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Summary:

In this thesis, we present in silico simulations in one of the major conformational

changes of myosin called recovery step and structural modeling of actomyosin in the

pre-power stroke state which is experimentally difficult to approach because of its low

proportions in the enzymatic cycle.

Different isoforms of myosin play important roles in the muscle contraction and series

of biological functions. The myosin motor function is exerted in a complex with actin

by consuming ATP. The effective work of lever movement, ATPase cycle, the actin

binding and detachment cycle must be harmonized. In ATP form of myosin, lever is

moved from the so called "down" position to the "up" position in actin detached state

(recovery step); while after ATP hydrolysis, the actin rebinds to the "up" lever state of

myosin to move the lever to the "down" position on the basis of effective power stroke.

Actin binding region of myosin is a spacious surface, which is divided by a deep cleft.

The strength of actin binding is regulated by the movement of this cleft as myosin

weakly and strongly binds to actin in the open- and closed-cleft states, respectively. The

initiating key state of actomyosin is myosin just weakly attached to actin in its up-lever

state. The effective pathways of the power stroke are not accessible due to the short

lifetime of their intermediates.

One of the major questions was whether actin binding induces structural

rearrangements in myosin. Thus, we modeled the up-lever/open-cleft actomyosin state

by protein-protein docking and relaxed in a long molecular dynamics simulation. In

order to discover the communication pathways in actin induced conformational

rearrangement of myosin, we also modeled some myosin mutants in the same weak

actin-binding state, compared to their relaxed structures, and analyzed their motional

correlations to those of the wild type. Furthermore, we were also interested in whether

the power stroke of myosin runs in the same conformational reaction coordinates as the

reverse of the recovery step. Thus, we also simulated the conformational pathway of the

recovery step.

Recently, Fisher et al. modeled the recovery step by the minimum energy path (MEP)
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method and distinguished two phases in this reaction. They indicated a so-called

seesaw movement of the myosin relay region, which is a long helical element of

myosin and mechanically connects the nucleotide-binding region to the

converter/lever region. They supposed that the seesaw tilt directly results in the swing

of the myosin lever. Based on our results, a three-phase model of the recovery step

was deduced on the basis of a free energy profile and the post-recovery state in a

lower free energy is more preferred than the pre-recovery state. Formation of a

hydrogen bond cluster accelerates structural transformation to overcome the

activation energy barrier in the first phase. We found that the first phase of the

recovery step is equivalent with the seesaw-like tilt described by Fischer, while the

two others are related to bending and dynamic rearrangement of the relay region.

Recently, Holmes et al. modeled the strong actin-binding state by the molecular

dynamics flexible fitting (MDFF) method. We modeled both the weak and the strong

actin-binding states applying the protein-protein docking and molecular dynamic

simulations. We revealed a novel actin-binding site in myosin named activation loop.

The conserved positively charged tip (Arg520) of the activation loop interacts with

four negatively charged residues in the N-terminus of actin in various binding

patterns in the weak and the strong actin-binding states. Three specific myosin

conformational changes induced by actin binding were observed in the weak

actin-binding state: 1. the partial closure of the actin-binding cleft, 2. the further up

rotation of the lever arm and 3. further closure of SW-II loop. The R520Q mutation in

myosin prevented these conformational changes. The motions of the activation loop

are correlated with four functional regions of myosin in the weak actin-binding state.

Two communicational pathways were speculated between the actin binding regions

and the myosin nucleotide binding site, which might be a reasonable mechanism of

the actin-induced myosin conformational changes at the initial stage of the power

stroke.
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CHAPTER 1: Introduction

1.1 The molecular motor - myosin superfamily

Molecular motors are biological molecular machines that play a significant role in the

essential movement in various living organisms. They use external energy sources by

operating as molecular motors, in order to produce a directed motion and convert

chemical energy into mechanical work [1]. This special function of molecular motors

is involved in a large number of cellular tasks. It is able to generate cell movement,

ion gradient, molecular transport across membranes, organelle transport and protein

folding and unfolding processes [2]. However, the general mechanism they used to

convert chemical energy into mechanical work is simple and ingenious. Myosins,

kinesins, and dyneins are three types of cytoplasmic molecular motor families, which

are involved in motions along filaments: kinesins and dyneins translocate along

microtubules, whereas myosins move along actin filaments and are responsible for

muscle contraction and other cellular movements. In the past 50 years and recently,

one of the most extensively studied molecular motors is the myosin. It drives

contraction through nucleotide binding and hydrolysis, which causes conformational

changes in the globular motor domain and this conformational change, is translated

into movements with the aid of accessory functional motifs [3].

Myosins belong to a large superfamily of proteins that share a common feature with

other motor proteins, to hydrolyze ATP, to interact with actin and to generate the force

[4]. However, not all the members of the myosin superfamily possess such

biochemical characteristics, and some of them have lost one or more of these features.

Both muscle myosin (conventional myosin) and unconventional myosin are typically

constructed from three functional subdomains. The foremost important subdomain is

called the motor domain, whose core sequence is highly conserved in all myosin

classes. This motor domain contains three functional motifs: a converter region, the

nucleotide-binding pocket and the actin-binding interface. This converter region is the

motion and force generation linkage between the core motor and the following lever
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arm region [5-7]. The myosin motor domain, which contains a common

nucleotide-binding pocket like a microtubule-based kinesin motor, is responsible for

the conformational changes and force generation [8]. Actin-binding interfaces of

myosin are principally composed of the upper and lower 50 kDa domains, which are

separated by a deep cleft. This cleft with many conserved residues contributes a

negotiation between the nucleotide-binding pocket and the actin-binding interfaces [3].

The second subdomain is the neck region or lever arm that is composed of a long

helix. The length of this helix characteristically depends on the number of IQ motifs,

which share a consensus helical sequence (IQxxxRGxxxR) requisite to either light

chains or calmodulin [9, 10]. The number of IQ motifs presented from the neck region

in different myosins can vary from zero to six except for one special case: the

Toxoplasma myosin A of class XIV lost this neck region [9]. The last subdomain

called the tail region is extremely variable in sequence length, domain composition

and organization. The tail region contains a helical coiled-coil domain, which is

believed to be an impetus for the dimerization of two motor domains, whereas one

motor domain is formed with only one helical tail, but not in a coiled-coil

conformation [10, 11]. Its biological or mechanochemical roles have not been

completely ascertained for all of its conformational variety.

The newly reconstructed tree of eukaryotic life is based on 2,269 myosin motor

domains from 328 different organisms. Phylogenetic analysis groups myosins into 35

distinct classes based on the motor domain, but sixteen kinds of myosin classes have

not been proposed previously. Some customary relationships of major taxa and

preliminary classifications are confirmed by the resultant phylogenetic tree [12]. The

Clustal-W package was used to perform a distance matrix analysis [13]. Myosin I as

the first unconventional myosin was famous for its singular head. This myosin is

responsible for cytoskeletal reorganization and organelle translocation, but it is not

able to be self-associated into bipolar filaments [14, 15]. Myosin II can be divided

into four groups: skeletal/cardiac muscle myosins; vertebrate smooth

muscle/nonmuscle myosins; Dictyostelium/Acanthamoeba-type myosin and

yeast-type myosins. The common feature of myosin II is self-assemble to form a
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variety of filament structures based on their helical coiled-coil tails, which is essential

to exhibit their functions [11]. Myosin III differs from all other myosins by its N

terminal kinase domain, which can serve as a link between the signaling complex and

cytoskeleton for photo-transduction [16]. Myosin IV is predicted to have a single

motor domain, one IQ motif and a tail with a myosin tail homology domain (myTH4)

[17]. Myosin V has been identified in most of the eukaryotic cells and examined

except those of plants. Myosin Va is a processive motor protein with a high duty ratio

and a large step size. These properties make it ideally suitable for taking part in

polarized cell growth, membrane trafficking and specific transport pathways [18].

Myosin VI has a single IQ motif, a tail region and a unique globular head domain.

There is a unique insertion between the neck region and the motor domain, called the

"reverse gear" that enables myosin VI to move to the minus end of actin filaments (in

the opposite direction, unlike all other myosins) [19]. Myosin VII has two

talin-binding (FERM) domains and an SH3-domain [11]. Myosin classes VIII, XI and

XIII have been detected in plant cells [20]. Myosin IXs have been identified in a wide

variety of tissues and cell types are supposed to be involved in intracellular signaling

pathways, which are yet to be ascertained [21]. Myosin XIV contains a motor domain,

no classic IQ motifs and a variable-length tail, which exhibit a unique substrate

dependent gliding motility, which is essential for host cell invasion [22]. Little is

known about the functions of myosin X, XII, and other myosin classes.

1.2 Myosin II structural features

Members of the myosin II class have been considered as conventional myosins in the

past few decades [11]. This class can be proteolytically cleaved into several

functional domains (see Figure 1). The first cleavage site is located at the junction of

myosin head and tail. The break-up of this point will separate myosin into a tail

fragment of a coiled-coil dimer conformation and a soluble fragment named S1.

Meanwhile, the soluble fragment S1 still keeps two light chains and binds to the actin

and nucleotides. The second cleavage site situated in the tail region can divide myosin
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into two fragments named heavy meromyosin (HMM) and light meromyosin (LMM)

[23].

The heavy meromyosin (HMM), containing the head region and part of the

coiled-coil fragment from the tail region, is soluble even at low ionic strength. This

tiny portion of the tail region termed subfragment 2(S2), can assist in the formation of

the two-headed conformation by dimerization. Moreover, the LMM still retains

solubility properties like the original intact myosin II molecule. Numerous researches

have been investigated for both S1 and HMM in their kinetic features, biophysical

characteristics and structural changes [23, 24].

N-terminal motor domain C-terminus
Regulatory domain with light chains Coiled-coil tail domain

S1 S2 LMM
HMM

Figure 1: The homodimer myosin II molecule with indication to its proteolytic
fragments. The head of the myosin (subfragment 1, S1) consists of the catalytically
active N-terminal motor domain and a light chain binding to the regulatory domain.
The long coiled-coil tail serves for dimerization and myosin filament formation. S1
and S2 create the heavy meromyosin (HMM), while the C-terminal fragment is the
low meromyosin (LMM).

The X-ray crystallographic three dimensional structures of several myosin II

molecules have been solved after proteolysis or by expression of recombinant

molecules. They are including the chicken fast skeletal muscle myosin S1 [5], the S1

of scallop myosin [7], and the recombinant fragment of the smooth muscle myosin

motor domain with the essential light chain (ELC) [6], and a motor domain of

Dictyostelium discoideum myosin [25]. Structures with several different nucleotides

or nucleotide analogs bound to the myosin active site have also been resolved. The

myosin motor domain essentially consists of discrete regions connected by flexible
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linkers [6]. The N-terminal subdomain forms a SH3-like motif in myosin II that is not

present in other myosin classes [25]. This N-terminal subdomain is functionally

connected with the upper 50 kDa and lower 50 kDa subdomain. The name "50 kDa"

is used for historical reasons. After two sensitive surface loops proteolytically cleaved,

there will be a band on the sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE)

after electrophoresis with a molecular weight of 50 kDa [26]. The upper and lower 50

kDa domains are the main actin-binding interface in most myosin families, which is

separated by a deep cleft with many conserved residues. This cleft closure is

functionally coupled with conformational changes of the nucleotide-binding sites [23]

(see Figure 2).

Figure 2: Three-dimensional structures of chicken fast skeletal muscle myosin S1.
These color-codes for the functional subdomains of myosin S1 are represented by
drawing method of cartoon. (Red: upper 50 kDa; Yellow: lower 50 kDa; Purple:
cardiomyopathy loop (CM-loop); Light blue: loop 2; Orange: loop 4; Cyan:
relay-helix; Ice blue: converter domain; Green: β-sheet; White: N-terminal
domain; Brown: essential light chain (ELC); Pink: regulatory light chain (RLC)).

From the structural point of view, the nucleotide-binding pocket is located between

the upper 50 kDa and the lower 50 kDa subdomains and includes three functional

loops: the P-loop and the switch-1(SW-I) and switch-2(SW-II) loops. The P-loop

enables the nucleotide binding to the myosin proteins regarded as an evolutionarily
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conserved structure in the P-loop NTP-ases. The SW-I loop takes part in the structural

changes accompanied by an actin-binding cleft opening and closure. The SW-II loop

is involved in the force generation related lever arm movement. The conformations of

these two loops (SW-I and SW-II) are very sensitive to different kinds of nucleotide

binding or release, and conformational changes of the lever arm [23]. Besides these

loops, there is a seven-stranded β-sheet surrounded by numerous loops and helices,

which are one of the most typical protein structures for an evolutionary conserved

platform of P-loop NTP-ases [27]. The last important subdomain is the converter

domain and related lever arm. Two calmodulin-like "light-chains" bind to the

helix-like lever arm and stabilize it. The x-ray crystallographic structure of the lever

arm has been found in two conformations, which are apart from 60º and appear to be

the two ends of the power stroke. The converter domain enables to amplify the

myosin movement via the lever arm based on its rotations [23]. The SW-II loop,

having a tight communication with the converter domain via the relay-helix region,

can transmit the conformational changes from the nucleotide-binding site to the

converter domain [23].

1.3 Actin structural features

Although actin has two forms, the G-actin (globular) and the F-actin (fibrous), the

available crystal structures are only from the G-actin form. The crystallographic

structure of G-actin was solved in complex with DNAase I, gelsolin and profillin [28,

29]. The actin structure consists of two similar domains (the DNA-binding domain

and the myosin-binding domain) and each of them contains the associated-helices and

a five-stranded β-sheet. The nucleotide (ATP or ADP) coupled with Mg2+ or Ca2+ is

located between two of five-stranded β-sheets. Each of the domains also contains two

subdomains. One is used to form the parts of the nucleotide-binding pocket, and the

other is involved in actin-actin interactions [30] (see Figure 3).
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Figure 3: The atomic structures of G- and F-actin. The left panel shows the
cartoon model of G-actin (1ATN.pdb). G-actin consists of two domains: the
DNA-binding domain and the myosin-binding domain. The right panel shows the
refined structure of F-actin from G-actin monomers (1O1G.pdb).

The G- to F-actin transition is growing on the basis of cellular functions, but the

structural background of this transition remains enigmatic. A number of efforts have

been attempted to make G-actin monomers fit into the F-actin helix by in silico

refinement methods [5, 31] (see Figure 3). As a result, distinct F-actin structures have

been produced by these methods, but the refinement of the F-actin helix is still not

well determined because of the limited resolution (6 to 8 Å) of the fiber diffraction

patterns from cryo-electron microscopy. In the refinements, four subdomains of

G-actin are constrained to remain connected, but allowed to move as independent

solid bodies in the minimization process based on the observed fiber diffraction

pattern [30]. After that, the stereo-chemistry of the residues that connected the four

subdomains is further optimized [32]. Finally, the thin filament (F-actin) with actin

molecules (42 kDa) arranged on six left-handed turns, repeating every 36 nm is

obtained in a helical polymer with a 2.75 nm rise per subunit (G-actin) [33]. Each of

actin monomers turns 166° from the previous one, which lends the filament to a

double helical shape. Each monomer interacts with four neighboring monomers, and

thirteen G-actin monomers constitute one helix turn. In 2010, Wakabayashi et al. [34]

present a F-actin model through the cryo-electron microscopy (cryo-EM) in the

presence of phosphate and with some α-helical backbones and large side chains

visualized. This EM-map based complete atomic model of F-actin proposes a possible
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molecular mechanism for the biochemical events e.g. actin polymerization. The high

resolution structure of F-actin is solved in the presence of ADP by Oda et al. [35].

This F-actin model was created by using X-ray fiber diffraction intensities with radial

direction in 3.3 Å and 5.6 Å along the equator. Conformation of this helical F-actin

with its actin monomer in a flat form and two major domains of every monomer

rotated to each other about 20 degrees is essential for the stable formation.

1.4 Lymn-Taylor cycle

Myosin possesses a product-related ATPase enzyme mechanism analogous to that of

the G-proteins due to the presence of the functional loops, i.e. P-loop and the SW-I

and SW-II loops, which are residing in the myosin nucleotide-binding pocket. During

this process, myosin undergoes numerous structural changes, which movements are

coupled in different ways. The muscle contraction from consuming a molecule of ATP,

hydrolyzing it to perform a power stroke was first postulated by Lymn-Taylor in

1971[24] (see Figure 4). Myosin, with its closed cleft in the absence of a nucleotide,

strongly binds to the actin filament, creating a so called "rigor" complex. The

transition from state I to state II of the Lymn-Taylor cycle shows that the rigor

actomyosin complex is easily dissociated by ATP binding to the myosin. This ATP

binding not only opens the actin-binding cleft caused by the conformational changes

in the nucleotide-binding pocket, but it also results in the myosin to lose its strong

actin-binding affinity [26, 37]. From state II to state III, the myosin converter rotates

the lever arm by 60 and pushes it to the up-lever conformation followed by the

activation of the ATPase function in the absence of actin. This process is the so-called

recovery step with no accompanying conformational changes in the actin-binding

cleft [38-40]. From state III to state IV, the ATP hydrolysis results in a stable state of

myosin·ADP.Pi complex. This up-lever and open cleft state of myosin starts to weakly

bind to actin. In the last step, from state IV to state I, the actin binding triggers three

processes that are accompanied by structural changes in myosin: the further closure of

the cleft with the increasing binding affinity of actin, the release of the products, and



PhD Thesis - Yang Zhenhui

15

the lever arm moving from the up to the down position. This process is referred to as

the power stroke, which moves the myosin approximately 10 nm along the actin

filament [41]. After the power stroke, the ADP release takes place followed by the

phosphate release from the myosin by which myosin will return to its rigor

conformation [24]. ATP binding will subsequently release myosin from the actin

filament to start a new cycle.

Figure 4: The Lymn-Taylor cycle with annotation. The myosin II S1 fragment is
depicted in three structural states: rigor, post-rigor, and pre-power stroke. The lever
arm is composed of a heavy-chain helix (blue) surrounded by the light chains (cyan)
of myosin II. The lever arm position is controlled by the position of the converter
(green), which swings relative to the rest of the motor domain (light purple). The
structure of the relay-helix (blue) within the motor domain is likewise indicated.
Three actin monomers are indicated to represent the F-actin filament. Two of actin
monomers are shown space-filled with yellow spheres, and one is shown as a ribbon
diagram. The original figure was published by Sweeney HL et al., 2010. Figure 4 in
the original paper [24].

