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Introduction

This dissertation collects our results in the field of many-body theory that we obtained

in the past few years while working at the Laboratory of Theoretical Chemistry, Eötvös

University, Budapest.

In the first Chapter we introduce some essential concepts in many-body theory like

Bloch-equation and the diagrammatic approach. We discuss a multiconfiguration-function-

based perturbation method, called multiconfiguration perturbation theory (MCPT), devel-

oped in our laboratory. The presentation is focused on the third-order implementation

of the theory using an automatized implementation. Numerical results up to third-order

are computed for molecular systems which show strong multi-reference character. Ad-

vantages and disadvantages of MCPT are discussed in detail. Results presented in this

Chapter where partly published in [1-3].

The second Chapter summarizes our work in the field of Multipartitioning Many-Body

Perturbation Theory (MP MBPT). This method is one of the possible generalizations of

the single-reference many-body perturbation theory, showing several advantageous prop-

erties. We investigate the symmetry behavior of MP MBPT and suggest a way to correct

the symmetry breaking present in the original theory. We also study in detail the connec-

tivity and scaling properties of MP MBPT at high orders. The theory is implemented up

to fourth-order and tested on various multi-reference systems to demonstrate its conver-

gence and its robustness against intruder states. Our results in this field are published in

[4] and a further manuscript is under preparation [5].

Finally, an efficient full configuration interaction (CI) algorithm is presented in the

third Chapter. This algorithm makes full use of the sparsity of the CI vector. The mo-

tivation of this study is the experience, that both CPU time and storage requirement can

be successfully reduced if omitting zero elements (i.e. components below threshold) of
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the CI vector. The algorithm explores important subspaces of the full CI space during

iteration. Definition of ”importance” of a determinant is based on an approximation of

contribution for the energy.

Numerical results show that the computation cost can be significantly reduced accept-

ing errors far below the chemical accuracy. These results are published in [6].
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Chapter 1

Multi-reference Perturbation Theories

1.1 Introduction

Single-reference many-body perturbation theory (MBPT) [7] that starts from a single

determinant zero order state, has a limited field of application due to the well known

problems of the inadequacy of a single determinant in describing several chemically im-

portant situations. The success of MBPT applied to closed shell systems around equi-

librium geometry motivated an extensive research towards multi-reference perturbation

theories (MRPT). The central idea of these theories is to replace the single determinant

reference function by a multideterminantal expansion of moderate size. This reference

function captures the most essential correlation effect of the system (so-called static cor-

relation) for the qualitatively correct description but lacks the contribution from myriads

of excited determinants (so-called dynamic correlation). The large number of various for-

malism emerged in this field [1,8-21] shows that the generalization of MBPT that would

be perfect in every respect, is not a trivial task.

In this Section a brief theoretical overview is given of the main concepts and difficul-

ties of multi-reference perturbation theories. It is not possible here to show all aspects of

the different approaches, and only some of them will be discussed in detail. In this section

we also introduce the main technical concepts necessary in the field of MBPT (e.g. model

space, effective Hamiltonian, extensivity) and fix the notations used throughout the thesis.
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In the following subsection the general framework of Bloch equation and the effective

Hamiltonian theory will be introduced which gives the basics of many MRPT theories

like the multipartitioning Møller-Plesset perturbation theory which will be discussed in

Chapter 2.

1.1.1 Remarks on connectivity and scaling properties

Among the several many-body approximation those are preferred which hold as many

properties of the exact solution as possible. Approximations with the proper spin and

spatial symmetry properties or with orbital rotational invariance are desired. Similarly, an

approximation is preferred which shows the same scaling properties with the system size

as the exact solution has.

In this section we discuss scaling property connected to non-interacting systems,

which is usually called size-consistency and the scaling property connected to large sys-

tems, which is often called size-extensivity. Both properties are strongly related to the

connectivity of mathematical formulae of the approximations.

An expression constructed from two multi-indexed quantity (e.g. vpqrs and umn) is

connected if there is at least one summation to a common index of them:
∑

m vpqrmumn. An

expression composed from more than two terms is connected if there is no sub-product

which is not connected to the remaining terms.

The connectedness is an important feature of a many-particle theory since it is strongly

related to the scaling properties like size-consistency and size-extensivity [22, 23]. A

method is size-consistent if its application to systems contains two non-interacting sub-

space gives the same energies than the sum of the energies come from the application on

the subsystems. Considering a system of two non-interacting parts and applying localized

orbitals to describe the subsystems each connected diagram and thus the energy can be

written as a sum of the contributions of the two subsystems, since the integrals connect-

ing orbitals from both subsystems are zero. If the method is size-inconsistent, dangerous

unphysical effects can enter to the description of large systems. For example in a dilute

gas the size-consistency error scales quadratically with the number of particles instead of

the expected linear scaling of the energy [24].

The later property, i.e. linear scaling of the energy with the system size is called size-
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extensivity. Of course if the system contains interacting subsystems this property can be

expected only for the application to sufficiently (infinitely) large systems. According to

work of Brueckner[25, 26], Goldstone[27] and Bartlett[23] connected theories are also

size-extensive (see also [28]).

1.1.2 Bloch-equation and the effective Hamiltonian

MRPT theories can be particularly important in the cases where the qualitatively cor-

rect description of the many-electron system needs linear combination of determinants.

Sometimes more than one (target) states are of interest where some of them can have

multi-reference character. Let us separate the many electron space into a model space P

and its orthogonal complement Q, called outer space or orthogonal space. The model

space should contain the most important determinants of each target state. In terms of

orthogonal vectors |J〉 the model space projector is given by

P̂ =
∑
J∈P
|J〉〈J| (1.1)

and the projector of the orthogonal space is Q̂ = Î − P̂. Denoting the exact eigenstates

of our interest by Ψk and their model space projection by P̂Ψk we introduce the wave

operator Ω̂ that maps any P̂Ψk to Ψk:

Ψk = Ω̂P̂Ψk . (1.2)

Multiplying Eq.(1.2) by P̂, one sees that

P̂ = P̂Ω̂P̂ . (1.3)

Substituting form (1.2) of Ψk on the left hand side of the Schrödinger-equation ĤΨk =

EkΨk and multiplying by P̂ one readily obtains

Ĥeff P̂Ψk = Ek P̂Ψk (1.4)

where

Ĥeff = P̂ĤΩ̂P̂ (1.5)

is the effective Hamiltonian whose eigenvalues are exact and the eigenvectors are pro-

jections of the exact eigenvectors into the model space. According to the generalized
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Bloch-equation[29, 30] the effective Hamiltonian satisfies ĤΩ̂P̂ = Ω̂ĤeffP̂, writing in

more detail

ĤΩ̂P̂ = Ω̂P̂ĤΩ̂P̂. (1.6)

The solution of the Bloch-equation can be obtained by using the main concept of the

perturbation theory, namely the partitioning of the Hamiltonian for a zero-order and a

perturbation-operator :

Ĥ = Ĥ0 + V̂ . (1.7)

Here we suppose that the perturbation operator V̂ is ”small” compared to the zero-order

Hamiltonian. In this case the main contribution to the wave operator arises from Ĥ(0) and

the corrections connecting to the perturbation-operator can be ordered by the order of the

perturbation:

Ω̂ = P̂ + Ω̂(1) + Ω̂(2) + . . . (1.8)

Upper index of Ω̂ refers to the overall power of V̂ in the expression. Applying Eq.(1.7)

and Eq.(1.1) in the Bloch-equation (1.6), we get:

(
Ĥ(0) + V̂

)
Ω̂P̂ =

∑
J∈P
Ω̂|J〉〈J|

(
Ĥ(0) + V̂

)
Ω̂P̂ . (1.9)

Supposing that Ĥ(0) is diagonal on the basis of states |J〉 we can substitute Ĥ(0) by E(0)
J on

the right hand side of the above equation: |J〉:
(
Ĥ(0) + V̂

)
Ω̂P̂ =

∑
J∈P
Ω̂|J〉〈J|

(
E(0)

J + V̂
)
Ω̂P̂ . (1.10)

where E(0)
J denotes the eigenvalue of Ĥ(0) corresponding to |J〉. Reordering the above

formula by moving the terms involving the perturbation-operator to the right we obtain

∑
J∈P

(
Ĥ(0) − E(0)

J

)
Ω̂|J〉〈J| = Ω̂P̂V̂Ω̂P̂ − V̂Ω̂P̂ . (1.11)

Multiplying this formula from the right by projector |J〉〈J| and from the left by the so-

called reduced resolvent operator
(
E(0)

J − Q̂Ĥ(0)
)−1

Q̂ we get:

Q̂Ω̂|J〉〈J| =
(
E(0)

J − Ĥ(0)Q̂
)−1

Q̂
(
V̂Ω̂ − Ω̂P̂V̂Ω̂

)
|J〉〈J| . (1.12)
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To obtain the Q-P block of the wave operator the above formula is summed up for all

model space states to result

Q̂Ω̂P̂ =
∑
J∈P

R̂J

(
V̂Ω̂ − Ω̂P̂V̂Ω̂

)
|J〉〈J| , (1.13)

where the shorthand R̂J is introduced for the reduced resolvent:

R̂J = (E(0)
J − Q̂Ĥ(0))−1Q̂. (1.14)

Eq.(1.13) is a recursive equation for the wave operator. By taking the first approximation

Ω̂ = P̂ and iterating the expression, one can generate terms of Eq.(1.8) as follows:

Ω̂(0) = P̂ (1.15)

Ω̂(1) =
∑
I∈P

R̂IV̂ |I〉〈I|

Ω̂(2) =
∑
I∈P

R̂I

(
V̂Ω̂(1) − Ω̂(1)P̂V̂ P̂

)
P̂I

=
∑
I∈P

R̂IV̂R̂IV̂ P̂I −
∑
I∈P

R̂I

∑
J∈P

R̂JV̂ P̂JV̂ P̂I

Ω̂(3) =
∑
I∈P

R̂I

(
V̂Ω̂(2) − Ω̂(1)P̂V̂Ω̂(1) − Ω̂(2)P̂V̂ P̂

)
P̂I

=
∑
I∈P

R̂IV̂R̂IV̂R̂IV̂ P̂I −
∑
I∈P

R̂IV̂R̂I

∑
J∈P

R̂JV̂ P̂JV̂ P̂I

−
∑
I∈P

R̂I

∑
J∈P

R̂JV̂ P̂JV̂R̂IV̂ P̂I −
∑
I∈P

R̂I

∑
J∈P

R̂JV̂R̂JV̂ P̂JV̂ P̂I

+
∑
I∈P

R̂I

∑
J∈P

R̂J

∑
L∈P

R̂LV̂ P̂LV̂ P̂JV̂ P̂I

With the use of the wave operator up to a given order n the effective Hamiltonian correc-

tions up to order (n + 1) can be constructed by the application of Eq.(1.5) and Eq.(1.7),

e.g.:

Ĥ(0)

eff
= P̂Ĥ(0)Ω̂(0) = P̂Ĥ(0)P̂

Ĥ(1)

eff
= P̂V̂Ω̂(0) = P̂V̂ P̂

Ĥ(2)

eff
= P̂V̂Ω̂(1) =

∑
I∈P

P̂V̂R̂IV̂ P̂ (1.16)

It is interesting to note that the sum of the zero and first-order effective Hamiltonian is the

Hamiltonian projected to the model space: Ĥ(0)

eff
+ Ĥ(1)

eff
= P̂ĤP̂.
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As it is shown above the zero-order approximation of effective Hamiltonian is cor-

rected in a perturbative fashion. To obtain the approximate energies of the the system,

the effective Hamiltonian has to be diagonalized. Perturbation theories based on an effec-

tive Hamiltonian formalism are often called perturb then diagonalize approaches, for this

reason.

1.1.3 Quasi-degenerate perturbation theory

The first remarkable MRPT was the quasi-degenerate perturbation theory (QDPT) intro-

duced by Brandow [8] and developed by several others [30, 31, 32]. This theory inspired

many others and it has an important connection with the multipartitioning Møller-Plesset

PT which is the topic of Chapter 2. The term ’quasi-degenerate’ refers to the fact, that

quasi-degenerate levels are collected into the model space, and their mutual interaction is

accounted for by diagonalization instead of direct perturbation.

Brandow’s QDPT is based on the Bloch-equation and seeks a perturbative solution as

outlined in the previous subsection. In QDPT formalism the many electron model space

is chosen to be a complete active space (CAS) . This means that the molecular orbitals are

gathered into three groups called core, active and external orbitals where the core orbitals

are doubly occupied while the external orbitals are unoccupied in all determinants of the

CAS. The inactive denomination refers both to core and external orbitals. The CAS

is defined by the determinants with all possible occupation of active orbitals by active

electrons, which do not reside in the core. In QDPT determinants are used to expand the

model space. The zero-order Hamiltonian is a diagonal one-particle operator

Ĥ(0) =
∑

p

εp p̂+ p̂− , (1.17)

similar to that used in single-reference Møller-Plesset theory[33]. The zero-order energy

of determinant |I〉 is given by

E(0)
I =

∑
i∈I
εi . (1.18)

where i ∈ I denotes that the dummy index is restricted to orbitals occupied in determinant

|I〉. One-particle energies εi have been defined in many ways. In the simplest case the ε’s

8



are chosen to be the diagonal elements of the Fock matrix defined by determinant |I〉

εq = hqq +
∑
i∈I
〈iq||iq〉 (1.19)

where hqq is a one-electron integral and 〈iq||iq〉 = 〈iq|iq〉 − 〈iq|qi〉 is the antisymmetric

two-electron integral in 〈12|12〉 convention. Another frequently used method is to take

the diagonal elements of a generalized Fock matrix defined by the one-particle density

matrix Ppq = 〈Φk| p̂+q̂−|Φk〉 of a given eigenstate Φk of the CAS Hamiltonian (i.e. the

Hamiltonian projected to the model space):

εq = hqq +
∑

rs

Prs〈rq||sq〉 (1.20)

As inferred from Eq.(1.16), diagonalization of CAS Hamiltonian gives the energies

and wave functions in space P up to order 1. The first-order correction for the QDPT

wave operator from stems from Eq.(1.15) by applying Eq.(1.17) to get:

Ω̂(1) =
∑
I∈P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑
ai

â+ î−|I〉∈Q

hai

εi − εa â+î−+

1

2

∑
a<b;i< j

â+b̂+ î− ĵ−|I〉∈Q

〈ab| ji〉
εi + ε j − εa − εb â+b̂+ î− ĵ−

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ |I〉〈I| (1.21)

where |I〉 is a determinant in the CAS, â+î−|I〉 and â+b̂+î− ĵ−|I〉 are determinants of the Q

space, and the Hamiltonian operator is written as:

Ĥ =
∑

pq

hpq p̂+q̂− +
1

2

∑
pqrs

〈pq|sr〉p̂+q̂+r̂− ŝ−. (1.22)

In the above and further on we use the following nomenclature for one-electron orbitals:

a, b, . . . virtual

i, j, . . . occupied

p, q, . . . general

with respect to the Fermi vacuum |I〉. It is worth to note here that the perturbational

denominators belong to the energy difference of a model space determinant and an outer

9



space determinant according to Eq.(1.14). As a consequence at least one of the one-

particle indices of any perturbation denominator must be inactive.

An attractive feature of QDPT is that it can be expressed in a diagrammatic way,

similar to that used in single-reference many-body PT (MBPT)[7]. For this reason the de-

nomination multi-reference many-body PT (MR MBPT) is also frequently applied [32].

Application of diagrams in the many-body framework will be discussed in detail in Sec-

tions 1.3.1 and 2.3.2. Diagrammatic formulation of a theory is advantageous on one hand

because it facilitates efficient implementation. On the other hand it offers a way to ana-

lyze the extensivity property which is closely related to the connectedness of diagrams.

Using the diagrammatic approach Brandow [8] (see also Lindgren [30]) showed that if the

model space is a CAS, the linked-cluster theorem remains true in QDPT. This means that

only connected diagrams yield contribution to the effective Hamiltonian matrix elements

(see also Section 2.3.2). As shown by Meissner and Jankowski[34], additive separabil-

ity of the energy over non-interacting subsystems follows from connectedness, if using

localized orbitals. The source of the restriction for localized orbitals is the fact that MR

MBPT is not invariant to the rotation of orbitals, since it relies on zero-order Hamilto-

nian diagonal in the determinantal basis. Rotational invariance holds among degenerate

orbitals only.

The main drawback of MR MBPT theory is the intruder state problem, i.e. close to

zero denominators which give nonphysically large contribution to the effective Hamil-

tonian matrix elements and thus hinder the convergence. According to Eq.(1.14), de-

nominators contain zero-order energy differences of determinants from CAS space and

determinants from the orthogonal space. In the general case a CAS contains not only

the low lying states (or determinants) close in energy to the target state(s) but also states

(determinants) with high energy and less physical meaning. These high energy functions

usually overlap in energy with the outer space determinants and their difference gives

close to zero denominator. The appearance of high energy determinants and thus the in-

truder state problem is especially probable in the case when a large CAS space is used.

In other words, the problem in Møller-Plesset partitioning is connected with the fact, that

particle energies of the active orbitals can appear with positive and negative sign in the

denominators. This means that there is no well defined gap which would separate the

occupied and virtual space like in the single-reference case. In higher-orders the denom-
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inators are constructed from larger number of ε
′
s which frequently became close to zero.

To eliminate this problem the application of incomplete model space was intensively stud-

ied in MR MBPT e.g. by Hose and Kaldor [31] and by Meissner and Bartlett[32]. By

applying an incomplete model space high energy determinants can be excluded from the

model space but special care has to be taken not to loose size-extensivity[34, 35].

A more sophisticated way to eliminate the intruder state problem is the intermediate

Hamiltonian theory proposed by Malrieu [9], where the model space is split into a main

space and an intermediate space. The effective Hamiltonian is defined over the entire

model space, but only the eigenvalues corresponding to the main space are considered

reliable. States falling to the intermediate space are not sought after. The intermediate

Hamiltonian theory is formulated so that the energy differences of the main space and the

orthogonal space appear in the denominators and the energies of the intermediate states

can not contribute. If the main space is energetically well separated from the orthogonal

space, the theory gives intruder-free solutions.

An alternative workaround for the intruder state problem – also proposed by Malrieu

and coworkers – is the application of different partitioning for each column of the effec-

tive Hamiltonian[19]. This approach – termed by Multipartitioning Møller-Plesset PT –

keeps most of the beneficial properties of MR MBPT. We discuss this theory in detail in

Chapter 2.

1.1.4 An alternative QDPT formulation

To suppress the intruder state problem in the approach of Davidson [15] and Nakano [36]

the Φ
(0)

k =
∑

I Ck
I |I〉 eigenvectors of the CAS Hamiltonian are applied. The zero-order

Hamiltonian is chosen diagonal on the basis of Φ
(0)

k , k = 1, ...,m space in the model

states and also diagonal in the orthogonal space, on the basis of determinants |J〉:

Ĥ0 =
∑

k

E(0)

k |Φ(0)

k 〉〈Φ(0)

k | +
∑

J

E(0)
J |J〉〈J|. (1.23)

The E(0)

k energies are composed of one-particle energies as a generalization of the Møller-

Plesset partitioning: E(0)

k =
∑

p εp〈Φ(0)

k | p̂+ p̂−|Φ(0)

k 〉 and

E(0)
J =

∑
p εp〈J| p̂+ p̂−|J〉, where εp’s are derived from the generalized Fockian (1.20). The

first-order wave operator correction follows from Eq.(1.8) and Eq.(1.23) and gets the
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form[36]:

Ω̂(1) =
∑
I∈P

∑
ai

â+ î−|I〉 ∈ Q

hai

∑
k

Ck
I

â+ î−

εi − εa + E(0)

k − E(0)
I

|I〉〈Φ(0)

k | (1.24)

+
1

2

∑
I∈P

∑
a < b; i < j

â+b̂+ î− ĵ−|I〉 ∈ Q

〈ab| ji〉
∑

k

Ck
I

â+b̂+î− ĵ−

εi + ε j − εa − εb + E(0)

k − E(0)
I

|I〉〈Φ(0)

k |

Here the summations over one-particle indices are restricted so that determinants â+î−|I〉
and â+b̂+î− ĵ−|I〉 belong to the outer space. The projector on the right hand side of Eq.(1.8)

is written in the form |Φ(0)

k 〉〈Φ(0)

k | =
∑

I Ck
I |I〉〈Φ(0)

k | to be able to express the energies of the

outer space determinants â+ î−|I〉 and â+b̂+î− ĵ−|I〉 by E(0)
I − εi+ εa and E(0)

I − εi− ε j+ εa+ εb,

respectively. Comparing the above formula with Eq.(1.21) the most important difference

is the E(0)

k − E(0)
I denominator shift which appears in Davidson-Nakano’s formalism. This

shift has large value if |I〉 is a model determinant with high energy. If the target states are

energetically well separated from the outer space, this shift can ensure non-zero denomi-

nators thereby decreasing sensitivity to intruder states as confirmed by experience [36].

Unfortunately this MRPT approach is not size-consistent, as will be shown later. Still,

the beneficial effect of the denominator shift can be utilized in a size-consistent way as

shown by Finley [37]. His diagrammatic CASPT will be discussed in more detail in

Chapter 2.

1.1.5 Multi-reference Møller-Plesset (MRMP) theory

Our consideration so far involved effective Hamiltonians, constructed by a perturbation

philosophy. Another main branch of the application of PT for the electron correlation

problem is the so-called diagonalize, then perturb approach. These multi-reference the-

ories are also based on a CAS subspace of limited size and the CAS eigenvectors are

used to form the zero-order states within this subspace. Perturbation theory is used sub-

sequently to improve the CAS states. By this approach the resolvent is kept diagonal and

the zero-order energies corresponding to the active states are the CAS eigenvalues.

One of the simplest method of the diagonalize then perturb class is Hirao’s MRMP

[38]. It can be looked upon as a state-specific version of Nakano’s PT with the zero-
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order operator defined in Eq.(1.23). As already mentioned, the effective Hamiltonian

approach based on Eq.(1.23) is not size-consistent. As a consequence Hirao’s MRMP

does not fulfill this property either. A similar problem may arise in the Multiconfigura-

tional Perturbation Theory (MCPT) to be discussed in Section 1.2. To see the source of

the size-consistency harming behavior in detail, let us look at the second-order energy of

Hirao’s MRMP:

E(2)

k =
∑
L∈Q

〈Φ(0)

k |Ĥ|L〉〈L|Ĥ|Φ(0)

k 〉
E(0)

k − E(0)
L

. (1.25)

Supposing that the system contains two non-interacting subsystems denoted by A and

B, the Hamiltonian and the energies of the composite system are sums over subsystems:

Ĥ = ĤA+ĤB, E(0)

k = E(0)

kA
+E(0)

kB
and if localized orbitals are used the zero-order (CAS) wave

function is the product of subsystems functions, |Φ(0)

k 〉 = |Φ(0)

kA
Φ

(0)

kB
〉. The determinants

of the orthogonal space are also of product form: |L〉 = |LALB〉. The model space of

the composite system P̂ can be constructed by the direct product of the model spaces

of subsystems P̂A and P̂B. The complement of the direct product of P̂A and P̂B gives

projector Q̂. The second-order energy correction follows from these considerations and

from Eq.(1.25):

E(2)
AB =

⎧⎪⎪⎨⎪⎪⎩
∑

|LALB〉∈Q

〈ΦkAΦkB |ĤA|LALB〉〈LALB|ĤA|ΦkAΦkB〉
EkA + EkB − ELA − ELB

+

∑
|LALB〉∈Q

〈ΦkAΦkB |ĤA|LALB〉〈LALB|ĤB|ΦkAΦkB〉
EkA + EkB − ELA − ELB

⎫⎪⎪⎬⎪⎪⎭ +
⎧⎪⎪⎨⎪⎪⎩A↔ B

⎫⎪⎪⎬⎪⎪⎭ . (1.26)

In the first term ĤA can not act on |LB〉 thus the 〈ΦkB |LB〉 scalar product appears. As a re-

sult, the summation over |LB〉 can be restricted to PB and |LA〉must lie in QA to ensure that

|LALB〉 is in subspace Q. Based on the previous argument, the second term of Eq.(1.26) is

trivially zero. Introducing this into Eq.(1.26) one gets:

E(2)
AB =

∑
LA∈QA;LB∈PB

〈ΦkAΦkB |ĤA|LALB〉〈LALB|ĤA|ΦkAΦkB〉
EkA + EkB − ELA − ELB

+ (A↔ B)

=
∑

LA∈QA;LB∈PB

CkB
LB

2 〈ΦkA |ĤA|LA〉〈LA|ĤA|ΦkA〉
EkA + EkB − ELA − ELB

+ (A↔ B) (1.27)

To separate the size-consistency complying and violating terms one can approximate the

(EkA + EkB − ELA − ELB)−1 expression supposing that EkB − ELB (where LB belongs to the
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CAS space) is small compared to EkA − ELA (where LA belongs to the orthogonal space).

Up to the first-order one can write

1

EkA − ELA

− EkB − ELB

(EkA − ELA)2
(1.28)

thus the lowest order approximation of the size-consistency error is:

E(2)
AB(size-cons. err.) =

∑
LA∈QA;LB∈PB

CkB
LB

2
(EkB − ELB)

〈ΦkA |ĤA |LA〉〈LA |ĤA |ΦkA 〉
(EkA−ELA )2

+(A↔ B) (1.29)

The above expression can be considered small in the case where the zero-order function

is well separated from the orthogonal space in both non-interacting subspaces. This holds

irrespective of the possible close-lying levels within the model space. The reason is the

fact, that if |LB〉 is a level quasi-degenerate with |kB〉 then CkB
LB

is large but EkB − ELB is

small. On the other hand, if levels |kB〉 and |LB〉 are far in energy, then EkB − ELB is large

but CkB
LB

is certainly small in this case.

It is also apparent from Eq.(1.29) that in the case where excitations taking from P

to Q space are localized on the non-interacting partners and EkB − ELB = 0 holds, the

size-consistency error disappears.

1.1.6 Internally contracted approaches

An important class of MRPT theories uses a non-diagonal zero-order Hamiltonian and

thus works with a non-diagonal resolvent operator. These theories rely on an iterative

procedure to get the PT corrections, similarly to the approach adapted in localized Møller-

Plesset PT [39-42]. Since the generalized Fockian

F̂ =
N∑

i, j=1

fi jî+ ĵ−, (1.30)

with the matrix elements being

fkl = hkl +
∑
nm

Pnm 〈kn||lm〉 . (1.31)

is non-diagonal in the MR case, one must work with a non-diagonal resolvent if Ĥ0 is

based on it. In Eq.(1.31) matrix Pnm is the density matrix belonging to the reference

14



Φ0. In the general case a multiconfigurational CAS state is not an eigenfunction of the

generalized Fock operator, thus F̂ can not be considered as a zero-order operator in the

Rayleigh-Schrödinger framework. One can however easily construct a proper zero-order

Hamiltonian by the definition:

Ĥ0 = E(0)|Φ0〉〈Φ0| + Q̂F̂Q̂, (1.32)

where Q̂ is the idempotent operator which projects to the orthogonal space:

Q̂ = Î − |Φ0〉〈Φ0| . (1.33)

To recover the Møller-Plesset zero-order in the single-reference case, it is practical to

choose the zero-order energy E(0) as the expectation value of the generalized Fockian

with the zero-order function:

E(0) = 〈Φ0|F̂|Φ0〉. (1.34)

As a consequence of the appearance of projector Q̂ in Eq.(1.32) the zero-order Hamil-

tonian is generally not diagonal on the determinant basis. The first-order perturbation

correction for Φ0 using zero-order Hamiltonian (1.32) reads

|Ψ(1)〉 = (E(0) − Q̂Ĥ0)−1Q̂V̂ |Φ0〉, (1.35)

where V̂ = Ĥ − Ĥ0 is the perturbation operator. Efficiency of the calculation of the

resolvent operator (E(0) − Q̂Ĥ0)−1Q̂ depends on the structure of matrix Ĥ0.

The strongly block diagonal structure reduces the dimensionality of the diagonaliza-

tion process. To utilize this, Wolinski and Pulay [11] suggested to use the zero-order

Hamiltonian

Ĥ0 = E(0)|Φ0〉〈Φ0| + Q̂S F̂Q̂S + Q̂DF̂Q̂D + . . . , (1.36)

where Q̂S and Q̂D project to the subspace of single and double excitations, respectively.

Space Q̂S is generated by the action of the spin-averaged excitation operator

Êpq =
∑
σ=α,β

p̂+σq̂σ (1.37)

on the reference function and a product of two such on operators are applied for space

Q̂D. The functions generated this way are called internally contracted (IC) states. The

advantage of IC functions over determinants interacting with Φ0 is that IC states are much
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less in number. The inversion of the resolvent operator can be done in an iterative fashion.

Since the internally contracted basis is not orthogonal and generally linearly dependent,

canonical orthogonalization[43] is used to determine an orthogonal basis and eliminate

the redundancy.

Up to now we discussed multiconfigurational theories based on a CAS space. This

property can be serious drawback on its own since the calculation cost of the CAS problem

is exponentially growing with the model space dimension. Of the theories presented so

far, it is the method of Wolinsky and Pulay which is capable to treat zero-order states of

a general form. The non-diagonal Ĥ0 (1.32) was applied by Murphy and Messmer [44]

for the case where the zero-order function Φ0 is a general valence bond (GVB)[45] wave

function. Utilizing the fact that a GVB wave function is usually significantly shorter than

a CAS function, they adopted a determinant basis to expand the interacting subspace.

