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Abbreviations and notations 

O, Hyp, hydroxyproline: 4-R-hydroxyl-S-proline 

Flp, fluoroproline: 4-R-flour-S-proline 

a: D-alanine 

Sa, Sar: sarcosine, N-methyl-glycine 

SFigure: Supplementary Figure, can be found in the Appendix 

STable: Supplementary Table, can be found in the Appendix 

: Hamiltonian-operator 

Ψ: wave-function 

χ: molecular orbital 

φ: spatial molecular orbital 

DFT: density functional theory 

BSSE: basis set superposition error 

LCAO-MO: linear combination of atomic orbitals to molecular orbitals 

MP: Møller-Plesset perturbation theory 

CC: Coupled Cluster theory 

CI: Configuration Interaction theory 

PES: potential energy surface 

PBC: periodic boundary condition (type of calculation) 

HF: Hartree-Fock method 

RHF: restricted Hartree-Fock method 

UHF: unrestricted Hartree-Fock method 

LDA: local density approximation 

GGA: generalized gradient approximation 
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1 Introduction 

Protein folding is a relatively fast physical process by which a so called unfolded 

polypeptide chain folds into its characteristic and functional 3D structure. Hydrophobic, 

hydrophilic, electrostatic and additional type of interactions are made responsible for the 

formation of this native structure. The failure to fold into the expected 3D-shape makes 

globular proteins become inactive. The threat is that these misfolded proteins not only fail to 

execute their desired task, but that they form aggregates, as aggregation is a spontaneous 

incident of misfolded or partially folded globular proteins, and was made to be responsible for 

many neuro-degenerative diseases, such as Alzheimer's.  

Protein aggregates can be connected not only to illnesses but they can also be a requirement 

to maintain a healthy organism. The most prominent case for this is the self assembly of 

proteins such as the case of collagen formation. Up to our knowledge, the aggregation of 

amyloid and other proteins involved in lethal diseases cannot be controlled and the aggregates 

themselves cannot be dismantled by the organism. Collagen formation, however, is 

thoroughly regulated, and the resulting structure – as can be observed for example in the bone 

– can also be degraded. 

Figure 1. A simplified scheme of an emerging new paradigm of structural biology 

In this work collagen-like molecular folds fall in the category of structured proteins (Figure 

1), while its monomers are regarded as unfolded proteins. Structures that contain multiple 

strands with extended backbone conformation represent the amyloid-like aggregates. 

Structured protein Unstructured protein

Amyloid-like aggregate

folding/unfolding

aggregation aggregation
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1.1 Amyloid

The primary structure (amino acid sequence) of a globular protein encodes its three 

dimensional structure related to its biological function.1 However, growing evidence supports 

that an alternative, well organized, but different 3D structure could exist for many proteins.2

Dozens of ordinary proteins (e.g. SH3, β-2 microglobulin, lysozyme, myoglobin)3,4 tend to 

aggregate if misfolded under abnormal cellular conditions,5 producing an architecture similar 

to the amyloid peptide, which is responsible for the development of Alzheimer’s disease.6

Similar aggregates play a role in the case of the Creutzfeldt-Jacob disease and the Huntington 

chorea, although the aggregating protein is different, the prion protein (PrP) is responsible for 

the first, and the poly-glutamine for the second disease.7 The conversion from the globular 

form into an amyloid-like aggregate is the transformation of the physiologically “healthy” 

structure into a non-functional, pathogenic conformer. Thus, understanding the molecular 

mechanisms of such a transformation and deciphering the underlying thermodynamic cause 

has a wide range of applications. 

These protein aggregates have the same macroscopic structure, so-called amyloid fibrils, 

and are supposed to have the same or at least similar molecular structure. Several research 

groups performed pioneering contributions to the structure elucidation of such 

fibrils.2,8,9,10,11,12,13 However, the exact atomic build-ups are still uncertain. It is thought that 

these aggregates are rich in β-sheet structures, where in one peptide chain there are two 

elongated parts connected by a turn region, and peptide chains are placed parallelly in an 

endless crystal. When the appropriate conditions are set, practically any protein investigated 

could be trapped in such a toxic β-layer form.2,14,15,16,17 Thus, the folding propensities encoded 

by the protein side-chains has apparently little or no impact on the formation of the 

aggregate.3,18,19 So much the more, as a recently proposed backbone-based theory of protein 

folding emphasizes that the energetics of backbone hydrogen bonds dominate the overall 

folding process20 even for “normally” folded proteins. Thus, strong backbone-backbone 

interactions (primarily interchain hydrogen bonds) that are well pronounced in β-strands are 

expected to be the driving force of amyloid-like aggregation. 

To prevent proteins from aggregating and preserve their native structure is believed to be a 

major driving force in biological evolution.17 There are a number of alternative strategies 

besides molecular chaperones, ubiquitination enzymes and proteasomes to protect proteins 

from any unwanted type of aggregation.21,22,23 These are: i, insertion of “structural 
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gatekeepers”22, meaning that charged side chains prevent aggregation by interrupting 

contiguous stretches of hydrophobic residues in the primary sequence. ii, the use of domains 

of low (30-40%) sequence homology in multidomain proteins21 and iii, the application of a 

“negative design”23 for the protection and cover of all otherwise free edge β-strands, that are 

highly prone to dimer formation and further aggregation. 

One may ask the question of why peptide chains prefer this β-pleated sheet conformation 

and whether it is the only structure available for aggregate formation. 

1.2 Collagen 

Collagen is an essential extracellular protein. Its importance is best exemplified by the fact 

that about one quarter of the mass of all the proteins in a human body is collagen.24 It is a 

major structural protein, forming molecular “cables” that strengthen the tendons and sheets 

that support the skin and internal organs. These cables and sheets are built up of collagen 

molecules strongly attached to each other.25 The first level of this attachment in collagen is 

tropocollagen, which consists of three protein chains that are self-assembled into a triple-

helical structure.25 Furthermore, seven tropocollagen triple helices form microfibrils in a 

hexagonal arrangement.25 (see Figure 2) It is interesting to note that the individual collagen 

strands form a left-handed helix, and three of them build a right-handed triple helix. The 

hexagonal filament built from triple helices is also right-handed. 
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Figure 2. Right-handed collagen filament, formed from right-handed tropocollagen triple 
helices (pink), that, in turn are built up of left-handed helices of protein chains (small black). 

There are about 20 types of collagen, each type consists of different protein chains. The 

most frequent is type I collagen, where the tropocollagen triple helix is built up of two 

identical and one slightly different collagen protein.26

There are three well-known diseases connected to collagen. The inheritable brittle-bone 

disease (osteogenesis imperfecta)27,28, when the triple helices are not properly folded and the 

bones (where collagen also plays an important role) can be easily broken. Osteoporosis 

imperfecta28 is mostly common for women. Here the bones also become weaker, but because 

the disintegration of collagen is faster than its build-up, not because of inherent weakness. 

The most well-known disease is scurvy, the vitamin C deficiency29. In this case the collagen 

also weakens, that is caused by the decreasing amount of hydroxyproline amino acid. 

Hydroxyproline can only be produced in the presence of vitamin C. 

Collagen fibril formation starts with procollagen synthesis. This is a protein, that has 

globular ends on both sides, and the middle (approximately 900) residues are sequentially 

predetermined to tropocollagen formation (every third amino acid is glycine). The C-terminal 

end is then attached to 2 other C-terminal parts, and then as the three middle parts get closer 

to each other, triple helix formation begins. When the whole chain is wound procollagen 

peptidase cleaves down the globular ends and only a tropocollagen triple helix remains.24
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1.2.1 Atomic structure and H-bonding characteristics of collagen triple helix and β-pleated 

sheets 

The triple helix of tropocollagen is built up of almost identical conformational elements 

(homoconformers) often referred to as the polyproline II or shortly PPII conformation30,31,32, 

of elongated backbone structures with the following parameters: φ  –70°, ψ  +160° (εL)33, 

similar those of β-pleated sheet type aggregates, βL, (φ  –150°, ψ  +150°)33 (Figure 3). 

Figure 3. The nine typical conformational backbone building units in peptides and proteins.34

The square represents building units of collagen, also known as PPII (or εL for short), while 
the circle represents βL type conformers, typical of β-pleated sheet structures. These are the 
two most important peptide folds for the present study. 

The primary structure of collagen is characterized by the repetitive motif Xxx-Yyy-Gly, 

where the Xxx and Yyy positions are typically occupied by proline (Pro, P) and 

hydroxyproline (Hyp or O in short) residues, respectively.24 The latter repetitive motif, Xxx-

Yyy-Gly, is called an amino acid triplet, or triplet for short.  

Although β-sheet formation is favored by some and disfavored by other natural amino acid 

residues35 no such strict primary sequence motif is required. As β-layers,36 collagen triple-

helices are also self-stabilized by specific H-bonds. In collagen triple helix, the amide 

hydrogen atom (N-H) of each Gly is attached to the carbonyl oxygen (C=O) of residue Xxx of 

the adjacent strand via strong hydrogen bonding.24,30,37 In addition, there are two weak (non-

0
0 120

120

240/
-120

360/
0

240/
-120

360/
0

ββββL

ααααD

γγγγD

δδδδL

δδδδD

εεεεD

γγγγL

ααααL 

εεεεL

φφφφ/°

ψψ ψψ
/°

0
0 120

120

240/
-120

360/
0

240/
-120

360/
0

ββββL

ααααD

γγγγD

δδδδL

δδδδD

εεεεD

γγγγL

ααααL 

εεεεL

φφφφ/°

ψψ ψψ
/°



10

classical or improper) H-bond systems along the collagen microfiber: the Hα of residue Yyy is 

connected to the carbonyl oxygen atom of residue Xxx of the adjacent strand, and the two 

Hα(s) of glycines are hooked to the C=O of another glycine in one of the adjacent 

strands.37,38,39,40,41,42 (Figure 4a) The β-sheet secondary structure incorporates also a fine 

tuned but rather different interchain H-bond network as described elsewhere.36(Figure 4b)  

Figure 4. a, Schematic diagram of the H-bond network typical for a collagen triple helix: 
both the classical (C=O...HN; strong black) and weak (C=O...HC; dashed blue or red) 
hydrogen bonds along the polypeptide chains are depicted. (The first strand is duplicated to 
show the complete H-bond network.) b, Schematic diagram of the H-bond network of parallel 
β-pleated sheet structures.

There are several papers in the literature dealing with the stability of collagen.43,44,45,46,47,48 It 

is well known that proline and hydroxyproline residues are vital for the stability of the triple 

helix. It is also known that electron withdrawing substituents at 4(R) position on the proline 

ring stabilize the helix at the Yyy position, as they even more decrease the conformational 

freedom of a proline ring and the dihedral angles of the backbone.44,45,48 However, in these 

studies the conformational preference of amino acid dipeptides was compared to each other 

rather than directly the stability of the resulting secondary structures.  

An advance from these results is the work of Parthasarathi et al.49, where they compare the 

collagen forming Gibbs energy of various triplets. However, as they mention, a work using a 

full collagen triple helix is needed. 
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Dannenberg and colleagues50 have recently reported the energetics of a variety of triple 

helix collagen models of six amino acids in length. One of the important statements in their 

comprehensive study is that the relative energy (stability) of a triple helix can be calculated 

with respect to more than one reference state by using either amino acid dipeptides or single 

stranded polypeptides, leading to different stability results. The destabilizing effect of a Gly 

L-Ala mutation (that causes the brittle-bone disease) has been observed both in native 

collagen and in model systems 39,50,51,52 showing that it induces a “bulge” within the collagen 

triple helix by distorting the characteristic H-bridges.53 Another fascinating suggestion arising 

from Dannenberg’s work is the use of a D-amino acid residue instead of glycine.50 They found 

that D-Ala or D-Ser at the right sequential position stabilizes a collagen triple helix structure. 

However, neither of these studies examined a triple helix built up only from amino (non-

imino) acids, or the effect of sarcosine (N-methyl-glycine) on the formation energetics. 

In collagen, like in amyloid, protein strands need to be nearly parallel and also need to 

maintain strong contact with each other, by forming strong interchain hydrogen bonds. As 

mentioned above, several strategies exist in nature to avoid protein aggregation and collagen 

formation is usually not regarded as one of them. However, in this thesis we will introduce the 

following concept: to save collagen proteins from forming amyloid-like plaques nature has 

designed it to be an “anti-amyloid”, that is to maintain an inherently different conformation 

(poly-glycine II), and, in the meantime, depositing the protein strands parallelly and bound by 

hydrogen bonds.  

Sarcosine (or N-methyl glycine) is an amino acid that is not among the 20 that are encoded 

in the DNA. However, it is quite common in the human body, as it is a metabolite of choline 

to glycine, to which it is rapidly degraded. In principle, sarcosine could replace either proline 

or hydroxyproline in tropocollagen as it is an imino- rather than an amino acid residue (see 

below). 

Figure 5. Molecular structure of N-acetyl-sarcosine-methylamide. 
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1.2.2 The hydration structure of collagen 

At least six [Pro-Hyp-Gly] or [Pro-Pro-Gly] triplet units, [POG]6 or [PPG]6 in short, are 

required in solution to form a stable triple-helical secondary structural element.54,55,56 From 

the experimental side it is known that hydroxyproline at the Yyy position makes collagen 

more stable than if it were only a proline.48,57 However, the precise explanation of how γOH 

groups stabilize the triple-helical collagen structure is still not yet fully understood. Previous 

results38,39,53,58 claim that the part of the overall stability of collagen triple helix is due to its 

special hydration shell: water molecules become specifically attached to the surface of the 

protein. Other type of results48,59,60 emphasize the electron withdrawing effect of the OH 

group on the pirrolidine ring, thus reducing the conformational freedom of the backbone, so 

“freezing” the polypeptide in the required secondary structure. A confirmation for this theory 

is that substituting the hydroxyl group with a fluorine atom at the Yyy position greatly 

increases the melting point of the triple helix.42 A third theory41 (apparently combining the 

previous two) suggests, that the required backbone conformation of the polypeptide chain is 

maintained via a water molecule that is bound to a carbonyl oxygen atom and to the OH 

group of hydroxyproline. As (to the best of our knowledge) there is no atomic structure data 

available on fluoro-proline containing collagen, we cannot quantify the extent of how such a 

substitution modifies either the structure or the hydration shell of it. 

The water content bound to tropocollagen triple helix is said to be also connected to the 

aging of collagen.61 Lysines form covalent bonds with each other between tropocollagens. 

The process starts with an oxidative desamination, when the amino group of one lysine is 

transformed into a carbonyl group that can subsequently form Schiff-basis with another lysine 

from another collagen triple helix.61, 62 The number of the above inter-helix covalent links 

grows over time, while the amount of structurally bound water shells slowly decreases and the 

rigidity of collagen increases.61 This seems to confirm the importance of maintaining the 

optimal hydration level of skin (and all of our body). 

The atomic structure of the water shell around collagen was first described meticulously by 

Bella et al.53 and was observed in several other X-ray structures as well.42,58,63,64,65 They 

describe that some water molecules are not just absorbed on the surface of tropocollagen but 

also maintain a regular pattern. Hydrogen-bond mediated water chains connect different parts 

of tropocollagens.53 We refer to these water-chains as “water bridges” when the first and the 

last water molecules of the chain are connected to the same tropocollagen unit. However, in 

crystal structures triple helices can be as close to each other as 5  (in the 1V7H X-ray 
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structure63), which is in the same scale as the distance between the two ends of a water bridge 

on the same helix (in the 1V7H X-ray structure63). This distance can be easily covered by a 

water chain of 2 or 3 molecules. Therefore, regarding the number of water molecules in one 

bridge there is no difference between inter- or intra-tropocollagen water chains. Deciphering 

characteristics of inter-tropocollagen water chains is not the focus here, as in this thesis the 

internal stability of tropocollagen and its first hydration layer is examined.  
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Figure 6. upper, Schematic water connectivity (first layer hydration network) of a triple 
helical collagen. (α; green (3 H2O), β; light blue (3 H2O), γ; red (2 H2O) and δ; marine (2 
H2O, from which there is only one at the images, as the other one is considered as part of the 
β-bridge, see text)). The names of the water bridges are taken from Bella et al.53, while 
labeling of the individual water molecules were completed accordingly. Those H2Os circled 
with a solid line can always be found in the X-ray structure, while those encircled by a dashed 
line can be missing. lower, The water bridges as seen in the 1V7H PDB structure.63 The same 
coloring pattern is used as for the scheme above, while all atoms of the polypeptide chains are 
grey. (No hydrogen atoms are shown.)  

Bella et al.53 described four different types of water bridges, called α, β, γ and δ according 

to the type of atoms they are attached to on the surface of the collagen triple-helix.53 (Figure 

6) In all of the so far reported X-ray structures these four different types of water bridges 

(Figure 6) can be identified. However, as reported in 1CGD by Bella et al.53 and can be 
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observed in 1V7H63, the total number of H2Os within the same water-bridge may vary. It 

changes for the α, β and γ-type bridges; namely 2 or 3 for the α-, 3 or 4 for the β-,  and 2 or 3 

water molecules are there in the γ-bridges. (see Figure 6 and Table 1) As shown in Figure 6

the individual water molecules were named according to the parent bridge and the type of 

connection involved. There are two water molecules, α1 and β1, that are part of two or three 

water bridges, however named only after one. The existence of γ and δ water bridges greatly 

depends on the amino acid type at the Yyy position: namely Yyy should either be 

hydroxyproline or threonine. All in all, the first hydration shell of the POG-type collagen 

consists of minimum 6 and maximum 9 water molecules per triplet unit, of which 5 is 

attached directly to a collagen atom by a hydrogen-bond. 

Table 1. The maximum number of water molecules forming α, β, γ  and δ  water bridge, the 
first and most specific hydration level of collagen as assigned in the unit cell of 1V7H63 

Type of bridgeaWater-bridge binding 

place in the unit-cell b αααα    ββββ    γγγγ    δδδδ    

1st 2c,d, N.A.e 4 N.A.e 2 

2nd 1, N.A.e 4 2 2 

3rd 2 3 2 2 

4th 3 3 2 2 

5th 2 4 3 2 

6th 3 3, N.A.e 2, N.A.e 1, N.A.e

7th 2 4 2 2 

Summary 2-3 3-4 2-3 2 

a, the water bridges were first described by Bella et al.39

b, as the repeating unit of 1V7H63 is seven residue long, there are seven different binding 
places for water bridges  
c, The γ-bridge has one water molecule shared with that of the α- and β-bridge. The δ-bridge 
has one water molecule shared with that of the β-bridge (Figure 6). Thus, in these bridges the 
total number of water molecules is lesser by 3. 
d, The water molecule is considered to be attached to another one or to collagen if the 
distance between the appropriate oxygen atoms in the X-ray structure is less than 3.25 Å. 
e, Not Available: water molecules are not found, or no more is found, although the 
geometrical arrangement suggests an incomplete water bridge 

There is an additional type of structural water associated with collagen as suggested by 

Ramachandran and Chandrasekharan.66 It can be assigned only if amino acid Xxx has a 
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backbone amide hydrogen atom. This water molecule connects to two polypeptide chains of 

the same tropocollagen unit, thus can be regarded as a water-bridge composed of a single 

molecule only (Figure 7 and Figure 12). As found in 1BKV structure58, in which at Xxx non-

imino acids can also be found, out of the 9 sequentially allowed positions a total of 8 inserted 

H2O(s) are observable.58,67 For these 8 binding places, a single and somewhat isolated oxygen 

atom is positioned at an optimum H-bonding distance, with respect to both polypeptide 

chains. Further on, this interchain inserted single water molecule is called as ζ-type water, 

first introduced by Bella et al.53. 