1.5 Actin-myosin binding interface

The actin attachment induces a weak to strong binding transition with over five orders of

magnitude difference in affinity (from state III to state VI in the Lymn-Taylor cycle) [42].
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Coupling of myosin II atomic structure with the decorated actin constructed from

cryo-electron microscopy has produced a 13Å resolution density map (EM-map) [43]. A

near-atomic view of the actin-myosin II rigor conformation can be achieved by

combining structural data from the head of myosin V, which is crystallized in the absence

of actin and supposed to be a strong actin-binding state [44, 45] (see Figure 5).

Figure 5: Fit of crystallographic molecular models of F-actin and myosin S1 into
the reconstructed density map. Molecular models of myosin and F-actin are docked
into the experimental density map, which is generated by the cryo-electron
microscopy reconstruction. The myosin has been kept in its original X-ray
crystallographic conformation (post-rigor). The original figure was published by
Holmes KC et al., 2004. Figure 4 in the original paper [45].

By flexible fitting the atomic structures into the EM-map, it has been revealed that

two actin monomers from the actin filament named AC1 and AC3 are not only

involved in the entire binding region of one myosin, but they also increase the contact

surface to stabilize the strong actin-binding state [46]. Milligan et al. [47] suggested

that there might be an interaction between loop 3 of myosin and actin AC1, which is

also demonstrated by Mornet et al. in the zero-cross-linking experiment [48]. Holmes

et al. showed similar features to previous results. Namely that there is a hole in the

EM-map and a "finger" below the hole is referred to as the "Milligan contact" [45].

However, Liu and his colleagues presented a contradictory conclusion from their



PhD Thesis - Yang Zhenhui

17

experiments without "Milligan contact" [49]. When replacing the DNase I binding

loop with the original loop from the crystal structure of actin, an interaction between

the DNase I binding loop and myosin S1 was revealed [43]. Strong interactions

between actin AC1residues 44-49 with myosin S1 residues 543-554 were confirmed

by H-bonds in the binding surface [47]. Tyr91 and Arg95 of the actin AC1 can also

interact with loop 3 of the myosin S1 [43]. However, other contacts between Glu576

(myosin S1) and Arg95 (AC1), Lys569 (myosin S1) and Glu99 (AC1) were identified

by Milligan et al. [47].

In addition, the actin AC3 contains a larger interaction surface with myosin S1 than

the actin AC1. The contact surface indicates several potential electrostatic interactions

and H-bonds. Hydrophobic interactions between the residues 528-544 of myosin

lower 50 KDa domain and residues 349-353, 146-149 of the actin AC3 are

maintained [43]. Potential electrostatic interactions and H-bonds between myosin S1

and AC3 are mainly found in loop 2, loop 4, and the cardiomyopathy loop (CM-loop)

of myosin. Loop 2 contains two lysines (chicken myosin) that make interactions

between Lys640 (myosin S1) and Asp25 (AC3), Lys642 (myosin S1) and Glu334

(AC3). Loop 4 in the form of a β-hairpin running from residue 366 to 377 in myosin

S1 also establishes electrostatic interactions and H-bonds with residues from actin

AC3. The CM-loop makes a salt-bridge between Glu411 (myosin S1) and Lys336 of

the actin AC3 [43]. A critical mutant of R403Q in the human cardiac myosin occurs in

a severe familial hypertrophic cardiomyopathy and results in a decreased level of the

actin-activated myosin ATPase due to a weaker binding affinity to actin [50]. Arg403

(myosin S1) is far away from actin AC3 and forms a salt-bridge with Glu631 in

loop 2 (myosin S1) [43]. Therefore, the function of Arg403 is probably to stabilize the

folded conformation of loop 2 in the actomyosin. Lys415 (myosin S1) forms a stable

H-bond with Glu334(AC3), which was found by Liu et al. from MD simulations [49],

but this interaction was not discovered from the results of the molecular dynamics

flexible fitting (MDFF) in Holmes's model [51] (see Table 1). Onishi et al. introduced

mutants to heavy meromyosin (HMM) by phosphorylation in three regions, residues

546-548 (hydrophobic region), residues 407,409 and 412-414 in the CM-loop, and
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residues 652 and 653 in loop 2. They all have significantly lower the actin-activated

ATPase in HMM or even utterly extinguish it [52]. Those mutants with possible

contacts with residues of the actin AC3 were also found in the results of the MDFF

refinement [43, 51] (see Table 1).

Table 1: Interactions and Bonds formed between the myosin S1 and two actin

monomers based on cryo-electron microscopy in strong atin-binding state
Potential electrostatic interactions Potential H-bonds

AC3 - S1 AC1 - S1 AC3 - S1 AC1 - S1

ASP24-GLU629 LYS50-GLU576 GLY23N -LYS637O LYS50NZ-ASN552OD1

ASP25-LYS640 ARG95-GLU576 ASP24N -GLY635O ARG95NE-PR0570O

ARG28-GLU629 GLU99-LYS569 LYS328NZ- ARG371O ARG95NH1-ALA575O

ARG147-GLU373 TYR337OH-ASN410OD1 ARG95NH2-LYS572O

GLU167-LYS544 SER348OG-LYS637O GLY46O-LYS553NZ

ASP311-ARG371 THR351N-PR0529O GLY48O-LYS553N

LYS328-GLU372 THR351OG1-PR0529O GLN49OE1-SER549OG

GLU334-LYS642 GLY23O-GLY638N TYR91O-ALA571N

ARG335-GLU372 ARG28O-ASN410ND2

SER145O-GLY643N

GLU167O-LYS544NZ

GLN314OE1-ARG371NH1

ILE329O-ARG371NH2

LYS336-GLU411

GLU334O-LYS642NZ

The weakly and strongly bound forms of actomyosin are basically determined by

various nucleotide bound to myosin [42], whereas the main discrimination is

depended on open or closed conformation of the actin-binding cleft [43]. However,

the precise mechanism of the open-close transition of the actin-binding cleft is not yet

clear due to limited information on weak actin-binding state.

The weak actin-binding state is formed when the myosin head initially attaches to the

actin. Many functional experiments have been carried out with expressed myosin

mutants at the probable actin-binding sites of myosin [52, 53]. These results suggest

that some residues are predominantly engaged in the weak actin-binding state,

whereas other residues are involved in the weak-to-strong actin-binding transition.

One in silico based speculations has shown that five surface loops of myosin are
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possibly involved in the weakly bound form of actomyosin [54]. One loop bears three

hydrophobic residues, the second is loop 2, the third is the cardiomyopathy loop

(CM-loop), the fourth is loop 3 and the last is the proline-rich loop. Hydrophobic

triplets (Val534-Pro536) of Dictyostelium myosin are close to Leu142-Ala144 of

actin. Lys622 and Lys623 of the myosin loop 2 interact to Asp24 and Asp25 of actin.

ARG402 of the myosin CM-loop fits to the C-terminal region of the actin. Arg562 of

the myosin loop 3 binds to Glu99 and Glu100 of the other actin monomer [54].

However, these proposed interactions have not been proved experimentally, except a

novel discovered actin-binding region of myosin named the 'activation loop', which

interacts with the N-terminal region of actin [55]. This interaction accelerating the

movement of the relay and stimulating myosin's ATPase activity results in efficient

force generation, but it is not essential for the unloaded motility in the weak

actin-binding state [55].

The weak-to-strong actin-binding transition prompts that actin bound initiates

conformational changes on the actomyosin interface and travels elsewhere in myosin

including actin-binding cleft closure, lever swinging and later phosphate release, to

carry out various functions.

1.6 Coupling between the nucleotide-binding site and myosin functional domains

The Lymn-Taylor cycle is composed of several different mechanisms (e.g., recovery

step, power stroke), which tightly couple kinetic and thermodynamic events with

conformational changes in different myosin regions. Nucleotide-binding takes place

at the active site in the center of the myosin catalytic domain. It promotes

conformational transitions from the center of the myosin head to the other myosin

functional domains. ATP-binding results in a loss of affinity in the actomyosin

complex and dissociation of myosin from the actin filament. ATP hydrolysis and

post-hydrolytic phosphate-release are accompanied by an increase in the actomyosin's

binding affinity. In addition, changes in binding affinity are also relied on various

pathways of phosphate release.
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The binding between the nucleotide-binding site and the actin-binding surface is

described as an antagonism. ATP binding to actomyosin causes actin dissociation,

while actin binding to myosin accelerates phosphate and ADP release [56]. It has been

shown that the open and the closure of the actin-binding cleft are involved in the

communication between the nucleotide-binding site and the actin-binding surface of

myosin [57]. In general enzymatic reactions, the product release usually occurs via the

same route as the substrate binds. When ATP is used as a substrate for later hydrolysis,

phosphate release proceeds to ADP release via a different route because of ADP

binding blocks the front door where the phosphate enters. In this case, one of the

possible phosphate release routes is through a rear opening switch that is situated in

the tube of the actin-binding cleft called the back-door release. Phosphate releasing

into the 50 kDa cleft alters conformation of the actin-binding cleft and thereby affects

actin-binding affinity based on the MD simulations [58]. An alternative pathway

results in the opening of the SW-I loop by a rearrangement of the actomyosin

interface in the weak actin association. The opening of the SW-I loop breaks the

salt-bridge between Arg238 and Glu459, which accelerates phosphate release through

a newly formed "trapdoor" rather than the previously suggested back-door [37, 58].

This trapdoor was discovered in a nucleotide-free crystal structure of Dictyostelium

myosin II, where both the SW-I and the SW-II loops have moved away from their

positions and formed an open state [37]. This structure reveals significant changes in

the actin-binding region, which suggests that the actin-binding cleft closure is

mechanically coupled with the opening of the SW-I loop [56]. This fact has also been

confirmed by fitting crystallographic structures into the high-resolution electron

micrographs of actomyosin [43] and by a crystallographic study of myosin V [44].

According to the phosphate release induced conformational changes in the

nucleotide-binding site and open-close of the actin-binding cleft of myosin, this

coupling movement implies that the antagonism described at the beginning of this

paragraph can be further elaborated as a scissors-like mechanism [59]. It means that

the larger the space of the nucleotide-binding pocket expanded, the more narrowed

space of the actin-binding cleft achieved and the higher binding affinity of the
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actomyosin complex obtained.

The communication event between the catalytic site and the other myosin functional

domains not only modulates myosin's affinity for actin, but also triggers the

conformational change of the lever swing in the recovery step (from state II to state

III in the Lymn-Taylor cycle). A proposed mechanism of conformational changes in

the nucleotide-binding site coupled with the lever-swing linked converter domain

rotation has been investigated on the basis of MD simulations [39]. Several regions of

myosin are involved in the communication between the nucleotide-binding site and

the converter domain. The conformational changes of the relay-helix and the

relay-loop (collectively called the relay region) are initiated by the SW-II loop [40].

This coupling mechanism can be regarded as though the SW-II loop in an open state

with the lever arm in its down position and vice versa. The Gly457/Ser456 peptide

group belonging to the SW-II loop forms a hydrogen bond with the γ-phosphate

during the transition of the recovery step. This bond formation is essential for the ATP

hydrolysis step before myosin binds to actin. If the SW-II loop freely close and

re-open with the lever still in down position, ATP hydrolysis and an unproductive

product release would be wasteful processes. Therefore, it is implied that the SW-II

loop has to be closed in order to couple with the conformational changes of the

converter domain, which leads the lever arm to its up position [39]. The movement of

the converter domain is the result of the angle changes between the SH1-SH2 regions,

which is influenced by the movement of the relay region in close proximity [60]. The

residue Gly680 residing in the SH1-SH2 region has been proposed as a pivoting point

for the structural changes on the basis of the time-resolved fluorescence

measurements of muscle fibers [61]. The mutation experiments showed that G680A

lead to 20 to 30-fold slower in the nucleotide binding rate and approximately 10-fold

increased mantADP affinity in the absence of actin. These results suggest that the

function of the SH1-SH2 regions is involved in the communication between the

nucleotide-binding site and the converter domain [62].

The operational work of lever movement should be harmonized with the ATPase cycle,

actin binding and detachment cycle (see Figure 6). In ATP form of myosin, the myosin
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lever moved from the "down" position to the "up" position in actin detached state is

the so called recovery step (from state II to state III in the Lymn-Taylor cycle) [39].

After ATP hydrolysis, if the up-to-down lever swing occurs in an actin-detached state

of myosin, which is called reverse recovery step (equal to the futile lever swing in

Figure 6) [63]. This step is regarded as a rate-limiting step of the basal myosin ATPase

to the subsequent rapid product release without produce useful mechanical work. The

crucial difference of the down-to-up lever swing with ATP-bound of myosin in the

recovery step is four orders of magnitude faster than up-to-down lever swing in the

reverse recovery step [63]. If actin binds to the up-lever state of myosin to move the

lever to the "down" position, then an effective power stroke is generated (from state

IV to state I in the Lymn-Taylor cycle). It is worth noting that the reverse recovery

step is a reversible step in the absence of actin while power stroke occurs in the

actin-attached form and becomes irreversible. The ratio of the effective power stroke

over reverse recovery step can be accelerated up to several orders of magnitude with

actin binding in the ADP·Pi state of myosin. Therefore, the predominant reaction flux

is diverted to an actin-attached myosin power stroke, even though it is

thermodynamically less favorable pathway because of the low actin-binding affinity

[55,64] (see Figure 6).

Figure 6: The chemomechanical
cycle of actomyosin. When ATP binds
to myosin, the myosin disassociation
caused it lever swings to the up state
(recovery step). After ATP hydrolysis,
actin weakly rebinds in a step
kinetically coupled to the power stroke.
If the lever swing occurs before actin
binding, then a futile lever swing
(reverse recovery step) is generated.
The original figure was published by
Málnási-Csizmadia et al., 2012. Figure
1C in the original paper [55].
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1.7 Scientific questions addressed in this thesis

When ATP binds to myosin, myosin disassociated from actin results in the down-to-up

lever swing (recovery step). In the lever-up state of myosin, ATP hydrolysis occurs. After

hydrolysis in the absence of actin the rate limiting up-to-down lever swing step (reverse

recovery step) occurs. In this case, the lever swing is inefficient regarding the mechanical

cycle since the swing happened in the actin detached state of myosin. If actin weakly

binds to the up lever state of myosin, the rate of lever swing step is highly accelerated.

The actin activation of the lever swing step channels the reaction pathway into the

effective power stroke which mechanism is called kinetic pathway selection. We were

mainly interested in the structural and energetic relationship of the myosin lever's back

and forth swing in the recovery step and the power stroke. The following questions were

stated upon the design of the project:

Firstly: A direct structural trajectory of the recovery step has been deduced from previous

in silico simulations. But it neglected the dynamic behaviors of the protein that allows it

to populate the neighboring conformational spaces along the suggested trajectory.

Therefore, the question is how can we combine the intermediate states with suggested

structural trajectory to discover the complete mechanism of the down-to-up lever swing

in the recovery step?

Secondly: The precise mechanism of the up-to-down lever swing in the power stroke

is still unclear due to limited structural information on the weak actin-binding state.

What is the atomic structure of the weak actomyosin complex?

Thirdly: What conformational changes are induced by the actin binding in the

different states of myosin?

Fourthly: What are the differences of the binding interfaces of the weak and the

strong actomyosin complexes?

Fifthly: The effective pathways of the power stroke are not accessible due to the short

lifetime of their intermediates. What is structural pathway and possible mechanism of

the actin-binding induced myosin up-to-down lever swing in the power stroke?
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CHAPTER 2: In silico approaches for structural investigations of

proteins

In recent years, with the rapid development of computing power, the more extensive

use of in silico methods is increasingly applied to a variety of life science researches.

Since in my project, I mainly use molecular structural modeling, protein-protein

docking, molecular dynamics (MD) and etc, in the following chapters I will

summarize major principles and applications of these approaches.

2.1 Molecular structural modeling

In the biological research, some unstructured regions or subdomains can be predicted

by at least one homologous protein with accurately known in its three-dimensional

(3-D) structure, when their functional characterization of the 3-D structure cannot be

determined from experiments [65]. Principle of comparative modeling predicts the

3-D structure of the protein from the sequence based on its alignment to one or more

proteins of known structure. Many of the protein sequences can be modeled

according to the target-template alignment. Results of prediction accuracy steadily

have been increased because of the increased number of known protein structures as

well as improvements in modeling softwares (see Table 2 in the Appendix).

Nowadays, it is possible to accurately model more than half of the unknown protein

sequences or subdomains based on the experimentally determined low-resolution

structures [65, 66]. Even the forecast coarse structural features can be useful in

showing some functional aspects of protein [67]. There are a number of computer

modeling programs and web servers used for comparative modeling (see Table 2 in

the Appendix). However, these automated web servers are not designed for unusual

modeling cases or problematic alignments, such as modeling of the ligand binding,

which needs other various modeling tools or softwares to solve these questions

manually.
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MODELLER is a program used for comparative modeling of unstructured proteins

[65, 68]. New models with all non-hydrogen atoms by satisfaction of spatial restraints

[69] according to some known protein structures can be generated through this

program [70]. Three main steps of comparative modeling will be described in this

program as below. The first step is to select protein structures as templates for the

target sequence via some related web servers (see Table 2 in the Appendix). Two

methods of protein selection are used in fold assignment identification. The first one

is by using pairwise sequence-sequence comparison to select the same or similar

sequence from the database for the target sequence [65]. The second one is by using

profile analysis based on multiple sequence information to discover the important

structural relationship when the sequence identity between the target and the template

drops below 25% [69]. It is important to select templates with higher overall

similarity for the given target sequence to generate the best 3-D structure model.

Phylogenetic tree, environmental similarity (e.g., solvent, pH, ligands) and quality of

the template structures are three critical factors that should be taken into account in

the first step. In the second step, once templates have been selected, an algorithm

should be selected to align the target sequence with the template structures. PAM [71]

and BLOSUM [72] as two of dynamic algorithms by using standard substitution

matrices are the preferred choice for the alignment. Usually, we can obtain a rational

result, when the identity of alignment is higher than 40% between the template

protein and target sequence [73]. When the sequence similarity falls below 30%, the

alignment becomes problematic in the "twilight zone" with an increasingly large

number of gaps and errors. The final step is to generate a structural model. The

"modeling by assembly of rigid bodies" based on overlapping the protein structure

into the conserved core regions and selecting variable loops from templates to

decorate the backbone of the target sequence is one of the widely used approaches

[74]. The other approach of modeling is called segment matching or coordinate

reconstruction. A subset of atomic positions of the target sequence can be utilized as

"guiding" positions for the template structures to identify and assemble all-atom short

segments [75].
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In comparative modeling, loops often play an important role in forming the active

binding sites and defining the function of a given protein. But, loops are generally too

short to provide sufficient information upon their folding. Even some identical

sequences of loops in different proteins do not always adopt the same conformation.

