Clearly, the covering number of a strip is simply the sum

of the coordinates of the covering vector. First we show that the covering vector of a strip

determines the covering vectors corresponding to the three offspring strips. (By offspring

strips of a level n strip we mean the three level n + 1 strips contained in the strip.)

Proposition 4.3. A covering vector (v1, v2) yields the following three vectors on the next

level:

(2v1, 2v1 + v2); (0, v2); (v2, v2).

In other words, to get a next level covering vector we simply right-multiply with one of the

three 2 × 2 matrices below:

A =

(
2 2

0 1

)
; B =

(
0 0

0 1

)
; C =

(
0 0

1 1

)
.

Proof. Take an arbitrary strip and the pieces covered by the strip. Theoretically, there are

6 possible types of these pieces (two types of border pieces labelled with B+ and B− in

Figure 4.2 and four types of crossing pieces labelled with C+
1 , C+

2 , C−
1 and C−

2 .) However,

the truth is that each strip has an orientation and depending on this orientation either

all the pieces (covered by the strip) are of types B+, C+
1 , C+

2 or all of them are of types

B−, C−
1 , C−

2 . This can be proved by induction on the level of the strip: using Figure 4.2 the

reader can easily check that the middle offspring strip always changes orientation while

the other two offspring strips have the same orientation as the original strip. Now the

statement of the proposition is immediate.

Figure 4.2: The different types of pieces covered by a strip
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Now we fix a direction (0, 1 or 2) and take the level 0 strip in this direction. The

covering vector v associated to this strip is either (1, 0) or (0, 1) depending on the direction.

The covering vectors of level n strips in the fixed direction can be obtained in the following

way. We take the product of n matrices, each matrix being A, B or C and right-multiply

v with this product matrix. If we do this for all possible 3n products, then we get the

covering vectors of all 3n level n strips in the fixed direction.

So we need to compute such matrix products. It is not that complicated due to the

following relations between A,B and C:

BA = B; BB = B; BC = C; CC = C. (4.1)

So there are a lot of cancellations in such a product: a matrix B cancels all the subsequent

A’s and B’s until a C comes which cancels B. (For example, BAABAC = BC = C.)

Also, if there are more than one successive C’s, then we can write only one C instead.

After all possible cancellations have been done we get a product of the following form:

(C)Ak1CAk2C · · ·CAkr(B or C).

By induction, we get that

Ak =

(
2k 2k+1 − 2

0 1

)
, so CAk =

(
0 0

2k 2k+1 − 1

)
.

Now it is easy to see that the sum of the elements in the product matrix is at most

L · 2(k1+1)+(k2+1)+···+(kr+1) ≤ 2c0+reduced length,

where L, c0 are absolute constants and reduced length denotes the length of the product

after the cancellations.

The covering number of a strip is the sum of the elements in the covering vector which

is bounded above by the sum of the elements in the corresponding product matrix that

has been shown to be at most 2c0+reduced length. So we have proved that

covering number ≤ 2c0+reduced length. (4.2)

Now we forget for a moment that A,B,C denote matrices. We just take a random

sequence of letters A,B,C, choosing every letter independently and with uniform distribu-

tion. We do all the cancellations implied by the relations in (4.1). The reduced length of

the sequence is defined as the number of letters that survive cancellation. The next lemma

claims that the reduced length of a random sequence of length n is less than n/3− c0 with

high probability.
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Lemma 4.4. There exists a constant a < 1 such that

P (the reduced length of a random sequence of length n is at least n/3 − c0) < an.

Before proving this lemma, we first show how it can be used to complete the proof of

Theorem 4.1.

Proof of Theorem 4.1. Let Sn
i be the set of level n strips in direction i with covering

number at least 2n/3, and put Sn = Sn
0 ∪ Sn

1 ∪ Sn
2 . On one hand, Lemma 4.2 yields that

Sn is a covering of K. On the other hand, (4.2) and Lemma 4.4 entail that a random level

n strip is in Sn with probability less than an for some constant a < 1. Thus |Sn| < 3an3n.

It follows that K is tube-null for Sn has total width at most 3an.

To obtain the decomposition claimed in the theorem we define the set Kn
i as the set

of those points in K which are covered by at least one strip in Sn
i . Since Sn is a covering

of K, K = Kn
0 ∪ Kn

1 ∪ Kn
2 . Set

Ki := {x : x ∈ Kn
i for infinitely many values of n} .

Clearly, K = K0 ∪ K1 ∪ K2. By definition, Ki is covered by Sm
i ∪ Sm+1

i ∪ . . . for any

positive integer m. Let πi be the projection in direction i. Then πi(Ki) is covered by

πi(∪Sm
i )∪πi(∪Sm+1

i )∪ . . . where πi(∪Sn
i ) is the union of at most (3a)n segments of length

3−n. It easily follows that πi(Ki) has Hausdorff dimension at most s = log3(3a) < 1.