Figure 7. A schematic single H2O containing water bridge when amino acid Xxx is neither 
proline nor any other imino acid residue, in which no amide hydrogen atom would be 
available. These types of collagen subunits are typical of collagen cleaving sites. Here the one 
and only water molecule is marked by a circle and called as ζ-type water. The direct inter-
chain H-bonds (Figure 4) are marked with black. 

Melacini et al.68 have measured the residence time of water molecules around the triple-

helix. They found that even the directly bound water molecules move in and out on a nano- to 

sub-nano-second timescale, which means that they possess liquid-like properties.  

Fullerton et al.69,70,71 have recently measured the hydration shells of collagen by NMR 

spectroscopy. For the most attached water molecule they concluded that in average there is 

one per 3 amino acid residue. At the next layer approximately 3, while at the third regime 

some 20 water molecules are incorporated per triplets. Another (calorimetric) measurement 

by Boryskina72 showed that the total number of the mostly attached water molecules is around 
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3 per triplet, but their enthalpy of hydration was found to be 0.71 kcal.mol-1 per water 

molecule. However, these experiments fail to specify the type of atoms of collagen to which 

these water molecules are attached to.  

It is interesting to note that in the 1V7H X-ray structure63 water molecules are localized and 

can clearly be identified, while the above measurements indicate liquid-like characteristics for 

the bound waters. To explain both of these measurements a “hopping” theory67,68 was 

suggested: water molecules hop in and out of these specific binding sites, with a short 

residence time however preserving their well defined atomic position. 

Also an interesting result from Boryskina72 is that the native triple-helical collagen structure 

is maintained only with a minimal number of 4-5 water molecules per triplet. 
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1.3 Theoretical introduction 

All of the results are obtained using theoretical calculations, therefore a very short 

introduction is given here to the techniques used. If the reader would like to learn more details 

about them, the book 73 and article 74 are recommend, and further references therein. 

1.3.1  Introduction to the Hartree-Fock and DFT methods 

To calculate the energy of a non-relativistic quantum chemical system the Schrödinger-

equation is used, whose time-independent form is the well-known:  

EĤ =  ,         eq. 1. 

where  is the Hamiltonian-operator and Ψ is the wave function of the system. There are 

infinite number of eigenfunctions, the solution corresponding to the ith lowest energy (Ei) is 

denoted by Ψi. 

The form of the Hamiltonian-operator without electric or magnetic field is: 
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1Ĥ   eq. 2. 

where A and B stands for the nuclei from 1 to M, i and j for the electrons from 1 to N. MA is 

the mass of nucleus A in atomic units, ∇2 is the Laplace-operator. Note that R stands for the 

coordinates of the nuclei, and r for the coordinates of the electrons. The distances are 

calculated the following way: riA:=|ri–RA|; rij:=|ri-rj|; RAB:=|RA-RB|. In equation 2 the first and 

the second terms describe the kinetic energy of the electrons and the nuclei, the third the 

electron-nucleus attraction, the fourth and the fifth the electron-electron and nuclei-nuclei 

repulsion, respectively. This equation uses atomic units that greatly simplify the equations 

that describe quantum systems. Physical quantities are expressed as multiples (or 

combination) of fundamental constants, which can be therefore dropped from the equations. 

There are atomic units for mass, charge, length and energy that are further detailed in Table 2. 
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Table 2. The atomic units of the physical quantities and their units in SI. 

Quantity Atomic unit Value in SI units Symbol (name)

Mass Rest mass of electron 9,109 10-31 kg me

Charge Elementary charge 1,602 10-19 C e 

Action Planck’s constant/2π 1,055 10-34 Js 

Length Bohr-radius: 4πε0 /mee2 5,292 10-11 m a0 (bohr) 

Energy Hartree-energy: 2/mea0
2 4,360 10-18 J Eh (hartree) 

To use the Schrödinger-equation for eventual calculations lots of simplifications have to be 

made. The first is the Born-Oppenheimer (or clamped nuclei) approximation. This states, that 

as nuclei are much heavier than electrons (at least 1836 times, for the smallest hydrogen 

atom), nuclei seem to be fixed from the point of view of the electrons. Therefore the 

Schrödinger-equation can first be rewritten as if the kinetic energy of the nuclei were zero, 

e.g. they did not move, and their positions (R) are included only as parameters, not as 

variables. 

);()();()(ˆ RxRERxRH BOBO Ψ=Ψ        eq. 3. 

This EBO(R) is also called Potential Energy Surface (PES), and is widely used to describe 

reactions as well as conformational changes of molecules. 
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The NNV̂  part is only a number, as it depends solely on the position of the nuclei that are 

parameters. The rest can be treated as a Hamiltonian operator of the electrons, and further on 

we will consider the solving of this eigenvalue-equation. 

);()();()(ˆ RxRERxRH ee Ψ=Ψ        eq. 5. 

From this the potential energy surface can be obtained as  

)(ˆ)()( RVRERE NNeBO +=        eq. 6. 

The wave-function for a many-electron system can be defined as 

( )RxxxxRx N ;,...,,,);( 321Ψ=Ψ        eq. 7. 
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where N is the number of electrons and xi is the coordinate of the ith electron. It includes the 

three spatial coordinates of the electrons, and also the spin coordinate. Further on the 

coordinates of the nuclei (R) will not be marked. 

The wave-function itself cannot be measured, only the square of its absolute value 

( ( ) NN dxdxdxdxxxxx ...,...,,, 321
2

321Ψ ), which means the probability of finding one of the 

electrons in the ][ [ ] [ ]NNN dxxxdxxxdxxx +××+×+ ,...,, 222111  part of the space. As the 

electrons are indistinguishable, the absolute value cannot change if we switch two of them: 

( ) ( ) 2

21

2

21 ,...,,,...,,,...,,,...,, NijNji xxxxxxxxxx Ψ=Ψ .    eq. 8. 

Thus, the two wave functions can only differ by a unimodular complex multiplier eiφ. It can 

be shown, that upon the switching of two particles the wave function of the system must 

remain identical, or, at most, it can change its sign. For bosons (particles with integer spins) 

the wave function remains identical (symmetric wave function), while for fermions (particles 

that have half spins), the sign changes (antisymmetric wave function). Electrons are fermions, 

therefore the electronic wave function changes its sign upon the change of two electrons. 

From this follows Pauli’s exclusion principle, that is “no two electrons can have the same 

states” (or else the wave function would have to be zero).  

As the probability of finding one of the electrons in the full space is one we get the 

following equation: 

( ) =Ψ 1...,...,,,... 321
2

321 NN dxdxdxdxxxxx      eq. 9. 

Putting it into other words, the wave function is normal. 

The wave function of a system “encodes” not only the electron density, but also the 

expectation value of the result of every measurement made on the system. If the operator 

corresponding to the measurement is Ô, then the expectation value of that measurement can 

be calculated as follows:  

( ) ( ) NNN dxdxdxdxxxxxOxxxx ...,...,,,ˆ,...,,, Ô 321321321 ΨΨ=ΨΨ ∗     eq. 10. 

The operator corresponding to the energy of the system is the Hamiltonian-operator, so  

000  ĤE ΨΨ=         eq. 11. 

The variational principle states that the expectation value of the Hamiltonian-operator with 

the exact ground electronic state wave function ( 0Ψ ) is lower than the expectation value with 

any trial wave function ( trialΨ ). 
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000trialtrialtrial  ĤEE Ĥ ΨΨ=≥=ΨΨ     eq. 12. 

The closer the trial function is to the exact ground state wave function, the lower the energy 

will be. Therefore, if we know the location of the nuclei and the number of electrons, we can 

construct the Hamiltonian-operator, and from that the [ ] ΨΨ=Ψℑ  Ĥ  functional. 

Optimizing this functional with a 1=ΨΨ  constraint we may reach, in a limiting sense Ψ0

and E0.  

The Hartree-Fock methods search for the minimal energy by using only a subset of the 

possible wave functions. It builds the wave function of the whole many-electron system from 

one-electron wave functions in a determinant form (to maintain the antisymmetric nature of 

the wave function). This determinant is usually called the Slater-determinant. 
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1    eq. 13. 

These one electron functions ( iχ ) are spin orbitals, as they contain a spin coordinate as 

well.  

),( srii χχ = ,        eq. 14. 

where r contains the spatial coordinates, and −∈
2
1,

2
1s  is the spin state. These spin-

orbitals can be decomposed into two spatial orbitals as follows: 

( ) ( ) ( ) ( )srsrx iii βφαφχ βα +=)( ,      eq. 15. 

where 

( ) =
2
1r,r ii χφ α , ( ) −=

2
1r,r ii χφ β       eq. 16., 17. 

1
2
1 =α , 0

2
1 =−α , 0

2
1 =β , 1

2
1 =−β    eq. 18., 19., 20., 21. 

In order to guarantee the Slater-determinant to be normal, we have to constrain the spin-

orbitals to be normal, and pairwise orthogonal: 

ijji δχχ =         eq. 22. 
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The generalized Hartree-Fock method searches for the global minimum of the 

[ ] ΨΨ=Ψℑ  Ĥ  functional, with the restriction that Ψ is a Slater-determinant (eq. 13.), and 

that eq. 22 holds. Further restrictions can be made to produce the Unrestricted Hartree-Fock 

(UHF) method: the iχ  spin orbitals are real valued, and have only α or only β spin 

component. The resulting Slater-determinant will be automatically the eigenfunction of the 

spin-operator ( zŜ ), but not necessarily of the total spin-operator ( 2Ŝ ). To get to the Restricted 

Hartree-Fock method (RHF) one further restriction is made: half of the electrons have only α

and half only β spin state, and the electrons can be paired in such a way that each pair shares 

the same spatial orbital.  
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    eq. 23. 

The resulting wave function will be the eigenfunction of the total spin-operator as well. 

The expectation value of the Hamiltonian-operator with a Slater-determinant in the RHF 

framework can be expressed as 

( ) ( ) ( )[ ]
= ==
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SDSDHF 2iĥi2ĤE jiijjjii ,   eq. 24. 

where the one electron integrals describe the kinetic energy of the electrons and the electron-

nuclei attraction:  
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      eq. 25. 

and the two-electron integrals describe the interaction of two electrons. 

( ) 212
2

12
1

2 )(1)( drdrr
r

rjjiiJ jiij φφ==      eq. 26. 

( ) 2122
12

11 )()(1)()( drdrrr
r

rrjiijK ijjiij φφφφ== .    eq. 27. 

The first is the Coulomb-integral, the second is the exchange integral.  

So the task is to vary the Slater-determinant to get the lowest possible energy, and in the 

meantime maintain the orthogonality of the molecular orbitals. As this is a constrained 
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optimization problem, the method of the Lagrangian multipliers is used. The Lagrangian-

functional of the problem is:  

{ }[ ] ( )
≤≤

= −−ΨΨ=ℑ
2,1

2
1  Ĥ~

Nji
ijjiijSDSD

N

ii δφφλφ ,    eq. 28. 

where λij are the Lagrangian multipliers. From now on we will denote the dependence of a 

functional or operator on a system of molecular orbitals by [ ]φ . We can get the extremum 

points of the original functional by taking the functional derivatives of the Lagrangian 

functional with respect to the molecular orbitals, and requiring the results to be zero.  
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where  

[ ] [ ] [ ]( )
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−+=
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RHF KJhF φφφ      eq. 30. 

is called the Fock-operator. Applying a diagonalization on the Lagrangian multipliers we 

get the Hartree-Fock equations: 

[ ] jjj
RHFF φεφφ =ˆ ,  j=1,…, N/2     eq. 31. 

Solving this integro-differential equation we can obtain (among all the extremum points) 

the global minimum of the [ ]Ψℑ  functional with the constraint that Ψ is a Slater-determinant 

built from the pairwise orthogonal molecular orbitals. (This minimum is the Hartree-Fock 

approximation of the ground state energy.) To transform it into a well-know matrix 

eigenvalue problem the φ functions are expressed as a linear combination of basis functions 

(usually called atomic orbitals), (LCAO-MO). This leads to the following equation: 

[ ] jjjF ϕεϕϕ =ˆ ,   j=1,…, N/2     eq. 32. 

Here the Fock-matrix ( [ ]ϕF̂ ) still depends on the system of coefficients { }
2

1 ,, Nϕϕ . To 

overcome this difficulty we start with an initial set of coefficients (ansatz), build the Fock-

matrix, solve the eigenvalue-problem (eq. 32.) to obtain a new set of coefficients, then update 

the Fock-matrix. This is continued until the eigenvalues (εi) and the coefficients ( iϕ ) are 

sufficiently close to each other in the subsequent steps. This procedure is called the Self-

Consistent-Field (SCF) method.  
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As the Fock-operator is not the exact Hamiltonian, and the Slater-determinant does not 

represent the best type of trial function, the resulting energy of the molecule is not the lowest 

possible, i.e. not the exact. The difference between the exact and the Hartree-Fock energy is 

called the correlation energy. 

There are two basic approaches that try to approximate this correlation energy. One of them 

uses the exact non-relativistic Hamiltonian, and approximates the exact wavefunction by a 

superposition of determinants. These methods include the Møller-Plesset perturbation theory 

(MP) series, the Coupled Cluster (CC) series and the Configuration Interaction (CI) series, 

called altogether post-Hartree-Fock methods. Due to the ab initio nature of these methods the 

results can always be systematically improved to solve the original Schrödinger-equation with 

the desired accuracy. However, these represent highly demanding computations, and for 

example the Coupled Cluster calculations are unfeasible for systems larger than 10 atoms. 

The other approach that tries to include the correlation energy into calculations is the 

density functional theory (DFT). With DFT techniques even large peptide molecules of 

around 20 amino acid residues can be easily calculated, therefore we used this technique to 

get the most exact results. 

Density functional theory is based on the theory that the electron density contains all the 

relevant information of the system. The electron density is the integral of the wave-function in 

all the coordinates of the electrons in the system, except for the spatial coordinates of one. 

( ) ( )Ψ= NN dxdxdxdsxxxxNr ...,...,,,... 321
2

321ρ    eq. 33. 

The electron density is a non-negative function that converges to zero as the coordinates (r) 

converge to infinity. Its integrate with r gives the electron number, N.  

( ) Ndrr =ρ         eq. 34. 

The electron density is an observable (e.g. measurable by X-ray crystallography). Its 

important property is that it has its maximum in the places of nuclei. There it is continuous 

but not differentiable, which property is called cusp (Kato cusp theory). That is why the 

electron density holds all the information: it contains the places and charges of nuclei and the 

number of electrons. From these the Hamiltonian can be constructed, and every other desired 

property can be calculated. 

The first Hohenberg-Kohn theorem states that the electron density of the ground state 

uniquely determines the Hamiltonian, and so the ground state wave function.75 (That is, no 

two different electron densities can have the same Hamiltonian.) The second Hohenberg-

Kohn theorem states that the energy that corresponds to a certain nuclei configuration (with a 
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given number of electrons) is the lowest if we apply the exact density function, any trial 

function gives higher energy. Therefore it is the variational principle for electron density. To 

put it in a formula: 

( ) ( ) ΨΨ=≥=ΨΨ HEEH ˆ~~ˆ~ ρρ      eq. 35. 

where  is the Hamiltonian, Ψ is the exact and Ψ~  is the trial wave function. 

The exact functional that provides the energy directly and solely from the electron density is 

not known, however, through the wave function we can give a definition. That is, the energy 

that corresponds to a certain electron density is the minimum of the expectation value of the 

Hamiltonian-operator with those wave functions that integrate to the given electron density. 

( ) ΨΨ=
=ΨΨ

HE ˆ: min
: ρ

ρ        eq. 36. 

Even if we accept it as a “functional”, we have to see that it depends on the system in focus. 

Therefore the mathematical protocol to find the energy and the electron density of a system 

is the following: ΨΨ=
=ΨΨ=

HE
N

ˆminmin
::

0
ρρρ

. That is, to minimize the energy first so, that 

we change the wave function but the density remains the same, and afterwards we change the 

density too, to get the lowest possible energy. This is a mathematically correct formula and 

the density is unambiguously determined by it, however, unfortunately, in practice it is 

absolutely useless. 

Let us, however, expand it:  

Ψ++Ψ=ΨΨ=
=ΨΨ==ΨΨ=

Neee
NN

VVTHE ˆˆˆˆ minminminmin
::::

0
ρρρρρρ

 eq. 37. 

or, 

E[ ]=T[ ]+Eee[ ]+ENe[ ], where T (or T̂ ) stands for the kinetic energy of the given 

electron density, Eee (or eeV̂ ) for the electron-electron interactions, and ENe (or NeV̂ ) for the 

electron-nuclei interaction. The first two terms are called “universal”, as they do not depend 

on the given system. The third term contains the position of the nuclei, therefore it depends on 

the system. However, after we specify the system (give the positions of the nuclei), the third 

term will be defined, too. Moreover it can be expressed without the wave-function as: 

[ ] ( )drrVE NeNe ρρ = ˆ         eq. 38. 
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The minimization of the system dependent energy functional with respect to the density will 

not only provide the energy, but also the ground state density, and therefore other physical 

properties, too.  

The variational problem of minimizing the energy functional E[ ] can be solved by 

introducing a fictitious density functional of a non-interacting system: Ef[ ]=Tf[ ]+Vf[ ], or 

Ψ+Ψ= fff VTE ˆˆ . If we chose this fictitious fV̂  functional as fNeeef TVVTV ˆˆˆˆˆ −++= , 

then the density functional of the non-interacting system will be the same as the density 

functional of the original, interacting system. Since the exact eigenfunctions of a non-

interacting system have the form of a Slater-determinant, one can get the Kohn-Sham 

equations for the non-interacting system:  

iiii
KSF φεφφ =+∇−= V̂

2
1ˆ

f
2 ,  i=1, … N,    eq. 39. 

where KSF̂  is the Kohn-Sham operator. Note that as in the Hartree-Fock method the Kohn-

Sham operator depends on the system of orbitals as well. These (integro-differential) 

equations provide orbitals (φi, called Kohn-Sham orbitals) that reproduce the original density: 

0= f = 
=

N

i
i

1

2φ .        eq. 40. 