Although a number of in silico programs focused on the loop modeling have been

developed, none of them can predict and build the target structure in a confident

conformation, if the residue number is less than eight in the targeted loops [70]. In

this thesis, the comparative modeling method can be utilized to build up the rational

conformation of the missing loop 2 region of myosin and fix other missing residues,

which of these missing parts are difficult to be resolved in the X-ray crystallographic

diffraction experiments.

2.2 Protein-protein docking

Most of the proteins need to interact with other proteins and then form an active

complex to achieve their function. Numerous methods are available for the study of

protein complexes at different levels, but only a few of these techniques can provide

high-resolution information at the atomic level. X-ray crystallographic diffraction and

nuclear magnetic resonance (NMR) are two of the most popular experimental

methods for solving the three-dimensional structure of proteins and for better

understanding the biological function. The major challenge for X-ray crystallography

studies in resolving the structures of complexes is difficult to achieve the

crystallization due to the dynamics of the complex formation. On the other hand, the

high molecular weight of the complex is the major problem for NMR in its size

limitation. These obstacles make theoretical methods e.g., protein-protein interactions

been well developed at the atomic level to study those unsolved protein complexes

during the past few years [76, 77].

Docking as one of the most realistic methods of protein-protein interactions enables

to predict the preferred orientation of one molecule to another when they bound to

each other in a stable form [78]. Historically, docking research in the late 1970s
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focused on refining a model of a complex structure by optimizing the separation of

the interaction pattern while keeping their relative orientations fixed. Hence only a

few configurations can be discriminated by in silico approaches after all heuristic

constraints have been imposed [79]. Later, the relative orientation of each of the

docking partners was allowed to change, but the internal geometry of structures, such

as bond angles, bond lengths and torsion angles of the components were not changed

during the generation of complex configurations, which was referred to as "rigid

docking" [80]. With further increases of computational power, the internal

geometrical changes of the interacting partners that were used to be extremely

expensive in calculation became actual implementation, which is now referred to as

"flexible docking" [81].

The molecular docking process can be divided into two steps. First, it creates an

optimum number of configurations based on the experimentally determined binding

modes from the search algorithm and then uses scoring functions to evaluate these

experimental binding modes. Scoring functions are fast approximate mathematical

methods used to predict the strength of the non-covalent interaction (also referred to

as the binding affinity) between two molecules after docking process. Mostly one of

the molecules is a small organic compound such as a drug and the other is the drug's

biological target such as a protein receptor [82]. Scoring functions have also been

developed to predict the strength of other types of intermolecular interactions

between two proteins [83]. Nowadays, scoring functions are used in docking methods

in two different ways. First, a reduced function is used to direct the search, and then a

more rigorous one is used to rank the resulting structures. Second, a full scoring

function is used to rank the complex conformation in the initial run. Then, the system

of the complex conformation is modified by the search algorithm to re-rank those

new generated complexes with the same scoring function again. Finally, the best

ranked complex is yielded after several runs of repeatedly filtering processes. A

parallel approach for analyzing protein-protein interactions is involved in most of

docking programs. The procedure starts with one protein fixed in a certain space, and

the second one is rotated and translated around it. When serials of different
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configurations are obtained, a score function is used to calculate the various

elementary terms, such as surface complementarities, electrostatic interactions, van

der Waals repulsion, and so on. In order to receive a high resolution or plausible

complex conformation, the current problem for all of applied methods is that the

searching for entire conformational space of complex geometry makes the computer

calculation extremely expensive.

As one of the new protein-protein docking programs, HADDOCK, not only uses the

same search algorithm and scoring functions in each step as other programs, but it is

also involving a novel high ambiguity driven docking algorithm [84, 85]. It means

that the docking procedure can integrate some biochemical or biophysical interaction

data from experiments such as the data of chemical shift perturbation obtained from

NMR titration or mutagenesis experiments [86]. This is the so-called ambiguous

interaction restraints (AIR) docking, which introduces the restraints to each of the

residues in the "active" state or the "passive" state according to those known

experimental results. For example, the "active" residues corresponding to all residues

in the case of NMR titration data shows a significantly chemical shift perturbation

upon complex formation as well as a highly solvent accessibility in the protein [87].

HADDOCK requires structural information from PDB files of the individual proteins

and ambiguous interaction restraints from corresponding experiments. Three main

stages are included in the docking process. First, randomizing the orientations of the

interaction partners and minimizing the rigid body energy of the interactions. Second,

semi-rigid annealing is simulated in torsion angles. Thirdly, Cartesian space of the

docked complex is refined in the explicit solvent. After that, these targeted structures

are ranked according to their intermolecular energies including electrostatics (Eelec),

van der Waals (Evdw), AIR energy terms (EAIR) and average buried surface area (EBSA).

Finally, newly built structures with a high score of energetically ranking are clustered

by using the pairwise-based backbone RMSD alignment according to those residues

on the binding interface of the complex.

In this thesis, as we mentioned the second question in section 1.7, the precise

mechanism of the up-to-down lever swing in the power stroke is still unclear due to
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limited information of weakly bound form of actomyosin complex. According to this

question, we try to build up an actomyosin complex in the weak-binding state to

discover what kinds of subdomains or residues are involved in the weak actin-binding

surface. Meanwhile, the actomyosin complex in the strong actin-binding state is also

necessary to be created, which is not only regarded as a reference by comparing to the

Holmes's rigor model to evaluate the results of our docking process, but it also can be

considered as the end state of the power stroke by comparing to the beginning state

(weak actin-binding state) to discriminate the function of residues on the binding

surface of myosin.

2.3 Molecular dynamic simulations

Molecular dynamics (MD) is a combination of physics, mathematics and chemistry.

MD is a molecular simulation method, which mainly relies on Newtonian mechanics

to simulate the movement of the molecular system. Samples of the molecular system

were collected in an ensemble constituted by the different states. Taken samples are

used to calculate the configuration integral of the system. Furthermore,

thermodynamic quantities and other macroscopic properties of the system can be

calculated based on the results of the configuration integral [88]. MD as a comparable

mean to experiment and theory is considered to be the "third way" in performing

scientific research. MD can provide a number of valuable predictions, which are

difficult to carry out by experimental approaches in some aspects [89]. Today, MD as

a theoretical approach is possible to treat a system with millions of particles in the

investigations of dynamic properties of structures under a variety of conditions [90].

Application of MD is ranged from studies of protein-protein binding, enzyme reaction

mechanisms, refinement of structures to the analysis of the transition pathways.

The fundamental idea of MD simulations is based on the theory of statistical

mechanics, which is used to investigate and predict macroscopic phenomena from the

properties of individual molecules in the system [91, 92]. Each of the macroscopic

system can be described by its thermo-dynamical state and represented by parameters
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of temperature (T), pressure (P), and the number of particles (N). However, we can

describe all possible macroscopic systems or thermodynamic states with different

microscopic states, which are the so-called ensembles. The thermodynamic state

referred to as the microcanonical ensemble (NVE) is characterized by a fixed number

of atoms (N), a fixed volume (V), and fixed system energy (E), corresponding to an

isolated system. A process may be seen as an exchange of potential and kinetic energy,

with total energy being conserved. The canonical ensemble (NVT) is marked by a

fixed number of atoms (N), fixed volume (V), and fixed temperature (T), which this

simulation is sometimes called constant temperature molecular dynamics (CTMD). In

NVT, the energy of endothermic and exothermic processes is exchanged with a

thermostat. In addition, the isobaric-isothermal ensemble (NPT) is defined by a fixed

number of atoms (N), fixed pressure (P), and fixed temperature (T) [93]. In NPT,

besides the thermostat, a barostat is considered, which is analogous to most of the

laboratory conditions with a flask exposed to ambient temperature and pressure [94].

Besides that the forced MD is quite useful in revealing conformational changes in a

protein at the atomic level based on applying forces to a structure by pulling it along

desired degrees of freedom. Two typical ways of forced MD are popular used by now,

which are pulling velocity constant and pulling force constant [95]. Umbrella

sampling as one of the most prevalent forced MD move the structure along the

desired reaction coordinate by distances, angles and so on [96]. All of the transition

configurations in high or low energy will be adequately sampled in order to calculate

the free energy changes by the potential mean force [97].

In order to start an MD simulation, an initial structure is needed from certain existing

online services, e.g., the protein data bank (PDB). Atomic coordinates of the structure

can be resolved by crystallization, NMR or other similar techniques, but some

missing coordinates need to be fixed by utilizing molecular modeling approaches.

The potential energy of molecules in this state contains a number of minima or

sub-state of conformations in their global energy landscape and spatial constraints.

The potential energy typically at the local minimum has a higher value than the

potential energy of the global minimum. However, generally, the local minimum
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energy states are stable and can represent the probable state of a structure interest in a

statistical system. Energy minimization was able to perform to optimize the initial

structure into a realistic relaxed conformation by eliminating existing spatial

constraints [98]. A few hundred or thousand steps of minimization are typically

calculated depending on the size of the system. A combination of different algorithms

for the minimization has been proved to be the best choice for most of biological

molecules. Two prominent algorithms are the steepest descent (SD) and conjugate

gradient (CG) algorithms in the energy minimization [99, 100]. The SD moves

Cartesian coordinates of all atoms in a direction parallel to the downhill. The

successive steps of the SD are orthogonal in both gradients and the direction. The SD

as a robust algorithm is able to find the local minimum even if the starting point is far

away from the minimum. If the minimum lies in a long and narrow valley, the SD

will perform many small steps to correct the previous errors of movements, since it

has an inflexible determination on the searching direction path. Distinct from the SD,

the sequential steps of the CG are orthogonal in gradients, but conjugate in directions.

These directions have property for a quadratic function of variables, which make the

minimum easy to be reached by steps.

Numerous software packages e.g., AMBER, CHARMM and GROMACS are capable

of performing energy minimization and MD simulations [101-103]. AMBER is the

collective name for a suite of programs that allows users to carry out molecular

simulations, particularly for proteins, nucleic acids, carbohydrates and so on. [101].

Three main steps of principal flow contained in AMBER are preparation and

minimization of the candidate molecules, MD simulation, and MD trajectory analysis.

Autonomous operations are able to be carried out in separate programs with discrete

encoding-codes, so that AMBER has its own distinctively important advantages. It

not only permits separate program modules to be upgraded individually and to be

written with different coding practices, but also allows the principal simulation codes

(e.g., Sander and PMEMD) in AMBER are able to be compiled to improve the

computing power for parallel operations. The main preparation programs for the

candidate molecules are the antechamber and the LEaP. Result of preparation process



PhD Thesis - Yang Zhenhui

32

contains a coordinate file and a parameter-topology file, which are the basic

requirements of the input preparation for each of the individual molecules or proteins

to start their calculations and analyses. The Cartesian coordinates of all atoms in

molecules are the main information in the coordinate file. Further information

including atom names and masses, force field parameters, lists of bonds, angles,

dihedrals and so on needed to compute energies and forces are contained in the

parameter-topology file. The main calculation module for MD simulation is called

Sander, which can be compiled parallel by using the MPI programming interface and

coded by Fortran 90. Each processor deals with certain atoms, but all processors

know the coordinates of all atoms. Every update step of certain atoms is performed by

their own processors in the MD simulation. Meanwhile, a binary tree to communicate

the updated positions to all processors is used in preparation for the next update step.

All of the results can be analyzed according to different modules in AMBER on the

basis of the MD trajectories. The ptraj analysis module is composed of self-designed

scripts, which support analyses for dynamic properties, conformational changes and

so on. For instance, the script for the covariance matrix is extremely useful to

estimate the dynamic correlation properties e.g., analyzing the possible pathways for

the conformational changes of structures.

In addition, the transition pathway of conformational changes is quantified with a

series of images connected to each other by virtual "springs" which keep the images

from sliding down the energy landscape onto adjacent images that is can be carried

out by the module of the nudged elastic band (NEB) in AMBER [104]. The NEB

method derived from previous plain elastic band method provided by Karplus et al.

[105] adds the spring forces to the potential energy surface and minimized the energy

of the system. Advantage of the NEB method is that the corner cutting problem in the

energy landscape of the plain elastic band method is prevented by truncating the

spring forces in directions perpendicular to the tangent of the path. Implementation of

NEB module in AMBER requires no hypothesis for a starting path. However, shrewd

judgment of temperature and length of time are essential to populate the minimum

energy path. Usually, the structure-based transition pathway of protein is not enough
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to explore the potential mechanism of the conformational changes combined with

related energy profile. Therefore, a free energy quantity is able to calculate potentials

of mean force by using the umbrella sampling within AMBER [106]. In the umbrella

sampling module, an artificial restraint is exerted to the system by biasing it to sample

possible coordinates in a defined range of value. Values' distribution of these

coordinates during the simulation should be recorded. After the NEB calculation for

the structural transition of the recovery step, the entire pathway was divided into 29

small 'windows', which were considered as the coordinates' ranges of our interest in

the umbrella sampling. Individual simulations were carried out at these 'windows'

with coordinates' overlapping to their neighbors. After each of these 'windows'

achieved to their equilibration without biased force, a potential of mean force can be

constructed via the WHAM method [107] to represent the free energy profile along

the structural transition of the recovery step.

In order to distinguish the weakly and strongly bound actomyosin complex in two

states, binding free energy can be calculated with the approach of molecular mechanic

Poisson-Boltzmann surface area (MM/PBSA) [108]. Binding free energy is calculated

for each of the components with different equations shown as below. First, the general

equation for the binding free energy is calculated on the basis of the equation (1):

ΔGbind=Gcomplex-(Greceptor+Gligand) (1)

Binding free energy is generally contributed by enthalpy and entropy, (equation 2),

which are evaluated as a sum of changes in the molecular mechanics (GMM) upon the

actomyosin complex formation, solvation free energy (ΔGsol), and entropy (−TΔS)

(equation 3).

ΔGbind=ΔH-TΔS (2)

ΔH=ΔGMM+ΔGsol+TΔS (3)

Molecular mechanical energy (ΔGMM) is calculated on the basis of the equation (4),
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where the ΔGMM can be further divided into a van der Waals (ΔGvdw) and a Coulomb

term (ΔGele).

ΔGMM=ΔGvdW+ΔGelec (4)

The solvation free energy (ΔGsol) is separated into a polar (electrostatic contribution

to solvation free energy (ΔGsol-pol)) and a non-polar part (non-polar contributions to

the solvation free energy (ΔGsol-np)) (equation 5).

ΔGsolv=ΔGsol-pol+ΔGsol-np (5)

The pbsa module in AMBER is used to evaluate the electrostatic contribution to the

solvation free energy (ΔGsol-pol).

In this thesis, as we mentioned above in section 2.3, the weak and strong

actin-binding states of the actomyosin complex have been built up by the docking

process. Trajectories abstracted from normal MD simulation for both states can be

analyzed by binding free energy calculations (MM/PBSA) to evaluate the

discrimination between the weak and strong actin-binding states quantitatively. The

main purpose of this project is to discover the relationship of the myosin lever's back

and forth swing between the recovery step and the power stroke. The umbrella

sampling and nudged elastic band method (NEB) as forced MD approaches enables to

figure out the down-to-up lever swing related structural changes and potential

intermediate states in the recovery step. The dynamic properties of two end-states and

intermediate states e.g., conformational changes and inter-motional correlations can

be determined via analysis script based on the MD trajectories. Combining structural

changes with dynamic properties of each state, we can propose structural pathways

and possible mechanism for the recovery step and the actin-binding induced myosin

up-to-down lever swing in the power stroke.

According to the addressed questions in the first chapter and mainly applied in silico

approaches to these questions in this chapter, I draw a flow chart of corresponding
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procedures regarding to this thesis listed as follows (see Figure 7).

Figure 7: Flow chart of corresponding procedures regarding to this thesis.
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CHAPTER 3: Materials and methods

3.1 Protein structures preparation

According to the procedure of the recovery step in Figure 7, we modeled two end

states of the recovery step based on the Dictyostelium myosin II motor domain from

the PDB database. The starting structure of the recovery step is 1MMD (PDB entry)

in open actin-binding cleft and down-lever state with missing residues, which was

fixed according to the molecular modeling with a detailed description in the next

section [109]. The end structure is 1VOM (PDB entry) [110] in open actin-binding

cleft and up-lever state with its missing parts referred to the structure M754

determined and kindly provided by Jon Kull [43] (see Table 3). Mg·ADP analogue as

a substrate in the nucleotide-binding pocket was converted to Mg·ATP based on the

conformational overlapping for both of the end states. Parameters of ATP and ADP in

the AMBER force field were kindly contributed from Carlson et al. [111]. In order to

discover the transition mechanism of the recovery step, mutants F481A/F482A and

F652A were introduced to the structures of 1VOM and 1MMD, respectively.

According to the procedure of the power stroke in Figure 7, we modeled four myosin

structures and the actin trimer. We used 1VOM as the starting structure of myosin in

the power stroke for docking to the actin trimer. 1MMD with open actin-binding cleft

and down-lever arm was also used for docking to the actin trimer as one of the

possible transition state. Mg·ADP analogue as a substrate in the nucleotide-binding

pocket is converted to Mg·ADP·Pi based on the conformational overlapping for the

starting structure (1VOM) and the transition structure (1MMD) of myosin in the

power stroke. The end state of the power stroke in closed actin-binding cleft,

down-lever and nucleotide-free state was represented by 1Q5G (PDB entry) from

Dictyostelium myosin II regarded as rigor-like state [37]. 2OVK (PDB entry) from

squid myosin was modeled in the absence of nucleotide, closed actin-binding cleft

and down-lever state also to be deemed as a rigor-like structure [112] (see Table 3).

The structure of actin trimer for docking to myosin was refined from F-actin with its
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missing N-terminus extended and acetylated [35]. In order to discover the

actin-binding effect on the conformational changes of myosin, R520Q, R562Q were

introduced to the actin trimer docked 1VOM 1MMD, 1Q5G and 2OVK actomyosin

complexes.

Table 3: Crystal structures of myosin II used in this project
PDB entry Resolution [Å] Construct[1] Ligand State[2] Scientific Name

1VOM 1.9 762 MgADP.VO4 C/C Dictyostelium discoideum

1MMD 2 762 Mg.ADP.BeF3 C/O Dictyostelium discoideum

1Q5G 1.9 771 - O/O Dictyostelium discoideum

2OVK 2.6 839 - O/O Loligo pealei

[1] The last resolved amino acid is given. [2] The conformational states of SW-I/SW-II loop are
indicated. “O” refers to the open state, whereas “C” refers to the closed state.