Proof of Lemma 4.4. First we give a heuristic proof. A typical sequence contains about

n/3 of each letter. About half of the A’s survive (depending on whether the first preceding

non-A letter is B or C), basically no B’s survive and about one third of the C’s survive

(depending on whether the next letter is A or not). Thus the reduced length of a typical

sequence is about n/3(1/2 + 0 + 1/3) = 5n/18. In the sequel we make these heuristics

precise.

First we compute the expected value of the reduced length of a random sequence of

length n. Consider the letter in position k. We will determine the probability that this

letter survives cancellation. Clearly, the sum of these probabilities is the expected value

in question. However, for these probabilities to be well defined we need to agree on which

letter is cancelled in case of two successive B’s or C’s. When we have two successive

B’s, let the first B survive and the second one be cancelled. On the other hand, for two

successive C’s let the first be cancelled and the second survive. (In other words, B’s have

a forward-mouth and they eat A’s and other B’s, while C’s have a backward-mouth eating

B’s and other C’s.) Now it is a well-defined question whether a letter survives or not. Let

the random sequence be M1M2 · · ·Mn.
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Case Mk = A: with probability 1/3k−1 it holds that for each i ≤ k − 1 Mi = A

when Mk survives. If it is not so, then there is an index i < k for which Mi 	= A but

Mi+1 = Mi+2 = · · · = Mk = A. If Mi = B, then Mi cancels all the subsequent A’s so it

cancels Mk. If Mi = C, then Mk survives. The probability of this is clearly (1−1/3k−1)/2.

Consequently:

P (Mk survives|Mk = A) =
1

2
+

1

2 · 3k−1
.

Case Mk = B: it survives only if Mi equals A or B for each i ≥ k + 1 (and even in this

case it might be cancelled due to a preceding B):

P (Mk survives|Mk = B) ≤ 1

3

(
2

3

)n−k

.

Case Mk = C: if Mk+1 = A, then Mk survives; if Mk+1 = C, then Mk is cancelled. If

Mk+1 = B, then Mk survives if and only if Mk+1 survives which holds if and only if Mi

equals A or B for each i ≥ k + 2. Thus

P (Mk survives|Mk = C) =
1

3
+

1

3

(
2

3

)n−k−1

(1 ≤ k ≤ n − 1),

P (Mn survives|Mn = C) = 1.

It follows that

P (Mk survives) ≤ 5

18
+

1

2 · 3k
+

1

9

(
2

3

)n−k

+
1

9

(
2

3

)n−k−1

(1 ≤ k ≤ n − 1).

When we add up these terms, the sum of the geometric progressions will be bounded so

there exists an absolute constant c1 such that

En := E(reduced length of a random sequence of length n) ≤ 5

18
n + c1.

Let 0 < ε < 1/36 and let us fix n0 in such a way that En0
< (1/3 − 2ε)n0. Now let

n = kn0 for some positive integer k. We take a random sequence of length n and split it

up into subsequences of length n0. Let Xj be the random variable defined as the reduced

length of the j-th subsequence (j = 1, 2, . . . , k), and let X be the reduced length of the

whole sequence. Clearly, X ≤ X1 + · · ·+ Xk. The Xj’s are independent random variables

with E(Xj) = En0
and Xj ∈ (0, n0]. We know that under these conditions the sum

X1 + · · ·+ Xk is highly concentrated around its expectation which is kEn0
< (1/3− 2ε)n.

For example, we can use Hoeffding’s inequality [23] (since X1, . . . , Xk are independent and

bounded). For sufficiently large k it holds that c0 < εn, thus

P
(
X ≥ n

3
− c0

)
≤ P

(
X >

(
1

3
− ε

)
n

)
≤ P

(
k∑

j=1

(Xj − En0
) > εn0k

)
<

exp

(
−2ε2n2

0k
2

kn2
0

)
= an
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for some constant a < 1. This already proves the lemma for n’s that are sufficiently large

multiples of n0. However, with a larger a < 1 the lemma clearly holds for arbitrary positive

integer n.

56



Bibliography

[1] E. Ackerman, O. Ben-Zwi, On sets of points that determine only acute angles, Eu-

ropean Journal of Combinatorics 30 (2009) no. 4, 908–910.

[2] M. Aigner, G.M. Ziegler, Proofs from THE BOOK, 3rd ed. Springer-Verlag (2003),

79–83.

[3] D. Bevan, Sets of points determining only acute angles and some related colouring

problems, The Electronic Journal of Combinatorics 13 (2006).
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Abstract

The thesis addresses problems from the field of geometric measure theory. It turns out

that discrete methods can be used efficiently to solve these problems. Let us summarize

the main results of the thesis.

In Chapter 2 we investigate the following question proposed by Tamás Keleti. How

large (in terms of Hausdorff dimension) can a compact set A ⊂ R
n be if it does not

contain some given angle α, that is, it does not contain distinct points P,Q,R ∈ A with

∠PQR = α? Or equivalently, how large dimension guarantees that our set must contain

α?

We also study an approximate version of this problem, where we only want our set to

contain angles close to α rather than contain the exact angle α. This version turns out to

be completely different from the original one, which is best illustrated by the case α = π/2.