Furthermore: 
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++=−+−++

=−++−+=−++=
 eq. 41. 

NeV̂  is the electron-nuclei interaction, and is known if we know the electron density. Also, 

the Coulomb repulsion is known for a certain density. All that is unknown (the difference of 

the kinetic energy of the interacting and non-interacting system, and the remaining part of the 

electron-electron correlation above the Coulomb repulsion) is put into one term, the exchange 

functional ( XCV̂ ).  

Although we do not know the exact form of the exchange-correlation operator, so far all the 

equations are mathematically correct.  

As this exchange functional depends on the electron density, to carry out the calculations 

again the recursive, self-consistent methodology has to be used. 

There has been much work done to determine the best form of this exchange-correlation 

operator. Physicists use the model of the free electron gas to derive a form, and the resulting 

theory is called Local Density Approximation (LDA), because the functional depends only on 
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the density at the coordinate where the functional is evaluated. It works well for metals, but 

not at all useful for molecules. The local spin-density approximation (LSDA) is a 

generalization of the LDA to include electron spin. Generalized gradient approximations 

(GGA) are still local but also take into account the gradient of the density at the same 

coordinate. Using the latter (GGA) very good results for molecular geometries and ground 

state energies have been achieved. Potentially, more accurate than the GGA functionals are 

the meta-GGA functionals. These functionals include a further term in the expansion, 

depending on the density, the gradient of the density and the Laplacian (second derivative) of 

the density. 

Difficulties in expressing the exchange part of the energy can be relieved by including a 

component of the Hartree-Fock exchange energy. Functionals of this type are known as 

hybrid functionals. The functional we used for our calculations, the B3LYP is also a hybrid 

functional.  

Along with the component exchange and correlation functionals, three parameters define 

the hybrid functional, specifying how much of the exact exchange is mixed in. The adjustable 

parameters in hybrid functionals are generally fitted to a “training set” of molecules. That is 

the reason why these functionals cannot be systematically improved (unlike MP or other post-

Hartree-Fock methods). As the machinery of DFT calculations is the same as of HF 

calculations, DFT methods do not require longer computational times, even though they 

include parameters for the electron correlation. In summary it can be said, that if the targeted 

molecules are described more or less accurately by the chosen “training set”, then DFT results 

can reach the performance of the computationally much more demanding post-Hartree-Fock 

methods. However, for molecules that do not fall into this category DFT can produce 

fundamentally wrong results. 

Peptides consist of H, C, N, and O, that are all small elements, and the B3LYP functional 

we used is thoroughly tested for them. Therefore the results are accurate enough to draw 

chemically significant conclusions from them. 

1.3.2 Periodic boundary condition (PBC) calculations 

First the molecular dynamics simulations used periodic calculations to decrease the side 

effects of having a finite box. Today there are several quantum chemical programs (e.g. 

SIESTA76, Gaussian0377) that can also apply periodic boundary conditions during 
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calculations. During PBC (periodic boundary condition) calculations a unit cell is infinitely 

repeated. Therefore when calculating the interactions of one atom the nearest others are 

considered, even if they are in another cell. Therefore the radii of the “interaction ellipsoid” 

must be smaller than the edges of the unit cell. 

1.3.3 Basis sets

The functions that stand for the atomic orbitals (that are later linearly combined to form 

molecular orbitals) are called basis sets. The first type of used functions is called Slater Type 

Orbitals (STO). These functions have an exp(-ar) term, and therefore at r  0 they exhibit a 

cusp. At r  they converge to zero, as required. These types of functions describe the 

electrons quite well because they mimic the eigenfunctions of the hydrogen atom, however, 

they have a drawback: the integral of the product of two STO-s can only be computed 

numerically, as no analytical techniques are available. The program ADF (Amsterdam 

Density Functional) uses STOs.  

Gaussian Type Orbitals have the form: 

)exp( 2rzyxf nmlGTO α−= ,      eq. 42. 

which means that the function still converges to zero as r  (although too rapidly), but it 

does not reproduce the cusp as r  0, (it is continuously differentiable at r = 0). Calculating 

the integrates of their products is much faster than that of STOs, as they can be expressed 

analytically and there are several efficient algorithms for speeding it up. To improve their 

behavior at zero and at infinity, most computational programs use Contracted Gaussian 

Functions (CGF), where GTOs with different exponential parameters are linearly combined 

with fixed coefficients. This way the computational costs do not rise too much, and these 

contracted orbitals resemble much more to the Slater type orbitals.  

Carrying out calculations on a molecule that is made up of atoms, the usual chemical 

instinct says that the closed (core) shell of the electrons do not contribute too much to the 

bond formation, while the outer, valance shell electrons do. This concept is used when the 

number of functions describing an atom is decided. In the basis sets we used (that belong to 

the family of Pople basis sets) there is one contracted Gaussian orbital for the core electrons, 

and more orbitals for the valance electrons. Namely, the 6-31 stands for the following: a 
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contracted Gaussian (composed of six orbitals) for the core, and one single and a contracted 

Gaussian (composed of three orbitals) for the valance electrons.  

For better describing the bonds sometimes orbitals of lower symmetry are also added to the 

atoms. These are called polarization functions, and are denoted with the (unfilled) atomic 

orbital they resemble the most. For example, 6-31G(d) means that a d type of orbital is also 

placed on the heavy (not hydrogen) atoms. (d,p) means that the heavy atoms have one set of d 

functions, and hydrogens have one set of p functions. 

Another improvement is to add diffuse functions, that is, s-type orbitals with a lower 

exponent, which means that they decrease less rapidly. These kinds of functions are denoted 

with a + in the sign of the basis set, e.g. 6-31+G(d). They are most useful for describing 

anions and long range interactions. 

1.3.4 Basis set superposition error (BSSE) 

Calculations using the LCAO-MO approximation can sometimes lead to noticeable errors, 

e.g. when we want to determine the weak interaction between two or more molecules. The 

most common method to determine the weak interaction between molecules A and B is to 

calculate the energy of the AB complex, and then subtract from it the energy of the individual 

A and B. However, in the complex to describe A the basis functions of B are used as well, and 

vice versa. Therefore in the complex we use a seemingly larger basis set to describe the parts 

that leads to the decrease of energy according to the variation theory, and subsequently to 

bigger interaction energy between the two parts. This error is called Basis Set Superposition 

Error, BSSE.78,79 There are several ways to calculate its value, one of the most used is the 

counterpoise method.80 In this approximation the energy of the individual parts are calculated 

with all the basis functions of the complex. Therefore it is known how much the energies of 

the individual parts change when calculated with more basis functions, and so the artificial 

change in energy as well.  

When the functions describing the electrons of one molecule already do it quite accurately 

(the basis set is large enough) the neighboring functions cannot improve much on it. 

Therefore the larger basis sets are used, the smaller is the BSSE. Of course, the computational 

requirements usually severely limit the size of the basis set. 
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2 Methods  

The Gaussian03 software program was used for all calculations.77 

Precision and accuracy of the applied methods is also discussed here, at the end of the 

chapter. 

2.1 Potential Energy Surface calculations 

The potential energy surface (PES, called a Ramachandran map in the case of peptides) of 

selected for N- and C-protected amino acids was calculated. The central amino acid residue 

was elongated with an acetyl-group at the N-terminal, and an N-methyl group at the C-

terminal. The potential energy surface of protected glycine, alanine, proline and sarcosine (N-

methyl glycine) was calculated at the B3LYP/6-31G(d) level of theory. For all amino acids 

except for proline the φ and ψ angle was scanned by 15 degrees. For proline the φ angle was 

varied only between 200º and 360º, but by a step size of 10º; as it is known (and can be seen 

on the map) that other regions are inaccessible because of the ring structure. The ψ angle of 

proline was varied between the usual 0º and 360º. The protocol was the following: the 

dihedral angles were set to a desired value, but all remaining properties of the molecule were 

allowed to relax. After that the energy minimum had been reached one of the dihedral angles 

was changed by 15º (or 10º). Using this step-by-step method the whole Ramachandran-map 

can be explored. For proline the map consists of 400 points, while for the other amino acids 

625 points were determined. 

2.2 Crystal structure calculations: models for amyloid 

We carried out 1- and 2-dimensional periodic boundary condition calculations on short (3 

residue long) peptides. These calculations require enormous memory and disc space, 

furthermore they need an excessive amount of CPU time even at a very low level of theory. 

(At HF/3-21G for 224 basis functions one structure optimization took 10 days with 6 CPU-s.) 

Therefore we optimized the crystal structure only at HF/3-21G level, and subsequently carried 

out single-point calculations at B3LYP/6-31G(d) level. During these optimizations not only 
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the structure of the molecule, but the length and the angle of the transition vectors were also 

optimized. 

We performed calculations for two types of peptides: Ac-(Ala)3-NHMe (standing for amino 

acids that have side chains and are chiral) and Ac-(Gly)3-NHMe (representing itself, thus an 

amino acid without a side chain). In our calculations we examined all possible conformations 

where all the amide groups have two peptide bonds. The resulting structures are described in 

Table 3, and three of them are shown in Figure 8. In these structures, an important parameter 

is the angle closed by two ensuing peptide bonds that is called the tilting angle, and is further 

explained on Figure 9. 

Figure 8. Schematic representation of the cross sections of the calculated endless structures. 
A) Multiple planes of 2D β-layers, thus 3D, with horizontal hydrogen bonds only between 
strands. B) A 3D aggregate where the horizontal hydrogen bonds are heading towards three 
directions due to the 120º tilt angle of the adjacent amide planes in the backbone. C) A 3D 
aggregate where the horizontal hydrogen bonds are heading towards four perpendicular 
directions due to the 90º tilt angle of the adjacent amide planes in the backbone. 

120°120° 90°90°

A, B, C,

180°180° 120°120° 90°90°

A, B, C,

180°180°
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Table 3. Number of neighboring strands and the corresponding tilting angles of the peptide 
chain in a crystal 

Figure 9. An explanation for the concept of tilting angle of the amide groups. First, the amide 
groups of a peptide chain can be regarded as arrows that have a plane. Second, when more or 
less elongated, this peptide chain can be regarded as a multi destination sign-post, where the 
signs are the arrows of the peptide bonds. Third, the tilting angle is the angle between the 
planes of the ensuing peptide planes. 

Resulting Structures 

Number of 
Neighbor Strands 2 4 6 

Tilting angle of 
peptide groups ( ) =180º =180º =180º =90º =60º =120º 

Common 
description 

2D parallel 
β-sheet, 

(one layer)

3D parallel 
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(multiple 
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antiparallel 

β-sheet  
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2.3 Collagen models 

We used two basic types of collagen models: first without bound water molecules to 

examine the stabilizing-destabilizing effects of different amino acids on the backbone of the 

triple helix. When examining the water binding strength at different positions we used models 

that contain explicit water molecules. 

2.3.1 Waterless models for examining the backbone stability 

To examine the backbone preferences and the triple-helix stabilizing effects the following 

model systems were constructed and subjected to full ab initio geometry optimizations. Six 

residue long N- and C-protected collagen triple helix models composed of a total of 18 amino 

acid residues were generated: i) glycine only (GGG collagen helix model), ii) from L-alanine 

only (AAA collagen helix model), iii) from L-alanine and glycine (AAG collagen helix 

model), iv) from L-alanine and D-alanine, (AAa collagen helix model) v) from L-prolines and 

glycine (PPG collagen helix model), vi) from L-prolines and D-alanine (PPa collagen helix 

model), vii) from sarcosine and glycine (SaSaG collagen helix model) and viii) from L-

proline, L-hydroxyproline and glycine (POG collagen helix model). In all of these cases where 

more than a single type of amino acid residue is involved, glycines are placed appropriately 

and the polypeptide chains are suitably shifted: e.g. the -Gly-Xxx-Yyy-Gly-Xxx-Yyy-, -Yyy-

Gly-Xxx-Yyy-Gly-Xxx- and –Xxx-Yyy-Gly-Xxx-Yyy-Gly- where chains are adjusted head 

to head. The AAG model contains alanine both at the Xxx and at Yyy positions, while the 

POG model has proline at the Xxx and hydroxyproline at Yyy positions. To test the effect of 

incorporating more than a single D-amino acid residue, the AAa and PPa model were used 

where both the Xxx and Yyy positions contained L-Ala or L-Pro but D-Ala was introduced 

where Gly should have been. These different models were created to model different “types” 

of collagen, to be able to follow the stabilizing effects on collagen. POG, PPG and PPa 

collagen helix models were supposed to mimic the “core” of collagen and so model the POG 

and PPG triplet containing parts of a triple helix. It is called the core, because according to 

melting point measurements57 these natural triplets provide the highest stability to a triple 

helix. The appropriate experimental PDB structures are the 1V7H63 and the 2CUO64, 

respectively.  

Also, there are numerous amino acid residues evenly spread throughout collagen none of 

the imino acid type, that are typical binding or cleavage sites. The GGG- and AAG-triplet 
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containing models could be used as candidates for studying such an Xxx-Yyy-Gly collagen 

type subunit, where neither Xxx nor Yyy is proline (or hydroxyproline). To test how well 

structural properties of the calculated collagen triple-helix correlates with experimental data 

of these binding-sites, we have used conformational values extracted from 1BKV.58 This is a 

unique crystallized collagen-like triple helical molecule that contains a longer non-imino acid 

sequence, namely the -Ile-Thr-Gly-Ala-Arg-Gly-Leu-Ala-Gly- subunit.  

The SaSaG triplet is used to examine a situation where Xxx and Yyy are both imino acids, 

but they do not have a ring to freeze the φ angle in the backbone. There is no appropriate X-

ray or NMR structure for this triplet type. 

Finally, AAA collagen model stands for the collagen having G-->A mutation (causing a 

bulge), and is compared to the 1CGD PDB structure53.  

These X-ray structures are either the only available of their kinds or the ones having the 

best resolution. All these models are shown in Figure 10. 

Figure 10. 3x6 residue containing models of different amino acid constitution that are used to 
examine the different backbone stabilizing effects on the triple helix. 

All models of the same type of amino acid compositions were also optimized by adopting a 

triple-stranded parallel β-pleated sheet structure, and also as three individual strands. (see 

Figure 11) 
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Figure 11. A hypothetical scheme of the collagen triple helix and the parallel triple-stranded 
β-sheet formation. There are three possibilities of how to calculate relative stability:  
i) ΔE1

sheet-form=Esheet – [Estrand1 + Estrand2 + Estrand3],  
ii) ΔE2

collagen-form=Etriple helix – [Estrand1 + Estrand2 + Estrand3],  
iii) ΔE3

conversion=Etriple helix – Esheet
These three possibilities also exist for relative ΔH, ΔG and TΔS calculations.  
Coloring identifies different sequential positions.  

A molecular system of this size seems adequate for comparison with biochemical data, as 

the middle four amino acid residues behave very similar to those located in endless collagen 

triple helices, thus seen as the true building unit or “lego part” of this secondary structure.  

All structures were fully optimized first at the RHF/3-21G and subsequently at the 

B3LYP/6-31G(d) levels of theory. Finally, energy calculations were completed both at the 

B3LYP/6-311++G(d,p) and B3LYP/PCM/6-31G(d) levels of theory on a priory optimized 

B3LYP/6-31G(d) structures. For the PCM calculations we used the IEF-PCM method81 and 

water as a solvent, meaning that ε=78.39 was set.  

Also, on all of the energy minimized structures frequency calculations within the harmonic 

approximation were carried out at the B3LYP/6-31G(d) level of theory. Gibbs free energy and 

entropy data are direct results of these calculations. 

For model systems of similar type (e.g. multiple stranded β-sheets), BSSE (basis set 

superimposition error)80 was found to be at subchemical ranges when computed at the 

B3LYP/6-311++G(d,p) level of theory.82 To confirm the above results for three stranded 

ΔE1
formation ΔE2

formation

ΔE3
formation

three individual strands

parallel β-sheet collagen triple helix

ΔE1
formation ΔE2

formation

ΔE3
formation

three individual strands

parallel β-sheet collagen triple helix
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systems also, further BSSE studies were carried out on shorter models composed of alanine 

and glycine residues: i) a collagen triple helix composed of 9 amino acid residues (“short 

AAG collagen helix” model), and ii) a β-sheet model also composed of 9 amino acid residues 

(“short AAG sheet” model) were studied both at the RHF/3-21G and B3LYP/6-31G(d) levels 

of theory. Calculations for approximating the BSSE80 were carried out using the counterpoise 

correction method83, considering the three strands as three different subsystems.  

2.3.2 Hydrated collagen models 

To determine stabilities of water molecules connected to the tropocollagen via H-

bonding(s), the following three types of model systems were optimized. The first one (Figure 

12) was designed to examine the binding of the internal structural water, the so called ζ-type 

water, for which neither proline nor hydroxyproline can be at position Xxx. Therefore, in the 

3x6 amino acid containing model both Xxx and Yyy positions are occupied by alanines. All 

six essential water molecules were placed in and the overall system was fully optimized at 

B3LYP/6-31G(d) level of theory.  
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Figure 12. The model system characterizing the ζ-type water. The water molecules connect 
the amide hydrogen atom of residue Xxx (here Ala) with the C=O of Gly (dashed line). For 
the present model a total of 6 binding places exists, all marked. 
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The second type of model system (Figure 13) was designed to characterize the horizontal 

water thread. (Figure 18 and Figure 19) Therefore, in this model both the α- and β-bridges 

were in focus. Some additional water molecules from neighboring bridges had to be added to 

the model to ensure the well-defined positions of the two bridges of interest and to avoid their 

shifting. There are two α1 positions in these model systems, therefore we notate one of them 

with α1α and the other with α1β. α1α is part of the central α-bridge that has changing number 

of constituting water molecules, and α1β is part of the central β-bridge that has changing 

number of constituting water molecules. 

Figure 13. The model system characterizing the horizontal water thread. Note that both γ- 
and δ-bridges were also introduced to ensure that the α- and β-bridges remain unchanged. 
There are two optional waters, α3 and β3. Furthermore, α1α is an α1 type water molecule 
considered an integrated part of the α-bridge and α1β is an α1 type water molecule considered 
as a part of the β-bridge. 
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The third type of supramolecular system (Figure 14) is to characterize the vertical water 

thread. (Figure 18 and Figure 20) Thus, here the γ- and δ-bridges were in focus. 

Furthermore, we used this model to examine the effect of fluorine atom, replacing the γ-

hydroxyl group of hydroxyproline, as the γ- and δ-bridges are both attached to this amino 

acid. 