3.2 Preparation of the nucleotide-binding pocket of myosin

The proportion of H2PO3
-, as the most dominant ionized state at pH=7.2 has been

verified in quantum mechanical calculations under the CHARMM force field [113,

114]. We calculated the partial charges and coordinates, which can be used in the

AMBER force field. RESP charges for each of the atoms in the H2PO3
- group were

calculated by using the Gaussian 03 [115] and ANTECHAMBER [116]. The

calculations were carried out for a set of molecular conformations of the H2PO3
-

group by covering the accessible space in the system. The density functional

algorithm with the B3LYP exchange and the 6-312+g(d,p) basis set were selected for

calculation in the Gaussian 03. The resulting charges were averaged over all of the

conformations. Charges of the oxygen atoms (O2 and O3) and hydrogen atoms (H1

and H2) were additionally averaged due to the local symmetry. RESP charges of each

atom in the H2PO3
- group are listed in the Table 4. By combining with

ANTECHAMBER to calculate the corresponding parameters of protonated phosphate

for the AMBER usage, the detailed steps can be ascertained in Figure 8.
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Table 4: Atomic charges of the H2PO3
- group

Atom No. Atom Name Atom Type RESP Charge

1 O1 O2 -0.81334

2 P1 P 1.28996

3 O2 OH -0.67792

4 H1 HO 0.34627

5 O3 OH -0.67792

6 H2 HO 0.34627

RESP charges of the H2PO3
- group were used for parameterization in the AMBER

force field. Two oxygens (O2 and O3) and two hydrogens (H1 and H2) of phosphate
were averaged assumed to the local symmetry.

Figure 8: Corresponding parameters of protonated phosphate were calculated
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on the basis of ANTECHAMBER.

In addition, all crystal waters in the structure of 1VOM and 1MMD were stripped

except two crystal waters formed interactions with magnesium ions in the

nucleotide-binding site (see Figure 9). When these two crystal waters were stripped

from the nucleotide-binding pocket, the conformation of ADP and phosphate were

destroyed in the MD simulations.

3.3 Comparative modeling of the myosin loop 2 in 1MMD

The amino acid sequence of the structure 1MMD was retrieved from the NCBI

protein database. The BLASTP method was used to search for suitable templates

from the protein structure database (PDB) for the missing loop 2. Three homologous

Dictyostelium myosin II structures with higher evaluation scores were selected for the

alignment of loop 2. These were 2AKA and 1G8X in the up-lever states (wild type)

and 1W9L in the down-lever state (mutant, not wild type). Sequence alignments of

loop 2 were carried out with the ClustaIW algorithm based on the pairwise

sequence-sequence comparison by using the Gonnet series matrix with the "gap open"

and "gap elongation" penalties of 10 and 0.2 respectively [109]. The result was

refined to ensure the best alignment in these conserved residues of the myosin loop 2

through the JOY program [110]. Loop 2 started and ended with relatively stable

alpha-helices was a hairpin-like β-strand conformation with four polar and some

Figure 9: Hydrogen-bond network
in the nucleotide -binding pocket of
myosin. Two crystal waters formed
interactions with magnesium, which
contacted with residue Thr186,
Ser237, β-phosphate of ADP and the
H2PO3

- group. The hydrolyzed
γ-phosphate was in a protonated state
with one hydrogen bond formed with
β-phosphate of ADP and an
electrostatic effect on the magnesium.
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solvent-accessible residues (see Table 5).

Table 5: Sequence alignment and analysis for the Dictyostelium myosin loop 2
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

p n I a s r a k k g a n f i t v A a q Y
a a a a b b b b a a a a a
The JOY annotation is as follows: lowercase red letter: α-helix, lowercase blue letter:
β-strand, uppercase letter: solvent-inaccessible residue, lowercase letter:
solvent-accessible residue, bold: hydrogen bond to main-chain amide, underline:
hydrogen bond to main-chain carbonyl. The italic letters represent loop 2 region. "a"
represent the α-helix and "b" represent the β-sheet.

Based on the selection and refinement of these templates, the complete 3-D structure

of the 1MMD was constructed according to the coordinate reconstruction of segment

matching by MODELLER 9.2v and an integrated analytical front-end application for

bioinformatics called "Friend" [68, 119]. When we opened the graphical interface of

the "Friend" program, three template structures and sequence needed to load. 1MMD

sequence was loaded by using the menu "File->Load->Alignment from text box"

followed by paste of sequence in fasta format into the poped-up form. Three

templates were loaded by using the menu "File->Load->Structure from PDB"

followed by typing a 5-letter code in the poped-up form. Sequence alignment was

prepared manually by using menu "Tools->Pairwise->Align". Then, in order to deal

with the modeling step, we used the menu "Tools->MODELLER" with names of

three templates and sequence marked. Interface of MODELLER as a pop-up window

with many spaces were required to fill out. We specified the three templates and

sequence for our modeling with hydrogen and without crystal waters. Ten models

were built from three templates and refined according to the scoring function.

Validations of the models were carried out after the refinement process by using

Ramachandran Map. Two angle distributions (Φ and ψ) of modeled 1MMD and loop

2 with the highest modeling score are in the left and right panels (see Figure 10).

Loop 2 shows its 92.9% residues are in a favored region while the 1MMD is in an

acceptable conformation with 88.1% residues in a favored region.
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Figure 10: Comparative modeling of the myosin loop 2. In the left panel, the
myosin motor domain (762 residues) was analyzed with 88.1% residues in a favored
region, 11.8% residues in an allowed region and 0.1% residue in an outlier region. In
the right panel, loop 2 (14 residues) was analyzed with 92.9% residues in a favored
region, 7.1% residues in an allowed region and none of residues in an outlier region.

3.4 Protein-protein docking

Four averaged myosin structures (1VOM·ADP·Pi, 1MMD·ADP·Pi, 1Q5G and 2OVK)

after 20 ns MD simulations were docked to the refined actin trimer (Ac-DEDE-actin)

by using the docking program of HADDOCK V2.1 [84]. (A) 3A-1VOMdock: Actin

trimer docked to 1VOM·ADP·Pi (open actin-binding cleft and up-lever) as the

beginning state of the power stroke (weak actin-binding state). (B) 3A-1MMDdock:

Actin trimer docked to 1MMD·ADP·Pi (open actin-binding cleft and down-lever) as

one of the possible transition states of the power stroke (weak actin-binding state). (C)

3A-1Q5Gdock: Actin trimer docked to 1Q5G (closed actin-binding cleft and

down-lever) as the end state of the power stroke (strong actin-binding state). (D)

3A-2OVKdock: Actin trimer docked to 2OVK (closed actin-binding cleft and

down-lever) as the end state of the power stroke (strong actin-binding state), which as

the squid myosin was different from the Dictyostelium myosin in the group (A), (B)

and (C).

Those experimentally defined myosin-actin interface residues regarded as the flexible

segments were divided into the active and the passive amino acids for protein-protein

docking (see Table 6). Active residues of the Dictyostelium myosin loop 2 (residues

619-629) and the lower 50 kDa domain (residues 519-555) defined from experiments
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were selected for the actin myosin binding [120-122]. Ambiguous interaction

restraints (AIR) identified from residues was used to drive the docking process.

Overall, six active and ten passive residues were selected from myosin, five active

and five passive residues were selected from actin (see Table 6). Ambiguous

interaction restraints (AIR) with a maximum effective distance of 8.0 Å was available

for the active-active and active-passive residues, but not for the passive-passive

residues. The best 200 of 1000 refined complexes were obtained from rigid body

energy minimization and then submitted to the semi-rigid simulated annealing

process. These structures were exposed to the 12 Å shell of TIP3P water solvent for

MD simulations with a cutoff value of 5 Å. Calculations of the non-bonded energy

were set up with a cut-off value of 9 Å in the OPLSX force field [123]. The best 100

complexes were selected according to the evaluation score of their average interaction

energies and buried surface area. The HADDOCK score, as the main criteria for

selection, was calculated on the basis of the equation 6. Finally, subsets were

collected according to more than ten members of the complex in each of them after

the backbone-based RMSD clustering with a cut-off value of 7.5 Å. All the

above-mentioned parameters and processes were carried out through the HADDOCK

online service, http://haddock.science.uu.nl/services/HADDOCK/haddock.php.

HADDOCKSCORE=EVWD+0.2EELEC+0.1EAIR+ EDESO (6)

Table 6: Intermolecular restraint residues for HADDOCK docking
Ambiguous interaction restraints

Myosin motor[1]

Active residues[A] Lys622, Lys623, Val534, Phe535, Pro536, Ala538

Passive residues[B]

Flexible

segment[C]

Gly621, Thr629, Glu530-Ser533, Thr539, Thr542
Gln621 to Lys629,

Actin trimer

Active residues Glu24, Glu25, Leu142, Ala144

Passive residues Gly23, Lys28, Ser141, Ser145, Gly146,

Flexible segment Gly23 to Lys28, Arg147 to Gly150
[1] The residue numbers of myosin motor represent the Dictyostelium myosin. The
residue numbers of actin are the same for two myosin species. [A] Active residues
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represent those residues involved in the actin myosin binding. [B] Passive residues
corresponding to all surface neighbors of the active residues were in the solvent
accessible. [C] Flexible segments were defined with those regions connected to active
and passive residues.

3.5 Molecular dynamic (MD) simulations and dynamic property analysis

Structures of pre-recovery state (1MMD·Mg·ATP), post-recovery state

(1VOM·Mg·ATP) and four mutants (1MMD·Mg·ATPF481A/F482A, 1MMD·Mg·ATPF652A,

1VOM·Mg·ATPF481A/F482A, 1VOM·Mg·ATPF652A) were relaxed in the MD simulations.

We named them as 1MMDwild, 1VOMwild, 1MMDF481A/F482A, 1MMDF652A,

1VOMF481A/F482A and 1VOMF652A in the subsequent chapter 4. Meanwhile, four

myosin structures 1VOM·Mg·ADP·Pi, 1MMD·Mg·ADP·Pi, 1Q5G and 2OVK were

relaxed in the MD simulations and averaged before docking to the actin trimer, which

were named as 1VOMmd, 1MMDmd, 1Q5Gmd and 2OVKmd. Four actomyosin

complexes obtained from the protein-protein docking were relaxed in the MD

simulations, which were named as 3A-1VOMmd, 3A-1MMDmd, 3A-1Q5Gmd and

3A-2OVKmd. In addition, mutants of R520Q, R562Q were introduced to these four

relaxed actomyosin complexes and relaxed via the MD simulations. These mutants

were named as 3A-1VOM-520MU, 3A-1VOM-LP3MU, 3A-1MMD-520MU,

3A-1Q5G-520MU and 3A-2OVK-520MU. There were six structural trajectories as

the first set for recovery step analysis and thirteen structural trajectories as the second

set for the power stroke analysis.

The module of sander in the molecular dynamics package AMBER11 (compiled

under NVIDIA card Tesla S2050) was used for minimization and molecular dynamic

(MD) simulations [101]. All the above-mentioned structures were neutralized by

adding discrete number of Na+ ions in the most appropriate electro-negative areas

around proteins according to different size or conformations of structures. After that,

they were solvated in a truncated octahedron box of TIP3P water environment with a

12Å buffer cut-off value along each dimension [124]. Long-range electrostatic

interactions were treated by the particle-mesh Ewald method in periodic boundary

conditions [125]. Energy minimization was processed with 1000 steps of steepest
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descent and conjugate gradient. The system was slowly heated up to 300 K and

equilibrated at the constant temperature (NVT) and the constant pressure (NPT)

conditions. The Berendsen coupling algorithm [126] was used for the temperature

control. The SHAKE algorithm was applied for constraints on covalent bonds and all

hydrogen atoms [127]. The root-mean-square deviation (RMSD) and

root-mean-square fluctuation (RMSF) analyses were carried out by using ptraj

module in AMBER and visualized with VMD graphical software [128]. Detailed

general input files and scripts for minimization and simulation processes can be

referred to Figure 11 and 12.

In the first set (recovery step analysis), after 1ns NVT and 1ns NPT, the final MD

trajectories of six structures were collected via extra 2 ns NPT equilibration. Torsional

angles mobility of structures was calculated by averaging the coordinates of 125

structures from the final 250 ps long equilibrium phases. We determined the

amplitude (δ) of torsional mobility of the Φ, Ψ angles according to the equation (7):

δ =
 

1

2




n

χχ

(7)

The " χ " is the actual torsion angle and the " χ " is the average of the Φ or Ψ angle of

the given residue. The "n" is the number of data points. Structures were averaged on

the basis of MD trajectories via scripts in Figure 12. This equation was compiled into

an executive command and kindly offered by my colleague Zahoránszky KG. In the

second set (power stroke analysis), after 5 ns NVT and 5 ns NPT, the final MD

trajectories of four myosin structures were collected via 20 ns NPT equilibration and

nine actomyosin complexes (four wild types and five mutants) were collected via 100

ns NPT equilibration. The final average structure and motional correlations can be

received according to the MD trajectories via scripts in Figure 12.
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Figure 11: General input files for minimization and molecular dynamic
simulations.
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Figure 12: Scripts for minimization, MD simulations and RMSD, RMSF,
average structure and motional correlation calculation.
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3.6 Transition pathway and potential mean force calculation of the recovery step

Two averaged structures named as 1MMDwild and 1VOMwild were used for exploring

the transition pathway of the recovery step according to the nudged elastic band

method (NEB) [104]. The cutoff value of the non-bonded atoms was 15 Å in 0.1 M

salt concentration. SHAKE algorithm was used to constrain the position of hydrogen

atoms with a time step of 1 fs in a generalized Born (GB) environment [127]. The

maximum distance for the pairwise summation of calculating the effective Born radii

was set to 15. Langevin dynamic was used to control temperature (collision frequency

1000 ps-1) and a 1 ns simulated annealing was used to sample the transition path. The

first step involved 100 ps of MD simulations with spring constants of 5 kcal·mol-1·Å
-2 during the temperature of the system increased from 0 K to 300 K. A 200 ps MD

simulation step was applied at constant temperature (300 K) during the spring

constants gradually increased to 20 kcal·mol-1·Å -2. Then the system was heated to

400 K in 200 ps and cooled to 0 K over the next 200 ps. Finally, 300 ps quenched MD

simulation was performed at 0 K. Detailed general input files and scripts for NEB

simulations can be referred to Figure 13 and 14.

Two end states of the recovery step (1MMDwild to 1VOMwild) with 28 intermediates

obtained from NEB simulations were used to build up 29 continuous windows with

harmonic-restraints imposed on defined strains for the umbrella sampling. Bending

was induced by using a quadratic biasing potential with a force constant of 1

kcal·mol-1·degree-2. Windows were sampled from 220.69° to 122.73° according to the

angle represented by atoms of 684CA, 689CA and 748CA. Every window sampled

for 1 ns after 200 ps NPT equilibration resulted in a total 29 ns production time in the

transition path of the recovery step [106].
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Figure 13: General input files for NEB simulations.
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Figure 14: Scripts for NEB simulations, umbrella sampling, the potentials of
mean force calculation and RMSIP calculation.

To determine the potentials of mean force (PMF) for the studied system, all explored

configurations from umbrella sampling were analyzed with the weighted histogram

analysis method (WHAM). Unit conversion from radians to degree was indispensable

by multiply the force constant (rk2) with 0.0006092 (= 2(π/180) 2) for the torsion

restraints [107]. Detailed general input files and scripts for umbrella sampling, PMF

calculation can be referred to Figure 14 and 15.
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Figure 15: General input files for the umbrella sampling and RMSIP calculation.

3.7 Dynamical similarity assessment by essential motional analysis

Quantitative characterizations of the dynamical properties of two intermediate states

(IM-1 and IM-2) and two end states (1VOMwild and 1MMDwild) were determined

from essential motional analysis by using a covariance matrix in the recovery step

based on the fluctuations of the backbone atoms. Eigenvectors and the eigenvalues

were obtained in a descending order by diagonalizing covariance matrix σ [129].

Trajectories of altered states equilibrated in 2 ns MD simulations were compared by

means of the root-mean square inner product (RMSIP), which was determined on the

basis of the former ten eigenvectors. The motional similarity of different essential

subspaces was assessed according to the equation (8), which has been written to a

script by Tsjerk AW [130]. Detailed input files and scripts for RMSIP calculation can

be referred to Figure 14 and 15.
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3.8 Binding free energy calculation on two end states of the power stroke

In order to distinguish the weak and strong actin-binding states, binding free energy

was calculated with the approach of molecular mechanic Poisson-Boltzmann surface

area (MM/PBSA). The averaged structures of actin trimer, myosin and actomyosin

complexes were obtained after MD simulations. We used these three structures to

create three gas phase prmtop and inpcrd file pairs for the MM-PBSA calculation as

well as actomyosin for the solvated complex based on scripts of parameters and

coordination prepared for AMBER in Figure 12. Total eight files generated for the

MM-PBSA calculation can be seen in Figure 16. 2500 snapshots were collected

through the last 20 ns of the total 100 ns MD equilibration in actomyosin complexes.

The time scale between snapshots was set to 8 ps due to the limited requirement of at

least 5 ps according to the persistence of motional correlations [131]. The pbsa

module in AMBER [108] was utilized to evaluate the electrostatic contribution to the

solvation free energy (ΔGsol-pol) (see equation 9). The grid spacing of the cubic lattice

was set at 2 Å. The dielectric constant values for the interior and exterior were 1 and

80. One thousand linear iterations were performed for the linear Poisson-Boltzmann

equation. The non-polar contribution to the solvation free energy (ΔGsol-np) was

calculated from the solvent-accessible surface area (γSASA) [132] according to the

equation (10). The surface tension γ and the offset β were set to 0.00542

kcal·mol-1·Å-2 and 0.92 kcal·mol-1, respectively.

ΔGsolv=ΔGsol-pol+ΔGsol-np (9)

ΔGsolv-np =γSASA+β (10)
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Figure 16: General input files and scripts for MM/PBSA calculation.

The contribution of entropy (-TΔS) based on the ligand receptor association was

performed with normal-mode analysis [133]. 1000 snapshots were collected and

submitted to the molecular minimization with a distance-dependent dielectric

constant E=4r. The end of convergence was not achieved until the RMSD of the

gradient vector less than 1×10-4 kcal·mol−1·Å−1. Residues close to the binding surface

with a distance less than 20Å were acquired to estimate the contribution of entropy.