This greatly simplifies the implementation.

To cure the difficulties originating in the inversion of the resolvent operator, for the

case when the zero-order function is a CAS state, Roos and his coworkers applied an Ĥ0

which is composed of smaller non-zero blocks[46]. Since the zero-order wave function

arises from a CAS calculation, the first-order wave function correction lies entirely in the

Q̂S D space, which is orthogonal to the CAS state. To reduce the computation cost of the

inversion, Roos et al divide the Q̂S D subspace into subspaces according to the different

type of internally contracted excitations. It is possible to define an internal, a semi internal

and an external subspace where the number of electrons in the external orbitals are zero,

one or two, respectively. These three subspaces can be further divided according to the

number of core-active excitations (zero, one or two). As a result, altogether eight distinct

subspaces can be defined in Q̂S D. Choosing F̂ in a diagonal form: F̂ =
∑

p εpÊpp would

be most favorable from the computation point of view, since this choice excludes all

interactions between vectors spanning space Q̂S D. Unfortunately this zero-order gives

unsatisfactory results at second-order thus the application of the non-diagonal

F̂ =
∑

pq

fpqÊpq (1.38)

operator was later introduced[47]. Most of the interaction between different subspaces

of Q̂S D remain zero and the inversion of the resolvent operator can be performed in an

iterative manner. In this procedure treatment of internal and semi internal subspaces needs
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the calculation of third and fourth-order density matrices, due to the appearance of the

overlap matrix. To avoid the computationally demanding construction of higher-order

density matrices Werner used configuration state functions (CSF) as basis in the internal

and semi internal subspaces and implemented the CASPT theory up to third-order[16].

The exact wave functions and energies of a many electron system are independent of

the molecular orbitals applied. Approximate wave functions – due to the various restric-

tions on the molecular orbital occupancies – may only partially fulfill or fully ruin this

invariance. A CAS function used as the zero-order state in the different perturbation ap-

proaches shows invariance to rotation within the core, the active and the external orbitals’

subspace. A well behaving MRPT method should keep this property. The MRPT frame-

work by Wolinski and Pulay may or may not keep the orbital invariance shown by the

CAS function. Crucial in this point of view is the definition of the Fockian. A diagonal

form of F̂ destroys orbital invariance, while application of definition (1.38) in formula

(1.32) or (1.36) defines an orbital invariant zero-order Hamiltonian. This means that the

rotational invariance of the CAS functions is kept at any order.

Size-consistency property of the MRPT formulation by Wolinski-Pulay and by Roos

was discussed in detail by [48, 49] . Theoretical and numerical examinations were re-

ported claiming size-consistency of the Wolinski-Pulay formalism. The approach by Roos

is known to be size-inconsistent.

1.2 Multiconfigurational perturbation theory (MCPT)

1.2.1 Original formalism of MCPT

To present a new multiconfigurational perturbation formalism[1] we start with a function

|0〉, that can be written as a weighted sum of a principal determinant |HF〉 and several

other Slater determinants |K〉:

|0〉 = dHF|HF〉 +
∑

K�HF

dK |K〉 . (1.39)

It is practical to choose |HF〉 as the largest component in absolute value in |0〉. This

reference function defines the projector onto a one-dimensional reference space

P̂ = |0〉〈0| (1.40)
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and its orthogonal complement Q̂ = 1 − P̂ .

In the spirit of perturbation theory, we consider |0〉 as the zero-order ground state

function and look for perturbation corrections to it. For this end we define a formal zero-

order Hamiltonian

Ĥ0 = E0|0〉〈0| +
∑

K�HF

EK |K′〉〈K̃′| . (1.41)

where |K′〉 , |K〉 � |HF〉 represent an overlapping set of projected determinants

|K′〉 = Q̂|K〉 = |K〉 − dK |0〉 (1.42)

with the overlap matrix

S K′L′ = 〈K′|L′〉 = 〈K|
(
1 − P̂

)
|L〉 = δKL − dKdL , (1.43)

and 〈K̃′|-s are biorthogonal to |K′〉, i.e. 〈K̃′|L′〉 = δKL :

〈K̃′| =
∑
L�HF

S −1
K′L′ 〈L′| (1.44)

where S −1
K′L′ is a shorthand for the elements of the inverse of the overlap matrix (1.43).

This inverse can be given analytically due to the simple structure of S K′L′:

S −1
K′L′ = δKL +

∑
L�HF

dKdL

d2
HF

, (1.45)

and the connection between the direct and biorthogonal elements is:

〈K̃′| = 〈K′| +
∑
L�HF

dKdL

d2
HF

〈L′| = 〈K| − dK

dHF

〈HF| . (1.46)

Here and further on tildes will denote reciprocal (biorthogonal) vectors.

The perturbation operator is defined as

V̂ = Ĥ − Ĥ0 (1.47)

and low-order PT corrections are straightforward to construct based on standard biorthog-

onal PT:

E(2) = −
∑

K�HF

〈0|Ĥ|K′〉〈K̃′|Ĥ|0〉
EK − E0

, (1.48)

E(3) =
∑

K�HF

∑
L�HF

〈0|Ĥ|K′〉〈K̃′|V̂ |L′〉〈L̃′|Ĥ|0〉
(EK − E0) (EL − E0)

, (1.49)
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etc.

The zero-order ground state energy is most practically chosen as E0 = 〈0|Ĥ|0〉 ,
while the zero-order excited energies, EK-s, are parameters of the theory. By fixing these

numbers, one defines the partitioning in the MCPT framework. Several choices for EK-s

have been discussed previously[1, 2, 50].

There are two classical options for the definition of E′K s. The first possibility – fol-

lowing Møller and Plesset – is to choose the zero-order excitation energies as the sum and

difference of one-particle energies of the orbitals where electrons are removed/attached

when generating determinant |K〉 starting from |HF〉:

EK = E0 + Δi,a, with |K〉 = â+î−|HF〉,Δi,a = εa − εi , i ∈ |HF〉, a � |HF〉. (1.50)

Energies of the higher excitations are defined in a similar way. One particle energies εq are

simply taken as the diagonal element of the Fock operator corresponding to the reference

determinant |HF〉, already shown in Eq.(1.19). In multi-reference problems, however, the

application of the diagonal elements of the generalized Fock operator Eq.(1.31) seems to

be more suitable :

εi = hii +
∑

jk

〈i j||ik〉Pk j , (1.51)

with

Pk j = 〈0|a+j ak|0〉 . (1.52)

We will use the Davidson-Kapuy (DK) denomination [41, 42, 51, 52, 53] for the cases

where the diagonal part of the ordinary or generalized Fockian is used to construct the

zero-order Hamiltonian. DK denomination is applied to distinguish this possibility from

Møller-Plesset partitioning. The second simple option for the partitioning is the applica-

tion of Epstein-Nesbet denominators where the energy belonging to any state is simply

the expectation value of the Hamiltonian:

E0 = 〈0|Ĥ|0〉, EK = 〈K|Ĥ|K〉 . (1.53)

The above definition of Ĥ0 differs from the zero-order Hamiltonian used by Wolinski

and Pulay [11] and Roos [46, 12] (see also Section 1.1.6) in two essential points. First,
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it does not apply projectors onto n-fold excited subspaces. Second, its reduced resolvent

X̂ =
(
E0 − Q̂Ĥ0

)−1
Q̂ can be specified explicitly as

X̂ =
∑
K=1

|K′〉 ˜〈K′|
E0 − EK

(1.54)

That is, X̂ is diagonal on the biorthogonal basis, while the inverse of the overlap matrix

is known explicitly. Thus, no iterative procedure is required to get the perturbation cor-

rections. This simplicity, on the other hand, is achieved by a non-Hermitian zero-order

Hamiltonian and resolvent.

As already mentioned, a similar iteration-free procedure was formerly proposed by

Hirao in his multi-reference Møller-Plesset perturbation theory[13, 54]. In Hirao’s ap-

proach the overlap between the target state and the excited determinants in the CAS space

was handled with a numerical diagonalization procedure while the treatment of the or-

thogonal space is essentially the same. It is important to emphasize here that MCPT does

not suppose that the zero-order function comes from a CAS calculation. It can stem from

any methods for example from GVB[45, 55] or APSG[56]. It is also to be noted that

the MCPT framework as detailed here is inherently size-inconsistent. Size-inconsistency

may partly originate from the denominators. This can be eliminated with a proper choice

of zero-order energies, as already discussed in Section 1.1.4 (see Eq.(1.29)). A second

source of size-inconsistency is the appearance of projector P̂ in the zero-order operator

(1.41) which can induce a coupling in Ĥ0 between non-interacting subsystems. This is

similar to the problem encountered in the CASPT scheme[48, 49, 57].

1.2.2 Reformulation of MCPT: SC2-MCPT

In order to diminish the consistency violation of the MCPT framework one needs to rede-

fine the zero-order Hamiltonian so that projector P̂ is excluded[3]. To reach this goal, let

us use unprojected Slater-determinants |K〉 instead of |K′〉 in Ĥ0:

Ĥ0
SC2 = E0|0〉〈0̃| +

∑
K�HF

EK |K〉〈K̃| . (1.55)

Here (1.55) of the zero-order Hamiltonian 〈0̃| and 〈K̃|-s stand for the reciprocal (biorthog-

onal) vectors of the overlapping set {|0〉} ∪ {|K〉 |K � HF}. Perturbation theory defined
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by Eq.(1.55) is called SC2-MCPT referring to the size-consistent property of the second-

order energy. As it will be shown later, one has to introduce strict restrictions to the form

of EK energies to obtain a size-consistent second-order energy. To construct the tilded

vectors, let us build the metric matrix of the overlapping set:

S KL = δKL + dK δL0 (1 − δK0) + dL δK0 (1 − δL0) . (1.56)

(Case K = 0 designates the multiconfigurational reference state |0〉.) The inverse of

overlap matrix (1.56) can be expressed by the closed formula

S −1
KL = δKL − δK0δL0 + eKeL (1.57)

with e0 = d−1
HF , eI = −dId−1

HF for I � 0 and S −1
KL is a shorthand for the elements of

the inverse of the overlap matrix (1.56). Inverse (1.57) results the reciprocal vectors (see

Eq.(1.44))

〈0̃| = 1

dHF

〈HF| (1.58)

and

〈K̃| = 〈K| − dK

dHF

〈HF| . (1.59)

The zero-order operator (1.55) has the advantage over (1.41) that it lacks projector P̂,

therefore coupling between two independent subsystems can no longer emerge from it.

The zero-order ground state energy in this scheme is most practically taken as

E0 = 〈0̃|Ĥ|0〉 , (1.60)

so that E(1) vanishes. The zero-order excited energies EK-s can be chosen in the spirit

discussed in Section 1.2.1.

Similarly to the original formulation the reduced resolvent corresponding to the zero-

order Hamiltonian (1.55) is diagonal in the biorthogonal formulation:

X̂SC2 =
∑

K�HF

|K〉〈K̃|
EK − E0

. (1.61)

Corrections E0 in the SC2 variant of MCPT take the form:

E(2)

SC2
= −

∑
K�HF

〈0̃|Ĥ|K〉〈K̃|Ĥ|0〉
EK − E0

, (1.62)
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E(3)

SC2
=

∑
K�HF

〈0̃|Ĥ|L〉〈L̃|V̂ |K〉〈K̃|Ĥ|0〉
(EL − E0)(EK − E0)

, (1.63)

etc.

Comparison of the second-order formulae Eq.(1.48) and Eq.(1.62) reveals that the

latter is computationally cheaper than the former, since a sum for excited configurations

is present in 〈0| not like in 〈0̃|. This might also give a warning that formula (1.62) may

yield smaller corrections than (1.48) – this however is not found in our numerical tests to

be presented in Section 1.4.

At the same time, numerical studies indicate, that dependence of formulae (1.62) and

(1.63) on the Fermi-vacuum choice is much expressed than the dependence of (1.48) and

(1.49). This unfavorable property can lead to difficulties in the description of potential

energy surfaces when the dominant determinant is changing as will be shown in Section

1.4. A possible solution for this problem is discussed by Szabados and Surján [58], who

suggested an averaging over the possible Fermi-vacua.

To examine the size-consistent or -inconsistent nature of the SC2 variant of MCPT,

let us look first at the zero-order quantities for a joint system AB. We suppose, that the

reference function is product separable:

|0〉 = |0A0B〉 (1.64)

just like its reciprocal vector

〈0̃| = 〈HFAHFB|
dHFAdHFB

= 〈0̃A 0̃B| (1.65)

giving rise to the additively separable zero-order ground state energy

E0,AB = 〈0̃A 0̃B|ĤA + ĤB|0A0B〉 = E0,A + E0,B . (1.66)

Zero-order excited state ket vectors are excited determinants, where the excitation

may take place on one system, or the other, or both: |HFAKB〉, or |KAHFB〉, or |KALB〉.
Unfortunately neither |HFAKB〉 nor |KAHFB〉 is a product of a zero-order vector on system

A and another on system B, since the vector |HF〉 is not contained in the expansion set [cf.

Eq.(1.55)]. This has unfavorable consequences on the consistency property of the energy

from third-order on.
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Looking at zero-order excited bra vectors and using Eq.(1.59), one finds:

〈 ˜HFAKB| = 〈HFAKB| − dKB

dHFB

〈HFAHFB| = 〈HFAK̃B| (1.67)

similarly

〈 ˜KAHFB| = 〈K̃AHFB| (1.68)

and

〈˜KALB| = 〈KALB| − dKAdLB

dHFAdHFB

〈HFAHFB| � 〈K̃A L̃B| . (1.69)

Apart from the constant dHFA , 〈 ˜HFAKB| is the product of zero-order functions 〈0̃A| and

〈K̃B|, which is desirable. However, this is not the case for 〈˜KALB|.
Zero-order excited state energies are considered in the form

EK = E0 + ΔK , (1.70)

with ΔK being constructed of one-particle energies that characterize the excitation taking

from |HF〉 to |K〉. By this Møller-Plesset (MP) type construction one can avoid emergence

of a coupling between independent subsystems in the energy denominators, since excited

state energies then look:

EHFAKB = E0 + ΔKB , (1.71)

EKAHFB = E0 + ΔKA , (1.72)

and

EKALB = E0 + ΔKA + ΔLB . (1.73)

Using the above zero-order functions and energies it is easy to see that the zero-order

Hamiltonian (1.55) is not additive over non interacting subsystems A and B. Full size-

consistency of the SC2-MCPT scheme therefore can not be expected. Still, we shall show

that the first non vanishing corrections behave correctly. Let us start with the second-order

energy

E(2)
AB = −

∑
KA ,LB|HFAHFB〉�|KAKB〉

〈0̃A0B|ĤA|KALB〉〈˜KALB|ĤA|0A0B〉
EKALB − E0

−
∑
KA ,LB|HFAHFB〉�|KAKB〉

〈0̃A0B|ĤA|KALB〉〈˜KALB|ĤB|0A0B〉
EKALB − E0

+ {A↔ B} . (1.74)
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At this point we can substitute the expressions from Eq.(1.58), Eq.(1.65) and Eq.(1.67)

then apply Eq.(1.70) and Eq.(1.73.). Utilizing that ĤA does not act on vectors of system

B,

E(2)
AB = −

∑
KA ,LB|HFAHFB〉�|KAKB〉

〈HFAHFB|ĤA|KAHFB〉〈K̃AHFB|ĤA|0A0B〉
dHFAdHFBΔKA

−
∑
KA ,LB|HFAHFB〉�|KAKB〉

〈HFAHFB|ĤA|KAHFB〉〈K̃AHFB|ĤB|0A0B〉
dHFAdHFBΔKA

+ {A↔ B} . (1.75)

Since 〈HFB|0B〉 = dHFB the first term clearly does not depend on index B. The second

term is zero due to the 〈K̃A|0A〉 = 0, (KA � HFA) coming from the biorthogonalality

relation. As a result of the above derivation, the reformulation of the MCPT theory leads

to size-consistent second-order:

E(2)
AB = E(2)

A + E(2)
B . (1.76)

A similar analysis for the energy of order three or higher reveals the appearance of

inter-system terms, leading to size-inconsistency.

As an illustration, two H2 molecules in 6-311G** basis set in a rectangular arrange-

ment were selected for numerical size-consistency check. Internuclear distance of the

individual H2 molecules was 1.0 Å , the two molecules systems were put 100 Å away

from each other. A simple (2,2) CAS was computed as reference for the stretched H2

molecule, and a (4,4) CAS was prepared for the non-interacting dimer.

Size-consistency violation as a function of the order of PT is plotted in Fig. 1.1 for

this system. Here one sees, that consistency violation of the SC2-MCPT scheme remains

slightly larger than that of MCPT at every order from third-order on. Size-inconsistency

of the MCPT scheme diminishes faster, still the violation of the two schemes fall into the

same order of magnitude at the third and higher-orders.
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Figure 1.1: Size-inconsistency of MCPT and SC2-MCPT schemes on the example of two

stretched H2 molecules 100 Åfrom each other. For geometry see text. Numbers displayed are

in mH, basis set used is 6-311G**. Inconsistency is computed as EH2...H2
− 2EH2

.
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1.3 Implementation of third-order MCPT and SC2-MCPT

formalism

1.3.1 Wick’s theorem and the diagrammatic representation

Theories discussed in the previous sections can be coded in a configuration driven algo-

rithm which means that the do loops in the implementation run over the single determi-

nantal states. In this way the second-order correction can be implemented with maximum

efficiency by calculating quantity Ĥ|K〉 for all the determinants appearing in the reference

function |0〉. The resultant vector contains one- and two-fold excitations of the determi-

nants appearing in the reference function |0〉. The leading term of the second-order energy

correction stemming from Eq.(1.48) can be written as:

E(2)

leading =
∑

K�HF

∑
I,J

cIcJ
〈I|Ĥ|K〉〈K|Ĥ|J〉

E0 − EK
(1.77)
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which shows that after the division by the denominators scalar products have to be calcu-

lated. In this way the calculation cost is proportional to the dimension of the interacting

subspace of |0〉, which is approximately NN2
v N2

o , where N is the number of determinants

in the reference function, Nv is the number of virtuals, No is the number of occupied or-

bitals. Though the configuration driven approach is simple, in higher-order it becomes

impractical. To show this let us consider the leading term of formula (1.49):

E(3)

leading =
∑

K,L�HF

∑
I,J

cIcJ
〈I|Ĥ|K〉〈K|Ĥ|L〉〈L|Ĥ|J〉

(E0 − EK)(E0 − EL)
. (1.78)

If the main part of the first-order wave function correction

Ψ
(1)

leading = −
∑

J

∑
L�HF

|L〉〈L|
EL − E0

Ĥ|J〉cJ (1.79)

is already calculated, the calculation cost of ĤΨ(1)

leading is roughly proportional to NN4
v N4

o .

However, this calculation is done partly in vain since only those elements of ĤΨ(1)

leading

are needed for the calculation of Eq.(1.78) which may interact with |0〉 through Ĥ. To

avoid the calculation of unnecessary terms i.e. 〈K|Ĥ|Ψ(1)

leading〉 matrix elements where

〈K|Ψ(1)

leading〉 = 0, one should restrict the second quantized operator indices in operator

Ĥ. To achieve this, an orbital driven approach is to be followed.

To derive the formulae necessary for a sum-over-orbitals implementation it is im-

portant to clarify the mathematical background of the calculation of matrix elements of

second quantized operator products. For simplicity we first consider the case where the

expectation value of an operator product is evaluated:

〈I| p̂+q̂+ . . . r̂− ŝ−|I〉. (1.80)

Operators in (1.80) can be classified as occupied (denoted by i, j, k, . . . ) or virtual (de-

noted by a, b, c, . . . ) operator with respect to determinant |I〉. Using the anti commutation

relations of fermions

{ p̂−, q̂−} = 0, { p̂+, q̂+} = 0, {p̂+, q̂−} = δpq (1.81)

one can move the occupied annihilation and virtual creation operators to the left and

occupied creation and virtual annihilation operators to the right. After the rearrangement
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the constant term will give the value of the matrix element of (1.80), since all other terms

will give zero by definition. As an example let us see an eight membered operator product:

î+ ĵ+â+ĉ−b̂+d̂−k̂− l̂− =−â+b̂+k̂−l̂−î+ ĵ+ĉ−d̂−+â+k̂− l̂− î+ ĵ+d̂−δbc −â+b̂+k̂− î+ĉ−d̂−δ jl

−â+b̂+ l̂− ĵ+ĉ−d̂−δik + â+b̂+l̂−î+ĉ−d̂−δ jk + â+b̂+k̂− ĵ+ĉ−d̂−δil + â+l̂− ĵ+d̂−δikδbc

+â+k̂− ĵ+d̂−δilδbc + â+k̂− î+d̂−δbc δ jl − â+l̂− ĵ+d̂−δbc δil − â+l̂−î+d̂−δbc δ jk

−â+b̂+ĉ−d̂−δ jkδil + â+b̂+ĉ−d̂−δ jlδik + â+d̂−δbcδikδ jl − â+d̂−δbcδilδ jk. (1.82)

To simplify the calculation of the above formula and to get an easy-to-memorize cal-

culation method, contraction of operators and normal ordered operator products are in-

troduced [59]. Contractions of creation and annihilation operators are defined by the

following rules:

â−b̂+ = δab, î+ ĵ− = δi j, b̂+ â− = 0, ĵ− î+ = 0 (1.83)

and all other contractions are zero. An operator product normal ordered with respect to

reference determinant |I〉 is denoted by curly bracket:

{î+ ĵ+â+ĉ−b̂+d̂−k̂−l̂−}I = −â+b̂+k̂−l̂−î+ ĵ+ĉ−d̂−. (1.84)

In the normal ordered form of an operator product, by definition, all virtual creation and all

occupied annihilation operators are moved to the left of virtual annihilation and occupied

creation operators. The string is multiplied by the sign of the permutation necessary to

achieve the rearrangement. Note that the even permutation gets positive while the odd

permutation receives negative sign. Note also that one can freely permute the operators in

curly bracket, only the sign of the permutation has to be taken into account.

When deriving formula (1.82) the anti-commutation rule p̂+q̂− = δpq − q̂− p̂+ was ex-

tensively used. The idea of contraction of operators is introduced to take into account the

Kronecker-delta while the second term with the sign is taken into account by the appli-

cation of the curly bracket. Rewriting the right hand side of Eq.(1.82) using contractions

and normal ordered operators one obtains:

î+ ĵ+â+ĉ−b̂+d̂−k̂−l̂− = {î+ ĵ+â+ĉ−b̂+d̂−k̂− l̂−}I +
∑

single contr.

{î+ ĵ+â+ĉ−b̂+d̂−k̂− l̂−}I

+
∑

double contr.

{î+ ĵ+â+ĉ−b̂+d̂−k̂−l̂−}I +
∑

triple contr.

. . . +
∑

f ull contr.

. . . (1.85)
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Note, that free permutation in contracted normal ordered strings affects only the operators

not involved in any contraction. It is also important that the application of operator con-

traction and rearrangement into normal order do not commute. In the above equation first

operator contractions have to be calculated then the normal ordering acts of the remaining

operator product is achieved. Contraction of any two operators in normal ordered form

is zero by definition. As a consequence, any contraction within a normal ordered opera-

tor product gives zero. Summations in the above expression run over the possible singly

contracted, doubly contracted etc. terms. The result obtained for the above example can

be formulated in a general manner as follows. A general product of second quantized op-

erators can be expressed by the summation of all the possible normal ordered quantities

constructed by contracting the operators in the product in all possible way. This is the

Wick’s theorem[59]. Application of Wick’s theorem to formula (1.80) yields

〈I| p̂+q̂+ . . . r̂− ŝ−|I〉 =
∑

f ull contr

〈I|{p̂+q̂+ . . . r̂− ŝ−}I |I〉 , (1.86)

where expectation values of normal ordered operator products with the reference deter-

minant are not included since they all give zero. In other words, the expectation value of

a second quantized operator product calculated with a single determinant involves only

the fully contracted terms. It is easy to understand that the sign of a fully contracted term

can be calculated based on the number of crossings of the contraction lines.

In practice we usually meet products of normal ordered operators like

{p̂+ . . . r̂−}I{q̂+ . . . ŝ−}I . (1.87)

This formula as a whole can be rewritten into normal ordered form by using Wick’s the-

orem and noting that any contractions connecting two operators within the same bracket

give zero. This leads to the generalized Wick’s theorem [59] which can be written for the

product of two normal ordered operator as:

{ p̂+ . . . r̂−}I{q̂+ . . . ŝ−}I = {{p̂+ . . . r̂−}I{q̂+ . . . ŝ−}I}I + (1.88)

+
∑

single contr.

{{ p̂+ . . . r̂−}I{q̂+ . . . ŝ−}I}I + . . . +
∑

f ull contr.

{ p̂+ . . . r̂−}I{q̂+ . . . ŝ−}I .

A similar rule applies to products of more than two normal ordered terms.
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An important application of Wick’s theorem is the separation of the electronic Hamil-

tonian into the fully contracted and the remaining normal ordered part:

Ĥ = ĤN + 〈I|Ĥ|I〉, (1.89)

where the first term is the Hamiltonian normal ordered with respect to determinant |I〉 and

the second is the Hartree–Fock energy belonging to determinant |I〉. The explicit form of

the normal ordered Hamiltonian contains the elements of the Fock matrix defined by the

reference determinant |I〉. Without the long but straightforward derivation we quote the

expression of the normal order Hamiltonian:

ĤN =
∑

pq

f I
pq{ p̂+q̂−}I +

1

4

∑
pqrs

〈pq||rs〉{ p̂+q̂+ ŝ−r̂−}I (1.90)

Here we introduced the Fock matrix defined by the occupied orbitals in determinant |I〉

f I
pq = hpq +

∑
i∈I
〈pi||qi〉 (1.91)

and the antisymmetric two electron integrals 〈pq||rs〉 = 〈pq|rs〉 − 〈pq|sr〉 are written in

the 〈12|12〉 convention.

We now set out to derive formulae of a sum-over-orbital expression of MCPT. This

can be achieved by calculating full contractions of normal ordered operator products stem-

ming from ĤN . As we will see, to derive the working equations of a sum-over-orbitals

implementation of a many-body approach, full contractions of normal ordered products

can be processed by a computer. To simplify the treatment and reduce the large number

of terms, a diagrammatic representation is useful.

To demonstrate the diagrammatic representation, we briefly discuss its application to

single-reference Many-Body Perturbation Theory (MBPT)[7]. MBPT can be considered

as a special case of the QDPT where the CAS space contains only the Hartree–Fock

determinant. In this simplest case all perturbation operators V̂ in Eqs.(1.15) and (1.16)

can be changed into its normal ordered counterpart V̂N . The normal ordering is now

defined with respect to the Hartree–Fock determinant |I〉. In the single-reference case

there is no summation over J and L in Eq.(1.15) and all projectors P̂ are indexed by I.

Since P̂IV̂N P̂I is zero, at third-order only the first term, at fourth-order only the first and

the third terms give contributions. We can finally substitute the form of P̂I expressed with
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|I〉 the right hand side of Eqs.(1.15) and write Ψ(n) wave function corrections instead of

the wave operator components. As a result the different orders of the wave function look:

Ψ(0) = |I〉
Ψ(1) = R̂IV̂N |I〉
Ψ(2) = R̂IV̂NR̂IV̂N |I〉
Ψ(3) = R̂IV̂NR̂IV̂NR̂IV̂N |I〉 − R̂2

I V̂N P̂IV̂NR̂IV̂N |I〉 (1.92)

Using Hartree–Fock canonical orbitals, the zero-order Hamiltonian is given by Eq.(1.19)

where εq = f I
qq. Since f I

pq is diagonal, the perturbation operator is of the form

V̂ =
1

4

∑
pqrs

〈pq||sr〉p̂+q̂+r̂ ŝ. (1.93)

Using relation E(0) = 〈Ψ(0)|Ĥ0|Ψ(0)〉 and E(n) = 〈Ψ(n−1)|V̂N |Ψ(0)〉 one obtains the Hartree–

Fock energy as, the zero-order plus the first-order energy:

E(0)
I + E(1)

I = 〈I|Ĥ0 + V̂ |I〉 (1.94)

and the higher-order terms takes the form

E(2) = 〈I|V̂NR̂IV̂N |I〉, (1.95)

E(3) = 〈I|V̂NR̂IV̂NR̂IV̂N |I〉, (1.96)

E(4) = 〈I|V̂NR̂IV̂NR̂IV̂NR̂IV̂N |I〉 − 〈I|V̂NR̂2
I V̂N |I〉〈I|V̂NR̂IV̂N |I〉. (1.97)

To introduce the diagrammatic technique, let us take a closer look at the second-order

expression:

E(2)
I =

∑
K�I

〈I|V̂N |K〉〈K|V̂N |I〉
E(0)

I − E(0)
K

(1.98)

=
1

16

∑
K�I

∑
pqrs

∑
p′q′r′s′

〈pq||sr〉〈p′q′||s′r′〉 〈I|{p̂
+q̂+r̂− ŝ−}|K〉〈K|{ p̂′+q̂′+r̂′− ŝ

′−}|I〉
E(0)

I − E(0)
K

.