Figure 14. The model system characterizing the vertical water-threads. γ2 is an optional water 
molecule. (In a set of these models the γ-OH group of the central hydroxyproline is changed 
to a fluorine atom.) 

In each and every bridges, where X-ray crystallography data indicated (see Table 1) the 

total number of water molecules was altered, namely 2-3 in the α-, 3-4 in the β- and 2-3 in the 

γ-bridge. To test the effect of the OH  F substitution, two additional molecular structures 

were built, with a fluorine atom replacing the OH group of hydroxyproline. These models 

were also optimized both with two and three H2O(s) forming the γ-bridge. The brief summary 

of these models are reported in Table 4. 
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Table 4. Number of water molecules in each of the model systems optimized 

Number of water molecules in water bridges Calc. a
Type of model system:

αααα    ββββ    γγγγ    δδδδ    OH F ζζζζ    Opt.+SP. 

1st: AAG b NA NA NA NA NA 6 1+6 

2nd: horizontal thread c

(α and β bridges)
2-3 3-4 2 2 OH NA 4+24 

3rd: vertical thread d

(γ bridges and OH→F subst.)
2 3 2-3 2 OH-F NA 4+18 

a, Total number of supramolecular complexes optimized (Opt.) and subjected to energy 
calculation (SP.) 
b, 18 residue (alanine and glycine) incorporating model (see Figure 12) 
c, 18 residue (proline, hydroxyproline and glycine) incorporating models (see Figure 13) 
d, 18 residue (proline, hydroxyproline and glycine) incorporating models (see Figure 14) 

For the first type Ala and Gly, for the second and the third types of model systems a Pro, Hyp 

and Gly residues were incorporated within the collagen model (Table 4). All supramolecular 

systems are composed of 3x6 amino acid residues with water bridges of different length as 

required for modeling the X-ray data (see Figure 13 and Figure 14). The structure of all these 

hydrated polypeptide models were fully optimized first at RHF/3-21G level of theory and 

subsequently reoptimized with the ONIOM method, where the collagen base was still 

calculated at RHF/3-21G, while all the waters and the carbonyl and hydroxyl groups attached 

to them were considered at B3LYP/6-31G(d) level of theory. This was carried out to ensure 

that hydrogen bonds of interest are treated at a higher level of computation. The first type of 

model system composed of alanine, glycine and six water molecules were entirely optimized 

at B3LYP/6-31G(d). 

For the determination of the binding energy of each water molecule a counterpoise, BSSE, 

single-point calculation was carried out at the B3LYP/6-31G(d) level of theory, where one 

part (group of atoms) was the water molecule in focus and the other one was all the other 

atoms of the supramolecular system. So, for example, to determine the binding strength of the 

3rd water molecule in the AAG water model (Table 2 and Figure 12) the third water molecule 

was taken as the first part, while the overall triple-helix with the remaining five water 

molecules was treated as the second part of the system. The counterpoise single-point 

calculation gives a corrected total energy for the molecular ensemble of two subsets, from 

which the energies of the two individual systems are subtracted. The remaining energy is 
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what we call water binding energy or interaction energy of the system composed of the above 

two subsets:  

ΔEbinding = EBSSE corrected – (Ewater, part1 + Epart2)     eq. 43.

For example, applying this equation on the 3rd water of the AAG model the following 

calculations were completed: E of part 1 is the total electronic energy of the 3rd water 

molecule counted from the N-terminal. E of part 2 is the total electronic energy of the “rest” 

of the supramolecular complex, namely that of the 3 peptide chains plus the remaining 5 

water molecules together. The energy of a single and isolated water molecule (Ewater,part1) is –

76.4088080059 Hartree (Ewater, part1), while for the rest of the molecular system alone (without 

this water molecule) has E= –5107.93328851 Hartree (Epart2). Altogether this system has an 

energy of –5184.37342967 Hartree, which changes to –5184.36408998063 Hartree upon 

BSSE correction. The latter term is the EBSSE corrected. Thus, the binding energy according to 

eq.43 is EBSSE corrected – (Ewater, part1 + Epart2) = –5184.3640900 – [–76.4088080 +  

(–5107.9332885)] Hartree = –0.0219935 Hartree, which is –13.80 kJ·mol–1. 

In this way, we ensure that the interaction between the water molecule in focus and the 

tropocollagen model system is determined at an acceptable level of accuracy. The BSSE 

corrected binding energies, and their H-bond number normalized figures are reported in 

Table 12, Table 16, Table 17 and Table 18.

The binding energy of a water molecule in a reservoir of waters, H2O ensemble, is highly 

dependent on the calculation approach taken:84 different methods provide different explicit 

results. Thus, water stabilities and binding energies presented here are to determine relative 

orders rather than absolute values.  
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2.4 Precision and accuracy 

2.4.1 Periodic peptide models 

As they were directly designed to overcome the drawbacks of dealing with finite systems 

the capping effect does not play a role in the case of the endless structures. However, as we 

used a very small basis set, the BSSE problem must be examined.  

First of all, to reduce the effect, single point energy calculations were carried out at the 

B3LYP/6-31G(d) level on the HF/3-21G optimized structures. These calculations with the 

increased basis set did not change the energy order. Therefore we can conclude, that although 

BSSE is surely present, it does not affect the results too much in this situation, where each of 

the structures is closely packed.  

To test the size of the unit cell a calculation pair was carried out: the single layer β-pleated 

sheet (180° tilting angle) was calculated twice. First the unit cell contained only one 

tripeptide, as for the calculations with other tilting angles. For the second time the unit cell 

contained two tripeptides in a parallel arrangement. This structure with the doubled unit cell 

was also optimized at the HF/3-21G level, using the periodic boundary conditions. The results 

show that the energy and the conformation of one tripeptide unit remains the same, an 

unlikely event for non-periodic systems. Therefore the size of the model system does not 

affect the results, which is the desired situation.  
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2.4.2 Collagen models without hydration 

To confirm the small magnitude of the BSSE, the relative stability of the collagen-like helix 

and the triple-stranded extended-like backbone structure were computed for shorter models 

composed of 9 amino acid residues at different levels of theory. (Table 5) 

Table 5. The relative stability ΔE[kcal·mol-1] of the short-AAG collagen helix and AAG β-
strand models, and the error introduced by the neglect of counterpoise correction in 
calculations.  

Stability (ΔEform) in kcal·mol-1 for a triplet  

(for the whole system)Type of Superstructure 

B3LYP/6-31G(d) B3LYP/6-311++G(d,p)//
B3LYP/6-31G(d) 

ΔEcollagen-form (short-AAG col-helix)a −13.99 (−41.97) −9.25 (−27.74) 

ΔEsheet-form (short-AAG sheet)b −18.85 (−56.56) −13.89 (−41.68) 

Without 
Counterpoise 
Correction: 

BSSE is 
present 

Stability difference: ΔEconversion
c +4.86 (+14.59) +4.65 (+13.94) 

ΔEcollagen-form (short-AAG col-helix)a −7.00 (−21.01) −8.16 (−24.48) 

ΔEsheet-form (short-AAG sheet)b −12.22 (−36.65) −12.90 (−38.69) 

With 
Counterpoise 
Correction: 
No BSSE 

Stability difference: ΔEconversion
c +5.21 (+15.64) +4.74 (+14.21) 

Error introduced if BSSE neglected −0.35 (−1.06) −0.09 (−0.27) 

a, ΔEcollagen-form=Etriple helix – [Estrand1 + Estrand2 + Estrand3] 
b, ΔEsheet-form=Esheet – [Estrand1 + Estrand2 + Estrand3] 
c, ΔEconversion=Etriple helix – Esheet

In the case of the AAG-type short model the destabilization energy of the collagen helix 

with respect to β-strand at the B3LYP/6-31G(d) level of theory, with and without BSSE is: 

ΔΔEBSSE = 4.86 and ΔΔEno-BSSE= 5.21 kcal·mol-1, respectively. Thus, the error introduced 

when BSSE is ignored is clearly below the chemical precision, namely ~ –1 kcal.mol-1 [4.86 –
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5.21 = –0.35 kcal·mol-1] Table 1. This difference becomes significantly smaller (−0.09 

kcal·mol-1) at a higher level of theory {B3LYP/6-311++G(d,p)//B3LYP/6-31G(d)}. Note that 

the latter measure is −0.03 kcal·mol-1 per amino acid residue, which is much lower than the 

range of the so-called chemical accuracy. Therefore, although BSSE is present, the magnitude 

of the error introduced is minimal when using B3LYP/6-311++G(d,p)//B3LYP/6-31G(d) 

results for stability comparisons, concordantly calculations at this level are adequate, even 

though they disregard BSSE. 

For every calculated triple helix structure the starting and closing three amino acids (two 

from each strand, altogether a total of six) have somewhat distorted local conformations with 

respect to the “ideal”, triple helical conformation called as capping effect.  

To test the magnitude of such a “capping effect” on stabilization (the association) energy 

(Figure 3), we have carried out endlessly repeated (“crystal”) calculations on a seven amino 

acid long POG model, at RHF/3-21G level of theory. This model was chosen because for 

crystals calculations the symmetry of the helix has to be known, and it is certain only for the 

POG and PPG models (75). ΔE2
collagen-form (= Etriple helix – [Estrand1 + Estrand2 + Estrand3]) of the 

endless structure was compared to that of the POG collagen helix model (also computed at 

RHF/3-21G level of theory), where the latter model has serious capping effect. The result 

reveals that although the POG triple helix has capping effect at both ends, this structural flaw 

does not affect dramatically the collagen formation energy; discrepancy of about 1.5% is 

observed. Unfortunately this is not so nice for the PPG triplet. Carrying out the above 

mentioned procedure for the PPG triplet, the discrepancy between the endless structure and 

the finite model is 12%! However, these crystal calculations are not used here, because the 

HF/3-21G method cannot describe the fine H-bonding interactions that have high effect on 

the energy of the structure. (In the previous part there were the same number of hydrogen 

bonds in every structure, therefore the effect was more or less the same, unlike here.) This 

suggests that even though crystal calculations have already proven to be very useful, now 

with the use of a finite model system much higher level of theory can be used [e.g. B3LYP/6-

311++G(d,p)//B3LYP/6-31G(d) instead of RHF/3-21G] and therefore much more accurate 

stability data can be obtained. 
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3 Results 

3.1 Ramachandran maps 

The potential energy surface (PES) maps of peptides are sometimes called Ramachandran-

maps. They describe the energy of a residue in different configurations. For amino acids the φ

and ψ angles are usually varied. 

The Ramachandran-map of protected L-alanine (Ac-Ala-NHMe), glycine (Ac-Gly-NHMe) 

sarcosine (Ac-sarcosine-NHMe) and L-proline (Ac-Pro-NHMe) were constructed (for proline 

the φ angle was varied only between 190° and 360°). (Figure 15) Of course, these are not 

entirely new results, the topology of these Ramachandran-maps are already known34,85,86,87,88, 

nevertheless they are presented here as they are extremely helpful for understanding the 

conformational and energetic properties of the supramolecular complexes discussed below. 
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b, Ac-glycine-NHMe 

c, Ac-sarcosine-NHMe 
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d, Ac-proline-NHMe 

Figure 15. Ramachandran-maps of a, L-alanine (Ac-Ala-NHMe), b, glycine (Ac-Gly-NHMe), 
c, sarcosine (Ac-sarcosine-NHMe) and d, L-proline (Ac-Pro-NHMe) calculated at B3LYP/6-
31G(d) 

It can be seen that the L-alanine derivative has 3 main conformations, at the γD, βL and γL

regions (the lowest energy corresponds to the γL). It has one very high energy region (E > 10 

kcal·mol-1) around φ = 0°, ψ = 180°. The diamide unit containing glycine and sarcosine 

residues both have a quite symmetric potential energy surface (as it is normal for a non-chiral 

amino acid). The map of the glycine derivative has very small area of energies higher than 10 

kcal·mol-1, and it is also around φ = 0°, ψ = 180°. It has also three main minimal energy 

regions, γD, βL and γL, as alanine, but they are all symmetric. The map of the sarcosine 

derivative has only two minimal energy regions: γL and γD, as it has not got a minimum in the 

βL part (normal for an imino acid). Similar to the L-alanine derivative, the protected sarcosine 

has quite low energies at half of the εL part. The PES of protected proline has only a single 

minimum, in the γL region, but is has to be noted, that in around one third of the εL region 

(Figure 3) the total electronic energy is quite low: E< 6 kcal·mol-1. 
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3.2 Crystal calculations 

3.2.1 Calculated structures 

This part of the results is to answer the question: “How do so many different peptides and 

proteins form amyloid-like plaques, and why do plaques have the β-pleated sheet structure?” 

Other members of our research group (András Perczel and Péter Hudáky) carried out 

calculations on dimer peptides, and showed that among the known secondary structure 

elements (β-pleated sheet, α-helix, β- and γ-turns) the antiparallel β-pleated sheet is the most 

stable one.89 Here we show that this is applicable to all the structures, where the polypeptide 

chain is replicated periodically. We commence with a deduction that is supported by 

quantum-chemical calculations afterwards.  

If one wants to fill the space (tile) periodically with “peptide units”, and wants to find the 

conformation of the peptide in which the whole crystal is energetically optimal, it can be 

supposed, that  

- each peptide group should be connected to another by hydrogen bonding, 

- peptide or protein chains are laid parallel to each other, otherwise there would 

be parts where the hydrogen bonding with another peptide group is not guaranteed. 

Furthermore, when the same peptides are used it can be assumed that the arrangement of the 

molecules is the same. Describing a polypeptide as several peptide groups along a chain, one 

can use such molecule as a tile, to cover the 3D-space with. (see Figure 9 and Figure 16) 

Therefore, as the molecule itself is placed into one dimension, from hereby the problem is 

reduced to tiling the plane with polygons.  

To tile the plane periodically with identical polygons triangles, squares and hexagons, or –

as an extremum – parallel lines can be used. (Figure 16 a,) In these cases the central polygon 

has three, four, six, and two adjacent neighbors, respectively.  

When we substitute the polygons with the peptides they represented, it can be imagined, 

(see Figure 16 c,) that having a side chain on the central peptide does not let the neighbors to 

come close enough to form strong hydrogen bonds. The only possible position of the strands 

is when they have two neighbors, in other words when the peptides that form hydrogen bonds 

are connected in a straight line. This molecular structure is the well-known β-pleated sheet. 
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However, when there are no side-chains on the central peptide unit the other possibilities 

cannot be ruled out. That is the most that can be said by theoretical deduction. 

A,       B,

C,  

Figure 16. A, Tiling the plane (2D-space) with identical polygons. B, Tiling the space with 
oligopeptides composed of glycine (no side-chain) residues only: putting one peptide chain 
perpendicular to the plane into the center of each polygon. (Each oligopeptide is marked as a 
large black spot.) The colored arrows represent hydrogen binding between the peptides. C,
Tiling the space with peptides composed of residues having side-chain (grey circle on the 
figure): putting one peptide chain perpendicular to the plane into the center of each polygon. 
The colored arrows represent hydrogen binding between the peptides. 
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For supporting and extending this theory to those structures that we cannot compare by this 

simple deduction quantum-chemical calculations on modelpeptides were accomplished that 

form the above structures. 

The planes of the peptide groups were set in directions so that the central molecule can form 

peptide bonds with the desired number of neighbors. When the number of neighbors is two or 

four, than the tilting angles between the peptide planes are 180° and 90°, respectively. (see 

Figure 16 and Table 3) To have a central peptide that is connected to three other peptide 

units, the tilting angle must be set to 120°. However, in this case we can realize that one 

peptide group can form hydrogen bond with only one another molecule, as there is no 

possible partner on its “other side”. Therefore this case can be ruled out, as here the number of 

hydrogen bonds formed would be only half of the maximum possible numbers. The last 

possibility is when one molecule has six neighbors, and here also one peptide group can form 

hydrogen bonds with two others, therefore it is also a configuration to be examined. It should 

be noted, that in case of six neighbors there are two possibilities for the tilting angles: 60° and 

120°, both are to be examined by calculation as well. 

Furthermore, it is to be considered that peptides are typically composed of amino acids that 

have a side chain of a given size. These types of residues are chiral. Therefore the direction of 

the tilting angle becomes important, as a −60° tilting of the peptide bonds does not result in 

the same structure as the +60° tilting, unlike for the achiral polyglycine. 

The conformation (dihedral angles) and the average Cα distances of the neighboring peptide 

units are listed in Table 6. To emphasize these results, the resulted dihedral angles are also 

put onto the corresponding Ramachandran-map (Figure 17).  
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A,  

B,

Figure 17. Ramachandran-maps of A, L-alanine diamide (Ac-Ala-NHMe), B, glycine 
diamide (Ac-Gly-NHMe), with the average calculated dihedral angles of the periodic 
structures. A, 1: 2D parallel β-layer; 2: 2D antiparallel β-layer; 3: 3D parallel β-layer; 4: 3D 
packing, = +60º; 5: 3D packing, = +90º; 6: 3D packing, = +120º; 7: 3D packing, = 
−60º; 8: 3D packing, = −90º; 9: 3D packing, = −120º. B, 1: 2D parallel β-layer; 2: 2D 
antiparallel β-layer; 3: 3D parallel β-layer; 4: 3D packing, = ±60º; 5: 3D packing, = ±90º; 
6: 3D packing, = ±120º. 
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Concerning the Ac-(Ala)3-NHMe modelpeptide, from Table 6 it is clear, that the peptide 

chains are the closest to each other in one of the β-sheet structures (the average distance is 

4.72 Å for the parallel and 4.67 Å for the antiparallel form). All the other 3D structures have 

much higher (>5 Å) Cα distances and consequently longer H-bonds that are significantly 

weaker40. The situation is completely different for the glycine containing model structures. 