Detailed input files and scripts for MM/PBSA calculation are referred to Figure 16.
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Experimental Section

CHAPTER 4: Functional role of the pivot in the seesaw mechanism

of the myosin lever swing in the recovery step

4.1 Introduction

As described by the Lymn-Taylor cycle [24] (see Figure 4), three alternating events

are well organized to produce the mechanical force. These are actin binding, myosin

allosteric conformational changes and the ATP hydrolysis. When myosin moves its

lever arm from the pre-recovery (down lever position) to the post-recovery (up lever

position) orientation in the ATP-bound state, it undergoes a large conformational

transition called the recovery step (from state II to state III in the Lymn-Taylor cycle).

If the myosin moves its lever arm from the up (post-recovery) to the down

(pre-recovery) position, which is called the reverse recovery step and occurred in the

actin detached state. Besides that, the former occurs in the ATP-bound state, whereas

the latter occurs in the ADP·Pi-bound state, which is the rate limiting step of the

enzymatic cycle in the absence of actin [63]. Actin binding accelerates the rate of

up-to-down lever swing in ADP·Pi-bound state of myosin by two orders of magnitude

resulting in the occurrence of the power stroke. Actin binding, however, contributes

very little to the rate constant of the conformational changes of myosin in the

ATP-bound recovery step [134].

In order to unveil the mechanism of the myosin lever swing in the recovery step, the

basic idea is to find out the related conformational changes in different functional

regions of myosin. Until now, myosin II has been crystallized with ATP or different

ADP analogues in both pre-recovery and post-recovery states, which are assigned to

the state II and state III in the Lymn-Taylor cycle [39]. The most significant

differences of conformation between these two states are showed in the SW-II loop
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and the orientation of the lever arm, which is linked to the converter domain. From

pre-recovery state to post-recovery state, the conformation of the SW-II loop moves

from a partially open to a closed state that switches on the catalytic function of

ATPase. Meanwhile, the converter domain rotated by ~60° relative to the rest of the

myosin head is so as to push the lever arm from the down to the up position. To reveal

the conformational transition of the recovery step, it is necessary to figure out the

intermediate states along the transitional pathway. Unfortunately, these intermediates

are not easily to be achieved and investigated through experiments.

Numerous in silico simulations have been performed in order to reveal the

mechanism of the recovery step [39, 113, 114, 135, and 136]. Fischer et al. proposed

a theoretical model based on the unconstrained minimum-energy pathway simulations

[39]. Fischer's model elaborated a mechanism that the relay-helix movement in a

seesaw model coupled with conformational changes of the SW-II loop and swing of

the lever-arm was preliminary characterized by structural transition pathway. The

closure of the SW-II loop pulls the N-terminus of the relay-helix with a hydrogen

bond cluster formed in the γ-phosphate~Gly457~Asn475. This formed cluster is

supported by a fulcrum composed of two hydrophobic residues in the relay-helix

(Phe481, Phe482) and a neighbor residue Phe652, which of this phenylalanine cluster

serves as a pivoting point in the middle of the relay-helix. This seesaw-like motion

induces a movement of the SW-II loop to the C-terminus of the relay-helix and

connected converter domain. In the second phase of the conformational transition,

further seesaw-like motion is hindered because the relay-helix is not a freely pivoting

beam. The broken of hydrogen bonds (486/490 and 483/487) accelerate the flip of the

486/487 peptide group and reorients Phe487 from a solvent-exposed to a buried

position by forming an "aromatic switch" with Phe503 and Phe506. With these two

prerequisites, the converter domain rotates to its final position by virtue of the started

unwinding phase of the relay-helix (see Figure 17). This seesaw model suggests a

coupling mechanism with two distinct phases in the recovery step. The seesaw-like

motion unbend the relay-helix in the first phase and followed by the unwinding phase

to induce the myosin lever further swing [39].
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Figure 17: The schematic diagram of the coupling mechanism in the recovery
step. The left three panels show the converter domain rotation. The right three panels
show some changes along the relay-helix coupled to the small motion in the SW-II
loop. (A) Gly457 moves toward the γ-phosphate and pulls the relay-helix unbending
through the bond formed with Asn475. (B) The broken of the bond 486/490 favors the
reorientation of Phe487, which unwinds the relay-helix and forms a hydrophobic
interaction with Phe503, Phe506. (C) The converter domain rotates to its final
position with an assistance of the unwinding phase of the relay-helix. The original
figure was published by Fischer S et al., 2005. Figure 2 in the original paper [39].

The steady-state and transient kinetic measurements suggest by Málnási-Csizmadia

that the phenylalanine cluster mutants contribute a dramatic effect in the formation of

the up-lever state with a reduced rate constant of the recovery step [137]. Besides that

the phenylalanine cluster cause site-specific dynamic changes of the relay-helix

unwinding region in the down-lever state without significant conformational changes

based on the in silico simulations [137]. These results suggest that this phenylalanine

fulcrum can constrain the relay-helix to unwind in the second phase of the recovery

step, which is different from Fischer's model that the seesaw-like motion is hindered
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in the second phase because the relay-helix is not a freely pivoting beam [137].

Because this seesaw model with two phases separated by one intermediate state

neglects the dynamic behaviors of the protein that allows it to populate the

neighboring conformational spaces along the suggested trajectory. Therefore, the

question is how can we combine all existed intermediate states with suggested

structural trajectory to unveil the complete mechanism of the down-to-up lever swing

in the recovery step?

Results from our in silico simulations proved that the seesaw-unwinding model can

be a basic mechanism for the recovery step. Strain along the relay-helix of myosin is

rearranged by eliminating the pivoting point in the seesaw-like motions at the

beginning stage of the recovery step. A three-phase model of the recovery step

deduced on the basis of a free energy profile with the post-recovery state in a lower

free energy is more preferred than the pre-recovery state. In the three-phase model of

the recovery step, the formation of the hydrogen bond cluster

(γ-phosphate~Gly457~Asn475) accelerates structure transformation to overcome the

activation energy barrier in the first phase. Our intermediate state 1 (IM-1) has similar

conformation to the unique intermediate state of Fischer's model, but the IM-1 state

with 37% converter domain rotation is in a middle structural state of the recovery step

was not demonstrated before. Phe487/Phe503 hydrophobic cluster closely packing

with some indispensable structural rearrangements in our second phase of the

recovery step was not regarded as separated phases in Fischer's model since there was

no free energy profile of the recovery step in reference.
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4.2 Results

4.2.1 MD simulations for pre-recovery and post-recovery states

In order to investigate the functional mechanism of the pivoting point in the

relay-helix, two end structures (1MMDwild and 1VOMwild) and four mutants

(1MMDF481A/F482A, 1MMDF652A, 1VOMF481A/F482A and 1VOMF652A) were analyzed our

MD simulations. The potential energy profiles along the 2 ns long MD simulations

demonstrate that the pre-recovery (1MMDwild) and post-recovery (1VOMwild)

structures achieved stable conformations after the first 500 ps (see Figure 18). Similar

potential energy profiles also can be obtained in four different mutants.

Figure 18: Molecular dynamic simulations for the pre-recovery and
post-recovery states. Time courses correspond to the potential energy of two wild
types during the MD simulations. Both the pre-recovery state (A) and the
post-recovery state (B) relaxed to more stable conformations.

Torsional angles mobility of structures was calculated by averaging the coordinates of

125 structures from the final 250 ps long equilibrium phases. We analyzed the relaxed

conformations from six structures (wild types and mutants) in both pre-recovery state

and post-recovery states. Two wild types and six mutants in the pre-recovery structure

do not show significant differences in their relay-helix regions (Figure 19A).

However, the conformation of mutants in the post-recovery state shows deformation

in the kink region of the relay-helix (Figure 19B). These results suggest that the

phenylalanine cluster serves as a pivoting point in the middle of the relay-helix did
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not implement its seesaw-like functions at the early stage of the recovery step

(up-lever state), but it extremely destroyed the conformation of the relay-region at the

end stage of the recovery step (down-lever state). Breaking the pivoting point hinders

the movement of the relay-helix with coupled converter domain rotation. It can also

constrain the relay-helix to unwind in the second phase of the recovery step. The

seesaw-like motion started from a certain stage after the beginning of the recovery

step until the very end of the recovery step from our results is different from Fisher's

model that function of this phenylalanine cluster was implemented only in the first

phase of the recovery step.

Figure 19: The conformation of myosin relay-helix in the pre-recovery and
post-recovery states. A: Pre-recovery conformations of the wild type (Ice blue) and
mutant (green) (F481A/F482A). B: Post-recovery conformations of the wild type (Ice
blue) and mutant (green) (F481A/F482A).

As Fischer demonstrates that the seesaw-like motion is one of the main events

occurred at the beginning of the recovery step, elimination of the pivoting point

composed by the phenylalanine cluster (F481A/F482A) will destroy the conformation

of the relay-helix region in the pre-recovery state. In order to probe the principle of no

significant differences showed in the relay-helix region between the wild type and

mutants in the pre-recovery state. We analyzed the dynamic property of the

pre-recovery conformation by eliminating the pivoting point. We collected the

backbone torsion angles Φ and Ψ of all residues according to equation (7). The

averaged amplitudes of the torsion angle dynamics (δ) of the relay-helix in the

pre-recovery state for the wild type and mutants are shown in Figure 20. The mobility

of residues in the wild type and mutants is very similar to each other in the relay-helix
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region except for Ψ491 and Φ492, which are twice as mobile as the others in this

region. The mobility of the Φ and Ψ angles of the double mutants (F481A/F482A) at

the pivoting point is not changed compared to the wild type. However, the averaged

amplitudes of the mobility increase more than 50% at the position of (Ψ486/Φ487)

and (Ψ488/Φ489) in the double mutants (F481A/F482A). Meanwhile, the averaged

amplitudes of the Ψ491/Φ492 in the double mutants (F481A/F482A) drop to 50%

compared to the wild type and a similar effect was detected in the single mutant

(F652A). These results suggest that role of the fulcrum is more than just being a

pivoting point in the seesaw mechanism, but it also can rearrange the strains along the

relay-helix at the beginning stage of the recovery step.

Figure 20: Averaged amplitudes of the torsion angle changes in the relay-helix of
the pre-recovery state. The wild type is represented by ( ). The triangles ( )
represent double mutants (F481A/F482A) in panel A, and single mutant (F652A) in
panel B.

4.2.2 Exploring transition pathway with free energy profile in the recovery step

In order to investigate the mechanism of seesaw-like movement of the recovery step,

1MMDwild and 1VOMwild represented the pre-recovery state and post-recovery states

respectively, were used to simulate the transition pathway by using the forced

molecular dynamics (NEB and umbrella sampling). We explored a possible transition

pathway of the recovery step with related intermediate states, which combined with

related free energy profile were used to unveil the potential mechanism of the

seesaw-like motion. In our results, the free energy of the pre-recovery state (-16.3
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kcal·mol-1) is 5.02 kcal·mol-1 higher than that of the post-recovery state (-21.32

kcal·mol-1) and the activation free energy of the recovery step is 10.15 kcal·mol-1. It

means that the pre-recovery state is not as preferred as the post-recovery state. Two

obvious free energy wells were discovered and named as intermediate state1 (IM-1:

-17.4 kcal·mol-1) and intermediate state2 (IM-2: -15.84 kcal·mol-1). These two energy

wells point out that there might be at least two relatively stable intermediate sates

during the recovery step (see Figure 21). The corresponding phases can be dug out

along the transition pathway, referring to the free energy distribution. According to

these intermediate states and related free energy profile, three energy-based transition

phases were determined along the pathway, which is a great assistance for us to

analyze the conformational changes of myosin functional regions and to deduce the

possible mechanism of the recovery step.

Figure 21: Free energy profile combined with structural changes in the recovery
step. X-axis is a defined torsion angle represented by the alpha carbon atoms of
residue Gly684, Arg689 and Ala748 over the recovery step. This angle represents the
lever arm moving from the "down" to the "up" postion. Two intermediate states
(called IM-1 and IM-2) with different free energies were colored by yellow and green
points on the free enegy curve. Two end states of the recovery step with 5.02
kcal·mol-1 (pre-recovery state and post-recovery state) were colored by pink and blue
points on the free enegy curve. Four box-colored myosin structures represent two end
states and two intermediate states to their correspongding color points on the curve.
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4.2.3 The dynamic similarity assessment of structures in the recovery step

In order to investigate the conformational changes of myosin along the transition

pathway, the motional similarities of the two intermediates (IM-1 and IM-2) and the

two end states were analyzed with the essential motional analysis on the basis of the

root-mean square inner product (RMSIP). The motional similarity of two trajectories

can be expressed by the RMISP value of 0~1, which presents a low (0) and high (1)

motional similarity, respectively. Our results, with all the values ranging from 0.6 to

0.9 are acceptable for further evaluation since even in the case of two identical

macromolecules, it is difficult to achieve with the similarity value of 1, if the

trajectories collected with the simulation time less than 10 ns. The similarity of

essential motions between pre-recovery and post-recovery states resulted in a value of

0.59 suggests that the same structure adopted different conformations (see Table 7).

Transition from the pre-recovery state to the IM-1 state only accounted for ~25% in

the rotation angle of the converter domain of the entire recovery step (see Figure 21).

The essential motion similarity between the IM-1 state and the post-recovery state is

0.72 similar to the value of 0.69 calculated between the IM-1 state and the

pre-recovery state. Result implies that the conformation of the IM-1 state is almost at

the middle point of the recovery step in structure. By comparing with only ~37%

converter domain rotation from the pre-recovery state to the IM-1 state, ~50%

conformational changes in myosin functional regions were occurred in the first phase.

Because the rotation of the converter domain contributes most of the conformational

changes in the recovery step, ~50% conformational changes are not only from the

rotation of the converter domain, but also they are from other myosin functional

regions. Transition from the IM-1 state to the IM-2 state accounted for ~36% in the

rotation angle of the converter domain of the entire recovery step. The essential

motion similarity between the IM-2 state and the IM-1 state is 0.79 as similar as the

value of 0.81 calculated between the IM-2 state and the post-recovery state. Result

implies that the conformation of the IM-2 state is almost at the mid point of transition

pathway from the IM-1 state to the post-recovery state, which indicates ~25%
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conformational changes in myosin functional regions were observed in the second

phase. In the third phase, we found ~27% converter domain rotation and ~25%

conformational changes in myosin functional regions. The conformational transition

from the IM-1 state to the post-recovery state suggests that the myosin

conformational changes are mainly devoted by the converter domain rotation.

Our results showed that a three-phase model deduced on the basis of a related energy

profile and two intermediates is different from the previously demonstrated

seesaw-model by Fischer with only two phases [39]. By comparing with two different

models and according to results from the essential motional analysis, we can

speculate that our first phase with large conformational changes including converter

domain rotation and structural rearrangement of other functional region, can be

regarded as alike as the seesaw-like motion phase of Fischer's model. Conformational

changes occurred in the second and third phases of our model are mainly dedicated

from the converter domain rotation, which is almost equal to the unwinding phase of

Fischer's model [39]. The separation of our second phase from Fischer's model is due

to the related free energy profile and two intermediate states of the recovery step.

Table 7: RMSIP comparison in different states of the recovery step

Pre-recovery IM-1 IM-2 Post-recovery

Pre-recovery 0.88 0.69 0.65 0.6
IM-1 0.85 0.79 0.72
IM-2 0.86 0.81

Post-recovery 0.9

The number is the RMSIP value between different states of the recovery
step, which was calculated on the basis of the MD trajectories and collected
from the top ten eigenvectors.

4.2.4 Discussion

The phenylalanine fulcrum of the relay-helix serves as the pivoting point of the

seesaw [39]. In our studies, two different mutations (F481A/F482A and F652A) were

introduced to investigate the functional role of this pivoting point. Results verified the
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essential role of this phenylalanine cluster in the recovery step by the two mutants

with astonishingly identical effects. Lack of this phenylalanine fulcrum diverts the

relay-helix into a false conformation in the post-recovery state, but no significant

differences were observed between the structures of the wild type and the mutants in

the pre-recovery state. It suggests that this fulcrum-based seesaw-like motion is more

effective in the middle or at the end of the recovery step, but it is less significant in

the beginning stage of the recovery step. We investigated the dynamic property of the

residues in the relay-helix to check what kinds of influences occurred by the

elimination of the pivoting point. The mobility of the backbone residues along the

relay-helix is relatively low in the pre-recovery state, except for a highly mobile part

(Ψ491/Φ492) in the kink region. The flexibility of the pivoting point in these two

mutants is not perturbed. However, highly mobile parts were shifted to Ψ486/Φ487

and Ψ488/Φ489 by a few amino acids away from the pivoting point in the recovery

step. This means that constrains along the relay-helix are rearranged by the

elimination of the pivoting point in the seesaw-like motions. These results suggest

that the role of the fulcrum is more than just a pivoting point in the seesaw

mechanism. It can also constrain the relay-helix to unwind in the later phase of the

recovery step.

Experimental results showed that in the motor domain of the wild type the free energy

change of the recovery step is around ΔG= -9.4KJ·mol-1 based on the rate constants

of pre-recovery to post-recovery transition is ~1000 s-1(kobs=k3a+k-3a) with the

equilibrium constant close to 45 at a temperature of 296K in the ATP-bound state

[138]. The calculated free energy of the pre-recovery state is higher than that of the

post-recovery state, and it is also agreed with the experimental results that the

post-recovery state is more preferable than the pre-recovery state. However, the

calculated energy difference between the pre-recovery state and post-recovery state is

-5.02 kcal·mol-1 with twice as high as the one estimated from experiments. The reason

might be the approximated nature of the reaction coordinates while using the PMF

calculations. Fortunately, the free energy calculation of the recovery step has the same

order of magnitude for both experimental and PMF results. Macromolecular
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transition pathway simulations combined with the free energy calculations should be

performed with the utmost caution when we use NEB with the umbrella sampling for

the conformational discovery and the PMF method for the free energy calculation.

Because a sophisticated conformational change cannot be easily described merely

with distances, angles, and some sub-groups constrains by only using the umbrella

sampling method [114]. With an assistance of the pre-predicted transition pathway by

using the NEB method, a minor difference in the neighbor transition states can be

easily and trustily simulated by umbrella sampling, which is really necessary to

deduce a reasonable mechanism of the recovery step.