Using the generalized Wick’s theorem (1.88) one has to construct all possible full con-

tractions of the creation and annihilation operators. It can be realized in four different
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Figure 1.2: Possible contractions in the second-order MBPT energy.

ways, i.e.:

1
16
〈pq||sr〉〈p′q′||s′r′〉〈I|{p̂+q̂+r̂ ŝ}|K〉〈K|{ p̂′+q̂′+r̂′ ŝ′}|I〉 (1.99)

where the sums are omitted from Eq.(1.98). The second and third full contractions them-

selves give a minus sign, but together with the antisymmetric integrals all four expressions

yield the same result. The value altogether is

E(2)
I =

1

4

∑
abi j

〈i j||ab〉〈ab||i j〉
εi + ε j − εa − εb . (1.100)

Using a different graphical representation the four different contractions can be symbol-

ized by four graphs, shown in Fig. 1.2. The horizontal lines (vertices) symbolize the anti-

symmetric integrals in formula (1.99). The upward or downward oriented lines connect-

ing the vertices symbolize the contractions. Upgoing lines labeled by a and b are virtual,

downgoing lines denoted by i and j are occupied orbitals. The vertices of two-electron in-

tegrals are defined so that there is one incoming and one outgoing contraction line on both

sides of the vertex. Outgoing arrows correspond to creation operators, incoming arrows

refer to annihilation operators. Some examples of possible one- and two-electron vertices

are shown in Fig. 1.3. Due to the antisymmetry of the two electron integrals the creation

operators or the annihilation operators can be freely exchanged without sign change. Us-

ing this flexibility the incoming and outgoing lines of a vertex can be exchanged among
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i
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1
4
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1
4
〈ia|| jk〉{î+â+k̂− ĵ−} �
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c d

1
4
〈ab||cd〉{â+b̂+d̂−ĉ−}

Figure 1.3: Examples for diagrammatic representation of the one- and two-electron operators

themselves. For example the following diagrams

�
ia

jb �i
j
ab

(1.101)

represent the same operator. As a result of the above flexibility the four diagrams in

Fig. 1.2 give the same result, thus one can consider them to be equivalent and draw only

the first one. The general convention is to use the diagram with the maximum number of

loops from the equivalent topologies[60]. The contributions of the equivalent diagrams

can be taken into account by using a prefactor determined by the topology of the diagram.

There are various different conventions of drawing diagrams, the types presented here are

called antisymmetrized Goldstone-diagrams.

To show the determination of the multiplicative factor, consider the symmetries of the

two electron part of the Hamiltonian at Eq.(1.90). Using the fermion anti-commutator

rule Eq.(1.81) and the properties of the antisymmetrized two-electron integrals it is easy

to see that when establishing a contraction like

. . .
1

4

∑
pqrs

〈pq||sr〉 . . . { p̂′′+q̂′′+r̂′′− ŝ
′′−}I{ p̂+q̂+r̂− ŝ−}I{ p̂′+q̂′+r̂′− ŝ

′−}I . . . (1.102)

one can draw three other contractions yielding the same algebraic expression, similarly

to the example shown in Eq.(1.99). In the case of a product containing n pieces of two-

electron normal ordered terms of the Hamiltonian, one can generate the 4n equivalent

terms to a possible full contraction by using the above mentioned symmetry. The factor

4n would exactly cancel the factor (1
4
)n coming from Eq.(1.90) if there are no equivalent
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contractions. Equivalent contractions i.e. two-particle or hole lines starting from the same

vertex and ending in the same vertex alter the picture. If two vertices are connected by

two equivalent contractions the number of distinct contractions is only two instead of four

and the factor of 1
4

is not fully cancelled. As a result each equivalent pair of (hole or

particle) contraction lines gives a factor of 1
2
.

The sign of a contraction can be also read from the diagram as follows. First we

suppose that the diagram is in the maximum loops form, which ensures that in each two-

particle interaction term two operators (one creation and one annihilation operator) belong

to the same loop while the the remaining two operators belong to another loop. One can

also suppose for any vertex, that the creation-annihilation pair which belong to the same

loop are on the same end, i.e. left or right. This form of a diagram can be achieved by

contraction line shifts of the type shown in (1.101), and it involves no sign change. Having

a diagram in such a form, it is clear that its sign is a product of loop contributions, since

any creation-annihilation pair of a loop is separated by even number of other operators.

Using this fact it is enough to determine the sign rule for a single loop constructed by the

multiplication of one-particle like terms. The following examples help to understand the

general rule:

{ p̂+1 q̂−1 }{ p̂+2 q̂−2 }{ p̂+3 q̂−3 }{ p̂+4 q̂−4 }{ p̂+5 q̂−5 }{ p̂+6 q̂−6 } . (1.103)

�
Contractions are also illustrated by the diagrammatic form where now the left going lines

are virtual orbitals (particles) and the right going lines are occupied orbitals (holes). In

the above example the sign of the loop is positive since there is no crossing of contraction

lines while in the second example
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{p̂+2 q̂−2 }{p̂+1 q̂−1 }{p̂+3 q̂−3 }{p̂+4 q̂−4 }{p̂+5 q̂−5 }{p̂+6 q̂−6 } . (1.104)

�
there is one more occupied orbital and the sign becomes negative. One can consider that in

the above diagrammatic representation the sign comes from the contraction line crossing

the interaction vertex. The following two examples similarly give negative sign:

{p̂+2 q̂−2 }{p̂+3 q̂−3 }{p̂+1 q̂−1 }{p̂+4 q̂−4 }{p̂+5 q̂−5 }{p̂+6 q̂−6 } . (1.105)

�
{p̂+1 q̂−1 }{p̂+3 q̂−3 }{p̂+2 q̂−2 }{p̂+4 q̂−4 }{p̂+5 q̂−5 }{p̂+6 q̂−6 } . (1.106)

�
The last example shows the case of two additional hole lines giving positive sign:

{p̂+2 q̂−2 }{p̂+4 q̂−4 }{p̂+3 q̂−3 }{p̂+5 q̂−5 }{p̂+1 q̂−1 }{p̂+6 q̂−6 } . (1.107)

�
Drawing further examples one can confer that a loop with odd number of hole lines con-

tributes positive sign while a loop with even hole lines produces negative sign. Each loop
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give similar contributions thus the final result is (−1)l+h where the l is the number of loops

and h is the number of hole lines.

Up to now we omitted the reduced resolvent operator X̂ which separates the two nor-

mal ordered operators in Eq.(1.98). This projection like operator can be expressed using

the Fermi vacuum in the form:

X̂ =
∑

ai

â+ î−|I〉〈I|î+â−
εi − εa +

1

4

∑
abi j

â+b̂+ î− ĵ−|I〉〈I|î+ ĵ+b̂−â−

εi + ε j − εa − εb + . . . (1.108)

Applying the above formula for the last contraction of Eq.(1.99) and keeping only the

relevant terms from Eq.(1.108) we obtain:

1

16

〈pq||sr〉〈p′q′||s′r′〉
εi + ε j − εa − εb 〈I|{p̂

+q̂+r̂− ŝ−}{â+b̂+ ĵ−î−}|I〉〈I|{î+ ĵ+b̂−â−}{p̂′+q̂′+r̂′− ŝ
′−}|I〉 (1.109)

where summation on all indices is implied. As we can see all indices enter into operator

X̂ from the right and leave to the left. As a result, a denominator appears in operator

X̂ with one-particle energies constructed of indices which enter the reduced resolvent.

For simplicity, contractions with the reduced resolvent operator are usually not denoted,

but are taken into account by dividing by the proper denominator. In the diagrams the

denominators are denoted by horizontal lines crossing the contraction lines. According to

the above discussion the denominators are given by formula

D =
∑
εdown −

∑
εup, (1.110)

where εdown are the one-particle energies of the down going indices crossing the denomi-

nator line and εup are the one-particle energies of the up going lines.

Fig. 1.4.a and Fig. 1.4.b show only the topology of the second and third-order di-

agrams. These type of diagrams, which do not contain arrows, are called skeleton dia-

grams. At second-order only one diagram can be generated from the skeleton diagram.

At third-order three different diagrams can be generated, since there are three different

possibilities for the orientation of the loops. The connected fourth-order diagrams are

more numerous, three examples are shown in Figs. 1.4.c. In Figs. 1.4.d we show all

fourth-order disconnected diagrams. Diagrams belonging to the first term of Eq.(1.97)

term contain a reduced resolvent operator at each intervertex level. Since in diagram d3

there is no excitation with respect to the Fermi-vacuum at the second intervertex level, this
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Figure 1.4: Topology of MBPT diagrams. Diagrams a and b show the topology of the second and

third-order diagrams, respectively. Diagrams c1, c2 and c3 are examples for the connected fourth-

order MBPT diagrams, while diagrams d1, d2 and d3 are the fourth-order disconnected MBPT

diagrams. Diagram e is the renormalization diagram (second term in the last row of Eq.(1.92).

diagram has zero value. Apart from the minus sign, Fig. 1.4.e shows the renormalization

diagram belonging to the second term of the last equation of (1.92). This renormalization

diagram is also disconnected.

According to the linked cluster theorem, disconnected terms in MBPT can not give

contribution to the energy[8, 27, 61]. To show the validity of the linked cluster theorem

at fourth-order, consider the sum of diagrams d1 and d2:∑
A,B

K(A)L(B)

D2
A(DA + DB)

+
∑
A,B

K(A)L(B)

DA(DA + DB)DB
≡

∑
A,B

K(A)L(B)

D2
ADB

, (1.111)

where A and B are hyper indices which denote the four orbital indices appearing at a

given intervertex level according to Figs. d1 and d2, and K(A) and L(B) are products

of two integrals depending either on A or on B. This result equals the negative of the

renormalization term thus the cancellation of disconnected terms is complete. Eq.(1.111)

is a simple application of the Frantz-Mills factorization theorem[62].

At higher-orders the diagrammatic representation can bring unphysical terms where

at a given intervertex level there are two or more particle or hole lines with the same

index i.e. two electrons are removed from a given orbital of the Fermi-vacuum or two

electrons are taken to a given orbital, respectively. See for example Fig. 1.5.a and Fig.

1.5.c. These unphysical terms are called exclusion principle violating (EPV) terms and it

is obvious that they should not give contribution to the energy (or any physical quantity).
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Figure 1.5: Examples for the EPV terms. Diagrams d and e are equal.

A transparent way to get rid of them is to restrict the summations but this would lead to

technical difficulties. Fortunately, there is no need for such a restriction since these terms

automatically cancel each other out. To show this, let us take diagrams in Figs. 1.5 a and

b. The first diagram is clearly a disconnected diagram which gives an EPV term if two-

particle indices have the value a, as Figs. 1.5.a shows. Exchanging the ending of these

particle lines we get Figs. 1.5.b. Doing so the number of loops is reduced by one, the value

of the second diagram therefore is of opposite sign and the sum of these two diagrams

gives zero. In Fig. 1.5.c another EPV term is shown where exchanging the ending of

lines labeled by a leads to Fig. 1.5.d which can be drawn in a more transparent form (as

shown in Fig. 1.5.e.). This transformation gives again a sign change and the consequent

cancellation of these terms. The above process ensures the automatic cancellation of

EPV terms in every case which allows the automatic summation for each contraction line

without any restrictions.

Formulae of multiconfiguration perturbation theory, e.g. (1.78) contains terms where

determinant 〈I| at the far left end is different from determinant |J〉 at the right end. In this

case it is usual to consider determinant 〈I| as an excited determinant with respect to Fermi

vacuum 〈J| in the form

〈I| = 〈J|{î+1 î+2 . . . î
+
n â−n . . . â

−
2 â−1 }I . (1.112)

As a result, the left hand side of the working formulae are closed by a normal ordered

product like (1.112) instead of an interaction vertex, if J is different from I.

Such expressions can be represented by open diagrams, the open legs being indexed

by the orbital indices in formula (1.112). The unclosed loops of an open diagram con-

tribute to the sing rule, i.e. when counting loops, one must consider both closed and

unclosed loops. When generating contributions of open diagrams, one must take into ac-
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PT order no open leg one pair of open legs two pairs of open legs

2nd 2 8 9

3rd 14 78 135

4th 213 1568 3416

Table 1.1: Number of diagrams at different perturbational orders, including contain both con-

nected and disconnected ones. Diagrams with zero legs are the closed diagrams, diagrams with

one (two) pair of open legs describe one (two)-fold excited bra determinant with respect to the ket

determinant.

count permutation of open legs, if there are at least four of them. The permutation affects

hole indices ik and particle indices ak among themselves. The resulting diagrams have to

be multiplied by the parity of the permutation operators. An example for this is shown in

connection with Eq.(1.118) in the following subsection.

Finally, it is worth to summarize the diagrammatic rules as follows.

• Each vertex represents a one- or two-particle integrals. Oriented lines connecting

vertices are the contractions of virtual (upgoing) or occupied (downgoing) lines and

there are summations for these indices in the algebraic form.

• Horizontal lines at the intervetex levels give denominators according to Eq.(1.110).

• Each equivalent pair of contraction lines (starting and ending at the same vertex,

same orientation) gives a factor 1
2
.

• Sign comes from the number of hole lines (h) and the number of loops (l) according

to (−1)h+l.

• Off-diagonal matrix elements of the Hamiltonian are represented by open diagrams

where the open lines are indexed by spin-orbital labels making the difference be-

tween the two determinants at the two ends of the expression. All permutations of

open lines have to be considered with their proper sign. Open loops also contribute

to the sign.
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1.3.2 Automatization of derivations and code generation

In course of the diagrammatic implementation of MCPT and SC2-MCPT we followed

the approach first used by Kaldor [31] where the Fermi-vacuum is defined by the right-

most determinant of the perturbation formula and it varies as the rightmost determinant

changes. Starting with Eq.(1.78), there are two summations over the determinants in the

reference state. Once determinants |I〉 and |J〉 are fixed, at order three one has to calculate

terms like ∑
K,L�HF

〈I|Ĥ(J)
N |K〉〈K|Ĥ(J)

N |L〉〈L|Ĥ(J)
N |J〉

ΔK
HFΔ

L
HF

. (1.113)

To demonstrate the calculation process, let us take an example: a simple term from the

third-order contribution where the first and the second Hamiltonian contribute a one-

electron integral and the third Hamiltonian contributes a two-electron integral

T 3
IJ(112) =

1

4
f (J)

kl f (J)
mn 〈pq||sr〉〈J|{â+2 â+1 î2î1}{k̂+ l̂}X̂{m̂+n̂}X̂{ p̂+q̂+r̂ ŝ}|J〉, (1.114)

where the Einstein convention is used, i.e. there are summations for indices occurring

twice. The second reduced resolvent operator X̂ can be easily processed since all contrac-

tions of the rightmost operators have to be drawn above it:

T 3
IJ(112) =

1

4

f (J)

kl f (J)
mn 〈pq||sr〉
ΔJ

HF + Δ
p,q
r,s
〈J|{â+2 â+1 î−2 î−1 }{k+l}X̂{m̂+n̂−}{ p̂+q̂+r̂− ŝ−}|J〉 . (1.115)

where for the denominator a shorthand notation is introduced:

Δ
a1,...an
i1,...in

= εi1 + . . . + εin − εa1
− . . . − εan (1.116)

Here it is taken into account that the denominator is defined with respect to the leading

determinant of the multiconfiguration reference state while occupied and virtual indices

are defined with respect to |J〉. The zero-order Hamiltonian is defined by Eq.(1.51). De-

nominators are calculated in two steps. At the first step the denominator of determinant

|J〉 is determined (denoted by ΔJ
HF) then in the second step the contribution with respect

to determinant |J〉 is calculated (denoted by Δa1,...an
i1,...in

):

EHF − Ep̂+q̂+ r̂− ŝ−|J〉 = EJ − Ep̂+q̂+ r̂− ŝ−|J〉︸�������������︷︷�������������︸
Δ

p,q
r,s

+ EHF − EJ︸�����︷︷�����︸
ΔJ

HF

(1.117)

Taking into consideration in Eq.(1.115) the full contractions the result is the following:
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T 3
IJ(112) = Pa1

a2
Pi1

i2
(−1)(pa+pi)

{
1

4

〈a1a2||i2i1〉
ΔJ

HF + Δ
a1,a2

i1,i2

∑
ai

fia fai

ΔJ
HF + Δ

a,a1,a2

i,i1,i2

(1.118)

d

+
1

2

∑
a

〈a2a||i2i1〉
ΔJ

HF + Δ
a,a2

i1,i2

(∑
i

fia fa1i

ΔJ
HF + Δ

a,a1,a2

i,i1,i2

−
∑

b

fa1b fab

ΔJ
HF + Δ

b,a2

i1,i2

)

a2 a1

+
1

2

∑
i

〈a1a2||i2i〉
ΔJ

HF + Δ
a1,a2

i,i2

(∑
j

f ji1 fi j

ΔJ
HF + Δ

a1,a2

j,i2

−
∑

a

fia fai1

ΔJ
HF + Δ

a,a1,a2

i,i1,i2

)

b1 b2

+
1

2

∑
i j

〈a1a2||i j〉
ΔJ

HF + Δ
a1,a2

i, j

(
f ji1 fii2

ΔJ
HF + Δ

a1,a2

j,i2

)
+

1

2

∑
ab

〈ab||i2i1〉
ΔJ

HF + Δ
a,b
i1,i2

(
fa1a fa2b

ΔJ
HF + Δ

a,a2

i1,i2

)

e f

+
∑

ai

〈aa2||i2i〉
ΔJ

HF + Δ
a,a2

i,i2

(
fa1i1 fia

ΔJ
HF + Δ

a2

i2

− fii1 fa1a

ΔJ
HF + Δ

a1,a2

i,i2

+
fia fa1i1

ΔJ
HF + Δ

a,a1,a2

i,i1,i2

− fa1a fii1

ΔJ
HF + Δ

a,a2

i1,i2

)}

c3 c2 c4 c1

To implement MCPT and SC2-MCPT theory at third-order the Terms of Eq.(1.118) are

also represented in diagrammatic form in Fig. 1.6. Diagrams having common lowest

interaction vertex are denoted by the same letter for example a1 and a2. There are some

disconnected diagrams in Fig. 1.6 for example c3, c4 and d.

At third-order both the contraction and the coding of diagrams represents significant

difficulty because of the large number of possible diagrams. The number of diagrams at

different perturbation orders are shown in Table (1.1). To implement MCPT and SC2-

MCPT theory at third-order the derivation and the implementation of the diagrams were

automatized. A symbolic algebraic code was developed to construct the possible contrac-

tions of normal ordered operator products using Wick’s theorem. The input of the code

contains the number of normal ordered products, and the number of creation/annihilation

operators constituting each product, together with their spin. This input is produced by a

script which generates all possible normal ordered products which can appear at a given

order of PT. After the determination of fully contracted expressions of a given normal
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Figure 1.6: Examples for third-order diagrams appearing in multiconfigurational perturbation

theories.
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ordered product, the code gathers the equivalent terms into diagrams. As a result, the list

of spin labeled diagrams with their coefficients is obtained. For example when evaluating

term T 3
IJ(112), the diagrams coded by the computer look

1

Aa(a) Ia(i) | Aa(a) Ia(i) | Va(1) Va(2) Oa(2) Oa(1) 0.25

1

Aa(a) Ia(i) | Va(1) Ia(i) | Va(2) Aa(a) Oa(2) Oa(1) 0.5

2

Va(1) Aa(a) | Aa(a) Aa(b) | Va(2) Aa(b) Oa(2) Oa(1) -0.5

1

Ia(i) Oa(1) | Ia(i) Ia(j) | Va(1) Va(2) Oa(2) Ia(j) 0.5

2

Aa(a) Ia(i) | Aa(a) Oa(1) | Va(1) Va(2) Oa(2) Ia(j) -0.5

1

Ia(i) Oa(1) | Ia(j) Oa(2) | Va(1) Va(2) Ia(j) Ia(i) 0.5

1

Va(1) Oa(1) | Aa(a) Ia(i) | Aa(a) Va(2) Oa(2) Ia(i) 0.5

1

Va(1) Oa(1) | Aa(a) Ia(i) | Aa(a) Va(2) Oa(2) Ia(i) 1.0

2

Ia(i) Oa(1) | Va(1) Aa(a) | Aa(a) Va(2) Oa(2) Ia(i) -1.0

3

Aa(a) Ia(i) | Va(1) Oa(1) | Aa(a) Va(2) Oa(2) Ia(i) 1.0

4

Va(1) Aa(a) | Ia(i) Oa(1) | Aa(a) Va(2) Oa(2) Ia(i) -1.0

In the above list vertical lines separate the integrals. Letters A and V indicate dummy

and fixed virtual orbitals, respectively while I and O indicate dummy and fixed occupied

orbitals, respectively. The second letters refer to the spin. In the above list all spins are

alpha. Letters or numbers in brackets indicate the numbering or labeling of the given

orbital.

For the efficient implementation, factorization of the perturbation terms is essential.
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For this reason the symbolic algebraic code reorders the diagrams to be ready for fac-

torized implementation. Such an ordering simplifies the factorization of diagrams in the

second step where an automatized generation of the FORTRAN code occurs. For example

at third-order those diagrams are collected into one block, which have the same integral

at the first vertex (e.g. one-body term with alpha spin or two body term with mixed spin

etc.). Numbers separating different lines in the above list are the serial numbers at the

given block. These blocks could have sub-blocks containing diagrams which have the

same structure up to the second integral from the bottom but this factorization is not used

yet.

At the next stage of the automatized implementation a second code was written which

uses the diagrams, as input and generates the FORTRAN code itself. Similar solutions

were already used in quantum chemistry by Li and Paldus [63] and Hirata [64]. Kállay

and Surján [65] used a different approach in the coupled-cluster framework where the

diagrams were generated based on topological considerations and the implementation

was achieved by a general string based algorithm.

The machinery outlined above was initially developed to implement the MCPT theo-

ries. However, it can be easily adapted to any high-order multi-reference many-body PT.

For example this machinery was used to implement the multi-reference multipartitioning

many-body PT up to fourth-order as will be shown in Chapter 2.

In the above example we considered Davidson-Kapuy denominators. Implementation

of Epstein-Nesbet denominators is also possible and has been incorporated in the code.

For a given Fermi-vacuum |J〉 and a given excited determinant |K〉 the EN denominator

looks

ΔK
HF(EN) = EHF − EJ + EJ − EK = Δ

J
HF(EN) + 〈J|H|J〉 − 〈K|H|K〉 (1.119)

where 〈J|H|J〉−〈K|H|K〉 can be easily constructed once the indices making the difference

between |J〉 and |K〉 are known, since according to the Slater rules [66] the denominator

depends only on these indices.
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1.4 Numerical results

Some illustrative applications are reported in this section to show the performance of the

MCPT and SC2-MCPT schemes. Our examples contain the dissociation potential curve

of diatomic molecules N2 and F2, the insertion of a Be atom in between two H atoms to

form a BeH2 molecule and finally the distortion of the C2H4 molecule.

1.4.1 N2 and F2

Results for the N2 molecule using 6-311G** basis are presented in Fig. 1.7. Reference

functions serving as starting point of the perturbation procedures are APSG functions[45,

56]. Two orbitals were assigned to each non-core geminal, producing GVB-type[45]

reference states. In these calculations we applied Møller – Pressed like energy denomina-

tors (see Eq.(1.19)) using the density matrix of the leading determinant. Corrections by

MCPT and SC2-MCPT are plotted at second at third-order. Apart form the MCPT and

SC2-MCPT formulations, the second-order result obtained by the PT scheme of Rosta and

Surján[21] is also shown in Fig. 1.7, labeled as APSG-PT2. In this method, following

Dyall’s idea[17], a two-body zero-order Hamiltonian is applied, whose eigenvectors are

the APSG states. A state-selective multiconfigurational coupled-cluster (SS-MRCC)[67]

energy was computed at some geometries as benchmark.

The F2 molecule was also treated in the 6-311G** basis. Here again full CI reference

was not affordable. To test the perturbative results, we also computed a multi-reference

average quadratic coupled-cluster (MR AQCC) [68]. Curves corresponding to the ref-

erence energies MCPT-0 and SC2-MCPT-0 are missing from the plot for purpose: they

lie too far from the PT corrected lines to be displayed together in one plot. For the F2

molecule we used simple (2,2) CAS functions as zero-order ground state reference and

Davidson-Kapuy (DK) one-particle energies calculated from the leading determinant.

A zoom into the region at around equilibrium geometry is shown to illustrate the

situation more clearly both for N2 and F2.

On the example of homonuclear diatomic dissociation curves one can observe that

zero-order energies in MCPT and SC2-MCPT formulations do not differ significantly in

numerical terms. Second and third-order results in the MCPT formulation lie close to

each other. Third-order MCPT slightly worsens the second-order in Fig. 1.7 . On the
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other hand, SC2-MCPT second and third-order curves differ significantly. Third-order

SC2-MCPT is worse than second-order, showing a bump at around 2 Å . If comparing

the second-order of the two MCPT formulations, we see a notable decrease in energy:

SC2-MCPT2 represents a significant improvement upon the MCPT2 potential curve. The

second-order SC2-MCPT2 lies very close to APSG PT2 in this example at around equi-

librium. Unfortunately APSG-PT2 starts to deviate from the good shape at around 2 Å

due to the quasi degenerate character of the reference function, that slowly builds up upon

dissociation.

The example of the F2 molecule shown in Fig. 1.8 is somewhat different from the

case of the N2 molecule. Here we see a rather large deviation of MCPT second and

third-order results, third-order improving on both the shape and the minimum value of

the second-order curve. In the case of SC2-MCPT, second-order is hard to distinguish

from MR AQCC at around equilibrium, but it gets worse as the dissociation takes place.

Again at difference with the example of the N2 molecule, we see a better shaped curve at

third-order than at second, though the minimum is far better at second than at third-order.

1.4.2 BeH2

In the following example (see Fig. 1.9) application of both Davidson-Kapuy and Epstein-

Nesbet denominators are tested. DK MCPT and DK SC2-MCPT acronyms are applied for

calculations where the zero order energies are calculated from the generalized-Fock ma-

trix Eq.(1.51) while EN MCPT and EN SC2-MCPT abbreviations refer to the application

of Epstein-Nesbet denominators from Eq.(1.119).

The C2v insertion of a Be atom in between two H atoms with a simultaneous increase

of the H-H distance presents various difficulties at different regions along the insertion

path and has been a good test case of numerous multi-reference theories[36, 69, 70, 71].

Nuclear arrangements (points A to I) along this path were taken from the work of Purvis

and Bartlett[72]. The Be atom is put at the origin (0,0,0), the two H atoms lie symmetric

to the z axis, with coordinates in atomic units (0,±2.54, 0), (0,±2.08, 1.0), (0,±1.62, 2.0),

(0,±1.39, 2.5), (0,±1.275, 2.75), (0,±1.16, 3.0) (0,±0.93, 3.5), (0,±0.70, 4.0), and

finally (0,±0.70, 6.0) at points A, B, C, D, E, F, G, H and finally I.
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Figure 1.7: Dissociation potential curve of the N2 molecule in 6-311G** basis set as obtained

by MCPT methods, by a Dyall type PT (APSG-PT [21]) and by SSMRCC. The reference function

is APSG. For notations see text. (top) Potential curves displayed in a wide range of diatomic

distance. (bottom) Potential curve displayed at around equilibrium geometry.
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Dunning’s double zeta basis set[73] was applied for the hydrogen atom, and the basis

of Purvis et al.[72] was used for the Be atom with the p function decontracted, leaving

the most compact primitive (exponent 5.693880) alone and contracting the remaining
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Figure 1.8: Dissociation potential curve of the F2 molecule in 6-311G** basis set. (a) Potential

curves displayed in a wide range of diatomic distance. (b) Potential curves at around equilibrium

geometry.

−199.17

−199.16

−199.15

−199.14

−199.13

−199.12

−199.11

−199.1

−199.09

 1  1.5  2  2.5  3  3.5  4  4.5

to
ta

l 
e
n

e
rg

y
, 
H

a
rt

re
e

distance, Å

MR AQCC
MCPT−2
MCPT−3

SC2−MCPT−2
SC2−MCPT−3

−199.17

−199.16

−199.15

−199.14

−199.13

−199.12

−199.11

−199.1

 1.2  1.4  1.6  1.8  2  2.2

to
ta

l 
e
n

e
rg

y
, 
H

a
rt

re
e

distance, Å

MR−AQCC
MCPT−2
MCPT−3

SC2−MCPT−2
SC2−MCPT−3

(a) (b)

two into a second p function (exponents 1.555630, 0.171855 and coefficients 0.144045,

0.949692 respectively). This gives a valence double zeta basis for the system with 13

orbitals altogether.

All four valence electrons were taken as active in a CAS(4,4) reference function. Two

of the active orbitals (number 2 and 4) are of a1 symmetry, the other two (number 3 and

5) belong to the b1 irreducible.

Points D, E and F are particularly interesting from the electron correlation point of

view and have been shown to be heavily affected by the intruder state problem in the

effective Hamiltonian type MRPT derived from the Bloch-equation Eq.(1.6). At these

points the ground state of the system is an open shell triplet, and multi-reference character

of the lowest singlet wave function is increased. Major change in the nature of the wave

function occurs between points E and F where closed shell determinants |123123〉 and

|124124〉 change role.