Here the modelpeptides stay approximately at the same distance in all the structures (Cα

distances vary from 4.68 Å to 4.75 Å only). These conformations are also put onto the 

corresponding Ramachandran-map, see Figure 17/B. Another interesting point is the 

uniformity of the repeated peptide that is reflected in the standard deviations of the dihedral 

angles. Where it is small the residues have the same conformation and the screwing of the 

chain is steady. This is the case for all types of β-sheet structures (for both the glycine and 

alanine containing peptides), and for the 3D ε-layer, built from glycines. These dihedral 

angles are in low energy regions of the Ramachandran-map, therefore the amino acids can 

take up these conformations easily. However, where a structure has large standard deviations 

for the two dihedral angles (e.g. 3D packing with tilting angles of ±90°, Figure 17), it means 

that the tilting angle of the amino acids is maintained, but this causes a significant strain in the 

residues and each of them try to lessen it in different ways. If we look at those angles on the 

Ramachandran-maps (Figure 17), we can see that these conformations belong to higher 

energy regions. 
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Table 6. Conformation (dihedral angles) and the average Cα distances of the neighboring peptides (the central peptide has hydrogen-bonding 
with) in the different crystal structures 

Structural Parameters of the Type of Lattice Constitution 
of the 

building 
blocks 
(Xxx)3

Property 2D parallel  
ββββ-layer,  

= 180º 

2D antiparallel 
ββββ-layer, 

= 180º 

3D ββββ-layer 
untilted: 

= 180º 

3D packing 
H-bonds tilted 

by = ±60º 

3D packing 
H-bonds tilted 

by = ±90º 

3D εεεε-layer 
H-bonds tilted 
by = ±120º b

Dihedral 
angles 

φ = −132.7 ± 1.2
ψ = −132.2 ± 2.6 

φ = −144.8 ± 1.8
ψ = 147.9 ± 2.3 

φ = −125.8 ± 0.7
ψ = 122.2 ± 0.6 

φ = −91.3 ± 17.0 
ψ = −164.9 ± 28.7 

φ = −85.7 ± 26.6 
ψ = 193.2 ± 38.0 

φ = −79.3 ± 1.4 
ψ = 154.8 ± 1.4 Achiral  

(Xxx = Gly) Average Cαααα
distancea 4.71 4.68 4.69 4.72 4.68 4.75 

Dihedral 
angles 

φ = −131.9 ± 1.4
ψ = 128.9 ± 2.9

φ = −148.8 ± 1.6
ψ = 149.3 ± 3.0

φ = −130.6 ± 3.0
ψ = 126.7 ± 5.6

φ = −84.2 ± 13.0 
ψ = −147.8 ± 72.0

φ = −99.9 ± 39.5 
ψ = 198.2 ± 45.8

φ = −87.3 ± 8.6 
ψ = 150.8 ± 17.8

Average Cαααα
distancea 4.72 4.67 4.72 5.49 5.01 5.51 

Dihedral 
angles N.A.b N.A. N.A. φ = 78.4 ± 7.6 

ψ = 155.7 ± 60.9
φ = 78.1 ± 10.0 

ψ = −168.7 ± 20.4
φ = 70.6 ± 8.8 

ψ = −144.7 ± 8.2

Chiral  
(Xxx = L-

Ala) 

Average Cαααα
distancea N.A. N.A. N.A. 5.44 5.24 5.36 

a, distance in Å 
b, N.A.: not applicable, as the conformation with = −180º is the same as the conformation with  = +180º 
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3.2.2 Stability of the calculated structures 

The energies of the examined periodic structures are reported in Table 7. Peptides that have 

side chains are represented by an alanine containing tripeptide Ac-(Ala)3-NHMe. The three 

most stable structures are some forms of the β-pleated sheet. The most stable form is the 

antiparallel, single layer β-pleated sheet, then the parallel single layer β-pleated sheet, and 

than the parallel multiple layered (3D) β-pleated sheet, that is still only 1.7 kcal·mol-1 less 

stable than the antiparallel form. It has to be noted that the 2 dimensional β-pleated sheet 

(single layer) is slightly more stable than the one where this layer is periodically repeated. As 

the peptides have a methyl side chain only, there is not much possibility to form interlayer 

connections and thus lower the energy of this type of structure. However, as seen for short 

peptides13, the situation is likely to change when the system incorporates other amino acids as 

well.  

The least stable structure is where the tilting angle is −60º. It is interesting, that the energy 

gap between “2-neighbored” and 4- or 6- neighbored structures is quite large, more than 10 

kcal·mol-1. That means that the calculations eventually follow the deductions we made by 

common sense. That is, the presence of a side chain forces such a big distance (as already 

seen in Table 6) among the peptide chains that the H-bonding becomes too weak. 

Peptides that do not have side chains are built up of glycine (as this is the only amino acid 

without a side chain). The energy values for the optimized poly-Ac-(Gly)3-NHMe can be seen 

in Table 7. The most stable structure is where one peptide is surrounded by six others, and the 

tilting angle of the amide groups is 120°. In this superstructure each molecule has a 

polyproline II-like backbone conformation which was also described by Crick and Rich90. 

The least stable structure is the other hexagonal, where the amide planes are tilted by 60°. In 

all these structures the distance of the peptide chains remain more or less the same. Therefore, 

as the strength of the H-bonds cannot differ so much, here the selection might also be based 

on the conformation preference of a glycine residue. This also indicates that even if the 

structure with 60° tilting angle has six neighbors (the most), and consequently its energy is 

most lowered by the BSSE, this error is more or less the same in the other structures and does 

not cause a change in the energy order of the model systems. That is quite relieving, as we 

have carried out the calculations on quite a simple level (B3LYP/6-31G(d)//HF/3-21G). 
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In summary we can state that the most stable conformation for peptides which have side 

chains is one type of β-sheet, while for polyglycine the most stable aggregation is hexagonal 

and the amino acids have εL conformations, the same as in collagen. 
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Table 7. The energies of the infinite model structures calculated at B3LYP/6-31G(d)//HF/3-21G level of theory

Type of the lattice (structural properties of the aggregate) 

Constitution of the 
building blocks 

(Xxx)3

2D parallel  
β-layer, = 180º 

2D antiparallel  
β-layer, = 180º 

3D β-layer 
untilted: 

= 180º 

3D packing 
H-bonds tilted by 

= ±60º 

3D packing 
H-bonds tilted by 

= ±90º 

3D ε-layer 
H-bonds tilted by 

= ±120º b

Achiral  
(Xxx = Gly) 8.68 a 7.03 3.96 8.84 7.36 0.00c

1.17 0.00 d 1.73 12.79 
( = +60º) 

13.23 
( = +90º) 

17.57 
( = +120º) Chiral  

(Xxx = L-Ala) N.A. N.A. N.A. 28.31 
( = −60º) 

25.55  
( = −90º) 

23.79  
( = −120º) 

a, Relative energies are in kcal·mol−1.  
b, Hexagonal arrangement resulting in a polyproline II structure for the molecule 
c, E= −872.6138729 Hartree 
d, E= −990.5514393 Hartree 
e, N.A.: not applicable, as the conformation with = −180º is the same as the conformation with  = +180º 
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3.3 The internal stability of collagen  

3.3.1 Calculated structures 

Collagen’s triple helical structure consists of amino acid residues of the same conformation, 

sometimes called PPII, or εL. Both notations stand for a residue having the dihedral angles:  

φ  −70º, ψ +150º. In the following parts we will try to shed some light on how collagen 

manages to maintain this conformation in three strands, which is otherwise not an energy 

minimum for any of the amino acids, as seen in the Ramachandran-maps (Figure 15).  

For these purposes we will compare the stabilities of three individual strands with that of 

the collagen triple helix and a triple stranded parallel β-sheet for several amino acid 

compositions, but first we compare the calculated triple helical structures and the measured 

X-ray structures. The RMSD (root mean square deviation) of the dihedral angles of all the 

calculated and X-ray structures from each other are shown in Table 8.  

3.3.1.1 Triple helices 

The calculated overall average of the dihedral angles of both types of secondary structures 

can be seen in Table 9. The structural properties of the calculated triple helices are further 

detailed in STable 1 (The average dihedral angles change a little according to the sequence 

position of the amino acid (Xxx, Yyy or Gly), therefore in STable 1 the averages are shown 

according to positions.) As in the β-pleated sheet there are no such positions only the overall 

average is shown for this superstructure. As the beginning and ending amino acids do not 

always have a conformation that is appropriate in the relevant secondary structure (capping 

effect), all these averages are calculated only from the middle four amino acids in one strand. 

Looking at the RMSD of the X-ray structures from each other in Table 8, it can be seen that 

the POG and PPG measured triple helices are quite close to each other, as their RMSD is only 

4°. Both of them differ from the AAG-type X-ray structure (RMSD 16° and 28°, 

respectively). It is interesting that the PPG measured structure is much “further” from the 

AAG-type that the POG, although the POG is said to be the ideal triplet for a collagen triple 

helix, and the AAG-type represents a somewhat loosened, slightly “unfolded” triple helix. All 

these previously mentioned three structures differ much from the POA (RMSD 28°, 31° and 
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24°, respectively), where the structure has a bulge, and it absolutely does not belong to a well-

folded triple helix. It is not a surprise that from the three folded structures the AAG-type is the 

closest to the POA. Again, the PPG is further from the POA than the POG, although the 

differences between the RMSD values are not so large as it was for the AAG-type structure. 
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Table 8. The RMSD of the average backbone values of all the calculated and measured collagen structuresa

X-ray calculated 
POG PPG AAG POA POG PPG PPa SaSaG AAG AAa GGG AAA 

POG 0 
PPG 4 0 
AAG 16 28 0 X-ray 

POA 28 31 24 0 
POG 11 12 21 26 0 
PPG 4 7 14 25 11 0 
PPa 8 10 15 27 14 7 0 

SaSaG 25 22 30 42 23 27 30 0 
AAG 15 17 17 21 20 12 14 33 0 
AAa 31 31 16 28 34 29 27 40 27 0 
GGG 28 28 37 38 21 29 31 21 32 46 0 

calculated 

AAA 51 51 51 54 49 50 51 44 47 52 38 0 

a, Root mean square deviation of the calculated and measured dihedral angles in degrees 
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There are also a number of interesting aspects about the RMSD of the calculated structures 

concerning these four measured structures (Table 8). The calculated POG model is the closest 

to the POG X-ray structure (RMSD = 11°, the rest are 12°, 21° and 26°, respectively). Both 

the PPG and PPa calculated models are also closer to the measured POG than to the PPG X-

ray structure (4° < 7° and 8° < 10°, respectively). However, they are still closer to the 

measured PPG structure than the calculated POG to its experimental counterpart.  

The rest of the computed structures resemble much less to any of the measured structures, 

indicating that these helices are slightly (or somewhat more) unfolded. The closest to 

experimental structures are the AAG and AAa calculated ones. The calculated AAa clearly 

resembles most to the AAG-type measured structure (RMSD = 16°, and the rest are above 

27°). The calculated (only alanine and glycine containing) AAG model is close to the AAG-

type X-ray structure (RMSD = 17°) (containing other amino acids as well), but it is that close 

to the measured POG and PPG structures as well (RMSD = 15° and 17°, respectively). 

Therefore regarding the structure the AAa triplet forms nearly as good triple helix as the AAG 

triplet. 

The helix formed from the SaSaG triplet is closest to the PPG measured structure with an 

RMSD value of 22°, but it is still far enough. The GGG model resembles as much to the POG 

as to the PPG measured structure, although it is quite far even from them (with an RMSD of 

28°). The AAA model forms the least folded triple helix, as it is very far from any of the 

measured structures (RMSD = 51° and 54°). Interestingly it is farthest from the POA bulge, 

that it is supposed to model. 

The rest of Table 8 is about the differences of the calculated triple helices. The calculated 

POG helix is (not surprisingly) closest to the PPG and PPa helices (RMSD = 11° and 14°). 

The PPG is close to the PPa helix (RMSD = 7°), and, interestingly, to the AAG helix (RMSD 

= 12°). This AAG helix is close to the PPa helix (RMSD = 14°), and not so far away from the 

POG model (RMSD = 20°). The SaSaG helix is the closest to the GGG and POG structures 

(RMSD = 21° and 23°), respectively, but these can only be regarded as similar structures, 

they are still quite different from each other. Not surprisingly, the GGG helix is thus closest to 

the calculated POG and SaSaG structures (both RMSDs are 21°). Although the calculated 

AAa helix seemed to be close to the AAG-type X-ray structure, it is quite different from all of 

the calculated helices, it resembles most the calculated PPa and AAG helices (both RMSDs 

are 27°). The furthest from all the other structures is the AAA helix, as its minimal RMSD is 

38° from the GGG helix. 
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The average dihedral angles of the calculated collagen helices and the calculated β-sheets 

are shown in Table 9. The  angles of the triple helices all lie in the range of –60° > x > –

100°. The POG, PPG, PPa, AAG and AAa triplet containing triple helices have their  value 

around –68°. The GGG and SaSaG triple helices have a  angle about 10° lower (~ –79°). 

The AAA structure differs mostly, as its  is ~ –93°. It is not surprising, as a non-glycine L-

amino acid at the glycine position is known to disrupt the triple helix. The  angle is not 

affected much from the amino acid substitution; it varies from 150° to 170° for all structures.  

The average dihedral angles according to the amino acid position of the measured and 

calculated structures are further detailed in STable 1. The most important data here is that the 

 angle of the AAA model at the glycine position is as high as –117°, which is not surprising 

as this is the place where the substitution affects the structure most. 

Therefore both the RMSD (Table 8) and the dihedral angle values (Table 9) indicate, that 

the POG, PPG, PPa and AAG triplet containing calculated structures are close to their 

experimental counterparts. The AAa, SaSaG and GGG triplet containing triple helices are not 

so tightly bound, they are a bit unfolded. The AAA triplet can never take up the triple helical 

structure (as it was expected), because alanine in the place of glycine elongates the chains 

from each other. Looking at the Ramachandran-maps it can be seen that all amino acids have 

a part of εL region that has relatively low energy. That is why all these triplets (except for 

AAA) can eventually adopt the collagen triple helix structure. 
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Table 9. Structural data of the different collagen and β-pleated sheet models 

Structure a    (XYZ-XYZ)3 ψψψψ    
POG –70.7 ± 13.8 163.3 ± 16.7 
PPG –67.6 ± 7.9 161.5 ± 11.3 
PPa –67.1 ± 8.0 158.8 ± 14.8 

SaSaG –78.7 ± 3.3 169.4 ± 10.4 
AAG –66.6 ± 10.6 159.0 ± 12.7 
AAa –69.5 ± 5.4 149.9 ± 12.0 
GGG –79.9 ± 18.7 167.0 ± 24.2 

Tropocollagen 
triple-helix 

AAA –92.9 ± 24.7 158.1 ± 19.6 
POG –98.4 ± 33.8 147.0 ± 30.1 
PPG –89.9 ± 23.9 147.9 ± 33.9 
PPa –93.1 ± 40.2 148.9 ± 46.5 

SaSaG –109.0 ± 25.0 130.2 ± 49.6 
AAG –143.4 ± 26.7 150.8 ± 20.9 
AAa –151.2 ± 46.5 157.4 ± 31.9 
GGG –137.4 ± 9.5 147.4 ± 8.4 

Parallel 3-
stranded ββββ-pleated 

sheet 

AAA –134.4 ± 10.9 135.8 ± 14.1 
a, Average backbone conformational parameters and standard deviation, all in degree  

3.3.1.1 β-sheets, individual strands 

The disintegration of the triple-stranded collagen helix into three “individual” and isolated 

extended-like polypeptide chains can be performed and the resulted polypeptide conformers 

can be used as energy reference structures.(Figure 11) This is useful also because these 

formation energies are the most relevant when compared with melting point measurement 

data.57

Depending on the amino acid sequence of the model, a somewhat different elongated 

backbone conformer is obtained, when fully optimized. These isolated polypeptide chains 

form β-strands, with every amino acid residues adopting a βL-like local conformation for all 

the GGG, AAA and AAG triplet containing models. Strands formed by AAa triplets, systems 

incorporating D-Ala(s) and L-Ala(s) have also an elongated or (βL)n type main chain fold. The 

average torsion angles associated with L-Ala are around φ = –160˚, ψ = +168˚, while those of 

D-Ala are close to their mirror image (φ = +160˚, ψ = –168˚). The conformation of the 

isolated polypeptide chains formed by POG, PPG, PPa and also by SaSaG are peculiar, since 

imino acids, such as proline, hydroxyproline and sarcosine can only adopt εL- or γL-type 

elongated local conformers,91,92 (Figure 3 and Figure 15) with φ around –70˚ (and the mirror 
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image, φ around 70˚ for sarcosine). Furthermore, in the POG strands, various H-bonds are 

formed between the OH group of hydroxyprolines and the CO groups of some other residues.  

The backbone folds of these isolated single strands show a clear amino acid sequence 

dependence presenting the first steps on different oligomerization paths.  

All β-sheets, as the collagen triple helices, consist of a total of 18 amino acid residues; 6 

residues per strand. The GGG, AAA and AAG sheet models are regular triple-stranded 

parallel β-pleated sheets. Their average φ and ψ torsion angles vary to some extent with their 

amino acid composition, –135±11° and +147±8°, –134±11° and +136±14°, and –113±27° and 

+121±21°, respectively, all forming the usual interstrand S12 type H-bonding pattern36. The 

average H-bond lengths are again very similar, namely 1.99Å, 1.98Å and 2.00Å, respectively. 

Although the POG, PPG and PPa triplet containing β-strand models are composed of three 

parallel extended-like backbone structures, except for glycine they do not adopt βL-type local 

conformations, also loosing the characteristic S12 H-bonding pattern too. Indeed Gly is the 

only residue which adopts βL-type backbone conformation both in the PPG sheet and in the 

POG sheet models. The D-alanine in the PPa model adopts βL or γD conformations (with 

torsion angles e.g. φ = +174° and ψ = –186°). In the AAa triplet containing three-stranded β-

sheet model the “unnatural” configuration of the methyl groups of the D-alanine inhibits the 

formation of a conventional β-strand. Nevertheless, the three polypeptide chains stay close 

enough to consider their assembly as a proper reference structure, so much more, as the S12 

H-bonding pattern is maintained, with 2.03Å average H-bond length.  

In spite of their structural variability they all can be used as structures modeling the β-

pleated sheet. However, the overall structural properties of these β-sheet models signal that 

the higher the imino acid content of the system is the more the β-sheet structure will be 

distorted.  

Isolated strands are not restricted at all, and the conformational preferences of the amino 

acids can be observed the most here. These preferences can also be examined (although at a 

much lesser extent) at the other two secondary structures.  
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3.3.2 Stability of the calculated structures 

The stability of the collagen triple helix with various amino acid constitutions is 

summarized in Table 10 and Table 11 (compared to the parallel β-sheet). The stability of 

these secondary structures with respect to the three isolated strands are shown in STable 2

and STable 3. Values are scaled for a triplet (three amino acid residues) first, as this is the 

unit of the triple helix. Furthermore, concerning the crystal calculations, these results can be 

compared with the previous ones. 