On the basis of our essential motional analysis, we deduced a three-phase structural

model with the related energy profile which is different from Fischer's model that the

seesaw-like motion occurred in the first phase is hindered in the second unwinding

phase [39]. The first phase (from pre-recovery to IM-1) in our simulation is similar to

the seesaw phase, which is a relay-helix coupled unbending transition. Our mutants

results suggest that the fulcrum-based seesaw-like motion is more effective in the

middle or at the end of the recovery step, but it is less significant in the beginning

stage of the recovery step because the hydrogen bond cluster

(γ-phosphate~Gly457~Asn475) is not formed in the pre-recovery state (from A to A'

in Figure 22). The start of the seesaw-like motion is particularly dependent on the

formation of the hydrogen bond cluster, which marked with transition A' state with

the highest free energy in the recovery step. From state A to state A', myosin

undergoes 18% conformational changes referred to the RMSD calculation between

the state A' and the pre-recovery step and coupled with 14% converter domain

rotation. This hydrogen bond cluster accelerates energy transmission to overcome the

activation energy (from A to A' in Figure 22) and to achieve the purpose of later

myosin conformational changes. After overpass this activation energy, the converter

domain undergoes 23% seesaw-like motion coupled with myosin 32% conformational

changes according to the RMSD calculation in the first phase (from the pre-recovery

state to the IM-1 state or from A state to B state in Figure 22), which lead to the IM-1

state in a middle transition structure of the recovery step based on RMSIP calculation
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of the essential motional analysis. Although by comparison the intermediate state of

Fischer's model to our state B (IM-1) structurally, we find that they have quite similar

conformation in both nucleotide binding pocket and the converter domain, but this

intermediate state as the mid state with only 37% converter domain rotation was not

demonstrated in Fischer's model.

The second phase from IM-1 to IM-2 (from B to C in Figure 22) is unveiled in our

simulation based on the unearthed lower energy well, which was only elaborated in

the Fischer's model with limited conformational changes [39]. Fischer suggests that

some indispensable side-chain rearrangements occurred in this phase is resulted from

substantial conformational changes sterically hindered as long as the relay-helix

seesaw-like motion is not completed. We found also some structural rearrangements

and a special hydrophobic interaction formed between Phe487 and Phe506 in this

phase, which results in a close compact between the relay-loop and the relay-helix. In

this phase, 31% myosin conformational changes are observed by referring to the

RMSD calculation combined with 36% converter domain further-up rotation. We

speculate that myosin conformational changes occurred in this phase are mainly

resulted from the contribution of newly formed Phe487-Phe506 hydrophobic cluster

impelled the converter domain further-up rotation.

The last phase is from IM-2 to post-recovery step (from C to D in Figure 22) in our

model. Interaction of the Phe487/Phe503-based hydrophobic cluster is gradually in

enhanced and shifted from a solvent-exposed to myosin buried position, which causes

myosin undergoing 19% conformational changes according to the RMSD calculation

and the C-terminus of the relay-helix further-up rotation provoking 27% converter

domain unwinding via the SH1 helix movements. However, Fischer did not regard

Phe487/Phe503 hydrophobic cluster shifting in our third phase and it closely packing

with assistance of some indispensable structural rearrangements in our second phase

as separated phases since they do not have any results consulting to the related free

energy profile of the recovery step.
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Figure 22: A three phase coupling mechanism is combined with free energy in
the recovery step. The left panel shows the free energy profile with two intermediate
states and one transition state. Five color points represent pre-recovery state (A),
transition state (A'), intermediate state-1 (IM-1: B), intermediate state-2 (IM-2: C)
and post-recovery state (D). Similar color points represent same states based on the
RMSD calculation in the right panel. In the middle panel, conformation of the
relay-helix and the converter domain of myosin boxed in different colors
corresponding to five various states in both left and right panel. (From A to A'):
Gly457 moved toward the γ-phosphate forms a hydrogen bond cluster
(γ-phosphate~Gly457~Asn475). (From A' to B): This hydrogen bond cluster pulls the
relay-helix unbending based on the seesaw-like motion. (From B to C): Phe503
rotation formed a hydrophobic interaction with Phe487 results in a close compact
between the relay-loop and the relay-helix to impel the converter domain further-up
rotation. (From C to D): Interaction of the Phe487/Phe503-based hydrophobic cluster
is gradually in enhanced and shifted from a solvent-exposed to myosin buried
position, which causes the converter domain unwinding to its final position via the
SH1 helix movements.
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CHAPTER 5: The Communication mechanism upon the power

stroke discovered from a novel functional region of myosin

5.1 Introduction

Myosin bound to the actin filament results in a lever swing, which is called power

stroke [24]. The cyclic actin binding and release, alternating with the swing of the

myosin lever, define the mechanical cycle of actomyosin. This mechanical cycle is

coupled with a chemical cycle in nucleotide binding, hydrolysis and product release.

This chemomechanical cycle of actomyosin described different myosin structures in

PDB code are assigned to different states of the Lymn-Taylor cycle (see Table 8).

After ATP hydrolysis, myosin in the up-lever state starts to bind to actin in a weak

actin-binding state (actin-myosin·ADP·Pi) that are described in the state "VI" of the

Lymn-Taylor cycle in Table 8 [139]. The actin binding induces the up-to-down lever

swing of myosin depicted from state VI to state I of the Lymn-Taylor cycle in Figure

4 that is followed by the release of hydrolysis products [140, 141].

Table 8: Assignment to the different states of myosin in the Lymn-Taylor cycle

State (PDB code) SW-I SW-II
Actin-binding

cleft
β-Sheet P-loop Relay-helix

Converter

domain

"I" (1Q5G,2OVK)

(Rigor, Apo-state)
Open C1 Close Twist Up Straight Down

"II" (1MMD)

(Pre-recovery )

(ATP bound)

Closed Open Open No- twist Down Straight Down

"III" (1VOM)

(Post-recovery)

(ATP bound)

Closed C2 Open No- twist Down Kink Up

"IV" (1VOM-m*)

(Bound to actin)

(ADP·Pi)

Closed C2 Closed No- twist Down Kink Up

The values of the seven movable elements that have been identified for the states
defined in the Lymn-Taylor cycle. C1 and C2 are two different forms of closed
conformation found in the rigor and the post-recovery states. The assumed properties of
conformation (shown in italics) are extrapolated from the adjoining states in the
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Lymn-Taylor cycle. 1VOM-m*: 1VOM with its ATP was replaced by ADP·Pi.

After ATP hydrolysis, if the up-to-down lever swing occurs in an actin-detached state

of myosin (called reverse recovery step (see Figure 23 pathway 1st)), the

chemical-energy expenditure is not accompanied by the production of useful

mechanical work. This lever swing in actin detached state is the kinetically

rate-limiting step of the ATPase cycle if myosin does not attach to actin during the

cycle [63]. We note that the up-to-down lever swing with ADP·Pi-bound of myosin in

the reverse recovery step is four orders of magnitude slower than the down-to-up

lever swing with ATP-bound of myosin in the recovery step. Furthermore, the reverse

recovery step is a reversible step in the absence of actin while power stroke occurs in

the actin-attached form and becomes irreversible. The ratio of the effective power

stroke over the reverse recovery step is accelerated up to two orders of magnitude by

the actin binding in the ADP·Pi state of myosin. Consequently, the predominant

reaction flux is diverted to an actin-attached process, even though it is a

thermodynamically less favorable pathway because of the low actin-binding affinity

of the actomyosin complex. In addition, there is another possible pathway if the

actin-binding cleft closes before myosin binds to actin (pathway 2nd in figure 23).

This is a very low possibility pathway since the open-closed transition of the

actin-binding cleft is thermodynamically unfavorable (K < 0.01) in actin-detached

state [56].

The effective power stroke occurs only when the myosin head is bound to actin. An

efficient power stroke is generated through various pathways, which can be

determined by distinct energy profiles and mechanical performances of the system.

Whatever, three coupled events are viewed as 1. Myosin head binding to actin, 2.

Structural changes resulted from weak to strong actin binding, i.e. actin-binding cleft

open-closed transition and 3. The lever swing induced force generation. The power

stroke starts in a weak actin-binding state (actin·myosin·ADP·Pi) of myosin in an

open cleft and up lever position. The pathway represented by pathway 3rd in figure 23

is the so called the weak-to-strong actin-binding transition with the actin-binding cleft
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closure occurring first and then followed by the lever swing [140]. Alternatively, the

lever swing might occur first while the actin-binding cleft is still in the open state and

the myosin head binds weakly to actin (see Figure 23 pathway 4th). The subsequent

strengthening of the actomyosin interaction serves as a stabilizing role for the

post-power stroke state that promotes the cleft closure more rapidly than that of

myosin detaching from actin [143]. Both the pathway 3rd and pathway 4th could

convey significant fluxes based on the available kinetic and thermodynamic data,

which can push the flux of the effective power stroke through parallel reaction

pathways [64]. The ratio of the productive power stroke (pathway 3rd and 4th) over the

reverse recovery step (pathway 1st and 2nd) is regulated by allosteric activation of

actin (known as actin activation) [64]. Actin activation is not necessary for exerting

the functions of myosin motor domain, but it determines the energy efficiency of the

mechanochemical system. However, the molecular mechanism and structural

background of the actin-induced conformational changes in myosin also remain

unrevealed.

Figure 23: Four distinct pathways in the myosin power stroke. The initial state of
the pathway is myosin in open cleft and up lever state which is detached from actin. If
the lever swing occurs before the actin binding, a reverse recovery step is generated
(pathway 1st). In the absence of actin, the actin-binding cleft closure starts before the
actin binding, which is an unfavorable process (pathway 2nd). Pathway 3rd and 4th are
parallel to each other. Both processes start in the actin bound myosin open cleft and
up lever state and end by the actin bound myosin closed cleft and down lever state.
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Atomic structure of actomyosin is still not available. Atomic structure of actomyosin

is still not available. Only the high resolution electron micrographic model of rigor

actomyosin complex has been determined in 14 Å resolutions [35, 43] and in silico

docking simulations [45, 49, and 144]. The strength of actin-binding affinity is

regulated by the closure of the actin-binding cleft that is formed by the upper and

lower 50 kDa domains of myosin [143] (see Figure 24). The CM-loop

(cardiomyopathy loop) and loop 4 from the upper 50 kDa domain of myosin are

mainly bound to the C-terminal domain of actin (see Table 9). Mutations in these

myosin regions abolish the interactions between the two loops and actin in the strong

actin-binding state (closed cleft of myosin), while without significantly affects to the

weak actin-binding state (open cleft of myosin) [144, 145]. In the lower 50 kDa

domain of myosin, two loops (helix-loop-helix and loop 2) as the most predominant

regions are also involved in actin-binding interface. Mutations in these loops lead to

adverse impacts in both weak and strong actin-binding state and in actin activation

[52, 53, 146 and 147]. On the other hand, actin also contains various myosin binding

regions. The major myosin-binding area of actin is residing in subdomain I that

include parts of the C- and N-terminus of actin. If the four conserved and negatively

charged residues at the beginning of the N-terminal region of actin are deleted or

mutated to neutral amino acids, the actin binding is not able to increase the basal

ATPase activity of myosin [148, 149]. So far, these four residues are usually missing

in the existing models of actomyosin structures preventing the studies to reveal the

mechanism of actin activation related to the N-terminal segment of actin [44].

Residues principally involved in the binding interface between actin and

Dictyostelium myosin II are listed in Table 9.

Our aim was to reveal whether the up-to-down lever swing in the power stroke occurs

similarly to that of in the recovery step as it was supposed by Fischer and Holmes [39].

Furthermore, what conformational changes are induced by the actin binding in the

different states of myosin? Based on the recent experimental technologies, the atomic

resolution of the weak actomyosin complex cannot be approached, because of its short

lifetime in the enzymatic cycle. Thus, we modeled its structural and dynamic features
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by in silico simulations.

Figure 24: Structural model of weak and strong actomyosin complexes. The left
picture is actin-attached myosin open cleft and up-lever arm state (weak actin-binding
state or the prepower-stroke actomyosin state). The right picture is actin-attached
myosin closed cleft and down-lever arm state (strong actin-binding state or the
postpower-stroke actomyosin state). The actin-binding cleft is highlighted by a green
circle in the left picture. These color-codes for the functional subdomains of myosin
are represented by drawing method of cartoon (Green: central β-sheet; Orange: Loop
4; Purple: CM-loop; Dark ice blue: loop 2, Cyan: relay-helix; Yellow: lower 50 kDa
domain; Red: upper 50 kDa domain; Light ice blue: converter domain; and Blue:
N-terminus of actin).

Table 9: Areas of contact between actin and Dictyostelium myosin II
Contact Myosin Actin Comments

Loop 4 360-370 145-149,
328-335

Contact between the exposed loop 4 in the
upper 50 kDa domain and actin.

CM-loop 390-410 322-333 Contact between the exposed CM-loop in the
upper 50 kDa domain and actin.

Activation
loop

519-523 1-4 Salt-bridge between Arg520 and four negtively
charged residues at N-terminus of actin.

Lower 50
kDa domain

519-555 144-148,
339-354

Hydrophobic interaction between Lower 50
kDa domain and actin.

Loop 3 560-570 79-92,
91-100

Electrostatic interaction between loop 3 and
the second actin monomer.

Loop 2 620-630 1-4, 22-27 Contact between two lysines and actin.
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We remodeled the weak and the strong actomyosin complexes by using complete

actin trimer structure which also contains the N-terminal residues. The weak and

strong actin-binding states were obtained through protein-protein docking and long

time-range molecular dynamics relaxations while the binding free energies were

calculated from these models. The binding affinity of the actomyosin complex is

represented by its binding free energy. The lower binding free energy of the strong

actin-binding state is due to the more residues involved in the binding surface than

that of in the weak actin-binding state. The binding interface analysis of different

actomyosin complexes implies structural orientations and the interaction patterns of

loop 2 probably coupled with actin-binding cleft closure. The recently discovered

activation loop appears distinct characteristics in the weak and strong actin-binding

state. The conserved positive tip of the activation loop (Arg520) interacts with four

negatively charged residues in the N-terminus of actin in various binding patterns of

weak and strong actin-binding state [55]. Three specific myosin conformational

changes induced by actin binding were observed in the weak actin-binding state: 1.

The partial closure of the actin-binding cleft, 2. The further up rotation of the lever

arm and 3. Further closure of SW-II loop. The R520Q mutation in myosin prevented

these conformational changes. Motional correlations suggested that motions of the

activation loop are correlated with four mainly functional regions of myosin (loop 2,

the N-terminus of the relay-helix, the SW-II loop and the "prestrut" region). When the

R520Q mutation was introduced to myosin, the motional correlations between the

activation loop and other four regions decreased to the same level as that of in the

absence of actin. Two communicational pathways were speculated between the actin

binding regions and the myosin nucleotide binding site, which might be a reasonable

mechanism of the actin-induced myosin conformational changes at the initial stage of

the power stroke.
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5.2 Results

5.2.1 MD simulations of different actomyosin states

The missing residues of the applied four myosin structures (1VOM·Mg·ADP·Pi,

1MMD·Mg·ADP·Pi, 1Q5G and 2OVK) were replaced by homology modeling. Then

they were minimized and relaxed by molecular dynamics. Resulted structures were

named as 1VOMmd, 1MMDmd, 1Q5Gmd and 2OVKmd, respectively. In the course of

total 100 ns long MD simulations the four structures converged within the first 3.5 ns

(see Figure 25). Structural fluctuations were equilibrated in the RMSD value of

2.33±0.16Å, 2.27±0.17Å, 2.14±0.15Å and 2.68±0.16Å for 1VOMmd, 1MMDmd,

1Q5Gmd and 2OVKmd respectively. All structures were relaxed to their equilibrium

states up to 5.5 ns in MD simulations. Compare with crystal structures no significant

backbone rearrangement occurred during the molecular dynamics simulation.

Figure 25: Four myosin structures before and after MD simulations. Different
regions of myosin structures are color-coded (Red: upper 50 kDa domain; Yellow:
lower 50 kDa domain; Green: β-sheet; Orange: loop 4; Purple: CM-loop; Ice blue:
converter domain; Cyan: relay-helix; White: others). RMS deviations were drawn as a
function to the first 10 ns MD simulations.
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5.2.2 Protein-protein docking and validations in different actomyosin complexes

The relaxed myosin structures were docked to actin trimer as described in the

Materials and methods section. In order to identify the structural background of actin

induced myosin conformational changes, the specific actin-myosin interactions were

characterized. First we analyzed these interfaces obtained from protein-protein

docking procedures. Major docking results of 3A-1VOMdock, 3A-1MMDdock,

3A-1Q5Gdock and 3A-2OVKdock are summarized in Table 10. The ensemble of

populated structures in each of actomyosin complexes shows an approximate 5~6Å

RMS deviations based on their backbones. The intermolecular energies EVWD (van der

Waals), EELEC (electrostatics) and EDESO (desolvation) are the main contributions to

the HADDOCKSCORE. The ambiguous interaction restraint energy (EAIR) with similar

values around 40 kcal·mol-1 in four actomyosin complexes is only a minor impact on

the total energy. Averaged values of the BSA (buried surface areas) in the four

actomyosin complex are between 1624 Å2 and 1836 Å2. The HADDOCKSCORE

between 3A-1VOMdock and 3A-1MMDdock is principally different in the value of

EVWD, but not the value of EELEC, EDESO, EAIR and BSA, which indicate that there is no

different between these two actomyosin complexes in their binding patterns.

3A-1Q5Gdock shows comparable values in the EVWD, EDESO and EAIR, but a higher

value in the EELEC (-262.4 ± 41.7 kcal·mol-1) and a larger BSA (1757.7 ± 106.2 Å2) to

those above two complexes. The HADDOCKSCORE of 3A-1Q5Gdock (0.92 ±0.1) is

higher than that of 3A-1VOMdock (11.4 ±2.3) and 3A-1MMDdock (8.0 ±2.1), which

suggests distinct binding patterns are existed between 3A-1Q5Gdock and other two

actomyosin complexes. 2OVK in the docked complex 3A-2OVKdock comes from the

squid with highly structure homologous to the Dictyostelium myosin 1Q5G, which

lead to a similar binding pattern between 3A-2OVKdock and 3A-1Q5Gdock.