If the dimension of our set is greater than 1, then it must contain angles arbitrarily close

to π/2. However, if we want to make sure that it contains the exact angle π/2, then we

need to assume that its dimension is greater than n/2.

Another interesting phenomenon is that different angles show different behaviour. In

the approximate version the angles π/3, π/2 and 2π/3 play special roles, while in the

original version π/2 seems to behave differently than other angles.

The investigation of the above problems led us to the study of the so-called acute sets. A

finite set H in R
n is called an acute set if any angle determined by three points of H is acute.

Chapter 3 of the thesis studies the maximal cardinality α(n) of an n-dimensional acute

set. The exact value of α(n) is known only for n ≤ 3. For each n ≥ 4 we improve on the

best known lower bound for α(n). We present different approaches. On one hand, we give

a probabilistic proof that α(n) > c · 1.2n. (This improves a random construction given by

Erdős and Füredi.) On the other hand, we give an almost exponential constructive example

which outdoes the random construction in low dimension (n ≤ 250). Both approaches

use the small dimensional examples that we found partly by hand (n = 4, 5), partly by

computer (6 ≤ n ≤ 10).

Finally, in Chapter 4 we show that the Koch curve is tube-null, that is, it can be

covered by strips of arbitrarily small total width. In fact, we prove the following stronger

result: the Koch curve can be decomposed into three sets such that each can be projected

to a line in such a way that the image has Hausdorff dimension less than 1. The proof

contains geometric, combinatorial, algebraic and probabilistic arguments.





Összefoglalás

Az értekezés olyan problémákat vizsgál a geometriai mértékelmélet területéről, amelyek

megoldásánál különböző diszkrét módszerek rendḱıvül hasznosnak bizonyultak. Röviden

ismertetjük az értekezés főbb eredményeit.

A második fejezetben a következő, Keleti Tamástól származó kérdést járjuk körül.

Mekkora lehet (Hausdorff dimenzió szempontjából) egy A ⊂ R
n kompakt halmaz, amely

nem tartalmaz valamilyen adott α szöget, azaz nem tartalmaz különböző P,Q,R ∈ A

pontokat, melyekre ∠PQR = α? Avagy másik megfogalmazásban: mekkora dimenzió

garantálja, hogy a halmazunk biztosan tartalmaz α szöget?

Az értekezés vizsgálja a fenti probléma egy approximat́ıv változatát is. Ahelyett,

hogy azt akarnánk garantálni, hogy a halmazban található pontosan α szög, ez esetben

megelégszünk azzal, ha α-hoz közeli szöget találunk. Ez a probléma jelentősen különbözik

az eredetitől, amit legjobban az α = π/2 eset illusztrál. Ha a dimenzió 1-nél nagyobb,

akkor a halmaz biztosan tartalmaz π/2-höz akármilyen közeli szögeket. Azonban csak

n/2-nél nagyobb dimenzió esetén lehetünk abban biztosak, hogy a halmazunk tartalmazza

π/2-t.

Ugyancsak meglepő, hogy más-más α szögek esetén a fenti kérdésekre egészen más

válaszokat kapunk. Az approximat́ıv változatban a π/3, π/2 és 2π/3 szögeknek különleges

szerepük van, mı́g az eredeti problémában π/2 mutat a többi szögtől eltérő viselkedést.

A fent vázolt problémák tanulmányozása vezetett el az úgynevezett hegyes halmok

vizsgálatához. Egy véges H ⊂ R
n halmazt hegyes halomnak nevezünk, ha bármely

három pontja által meghatározott szög hegyesszög. Az értekezés harmadik fejezete az

n-dimenziós hegyes halmok α(n) maximális számosságát vizsgálja. Ennek a pontos értéke

csak n ≤ 3 esetén ismert. Az értekezésben minden n ≥ 4 esetén jav́ıtunk a legjobb is-

mert alsó becslésen. Két megközeĺıtést mutatunk be. Egyrészt valósźınűségi módszerrel

bebizonýıtjuk, hogy α(n) > c ·1.2n (jav́ıtva ezzel Erdős és Füredi egy véletlen konstrukció-

ján). Másrészt egy teljesen konstrukt́ıv eljárást is ismertetünk, ami alacsony dimenzióban

(n ≤ 250) nagyobb hegyes halmot ad, mint a véletlen módszer. Mindkét megközeĺıtésben

használjuk azokat a kis dimenziós hegyes halmokat, amiket részben kézzel konstruáltunk

(n = 4, 5), részben pedig számı́tógéppel találtunk (6 ≤ n ≤ 10).

Végül a negyedik fejezetben belátjuk, hogy a Koch görbe tubus-nulla, azaz lefedhető

akármilyen kis összszélességű sávokkal. Valójában a következő erősebb álĺıtást bizonýıtjuk:

a Koch görbe felosztható három részre, melyek mindegyikére fennáll, hogy alkalmas egye-

nesre vet́ıtve a vetület Hausdorff dimenziója kisebb, mint 1. A bizonýıtás geometriai,

kombinatorikai, algebrai és valósźınűségszámı́tási eszközöket is használ.