The CAS results at points E,F,G,H and I give less accurate description of the electronic

system thus the non-parallelity error of the zero-order results are relatively large (see Figs.

1.9 a and c). Second-order methods reduce significantly both the error of the total energy

and also the non-parallelity error, although the improvement of the latter is, as usual,

smaller. In the DK MCPT case both the second and the third order curves keep the shape
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of the initial CAS results i.e. the error is smaller at first four points and larger at the last

four points while the non-parallelity error is reduced (see Fig. 1.9.b). EN MCPT gives

a surprisingly good estimation at second-order, although at points D,E and F the error at

second-order still larger than at points A,B and C. The third-order gives no or just a small

improvement in this case. DK SC2MCPT shows similar trends as DK MCPT with an

exception at point E (see Fig. 1.9.d). The second-order EN SC2MCPT is successful at

point A,B,C and D but the error is significantly larger at F,G,H and I points. There is a

change in Fermi-vacuum between points E and F which explains the 10mH jump in the

curve between these two points. For EN SC2MCPT third-order gives a small parallelity

error.

Figure 1.9: Errors of total energies of the BeH2 system obtained (a) MCPT, (b) MCPT around

0 mH, (c) SC2MCPT, (d) SC2-MCPT around 0 mH. Symbols correspond to: CAS (�), 2nd order

EN (•), 2nd order DK (�), 3rd order EN (◦), 3rd order DK (�). Labels A to I refer to the geometry.

For coordinates and basis set see text.
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1.4.3 C2H4

The ethylene molecule is studied in Dunning’s double zeta polarized basis set[73] giving

50 basis functions for 16 electrons. We followed the potential upon distorting the dihedral

angle (ϕ), bringing the molecule from D2h symmetry (0o) to D2d (90o) and back to D2h

(180o). A relatively small, CAS(2,2) function was applied as zero order function, the two

active orbitals being of symmetry b1 and b2, becoming degenerate at 90o, belonging to the

e irreducible of D2d. Orbitals b1 and b2 change role at ϕ = 90o in the sense that b1 figures

in the principal determinant for ϕ between 0o and 90o while b2 appears in the principal

determinant for ϕ between 90o and 180o.

Instead of FCI, an Adamowicz type state selective MRCCSDT method[67] was com-

puted, with two-hole, two-particle active indices as the reference. This method, which

includes full triple excitations, is much more reliable than second-order PT-s.

Total energies plotted in Fig. 1.10 bracket the MRCCSDT[2+2] curve with DK par-

titioning results lying above and EN partitioning shooting below. All second-order PT-s

bring a correction of around −300 mH to the CAS energy. The shape of PT corrected

curves around the top of the barrier, and consequently barrier height varies a lot among

second-order theories.

Most notable in Fig. 1.10 is that at second-order most of the MCPT methods give

a completely wrong barrier shape with a cusp-like. This applies to SC2-MCPT both in

DK and EN partitioning, while MCPT shows this effect in DK partitioning. The prob-

lem stems from the choice of Fermi-vacuum, and causes serious trouble, questioning the

applicability of these methods for the description of the ethylene torsion process. The

strange shape of the barrier top is produced by the intersection of two continuous curves

of PT calculations were either the one or the other of the two dominant determinants of

the CAS vector were used as the Fermi vacuum. Since neither of these curves have a max-

imum at D2d geometry, a cusp-like intersection appears at 90o. Apparently SC2-MCPT

is more sensitive to this problem, than MCPT. MCPT in the DK partitioning proves also

useless, showing a curve with double maximum. The reason behind this behavior is the

orbital degeneracy at 90o, which can be cured by the application of suitable level shifts.

Far from the 90o dihedral angle the third-order results give significant improvement,

in the DK SC2-MCPT and MCPT cases, while they inherit the singular nature of second-
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order DK MCPT and SC2-MCPT at 90o.

The only exception from the above discussed irregular behavior is the MCPT theory

with EN denominators, which gives a smooth curve at ϕ = 90o, similarly to the reference

CAS function (see Fig. 1.10.b). Even in this case the non-parallelity error at second-order

is still a magnitude larger than the non-parallelity error of the reference state but the third-

order correction provides significant improvement. We note at this point that the strong

dependence on the Fermi-vacuum can be alleviated by averaging over all choices for a

principle dependent, as shown in [58].

Figure 1.10: Total energies of the C2H4 system obtained by MCPT (Fig. a) and SC2MCPT

(Fig. c) and the non-parallelity error of MCPT (Fig. b) and SC2MCPT (Fig. d). For reference

a MRCCSDT calculation was used (see text). Symbols correspond to: CAS (�), MRCCSDT (·),
2nd order EN (•), 2nd order DK (�), 3rd order EN (◦), 3rd order DK (�). CAS results are shifted

by -289 mH and -278 mH in Figs. c and d. Horizontal line in Fig. b and d are drawn to help to

assess the non-parallelity of the curves.
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1.5 Summary

In this Chapter we briefly introduced the concept of multi-reference perturbation theo-

ries and commented on their main difficulties like the intruder state problem and size-

extensivity. To avoid the diagonalization of large CAS spaces and to give perturbative

corrections for general zero order functions like GVB, APSG, an alternative MR PT ap-

proach is introduced. A conspicuous feature of this theory (called MCPT) is that it applies

a non-Hermitian zero order Hamiltonian, which can be formulated in a diagonal form us-

ing a biorthogonal basis set. This biorthogonal basis can be easily constructed without

the application of any numerical procedure, like diagonalization or inversion. Unfortu-

nately MCPT is not size-consistent. To handle this problem we modified the formalism

(SC2-MCPT) to keep the size-consistency at least at second-order in energy.

Implementation of MCPT and SC2-MCPT is performed up to the third-order. The

main difficulties of an efficient implementation originate from the large number of dia-

grams appearing at the third-order. These difficulties were avoided by automatizing both

the derivation and the coding of the corresponding diagrams. To reduce the calculation

cost, factorization of diagrams was also implemented.

Performance of the second and third-order theories can be tuned using different def-

initions for the one partitioning. Usually both MCPT and SC2-MCPT theories give sig-

nificant improvement at the second and third-order. In cases where two determinants of

the zero order function are degenerate these theories can fail. The reason behind this

phenomenon is twofold. On the one hand the definition of the Fermi-vacuum can change

along a potential energy surface which can lead to discontinuity, on the other hand, the

denominator of the reduced resolvent operator in Eq.(1.54) and Eq.(1.61) may contain

zero as energy difference it belonging to a pair of degenerate zero-order determinants.

Both problems are under investigation in the laboratory of Péter Surján presently.

The effective Hamiltonian theory presented in Chapter 2 represents an improvement over

MCPT in difficult situations due to the absence of the principal determinant and the ap-

plication of multipartitioning.
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Chapter 2

Multipartitioning many-body

perturbational theory (MP MBPT)

2.1 Introduction

The original MBPT framework has various appealing features worth to keep in a multi-

reference extension. It is size-extensive, size-consistent, conserves the symmetry (spin

and spatial) of the zero-order function and can be defined invariant to the rotation of occu-

pied and virtual orbitals among themselves. From this point of view there is a marked dif-

ference between MR extensions of MBPT. Thanks to the linked-cluster theorem, Bloch-

equation-based approaches (like QDPT) have the potential to be size-extensive. Multi-

reference function based ’diagonalize then perturb’ theories often violate this requirement

as already discussed in Section 1.1. Effective Hamiltonian approaches (see Subsections

1.1.2 and 1.1.3) therefore seem preferable for the reason of extensivity. There is how-

ever an opposite indication: sensitivity of the theory to zero-order functions lying close

in energy, the so-called intruder effect. Targeting many roots at the same time, effective

Hamiltonian theories are more prone to intruders, since quasi-degeneracy of any of the

model functions destroys the reliability of the approximation. To reduce the sensitivity

to intruder states, attempts were taken to eliminate the high lying CAS states from the

model space and apply general model space but this approach can lead to size-extensivity

problem [32]. A well-established workaround for this problem is to keep the dimension of

the model space, but focus on one single or just a few states of the effective Hamiltonian,
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leading to state-specific or intermediate Hamiltonian theories, respectively (see Section

1.1.3).

Close to zero denominators are often avoided both in single-reference and multi-

reference cases by denominator shifts [74-76]. Although this approach helps to improve

the convergence of the PT series, it may lead to size-consistency problem. In diagram-

matic CAS PT(D-CASPT), proposed by Finley[20] and implemented by Finley and Witek

[77], orbital dependent level shifts are applied to avoid size-inconsistency.

Finley’s modification of QDPT is closely related to the multipartitioning Møller-

Plesset PT defined by Malrieu et al. [19, 78, 79]. In this approach the partitioning, i.e.

splitting of the Hamiltonian for a zero-order and a perturbation, is changed from column

to column when building the effective Hamiltonian matrix. This flexibility allows one to

concentrate on just one level when defining a quasi-degeneracy avoiding zero-order and

tune the partitioning accordingly. At the same time the theory remains size-consistent.

In this Chapter the multipartitioning Møller-Plesset PT will be discussed in detail.

Our contribution to this field involves formal results related to symmetries and scaling

properties[4, 5] of higher-order corrections as well as an efficient diagram-based fourth-

order implementation that enables to treat systems of moderate size[5].

The structure of this Chapter is as it follows. First we introduce the basics of the

theory in Sections 2.2.1 and 2.2.2, and show its relation to MR MBPT. To emphasize

the strong connection with MR MBPT, multipartitioning many-body theory (MP MBPT)

denomination will be used instead of multipartitioning Møller-Plesset PT.

It will be demonstrated that the lack of rotational invariance within degenerate orbital

subspaces leads to symmetry contamination of the original theory. This was observed by

Malrieu and co-workers in connection with spin-symmetry and led them to redefine the

zero-order Hamiltonian[78]. In Section 2.2.3 it will be argued that symmetry breaking

may affect spatial symmetry as well. We suggest a way to remove spatial symmetry

contamination[4]. In Section 2.2.4 D-CASPT will be briefly discussed, pointing out its

connection to the multipartitioning approach.

Sections 2.3.1 and 2.3.2 are devoted to a detailed discussion on diagrammatics, con-

nectedness and consistency. In the original formulation of MP MBPT the zero-order

Hamiltonian is defined by as many set of one-particle energies as the number of deter-

minants in the CAS space. This is the most general formulation and it gives connected
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second-order, as already shown by [19]. In Section 2.3.2 it will be shown that in higher-

orders connectedness is only ensured if a fixed set of one-particle energies are applied

in the construction of the partitioning dependent Hamiltonian. In this way connected-

ness of the theory can be kept at the third-order both in the spin-adapted and the general

spatial symmetry-adapted case. At fourth-order of the symmetry-adapted theory some

disconnected diagrams of the effective Hamiltonian are not entirely cancelled. The rea-

son behind this unfavorable property is that both the spin and symmetry-adapted zero-

order Hamiltonian can connect subsystems at infinite distance from each other. In the

spin-adapted case, size-consistency holds, i.e. a dissociation process can be correctly

described using localized orbitals. In the symmetry adapted case, size-consistency with

localized orbitals can be fulfilled depending on whether or not the infinitely separated

subsystems are identical. In Sections 2.3.1 and 2.3.2 the theoretical background of an ef-

ficient fourth-order implementation of MP MBPT is described. The implementation will

shortly be presented in Section 2.3.4. Finally some promising numerical results will be

shown in Section 2.4.

2.2 Hilbert space formulation

2.2.1 Multipartitioning multi-reference MBPT

A perturbational solution of the generalized Bloch-equation

ĤΩ̂P̂ = Ω̂P̂ĤΩ̂P̂ (2.1)

(where the notations and the above equation are introduced in Section 1.1.2) applying

multiple partitionings was introduced by Zaitevskii and Malrieu[19]. They proposed to

apply a partitioning determined by the model function appearing at the right end of the

expressions. To see this, let us first consider just term |I〉〈I| of the rightmost projectors in

Eq.(2.1)

ĤΩ̂|I〉〈I| = Ω̂P̂ĤΩ̂|I〉〈I| , (2.2)

and let us split the Hamiltonians as Ĥ = Ĥ(0)
I + V̂I to get

(
Ĥ(0)

I + V̂I

)
Ω̂|I〉〈I| = Ω̂P̂

(
Ĥ(0)

I + V̂I

)
Ω̂|I〉〈I| . (2.3)
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The form of |I〉 dependent Ĥ(0)
I will be discussed in Section (2.2.2). Supposing that Ĥ(0)

I

is diagonal on the basis of states |J〉 and making use of Eq.(1.3) we can substitute Ĥ(0)
I by

E(0)
I on the right hand side of the above equation. Here E(0)

I denotes the eigenvalue of Ĥ(0)
I

corresponding to |I〉. Equation (2.3) in a rearranged form then looks(
V̂IΩ̂ − Ω̂P̂V̂IΩ̂

)
|I〉〈I| =

(
E(0)

I − Ĥ(0)
I

)
Ω̂|I〉〈I| . (2.4)

Multiplying this equation by the resolvent operator in the outer space, i.e. by Q/(E(0)
I −

Ĥ(0)
I ) and performing the summation over the model states, one gets

Q̂Ω̂P̂ =
∑
I∈P

Q̂

E(0)
I − Ĥ(0)

I

(
V̂IΩ̂ − Ω̂P̂V̂IΩ̂

)
|I〉〈I|. (2.5)

This is a recursive equation for the wave operator which is solved by introducing an order

by order expansion

Ω̂P̂ = (P̂ + Ω̂(1) + Ω̂(2) + . . . )P̂ (2.6)

where Ω̂(n) involves n perturbation operators. Using the facts that Q̂P̂ = 0,
[
Q̂, Ĥ(0)

I

]
= 0

and the shorthand notations X̂I = Q̂/(E(0)
I − Ĥ(0)

I ) and P̂I = |I〉〈I|, we easily obtain from

Eq.(2.5) the following low-order expressions of the wave operator

Ω̂(1) =
∑
I∈P

X̂IV̂I |I〉〈I|

Ω̂(2) =
∑
I∈P

X̂I

(
V̂IΩ̂

(1) − Ω̂(1)P̂V̂I P̂
)

P̂I

=
∑
I∈P

X̂IV̂I X̂IV̂I P̂I −
∑
I∈P

X̂I

∑
J∈P

X̂JV̂J P̂JV̂I P̂I

Ω̂(3) =
∑
I∈P

X̂I

(
V̂IΩ̂

(2) − Ω̂(1)P̂V̂IΩ̂
(1) − Ω̂(2)P̂V̂I P̂

)
P̂I

=
∑
I∈P

X̂IV̂I X̂IV̂I X̂IV̂I P̂I −
∑
I∈P

X̂IV̂I X̂I

∑
J∈P

X̂JV̂J P̂JV̂I P̂I

−
∑
I∈P

X̂I

∑
J∈P

X̂JV̂J P̂JV̂I X̂IV̂I P̂I −
∑
I∈P

X̂I

∑
J∈P

X̂JV̂J X̂JV̂J P̂JV̂I P̂I

+
∑
I∈P

X̂I

∑
J∈P

X̂J

∑
L∈P

X̂LV̂LP̂LV̂J P̂JV̂I P̂I (2.7)

Expansion (2.6) of the wave operator generates an order by order expansion of the

effective Hamiltonian via Eq.(1.5) in the form

Ĥ(0)

eff
+ Ĥ(1)

eff
+ · · · =

∑
I∈P

P̂
(
Ĥ(0)

I + V̂I

) (
P̂ + Ω̂(1) + . . .

)
P̂I . (2.8)

55



Equating terms of order zero we get Ĥ(0)

eff
=

∑
I P̂Ĥ(0)

I P̂I . Utilizing P̂Ω̂(n) = 0 for n � 0

(a consequence of Eq.(1.3) and Eq.(2.6)), at first order we obtain Ĥ(1)

eff
=

∑
I P̂V̂I P̂I . The

sum of the two lowest orders gives the usual expression

Ĥ(0)

eff
+ Ĥ(1)

eff
= P̂ĤP̂ . (2.9)

For n � 0 the general form of the effective Hamiltonian corrections are

Ĥ(n)

eff
=

∑
I∈P

P̂V̂IΩ̂
(n−1)P̂I . (2.10)

Explicit form of the second-order correction is

Ĥ(2)

eff
=

∑
I∈P

P̂V̂I X̂IV̂I P̂I , (2.11)

while the third and fourth-order term is given by

Ĥ(3)

eff
=

∑
I∈P

P̂V̂I X̂IV̂I X̂IV̂I P̂I −
∑
I∈P

P̂V̂I X̂I

∑
J∈P

X̂JV̂J P̂JV̂I P̂I (2.12)

Ĥ(4)

eff
=

∑
I∈P

P̂V̂I X̂IV̂I X̂IV̂I X̂IV̂I P̂I −
∑
I∈P

P̂V̂I X̂IV̂I X̂I

∑
J∈P

X̂JV̂J P̂JV̂I P̂I

−
∑
I∈P

P̂V̂I X̂I

∑
J∈P

X̂JV̂J P̂JV̂I X̂IV̂I P̂I −
∑
I∈P

P̂V̂I X̂I

∑
J∈P

X̂JV̂J X̂JV̂I P̂JV̂I P̂I

+
∑
I∈P

P̂V̂I X̂I

∑
J∈P

X̂J

∑
L∈P

X̂LV̂LP̂LV̂J P̂JV̂I P̂I (2.13)

There is an intimate relation between this theory and the MR MBPT studied by

Brandow, Kaldor, Bartlett and others [8, 31, 32]. In fact, MR MBPT can be viewed as a

special case of the MP MBPT, where a uniform partition of the Hamiltonian is applied,

independent of the reference state:

Ĥ = Ĥ(0) + V̂ . (2.14)

Omitting the I dependence of Ĥ(0) in operator X̂I leads to operator R̂I = Q̂/(E(0)
I − Ĥ(0)),

already introduced in Eq.(1.15). Terms of the effective Hamiltonian in MR MBPT(see

Eq.(1.15) and Eq.(1.7)) can be obtained by replacing all X̂I by R̂I in Eq.(2.11), Eq.(2.12)

and Eq.(2.13).
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2.2.2 Zero order Hamiltonian

Møller-Plesset partitioning for MR PT is straightforward to apply in a simplest manner,

provided that one defines a one-particle energy set. Several experiments on different def-

initions for orbital energies had the common experience that it is hard to make a suitable

choice [19,78-81]. Close to zero energy denominators notoriously appear and cause sin-

gularities on potential energy surfaces. Application of level-shifts to avoid this problem

is prevalent in MR theories[76] just like in the SR framework[74, 75]. Freed and co-

workers suggested a remedy by forcing the degeneracy of valence-energy levels[82]. An

alternative solution is to let orbital energies depend on the actual model space determi-

nant under consideration. This determinant the one which appears at the rightmost of the

wave operator or the effective Hamiltonian expression. This is the key idea leading to the

introduction of multiple partitionings. The corresponding zero-order Hamiltonian can be

written in the form[19]

Ĥ(0)
I =

∑
i∈I
ε⊕i (I) ı̂+ ı̂ +

∑
a�I

ε�a (I) â+â− , (2.15)

where i is occupied and a is not occupied in determinant |I〉. Notation ⊕ and � in su-

perscript is used to stress that physical interpretation of orbital energies as ionization

potentials (IP) for the levels occupied in |I〉 and electron affinities (EA) for the levels

unoccupied in |I〉 are kept from SR theory. The intention applying generalized IPs and

EAs as orbital energies is to preserve the large gap between them which is provided in

well-behaving SR MBPT cases. It is not necessary but straightforward to define orbital

energies as Koopmans-like IPs and EAs in the form[19]

ε⊕i (I) = 〈I|Ĥ|I〉 − 〈I|ı̂+Ĥ ı̂−|I〉,
ε�a (I) = 〈I|â−Ĥâ+|I〉 − 〈I|Ĥ|I〉 . (2.16)

Note that ε⊕a (I) for a level unoccupied in |I〉 as well as ε�i (I) for a level occupied in |I〉 is

zero. With the zero order Hamiltonian of Eq.(2.15) denominators of the PT expressions

have the form

〈I|Ĥ(0)
I |I〉 − 〈J|Ĥ(0)

I |J〉 =
′∑
i

ε⊕i (I) −
′∑
i

ε�a (I) (2.17)

where the IP of orbital i appears if an electron is removed from it when stepping from

determinant |I〉 to |J〉 while the EA comes into play for an orbital a where an electron is
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put upon exciting |I〉 to get |J〉. By definition Eq.(2.16) IPs and EAs are well separated

in energy only if the corresponding determinant |I〉 is important in the low-lying roots

of the complete active space (CAS) Hamiltonian. For highly excited determinants of

the model space the gap between IPs and EAs may unfortunately disappear. For this

reason, definition Eq.(2.16) is unpractical in the general case. The zero-order Hamiltonian

of Eq.(2.15) has the further drawback of violating extensivity from the third-order as

discussed in Section 2.3.2. We will refer to the MP MBPT formalism using the zero-

order Hamiltonian of Eq.(2.15) as genuine MP MBPT .

Both of the above problems can be cured by a simplified formulation where only one

set of IPs and one set of EAs are defined according to[79]

ε
⊕μ
i =

〈Ψμ|Ĥ|Ψμ〉
〈Ψμ|Ψμ〉 −

〈Ψμ|ı̂+Ĥ ı̂−|Ψμ〉
〈Ψμ|ı̂+ı̂−|Ψμ〉 ,

ε
�μ
a =

〈Ψμ|â−Ĥâ+|Ψμ〉
〈Ψμ|â−â+|Ψμ〉 −

〈Ψμ|Ĥ|Ψμ〉
〈Ψμ|Ψμ〉 . (2.18)

This definition is an MR generalization of IPs and EAs. Expectation values are taken

with the multi-reference CAS vector Ψμ in which we are primarily interested. Being

dependent on index μ, the above expressions introduce a state-specific character in the

theory. If more states at a time are targeted, orbital energies can be defined by averaging

the above quantities with the formula[79]

ε⊕i =

∑
μ
ε
⊕μ
i 〈Ψμ|ı̂+ ı̂−|Ψμ〉∑
μ
〈Ψμ|ı̂+ı̂−|Ψμ〉 (2.19)

for IPs and analogously for EAs. Either definitions ensure considerable energy gap be-

tween IPs and EAs, provided that neither of states Ψμ is a high lying root of the CAS

problem in energy. By both definitions the corresponding zero-order Hamiltonian is of

the form

Ĥ(0)
I =

∑
i∈I
ε⊕i ı̂

+ ı̂− +
∑
a�I

ε�a â+â− . (2.20)

We will use the designation simple MP MBPT for the method based on Eq.(2.20) as a

zero-order. Note that the multipartitioning feature still remains when using Eq.(2.20)

since the summations are restricted by determinant |I〉. We will see in Section 2.3.2 that

the theory based on Eq.(2.20) is extensive.
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2.2.3 Spin and symmetry considerations

The Hamiltonian of a system shows spin symmetry and may show spatial symmetry.

Eigenvalues of the electronic Hamiltonian can be classified according to the irreducible

representations of the molecular spin and spatial symmetry group. In particular we are in-

terested in transformations which rotate elements of a multidimensional irreducible (e.g.

e, t, etc. representations in spatial symmetry or doublet, triplet etc. representations in

spin symmetry) among each other. These transformations leave the exact eigenvalue in-

tact, a consequence of the fact that the Hamiltonian commutes with such an operator. A

good approximation method should have the same property. In this section we investigate

whether multipartitioning MBPT is well-behaving in this respect.

Let us first consider a general symmetry operator which rotates one-electron orbitals.

Supposing that the orbitals are symmetry-adapted, this operation only transforms those

which are degenerate, i.e. orbitals belonging to one given e.g. e representation or spin-

orbitals which have the same spatial part. This operator can be written as

Û =
∑

s

∑
k,l∈s

Ukl k̂+l̂− (2.21)

where s runs over degenerate orbital subspaces (i.e. 1a1 and 2a1 are considered sepa-

rately), matrix Ukl is unitary and k, l refer to spin orbitals. Considering the commutation

of operator Û with the zero order Hamiltonian of Eq.(2.20) one obtains by simple second-

quantized algebra[
Û, Ĥ(0)

I

]
=

∑
s

∑
k,l∈s

Ukl

[
NI

kNI
l

(
ε⊕l − ε⊕k

)
k̂+ l̂− + (1 − NI

k)(1 − NI
l )

(
ε�l − ε�k

)
k̂+l̂−

+ NI
k(1 − NI

l )
(
ε�l − ε⊕k

)
k̂+ l̂− + (1 − NI

k)NI
l

(
ε⊕l − ε�k

)
k̂+ l̂−

]
. (2.22)

Notation NI
k is introduced for occupation number of orbital k in determinant |I〉. The above

result tells, that a good zero-order Hamiltonian should have uniform IPs in degenerate

subspaces as well as uniform EAs, moreover IPs and EAs should be equal. In other

words, multipartitioning is to be abandoned in degenerate orbital subspaces.

As for spin-symmetry, the above result means that dependence of ε’s on the spin-index

is to be removed in every respect. This can be achieved by formulating the zero-order

order Hamiltonian in terms of spin-summed second-quantized Ê operators

Êi
i = ı̂

+
αı̂
−
α + ı̂

+
β ı̂
−
β (2.23)
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e.g. in the form

Ĥ(0)
J =

∑
p

2x occ in |J〉

ε⊕p Êp
p +

∑
q

1x occ in |J〉

ε⊗q Êq
q +

∑
r

empty in |J〉

ε�r Êr
r . (2.24)

This definition has two shortcomings concerning the half-filled orbitals in |J〉: (i) it applies

orbital energies which depend on determinant |J〉, whatever definition one takes for ε⊗q ;

(ii) it destroys the multipartitioning character. Point (i) is problematic from the point of

view of extensivity, as discussed in Section 2.3.2. Point (ii) is a shortcoming because the

potential of the theory to be robust against intruders is lost this way.

To conserve the multipartitioning feature and ensure spin-symmetry at the same time,

Zaitevskii and Malrieu proposed the following zero-order

Hamiltonian[78]:

Ĥ(0)
sp (J) =

∑
p

2x occ in |J〉

ε⊕p Êp
p +

∑
q

1x occ in |J〉

(
ε⊕q Êq

q +
1

2

(
ε�q − ε⊕q

)
Êq

q(Êq
q − 1)

)
+

∑
r

empty in |J〉

ε�r Êr
r .

(2.25)

Although this operator has two electron terms at difference with Eq.(2.20), it conserves

the property that pure determinants are its eigenfunctions:

Ĥ(0)
sp (J) =

∑
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∑

p occ in |L〉
NL

p≤NJ
p

NL
pε
⊕
p +

∑
p occ in |L〉

NL
p>NJ

p

(
NJ

pε
⊕
p + (NL

p − NJ
p)ε�p

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ |L〉〈L| (2.26)

with NL
p denoting the occupancy of spatial orbital p in determinant |L〉. The reason for the

simple structure Eq.(2.26) is the simple form of the two-electron operator in Eq.(2.25),

which is in fact just the square of a spin-summed particle-number operator. Expression

(2.25) is apparently spin-adapted due to the application of Ê operators.

Using definition (2.25), a spatial orbital q which is half filled in determinant |J〉 but

doubly occupied in determinant |L〉 contributes an EA, i.e. −ε�q to the energy denominator

〈J|Ĥ(0)
sp (J)|J〉 − 〈L|Ĥ(0)

sp (J)|L〉. On the other hand if orbital q is unoccupied in determinant

|L〉, its contribution to the energy denominator is ε⊕q . The fact that – depending on its role

in the excitation – singly occupied orbital q contributes either EA or IP to the denominator

is the consequence of multipartitioning. In general the energy denominator when using

Eq.(2.25) can be expressed as

〈J|Ĥ(0)
sp (J)|J〉 − 〈L|Ĥ(0)

sp (J)|L〉 =
∑

p if NL
p<NJ

p

(
NJ

p − NL
p

)
ε⊕p −

∑
r if NL

r >NJ
r

(
NL

r − NJ
r

)
ε�r . (2.27)
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We now turn our attention to the question of general symmetry, i.e. combined spatial

and spin-symmetry[4]. Based on the result of Eq.(2.22) neither of the zero-order Hamil-

tonians discussed so far show this property. We are going to start from Eq.(2.25) and

keep the essence of Eq.(2.27). This means that regarding a degenerate subspace say s,

the denominator will depend only on the change in occupancy of the given subspace. In

particular, subspace s will contribute as many ε⊕s as the number of electrons removed from

s, and as many −ε�s as the number of electrons put into the subspace.

The starting point of the following derivation is the observation that the second term in

the round brackets in Eq.(2.25) has a role only if orbital s is doubly occupied in |L〉 (and

singly occupied in |J〉 ). Let us consider a general M fold degenerate orbital subspace

called s. Analogously to Eq.(2.23) let us introduce operator Ês in the form

Ês =
∑
k∈s

k̂+k̂− (2.28)

since we will be interested only in overall occupancy of subspace s. Index k refers to

spin-orbitals. Taking the case where this subspace is occupied with M − 1 electrons,

the corresponding term of the zero-order operator is analogous to the half-filled term of

Eq.(2.25)

ε⊕s Ês − (
ε⊕s − ε�s

) Ês

(
Ês − 1

)
. . .