Energy calculations were carried out at the B3LYP/6-311++G(d,p)//B3LYP/6-31G(d) level 

of theory in vacuum and at the B3LYP/PCM/6-31G(d)//B3LYP/6-31G(d) level of theory in 

aqueous phase. Generally, the relative energy order of secondary structure elements do not 

change upon switching level of theory, however the absolute values are the smallest for PCM 

and largest for B3LYP/6-31G(d) results. (Table 10, Table 11, STable 2 and STable 3) 

The collagen triple helix stability compared to three individual strands (ΔE2
collagen-form., 

Figure 11) as function of the primary sequence is: AAA<PPa<AAa<AAG<GGG 

<POG<PPG<SaSaG, (STable 2 and STable 3) where the formation is favored for the GGG, 

AAG, POG, PPG and SaSaG triplets. The latter tendency is in agreement with general 

expectations based on experimental melting point data of various triplets embedded in a 

(POG)3-XYG-(POG)4 sequence.57 According to Ackerman et al.,57 the thermodynamic 

stability of a triple helix can be well-characterized by its melting temperature (Tm), which is 

the temperature where the triple helix  individual chains transition occurs. Melting 

temperatures can be as low as 29°C for a model where the AAG sequence is embedded. The 

same Tm is 43°C when there is a PPG triplet at the centre of the POG oligopeptide. The 

melting temperature rises to 45°C for a POG triplet. As a comparison, the melting temperature 

of human type I collagen is around 36°C.93 The G  A mutation is known to cause a 

destabilization in a POG sequence,53 therefore we can assume the same for the AAG 

sequence. In conclusion, stability of the experimental models grow in the AAA  AAG 

PPG  POG direction, a trend based on the increase of melting temperatures. (There is no 

available experimental data for the GGG, AAA and AAa-triplet collagen models.) As for the 

theoretical models the stability order is the following: AAA  AAG  POG  PPG.  

The similarity between computed and measured stability data are very good, there is a slight 

discrepancy concerning the stability order of “POG” and “PPG” type models. (STable 2) That 

is why we have carried out frequency calculations, to try to find out whether it is the caused 
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by the fact that we have calculated only energies instead of Gibbs free energies. ΔG2
collagen-form

give the quite different GGG<PPa<AAA<AAG<PPG<POG<AAa<SaSaG order. The POG 

triplet has become more favored now as the PPG triplet, reproducing the measured stability 

order. However, the placement of the AAa triplet is quite unexpected. So much the more, 

because PPa became much less stable than the AAa triplet, and PPa is supposed to form a 

more stable triple helix than AAa, as the first have helix formation promoter prolines in it, and 

the second does not. Therefore these calculations do not provide the expected order neither, 

meaning that there are still more things (e.g. solvation effects) to be considered when trying to 

obtain the experimental stability order results with calculation. 

Secondary structural preference or stability of collagen triple helix with respect to β-sheets 

as function of their primary sequence is reported in Table 10 and Table 11. For the non-

imino acid containing models, AAA, GGG, AAa and AAG, the triple-stranded parallel β-

pleated sheet structure is stable over the collagen-like triple helical structure both with respect 

to energy and with respect to Gibbs free energy results. For these four models, by using the 

PCM solvent model, the relative energies are as follows: ΔEB3LYP/PCM/6-31G(d)//B3LYP/6-31G(d) = 

+6.4, +3.8, +4.3 and +4.7 kcal·mol-1, respectively.(Table 10) The most stable β-sheet is 

formed by the “alanine only” model, AAA, at all levels of theory.  

Conformation selection is reversed for the other four (SaSaG, PPa, PPG- and POG) models. 

In fact, the collagen triple helix of the PPG model becomes more stable by 4.8 kcal·mol-1 in 

vacuum and by 3.8 kcal·mol-1 in water. (Table 10) The POG model in its triple helical form is 

more stable than the POG-sheet model by 3.4 kcal·mol-1 in vacuum and 2.0 kcal·mol-1 in 

water. Regarding the Gibbs free energy data, it is interesting that again the PPG model is 

more stable than the POG triplet. The SaSaG triplet has around the same amount of Gibbs 

free energy difference between the two secondary structures as the POG (Table 11), although 

regarding the energy data it is less stable. For the PPa triplet the triple helix formation is only 

slightly preferred regarding both the simple energy and the Gibbs free energy data. 
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Table 10. Stability of the triple helical structures compared to β-pleated sheet models 
Stability differences or ΔEconversion between the triple-stranded β-sheet and the collagen triple 
helix models (both containing 18 amino residues) as a function of their amino acid 
composition, calculated at different levels of theory 

Energy Differences Between Secondary 
Structures (Collagen triple helix vs. ββββ-sheet, 

ΔΔΔΔEconversion/kcal·mol-1 a per triplet b) 
(The same for the complete molecular 

system): 

Structural Differences c 

Between Secondary 
Structures (collagen triple 

helix vs. ββββ-sheet) (Δζ/(Δζ/(Δζ/(Δζ/°):):):):

Type of 
Model 

B3LYP/ 
6-31G(d) 

B3LYP/6-
311++G(d,p)// 

B3LYP/6-
31G(d) 

B3LYP/PCM/
6-31G(d)// 
B3LYP/6-

31G(d) 

B3LYP/6-31G(d) 

POG –4.3 (–25.9) –3.4 (–20.4) –2.0 (–11.9) 39 

PPG –5.3 (–31.6) –4.8 (–28.6) –3.8 (–22.9) 34 

PPa –2.5 (–15.1) –0.9 (–5.4) –0.3 (–1.6) 43 

SaSaG –2.7 (–16.3) –2.5 (–15.1) –2.9 (–17.4) 52 

AAG +7.1 (+42.9) +6.8 (+40.8) +4.7 (+28.4) 59 

AAa +6.2 (+37.5) +6.0 (+35.9) +4.3 (+26.2) 69 

GGG +6.3 (+38.1) +6.3 (+37.6) +3.8 (+22.6) 51 

AAA +8.8 (+53.0) +8.6 (+51.6) +6.4 (+38.5) 38 

a, ΔEconversion: Etriple helix–Esheet (Figure 3) 
b, The formation energy is divided by the number of triplets: (Etriple helix–Esheet)/6 
c, Structural differences (Δζ/°) are the quadratic mean of the differences of the relevant 
dihedral angles. For example, the φ angle of P in the OPGOPG strand of the β-sheet of POG 
models is applicable to the φ angle of P in the OPGOPG strand of the triple helix structure. 
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Table 11. Stability of the triple helical structures compared to β-pleated sheet models 

a, All values (in kcal·mol-1) are relative to the appropriate extended like and isolated N- and 
C- protected hexapeptide (see method) 
b, Electronic energy and Zero-Point Vibrational energy 
c, Electronic energy, Zero-Point Vibrational energy, vibrational, rotational and translational 
energy 
d, T = 298.15 K  

The structural differences between the collagen triple helix and β-sheet are the smallest for 

the POG, PPG, PPa and AAA models, namely 39°, 34°, 43° and 38° respectively. For the 

SaSaG and GGG Δζ is higher and the largest values are for the AAG- and AAa- models. A 

small value of Δζ indicates that either the β-strand or the collagen helix secondary structure is 

not ideal because of one or more of the component amino acid residues have a locally 

distorted backbone structure. On the contrary a larger value signals that the amino acid 

composition is equally suitable for both types of secondary structures. Therefore the AAa, 

AAG, GGG and even SaSaG triplets could form both type of secondary structures, while 

POG, PPG and PPa have a strong preference for the triple helix, and AAA prefers the β-

strand.  

In total, the calculated stability order regarding the energy data of the collagen triple helices 

with respect to the parallel three stranded β-sheet is as follows: 

Stabilitya

Type of model 
ΔΔΔΔEb    ΔΔΔΔU c    ΔΔΔΔH TΔΔΔΔS d ΔΔΔΔG

POG -23.9 -24.9 -24.9 -10.5 –14.4 

PPG -29.9 -30.6 -30.6 -9.1 -21.5 

PPa -12.9 -13.8 -13.8 -10.4 -3.4 

SaSaG -16.5 -16.4 -16.4 -3.4 -13.0 

AAG 41.6 41.1 41.1 -7.7 48.8 

AAa 36.1 36.6 36.6 -2.1 38.7 

GGG 38.1 37.6 37.6 -6.1 43.6 

AAA 50.1 50.5 50.5 -2.2 52.6 
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AAA<AAG<AAa GGG<PPa<SaSaG<POG<PPG. Note that the relative stability order of 

AAa and AAG is reversed here relative to the order established previously when individual or 

isolated strands were used as the reference state. Interestingly, the formation of the GGG 

triple helix seems slightly more favorable than that of the AAG with respect to both reference 

states.  

Regarding the Gibbs free energy the stability order changes to 

AAA<AAG<GGG<AAa<PPa<SaSaG<POG<PPG. The first four have positive ΔG3
conversion, 

therefore they would form β-sheet instead of triple helix. The PPa sequence containing triple 

helix is only slightly more stable than its sheet form, it would not make a good collagen. 

However, the formation of a SaSaG triple helix is favored both with respect to individual 

strands and with respect to a sheet structure, therefore it would be interesting to test it 

experimentally. The formation of a triple helix from sheets is preferred both for the PPG and 

POG triplets. 

Also, the primary sequence dependent secondary structure preference obtained by ab initio

calculations also verify that (L)-Ala instead of “Gly” destabilizes the collagen triple helix, and 

only with prolines (or hydroxylprolines) in the Xxx and Yyy position is the triple helical fold 

more stable than the β-sheet. 

Although potential energy surfaces do not have a minimum at the εL region, half of that 

region has quite low energy (the exact amount depending on the amino acid residue), that is 

why amino acids can easily be incorporated into a collagen triple helix. Only D-alanine (that 

has a Ramachandran-map that is central symmetric to the map of alanine) has an εL region 

representing a higher energy, that is why this amino acid distorts slightly more the structure, 

as it can be observed most particularly on the AAa model. 

Let us summarize the results obtained so far. From crystal calculations it is clear, that all 

amino acids that have side chains prefer the sheet structure in an aggregate. Polyglycine in a 

crystal mostly prefers a hexagonal arrangement than any sheet structure. However, reducing 

the number of chains to three (having collagen triple helix and triple stranded β-sheet), even 

for glycine chains the sheet becomes more stable. So what is needed to stabilize a triple helix? 

In crystal polyglycine (polyglycine II) every H-bonding capacity is fulfilled, therefore if we 

look at a triplet, it makes six H-bonds. In a triple helix the number of H-bonds is reduced to 

two per a capacity of six, therefore only one third of them are fulfilled. (In the sheet it grows 

to four per six.) Applying sarcosines instead of glycines where the position enables it (2 from 
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3 residues) the H-bonding capacities are reduced by two, as sarcosines do not have amide 

hydrogens. So the occupied/capacity ratio changes to 2/4. This ratio remains the same for the 

PPG and POG triplets as well. As it can be seen from collagen crystal structures (e.g. 1V7H), 

this remaining two hydrogen-bonding capacity is fulfilled by bonding water molecules for the 

POG and PPG triplets. It could be done for the SaSaG triplet as well, so there should be 

another explanation for why nature did not use sarcosine. There are two possible reasons. The 

first is the possibility of misfolding. A sheet structure made of SaSaG triplets is more stable 

than three individual strands, therefore it can be a folding trap. The second is, it might occur 

that collagen does not need to be as stable as a triple helix from SaSaG is. The C-terminal 

region of the protein strands helps the triple helix to fold, and tropocollagen is always further 

assembled into fibrils, therefore the individual stability of a triple helix might not be so 

important. Also, since collagen is a protein that sometimes needs to be quickly dismantled 

(e.g. when healing wounds), the individual stability of the triple helix does not have to be too 

high. 
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3.4 The first hydration layer of collagen 

3.4.1 Reference bulk water molecules 

The binding energies of the water molecules in the reference state turned out to be around  

–4.3±0.2 kcal·mol-1 per one hydrogen bond (Table 12). The central water molecule has 

different number of surrounding or neighboring water molecules, thus establishing hydrogen 

bonds of different numbers and types. In all cases the geometry of the water system is 

maintained as it was in a periodic ice. The energy difference between a water molecule 

attached to the surface of tropocollagen as an element of a given water-bridge (e.g. α−, 

β−, γ− or δ−) is to be compared to the stability of a molecule embedded among additional 

water molecules (SFigure 1). Note that, at present, this stability data differences are to be 

considered as semi-quantitative values due to several uncertainties described above.  

Table 12. The binding energies of a central water surrounded by two, three or four hydrogen 
bonded neighbors all in a tetrahedral ice (SFigure 3) as calculated at the B3LY/6-31G(d) 
level of theory 
Number of H-bonded 

Neighbors 
Binding Energya (per H-bond) 

2 –9.3b (–4.6) 

3 –12.6c (–4.2) 

4 –16.8d (–4.2) 

Average / H-bond –4.3±0.2 

a, kcal·mol-1 

b, the total energy of the system of 3 water molecules (without counterpoise correction) is  
–229.242838048 Hartree 
c, the total energy of the system of 4 water molecules (without counterpoise correction) is  
–305.657568759 Hartree 
d, the total energy of the system of 5 water molecules (without counterpoise correction) is  
–382.075133279 Hartree 
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3.4.2 Topology of the water threads

We have discovered that in the 1V7H63 the above described four different types of water-

bridges consist of two different sets of left-handed spirals wound around tropocollagen. The 

first one, (Figure 18a and Figure 19) which consists of the α− and β−bridges, has a shallow 

slope and makes one full turn around tropocollagen per triplet. The second one comprises α−, 

γ− and δ−water bridges and has a steeper ascend and makes one full turn only per 4 triplets. 

(Figure 18b and Figure 20) To sum it up, in total there are five different threads of water 

spirals around a tropocollagen fiber that wrap the protein like a net. These two types of 

threads, horizontal and vertical are interconnected (Figure 21) and one water molecule can be 

part of more water bridges. For example the β1 water (Figure 6) is an integrated element of 

both the β− and γ− bridges and, so, it is the element of both the horizontal and vertical 

threads. 

Figure 18. Schematic representation of a, the four parallel and quasi-horizontal as well as of 
b, the single and quasi-vertical water-threads forming the principal elements of the first 
hydration layer around tropocollagen. c, these five water-threads, as can be seen in the 1V7H 
X-ray structure63. The oxygens of the water molecules and of the tropocollagen helix are 
marked with red, the carbon atoms are green and the nitrogens are blue. No hydrogen atoms 
are shown. 

a, b, c,a, b, c,
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Figure 19. A schematic representation of the network of the horizontal water-thread. The 
water molecules are at the edges of the solid lines, otherwise representing a hydrogen-bond. 
This type of left-handed spiral water-thread does not depend on the amino acid composition 
of tropocollagen. However, if the residues are not the “normal” proline or hydroxyproline and 
glycine residues, the side chains may get into the way of these water-bridges (e.g. 1BKV), or 
even substitute one of the water molecules (1BKV)58. 
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Figure 20. A schematic representation of the network of the vertical water-thread. (The water 
molecules are at the edges of the solid lines, otherwise representing a hydrogen-bond.) As 
significantly steeper than its horizontal counterpart, a total of four separated horizontal water-
threads are needed to cover the tropocollagen completely. 
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Figure 21. A schematic representation of the H2O network of all the horizontal and the 
vertical water-threads. (The water molecules are at the edges of the solid lines, otherwise 
representing an H-bond.)  
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3.4.3 Calculated structural properties of the first hydration shell 

The structural properties of the 3x6 amino acid containing “collagen base” model is to be 

compared to the waterless or “dry” collagen part made up of POG triplets94 and to that of the 

X-ray structure 1V7H63, which contains multiple layers of structural waters, too. The 

backbone geometrical properties of the ab initio optimized hydrated model systems are closer 

to the X-ray structure which contains explicit waters around collagen, than to that of the 

waterless or “dry” structural model. In fact, the RMSD of the average dihedral angles are 

around 4° smaller when compared to 1V7H63, rather then to the vacuum optimized 

tropocollagen model. (e.g. RMSD of the POG-model with 2α- and 3β-waters with respect to 

the “dry”-model is 20°, while for the X-ray structure it is 16°.) (For RMSD calculations see 

reference 94.) Larger than 20° dihedral angle shifts are only present at the C- and N-termini of 

the model, a clear sign of the well-known “capping-effect”, typical of any finite model 

system. 

The structure comparison of the X-ray determined (measured) and of the ab initio

calculated tropocollagen models, with respect to the connecting hydrogen-bond parameters 

are shown (Table 13 and Table 14).  

Table 13. Hydrogen-bond distances between collagen atoms and water molecules of the first 
hydration layer in the AAG-type collagen parts and in the AAG model with 6 water 
molecules (first type of model system) (Figure 12), at the B3LYP/6-31G(d) level of theory.

r(O…O) (Å) 
Type of H-

bond 
Measured: X-ray 

(standard deviation) 

Calculated b

(standard deviation) 

Gly C=O...O 3.02 (0.21) a 2.82 (0.01) 

Xxx NH...O 2.85 (0.17) a 2.89 (0.01) 

a, Data are from the 1BKV PDB structure58

b, calculated values are taken from the AAG model system, see Figure 12 and Table 4.  

For the first two types of model systems (AAG-type water and α- and β-bridges) the 

calculated hydrogen-bond lengths are slightly shorter than those retrieved from the solid state 

measurements: e.g. for the AAG-type system rmeasured= 3.02±0.21Å > rcalc.= 2.82±0.02Å. Note 

that the standard deviations of the experimentally determined H-bond distances for the 

internal waters are relatively large. The standard deviances of the measured data are by a 
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magnitude larger than the values obtained from calculations, indicating the inherent 

homogeneity of the calculated geometries (Table 13 and Table 14).  

In the third type of model system (Table 15) the situation is reversed; the measured H-bond 

distances are slightly shorter than the calculated ones, e.g. rmeasured= 2.79±0.08Å < rcalc.= 

2.87Å. However, the above mentioned structural differences are minor. In general, for all 

three model types the calculated and the experimentally determined r(O…O) values are rather 

close to each other: Δr < 0.15Å.  

We cannot compare the fluorine atom containing models with any experimental data, as to 

the best of our knowledge there is no such information available. However, the RMSD of the 

flouroproline containing model from both the “dry” POG model and the hydrated X-ray 

structure also stays beneath 20o. It should also be noted that the Pro-F…HOH distances are 

slightly longer than that of the hydroxyproline containing models. On the other hand, there is 

no significant change for this distance as a function of the number of water molecules (2.96 Å 

and 2.93 Å for 2 and 3 water molecules in the γ-bridge, respectively). 

In conclusion, both in terms of backbone conformation and hydrogen-bond parameters, the 

structural properties of the 18 residue containing tropocollagen models are good 

representatives of the X-ray measured structures (Table 13, Table 14 and Table 15). 

Therefore, the associated stability data could be treated with confidence.  