Table 10: HADDOCK results of distinct actomyosins
Name[A] 3A-1VOMdock 3A-1MMDdock 3A-1Q5Gdock 3A-2OVKdock

HADDOCKSCORE
[B] 11.4 ±2.3 8.0 ±2.1 0.92 ±0.1 -0.43±0.4

Rmsd (Å)[C] 6.2 ± 1.5 5.2 ± 1.1 4.9 ± 1.2 5.6 ± 1.5
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N [D] 18 10 11 17

EVDW
[E] (kcal mol−1) -37.1 ± 4.2 -39.8 ± 3.1 -40.3 ± 4.1 -40.9 ± 4.0

EELEC
[E] (kcal mol−1) -242.2 ± 33.3 -239.2 ± 26.8 -262.4 ± 41.7 -275.9 ± 96.0

EAIR
[F] (kcal mol−1) 45.1 ± 2.9 43.0 ± 3.0 39.2 ± 2.3 41.7 ± 3.1

EDESO
[G] (kcal mol−1) 92.4 ± 9.4 91.3 ± 11.7 89.7 ± 10.7 91.5 ± 9.1

BSA (Å2)[H] 1624.3 ± 113.9 1674.8 ± 105.8 1757.7 ± 106.2 1836.4 ± 119.8

RMS Deviation (Å)[I] 7.2 ± 2.7 6.3 ± 2.3 4.7 ± 1.7 5.5 ± 2.0
[A] The actin trimer docked to four different averaged myosins. [B]The
HADDOCKSCORE is calculated according to the equation (6). [C] RMS deviations are
calculated on the basis of their myosin backbones. [D]Number of collected structures
in given ensembles. [E]Intermolecular energies (van der Waals and electrostatics). [F]

ambiguous interaction restraint energy. [G]Desolvation energy. [H] Buried surface area.
[I] RMS deviations are calculated between the averaged myosin structure of each MD
relaxed actomyosin ensembles and myosin in the Holmes's model without their
C-terminus been considered.

Four actomyosin complexes were obtained by protein-protein docking, but the exact

binding interface was difficult to explore due to the existing spatial resistance

between the actin trimer and myosin. Therefore, 20 ns NPT structural relaxations

were carried out in MD simulations by referring to Figure 11 and 12. In order to

validate the MD relaxed actomyosin complexes, we introduced an overlapping

method based on the electron microscopy density map (EM-map) of a modeled strong

actin-binding state (postpower-stroke actomyosin state) named as Holmes's model

[43]. The grid space consisting of F-actin and myosin was generated from EM-map

based on Holmes's rigor actomyosin complex. If we overlap our relaxed actin timer

into the grid space of F-actin, then the structural deviations between myosins in our

four MD relaxed actomyosin complexes and the grid space of myosin from EM-map

are able to be calculated. One thing to note is that results of calculated RMS

deviations are merely based on myosin without its converter domain. By the way, in

later parts of this thesis, some of our results will often refer or compare to this

Holmes's model. The major structural deviations of the simulated structures from the

rigor EM map were found in the position of loop 4 and CM-loop in the upper 50 kDa

domain of myosin (see Figure 26). In 3A-1VOMmd, loop 4 and the CM-loop protrude

out of the EM-map because of the open actin-binding cleft (see Figure 26,

3A-1VOMmd, arrow 1 and arrow 2). Parts of the relay region and myosin lever related
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converter domain are also out of the EM-map (see Figure 26, 3A-1VOMmd, arrow 3

and arrow 4). These differences are what we expected due to the open cleft and

up-lever conformation in the 3A-1VOMmd is different from closed cleft and

down-lever conformation in the Holmes's model (rigor state). In 3A-1MMDmd, the

straight relay region and the converter domain are involved in the EM-map, but loop

4 and the CM-loop in upper 50 kDa domain with an open actin-binding cleft are

similar to those of 3A-1VOMmd (see Figure 26, 3A-1MMDmd, arrow 1 and arrow 2)

and parts of the myosin N-terminus are shifted out of the EM-map (see Figure 26,

3A-1MMDmd, arrow 3). As we expected in 3A-1Q5Gmd, which represents a rigor

actomyosin complex, not only the relay region and the converter domain, but also

loop 4 and the CM-loop are completely involved in the EM-map. These results prove

that our non-directed protein-protein docking and MD simulations create a similar

conformation like that determined via the molecular dynamics flexible fitting (MDFF)

in the Holmes's model [43]. 3A-2OVKmd also as rigor actomyosin complex appears in

a similar conformation to 3A-1Q5Gmd with most of its structures deeply buried in the

EM-map. Since loop 2 is ten residues longer in squid myosin than chicken and

Dictyostelium myosin II, 3A-2OVKmd was not able to completely fit the EM-map in

this region (see Figure 26, 3A-2OVKmd arrow 1). The extended loop 2 in the squid

actomyosin complex (3A-2OVKmd) is difficult to fold into the EM-map based

structural envelop without forced MD simulations.

Quantitative validation can be evaluated on the basis of the backbone RMS deviation

of myosin among four MD relaxed actomyosin complexes and Holmes's model. In

Table 10, 3A-1VOMmd (7.2 ± 2.7 Å) shows a similar RMS deviation to 3A-1MMDmd

(6.3 ± 2.3 Å). 3A-1Q5Gmd better fit to the EM-map than 3A-1VOMmd and

3A-1MMDmd has a lower RMS deviation value of 4.7 ± 1.7 Å similar to the

3A-2OVKmd (5.5 ± 2.0). Long and unfolded loop 2 in 3A-2OVKmd makes the RMS

deviation value of this squid actomyosin complex larger than the Dictyostelium

actomyosin 3A-1Q5Gmd. As the EM-map was created from the chicken myosin in

rigor state (Holmes's model), 3A-1Q5Gmd and 3A-2OVKmd with their myosin in the

rigor-like state (closed actin-binding cleft) are better overlapped than 3A-1VOMmd
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and 3A-1MMDmd (open actin-binding cleft).

Figure 26: MD relaxed four docked actomyosin complexes. Actin-trimer is colored
by green, red and yellow in each monomers and myosin is colored by blue in four
actomyosin complexes. White arrows show differences between four MD relaxed
actomyosin complexes and Holmes's model based grid space generated from the
EM-map. The blue segments of myosin are entirely involved in the EM-map, but the
white parts as are still outside of the EM-map.

To summarize the results in this section, the MD relaxed 3A-1VOMmd and

3A-1MMDmd as the beginning and transition states of the power stroke are deemed to
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be weak actin-binding states, whereas the 3A-1Q5Gmd and 3A-2OVKmd with a better

fitting to the Holmes's model are considered closely to the end states of the power

stroke in a strong actin-binding state.

5.2.3 Evaluation of the weak and strong actin-binding states

In order to evaluate the differences of the binding affinity in the weak and strong

actin-binding states, the binding free energy was calculated on the basis of the

MM/PBSA method [101]. This method is highly insightful as it provides various

components for the binding free energy, including the van der Waals energy and

electrostatics interactions, the non-polar components of the solvation energy, and

entropy [133].

Results of binding free energy and binding surface analysis were summarized in Table

11 and Table 12. In 3A-1VOMmd and 3A-1MMDmd (open actin-binding cleft states),

the number of residues involved in the binding surface is similar to each other (see

Table 12), therefore, the binding free energy changes only influenced by the lever arm

up-to-down movements which resulted in less than 1 kcal/mol difference (see Table

11). The binding free energy around -11~-13 kcal·mol-1 in both 3A-1Q5Gmd and

3A-2OVKmd is much lower than that of 3A-1VOMmd and 3A-1MMDmd, which are

due to fact that more than ten extra residues are involved in the rigor states (see Table

12). In addition, 3A-1Q5Gmd and 3A-2OVKmd have similar numbers of residues and

atoms in the binding surface to those in the Holmes's model. These results suggest

that the higher binding affinity comes mainly from the movements of loop 4 and the

CM-loop in the upper 50 kDa domain of myosin. This actin-binding cleft closure on

behalf of the weak-to-strong actin-binding transition with ~4 kcal·mol-1 of free energy

decreases is also confirmed with previous kinetic experimental results [150]. The

binding free energy of the 3A-2OVKmd complex is ~1 kcal/mol higher than that of the

3A-1Q5Gmd complex, which is probably caused by the different conformations of

loop 2 regions between squid and Dictyostelium myosin. Table 11 reveals that four

actomyosin complexes have non-negligible differences in the van der Waals energy
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and electrostatic interactions, which are nearly -20~-30 kcal·mol-1 and -10~20

kcal·mol-1 of energy differences between the weak actin-binding states (3A-1VOMmd,

3A-1MMDmd) and the strong actin-binding states (3A-1Q5Gmd, 3A-2OVKmd).

These binding free energy results suggest that the increasing actin-binding affinity in

the power stroke comes mainly from the upper 50 kDa domain moving towards the

lower 50 kDa domain. This was also demonstrated by previous results that the

weak-to-strong actin binding is based on the actin-binding cleft closure, and is not

related with the myosin lever's up-to-down movement [151].

Table 11: Binding free energies of different actomyosin complexes
ΔEvdw [B] ΔEele [C] ΔEPBSA [D] ΔESASA [E] ΔH[F] TΔS[G] ΔGbind

[H]

Name[A]

(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

3A-1VOMmd -127.3±9.6 -103.4±8.8 230.0.±16.6 -13.5±1.6 -14.1±1.3 -6.5±0.6 -7.6±0.8

3A-1MMDmd -136.9 ±9.9 -111.3 ±7.6 248.7±17.4 -15.7±1.5 -15.2±1.3 -6.8±0.9 -8.4±1.1

3A-1Q5Gmd -152.2±11.7 -128.3±10.0 281.9±19.2 -20.9±1.3 -19.6±1.2 -7.1±0.8 -12.4±1.3

3A-2OVKmd -167.3±12.4 -129.2±11.0 300.1±16.3 -22.4±1.6 -18.9±1.9 -7.3±1.1 -11.4±1.0
[A] Four MD relaxed actomyosin complexes. [B] Van der Waals contributions. [C]

Electrostatic energy contributions. [D] Polar contributions to the solvation free energy. [E]

Non-polar contributions to the solvation free energy are based on the solvent-accessible
surface area. [F] Enthalpic contribution: ΔH=ΔEvdw +ΔEele +ΔEPBSA +ΔESASA. [G] Entropic
contribution (ΔS) is based on the normal-mode analysis. [H] Binding free energy is
calculated on the basis of ΔGbind=ΔH-TΔS.

Table 12: Comparisons of actomyosin complexes before and after MD simulations
Names Myosin Actin Surf-area HB SB

Ires Inat Ires Inat

3A-1VOM Docked 33 146 42 176 1477.5 13 4

MD relaxed 46 216 61 235 1997.1 30 24

3A-1MMD Docked 39 195 42 195 1678.8 4 4

MD relaxed 45 202 63 236 1994.9 24 21

3A-1Q5G Docked 41 177 55 220 1753 19 12

MD relaxed 51 238 62 271 2205.3 35 25

3A-2OVK Docked 40 133 50 164 1468 16 5

MD relaxed 60 244 69 294 2707 40 24

Holmes Model EM-map 57 230 65 271 2243.9 41 23

Ires: Residue numbers are involved in the actomyosin binding surface. Inat: Atom
numbers are involved in the actomyosin binding surface. Surf-area: The binding
surface area of actomyosin complexes. HB: Formed hydrogen bonds are involved in
the actomyosin binding surface. SB: Formed salt-bridge bonds are involved in the
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actomyosin binding surface.

5.2.4 Binding interface analysis of different actomyosin complexes

We analyzed the interfacial residues of the actin-binding surface in different

actomyosin complexes (see Figure 27). Loop 3, loop 4, the CM-loop, loop 2, and the

lower 50 kDa domain as five main regions of myosin are involved in the actomyosin

interface.

Figure 27: Actin-binding interface of myosins. These color-codes for the
actin-binding interface of myosin are presented by the drawing method of space-filled
and cartoon (Orange: loop 4; Purple: CM-loop; Dark ice blue: loop 2, Cyan:
relay-helix; Yellow: lower 50 kDa domain; Light ice blue: converter domain; Blue:
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loop 3).

Loop 3 (560-570 in Dictyostelium myosin) established significant contacts with the

second actin monomer (AC1) in all of the four actomyosin complexes. This

interaction is referred to the "Milligan contact", which has been confirmed by

Milligan's zero-cross-linking experiments [47]. We found a salt-bridge interaction

between Glu99/Glu100 of the second actin (AC1) and Arg562 of the myosin loop 3,

which has been proved as the major contribution to the Milligan contact. DNase I

binding loop of actin (residue 38-52) formed an interaction with loop 3 of myosin in

the strong actin-binding states (3A-1Q5Gmd and 3A-2OVKmd). In the weak

actin-binding states (3A-1VOMmd and 3A-1MMDmd), several H-bonds were formed

between Asn541, Thr542 of myosin and Gln49, Lys50 of the DNase I binding loop of

actin, which have also been mentioned by Khaitlina SY [152]. In addition, some other

contacts in myosin/actin e.g., Lys546/Met44, Ser564/Arg95 and Lys565/Tyr91 were

also found in the Dictyostelium actomyosin and Holmes's model, but they were not

presented in the squid actomyosin (3A-2OVKmd) (see Table 13).

Table 13: Actin binding interface of myosin loop 3

Mysoin Actomyosin Complexes
3A-1VOMmd 3A-1MMDmd 3A-1Q5Gmd 3A-2OVKmd Holmes's model

ARG562-GLU99

LP3-SB ARG562-GLU99 ARG562-GLU99 ARG562-GLU100 LYS567-ASN92 LYS569-GLU99

92.57 93.72 96.89 87.54

LP3-HB ARG562-THR126 PHE563-ARG95 LYS567-GLU99/100 PRO570-ARG95

88.47 92.7 93.68

SER564-ARG95 SER564-ARG95 ALA571-TYR91

88.25 91.55

LYS565-TYR91 LYS565-TYR91 LYS565-TYR91 LYS572-ASP1/GLU2 LYS572-ARG95

91.5 89.3 92.1 92.1

GLU567-ARG95 GLU567-ARG95 LYS572-GLU100 ALA575-ARG95

79.75 82.96 83.7

GLU577-ARG95 GLU576-ARG95

85.69

LP3-SB: Salt-bridge bonds were formed between the myosin loop 3 and actin.
LP3-HB: Hydrogen bonds were formed between the myosin loop 3 and actin.
Numbers represent the occurrence rate of bonds above 70% in the MD simulations. In
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the type of the bonds formation, the front one and later one are residues from myosin
and actin, respectively.

Loop 4 (360-370 in Dictyostelium myosin) and the CM-loop (390-410 in

Dictyostelium myosin) showed a number of potential electrostatic interactions with

actin interfacial residues in the strong actin-binding state, which also have been

verified by Sutoh K [153]. The R405N mutation of skeletal myosin (identical to the

R402N mutation in the Dictyostelium myosin) causes a severe familial hypertrophic

cardiomyopathy and results weaker rigor actin-binding affinity [50]. This interaction

between R402 of Dictyostelium myosin and actin was found only in our strong

actin-binding state, but it was not involved in the weak actin-binding states

(3A-1VOM, 3A-1MMD). In addition, in our simulations two residues (Gly401 and

Leu399) of myosin formed hydrogen bonds with residues (Pro27 and Arg28) of actin

also only in our strong actin-binding states (3A-1Q5G, 3A-2OVK) (see Table 14).

Loop 2 (620-630 in Dictyostelium myosin), as an important interfacial region of

myosin to actin, is one of the major determinants for the weak and strong

actin-binding structures. Experimental results showed that double-alanine mutation of

loop 2 (K622A and K623A in Dictyostelium myosin) affects the actin-binding cleft

closure and the weak-to-strong actin-binding transition [147]. So as to discover

detailed functional mechanism of loop 2 in silico simulations, we investigated its

structure orientations and the interaction patterns in all four MD relaxed actomyosin

complexes. In Holmes's model, these two lysines (Lys636 and Lys637) homologous

to Lys622 and Lys623 in Dictyostelium myosin play two distinct functional roles. The

conformation of loop 2 was stabilized by Lys636 via formed H-bonds. Lys637 by

moving its side chain diminished the interactions with Asp24/Asp25 of actin and

formed a strong salt-bridge bond with the residue Glu538 of myosin (see Figure 28).

In 3A-1Q5Gmd, Lys623 formed a salt-bridge bond with Asp530 of myosin

(homologous to Glu538 in Holmes's model) suggesting that the actin-binding cleft

closure was related to structural orientations and the interaction patterns of myosin

loop 2. Furthermore, Lys622 was stably connected to Asp24/Asp25 of actin with two

salt-bridge bonds. These interactions were not found in 3A-2OVKmd because of
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unusual length and conformation of loop 2 in the squid myosin. Except that, the side

chain of Lys623 moving to another direction formed a salt-bridge with Asp3 of the

actin N-terminus. In 3A-1VOMmd and 3A-1MMDmd, Lys622 merely formed a

salt-bridge bond with Asp25 of actin instead of formed with both Asp24 and Asp25.

Lys623 revealed a similar interaction pattern as its roles in 3A-2OVKmd to interact

with Asp3 of the actin N-terminus (see Table 14).

Figure 28: Interactions between N-terminus of actin and the myosin loop 2 as
well as the activation loop. These color-codes are represented by drawing method of
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cartoon (Dark ice blue: loop 2, Cyan: relay-helix; Yellow: lower 50 kDa domain;
Green: central β-sheet; Blue: activation loop; Red: N-terminus of actin; White: actin
monomer). These distances shown on this figure were measured between the
activation loop of myosin and C-terminus of actin.

Table 14: Actin binding interface of myosin upper 50 kDa domain
Myosin Actomyosin Complexes

3A-1VOMmd 3A-1MMDmd 3A-1Q5Gmd 3A-2OVKmd Holmes's model

LP2-SB GLU629-ARG28

LYS622-ASP24 LYS640-ASP3

LYS622-ASP25 LYS622-ASP25 LYS622-ASP25 LYS640-GLU4 LYS640-ASP25

89 84.38 94.16 92.47

LYS635-ASP1 LYS635-ASP1 LYS640-ASP25 LYS642-GLU334

89.4 92.34 90.34

LP2-HB SER641-ASP24 GLY635-ASP24

72.38

LYS623-ASP3 LYS623-ASP3 LYS623-SER350 ALA642-ASP24 LYS636-GLY23

82.17 78.24 85.42 75.94

LYS623-THR5 ALA643-ASP25 LYS637-SER348

75.95 88

LYS652-GLU2/4 GLY638-GLY23

92.98

LYS657-GLU2/4 LYS642-GLU334

83.67

LYS660-GLU1/2 GLY643-SER145

89.5

LP4-SB ARG371-ASP311

GLU365-ARG147 GLU373-ARG147 GLU372-LYS328

89.2 86.71 GLU372-ARG335

GLU373-ARG147

ARG371-LYS328
LP4-HB

ARG371-ILE329

ARG371-GLN314

CM-LP-SB ARG402-GLU93 LYS407-ASP25

88.21 91.3

CM-LP-HB GLY401-PRO27 GLN415-GLU334 GLU411-LYS336

ASN410-TYR337

92.91 87.24 ASN410-ARG28

GLN407-GLU334 GLY416-GLU334

92.27 82.91

LEU399-ARG28

78.59

LP2-SB: Salt-bridge bonds were formed between the myosin loop 2 and actin.
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LP2-HB: Hydrogen bonds were formed between the myosin loop 2 and actin.
LP4-SB: Salt-bridge bonds were formed between the myosin loop 4 and actin.
LP4-HB: Hydrogen bonds were formed between the myosin loop 4 and actin.
CM-LP-SB: Salt-bridge bonds were formed between the myosin CM-loop and actin.
CM-LP-HB: Hydrogen bonds were formed between the myosin CM-loop and actin.
Numbers represent the occurrence rate of bonds above 70% in the MD simulations. In
the bonds formation, the front one and later one are residues from myosin and actin,
respectively.