(
Ês − M + 1

)
M!

. (2.29)

Considering the action of the above operator on determinant |L〉, the second term has a

role only if NL
s = M (i.e. |L〉 contains a subspace s filled by M electrons). In this case the

contribution of the whole term to the eigenvalue is (M − 1)ε⊕s + ε
�
s . In all other cases the

above expression will contribute NL
s ε
⊕
s to the eigenvalue.

It is apparent that different occupancies of subspace s require similar considerations.

Take the case where NJ
s = M − 2. The corresponding term of the Hamiltonian is

ε⊕s Ês − (
ε⊕s − ε�s

) Ês

(
Ês − 1

)
. . .

(
Ês − M + 2

)
M!

[
2(Ês − M + 1) − M(Ês − M)

]
. (2.30)

The second term now takes care for the cases where the occupancy in |L〉 exceeds NJ
s

by one or by two. If NL
s = M then we get (M − 2)ε⊕s + 2ε�s , the factor of two in (2.30)

is necessary to have two EAs. If NL
s = M − 1 then the contribution to the eigenvalue is

(M−2)ε⊕s +ε
�
s . In all other cases only the first term has nonzero effect and produces NL

s ε
⊕
s .
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For clarity we take down the NJ
s = M−3 case as well, which generates the following term

in the zero-order operator:

ε⊕s Ês − (
ε⊕s − ε�s

) Ês

(
Ês − 1

)
. . .

(
Ês − M + 3

)
M!

[
3(Ês − M + 2)(Ês − M + 1)

−2M(Ês − M + 2)(Ês − M) +
M(M − 1)

2
(Ês − (M − 1))(Ês − M)

]
. (2.31)

At this point the structure of the terms allows us to deduce the general form of the

symmetry-adapted zero-order Hamiltonian:

Ĥ(0)
J =

2,4,...∑
M

M∑
F=0

∑
s

NJ
s =M−F

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ε⊕s Ês − (
ε⊕s − ε�s

) 1

M!

F−1∑
G=0

(F −G)(−1)G

(
M
G

) M∏
R=0

R�G

(
Ês − M + R

)⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(2.32)

It can be easily verified that this expression reduces to the simpler form Eq.(2.25) if

M = 2. We refer to the method using the zero-order Hamiltonian Eq.(2.32) as symmetry-

adapted MP MBPT . It is interesting to observe the formal appearance of M-electron

operators, since in general M can be larger than two (e.g. if the spatial degeneracy is

two-fold then the corresponding dimension is 4, spins included). Zero order Hamiltonian

(2.32) is however still simple in the sense that it is diagonal on the basis of determinants:

Ĥ(0)
J =

∑
s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

L
NL

s ≤NJ
s

NL
s ε
⊕
s |L〉〈L| +

∑
L

NL
s >NJ

s

(NJ
s ε
⊕
s +

(
NL

s − NJ
s

)
ε�s )|L〉〈L|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2.33)

The many-electron operator feature of Eq.(2.32) therefore is to be markedly distinguished

from the partitionings in MR PT, where genuine two-particle interaction is involved at

zero-order[17, 21].

As it will be shown in Subsection.2.3.2, using the diagonal form of Ĥ(0)
J one can

modify the perturbation formulae by changing the Ĥ(0)
J and V̂N

J . As a result of this, terms

into ĤJ and only the denominators refer to the actual form of the zero-order Hamiltonian.

In the symmetry adapted case these denominators are

〈J|Ĥ(0)
J |J〉 − 〈L|Ĥ(0)

J |L〉 =
∑

s if NL
s <NJ

s

(
NJ

s − NL
s

)
ε⊕s −

∑
s if NL

s >NJ
s

(
NL

s − NJ
s

)
ε�s . (2.34)
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2.2.4 Diagrammatic CASPT

Finley’s D-CASPT [20, 77] gives a solution to the intruder state problem which is similar

to Malrieu’s multipartitioning approach. In D-CASPT orbital dependent denominator

shifts Δa
i and Δab

i j are introduced into the QDPT first order wave operator (1.21) as follows:

Ω̂(1) =
∑
I∈P

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
∑

ai

â+ î−|I〉 ∈ Q

hai

εi − εa + Δa
i
â+ î−+

1

2

∑
a < b; i < j

â+b̂+ î− ĵ−|I〉 ∈ Q

〈ab| ji〉
εi + ε j − εa − εb + Δab

i j

â+b̂+î− ĵ−

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
|I〉〈I| (2.35)

To get a reliable definition for the denominator shifts, Finley started from Hirao’s state-

specific formalism (1.24) where a shift ΔI = E(0)

k − E(0)
I is introduced in the denominator:

Ω̂(1) =
∑
I∈P

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
∑

ai

â+ î−|I〉 ∈ Q

∑
k

Ck
I

hai

εi − εa + ΔI
â+î−+

1

2

∑
a < b; i < j

â+b̂+ î− ĵ−|I〉 ∈ Q

∑
k

Ck
I

〈ab| ji〉
εi + ε j − εa − εb + ΔI

â+b̂+ î− ĵ−

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
|I〉〈Φ(0)

k | (2.36)

Appearance of term ΔI in the above formula is responsible for the intruder free behavior.

To benefit from this experience, denominator shifts Δa
i and Δab

i j are chosen similarly to ΔI

by applying a weighted sum, according to:

Δa
i =

1

na
i

∑
I

(2 − NI
a)NI

iΔIC2
I (2.37)

Δab
i j =

1

nab
i j

∑
I

(2 − NI
a)(2 − NI

b)NI
i NI

jΔIC2
I , (2.38)
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where NI
a is the occupation of spatial orbital a in determinant |I〉 (NI

a = 0, 1, 2), CI is the

coefficient of determinant |I〉 in the reference state and finally

na
i =

∑
I

(2 − NI
a)NI

i C
2
I , (2.39)

nab
i j =

∑
I

(2 − NI
a)(2 − NI

b)NI
i NI

jC
2
I (2.40)

are normalization factors. For an open shell orbital the spatial index can be both occupied

and virtual. To avoid spin contamination, the denominator shift is defined so that the spin

flip on an open shell gives no contribution to the denominator, i.e. Δam
im = Δ

am
mi = Δ

a
i . This

is similar to spin adapted MP MBPT.

Having a look at Eqs.(2.35) and comparing with (2.7) and Eq.(2.17) it is seen that with

a proper definition of Δa
i and Δab

i j , second-order D-CASPT and MP MBPT can be related:

ε⊕i − ε�a = εi − εa + Δa
i (2.41)

ε⊕i + ε
⊕
j − ε�a − ε�b = εi + ε j − εa − εb + Δab

i j . (2.42)

Due to the formal equivalence with MP MBPT second-order MP MBPT [78], second-

order D-CASPT is also extensive.

2.3 Formulation in terms of diagrams

2.3.1 Normal ordering of operators

To introduce the diagrammatic representation first we address the question of normal

ordering. Following Kaldor[31] the Fermi vacuum is chosen to be the determinant which

closes the perturbational formulae from the right.

In MR MBPT[32] one can simply exchange V̂ for V̂N
I in the effective Hamiltonian

expressions, with V̂N
I = V̂ − 〈I|V̂ |I〉 denoting the perturbation operator, normal ordered

according to determinant |I〉. Apart from V̂N
I , formulae (2.12) and (2.13) contain operators

V̂N
J and V̂N

L also. To use the diagrammatic approach, operators in PT formulae should be

normal ordered by the same Fermi-vacuum. Hence each appearance of V̂N
J or V̂N

L is to be
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rewritten for V̂N
I in Eqs.(2.12) and (2.13). Since both Ĥ(0)

J and Ĥ(0)
I are diagonal on the

basis of states |I〉, one can write

X̂JV̂N
J P̂J = X̂JĤN

J P̂J = X̂JĤP̂J = X̂JV̂N
I P̂J . (2.43)

Simplicity of the above expression is due to the fact that diagonal part of operators V̂N
I

or V̂N
J do not contribute. In the general case V̂N

L can be changed into V̂N
I by the relation

V̂N
J = V̂N

I + Ĥ(0)N
I − Ĥ(0)N

J , where Ĥ0N
I is the zero order Hamiltonian, normal ordered

according to determinant |I〉. Since the form of V̂N
I itself may be rather complicated we

further reorganize the expressions so that the zero-order Hamiltonian does not appear in

the numerator of the expressions. This can be easily achieved by applying the formula

V̂N
I = ĤN

I − Ĥ(0)N
I (2.44)

where Ĥ(0)N
I is diagonal. The second-order effective Hamiltonian trivially becomes:

Ĥ(2)

eff
=

∑
I∈P

P̂ĤN
I X̂I ĤN

I P̂I (2.45)

In the third-order, by using Eq.(2.44) and Eq.(2.43), expression (2.12) takes the form:

Ĥ(3)

eff
=

∑
I∈P

P̂ĤN
I X̂I ĤN

I X̂I ĤN
I P̂I −

∑
I∈P

P̂ĤN
I X̂I

∑
J∈P

X̂JĤN
I P̂JĤN

I P̂I

−
∑
I∈P

P̂ĤN
I X̂I Ĥ

(0)N
I X̂I ĤN

I P̂I +
∑
I∈P

P̂ĤN
I X̂I

∑
J∈P

X̂JĤN
I P̂JĤ(0)N

I P̂I (2.46)

The last term is zero since Ĥ(0)N
I is normal ordered and diagonal. In the third term relation

Ĥ(0)N
I X̂I = (Ĥ(0)

I − 〈I|Ĥ(0)
I |I〉)X̂I = −Q̂ (2.47)

can be used to reveal that the third term is simply the second-ordered effective Hamil-

tonian correction Ĥ(2)

eff
. The working equation of the third-order Hamiltonian correction

finally becomes

Ĥ(3)

eff
=

∑
I∈P

P̂ĤN
I X̂I ĤN

I X̂I ĤN
I P̂I −

∑
I∈P

P̂ĤN
I X̂I

∑
J∈P

X̂JĤN
I P̂JĤN

I P̂I + Ĥ(2)

eff
. (2.48)

In the above derivation the only information we used about the zero-order Hamiltonian

was its diagonal form. The formulae of the effective Hamiltonian are therefore applicable,

irrespective of the actual choice for Ĥ(0)
I (e.g. genuine, simple etc.), as far as it is diagonal
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on the basis of determinants. Specification of the diagonal elements of Ĥ(0)
I affects only the

values of denominators. Using the same procedure as explained above, the fourth-order

effective Hamiltonian correction is first rewritten by making use of relations P̂V̂N
I X̂I =

P̂ĤN
I X̂I and P̂JV̂N

I P̂I = P̂JĤN
I P̂I in Eq.(2.13):

Ĥ(4)

eff
=

∑
I∈P

P̂ĤN
I X̂IV̂N

I X̂IV̂N
I X̂I ĤN

I P̂I −
∑
I∈P

P̂ĤN
I X̂IV̂N

I X̂I

∑
J∈P

X̂JĤN
I P̂JĤN

I P̂I

−
∑
I∈P

P̂ĤN
I X̂I

∑
J∈P

X̂JĤN
I P̂JĤN

I X̂I ĤN
I P̂I −

∑
I∈P

P̂ĤN
I X̂I

∑
J∈P

X̂JV̂N
J X̂JĤN

I P̂JĤN
I P̂I

+
∑
I∈P

P̂ĤN
I X̂I

∑
J∈P

X̂J

∑
L∈P

X̂LĤN
I P̂LĤN

J P̂JĤN
I P̂I . (2.49)

In a second step Eqs.(2.43), (2.47) and

ĤN
J = ĤN

I + 〈I|Ĥ|I〉 − 〈J|Ĥ|J〉 (2.50)

are applied, lower-order terms like Ĥ(2)

eff
and Ĥ(3)

eff
are collected and finally the terms con-

taining the scalar 〈I|Ĥ|I〉 − 〈J|Ĥ|J〉 cancel to get:

Ĥ(4)

eff
=

∑
I∈P

P̂ĤN
I X̂I ĤN

I X̂I ĤN
I X̂I ĤN

I P̂I −
∑
I∈P

P̂ĤN
I X̂I ĤN

I X̂I

∑
J∈P

X̂JĤN
I P̂JĤN

I P̂I

−
∑
I∈P

P̂ĤN
I X̂I

∑
J∈P

X̂JĤN
I P̂JĤN

I X̂I ĤN
I P̂I −

∑
I∈P

P̂ĤN
I X̂I

∑
J∈P

X̂JĤN
I X̂JĤN

I P̂JĤN
I P̂I

+
∑
I∈P

P̂ĤN
I X̂I

∑
J∈P

X̂J

∑
L∈P

X̂LĤN
I P̂LĤN

I P̂JĤN
I P̂I + 2Ĥ(3)

eff
− Ĥ(2)

eff
. (2.51)

Equations (2.45), (2.48) and (2.51) are the working equations of our implementation.

These equations support an efficient implementation, because operators are normal or-

dered with respect to the same determinant and the zero-order does not figure in the nu-

merator. The latter point is important since this way we do not have to consider contrac-

tions of the complicated symmetry-adapted zero-order Hamiltonian of Eq.(2.15). Equa-

tions (2.45), (2.48) and (2.51) hold for any zero-order that is diagonal on the basis of

determinants, hence also for MR MBPT. Difference between the different methods is hid-

den in the denominators.

2.3.2 Diagrammatics

Diagrammatic approach of many-body theory for the single reference case has been al-

ready discussed in Section 1.3.1. Generalization for the MR case is possible and was
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discussed in detail in the context of MR MBPT in, e.g., [83]. As it will be shown, the

main differences as compared to the single determinantal case is that the off-diagonal

matrix elements of the effective Hamiltonian are represented by open diagrams and the

renormalization terms generate new type of diagrams. These results can be also applied

in the MP MBPT framework with some modifications in connection with the calculation

of the denominator.

A matrix element of the effective Hamiltonian taken with determinants is written e.g.

for the second-order as:

〈K|Ĥ(2)

eff
|I〉 = 〈I|Ẑ. . .. . . V̂N

I X̂IV̂N
I |I〉 . (2.52)

In the above operator Ẑ
. . .
. . . is a string of second-quantized operators, whose action to the

left on 〈I| results determinant 〈K|:

〈K| = 〈I|Ẑ. . .. . . . (2.53)

Dots in upper (lower) scripts following Ẑ are to be replaced by orbital indices from which

electrons are removed (where electrons are put) when 〈I| is transformed to 〈K|. It is easy

to see that Ẑ is a normal ordered operator according to determinant |I〉. When diago-

nal matrix elements are calculated, operator Ẑ is the identity and one can draw closed

diagrams. Open diagrams emerge for non-diagonal elements.

Generalized Wick-theorem states that only fully contracted expressions of a normal

ordered operator product contribute to the expectation value taken with the Fermi-vacuum

[84]. Extensivity of a many-body theory is ensured if there is no disconnected term among

various full contractions in the energy expression. In the MR MBPT case the matrix el-

ements of Ĥeff are connected[30]. As shown by Meissner and Jankowski[34], the con-

nectedness of matrix elements leads to a connected energy, when using a complete model

space. Without special considerations, incomplete model space leads to extensivity vio-

lation.

Starting at second-order, Fig. 2.1.a and b show the closed Goldstone-type skeleton

diagrams contributing to the diagonal elements of the effective Hamiltonian. Intervertex

straight lines represent operator X̂I in these diagrams. One must bear in mind that X̂I

operator projects to the Q space, therefore at least one of the lines must correspond to a

non-active index, i.e core or inactive virtual. Particle and hole lines crossing the X̂I line
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�� � � �
a b c d e

Figure 2.1: Second-order diagrams of the effective Hamiltonian.

give rise the denominator according to the following rule:

Δ =
∑
ε⊕up −

∑
ε�down, (2.54)

where ε�up refers to the up going particle (virtual) lines and ε⊕down to the down going hole

(occupied) lines, with respect to the given Fermi-vacuum. In the case of symmetry- or

spin-adapted formulation a second restriction has to be applied, since denominators de-

pend only on the net occupation number changes according to Eq.(2.34). In this manner

a given one-particle subspace s contributes to the denominator in the following way:

Δs = (nup
s − ndown

s )ε�, where S = sign(nup
s − ndown

s ). (2.55)

where nup
s and ndown

s denote the number of particle and hole lines which cross the denom-

inator line.

Fig. 2.1.c and d show diagrams of the off-diagonal matrix elements of the effective

Hamiltonian. Open lines at the top are necessarily labeled by active indices, since the

effective Hamiltonian lies entirely in space P. To emphasize this restriction, an empty

circle are drawn to these lines.

As an example, a disconnected second-order diagram is also shown in Fig. 2.1.e (see

Section 2.3.3). One readily sees that all diagrams of this short give zero value, because

exclusively active lines cross the intervertex level where a Q space projection takes place.

Consequently the second-order MP MBPT is connected irrespective of the actual H(0)
I

specification (i.e. genuine, single, spin-adapted or general symmetry-adapted).

Some examples for diagrams corresponding to the first (regular) and the second (renor-

malization) term of Eq.(2.48) are shown in

Fig. 2.2.1(a-d) and Fig. 2.2.2(a-d). In the latter diagrams, boxes appear which indicate

the special way of determining the denominator: in the general or the simple formalism
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1(a) 1(b) 1(c) 1(d)

����
2(a) 2(b) 2(c) 2(d)

����
3(a) 3(b) 3(c) 3(d)

Figure 2.2: Selected examples for nonzero skeleton diagrams of the third-order effective Hamil-

tonian (2.48).
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�
� �

�∑
i jk∈I abc�I

{
k̂+ ĵ+ĉ−â−

}
I
XIXJ

{
â+î+ ĵ−b̂−

}
I
PJ

{
b̂+ĉ+î−k̂−

}
I
|I〉

Figure 2.3: Illustration of a renormalization denominator. The perturbation denominator appear-

ing in operator X̂J contains only those one-particle indices which make the difference between

determinant |J〉 and determinant
{
â+ î+ ĵ−b̂−

}
I
|J〉. The up going/down going lines of the corre-

sponding diagram are the lines directed to the left/right. The box over operator
{
â+ î+ ĵ−b̂−

}
I

has

the same role as the renormalization box in the diagram. Creation operators within the box gener-

ate outgoing and annihilation operators generate incoming contraction lines. The denominator at

X̂J is ε⊕j + ε
⊕
b − ε�i − ε�a .

lines entering (leaving) the box contribute an orbital energy with positive (negative) sign:

Δ =
∑
ε⊕in −

∑
ε�out. (2.56)

The source of this diagrammatic rule is the multi-reference nature of the theory. Oper-

ator X̂J in the second term of Eq.(2.48) involves a zero-order Hamiltonian determined

with respect to determinant |J〉 whose nature gets revealed at the first intervertex level,

algebraically at the appearance of P̂J in the expression (see Fig. 2.3).

When drawing renormalization diagrams in the genuine or simple formulation, one

has to take care to include only those contraction lines in a box, which are attached to

vertices appearing between the top and bottom line of the box (see Fig. 2.3). It is inter-

esting to note that this question is irrelevant in either the absence of multipartitioning or

in spin or general symmetry-adapted case. In MR MBPT no distinction is made between

EA type and IP type orbital energies, therefore the same line entering and leaving the box

contributes zero to the denominator. In the spin or general symmetry-adapted MP MBPT

each spin orbital is assigned to a subspace and denominators are constructed based on

occupation number changes of the subspaces, Δs where:

Δs = (nup
s − ndown

s )ε�, where S = sign(nup
s − ndown

s ). (2.57)

with nout
s and nin

s denoting the number of particle and hole lines which leave and enter the

denominator box.
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In the MR MBPT formalism each renormalization denominator brings a factor of −1

as a consequence of the second term of Eq.(2.5). This can be easily checked on the

example of Eqs.(2.48) and (2.51).

Fig. 2.4 shows prototypes of the fourth-order diagrams where only closed diagrams

are printed. A detailed description of high-order MR MBPT diagrams can be found in

[32]. Diagrams in Fig. 2.4.b-e illustrate the four different kinds of renormalization terms

that appear at order four in accordance with Eq.(2.51).

� � � � �
a b c d e

Figure 2.4: Prototypes of fourth-order diagrams.

Finally, it is practical to collect diagram rules which are additional to the diagram rules

discussed in Section 1.3.1.

• In the spin- and symmetry-adapted MP MBPT formalism horizontal denominator

lines indicate the application of Eq.(2.55) instead of Eq.(2.54).

• Renormalization diagrams contain one or more denominator boxes which con-

tribute to the denominator according to Eq.(2.56) in the genuine or simple MP and

Eq.(2.57) in the spin-adapted or general symmetry-adapted cases.

• Each denominator box multiplies the value of the diagram by −1.

• At the horizontal lines of denominators or at the top of denominator boxes at least

one of the contraction lines must be inactive.

• At the bottom of denominator boxes all contraction lines have to be active.
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Figure 2.5: Structure of fourth-order diagrams having at least two non-interacting parts where

both parts contain two vertices.
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2.3.3 Scaling properties

In order to get a size-extensive theory, disconnected diagrams should be zero or should

cancel each other. This is true at any order of MR MBPT, as shown by Lindgren[30].

As it is already published by Zaitevskii and Malrieu[78], the genuine MP formulation is

size-consistent at the second-order. In this section we discuss the extensivity and size-

consistency for different formulations of MP MBPT at higher-orders. As we will see, the

different MP MBPT formulations show rather different behavior from this point of view.

Fig. 2.1.e shows an example for the second-order disconnected diagrams. One readily

sees that all diagrams of this short give zero value, because exclusively active lines cross

the intervertex level where a Q space projection takes place. Consequently the second-

order MP MBPT is connected irrespective of the actual H(0)
I specification (i.e. genuine,

single, spin-adapted or general symmetry-adapted).

At second-order the lack of disconnected terms leads to size-consistency of the gen-

uine, simple and spin-adapted formalism if localized orbitals are used. This result was

previously obtained in an algebraic way by Zaitevskii and Malrieu[78]. At difference with

other partitionings, separability of the second-order of the general symmetry-adapted the-

ory may be problematic. Although extensivity of the symmetry-adapted formalism is

ensured at second-order, it can show separability error if the symmetry of the subsystems

is different than the composite system.

Examples for third-order disconnected diagrams are shown in Fig. 2.2.3-4. In order

to get a size-extensive theory , disconnected diagrams should be zero or should be cancel

each other. In the case of zero-order Hamiltonian of genuine MP (2.15) this does not

take place. To show this we write the algebraic expression corresponding to diagrams

Fig. 2.2.3(a) and Fig. 2.2.3(b). Using notations of Eq.(1.90) we get

∑
i∈I

∑
a�I

fia fμν fai(
ε⊕i (I) − ε�a (I)

) (
ε⊕i (I) + ε⊕μ (I) − ε�a (I) − ε�ν (I)

) (2.58)

−
∑
i∈I

∑
a�I

fμν fia fai(
ε⊕i (Iνμ) − ε�a (Iνμ)

) (
ε⊕i (I) + ε⊕μ (I) − ε�a (I) − ε�ν (I)

) (2.59)

where in the denominator of the renormalization term determinant ν+μ−|I〉 appears, sym-

bolized by Iνμ. If the value of ε⊕i (I) depends on determinant |I〉 then the two terms do not

cancel each other.
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Simple MP, spin- and general symmetry-adapted formulations form a different case,

since the determinant in round brackets governs only whether the upper index is ⊕ or �. In

fact, reference to I or Iνμ can be omitted from the above formulae and thereby cancellation

is ensured. By partitioning (2.20) the final expression corresponding to diagrams 3(a) and

3(b) in Fig. 2.2 takes the form

∑
i∈I

∑
a�I

fia fμν fai(
ε⊕i − ε�a

) (
ε⊕i + ε

⊕
μ − ε�a − ε�ν

) (2.60)

−
∑
i∈I

∑
a�I

fμν fia fai(
ε⊕i − ε�a

) (
ε⊕i + ε

⊕
μ − ε�a − ε�ν

) . (2.61)

It can be checked analogously, that at third-order all disconnected diagram pairs cancel

each other for simple, spin-, and general symmetry-adapted partitioning.

We have already shown that genuine MP MBPT is not extensive even at the third-

order. Below we shall show that the simple and spin-adapted MP MBPT formalism keeps

the extensivity in higher-orders while the general symmetry-adapted formulation does

not.

To see this let us consider first the simple MP MBPT at order four. Fig. 2.5 shows

the fourth-order diagrams separated into at least two (or more) disconnected parts, for the

case where the independent parts contain two vertices. Shaded boxes symbolize general

interactions, double lines denote contraction lines which start or end in a vertex or simply

cross without interaction. To emphasize the restrictions due to the model or orthogonal

space projections in Fig. 2.5, full circles are drawn to the interactions with at least one

non-active index and empty circles denote the fully active set of indices. There is finally

a notation (cross) for the case when no choice can produce a nonzero diagram since both

a model and an orthogonal projection act on a given determinant. Studying Fig. 2.5

one can conclude that only six diagrams 1(c), 1(e), 2(a), 2(b), 2(d) and 3(a) may have

non-zero value. Let us introduce three hyper-indices A, B and C where for example

A = (i, j, . . . ∈ I a, b, . . . � I) and ΔA = ε
⊕
i + ε

⊕
j . . . − ε�a − ε�b . . .. To show the cancellation

of diagrams 1(c), 2(a), 2(b) and 3(a), we can utilize the Frantz-Mills factorization theorem
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[62]. The sum of the diagrams 2(a), 3(a) and 2(b) can be simplified as:∑
A,B∈� C∈�

K(A)L(B,C)

(ΔA + ΔC)(ΔA + ΔB)ΔB
+

∑
A∈� C∈� B

K(A)L(B,C)

(ΔA + ΔC)(ΔA + ΔB)ΔA

−
∑

A∈� B,C∈�

K(A)L(B,C)

(ΔA + ΔC)(ΔA + ΔB)ΔA
=

∑
A,B∈� C∈�

K(A)L(B,C)

(ΔA + ΔC)ΔAΔB
, (2.62)

where K(A) is an integral indexed by A and L(B,C) is the contracted product of one- and

two-electron integrals. It is important to note that there is no restriction on index B in

diagram 3(a) (second term of the above equation). As a result of Eq.(2.62), we get the

negative of diagram 1(c), thus these four diagrams cancel each other. The remaining two

nonzero diagrams 1(e) and 2(d) also cancel each other. For the case when one nonzero

disconnected part contains only one vertex similar considerations can be taken. The cor-

responding diagrams are given in Fig. 2.6. It is easy to see that all diagrams cancel

pairwise: Fig. 2.6.1(a) and Fig. 2.6.2(b), Fig. 2.6.3(a) and Fig. 2.6.2(d), Fig. 2.6.3(b)

and Fig. 2.6.2(e) and finally Fig. 2.6.1(e) and Fig. 2.6.3(d) cancel each other. Rules of

cancellation of disconnected diagrams having three (or four) non-interacting parts follows

trivially from the above statements.

In the above derivation we used the Frantz-Mills factorization theorem where we sup-

posed the additivity of denominators. This property can be formulated by the relation

Da1,...,am
i1,...,im

+ Dam+1,...,in
im+1,...,in

= Da1,a2,...,an
i1,i2,...,in

(2.63)

where Da1,a2,...,an
i1,i2,...,in

is a denominator composed of a1, a2, . . . an virtual and i1, i2, . . . in occu-

pied indices and 1 < m < n. This is essential for the application of Frantz-Mills factoriza-

tion theorem and also for the extensivity. In the simple MP MBPT formalism Eq.(2.63)

valid. Taking into account that MP MBPT and MR MBPT use the same set of diagrams,

the proof of the linked cluster theorem published by Lindgren[30] for MR MBPT remains

true for the simple MP MBPT formalism.

In the spin- and general symmetry-adapted MP MBPT formulations the cancellation

of diagram pairs Fig. 2.5.1(e) and 2.5.2(d), Fig. 2.6.1(a) and Fig. 2.6.2(b), Fig. 2.6.3(a)

and Fig. 2.6.2(d), Fig. 2.6.3(b) and Fig. 2.6.2(e), Fig. 2.6.1(e) and Fig. 2.6.3(d) occurs

similarly as in the previous case. At the application of the Frantz-Mills factorization

theorem, one should be more careful since Eq.(2.63) is not valid by these operators. To

show this, suppose that a1 and in active orbitals belong to the same degenerate subspace, s.