Table 14. Hydrogen-bond distances between the appropriate collagen atoms and water 
molecules for the α- and β-water bridges of the horizontal water thread (second type of model 
system), at the B3LYP/6-31G(d) level of theory.

r(O…O) (Å) 

CalculatedbType of H-

bond 
Measured: X-ray 

(standard deviation) 2α 3β2α 3β2α 3β2α 3β    2α 4β2α 4β2α 4β2α 4β    3α 3β3α 3β3α 3β3α 3β    3α 4β3α 4β3α 4β3α 4β    

Gly C=O...αααα1α1α1α1α 2.77 (0.05) a 2.70 2.70 2.69 2.69 

Gly C=O...αααα1β1β1β1β 2.77 (0.05) a 2.67 2.73 2.74 2.74 

Hyp C=O...αααα2222 2.79 (0.07) a 2.73 2.70 2.81 2.79 

Hyp C=O...ββββ1111 2.84 (0.10) a 2.69 2.71 2.73 2.70 

a, Data are from the 1V7H PDB structure63  
b, calculated O...O values were taken from the second type of model systems, see Figure 13
and Table 4. As there are only one set of calculated distances, there is no standard deviation 
attached to them. 
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Table 15. Hydrogen-bond distances between the appropriate collagen atoms and water 
molecules for the γ- and δ-water bridges of the vertical water thread (third type model 
system), at the B3LYP/6-31G(d) level of theory. 

r(O…O) (Å) 

CalculatedbType of 

H-bond 
Measured: X-ray 

(standard deviation) X====OH, 2γ, 2γ, 2γ, 2γ    X====OH, 3γ, 3γ, 3γ, 3γ    X====F, 2γ, 2γ, 2γ, 2γ    X====F, 3γ, 3γ, 3γ, 3γ    

Pro-X...δδδδ1111 2.72 (0.12) a 2.70 2.82 2.96 2.93 

Pro-X...γγγγ1111 2.79 (0.08) a 2.87 2.86 2.98 2.97 

a, Data are from the 1V7H PDB structure63  
b, calculated O...O values were taken from the third type of model systems, see Figure 14 and 
Table 4. As there are only one such calculated distances, there is no standard deviation 
attached to them. 

3.4.4 Stability properties of the internal and of the first hydration shell 

3.4.4.1 Internal water molecules in tropocollagen 

Recall that the AAG-model system stands for those collagen subunits where binding or 

enzymatic cleavage occurs in nature. The gradual analysis of the water binding energies of the 

six internal waters present in the AAG-model system (Table 16) shows that they do not differ 

so much from each other. In fact binding energies of the waters located either at the N- or at 

the C-terminus of the model system are very similar to those in the middle. The average 

binding energy is –4.9 kcal·mol-1 per hydrogen-bond, if all six molecules are taken into 

account. This average stabilization energy increases slightly to –5.1 kcal·mol-1 when the four 

central water molecules are considered only, with a halved standard deviation value (0.4 

kcal·mol-1 → 0.2 kcal·mol-1).  
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Table 16. Binding energies of water molecules in the AAG-model – with 6 bound molecules. 
As our model is 6 amino acid long, there are six binding sites. Each of these water molecules 
connect the amide NH of residue Xxx with the C=O of Gly (Figure 7). Water molecules are 
numbered along the model system, starting from the N terminus. 

N° of water molecule 

(total No. of participating 

hydrogen-bonds) 

Binding energya  

(per hydrogen-bond) 

1st (3) –13.8 (–4.6)b

2nd (3) –15.5 (–5.2) 

3rd (3) –14.7 (–4.9) 

4th (3) –15.2 (–5.1) 

5th (3) –15.8 (–5.3) 

6th (3) –12.9 (–4.3) 

Averages –14.6±1.1 (–4.9±0.4) 

Average of the central 4 

water molecules only 
–15.3±0.5 (–5.1±0.2) 

a, kcal·mol-1, calculated at the B3LY/631G(d) level of theory by the counterpoise method. 
b, the total energy of the system (without correction) is −5184.37342967 Hartree. 

Thus, by removing structural distortions introduced by the capping effect, the average 

stabilization energy of the embedded waters seems constant: –5.1±0.2 kcal·mol-1. Since this 

stabilization energy is somewhat higher than that of the cubic ice (–4.3±0.2 kcal·mol–1 per 

hydrogen bond), from a thermodynamic point of view the formation of these internal type 

hydrogen-bonds are preferred. The homogeneity of the above water-binding energies shows 

that this model is principally correct: it predicts uniform binding energies for all binding sites 

along the triple-helix. Note that the standard deviation of this water-binding energy is as low 

as 0.4 kcal·mol-1, even if all six places are taken into account (Table 16). Based on the 

success of this model system, for all the following α−, β−, γ− and δ−bridges we have 

generated and optimized only a single suitable water-bridge and we have concentrated on 

placing the examined water molecules in the middle of a water “patch” and also in the middle 

of the triple helix structure. 
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3.4.4.2 The α− and β− type water bridges (the quasi-vertical water-thread of tropocollagen) 

The water position specific H-bonding energies of both the α- and β-bridges formed by 

different number of water molecules are reported in Table 17, while Figure 22 is designed to 

help to understand the connection between the model systems.  

αααα3 3 3 3 b    

2α3βa   ↔  3α3β

ββββ3333     ββββ3333c

2α4β   ↔  3α4β
αααα3333    

Figure 22. The explicit water content in the horizontal type of model systems, focusing on the 
α- and β-bridges. The α1 water molecule is considered as a part of the α- and the β-bridge as 
well.(Figure 6) 
a, 2α3β stands for the POG-model system, composed of 18 amino acid residues with 2 α and 
3 β water molecules in focus (Figure 13) 
b, α3 stands for the optional α-type water molecule of the α-bridge (Figure 13)    
c, β3 stands for the optional β-type water molecule of the β-bridge (Figure 13) 
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For all sites the water binding energy is higher than it would be in a cubic ice  

–4.3±0.2 kcal·mol-1/ hydrogen-bond (Table 12), thus, hydration is thermodynamically 

preferred. For all the other α- and β-type water binding places (e.g.    α1α, α2,.., β1, β2,..) the 

normalized water binding energies change with the number of incorporated waters. For 

example, upon inserting the β3 water while having two water molecules in the α−bridge, 

[(2α3β) → (2α4β)], the normalized water binding energy at the β2 position becomes very 

different, namely in increases from –4.4 to –6.7 kcal·mol-1 (Table 17). The insertion of the β1

water has similar tendencies: its stability also increases from –5.5 to –6.1 kcal·mol-1 upon the 

expansion of the β-bridge. This stability increase is clearly associated with the appearance of 

another water molecule in the β3 position, also detected for the 3α3β and 3α4β systems.  
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Table 17. The position specific binding energy of waters located at the horizontal water 
thread (second type of model system) (Figure 13)

Binding energy of the waters in the α−β α−β α−β α−β combined 

bridges a (the same normalized for H-bonds)

Water-

bridge 

type 

Type of water  

(No. of H-bonds f) 
2α3β α3β α3β α3β b 2α4βα4βα4βα4β c 3α3βα3βα3βα3β d 3α4βα4βα4βα4β e

αααα1αααα (4) –31.3 (–7.8) –30.5 (–7.6) –32.8 (–8.2) –32.6 (–8.2)

αααα2 (3 or 4) –21.8 (–7.3) –27.1 (–6.8) –26.9 (–9.0) –28.1 (–9.4)αααα    

αααα3 (3) (optional H2O) --- --- –26.0 (–8.7) –26.7 (–8.9) 

minimal αααα bridge: (αααα1111+αααα2222)    –53.1 (–7.6) –57.6 (–7.2) –59.7 (–8.5) –60.7 (–8.7)

ββββ1 (3 or 4) –16.5 (–5.5) –24.2 (–6.1) –22.1 (–5.5) –28.3 (–7.1)

ββββ2 (2) –8.7 (–4.4) –13.4 (–6.7) –10.0 (–5.0) –14.4 (–7.2) 

ββββ3 (2) (optional H2O) --- –12.3 (–6.1) --- –12.6 (–6.3) 
ββββ    

αααα1ββββ (4) –28.4 (–7.1) –29.2 (–7.3) –29.2 (–7.3) –28.6 (–7.1)

    minimal ββββ-bridge:

 (β (β (β (β1111+ββββ2222+αααα1β1β1β1β))))
–53.6 (–6.0) –66.8 (–6.7) –61.3 (–6.1) –71.3 (–7.1)

    minimal combined αααα- and 

ββββ-bridge: (αααα1111+αααα2222+β+β+β+β1111+ββββ2222+αααα1β1β1β1β) 
–106.7 (–6.7) –124.4 (–6.9) –121.0 (–7.1) –132.0 (–7.8)

a, kcal·mol-1, calculated at the B3LY/631G(d) level of theory by the counterpoise method.
b, the total energy of the system (without correction) is –7023.14841613 Hartree 
c, the total energy of the system (without correction) is –7099.60677187 Hartree 
d, the total energy of the system (without correction) is –7099.61128846 Hartree 
e, the total energy of the system (without correction) is –7176.03985369 Hartree 
f, total number of H-bonds formed by a particular water molecule 

The insertion of the extra water molecule into the β-bridge at the β3 position increases the 

normalized stability of the entire (β1+β2 +α1β) water bridge as well: ΔE(2α3β)= –6.0 

kcal·mol-1 > ΔE(2α4β)= –6.7 kcal·mol-1, respectively (Figure 22 and Table 17). Furthermore, 

with a water molecule at β3 position the binding energy of both of the “essential” β1 and β2

waters rises: ΔE(β2)2α3β= –4.4 kcal.mol-1 > ΔE(β2)2α4β= –6.7 kcal·mol-1 and ΔE(β1)2α3β= –5.5 

kcal·mol-1 > ΔE(β1)2α4β= –6.1 kcal·mol-1, respectively (Table 17). 
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On the contrary, the very same “surplus” β3 water has no or only a slightly destabilizing 

effect on the normalized H-bonding energy of the waters forming the α-type water-bridge. 

For example, at the α1α positions no significant changes are detected: ΔE(α1)2α3β ~

ΔE(α1)2α4β~ –7.7±0.1 kcal·mol-1 while ΔE(α1)3α3β = ΔE(α1)3α4β~ –8.7 kcal·mol-1, respectively. 

Unlike for α1, the insertion of the β3 water decreases more dramatically the normalized 

binding energy of the α2 water: ΔE(α2)2α3β= –7.3 kcal·mol-1 < ΔE(α2)2α4β= –6.8 kcal·mol-1, 

respectively (Table 17). Although the appearance of the β3 water increases the total binding 

energy from –21.8 to –27.1 kcal·mol-1 (Table 17), the total number of H-bonds formed by the 

α2 water also increases from 3 to 4. Thus, the H-bond normalized water binding energy 

decreases slightly at α2 when the β-bridge is enlarged by β3. 

The normalized water binding energy of the α1α- and α1β-type molecules, both of 4 H-

bonded partners, is about the same in all the four models: ~–7.9±0.3 kcal·mol-1, and  

~–7.2±0.1 kcal·mol-1, respectively. On the one hand, it is interesting that the stability data of 

both types of waters seems not to be affected by the total number of waters forming the α− or 

β−bridges. On the other hand, the actual difference in figures indicates that the α1α and α1β

positions are not quite equivalent. The same types of water binding sites have slightly 

different stabilities in the models. So we will use the H-bonding energy associated with the 

α1α position, as it is located in the middle of the hydration “patch”, and so probably provides 

a better description of how tropocollagen is hydrated at these positions.  

In general, the insertion of a single H2O molecule either into the α− or into the β−bridge 

increases the stability of the overall system. For example, the incorporation of an H2O at the 

β3 water site results in a small normalized energy decrease: ΔE(α1+α2+β1+β2+α1β)2α3333β= –6.7 

kcal·mol-1 > ΔE(α1+α2+β1+β2+α1β)2α4444β= –6.9 kcal·mol-1 as well as 

ΔE(α1+α2+β1+β2+α1β)3α3333β= –7.1 kcal·mol-1 > ΔE(α1+α2+β1+β2+α1β)3α4444β= –7.8 kcal·mol-1, 

respectively (Table 17). The insertion of an other H2O molecule at the α3 water site also 

results in a small stability increase: ΔE(α1+α2+β1+β2+α1β)2222α3β= –6.7 kcal·mol-1 > 

ΔE(α1+α2+β1+β2+α1β)3333α3β= –7.1 kcal·mol-1, while for the four water molecule containing β-

bridge the change is much more significant: ΔE(α1+α2+β1+β2+α1β)2222α4β= –6.9 kcal·mol-1 > 

ΔE(α1+α2+β1+β2+α1β)3333α4β= –7.8 kcal·mol-1 (Table 17). The “simultaneous” insertion of two 

water molecules, one at the α3- and another one at the β3-places, increases the normalized 

overall stability of the system: ΔE(α1+α2+β1+β2+α1β)2222α3333β= –6.7 kcal·mol-1 > 
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ΔE(α1+α2+β1+β2+α1β)3333α4444β= –7.8 kcal·mol-1, respectively (Table 17). As a consequence, the 

binding energy of all component H-bonds (α1α, α2, β1, β2 and α1β) also increases (Table 17). 

Finally, the swapping of a single water molecule from the α- to the β-bridge, H2O “moves” 

from α3-position to β3-site, and vice versa, seems to be almost energy neutral: 

ΔE(α1+α2+β1+β2+α1β)2222α4444β= –6.9 kcal·mol-1 ΔE(α1+α2+β1+β2+α1β)3333α3333β= –7.1 kcal·mol-1

(Table 17) allowing water to displace relatively freely. Even though in the latter site-

exchange the stability of the overall system looks the same, the local water-binding energy of 

the component water sites can be rather different: ΔE(α2)2222α4444β= –6.8 kcal·mol-1 > ΔE(α2)3333α3333β=

–9.0 kcal·mol-1 (Table 17). 
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3.4.4.3 The γ- and δ-type water bridges (the vertical water threads of tropocollagen) 

 

 

 

γγγγ2222 c    

2γ,(-F) a  ↔  3γ,(-F) b 

 -F/-OH d        -F/-OH d

2γ,(-ΟΗ) ↔  3γ,(-ΟΗ)

γγγγ2222    

Figure 23. The explicit water content in the vertical type of model systems, focusing on the γ-
bridges, and on the –OH ↔ −F substitution 
a, 2γ,(-F) stands for the POG-model system, composed of 18 amino acid residues with 2γ-
waters and with fluoroproline now in focus (Figure 14) 
b, 3γ,(-F) stands for the POG-model system, composed of 18 amino acid residues with 3γ-
waters and with fluoroproline now in focus (Figure 14) 
c, γ2 stands for the optional water molecule of the γ-bridge (Figure 14) 
d, -F/-OH stands for the substitution of the hydroxyproline in focus to flouroproline and vice 
versa.  
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Table 18. The position specific binding energy of waters located at the vertical water thread 
(third type of model system) (Figure 13) 

Binding energy of the water molecules in the γγγγ-δδδδ

combined bridges a,b (the same normalized for H-bonds)

Pro−ΟΗ−ΟΗ−ΟΗ−ΟΗ Pro-F 

Water-

bridge 

type 

Type of waterb

(Number of H-

bonds g) 

2γ γ γ γ c 3γ γ γ γ d 2γ γ γ γ e 3γ γ γ γ f

αααα1 (3) –19.5 (–6.5) –23.1 (–7.7) –22.1 (–7.4) –23.7 (–7.9)

γγγγ1 (2) –12.6 (–6.3) –13.7 (–6.8) –6.9 (–3.5) –11.9 (–6.0) γγγγ    

γγγγ2 (2) (optional H2O)    --- –17.3 (–8.7) --- –19.4 (–9.7) 

minimal γγγγ-bridge: αααα1+γγγγ1    –32.1 (–6.4) –36.8 (–7.4) –29.0 (–5.8) –35.7 (–7.1)

δδδδ1 (3) –20.4 (–6.8) –23.2 (–7.7) –18.5 (–6.2) –19.2 (–6.4)
δδδδ    

ββββ1 (2) –13.2 (–6.6) –19.8 (–9.9) –15.5 (–7.8) –15.3 (–7.6)

δδδδ-bridge: δδδδ1+ββββ1    –33.6 (–6.7) –43.0 (–8.6) –34.0 (–6.8) –34.5 (–6.9)

minimal combined γγγγ- and δδδδ-

bridge: αααα1+γγγγ1+δδδδ1+ββββ1    
–65.7 (–6.6) –79.7 (–8.0) –63.0 (–6.3) –70.2 (–7.0)

a, kcal·mol-1, calculated at the B3LY/6-31G(d) level of theory by the counterpoise method. 
b, please note that one water molecule of the γ-bridge is called α1, and one molecule of the δ-
bridge is called β1

c, the total energy of the system (without correction) is –6717.39110930 Hartree 
d, the total energy of the system (without correction) is –6793.82194994 Hartree 
e, the total energy of the system (without correction) is –6741.41161108 Hartree 
f, the total energy of the system (without correction) is –6817.84202998 Hartree 
g, total number of H-bonds associated with a particular water molecule 

The insertion of a single water molecule into the γ-bridge (γ2) increases greatly the overall 

H-bonding energies of the system: ΔE(α1+γ1+δ1+β1)2222γ,OH= –6.6 kcal·mol-1 > 

ΔE(α1+γ1+δ1+β1)3333γ,OH= –8.0 kcal·mol-1. The energy lowering can be traced for every water-

binding places, however, the greatest change is detected for the β1 place. ΔE(β1)2222γ,ΟΗ= –6.6 

kcal·mol-1 > ΔE(β1)3333γ,ΟΗ= –9.9 kcal·mol-1. Interestingly, this water-binding position (β1) is not 

even at the same bridge as is the water molecule in focus (γ2) that gives a hint to how much 

extent the binding of these molecules is interconnected. (Figure 23 and Table 18) Also, the 

binding energy of the γ2 molecule itself is quite high, ΔE(γ2)2222γ,OH= –8.7 kcal·mol-1. 
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The insertion of the same molecule (γ2) into the fluoroproline containing model strengthens 

the overall binding of the others as well: ΔE(α1+γ1+δ1+β1)2222γ,F= –6.3 kcal·mol-1 > 

ΔE(α1+γ1+δ1+β1)3333γ,F = –7.0 kcal·mol-1. Looking at the other water molecules individually, it 

can be seen that the binding of the H2Os in the same bridge (γ1, δ1), and even one in the other 

bridge (δ1) is stronger. However, for the (β1) place, where the highest change was observed 

for the hydroxyproline containing model, in the fluoroproline containing model the situation 

is reversed. Here the addition of the extra water molecule into the γ-bridge (γ2) eventually 

decreases the binding energy, even if only slightly. ΔE(β1)2222γ,F= –7.8 kcal·mol-1 < ΔE(β1)3333γ,F= –

7.6 kcal·mol-1. 

The analyses of the γ- and δ-bridges (Table 18) with respect to the –OH- or –F content 

shows that those water molecules that are directly connected to fluorine atom (γ1 and δ1) have 

a lower binding energy with respect to those which are associated with the hydroxyl group of 

hydroxyproline. For example, the normalized water binding energy at γ1 position for the 

fluorinated compound is only ΔE(γ1)2222γ,F= –3.5 kcal·mol–1, while for the OH containing partner 

the same stability value is ΔE(γ1)2222γ,OH= –6.3 kcal·mol–1. This difference holds not only for the 

two- but also for the three-water containing models: ΔE(γ1)3333γ,F= –6.0 kcal·mol–1 > ΔE(γ1)3333γ,OH=

–6.8 kcal·mol–1.  

Although the other two water molecules (α1 and β1) are slightly more stable in the 

fluorinated molecule, the sum of the binding energies shows that the molecules are altogether 

slightly less bound in the case of the fluorinated collagen. (ΔE(α1+γ1+δ1+β1)2222γ,F= –6.3 

kcal·mol-1 > ΔE(α1+γ1+δ1+β1)2222γ,OH= –6.6 kcal·mol-1 and ΔE(α1+γ1+δ1+β1)3333γ,F= –7.0 kcal·mol-1

> ΔE(α1+γ1+δ1+β1)3333γ,OH= –8.0 kcal·mol-1. 
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Table 19 summarizes the H-bonding energies of the characteristic water molecules in the 

first hydration shell of collagen. This is to be compared directly (second column) with the 

binding energy of a water that can be found in bulk water instead of being located at the 

surface of tropocollagen. For the purpose of direct comparison the reference bulk water has 

the same number of neighbors as assigned on the surface of tropocollagen. 

Table 19. Summary of the binding energies of water molecules per hydrogen bond in all the 
model systems  

Binding site 

(number of 

neighbors) 

Average binding 

energies on the 

appropriate site of 

tropocollagenb

Average binding 

energies inside or on 

the surface of bulk 

waterb

Scaled stability (the 

difference of the H-

bonding energies of 

the two places) b

αααα1 (4)a –7.6 –4.2 –3.4 

αααα2 (3-4) a –8.1 –4.2 –3.9 

αααα3 (3)    –8.8 –4.2 –4.8 

ββββ1 (3-4) a –6.1 –4.2 –1.9 

ββββ2 (2) –5.8 –4.7 –1.1 

ββββ3 (2) –6.2 –4.7 –1.5 

δδδδ1 (3) a –7.3 –4.2 –3.1 

γγγγ1 (2) a –6.6 –4.7 –1.9 

γγγγ2 (2) –8.7 –4.7 –4.0 

ζζζζ (3) a –5.1 –4.7 –0.4 

a, only these water molecules are directly attached to tropocollagen, all the other H2Os are 
attached via these ones 
b, kcal·mol-1, calculated at the B3LY/6-31G(d) level of theory by the counterpoise method 
(eq.14). 

The stability order of the different water binding places is as follows: (α3), (γ2), α2, α1, δ1, 

γ1, β1, (β3), (β2), ζ (or internal) (without calibration). α3 is the strongest while β2 is the weakest 

water binding site on the POG-type collagen. The ζ (or internal) binding site is weaker than 

any of the sites of the POG-type collagen. This “preference” of the above water binding sites 

does not change significantly after the subtraction of the relevant water-embedded energies 

(third column, Table 19). Only the γ1and β1 binding sites become equally “attractive”.  
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The most strongly bound water molecules are α3 and γ2, EHB= –8.8 kcal·mol-1 and EHB= –

8.7 kcal·mol-1, respectively. This is rather interesting since neither of them are directly bound 

to the surface of tropocollagen (Figure 6), but rather to other structural waters. The strongest 

“direct” H-bonds formed between tropocollagen and water are associated with the α2 and α1

places: EHB= –8.1 kcal·mol-1 and EHB= –7.6 kcal·mol-1, respectively. (Table 19) In addition, 

δ1 is also a relatively strong binding site for H20 (EHB= –7.3 kcal·mol-1). Interestingly, β2 is 

the second least strongly bound water, even though it can always be found in the X-ray 

structures. This β2 type water is also attached to tropocollagen only via other water molecules 

(Figure 6). The simplest network and the least strongly bound water molecules are those 

called as the “internal“ or ζ-type water molecules, associated with the natural enzymatic 

recognition sites of tropocollagen. 

It has to be noted, that although the binding energy values suggest here that water molecules 

are rather strongly bound to the surface of tropocollagen, these are only energy values. As 

seen for the backbone stabilities, entropy contributions can change the situation. Therefore 

these binding site preferences can only be regarded as indications. 

Each of the polypeptide chains of collagen forms a left-handed screw, but the triple helix 

formed from these turns out to be a right-handed supramolecular complex. As Orgel et al.25

have described a filament built up from seven tropocollagen units evolves as a right-handed 

screw. Therefore, the two types of left-handed water threads, the four quasi-horizontals and 

the single vertical ones, described here nicely fits into the “gap” between the right-handed 

triple helical tropocollagen and the collagen filament. (Figure 24) This counter-twist is what 

provides the stability and attachment between strands for twisted ropes, it is interesting to 

observe the same thing for a “molecular rope”. Also, it further underlines the necessity of a 

counter-twisted layer between the two zones that apparently have the same helicity. 
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Figure 24. Schematic representation of a collagen filament that forms a right-handed screw25

(large black circular arrow). The filament is made up of seven tropocollagen triple helices 
(pink circular arrows, forms a right handed helix). The tropocollagen consists of three 
polypeptide chains, (small black circular arrows, left handed) and surrounded by its hydration 
shell (blue circular arrow, left handed). 

Raines et al.48 have stated that the collagen triple helix is more stable when fluorinated with 

respect to the natural OH group containing Hyp. (These measurements were carried out in 

two solvents: 50 mM acetic acid, which stabilizes triple helices by protonating the C-terminal 

carboxylate groups and thereby eliminating unfavorable Coulombic interactions, and 

phosphate-buffered saline (PBS), which mimics a physiological environment.) In both 

solvents the fluoroproline containing triple helix was the most stable. However, the question 

arises that for what reason nature did not use fluorine atom instead of OH groups. The answer 

might be that the stability of the tropocollagen triple helix in itself is also important, but it is 

more important to maintain a strong hydration shell around the tropocollagen as further on 

they are connected by the water threads. Therefore, it is apparently useful to have OH groups 

containing collagen, as the hydration shell is slightly weaker around the fluorinated collagen. 

(see Table 18) 

In summary we can say that by the analysis of X-ray data we have discovered two types of 

water threads typical of collagen built from POG-type triplets that are both forming a left-

handed helix. We have designed suitable ab initio models to explore the stability of water 
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molecules in the above hydration network. We have found that the OH F substitution 

destabilizes in some extent the binding of the water bridges around tropocollagen. 

The function of the extra water molecules in the α, β and γ-bridges can be various. First, 

their places might serve as “water-hole-conducting” places, meaning that these places can be 

used by water molecules, when they are flowing between tropocollagen triple helices. That 

can be reason why Henkelman et al. have found that the flow of water molecules in collagen 

is fluid-like.95 Second, these “extra” water molecules can serve as molecular “buffers”: at high 

water concentration molecules occupy these places, whereas in case of low water 

concentration these places might be left vacant. In this case, of course, the remaining water 

molecules arrange themselves to have the best H-bonding contacts. Therefore, collagen can 

act as a sponge: take up and store water, and release it if necessary at a relatively low energy 

cost, without deteriorating the global fold of the macromolecule. However, it seems that there 

is a minimum required number of water molecules (4-5) that are necessary to obtain the 

regular fold.72 Therefore the “sponge” can only work above a certain water content. This 

nicely corresponds to the observation that in the case of a POG structure there are five places 

where water molecules can bind directly to the tropocollagen molecule. 
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4 Summary 

Protein oligomers and aggregates can have multiple roles. Amyloid and similar type of 

aggregates are formed without strict self-regulation and are associated with several illnesses. 

On the other hand, associated multichain nanosystems formed by different polypeptide chains 

such as collagen are vital in cell and tissue formation. Furthermore, the latter type of nano-

associates, formed in a strictly controlled manner such as collagen fibers can be produced or 

dismantled according to the needs of the living organism. 

Plaque formation from different peptides or proteins is the cause of many illnesses6. Also, 

several other proteins were found5 to form plaques under the proper cellular conditions. These 

plaques have the same macroscopical forms, and are therefore thought to possess the same 

microscopical structure: the β-pleated sheet. This leads to the question of why are these β-

pleated sheet structures so much preferred. To answer this question we have proposed a 

deduction scheme and for the confirmation of it we have designed and accomplished suitable 

theoretical calculations on periodical model systems. This research appears to be the first 

investigation that carried out periodical calculations on peptides.  

The results show that for a glycine containing peptide the most stable form is a two-

dimensional superstructure that was already described by Crick and Rich90, where the 

residues have the εL local backbone conformation. The collagen forming residues have the 

same conformation as these glycine residues. The alanine containing peptide models, 

however, prefer the form of β-pleated sheet, as these types of structures are more stable by 

~10 kcal·mol-1 than any of the others. As the side chains do not let the peptide chains get close 

enough to each other, the hydrogen bonds get weaker, and thus the stability decreases, 

resulting in the presented energetics of the structures. Consequently, the above quantum-

chemical calculations have shown that the deduction holds and that polypeptides having side 

chains can only align in the form of β-sheets when closely packed. That is why all proteins or 

peptides that are allowed to adopt a closely packed structure form amyloid-like fibrils. 

The conformation that is the most stable for glycine only [(Gly)n] containing peptides is 

preserved in the triple-helical collagen structure. We have studied the effect of selected amino 

acids residues on the stability of the tropocollagen structure. For this reason we have carried 

out quantum chemical calculations and compared the stability of the collagen triple helices 

with those of the β-pleated sheets, the building unit of amyloid. In this way we could analyze 

the different contributing factors arising from different types of amino acids. For the 
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experimentally already studied amino acids these theoretical comparisons provided the same 

results as experimental ones about which amino acids or triplets strengthen collagen 

formation. Sarcosine, an amino acid that is abundant in our body but is not among the 

encoded 20 residues, helps to form a triple helix apparently stronger than even those built 

from proline or hydroxyproline. Therefore sarcosine containing artificially synthesized 

collagens can have future in medical or cosmetical applications. 

From our results a simple hypothetical deduction emerges that describes that collagen 

stabilizing amino acids are needed to reduce the number of H-bonding capacities that are 

oriented away from the triple helix. This way the importance of bound water molecules is put 

into a different perspective, as they form hydrogen bonds with the remaining carbonyl groups 

that are still oriented away from the triple helix.

We have determined the individual binding strength of the water molecules forming the 

first hydration layer, to the best of our knowledge for the first time in the literature. According 

to our calculations a synergistic effect can be observed between the bound waters that are 

interconnected with strong hydrogen bonds. Furthermore, these water molecules around 

collagen form threads that wrap it as a net. Tropocollagens are protected by these water nets 

and are also first contacted to each other through them. Therefore, some biological or medical 

applications (for example for decreasing the effects of osteoporosis imperfecta) could be 

based in the future on the maintenance of a strong hydration network around the triple helices. 
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5 Appendix 

SFigure 1. Water molecules in a crystal, as calculated at the B3LYP/6-31G(d) level of theory. 
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STable 1. The average backbone values (φ and ψ) of the different collagen models, as 
measured in the solid state and calculated for the gas phase at the B3LYP/6-31G(d) level of 
theory. Also, for each calculated structure the difference from one experimentally measured 
X-ray structure is shown. 

a, Average values in degrees  
b, Standard deviations in degrees  
c, Okuyama et al.63  
d, Due to the “capping effect”, all values are the average of the four “middle” residues 
e, Differences between measured and computed values, for the AAa and GGG models the 
reference is the 1BKV X-ray structure58

f, Hongo et al.64 

g, Kramer et al.58 

h, Bella et al.53

Sequence Position Xxx Yyy Gly 

Backbone 
Torsions φφφφ ψψψψ φφφφ ψψψψ φφφφ ψψψψ

aver.a ± stdev.b aver.a ±  stdev.b aver.a ±  stdev.b aver.a ±  stdev.b aver.a ±  stdev.b aver.a ±  stdev.b

X-rayc –72.6 ± 1.6 163.7 ± 1.4 –57.4 ±1.7 151.8 ±1.4 –72.5 ±2.1 174.2 ±1.5 

calc.d –76.1 ± 4.0 169.5 ± 7.4 –57.5 ±12.0 148.3 ±6.1 –78.5 ±13.4 169.7 ±21.6 POG 
diff.e –3.5 5.8 –0.1 –3.5 –6.0 –4.5 

X-rayf –74.5 ± 2.9 164.3 ± 4.1 –60.1 ± 3.6 152.4 ± 2.6 –71.7±3.7 175.9 ± 3.1 

calc.d –71.1 ± 3.7 161.3 ± 7.0 –57.5 ± 3.0 150.3 ± 6.6 –74.0 ± 3.3 173.2 ± 4.7 PPG 
diff.e 3.4 –3.0 2.6 –2.1 –2.3 –2.7 

calc.d –72.3 ± 2.4 159.8 ± 6.6 –57.3 ± 1.5 144.5 ± 7.6 –71.7 ± 2.0 175.0 ± 3.4 
PPa 

diff.e 0.3 –3.9 0.1 –7.3 0.8 0.8 

calc.d –80.3 ± 1.7 175.0 ± 5.9 –75.8 ± 2.6 158.2 ± 7.9 –80.0 ± 3.8 176.0 ± 4.4 
SaSaG 

diff.e –5.8 10.7 –15.7 5.8 –8.3 0.1 

X-rayg –69.9 ± 6.1 155.4 ± 8.2 –66.8 ± 4.8 147.8 ± 3.2 –67.7 ± 4.5 166.7 ± 5.6 

calc.d –62.3 ± 4.4 155.6 ± 7.0 –58.6 ± 5.9 148.8 ± 10.0 –79.0 ± 6.7 172.6 ± 6.8 AAG 
diff.e 7.6 0.2 8.2 1.0 –11.3 5.9 

calc.d –65.8 ± 3.3 149.8 ± 3.9 –75.8 ± 3.6 136.8 ± 6.0 –67.1 ± 1.7 163.0 ± 4.7 
AAa 

diff.e 4.1 –5.6 –8.9 –11.0 0.7 –3.8 

calc.d –78.0 ± 11.3 175.8 ± 25.5 –65.5 ± 1.5 150.1 ± 9.9 –96.2 ± 22.7 175.5 ± 28.7 
GGG 

diff.e –8.1 20.4 1.4 2.3 –28.5 8.8 

X-rayh –61.4 ± 4.1 158.6 ± 9.1 –57.0 ± 4.2 142.6 ± 6.3 –81.2 ± 19.2 152.8 ± 15.4 

calc.d –83.8 ± 6.6 153.5 ± 12.5 –76.4 ± 3.6 164.2 ± 6.2 –117.1 ± 3.2 171.7 ± 5.0 AAA 
diff.e 22.5 5.1 19.5 –21.6 35.9 –18.9 
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STable 2. Relative stability data of the different β-pleated sheet and collagen models 
compared to three individual strands, calculated at different levels of theory 

a, ΔEformation = Etriple helix – [Estrand1 + Estrand2 + Estrand3] (Figure 3) 
b, The formation energy is divided by the number of triplets: (Etriple helix – [Estrand1 + Estrand2 + 
Estrand3])/6 

Energy Differences Between Secondary Structures and  
Three Individual Strandsa (ΔΔΔΔE/kcal·mol–1 per triplet) b  

(for the whole system): 

Type of 
Model B3LYP/6-31G(d) 

B3LYP/6-
311++G(d,p)// 

B3LYP/6-31G(d) 

B3LYP/PCM/6-
31G(d)// 

B3LYP/6-31G(d) 
POG –7.5 (–45.2) –4.8 (–28.7) –3.0 (–18.3) 

PPG –8.1 (–48.7) –5.5 (–33.1) –3.6 (–21.9) 

PPa –3.5 (–21.2) +0.4 (+2.3) +1.7 (+10.0) 

SaSaG –10.8 (–64.6) –7.7 (–46.1) –4.8 (–28.9) 

AAG –5.9 (–35.4) –3.1 (–18.7) –1.0 (–5.8) 

AAa –4.5 (–27.1) –1.2 (–7.0) +1.0 (+6.2) 

GGG –6.7 (–40.1) –3.3 (–19.8) –1.1 (–6.6) 

Triple helix 

AAA –0.6 (–3.6) +1.6 (+9.9) +3.1 (+18.4) 

POG –3.2 (–19.3) –1.4 (–8.3) –1.1 (–6.4) 

PPG –2.9 (–17.1) –0.8 (–4.6) +0.2 (+1.0) 

PPa –1.0 (–6.1) +1.3 (+7.7) +1.9 (+11.6) 

SaSaG –8.1 (–48.3) –5.2 (–31.0) –1.9 (–11.5) 

AAG –13.1 (–78.3) –9.9 (–59.5) –5.7 (–34.2) 

AAa –15.8 (–94.8) –12.0 (–72.1) –6.9 (–41.1) 

GGG –13.0 (–78.1) –9.6 (–57.4) –4.9 (–29.2) 

Parallel 3-
stranded ββββ-

pleated 
sheet 

AAA –13.6 (–81.7) –10.6 (–63.9) –6.5 (–39.2) 
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STable 3. Relative stability data of the different β-pleated sheet and collagen models 
compared to three individual strands 

Stabilitya

Type of model 
ΔΔΔΔE b    ΔΔΔΔU c    ΔΔΔΔH TΔΔΔΔS d ΔΔΔΔG

POG –41.1 –14.9 –40.6 –39.3 –1.3 

PPG –40.8 –40.1 –41.1 –40.9 0.3 

PPa –15.8 –14.9 –16.0 –41.8 25.8 

SaSaG –60.4 –59.5 –60.7 –44.8 –15.9 

AAG –27.1 –27.8 –29.0 –48.4 19.5 

AAa –51.0 –50.4 –51.6 –43.3 –8.2 

GGG –27.2 –29.7 –30.9 –58.1 27.2 

Tropocollagen 
triple-helix 

AAA -22.4 -21.8 -23.0 -42.7 19.8 

POG –17.2 –14.5 –16.0 –28.8 13.1 

PPG –10.9 –9.5 –32.0 –31.8 21.8 

PPa –2.9 –1.1 –2.3 –31.5 29.2 

SaSaG –43.9 –43.1 –44.3 –41.4 –2.9 

AAG –68.7 –68.9 –70.1 –40.7 –29.3 

AAa –87.1 –87.0 –88.2 –41.2 –46.9 

GGG –65.3 –43.1 –68.5 –52.1 –16.4 

Parallel 3-stranded 
ββββ-pleated sheet 

AAA -72.4 -72.2 -73.4 -40.6 -32.9 

a, All values (in kcal·mol-1) are relative to the appropriate extended like and isolated N- and 
C- protected hexapeptide (see method) 
b, Electronic energy and Zero-Point Vibrational energy 
c, Electronic energy, Zero-Point Vibrational energy, vibrational, rotational and translational 
energy  
d, T = 298.15 K,  
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