75



Using Eqs.(2.55) and (2.57) the valid form of Eq.(2.63) for the general symmetry-adapted

formulation is

Da1,...,am
i1,...,im

(+) Dam+1,...,in
im+1,...,in

= Da2,...,an
i1,i2,...,in−1

(2.64)

where (+) denotes the special operation which in addition to the summation also con-

tains the elimination of occupied-virtual index pairs belonging to the same degenerate

subspace. E.g. if a1 and in active orbitals belong to the same subspace, they do not con-

tribute to Da1,a2,...,an
i1,i2,...,in

but ε�a1
and ε⊕in do appear in Da1,...,am

i1,...,im
and Dam+1,...,in

im+1,...,in
, respectively. As a

result, Eq.(2.62) has to be modified and the sum of diagrams 2(a), 3(a) and 2(b) takes the

following form:∑
A,B∈� C∈�

K(A)L(B,C)

(ΔA(+)ΔC)(ΔA(+)ΔB)ΔB
+

∑
A∈� C∈� B

K(A)L(B,C)

(ΔA(+)ΔC)(ΔA(+)ΔB)ΔA

−
∑

A∈� B,C∈�

K(A)L(B,C)

(ΔA(+)ΔC)(ΔA(+)ΔB)ΔA
=

∑
A,B∈� C∈�

K(A)L(B,C)(ΔA + ΔB)

(ΔA(+)ΔC)(ΔA(+)ΔB)ΔAΔB
,

(2.65)

while the value of diagram 1(c) is

−
∑

A,B∈� C∈�

K(A)L(B,C)

(ΔA(+)ΔC)ΔAΔB
. (2.66)

We can see that the cancellation is not complete, since terms on the right hand side of

Eq.(2.65) are not equal with expression (2.66). The remaining disconnected term,∑
A,B∈� C∈�

K(A)L(B,C)

(ΔA(+)ΔC)ΔAΔB

ΔA + ΔB − (ΔA(+)ΔB)

ΔA(+)ΔB
, (2.67)

give non-zero contribution if one or more degenerate subspaces in the Fermi-vacuum are

partly occupied. For example, in the spin-adapted case for a closed shell Fermi-vacuum

all disconnected terms are cancelled. On the other hand if there are open shell active

orbitals in the Fermi-vacuum, called p, with a single electron α and pα ∈ A and pβ ∈ B,

the remaining disconnected term is∑
p A′,B′∈� C∈�

K(pα, A′)L(pβ, B′,C)

(ΔA(+)ΔC)ΔAΔB

ε⊕p − ε�p
ΔA′ + ΔB′

, (2.68)

where A′ is the hyper index A without pα and B′ is hyper index B without pβ. In general

we can say that the two connected units of a disconnected diagram are linked by orbitals

belonging to the same partly occupied degenerate subspace.
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According to the previous analysis connectivity in the strict sense does not hold at

fourth and higher-order if either the spin-adapted or the symmetry adapted formulation

is used. These theories, however, still can be size-extensive or size-consistent if the zero-

order Hamiltonian does not connect localized orbitals belonging to different subsystems

at large or infinite separation.
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Size-consistency of spin-adapted formalism

If spin-adapted theory is used with localized orbitals and hyper indices A and B belong

to different subsystems at infinite separation, relation ΔA+ΔB = ΔA(+)ΔB is obviously sat-

isfied. Terms in Eq.(2.65) are then cancelled by the proper terms of Eq.(2.66). Although

the disconnected diagrams of type 1(c), 2(a), 2(b) and 3(a) do not cancel entirely each

other, products with indices of both subsystems do not give contribution. This means that

the spin-adapted theory is size-consistent.

Size-consistency of general symmetry-adapted formalism

Similarly it can be shown that the symmetry-adapted formalism can lead to size-

consistent result with localized orbitals if there is no symmetry transformation which

would connect partly occupied degenerate active orbitals localized on different systems at

infinite separation. Otherwise the symmetry-adapted approach is not size-consistent.

Size-extensivity of spin-adapted formalism

If localized orbitals are used in the spin-adapted theory, extensivity holds due to the

fact that the two connected units of a disconnected diagram are always linked by at least

an active orbital, singly occupied in the Fermi-vacuum. According to the discussion in

Section 1.1.1, this property leads to the conclusion that the spin-adapted formalism is

size-extensive when using localized orbitals. To investigate the case of delocalized or-

bitals, let us focus on the two connected units of a disconnected diagram. We know, that

if there is a sum over each index of a connected diagram, the result will be proportional the

system size. We are going to consider larger systems now, where orbital energies become

closely spaced, that summation over orbital indices can be replaced by integration:∑
q

→
∫

dN
dε

dε =
∫
ρdε. (2.69)

The density of one-particle states around εq is proportional with the size of the system

N, ρn(ε) ∼ N. Let us ignore for a moment the sum over orbital q which connects the

subdiagrams, suppose that its energy is εq and denote the contribution of a connected sub-

diagram from orbitals around εq by dDα(ε). This means, that sum over all indices are
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evaluated when obtaining dDα(ε), apart from εqα . As for q, the sum extends over those

indices which lie in dε interval to εq. Supposing that the number of orbitals around εq is

proportional with the density of one-particle states we have dDα(ε) = Rα(ε)ρn(ε)dε. Here

Rα(ε) is the contribution of the single orbital q to the value of the subdiagram denoted

by α. Obviously dDα(ε) is also proportional with N and Rα(ε) does not scale with the

system size. For a given q the contribution of the disconnected diagram for the energy

is proportional with Rα(ε)Rβ(ε), i.e. dDαβ(ε) = Rα(ε)Rβ(ε)ρn(ε)dε which is proportional

with N. This means, that after the integration for the one-particle energy the whole con-

tribution becomes proportional with the system-size. As a consequence, disconnected

diagrams appearing in the spin-adapted formalism give size-extensive contribution even

if delocalized orbitals are used.

Size-extensivity of general symmetry-adapted formalism

In the symmetry-adapted case, orbitals partly occupied in a degenerate subspace ap-

pear in both connected units of a disconnected diagram. Using an analysis similar to the

above discussion, the contribution of a set of degenerate active orbitals (s1, . . . , sn) for a

disconnected diagram with two subdiagrams is as follows:

dD(ε) =
∑

i∈I,a�I
Rsa(ε)Rsi(ε)ρ(ε)dε, (2.70)

where Rsa(ε) is the contribution of a virtual orbital for one of the subdiagrams and Rsi(ε)

is the contribution of an occupied orbital for the other subdiagram. If n does not scale

with the system dimension N, then dD(ε) is a linear function of N and size-extensivity is

ensured. If the dimension of a degenerate subspace generated by symmetry is proportional

with the system size, dD(ε) will then scale quadratically or cubically with system size.

Systems with translational symmetry, finite systems with periodic boundary conditions or

ring shaped systems are examples for the case where the size-extensivity of the symmetry-

adapted formalism does not hold.

IIIIII

To summarize our results we can say that the genuine MP MBPT formalism is size-

consistent and size-extensive at second-order but it is not true for higher-orders. The

simple formalism is size-consistent and size-extensive at any order, but harms both the
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Figure 2.6: Disconnected fourth-order terms where there is one alone standing vertex.
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spin and the spatial symmetry. In the spin-adapted and general symmetry-adapted for-

mulation the definition of the zero-order Hamiltonian is not connected in a strict sense.

Definition of connectedness is frequently used as a synonym of extensivity. To keep the

well established relation between connectedness and extensivity, we should consider a

diagram build of two disjoint units connected, if both subdiagrams contain the same or-

bital with different spin. Moreover, if we use localized orbitals to describe for example a

dissociation process and the two units of a disconnected diagram contain orbitals local-

ized to the same fragment, one can also consider this product connected. In this sense the

spin-adapted theory is always connected, size-extensive and size-consistent. This is not

true for the general symmetry-adapted formulation, since in this case the symmetry can

in general connect fragments at infinite distance from each other. The general symmetry-

adapted formulation can be still size-consistent in special cases, where the symmetry

can not link the fragments at infinite separation, e.g. in the description of the dissocia-

tion process of a heteronuclear diatomic molecule. One further problem in the general

symmetry-adapted formulation is that the symmetry can change along a potential energy

surface. In order to get a smooth PES, the lowest symmetry has to be used all along the

process (see for example Fig. 2.11).

2.3.4 Implementation

Adaptation of the code generating tools of MCPT for the MP MBPT formalism a quick

and straightforward implementation of MP MBPT. This was easily achieved by minor

modification of the scripts and codes used for implementing MCPT. Although MP MBPT

can be calculated for medium size systems by the code produced in this way, its perfor-

mance is by far not optimal.

Code developments were motivated by two aspects: calculation time and code length

reduction. The initial third-order code scaled as NCAS N2
o N4

v , while the fourth-order code

scaled as NCAS N2
o N6

v where NCAS , No and Nv are the size of the CAS space, number of

occupied orbitals and number of virtuals, respectively. This scaling can be significantly

reduced by using properly chosen intermediate quantities. The second aspect is the length

of the source code. This was several hundred-thousand lines initially, but it also gets

significantly shorter by introducing the intermediers.
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At second-order there is no need to apply intermediers. Simple subroutines are called

to calculate the diagrams shown for example in Fig. 2.1. The second-order effective

Hamiltonian correction, Ĥ(2)

eff
is stored, since it will be needed for higher-order corrections

according to Eq.(2.48).

In what follows we focus our attention on the construction of intermediers. This af-

fects only those diagrams, where there is an intervertex level that describes a single or a

double excitation but not more. There are numerous diagrams that are not of this sort.

These are implemented similar to the procedure discussed in Section 1.3.2. In the dis-

cussion below we will elaborate only on those diagrams, where it is possible to introduce

intermediers with two or four open lines, called one- or two-particle intermediers, re-

spectively. Three or more particle intermediers are easy to introduce following the lines

presented below.

At any order the most expensive diagrams are the closed diagrams, which belong to

the diagonal matrix elements well known form single reference theory [60]. To reduce the

scaling of the calculation, certain diagrams of the effective Hamiltonian matrix elements

are constructed from their wave operator component by closing the wave operator diagram

with a Hamiltonian diagram shown in Fig. 1.3. Wave-operator diagrams with no more

than two occupied and two virtual indices represent the simplest intermediers. They can

be easily stored even for large basis sets since this vector is significantly shorter than the

whole integral list.

The wave operator diagrams used as intermediers at order three are calculated within

the outermost loop which runs over the determinants in the model space. The structure of

these second-order one-particle intermediers is as follows:

� =� +� +� +�

+� +� +� +� (2.71)

The form of the second-order two-particle intermediers is the following:

� =� +� +� +�
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+� +� +� +� (2.72)

By the use of the above intermediers the third-order contribution to the effective Hamilto-

nian matrix can be calculated by the routines written to calculate the second order effective

Hamiltonian diagrams shown in Fig. 2.1. One has to simply load the above intermediers

instead of the integral list appearing at the bottom of diagrams in Fig. 2.1. It is worth

to note here that only those terms contribute to the third-order which end in a Q space

determinant at the top, in Eqs.(2.71) and (2.72). It is still practical to evaluate all these

intermediates without any restrictions, since they will be useful at the fourth-order calcu-

lation.

The calculation time of the most expensive intermedier (first term on the right hand

side of Eq.(2.72)) scales like N2
o N4

v , which would be the scaling without using interme-

diers. Introduction of intermediers therefore does not give a reduction in the sixth power

scaling of the third-order. It is by the factorization, where one gains computation time.

Apart from the diagrams discussed so far, there appear at third-order others, which con-

tain more than four contraction lines at the second intervertex level. Some examples for

the bottom part of these diagrams are shown in Eqs.(2.75) and (2.76). They contain less

contractions but have more open lines. For this reason their scaling is not the most dras-

tic. The worst diagram of this type (first term on the right hand side of Eq.(2.75)) scales

like NavNaoN2
o N3

v , where Nav and Nao is the number of active virtual and active occupied

orbitals, respectively. This is lower than N2
o N4

v as far as the number of virtuals is sig-

nificantly larger than the number of active orbitals. As mentioned before, diagrams with

more than four contraction lines at the second intervertex level are computed by the native

routines, generated automatically.

The significance of intermediers at fourth-order is even larger, due to the reduction

of the scaling of calculation time. The third-order intermediers used in the fourth-order

calculations are the following:

�
=
�

+
�

+
�

+
�

+
�

+
�

+
�

+
�
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+
�

+
�

+
�

+
�

+
�

+
. . . (2.73)

The form of third-order two-particle intermediers is as follows:

�
=
�

+
�

+
�

+
�

+
�

+
�

+
�

+
�

+
�

+
�

+
�

+
�

+
�

+
�

+
. . . (2.74)

where the renormalization counterparts of the diagrams describing more than two-fold ex-

citation at the second intervertex level are not shown but also included in the sum. Some

of the fourth-order diagrams contain one- or two-fold excitation at the second interver-

tex level but at the third intervertex level a three- or four-fold excitation appears. The

contribution of these diagrams are calculated in subroutines used in the third-order. Only

the integral list is changed into the intermediers from Eqs.(2.71) and (2.72) at the bottom

level of diagrams.

Substituting the first rows of diagrams from Eqs.(2.71) and (2.72) into terms in the first

rows of Eqs.(2.73) and (2.74) one obtains diagrams without renormalization denominators

like in Fig. 2.4.a. Diagrams with a renormalization denominator at the second intervertex

level (e.g. Fig. 2.4.b.) arise from the substitution of diagrams from the second rows

of Eqs.(2.71) and (2.72) into the first rows of Eqs.(2.73) and (2.74). Diagrams having

a renormalization box around the third interaction vertex like Fig. 2.4.c can be derived

from the first row of Eqs.(2.71) and (2.72) plugged into the second row of Eqs.(2.73) and

(2.74). Due to the contradictory restrictions at the second intervertex level, substitution
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of diagrams from the first row of Eqs.(2.71) or (2.72) into the second rows of Eqs.(2.73)

and (2.74) leads to zero. Fourth order diagrams with two renormalization boxes like

those in Fig. 2.4.d and Fig. 2.4.e result from the third rows of Eq.(2.71) and (2.72) being

substituted into the first and second rows of Eqs.(2.73) and (2.74). Here the Fermi vacuum

of second-order intermedier defined by the determinant appears at the first intervertex

level.

The last rows of Eqs.(2.73) and (2.74) show terms having three- and four-fold excita-

tion at the second intervertex level. The definitions of these quantities are:

� =� +� +� + . . . (2.75)

� =� + . . . (2.76)

where the renormalization counterparts of the diagrams are not shown but included in the

sum. Intermediers defined in (2.76) are explicitly calculated but not stored since their

memory requirement rapidly grows with the basis set size. Whenever an intermedier

of this sort is calculated, with a given set of uncontracted indices, its contributions to

Eqs.(2.73) and (2.74) is right away calculated and the intermedier is dropped afterwards.

Using the intermediers of order three, the effective Hamiltonian matrix elements can

be calculated by a final contraction with the Hamiltonian diagrams in Fig. 1.3. This

last step scales like N2
o N2

v which is negligible compared to the cost of the construction of

certain intermediers. The two most demanding intermediers are the first one in Eq.(2.74)

with N2
o N4

v property and the last term in Eq.(2.74) with N4
o N4

v scaling. This latter diagram

determines the scaling of the presented implementation which is finally proportional to

NCAS N4
o N4

v . This scaling can be reduced to NCAS N4
o N3

v by introducing the so-called vertical

factorization [60].

2.4 Numerical examples

To demonstrate the applicability of higher-order MP MBPT corrections, calculations for

molecules H2O, N2, C2H4, and BeH2 are presented.
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CAS[4/4] 2nd order 3rd order 4th order FCI

1 1A1 0.2137 0.0168 0.0081 0.0012 -76.2464

1 3A1 0.2678 -0.0024 0.0160 0.0002 -75.8920

2 1A1 0.2654 -0.0021 0.0154 0.0002 -75.8657

5 1A1 0.4771 -0.0415 0.0301 0.0069 -75.4608

Table 2.1: Error of state energies of the H2O molecule at different perturbation orders of MP

MBPT and the FCI total energies, in Hartree. General symmetry-adapted MP MBPT formulation,

with state-averaged one-particle energies. Averaging involves states 11A1 , 13A1 and 21A1. See

text for geometry and basis set.

CAS[4/4] 2nd order 3rd order 4th order

1 3A1 0.0541 -0.0192 0.0079 -0.0010

2 1A1 0.0517 -0.0189 0.0073 -0.0010

5 1A1 0.2634 -0.0583 0.0220 0.0057

Table 2.2: Error of excitation energies of the H2O molecule in different perturbation orders of

MP MBPT, in Hartree. General symmetry-adapted MP MBPT, with state-averaged one-particle

energies. Averaging involves states 11A1 , 13A1 and 21A1. See text for geometry and basis set.

2.4.1 H2O

On the example of the H2O molecule we compare results obtained with different zero-

order Hamiltonians. One IP and one EA set is constructed either in a state-selective or in

a state-averaged manner by the definition of Eq.(2.18) or Eq.(2.19), respectively. We also

compare the simple and the general symmetry-adapted formulation, defined by Eq.(2.20)

and Eq.(2.25), respectively.

Calculation for the H2O molecule was performed using Pople type 6-311G* basis

set, close to equilibrium geometry, with parameters R = 0.9393Å and Θ = 107.5◦. The

core orbital with two electrons was kept frozen. As a zero order approximation a four-

electrons-four-orbitals CAS was constructed, using Hartree–Fock canonical orbitals. The

active space was defined by orbitals (3a1), (1b2), (4a1) and (2b1). The calculations being

restricted to the totally symmetric states, the model space was of dimension ten. As bench-
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CAS[4/4] 2nd order 3rd order 4th order FCI

1 1A1 0.2137 0.0168 0.0081 0.0012 -76.2464

1 3A1 0.2678 -0.0008 0.0165 0.0008 -75.8920

2 1A1 0.2654 -0.0018 0.0155 0.0002 -75.8657

5 1A1 0.4771 -0.0415 0.0301 0.0070 -75.4608

Table 2.3: Error of state energies of the H2O molecule in different perturbation orders of MP

MBPT and the FCI total energies, in Hartree. Simple MP MBPT formulation was used with state-

averaged one-particle energies. Averaging involved states 11A1 , 13A1 and 21A1. See text for

geometry and basis set.

CAS[4/4] 2nd order 3rd order 4th order

1 3A1 0.0541 -0.0176 0.0084 -0.0004

2 1A1 0.0517 -0.0186 0.0074 -0.0010

5 1A1 0.2634 -0.0583 0.0220 0.0058

Table 2.4: Error of excitation energies of the H2O molecule in different perturbation orders of

MP MBPT, in Hartree. Simple MP MBPT formulation, with state-averaged one-particle energies.

Averaging involves states 11A1 , 13A1 and 21A1. See text for geometry and basis set.
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marks, FCI energies were computed for all states. FCI energies were calculated by a code

implemented in our laboratory using the algorithm published by Olsen[86]. Assignation

of states obtained by MP MBPT is based on a comparison of the leading configuration of

FCI vectors and the right hand eigenvector of the approximate effective Hamiltonian. Of

the ten eigenvalues of Ĥeff, four states proved to be good estimations of one of the FCI

states. Since orbitals (1a1) and (2a1) are fully occupied in all configurations, we restrict

ourselves to indicating the occupation of only six electrons for simplicity. The leading

configuration belonging to the 1 1A1 state is (1b1)2(3a1)2(1b2)2. The first totally sym-

metric, open shell singlet and triplet states are dominated by the (1b1)2(3a1)1(2b2)2(4a1)1

configuration and finally the leading term of fifth 5 1A1 state is (1b1)2(3a1)2(4a1)2.

Table (2.1) shows the energy error of general symmetry-adapted state averaged results

and the FCI total energies. The averaging involved the three lowest CAS eigenstates.

Second-order MP MBPT reduces the error of CAS energies below ten percent as demon-

strated by Table (2.1). For the 1 3A1 and 2 1A1 states the second-order gives a surprisingly

good estimation. For these states the third-order is less successful but the fourth-order

significantly reduces the error of the second order. Approximations for the 1 1A1 and

5 1A1 states smoothly converge with increasing order of perturbation. The approximation

of the three states, involved in averaging when computing the one-particle energies, is

more successful than the approximation of the 51A1 state. Excitation energies obtained at

different orders are collected in Table (2.2). In this point of view the third-order results

give remarkable improvement compared to the second-order, for each excited states ex-

amined. Fourth order brings further notable improvement for each state, similarly to the

case of the total energy. Tables (2.3) and (2.4) show the errors of the simple formulation.

Based on this data one may conclude, that there are no significant differences between the

simple and general symmetry-adapted results.

Significant difference reveals however when examining the singlet-triplet splitting of

the states 13A1 and 21A1 as shown in Table (2.5). The simple formalism at the second-

order reduces the error more than fifty per cent but the third-order gives no further im-

provement. At the fourth order the remaining error is 6 mEh. As compared to this, second-

order general symmetry-adapted estimation of the singlet-triplet splitting is very precise,

it has approximately 2 mEh error. The third-order enlarges this 6 mEh but the fourth-order

gives only 0.7 mEh error.
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Simple Spin-adapted

CAS[4/4] 0.023862 0.023862

2nd order 0.025280 0.026528

3rd order 0.025283 0.025729

4th order 0.025682 0.026220

FCI 0.026289 0.026289

Table 2.5: Singlet-triplet separation of open shell states of the H2O molecule with the main

configuration (1a1)2(2a1)2(1b1)2(3a1)1(2b2)2(4a1)1, by simple and spin-adapted MP MBPT cal-

culations. See text for geometry and basis set.

CAS[4/4] 2nd order 3rd order 4th order FCI

1 1A1 0.2137 0.0118 0.0075 0.0004 -76.2464

1 3A1 0.2678 0.0038 0.0277 0.0059 -75.8920

2 1A1 0.2654 0.0019 0.0241 0.0030 -75.8657

5 1A1 0.4771 -0.0082 0.0696 0.0301 -75.4608

Table 2.6: Error of state energies for H2O by MP MBPT and FCI total energies in Hartree. Spin-

adapted, state-specific calculations. The target state is the 1 1A1 state. See text for geometry and

basis set.

To analyze the effect of the different one-particle energies on the results, state-specific

calculations were also performed. Tables (2.6) and (2.7) show the results for the case

when the ionization potentials and electron affinities were calculated with the CAS state

11A1, using Eq.(2.18). As expected, the state-specific results for the ground state give

better estimations than the state-averaged results, at the same time the estimation of total

energies of excited states and the excitation energies are worsened. Interestingly, second-

order approximations of the excited states remain reasonably good even if one-particle

energies are focused on the ground state. Third and fourth-order approximations on the

other hand are considerably spoiled.
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CAS[4/4] 2nd order 3rd order 4th order

1 3A1 0.0541 -0.0080 0.0202 0.0055

2 1A1 0.0517 -0.0099 0.0166 0.0026

5 1A1 0.2634 -0.0200 0.0621 0.0297

Table 2.7: Error of excitation energies for H2O by MP MBPT in Hartree. Spin-adapted, state-

specific calculations. The target state is the 1 1A1 state. See text for geometry and basis set.

2.4.2 N2

As a second example a series of calculations for the potential energy surface of the ni-

trogen molecule is presented. Larsen et al. [85] presented FCI results for the ground

state and several excited states at different geometries in spherical cc-pVDZ basis set of

Dunning et al. keeping the 1s core orbital of nitrogen atoms frozen. At internuclear

distance larger than 1.8 Å for the 1Σ+g ground state full-CI energies were calculated by

a code implemented in our laboratory using the algorithm published by Olsen[86]. Be-

cause of the πx and πy orbital degeneracy, this is a perfect test system to compare the

general symmetry-adapted zero-order Hamiltonian and the pure spin-adapted zero-order

Hamiltonian.

Fig. 2.7 shows parallelity of the error curves and Fig. 2.9.a shows the total energy

along the dissociation curve of the 1Σ+g ground state of the N2 molecule. The reference

state was provided by a six-electron-six-orbital CAS calculation and the pseudo-canonical

orbitals were used in the perturbation calculations. In Fig. 2.7 the zero-order CAS re-

sults are shifted by 140mEh. The perturbative corrections were calculated by the general

symmetry-adapted MP MBPT formalism using D2h symmetry. The CAS gives a qual-

itatively correct description of the dissociation process and serves as a good basis for

a perturbative approach. The second-order MP MBPT gives a significant improvement

to the zero-order results. The third and the fourth-order corrections further reduce the re-

maining error. At 7Å the FCI and perturbation energies are converged to their dissociation

values within five digit. In the right hand side of Fig. 2.7 results from a calculation using

localized orbitals are also shown. In this case the degeneracy of px, py and pz orbitals, lo-

calized to a given nitrogen atom, was utilized in the general symmetry-adapted zero-order

Hamiltonian. These calculation serves better energies at the infinite separation compar-
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ing to the delocalized calculation where only the two dimensional πx, πy degeneracy was

utilized. If one uses the general symmetry-adapted zero-order with delocalized orbitals

formulation. Since the general symmetry-adapted MP formulation is invariant to the rota-

tion of the degenerate orbitals one can use (see Section 2.3.3), the only reason behind the

energy differences is the different symmetry adaptation of the zero-order Hamiltonian.

The simple and spin-adapted formulations were also tested using the pseudo canonical

CAS orbitals. The results are shown in Fig. 2.9.a. At second-order the spin-adapted

formulation already gives better results than the simple formulation while the general

symmetry-adapted formulation brings further improvement. At third and fourth-order the

simple and spin-adapted MP MBPT results are rather similar to the general symmetry-

adapted approach. A slight difference appears only for larger internuclear distance.

Since the MP MBPT generally not invariant to the rotation of one-particle basis set,

dependence of the theories on one-electron orbitals is an interesting question. To get

some numerical experience, we computed the general symmetry-adapted results with HF

canonical orbitals. In this case the zero-order approximation is less successful, and as a

consequence, perturbative correction are less balanced. As seen in Fig. 2.9, the results are

surprisingly good at short internuclear distance, giving better results than the same theory

with pseudo-canonical CAS orbitals. Parallelity of the error curve is improved in each

order but in general it remains worse than the pseudo-canonical counterpart, and typically

less accurate for large internuclear distance.

The lowest 1Σ−u , 1Πg and 1Δu excited states were also computed by the general symmetry-

adapted formalism with pseudo-canonical CAS orbitals and Hartree–Fock canonical or-

bitals. The results are shown in Fig. 2.8.b-d and Fig. 2.9.b-d. Pseudo-canonical CAS

orbitals were optimized separately for each state. General trends shown by the methods

are similar for the excited states as for the ground state. At each point the energy and also

the shape of the potential curve is improving for order by order of MP MBPT.

Errors of vertical excitation energies by the general symmetry-adapted formalism as

a function of the geometry is shown in Fig. 2.10. The convergence of vertical excitation

energies is slower than the convergence of individual state energies.
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Figure 2.7: Convergence of MP MBPT for 1Σ+g ground of N2 using delocalized pseudo-canonical

CAS orbitals. The errors (EMP MBPT − EFCI) of dissociation curves are plotted. CAS energies are

shifted by -140mEh. Notations: diamond – CAS energies, square – second-order MP MBPT

energies, cross – third-order MP MBPT energies, full circle – fourth-order energies. On the right

hand side results for infinitely separated nitrogen atoms are also shown, where localized orbitals

were used and the degeneracy of p orbitals are utilized in the zero-order Hamiltonian. Empty

square – second-order MP MBPT energy, star – third-order MP MBPT energy, plus sign – fourth-

order MP MBPT energy. See text for basis set.
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Figure 2.8: Convergence of MP MBPT for various states of N2 as a function of internuclear dis-

tance. Dissociation curves of the N2 molecule for 1Σ+g ground and the lowest 1Π−u ,1Σ−u , 1Δ−u excited

states. Notations: diamond – CAS energies, square – second-order MP MBPT energies, cross –

third-order MP MBPT energies, full circle – fourth-order energies, thin lines – general symmetry-

adapted formalism with canonical orbitals, thick lines – general symmetry-adapted formalism

with pseudo-canonical CAS orbitals. See text for basis set.
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Figure 2.9: Convergence of MP MBPT for various states of N2 as a function of internuclear

distance. Error of different approximations. Notations: diamond – CAS, square – second-order

MP MBPT energies, cross – third-order MP MBPT, full circle – fourth-order, empty circle – FCI,

thin lines – general symmetry-adapted formalism with HF-canonical orbitals, thick lines – general

symmetry-adapted formalism with pseudo-canonical CAS orbitals, dots – simple formalism with

pseudo-canonical CAS orbitals, dashed line – spin-adapted formalism with pseudo-canonical CAS

orbitals. See text for basis set.
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Figure 2.10: Error of excitation energies of different orders of MP MBPT for various states of N2

as a function of internuclear distance. Notations: diamond – CAS energies, square – second-order

MP MBPT energies, cross – third-order MP MBPT energies, full circle – fourth-order energies,

thin lines – symmetry-adapted formalism with HF canonical orbitals, thick lines – symmetry-

adapted formalism with pseudo-canonical CAS orbitals. See text for basis set.
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2.4.3 C2H4

As another example the ethylene torsional potential curve is shown in Fig. 2.11. For

the calculations Dunning’s double zeta polarized basis set[73] was used. A two by two

CAS calculation provided the reference function using pseudo-canonical orbitals. For

this system MCPT and SC2-MCPT calculations were already shown in Section (1.4).

In the lack of spatial orbital degeneracy spin-adapted MP MBPT was applied using D2

symmetry along the whole potential energy curve. At 90◦ torsional angle the molecular

symmetry point group is the higher D2d and a two dimensional degeneracy of spacial

orbitals appears. At this point both D2 and D2d symmetry were used to construct the

zero-order Hamiltonian. In order to have a benchmark to the perturbation calculations, an

Adamowicz type MR CCSDT [67] curve was computed. The error curves with respect to

the MR CCSDT calculation (EMP MBPT−EMR CCSDT) are also calculated and the results are

shown at Fig. 2.11.

In Fig. 2.11 we see, that the zero-order approximation is qualitatively correct and

the perturbation orders gradually improve upon it, showing smooth convergence. If con-

sidering the higher symmetry at the apex of the curve, we get a better estimation but a

necessarily discontinuous potential curve. The parallelity error of the CAS is small com-

pared to the spin-adapted second-order MP MBPT result.

As the examples of Section 1.4 show, the most dangerous point is at the 90◦ where

the orbital degeneracy can lead to intruder state problem. Such an effect does not appear

here.

2.4.4 BeH2

A typical multi-reference problem is the description of BeH2 molecule with different bond

lengths and bond angles. Detailed description of this model can be found in Section 1.4.

Here we used the same geometries and basis set for the calculations.

The zero-order description is less accurate for points F, G, H and I, which is responsi-

ble for the 20 mEh parallelity error. This error is reduced by the second, third and fourth-

order of spin-adapted MP MBPT to 10 mEh, 5 mEh and, 3 mEh, respectively. These

results are rather similar to those we obtained in the MP MCPT case.

We have not found any irregular behavior in these calculations either.
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Figure 2.11: Energy of ground state of ethylene molecule for different torsion angles. Different

orders of MP MBPT are compared to an Adamowicz type MR CCSDT[67]. Notations: diamond –

CAS energies, square – second-order MP MBPT energies, cross – third-order MP MBPT energies,

full circle – fourth-order energies, empty circle – MR CCSDT. Enlarged picture at 90◦ also shows

results for D2d symmetry, empty square – second-order MP MBPT energy, star – third order MP

MBPT energy, plus sign – fourth-order MP MBPT energy. The second figure shows the parallelity

of the error curve. CAS results are shifted by -275.4mEh. See text for basis set.
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Figure 2.12: Error of different orders of spin-adapted MP MBPT calculations for the BeH2

molecule. Notations: diamond – CAS energies, square – second-order MP MBPT energies, cross –

third-order MP MBPT energies, full circle – fourth-order energies. See Section 1.4 for geometries

and basis set.

2.5 Summary

Many-body theories using an effective Hamiltonian face numerical instability due to the

intruder state problem if the determinants of the model space and determinants in the or-

thogonal space are not separated energetically. In single-reference MBPT the physical

content of one-particle energies – i.e. the energies of the occupied orbitals are ionization

potentials while the energies of the virtuals are electron affinities – ensures the energetical

separation of the Hartree-Fock determinant and the virtual determinants. In the framework

of MP MBPT, proposed by Malrieu and his coworkers[19], the energetical separation of

the model space and the orthogonal space is ensured through the energetical separation of

occupied and virtual one-particle energies. This is done by applying as many zero-order

Hamiltonians as the number of determinants and by defining the one-particle energies as

ionization potentials and electron affinities with respect to the given model space deter-

minant.

This approach raises the theoretical question of spin and symmetry contamination.

The former problem was solved by Malrieu and coworkers[78], while the latter is dis-

cussed by us [4]. We have shown, that the orbital degeneracy can lead to spin or spatial

symmetry contamination which can be avoided by using a zero-order Hamiltonian invari-

ant to orbital rotations with in degenerate subspaces.

Scaling properties of energy with system size, like separability and size-extensivity
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was studied at second-order by Malrieu and his coworkers[19] and at higher-orders by

us[4, 5]. We have pointed out that using different one-particle energy sets for each model

space determinant can not be size-extensive from the third-order of theory. We have

also shown that certain disconnected diagrams appear in the spin-adapted and general

symmetry-adapted formulations at fourth and higher-orders. In the spin-adapted case the

connected units of the disconnected diagrams are ”linked” by at least one common spatial

orbital. This means that at a given intervertex level one of the connected units contains an

orbital α and the other contains the same orbital with β spin. In this way the spin-adapted

MP MBPT is size-extensive. Similarly the general symmetry-adapted MP MBPT can be

also size-extensive if the number of active orbitals in any of the degenerate subspaces does

not scale with the system size.

Several numerical results have been already published at second-order [79, 19, 78,

87] which prove the intruder free behavior of MP MBPT. We have implemented MP

MBPT approaches up to fourth-order using the diagrammatic approach worked out for

MR MBPT. The implementation is performed using the automatized code generator tools

developed for third-order MCPT. To improve the performance intermedier quantities are

introduced. The most recent implementation is still not perfect, it leaves room for further

introduction of intermediers. With the present form of the codes it is possible to perform

calculations for medium size systems. The numerical results show that third and fourth-

orders give significant improvement to the second-order energies, showing an apparently

smooth convergence. This is opposite to previous theoretical arguments implying possible

divergence of the MP MBPT series[79].
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Chapter 3

Sparse Full-CI algorithm

3.1 Introduction

In quantum chemistry different parametrizations are used to describe the wave function.

A given parametrization usually prescribes a way to get a hierarchy of possible approx-

imations of the exact wave function. In principle such a hierarchy permits a systematic

improvement of the quality of a given description. Well known examples are the CI and

the CC hierarchies where any member of the hierarchy is connected to a chosen excitation

level in either the wave function or the cluster expansion. In case of CI type functions it

is usual to classify determinants according to their excitation level. If one is interested in

the eventual importance of a given determinant in the Full-CI (FCI) function, a different

classification scheme can be set up that may lead to a new hierarchy of approximations. It

is widely known that excitation level and eventual importance in FCI may show just loose

connection. For this reason an approach based on the importance of determinants in FCI

becomes of value when only a relatively small number of determinants can be treated as

compared to the FCI space, still a highly accurate description of the molecular system is

needed.

Importance of a given determinant can be defined by, e.g., its magnitude in the FCI

function or its contribution to the FCI energy in an a posteriori manner. In practice one re-

quires an a priori selection rule to pick just the determinants whose importance is greater

than given threshold. This Chapter describes an algorithm which finds important de-

terminants in an a priori way and makes use of the space spanned by them to give an
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approximation to the FCI solution[6]. The algorithm treats all excitation levels on the

same footing and selects important determinants by using a threshold for the estimated

contribution to the FCI energy in the next iteration step. Apart from small test cases, the

algorithm is not capable of handling explicitly all determinants in the FCI space. Right

on the contrary, due to limitations in system memory unavoidable even for medium sized

systems, the algorithm is intentionally designed for treating just a small fraction of the

FCI space and aims to reach the closest possible approximation to the FCI energy within

these circumstances. In its purpose, applicability and realization the algorithm shows

close relation to the FCI method, hence the Sparse FCI (SFCI) denomination is used.

Although the significance of CI type methods was evident from the beginning of quan-

tum chemistry, practical (large-scale) CI calculation became possible only after Roos and

Siegbahn introduced the so-called Direct CI algorithm[88]. In this technique, following

a Lanczos-type philosophy, the CI eigenvector is obtained iteratively, without the need of

ever loading the entire Hamiltonian matrix into computer memory. In each iteration step

the Hamiltonian is let to act on the trial CI vector. The procedure makes use of the second

quantized form of the Hamiltonian, and needs the integral list to obtain the resulting vec-

tor. When increasing system size, quartic scaling of the integral list appears negligible as

compared to the exponential scaling of the FCI vector. Hence, memory requirement of a

FCI calculation is determined by the need of storing the FCI vector.

It was realized a long time ago, that the length of the CI vector can be greatly reduced

by projecting onto symmetry-adapted subspaces, corresponding, e.g., to spin quantum

numbers. Efficient methods like the unitary group approach [89, 90, 91] exist which

exploit this possibility, and they are of great help when performing truncated CI. As shown

by Handy, pure determinants are, however, preferable to symmetry-adapted configuration

state functions (CSF-s)[92] in the FCI case, because coupling coefficients (the weighting

factors of Hamiltonian integrals) can only be 0 or ± 1 if a determinantal expansion of the

FCI vector is adopted. For this reason, the present procedure – similarly to most of the

current FCI implementations – applies a determinant-based representation.

Recent years in quantum chemistry have seen a steady progress in the size of the

largest system ever computed by FCI, which is over 1010 determinants presently. Rossi

et al.[93] reported a frozen core calculation for the N2 molecule with 34 basis functions,

using almost 10 billion determinants in 1994. A calculation on the CN anion in cc-pVDZ
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basis performed by Thøgersen and Olsen[94] in 2004 included about 20 billion determi-

nants. A series of calculations published by Gan et al.[95] in 2006 treated 45 billion de-

terminants in some cases. The largest FCI calculation ever done according to our present

knowledge was performed by Gan and Harrison[96] on the C2 system in 2005, containing

65 billion determinants. This admirable expansion in system size is primarily thanks to the

adaptation of the FCI algorithm to parallel computer architectures[97, 98, 99, 100, 101]

and extensive use of powerful supercomputers.

In ordinary FCI algorithms like the ones referred to above, the storage of the FCI

vector appears a waste of memory regarding the fact that many of its elements are zero

(i.e. below a threshold) and can be safely neglected while still preserving the accuracy

required. Making use of this fact may open a way to further enlargement of systems

tractable by the FCI approach. One obstacle in the way of a sparse FCI code is the need of

an effective algorithm that evaluates the action of the Hamiltonian on a sparse trial vector.

Efforts in this line were published by Knowles [102, 103] and Mitrushenkov [104, 105].

These algorithms avoid explicit treatment of the unimportant determinants in vector C

when performing the linear transformation σ = ĤC, hence a reduction in computational

time as well as smaller disk and memory storage is manifested by them.

In the framework of the FCI procedure Handy[92] introduced breaking down each

determinant into an α and β string according to spin. Olsen et al.[86, 106] and Zarrabian

et al.[107] further improved the idea by treating the (αα), (ββ) and (αβ) part of the Hamil-

tonian independently. Their algorithm scales like NFCI occ2 virt2, where occ and virt are

the number of occupied and virtual orbitals. A string based direct CI algorithm following

the philosophy of Olsen has been shown to be useful also in CI calculations restricted to

a selected subspace[108].

In what follows we introduce a FCI algorithm that applies Olsen’s idea for the linear

transformationσ = ĤC and stores both C andσ as sparse vectors. The performance of the

linear transformation shows some similarities with Mitrushenkov’s dynamic CI algorithm

[104], however, in our case the σ vector contains a small portion of the whole FCI space

and the factorization of the present algorithm is more efficient. Due to the fact that the

result of the action of Ĥ can be attained only in a subspace of the FCI space, the algorithm

provides an approximation to the FCI energy. The error committed is connected to how

large portion of the FCI space can be taken into account when representing vectors C
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and σ.

Organization of Chapter 3 is as follows. Section 3.2 discusses the iteration algorithms

previously for obtaining the FCI solution both with and without utilizing on sparsity. The

essence of the linear transformation performed with sparse vectors is presented in Section

3.3. Numerical experience and results are collected in Section 3.5. Finally Section 3.6

gives a short conclusion and outlook.

3.2 Iteration scheme

3.2.1 The Davidson algorithm

The sparse algorithm we are going to discuss in Section 3.2.4 is a modification of the

Davidson algorithm[109] thus it is practical to briefly summarize the fundamentals of the

general theory.

Suppose that we have a trial function written as a linear combination of orthonormal

vectors denoted by |K〉, with combination coefficients cK . The Rayleigh-quotient gives

the energy corresponding to the trial function:

E(c) =

∑
KL cKHKLcL∑

J c2
J

. (3.1)

According to the variational principle, minimization of Eq. (3.1) gives the exact wave

function and the energy of the ground state if the basis set is complete. If c+δ is the exact

coefficient vector of the ground state, we have:

dE(c)

dcI

∣∣∣∣∣
cI+δI

= 0. (3.2)

Solving this equation at the first order, one obtains an approximation to δI:

δI =

∑
K(HIK − E(c)δKI)cK

E(c) − HII
. (3.3)

The above expression has a central role in the Davidson algorithm.

At each iteration step of the Davidson process, a subsequent element of an orthogonal

basis set of the many-electron space is determined. In this basis the matrix elements of the

Hamiltonian are calculated and it is used to expand the approximate FCI function, Ψ(i).
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Let us assume Φ(i) to be the ith basis vector. To generate the (i + 1) th basis vector, a linear

transformation is performed first:

σ(i) = ĤΦ(i). (3.4)

Using σ(i) one can determine an additional row and column of the Hamiltonian matrix

according to Hi j = 〈σ(i)|Φ( j)〉, j = 1, . . . , i. After the diagonalization of the i by i H

matrix one can gets a new approximation to the energy denoted by Ei energy and the

wave function, written as Ψ(i) =
∑i

j=1 c( j)Φ( j). At the next step, a correction to Ψ(i) is

calculated using Eq.(3.3):

δΨ(i) = R̂(Ĥ − Ei)Ψ
(i), (3.5)

where R̂ =
∑

I
|I〉〈I|

Ei−HII
and the sum runs over the states expand the many-eletron space.

Finally δΨ(i) is orthogonalized to Φ( j), j = 1, . . . , i and subsequently normalized to give

the (i + 1) th basis vector, Φ(i+1). The iteration process stops when the last basis vector

gives a negligible correction to Ψ(i).

As shown by Knowles and Handy [110], in the case where single determinants are

used to expand the many-electron space, a modification of the denominator is needed to

keep δΨ(i) an eigenfunction of Ŝ 2. Similarly to the case of the spin-adapted MP MBPT

(2.2.3), one should avoid to apply different denominators for determinants with the same

spatial occupation numbers. Knowles and Handy have solved this problem by using H̃II

in Eq.(3.5) instead of HII where H̃II is defined to depend only on the spatial occupancy,

an averaged exchange energy term as detailed in [110].

3.2.2 Knowles’ sparse algorithm

From our present point of view the progress made by Knowles is of special interest

[102, 103], which takes into account the sparsity of basis vectors. In this approach impor-

tant determinants are picked up among those which constitute a given basis vector, and

unimportant ones are neglected. This induces a nonzero overlap among basis vectors and

necessitates the treatment of an overlapping basis. The procedure of Knowles affects the

Davidson algorithm at three main points:

- a generalized eigenvalue problem needs to be solved for the i by i H matrix, and the

approximate Ψ(i) is expanded in a non-orthogonal basis
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- having calculated δΨ(i) only those determinants I are retained whose estimated con-

tribution to the energy is greater than a given threshold. Such an estimation can be

based on the perturbative formula

ΔEI ≈ 〈I|Ĥ − Ei|Ψ(i)〉2
Ei − HII

(3.6)

- orthogonalization of δΨ(i) to Φ( j) , j = 1, . . . , i is skipped in order to avoid the emer-

gence of unimportant determinants. Simply δΨ(i) is normalized to give the (i + 1) th

basis vector, Φ(i+1).

It is important to emphasize here that even if Ψ(i) is sparse, σ(i) = ĤΨ(i) is usually not

a sparse vector. All its elements are needed to construct the accurate matrix elements

of the i by i H matrix otherwise the variational property of the calculation would be

lost. Since only important determinants contribute to Φ(i+1) the I/O cost is significantly

reduced. Although the convergence of this scheme is slower than the ordinary Davidson

algorithm, keeping basis vectors short can decrease also the computation cost at the linear

transformation step.

3.2.3 Mitrushenkov’s sparse algorithm

Basis vectors Φ(i) have to be stored on disk, and all of them are needed to represent the

approximate wave functionΨ at a given iteration step. To avoid the large disk requirement

and I/O cost necessary, several modifications of the above algorithm has been introduced

[96, 97, 104, 106]. The common philosophy behind these methods is that instead of basis

vectors Φ(k) the latest Ψ(i) function is stored. At each iteration step the wave function

correction δΨ is calculated and used to improve Ψ(i), then it is dropped.

As an example we briefly discuss Mitrushenkov’s algorithm which is a modified ver-

sion of the one developed by Olsen et al [106].

In this approach a two by two Hamiltonian is contructed at the ith iteration step, on the

basis states Ψ(i) and Ψ(i−1). Since these states are usually not orthogonal to each other, a

generalized eigenvalue problem has to be solved. As a result, one gets the approximate

FCI energy Ei, and one can replaceΨ(i) and σ(i) by αiΨ
(i)+αi−1Ψ

(i−1) and αiσ
(i)+αi−1σ

(i−1)

, where αi and αi−1 comes from the generalized eigenvalue problem. To construct Ψ(i+1),

δΨ(i) = R̂(Ĥ − Ei − δE)Ψ(i) (3.7)
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with Ψ(i+1) is chosen proportional to Ψ(i) + δΨ(i), where

δE =
〈Ψ(i)|R̂(Ĥ − Ei − δE)|Ψ(i)〉

〈Ψ(i)|R̂|Ψ(i)〉 . (3.8)

gives an estimation of the energy correction introduced by Ψ(i+1). If the convergence is

not achieved, the process starts from the beginning. The key point in the derivation of

Eqs.(3.7) and (3.8) is to ensure the orthogonality of δΨ(i) to Ψ(i). For details we refer to

[104, 106].

In the above algorithm only two long vectors have to be stored, which significantly re-

duces the disk requirement and the I/O cost compared to the original Davidson algorithm.

3.2.4 A new sparse full-CI algorithm

Calculation time of the linear transformation could be further reduced if the effect of Ĥ

was evaluated only in a certain well chosen subspace of the FCI space:

σ(i) = P̂S ĤΦ(i). (3.9)

Straightforward substitution of the action of Ĥ by formula (3.9) in the Davidson proce-

dure is however not possible in the FCI framework. Simply neglecting unimportant de-

terminants from ĤΦ(i) by the application of P̂S would lead to erroneous Hamiltonian and

overlap matrix elements and would cause the violation of the variation principle (unless

Φ(i) belongs to subspace P̂S ).

In order to make use of the advantages of (3.9) a new FCI iteration scheme was de-

signed [6]. At step i, we start from a given approximation for the wave function Φ(i)

and a well chosen subspace S (i). Subspace S (i) contains determinants which can hope-

fully give significant improvement to Φ(i). For example, at the first step Φ(1) can be the

Hartree–Fock determinant and subspace S (1) is the full set of doubly excited determinants.

Choosing subspace S (i+1) for the next iteration step will be discussed at the end of iteration

step i. As a start of step i we construct another subspace S (i)′ which collects

a) determinants constituting Φ(i)

b) those determinants belonging to S (i) which fulfill the hope of being important.
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To perform the selection of item b) the interaction of Φ(i) is calculated with all elements of

S (i) and only those determinants are kept whose energy contribution based on the second

order estimation

ΔEI ≈ 〈I|Ĥ|Φ〉
2

E − HII
(3.10)

is larger than a given threshold. (For technical reasons S (i) is not orthogonalized to Φ(i).

Determinants that are present both in Φ(i) and S (i) are among the most important ones

according to formula (3.10), but they are anyway selected at point a).) To calculate es-

timation (3.10) one needs to act with Ĥ on Φ(i). This part of the algorithm is called the

groping step, referring to the exploration of important regions of subspace S (i).

Iteration step i is continued by picking up the contribution of determinants from S (i)′ .

This part of the algorithm is called the corrective step, indicating the point of improving

Φ(i) by determinants belonging to S (i)′ . For this end we essentially take one step by the

Davidson procedure entering the algorithm in medias res. In brief, a δΦ, belonging to

subspace S (i)′ is right away constructed utilizing the outcome of the groping step and

the previous iteration step. Following this, δΦ is orthogonalized to Φ(i) and a 2 by 2

Hamiltonian matrix is built in the space of Φ(i) and the orthogonalized δΦ. This involves

calculation of the effect of Ĥ on δΦ. The Hamiltonian matrix is diagonalized and its lower

root is subjected to picking just the important components, based on formula (3.10), to

obtain the next approximation to the FCI wave function Φ(i+1). In principle more steps

could also be taken by the Davidson algorithm to gain the main contribution of the S (i)′

subspace, but a single step was found to be sufficient in practice.

At this point it is apparent that at each iteration step we apply the Davidson procedure

in a different subspace S (i)′ . For this reason iteration steps of the proposed algorithm

are independent and energies give an upper bound to the exact value in each iteration

step. The algorithm allows a gradual growth of the subspace in which the estimated FCI

function is represented. Independence of iteration steps on one hand gives the possibility

to use restricted formula (3.9) for the linear transformation. On the other hand slower

convergence is expected for the lack of collecting several basis vectors of the Davidson

subspace.

Apart from Φ(i+1), subspace S (i+1) also has to be specified to start iteration step i + 1.

Determination of subspace S (i+1) is an important part of the algorithm since this decides

which determinants have the chance to enter via the (i+1)th groping step. Because explicit
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(a) (b)

(c) (d)

Figure 3.1: Crude presentation of the coefficient matrix of the H2O molecule, marking nonzero

elements by dots. The matrix is the outcome of an SFCI calculation, showing 7 μEh error as

compared to the exact FCI result. Subplots depict (a) full coefficient matrix; (b) A1,A1 block; (c)

A2,A2 block; (d) densest section (top left corner) of the A2,A2 block. Numbers indicate excitation

levels. See Section 3.5 for more details.
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treatment of all determinants of the FCI space is to be avoided, some extra information

is needed on how to find regions of the configuration space interesting for us. At this

point it is useful to make the observation that picking elements of a FCI coefficient matrix

C which give larger energy contribution than a given threshold, as computed by formula

(3.10), shows a well defined structure (see Fig. 3.1). One finds that certain strings and

string combinations are more important than others. We therefore introduce a selection

rule based on strings and include every determinant into S (i+1) for which at least one of

the strings is important. The expression we use to define the importance of string Iα,

W(Iα) =
∑

{Iβ,(Iα,Iβ)∈S (i)′ }

〈IαIβ|Ĥ − E|Φ〉2
E − EIαIβ

(3.11)

is simply the sum of approximated energy contributions of determinants 〈I| = 〈IαIβ|, Iβ
being such that IαIβ is an element of S (i)′ . Formula (3.11) can be interpreted as a strategy

of selecting determinants that resemble presently important ones in the sense that either

their α or β part is already ”successful”.

We conclude this section by a step by step summary of the algorithm as follows:

1. Groping step. Restricted linear transformation P̂S (i) ĤΦ(i), where the target vector is

in subspace S (i), i.e. containing at least one important string according to (3.11).

2. Pick up important determinants from S (i) by condition (3.10). Construct subspace

S (i)′ as the union of important determinants from S (i) and those constituting Φ(i).

3. Corrective step. One iteration by the Davidson algorithm.

a) Calculation of δΦ = PS (i)′ R̂(Ĥ − E)Φ(i).

b) Orthogonalization of δΦ to Φ(i):

Φ⊥ ∼ δΦ − Φ(i)〈Φ(i)|δΦ〉.
c) Linear transformation in S (i)′ space: P̂S (i)′ ĤΦ⊥.

d) Diagonalize 2 by 2 Hamiltonian matrix built in the basis of Φ(i) and Φ⊥.

e) Take the eigenvector of the lower root and drop unimportant determinants

from it to obtain Φ(i+1).

4. Obtain S (i+1) by formula (3.11).
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Figure 3.2: Structure of the σ vector at the groping step for the Ms = 0 case, ignoring symmetry.

Solid lines show the determinants with important α strings selected by formula (3.11). Coefficients

belonging to dashed lines are obtained by taking the same element (or its negative) from the

corresponding important row.

The size of the subspace used for the FCI wave function expansion is an external input

of the algorithm and it is primarily limited by system memory available. The threshold

used at step 2 is a number fitted to the maximum size of the subspace and may be dynam-

ically varied during the calculation.

3.3 Computational considerations

The most time consuming and computationally less trivial part of the algorithm is the

calculation of linear transformation (3.9). In one iteration step two linear transformations

have to be performed, one at the groping and another in the corrective step. Superfi-

cially it may seem that a third linear transformation is also present under step 3a). This

transformation, however, needs not be explicitly performed as it can be calculated based

on the groping step and the outcome of the previous corrective step. Product vector σ

shows a different sparse structure at the groping and in the corrective step, since only con-

tiguous rows are filled at the groping step while nonzero elements occupy σ in a totally
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non-contiguous manner at the corrective step. (Contiguous columns of σ are filled based

on symmetry considerations as a last action of the groping step, as detailed below.) This

difference in the structure of σ calls for different strategies when calculating the effect of

the Hamiltonian. Differences in the basic loop structures are outlined in Section 3.4, here

we make some general remarks of technical relevance.

Considering the α string of a given determinant as row index and β occupation string

as column index, it is usual to represent coefficient vectors C and σ as matrices:

Φ =
∑

IJ

CIJ |Iα, Iβ〉

Following ordinary sparse matrix technology[111], we store only nonzero elements of

both matrices by filling them into double precision vectors row by row. A supplementary

integer vector of the same length is needed to give column indices, as well as another

short integer vector to indicate the borderline of consecutive rows in the double precision

and column index vectors. It is the storage of sparse matrices C and σ that gives the

dominant memory requirement of the present procedure. There are three long double

precision arrays to be stored at a time (C, σ and an auxiliary vector) together with their

integer column and row index vectors.

Indexing arrays represent an obvious overhead in sparse matrix technology, consider-

able benefit is therefore obtained only for truly low populated matrices. A further caveat

in connection with sparse matrix technology is the problem of vectorization. Since de-

terminants of a given subspace do not generally correspond to a contiguous section of

the coefficient matrix, there is no straightforward way to keep the vectorizable feature of

Olsen’s algorithm. Fortunately, as we shall demonstrate by sample calculations, in the

proposed SFCI algorithm both of the above disadvantages are compensated by the ex-

treme sparsity of arrays σ and C. This permits reduction of not only the CPU time but

also the I/O cost of the procedure.

At the groping step, due to the special structure of array σ, it becomes needless to

store column indices. This integer array requires half the memory occupied by the double

precision array storing the coefficients. Dropping the integer vector frees memory which

can be utilized to let array σ accommodate more elements, by about a factor 1.5. Letting

Ĥ to address only appropriately selected rows at the groping step has the downside that

spin symmetry of σ must be restored subsequently. For the singlet case this is performed
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by transposing important rows to generate elements in important columns as well (see the

dashed lines in Fig. 3.2). Prior to transposition, unimportant elements of important rows

are dropped, which frees enough memory for double precision elements of the columns

and the sparse index vector necessary from this point on for σ. Apart from a singlet wave

function, the MS = 0 triplet case is also trivial to handle. For other spin quantum numbers

special considerations are needed at the groping step.

Most of the small molecules for which a FCI calculation is manageable also have spa-

tial symmetry around equilibrium geometry, which can be used to reduce computational

cost. For this end strings have to be reordered according to symmetry producing a coef-

ficient matrix in block form. It is possible to work with symmetry blocks independently,

in the following manner. Sparse matrix C is stored in main memory in its full length,

but only one symmetry block (e.g., A1,A1 or B1,B1 etc. for the total symmetric i.r.) of

array σ is dealt with at a time. This way (i) only symmetry allowed elements of σ are

computed, reducing the number of multiplications, and (ii) memory is freed due to the

reduced length of σ. Memory gain from point (ii) is exploited to enlarge subspace S at

the groping step, which has the beneficial effect of accelerating convergence of the algo-

rithm. Memory saving due to symmetry and elimination of the long index vector at the

groping step permits to use a relatively long vector σ. For example it contains 12 % of the

FCI space while array C is populated about 1 % for the SFCI calculation for molecule N2,

see the calculation involving 108 determinants in Table 3.3 in Section 3.5. This has to be

compared with the 1 % length of vector σ in the corrective step in the same calculation.

The algorithm of the linear transformation performed between sparse vectors essen-

tially follows the ideas of Olsen[86]. Making use of the sparsity of the initial and product

vectors enhances a reduction of the calculation time of the procedure. In principle the

number of double precision multiplications necessary in our sparse algorithm is less by

a factor of (NSFCI/NFCI)
2 as compared to the original procedure. Loss of computer effi-

ciency on the other hand, as a consequence of the sparse representation of the coefficient

matrices (e.g., no vectorization of the innermost loop) has a decelerating effect and admits

an eventual NSFCI/NFCI factor gain according to experience presented in Section 3.5. The

sparse linear transformation is discussed in more detail in the forthcoming Section.
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3.4 Linear transformation in the sparse algorithm

In this section we detail the algorithm followed when calculating the linear transformation

(action of the Hamiltonian operator) on sparse trial vectors. As our sparse algorithm is a

generalization of Olsen’s method [106], we shall review the latter pointing out differences

with the former. We use asterisks to indicate points where the two implementations differ.

At the groping step the calculation of the linear transformation is rather similar to the

algorithm used by Mitrushenkov[104, 105]. The key step in Olsen’s procedure is the

decomposition of the

Ĥ =
∑

kl

hklÊkl +
1

2

∑
i jkl

(i j|kl)
(
Êi jÊkl − δ jkÊil

)
(3.12)

Hamiltonian and matrix σ according to the spin of the excitation operators:

Ĥ = Ĥαα + Ĥββ + Ĥαβ (3.13)

σ(Iα, Iβ) = σαα(Iα, Iβ) + σββ(Iα, Iβ) + σαβ(Iα, Iβ). (3.14)

where hkl and (i j|kl) denote the one- and two-particle integrals the latter in (11|22) notation

and Êkl is a generator of the linear group which can be decomposed into an alpha and a

beta part: Êkl = Êαkl + Êβkl.

A Same spin excitation

The explicit form of σαα can be given in the following way:

σαα(Iα, Iβ) =
∑

Jα

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

kl

〈Jα|Êαkl|Iα〉h̃kl +
1

2

∑
i jkl

〈Jα|Êαi jÊ
α
kl|Iα〉(i j|kl)

⎫⎪⎪⎪⎬⎪⎪⎪⎭C(Jα, Iβ) (3.15)

where the h̃kl = hkl − 1
2

∑
j(k j| jl) notation has been introduced. It is easy to realize that

the expression in curly brackets is independent of Iβ. Introducing an intermediate quantity

denoted by FIα(Jα), the factorized expression is written as:

σαα(Iα, Iβ) =
∑

Jα

FIα(Jα)C(Jα, Iβ) (3.16)

Performing the multiplications in (3.16) is the most time consuming part of the calcu-

lation of σαα. For a given Iα there are approximately 1
4

occ2 virt2 Jα’s for which FIα(Jα) is
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nonzero. The calculation cost is therefore proportional to 1
4

NFCI occ2 virt2, without sym-

metry considerations. To calculate σββ one can proceed on the basis of an expression

similar to (3.15). However, for singlet/triplet states, in Olsen’s algorithm it is enough to

calculate only σαα explicitly, since σββ can be obtained by the relation

σββ(J, I) = ±σαα(I, J) (3.17)

At the groping step of the sparse implementation index Iα is restricted to selected

strings, moreover multiplications in (3.16) are performed only for nonzero elements of

array C. At the corrective step Iα goes through the whole set of strings but at (3.16) a

multiplication is calculated only if both |Iα, Iβ〉 and |Jα, Iβ〉 are elements of subspace S (i)′ .

At the groping step implementation of σαα is as follows:

Loop over Iα ∈ { important strings } (*) ∼ NSFCI/
√

NFCI

F = 0, V = 0

Loop over (k+α lα)

Kα = ±(k+α lα)Iα
F(Kα) = F(Kα) ± h̃kl

Loop over (i+α jα)

Jα = ±(i+α jα)Kα
F(Jα) = F(Jα) ± (i j|kl)

End of loop over (i+α jα)

End of loop over (k+α lα)

Loop over Jα, (max. 2-fold ex. wrt Iα) ∼ 1
4

virt2 occ2

Loop over Iβ ∈ CJα (**) ∼ NSFCI/
√

NFCI

V(Iβ) = C(Jα, Iβ)F(Jα)

End of loop over Iβ
End of loop over Jα
Loop over Iβ
σαα(Iα, Iβ) = σαα(Iα, Iβ) + V(Iβ)

End of loop over Iβ
End of loop over Iα

Notation Iβ ∈ CJα indicates that string Iβ has to be present in row Jα of matrix C.
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At (*) it is the structure of array σ that gives rise to the restriction. Restriction at

(**), emerging due to the sparseness of array C, reduces number of multiplications at the

innermost loop. At the same time it makes it impossible to vectorize the loop since indices

Iβ selected by the condition do not fill vector V contiguously.

Focusing on the cost of the innermost loop, we give the time requirement of criti-

cal loops in the expressions aligned to the right. Length of the sparse CI vector NSFCI

appearing in the formulae is directly determined by the memory passed to the groping

step. In the non sparse case the number of strings is given by
√

NFCI =
( nb

occ
)

disregarding

symmetry, where nb stands for the number of basis functions. Based on this we estimate

the number of strings in a given row in the sparse case by simple rational relation as

NSFCI/
√

NFCI. This gives a rough measure of the number of important strings as well as

the average number of beta strings present in row Jα of matrix C, as indicated on the right

margin of the innermost loop. Altogether the number of multiplications in the innermost

loop is proportional to

1

4
NFCI

(
NSFCI

NFCI

)2

occ2 virt2 . (3.18)

In our present implementation of σαα efficient use of restriction at (**) was not achieved,

overall scaling of the routine shows linear dependence on NS FCI
NFCI

instead of the second

power indicated in (3.18).

Apart from restricting indices of arrays σ and C in the loops, the present sparse im-

plementation affects the calculation of σββ, too. In contrast to Olsen’s algorithm, σββ has

to be explicitly computed at the groping step, since spin symmetry of σ is intentionally

destroyed to gain memory in return. Making use of relation (3.17), σββ is computed as

σββ(Iα, Iβ) = σαα(Iβ, Iα) =
∑

Jα

FIβ(Jα)C(Jα, Iα) . (3.19)

It can be shown that routine σββ involves the same number of multiplications as σαα. Note

that σββ(Iα, Iβ) is still stored in row Iα and column Iβ of the product matrix (see Fig. 3.2).

At the corrective step implementation of σαα is as follows:

Loop over Iα ∼ √NFCI

F=0

Loop over (k+α lα)

Kα = ±(k+α lα)Iα
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F(Kα) = F(Kα) ± h̃kl

Loop over (i+α jα)

Jα = ±(i+α jα)Kα
F(Jα) = F(Jα) ± (i j|kl)

End of loop over (i+α jα)

End of loop over (k+α lα)

Loop over Jα, (max. 2-fold ex. wrt Iα) ∼ 1
4

occ2 virt2

Loop over Iβ, (Iβ∈σIα and Iβ∈CJα) (*) ∼N2
SFCI/NFCI

σαα(Iα, Iβ) = σαα(Iα, Iβ) +C(Jα, Iβ)F(Jα)

End of loop over Iβ
End of loop over Jα

End of loop over Iα

In principle the number of multiplications in the innermost loop is proportional to N2
SFCI/NFCI

(average number of strings in row Jα of C times the average reduction due to imposing Iβ
to be also an element of row Iα of σ). In practice however comparison of two ordered lists

must be performed in the innermost loop, the time requirement being proportional to the

length of the lists, i.e. NSFCI/
√

NFCI. For this reason overall calculation time of σαα in the

corrective step is proportional to 1
4

NSFCI occ2 virt2 , while the number of multiplications

scales as (3.18).

Explicit calculation of the effect of Ĥββ is not needed in the corrective step. Vector

σββ can be obtained directly from relation (3.17).

B Different spin excitation

The formula for different spin excitation

σαβ(Iα, Iβ) =
∑
JαJβ

∑
i jkl

(i j|kl)〈Jα|Êαi j|Iα〉〈Jβ|Êβkl|Iβ〉C(Jα, Jβ)

is factorized in Olsen’s algorithm by sorting the terms as

σαβ(Iα, Iβ) =
∑

kl

∑
Jα

⎧⎪⎪⎨⎪⎪⎩
∑

i j

(i j|kl)〈Jα|Êαi j|Iα〉
⎫⎪⎪⎬⎪⎪⎭

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

Jβ

〈Jβ|Êβkl|Iβ〉C(Jα, Jβ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
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For a given kl the quantity in the second curly brackets does not depend on Iα, therefore it

can be evaluated prior to the calculation of the term in the first curly brackets. Introducing

intermediate quantity σ
αβ
kl (Iα, Iβ) the expression can be rewritten as

σαβ(Iα, Iβ) =
∑

kl

σ
αβ
kl (Iα, Iβ)

To calculate σ
αβ
kl (Iα, Iβ) one first sets up a list of all (Iβ, Jβ) pairs for which 〈Jβ|Êβkl|Iβ〉 is

nonzero. Length of such a list is much shorter than the total number of strings, it is exactly( nb−1
occ−1

)
if k = l and

( nb−2
occ−1

)
if k � l. String pairs connected by excitation Êβkl are indexed

by I, right and left members of the pairs are stored in index vectors R(I) = Iβ, L(I) = Jβ
and the sign of the excitation is put into sign(I) = 〈Jβ|Êβkl|Iβ〉. Noticing that for a given kl

and fixed Iβ the sum in the second curly brackets can extend at most for a single term, one

can write

σ
αβ
kl (Iα,R(I)) =

∑
Jα

⎧⎪⎪⎨⎪⎪⎩
∑

i j

(i j|kl)〈Jα|Êαi j|Iα〉
⎫⎪⎪⎬⎪⎪⎭

×sign(I)C(Jα, L(I))

For a given kl, intermediate quantity C
′
(Jα, I) = sign(I)C(Jα, L(I)) is calculated for all

possible I and Jα. After this, intermediate FIα(Jα) =
∑

i j(i j|kl)〈Jα|Êαi j|Iα〉 is computed for

all Iα and Jα. Finally the two intermediates are multiplied in the innermost loop according

to:

σ
αβ
kl (Iα,R(I)) =

∑
Jα

FIα(Jα)C
′
(Jα, I). (3.20)

Number of multiplications in the innermost loop in Olsen’s algorithm is approximately

NFCI occ2 virt2. Contributions to this cost come from loop for kl and I, which together

produce nb
( nb−1

occ−1

)
terms for the k = l case plus nb(nb − 1)

( nb−2
occ−1

)
terms for the k � l

case. This is to be multiplied by the number of Iα’s which is
√

NFCI, times the number of

possible Jα’s, which is given by occ virt.

In the MS = 0 case the above computational cost can be divided by two using re-

striction (i j) ≤ (kl), which requires just a small modification of the integral list[86]. This

reduction can be exploited at the corrective step of the SFCI algorithm, but not at the

groping step.
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In the sparse implementation restrictions at the groping step affect strings Iα that are

considered to be important as well as indices I that point to nonzero element in row Jα
of matrix C

′
. At the corrective step string Iα is unrestricted but I must be such that both

R(I) and L(I) point to a nonzero element in the corresponding matrices, i.e. R(I) is a valid

element in row Iα of matrix σ and L(I) is present in row Jα of matrix C
′
.

At the groping step implementation of σαβ is as follows:

Loop over (k+β lβ) ∼ nb if k = l,

∼ nb(nb − 1) otherwise

L(I) = ±(k+β lβ)R(I)

C
′
(Jα, I) = ±C(Jα, L(I)) , ∀I and ∀Jα ∈ CL(I)

Loop over Iα∈{ important strings}(∗) ∼ NSFCI/
√

NFCI

Loop over (i+α jα)

Jα = ±(i+α jα)Iα
F(Jα) = F(Jα) ± (i j|kl)

End of loop over (i+α jα)

Loop over Jα ( F(Jα) � 0 ) ∼ occ virt

Loop over I ∈ C
′
Jα (**) ∼ NSFCI

NFCI

( nb−1
occ−1

)
if k = l,

∼ NSFCI
NFCI

( nb−2
occ−1

)
otherwise

V(I) = V(I) + F(Jα)C
′
(Jα, I)

End of loop over I

End of loop over Jα
σαβ(Iα,R(I)) = σαβ(Iα,R(I)) + V(I),∀I

End of loop Iα
End of loop (k+β lβ)

As before, notation I ∈ C
′
Jα means that I has to be a valid element in row Jα of matrix

C
′
. Note, that vectorization of the innermost loop is again ruined because of the restriction

imposed on index I.

Estimated cost of critical loops indicated in right aligned expressions give rise to ap-

proximately NFCI

(
NSFCI
NFCI

)2

occ2 virt2 multiplications in the innermost loop. Time measure-

ments on examples presented in Section 3.5 indicate however, that overall scaling of our

implementation is linear in NS FCI
NFCI

, pointing to a worse than ideal use of sparsity at the

innermost loop.
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At the corrective step implementation of σαβ is as follows:

Loop over (k+β lβ) ∼ nb if k = l,

∼ nb(nb − 1) otherwise

L(I) = ±(k+β lβ)R(I)

C
′
(Jα, I) = ±C(Jα, L(I)) , ∀I and ∀Jα ∈ CL(I)

Loop over Iα ∼ √NFCI

Loop over (i+α jα)

Jα = ±(i+α jα)Iα
F(Jα) = F(Jα) ± (i j|kl)

End of loop over (i+α jα)

If(R(I)∈σIα)LOG(I)= .TRUE. , ∀I (*)

Loop over Jα (F(Jα) � 0) ∼ occ virt

Loop over I ∈ C
′
Jα (**) ∼ NSFCI

NFCI

( nb−1
occ−1

)
if k = l,

∼ NSFCI
NFCI

( nb−2
occ−1

)
otherwise

If (LOG(I)) ∼ NSFCI
NFCI

V(I) = V(I) + F(Jα)C
′
(Jα, I)

End of loop over I

End of loop over Jα
σαβ(Iα,R(I)) = σαβ(Iα,R(I)) + V(I),∀I

End of loop Iα
End of loop (k+β lβ)

Accounting for all critical loops, number of multiplications in the innermost loop is

given by NFCI

(
NSFCI
NFCI

)2

occ2 virt2. The rate determining step however is again rather the

comparison of two ordered lists at (*) that leads to a final time requirement proportional

to NS FCI
NFCI

.

3.5 Numerical experience and results

To illustrate the efficiency and limitations of the SFCI algorithm pilot numerical calcula-

tions are presented on the example of the H2O and N2 molecule. All calculations reported

were performed on an AMD Opteron(tm) 250 machine. The 8 Gbyte system memory

of this computer determines the upper limit to the length of the SFCI vector presently
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tractable in our laboratory. Apart from details and outcome of SFCI calculations we pro-

vide results and timings obtained by our implementation of Olsen’s original FCI algorithm

as well.

An example providing insight into the structure of the sparse wave function is given

by the calculation performed on the water molecule in 6-311G basis at Hartree–Fock opti-

mized geometry (r = 0.9455 Å, θ = 111.881o). Full use of C2v symmetry of the molecule

was made, along the lines discussed in Section 3.3. There are 19 basis functions for 10

electrons in this system generating almost 34 million determinants belonging to the total

symmetric i.r. In this small example a maximum of half million determinants were let to

enter array C at any iteration step. Within these circumstances the SFCI algorithm pro-

vides −76.174816 a.u. for total energy, which is in 7 μEh error with the −76.174823 a.u.

value of the exact FCI energy. Compared with Olsen’s original algorithm, there is one

sixth reduction in the average computation time of an iteration step: it takes 263 seconds

in Olsen’s algorithm and 41 seconds in the SFCI algorithm. Number of iteration steps

is another factor to be taken into account. In the original implementation, applying the

Davidson algorithm 7 iteration steps are needed while the SFCI algorithm converges only

in 11 steps. There still remains a considerable time reduction in the overall time require-

ment of the SFCI calculation, with an energy error on the order of a few microhartree as

a price to pay.

Structure of the wave function, i.e matrix C is shown in Fig. 3.1 by putting a mark

in the place of nonzero determinants. (Regarding the accuracy of this calculation and

the crudeness of the representation in Fig. 3.1, we can safely state that Fig. 3.1 reflects

the structure of the exact FCI wave function truncated at 10−11 a.u. energy threshold

calculated according to formula (3.10).) First of all, block structure of matrix C generated

by reordering strings according to i.r. is apparent in Fig. 3.1a. As the ground state belongs

to i.r. A1, matrix C adopts a block diagonal form. Population of different blocks is not

balanced: symmetry block A2,A2 containing the Hartree–Fock determinant is the most

populated, around 2 percent. The least populated block is A1,A1 containing less than 0.6

percent of all possible elements. Within symmetry blocks strings are ordered by excitation

level (with respect to the Hartree–Fock determinant), which is marked on the axes in Figs.

3.1b-d. Fig. 3.1b and Fig. 3.1c show the structure of individual blocks A1,A1 and A2,A2

respectively. Fig. 3.1d gives an insight into the fine structure of the densest portion of the
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NSFCI NSFCI/NFCI ΔS FCI(mEh) It. steps tS FCI(s) ΔS FCI(mEh) tS FCI(s)

1 233.0091

0.5 · 106 0.1 % 0.1556 44 107 0.1320 1100

1 · 106 0.2 % 0.0600 26 149 0.0553 1200

2 · 106 0.4 % 0.0207 21 223 0.0189 1300

5 · 106 1 % 0.0047 15 440 0.0044 1500

1 · 107 2 % 0.0013 13 840 0.0013 2000

1.5 · 107 3 % 0.0006 13 1200 0.0006 2200

2 · 107 4 % 0.0003 12 1700

4 · 107 9 % 0.0000 13 3600

6 · 107 13 % 0.0000 13 5800

4.5 · 108 -76.2654082 9 14000

Table 3.1: Convergence of SFCI and SFCI algorithms to the exact energy of the H2O molecule

as the sparse vector is allowed to lengthen. Number of determinants in the FCI space and the

exact FCI energy is indicated in a separate row at the bottom, together with characteristics of

the calculation performed by Olsen’s original algorithm. Energy errors by SFCI and SFCI are

designated as ΔS FCI and ΔS FCI respectively. Notation tS FCI and tS FCI refer to the wall-clock time

of an average iteration step. Column 4 collects number of iteration steps till the energy difference

between consecutive steps becomes less than 10−7 a.u. The SFCI algorithm took 13 iteration steps

to converge in all cases tabulated.

A2,A2 block. Note the stripy pattern of the figures. This supports the somewhat intuitive

selection formula (3.11) of the groping step, suggesting that certain strings can be indeed

considered more important than others. An overall tendency of diminishing importance

with increasing excitation level is also reflected in Figs. 3.1.

As a consequence of the fact that determinant selection into subspace S is controlled

by formula (3.11), it may happen that some determinants never enter, not even the groping

step, hence they are completely excluded from the resulting SFCI vector. Examining the

above 6-311G water calculation from this point of view one finds that the number of

determinants never treated amount to 20 million, 60 % of the FCI space. This observation

raises the question whether it would be beneficial to ensure that each determinant has

the chance at least once to enter the groping step. In order to answer the question we

121



NSFCI 0 1 2 3 4 5

0.5 · 106 1 70 3466 52440 306637 76882

1 · 106 1 72 3493 68204 503141 266018

2 · 106 1 72 3503 78640 715310 677886

5 · 106 1 72 3503 84704 935212 1760678

10 · 106 1 72 3503 86494 1049201 3280704

20 · 106 1 72 3503 87230 1130157 5443656

40· 1 72 3503 87568 1178226 7635726

452 · 106 1 72 3503 87720 1199982 9194616

NSFCI 6 7 8 9 10

0.5 · 106 29352 734 39 0 0

1 · 106 114658 3468 217 0 0

2 · 106 460259 14086 1122 0 0

5 · 106 1971420 110732 12589 8 0

10 · 106 4841974 422112 63904 408 24

20 · 106 10570073 1685538 357357 4688 262

40· 20838768 7015076 2141973 37950 3947

452 · 106 40596500 103890720 150252168 112650624 33807600

Table 3.2: Number of determinants in the SFCI wave function of the H2O molecule, classified

according to excitation level with respect to the Hartree–Fock determinant. A separate row at the

bottom collects corresponding values of the FCI wave function.
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performed test calculations where matrix σ at the groping step included the whole FCI

space in all iterations while matrix σ at the corrective step and matrix C in both steps was

kept as short as before. The number of determinants involved this way (denoted SFCI)

is larger than in SFCI. Since both methods are variational, the energy obtained by SFCI

lies lower than SFCI. The energy decrease in triple-zeta water case is 2 μEh, i.e. gives

−76.174818 a.u. total energy, at the price of an increase of an average iteration step’s

time to 120 seconds, and no decrease in the number of iteration steps till convergence.

Regarding that the calculation took considerably longer while the order of magnitude of

the error did not diminish, we consider it unworthy to pursue the SFCI strategy. At the

same time, it is reassuring, that the difference between SFCI and SFCI energies, which

can be attributed to the error of formula (3.11), is not a predominant part of the total error

of the SFCI energy. The error still present in the SFCI energy can be attributed to the

truncated nature of the space where the SFCI vector is represented.

To illustrate the efficiency of the SFCI algorithm we carried out a series of calculations

still on the example of the water molecule in 6-311G* basis set (24 functions), at geometry

r = 0.9394 Å, θ = 107.5o. In this series we gradually increased the allowed length of the

final SFCI wave function from calculation to calculation, starting from 0.1 % of the FCI

space and finishing at 13 %. Errors of total energies and number of iteration steps for each

calculation are collected in Table 3.1. Results of both SFCI and SFCI computations are

indicated to assess the error of formula (3.11) on the basis of a broader range of examples.

Olsen’s original algorithm is still feasible for this small system, therefore all values can

be compared with the exact FCI result. In Table 3.1 we see that 0.1 mEh accuracy is

safely obtained by considering only 0.2 % of the FCI space, and microhartree accuracy is

achieved at 2 % population. Extending the allowed length of the SFCI vector from 0.1 %

to 1 % is accompanied by a spectacular drop in the number of iteration steps, from 44

to 15. From this point on the number of iterations in the SFCI procedure changes only

slightly and it stabilizes at a somewhat larger value than the number of iterations needed

for Davidson’s algorithm. Calculation time of an iteration step on average is roughly

one hundredth of the time of a step in Olsen’s original algorithm at 0.2 % population

and roughly one tenth at 3 % population of the final SFCI vector. These data reflect

the linear speedup as compared to the original Olsen algorithm discussed in Section 3.4.

Altogether, a linear regression fits well for the computation times collected in Table 3.1
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as a function of the population of the SFCI vector. It is interesting to note however,

that over 15 % population of matrix C the original, non-sparse algorithm of Olsen takes

over the sparse implementation in terms of wall-clock time. In the non-sparse calculation

presented in Table 3.1 the linear transformation itself needed 79 % of the full calculation

time while in the sparse case 73 % of the full calculation time was spent on the two linear

transformations in the smallest SFCI example and 80 % in the largest one. Regarding

SFCI results, one sees hardly any improvement in energy over 1 % population. Letting the

whole FCI space be tested in the groping step appears important for extremely short SFCI

vectors, between 0.1 % and 0.4 % population. However, even in these cases correction by

SFCI does not affect the first significant digit of the error of SFCI. Above 3 % population

there was no point in computing SFCI numbers.

Table 3.2 gives an insight into the composition of the SFCI wave function for the

same series of calculations, by showing the number of nonzero elements (selected based

on formula (3.10)) belonging to a given excitation level. Analyzing the entries of the table

one observes a gradual shift in the excitation level that accommodates the most elements:

at 0.2 % population these are the 4-fold excitations, at 0.4 % about the same number

of determinants belong to 4-fold and 5-fold excitations, at 1 % population 5-fold and 6-

fold excitations are the most numerous and 6-fold excitations remain to be the greatest in

number till 13 % population of the SFCI vector.

As a final example we consider the N2 molecule near equilibrium geometry, in a rela-

tively large atomic natural orbital (ANO) basis set in [4s3p1d] contraction[112] at geom-

etry r = 2.1 Bohr. There are 34 basis functions and 10 valence electrons in this system,

generating almost 1010 determinants of A1 symmetry. This is already too large for the

original algorithm to be calculated with our facilities. As a reference, we quote the paral-

lel FCI results of Evangelisti et al.[99, 93] on this system. Table 3.3 again presents energy

errors with increasing population of the final SFCI vector.

Trends shown by the table are very similar to the previous example: microhartree

accuracy is obtained by 2 % population, while for millihartree accuracy already 0.01 %

population is sufficient. Linear scaling of the calculation time with the NS FCI population

is plotted in Fig. 3.3. An SFCI vector around two hundred million elements is the largest

example we present here, where memory consumption of the SFCI calculation was 8

Gbyte and storage of the sparse coefficient matrix needed 2.3 Gbyte memory. Regarding
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NSFCI NSFCI/NFCI ΔS FCI(mEh) tS FCI(s)

1 348.772

1 · 106 0.01 % 0.969 1050

2 · 106 0.02 % 0.477 1250

5 · 106 0.05 % 0.197 1750

10 · 106 0.10 % 0.092 2700

25 · 106 0.26 % 0.032 4800

50 · 106 0.52 % 0.012 8700

100 · 106 1.03 % 0.004 17000

200 · 106 2.07 % 0.001 34000

9.7 · 109 -109.325905

Table 3.3: Convergence of the SFCI algorithm towards the exact energy of the N2 molecule

as the sparse vector is allowed to lengthen. Number of determinants in the FCI space and the

exact FCI energy computed by Evangelisti et al.[93] is indicated in a separate row at the bottom.

Notation tS FCI refers to the wall-clock time of an average iteration step. All calculations shown

here converged within 20 iterations.

disk manipulations, there were 12 I/O operations in each iteration step in the calculation

reported by Evangelisti[99], and each I/O operation treated double precision quantities

amounting to 40 Gbyte. Altogether about 500 Gbyte information was moved between the

memory and the hard disk in an iteration. Compared to this, there are a few times more

I/O operations in one iteration step in our case, but one I/O treats merely 2.3 Gbyte in the

largest case presented.

3.6 Summary

In this Chapter a sparse matrix based CI algorithm was introduced. The speed of a FCI

algorithm is determined by the performance of the linear transformation using the Hamil-

tonian operator. The feasibility of a FCI computation is determined by the length and

number of CI vectors to be stored. In the algorithm presented, both the initial and the

product vector is kept sparse, when computing the action of Hamiltonian. In other words

not only the approximation of the wave function is kept sparse but also the result of the
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Figure 3.3: Computational time of an average iteration step in the case of N2 molecule as a

function of SFCI population.

linear transformations are calculated to a small subspace of the FCI space. In those cases

where the FCI vectors are sparse, these properties considerably reduce the computation

time without introducing significant error. To restrict the subspace where the product vec-

tor of the linear transformation lies, we have estimated the importance of the occupation

strings at each iteration step in a perturbative manner.

The illustrative calculations presented above already reflect that the SFCI algorithm

represents a practical tool to obtain approximate correlation energies of molecular systems

in their ground state. An advantageous feature of the algorithm is the externally tunable

amount of the calculation (i.e. memory requirement). This can be exploited either by

adapting the calculation to the accuracy needed in the problem under consideration, or

by fitting the calculation to the memory limits determined by computational facilities. In

the case where there is a prescribed accuracy for the calculation to reach, it may be of

use to stop further refinement of the SFCI space once the energy improvements get below

threshold, and quickly finish the calculation by an ordinary Davidson algorithm iterated

till convergence (a few steps) in the already fixed SFCI subspace. Parallel implementation

of the algorithm, to provide flexible fitting of the calculation to computer clusters as well,

is under development.

To assess the error of an SFCI calculation in the lack of an exact FCI result, esti-

mations based on previous experience can be useful. A more rigorous way to attach an

approximate error bar is to perform a SFCI calculation with increased population. Alter-
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natively a second-order perturbation theory estimation can be computed to obtain an error

estimation[105].

Regarding excited states of molecular systems, the SFCI calculation can safely reach

the bottom level in each irreducible representation. More experience is needed to inves-

tigate whether excited levels of any of the i.r. can be obtained by starting from a well

chosen initial guess function. Excited state calculation following the ordinary Davidson

strategy is not a viable route for the SFCI procedure, since Davidson steps, which are part

of SFCI iteration steps are independent and work with a 2 by 2 matrix at most. Applying

orthogonality condition to an already obtained ground state SFCI function in order to get

an excited state, involves yet unexplored risks due to the truncated nature of the ground

state SFCI vector.
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all the past and present members of the Péter Surján’s Research Family (PSRF) for the

friendly atmosphere. I wish to thank Ilona Halupka for her support and understanding

during the weekdays. Finally I would like to thank my mother and my brother for all their

efforts and the background.

This work was partly supported by the Deák Ferenc Scholarship of the Ministry of

Education and Culture(0032/2009).

129





Bibliography
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[6] Z. Rolik, Á. Szabados, and P. R. Surján. J. Chem. Phys., 128:144101, 2008.

[7] R. J. Bartlett. Annu. Rev. Phys. Chem., 32:359, 1981.

[8] B. H. Brandow. Rev.Mod.Phys, 39:771, 1967.

[9] J.-P. Malrieu, P. Durand, and J. P. Daudey. J. Phys. A, 18:809, 1985.

[10] M.G. Sheppard and K. Freed. J. Chem. Phys., 75:4507, 1981.

[11] K. Wolinski and P. Pulay. J. Chem. Phys., 90:3647, 1989.

[12] K. Andersson, P.-Å. Malmqvist, and B. O. Roos. J. Chem. Phys., 96:1218, 1992.

[13] K. Hirao. Chem. Phys. Letters, 190:374, 1992.

[14] R. B. Murphy and R. P. Messmer. J. Chem. Phys., 97:4170, 1992.

[15] P. M. Kozlowski and E. R. Davidson. Chem. Phys. Letters, 222:615–620, 1994.

[16] H-J. Werner. Mol. Phys, 89:645–661, 1996.

131



[17] K.G. Dyall. J. Chem. Phys., 102:4909, 1995.

[18] C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.-P. Malrieu. J. Chem.

Phys., 114:10252–10264, 2001.

[19] A. Zaitevskii and J-P. Malrieu. Chem. Phys. Letters, 233:597, 1995.

[20] J. P. Finley. J. Chem. Phys., 108:1081, 1998.

[21] E. Rosta and P.R. Surján. J. Chem. Phys., 116:878–890, 2002.

[22] J.A. Pople, J.S. Binkley, and R. Seeger. Int. J. Quantum Chem., s10:1, 1976.

[23] R. J. Bartlett and G. D. Purvis. Int. J. Quantum Chem., 14:561, 1978.

[24] J. M. Rintelman, I. Adamovic, S. Varganov, and M. S. Gordon. J. Chem. Phys.,

122:44105, 2005.

[25] K.A. Brueckner. Phys. Rev., 97:1353, 1955.

[26] K.A. Brueckner. Phys. Rev., 100:36, 1955.

[27] J. Goldstone. Proc. R. Soc. A, 239:267, 1957.

[28] N. H. March, W. H. Young, and S. Sampanthar. The Many-Body Problem in Quan-

tum Mechanics, page 72. Cambridge University Press, London, 1967.
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