To summarize the results in this section, we found all those interactions in the myosin

loop 3, loop 4 and the CM-loop, which were demonstrated in previous experimental

kinetic studies using actin mutants [154-156] or myosin mutants [147, 157]. The

conformation of loop 2 is stabilized by two lysines (Lys622 and Lys623 in

Dictyostelium myosin) and interacted with Asp24/Asp25 of the actin. However,

structure orientations and the interaction patterns of the myosin Lys623 to the lower

50 kDa domain of myosin or N-terminus of actin in distinct actomyosin complexes

are probably coupled with actin-binding cleft closure. In other words, various features

of the myosin Lys623 as one of the novel findings effectively interpret the potentially

functional mechanism of loop 2 related to the weak-to-strong actin-binding

transitions.

5.2.5 Interaction of myosin activation loop with the actin N-terminal region

According to previous results, residues 530-537 (helix-loop-helix region) belonging

to the lower 50 kDa domain of Dictyostelium myosin preserve strong hydrophobic

interactions with residues 143-147 of actin [45]. Except that, we showed that

activation loop of myosin (residues 519-524) play a key role in the actin binding and

the actin activation of myosin ATPase activity in our previous experiments in the

weak actin-binding state (state IV in the Lymn-Taylor cycle, see figure 4) [55]. Two

prolines Pro529, Pro530 of the activation loop in Holmes's model are homologous to

Pro521, Pro522 of Dictyostelium myosin. Prolines are able to promote this activation

loop interacting with Leu349-Phe352 of the actin C-terminus in 3A-1Q5Gmd and

3A-2OVKmd. This interaction was assumed in strong actin-binding state by Morales
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MF [52, 53] (see Figure 28). However, this hydrophobic interaction has not been

detected in the weak actin-binding states 3A-1VOMmd and 3A-1MMDmd. These

results point out that this hydrophobic interaction probably impels myosin and actin

more closely bound to each other in the weak-to-strong actin-binding transition,

which is also a significant sign for the discrimination of the weak and the strong

actin-binding state. These results are in agreement with previous hypotheses that this

hydrophobic interaction creates expanding networks of the actin-myosin interface

during the weak-to-strong actin-binding transition [158].

We found a novel actomyosin interaction as Arg520 in the activation loop of

Dictyostelium myosin interacted with the negatively charged N-terminal segment of

actin [55] (see Table 15). It is interesting that in the protein-protein docking

procedures this interaction was not established, while it was formed spontaneously in

the first few nanoseconds during MD simulations in the four actomyosin complexes.

In Holmes's model, Arg528 of chicken myosin (homologous to Arg520 of the

Dictyostelium myosin) has no interactions with negatively charged N-terminus of

actin since this region of actin was not resolved in the model. In 3A-1VOMmd, the

interaction between Arg520 of myosin and Asp1 of actin impels Pro522 of myosin

away from Ser350 of actin with the distance of 11.05Å, i.e. a long distance between

the activation loop of myosin and C-terminus of actin prevents them from interacting

with each other. This salt-bridge (Arg520/Asp1) is also presented in the 3A-1MMDmd,

but the down-lever position of myosin induces the activation loop further approaching

to the C-terminus of actin with the distance of 8.25Å. Arg520 forms strong contacts

with residues Asp1 and Asp3/Glu4 of actin in 3A-1Q5Gmd and 3A-2OVKmd, which

promote the myosin activation loop approaching to C-terminus of actin with the value

of 6.45Å, 6.73Å, respectively (see Figure 28).

To summarize the results in this section, activation loop described above formed

strong hydrophobic interactions with the actin C-terminus in the strong actin-binding

state has been demonstrated by recent experiments [52, 53] and in silico simulations

[54], but the functions and interaction patterns of this activation loop were not

discovered in the weak actin-binding state before. The most prominent points of this
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section is that we found a novel actin-binding residue (Arg520) in the myosin

activation loop, which appears various binding patterns in different actomyosin

complexes. Salt-bridge interactions between Arg520 of myosin and four negatively

charged residues in the N-terminus of actin might be a starting engine for the

activation loop approaching to the actin C-terminus or other inner conformational

changes of myosin in the power stroke.

Table 15: Actin binding interface of myosin lower 50 kDa domain
Myosin Actomyosin complexes

3A-1VOMmd 3A-1MMDmd 3A-1Q5Gmd 3A-2OVKmd Holmes's model

ARG520-ASP1 ARG520-ASP3 LYS528-ASP1

520-LP SB ARG520-ASP1 ARG520-GLU4 ARG520-GLU4 LYS528- GLU4

93.37 94.17 96.46 92.2

GLN521-SER351

520-LP HB GLN521-GLN354 GLN521-GLN354 GLN521-GLN354 PRO529-THR351

48.5 56.98 89.11

LOWER50-HB GLU531-THR351

92.6

ASN537-LEU142

ASN537-ARG147 ASN537-TYR143 ASN537-GLY146 LYS544-GLY48

98.5 95.64 94.75 91.27

ASN537-ARG147 ASN541-LYS50 SER549-GLN49

85.7 91.23

ASN552-GLN49

THR542-GLN49 ASN552-LYS50 ASN552-LYS50

90.64 93.5

LYS553-GLY46

LYS546-MET44 LYS546-MET44 LYS546-MET44 LYS553-GLY48

80 84.13 95.8

520-LP-SB: Salt-bridge bonds were formed between Arg520 of the activation loop
and actin. 520-LP-HB: Hydrogen bonds were formed between Arg520 of the
activation loop and actin. LOWER50-HB: Hydrogen bonds were formed between
lower 50 kDa domain and actin. Numbers represent the occurrence rate of bonds
above 70% in the MD simulations. In the bonds formation, the front one and later one
are residues from myosin and actin, respectively.

5.2.6 Actin induced conformational changes of the actin-binding cleft of myosin

In order to identify the structural background of actin binding induced myosin
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conformational changes, the analysis is firstly focused on the actin-binding cleft of

myosin in different actomyosin complexes. The actin-binding cleft of 3A-1Q5Gmd

and 3A-2OVKmd are in the closed form different from while it is open in 3A-1VOMmd

and 3A-1MMDmd [5, 159]. Evidences for actin-binding induced open-closed cleft

transition were observed from previous experiments [57, 160]. We were interested in

whether actin induces intermolecular strain in myosin which relaxes in nanosecond

timescale.

In order to characterize atomic structure re-arrangement occurred in the actin-binding

cleft, we measured the distance based on the backbone carbon atom between the

alpha carbon atoms of Glu365 located in the myosin loop 4 and Asn537 located in the

helix-loop-helix element of the lower 50kDa domain helix-loop-helix of the myosin

according to previous measurements [37]. In 3A-1VOMmd, partial cleft closure was

observed as the distance decreased from 21.7Å to 20.57Å (see Table 16). In

3A-1MMDmd, we only observed minor conformational changes in the actin-binding

cleft closure. In comparison with no cleft closure occurred in the MD simulations of

single myosin in the absence of actin, these results suggest that the actin binding

causes partial cleft closure in the weak actin-binding states. In 3A-2OVKmd, the

partially closed cleft of this the rigor actomyosin complex was almost completely

closed in the first few nanoseconds of the MD simulations (from 18.25Å to 16.82Å).

Similar effect was observed in the other rigor actomyosin complex (3A-1Q5Gmd),

however, the closure was even more complete (from 16.72 Å to 11.91 Å). Meanwhile,

we compared our two strong actin-binding states with Holmes's model. The distance

value is 17.23Å in Holmes's model similar to what we found in 3A-2OVKmd (16.82Å),

but it was more closed in 3A-1Q5Gmd (11.91Å).

Notable distance alterations taken place in the two strong actin-binding states suggest

that the actin-binding cleft in the closed form is also affected by actin binding. The

feasible cause of actin-binding cleft further closure in the strong actin-binding states

is the docked myosin still in a rigor-like state with incompletely closed actin-binding

cleft, which is different from the rigor state, the state of theoretically assumed end

state of the power stroke. Degree of partially cleft closure of the myosin up-lever
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conformation (3A-1VOMmd) is more conspicuous than that of the myosin down-lever

conformation (3A-1MMDmd). It means that the lever up-to-down movement is

directly related to the actin binding induced cleft closure. Therefore, it might be

interesting to discover what conformational changes of myosin contribute to this

actin-binding cleft partial closure in 3A-1VOMmd.

According to previous results of the actin-binding surface analyses, we realized that

some surface loops of myosin i.e. the CM-loop, loop 2, loop 3 and the activation loop

were involved in actin-binding [147, 157]. We found a strong salt-bridge bond cluster

formed between Arg520 in the myosin activation loop and the four negatively

charged residues at N-terminal region of actin in both weak and strong actin-binding

states, which is different from previous concept that there are not any interactions

unearthed between the myosin activation loop and actin in the weak actin-binding

state. In this case, we suppose that the formation of this salt-bridge might be involved

in the actin-binding cleft closure in the weak actin-binding states.

Table 16: Measurement in conformational changes of the actin-binding cleft
Name Distance(Å) Name Distance(Å) Name Distance(Å)
1VOM 21.1 1VOMmd 21.7 3A-1VOMmd 20.57
1MMD 21.28 1MMDmd 21.37 3A-1MMDmd 21.14
1Q5G 16.67 1Q5Gmd 16.72 3A-1Q5Gmd 11.91
2OVK 18.3 2OVKmd 18.25 3A-2OVKmd 16.82

Holmes's model 17.23
3A-1VOM-520MU 23.66
3A-1VOM-LP3MU 21.76

The conformational changes of the actin-binding cleft in different actomyosin
complexes were calculated on the basis of distance between the backbone carbon
atom from myosin Glu365 and atom from myosin Asn537.

Based on this hypothesis, we introduced a R520Q mutant called 3A-1VOM-520MU

to test the interactive effects of the myosin activation loop with actin and a R562Q

mutant in the myosin loop 3 called 3A-1VOM-LP3MU to compare the effects of

different mutants in the weak actin-binding states (3A-1VOMmd). The same 100 ns

MD simulations as their wild type structure (3A-1VOMmd) have been performed on

these two mutants. Distinctive features in conformational changes in the actin-binding
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cleft showed in these two mutants were different from their wild type structure. In

3A-1VOM-LP3MU, the measured distance of the actin-binding cleft is 21.76 Å,

which is similar to the distance value of the MD relaxed single myosin 21.1 Å (see

Table 16). The cleft partial closure is completely offset by the R562Q mutant. This

suggests that the cleft closure is sensitive to the conformational changes of the

myosin loop 3. In 3A-1VOM-520MU, originally formed salt-bridge interaction was

broken immediately only after a short time of the MD simulation, which resulted in

further open of the actin-binding cleft with the distance value of 23.66 Å. These

results imply that the cleft closure is not only sensitive to the conformational changes

of loop 3, but also more influenced by the salt-bridge cluster formed between the

myosin activation loop and N-terminus of actin. Arg520 based salt-bridge interaction

is not the only one, but is one of the main contributions to the actin-binding cleft

partial closure in the weak actin-binding state.

To summarize the results in this section, the actin binding causes a partial closure of

the actin-binding cleft in both weak actin-binding states and striking closure in both

strong actin-binding states. This cleft closure is not only sensitive to the

conformational changes of loop 3, but also strongly influenced by the salt-bridge

cluster formed between the myosin activation loop and N-terminus of actin.

5.2.7 Actin-binding induced conformational changes of the converter domain

The actin-binding cleft closure and the lever arm up-to-down movement are the two

most important events in the power stroke. According to Arg520- actin N-terminus

salt-bridge interaction is one of the main contributions to the actin-binding cleft

partial closure in the weak actin-binding states, we analyzed the lever arm movements

through the rotation of the converter domain after actin binding. We defined an angle,

which represents the rotation of the myosin converter domain. The most striking actin

induced event was that upon actin binding the converter domain underwent a further

up movement from 122.73º (1OVMmd) to 105.03º (3A-1VOMmd) (see Table 17). In

contrast, the converter domain underwent a further down movement from 203.96º
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(1MMDmd) to 227.22º (3A-1MMDmd). Meanwhile, the angle of the converter of

3A-1Q5Gmd (221.73º) upon actin binding was still kept in its original position as

similar as 1Q5Gmd (220.69º). In the squid myosin, there was a considerable angle

change of the converter domain towards the down position from 220.58º (2OVKmd) to

245.27º (3A-2OVKmd). The defined angle of the converter domain in 3A-2OVKmd

has a similar value to the measured angle in Holmes's model (237.9º). If we combined

these results with previous conformational changes in the actin-binding cleft, we

assume that the actin-binding cleft further closure is coupled with the lever arm

further up movement after actin binds to myosin, which might be considered as the

first phase of the power stroke. Owing to none of intermediate states has been

uncovered yet. We are still not clear what had happened in the second phase.

Although we observed the actin-binding cleft further closure coupled with lever arm

down position movement in 3A-1MMDmd, this state was only available under the

premise of which the lever movement prior to the cleft closure. So, these two

parallel-coupled movements might be the second phase or the third phase, which has

also been indicated by the actomyosin structure 3A-2OVKmd with these two

movements well coupled. The final phase can be speculated by analyzing the

actomyosin structure of 3A-1Q5GMD in the actin-binding cleft closure occurred after

the lever arm down position movement. In order to discover what the role of the

activation loop plays in the lever arm movement, we also analyzed the angle changes

in two mutants. In 3A-1VOM-520MU, only ~2 º angle change was emerged by

comparing to the MD relaxed single myosin (1VOMmd) in the absence of actin. In

3A-1VOM-LP3MU, there was a further up rotation in the converter domain (111.07º),

but the amplitude of this movement was a little bit smaller than that of the

3A-1VOMmd actomyosin complex (see Table 17). The mutational results suggest that

Arg520 in the activation loop induces the converter domain from an up- to a

further-up rotation, but loop 3 is not involved in this converter domain further up

movement (see Figure 29).
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Figure 29: Conformational changes of the myosin functional regions in
different actomyosin complexes. These color-code represent weak actin-binding
complex 3A-1VOMmd (yellow) and two mutants (3A-1VOM-520MU (magenta),
3A-1VOM-LP3MU (cyan)). (Green: central β-sheet; Red: upper 50 kDa domain;
Blue: activation loop; and White: N-terminus of myosin).

Table 17: Angle changes of converter domain in different actomysin complexes
Name Angle(º) Name Angle(º) Name Angle(º)
1VOM 121.52º 1VOMmd 122.73º 3A-1VOMmd 105.03º
1MMD 201.33º 1MMDmd 203.96º 3A-1MMDmd 227.22º
1Q5G 221.02º 1Q5Gmd 220.69º 3A-1Q5Gmd 221.73º
2OVK 221.14º 2OVKmd 220.58º 3A-2OVKmd 245.27º

Holmes's model 237.9º
3A-1VOM-520MU 120.12º
3A-1VOM-LP3MU 111.07º

Angle changes of the converter domain were measured by two
residues Gly684, Arg689 from "SH1 helix" and Ala748 at the end of
the converter domain. Angle calculation was based on the CA atom of
three residues with Arg689 in the middle.

5.2.8 Actin-binding induced conformational changes of SW-II loop of myosin

Based on the coupling mechanism of the converter domain rotation and relay-helix

connected to the SW-II loop open-closed transition [39, 64], we did a structural

comparison between the weak actin-binding state of the wild type (3A-1VOMmd) and

two mutants in these functional regions of myosin at an atomic level.
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Lys462 residing in the myosin SW-II loop is extremely sensitive to its surroundings,

which result in Lys462 to be a guard residue in controlling the Pi release upon the

lever swinging of the power stroke [161]. In 1VOMmd, Lys462 with its side chain

protrudes to the solvent without any bonds formation. In 3A-1VOMmd, Lys462

formed a stable salt-bridge with myosin Glu580 that is located at the end of the

"wedge" β-hairpin region (571-575 of the Dictyostelium myosin). This bond

formation assisted with four residues based a hydrophobic cluster contributes to the

observed movements of the "wedge" region towards the lower 50 kDa domain upon

the actin binding. The first two residues Ile529 and Leu543 (Dictyostelium myosin)

are located in the helix-loop-helix. Phe466 is located at the N-terminal region of the

relay-helix and Trp584 is close to the C-terminus of the "wedge" region. This

hydrophobic cluster pushes the SW-II loop to a further closed conformation via the

Lys462-Glu580 salt-bridge bond formation (see Figure 30). However, this

hydrophobic cluster with only Ile529-Trp584 bond formed appears much weaker in

the absence of actin (1VOMmd), which could not facilitate the Lys462-Glu580 bond

formation and spread to the further closure of the SW-II loop. Lost interactions with

the N-terminal region of actin in 3A-1VOM-520MU, the further closure of the SW-II

loop was suppressed, because this hydrophobic cluster could not transform the

information of the actin binding to the activation loop, since the mutation prevented

the interaction. In order to know whether the SW-II loop further closure through the

hydrophobic cluster is based on the interactions between the activation loop and

N-terminus of actin? This idea is supported by the fact that the distance between

Ile529 and Phe466 shortened to 3.1 Å from 6.99 Å in 3A-1VOM-520MU. In

3A-1VOM-LP3MU, the distance is 3.28 Å similar to its wild type structure

(3A-1VOMmd). Phe466 is located between Ile529 and Leu543 in structures of

3A-1VOMmd and 3A-1VOM-LP3MU, while Phe466 reorients its side chain to the

direction without bond formation in 3A-1VOM-520MU.
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Figure 30 Actin binding induces conformational changes in the myosin SW-II
loop. The relay-helix (cyan) is close to the lower 50 kDa domain (yellow).
Converter domain and central β-sheet are colored by ice blue and green. Two loops
are colored with red (the SW-II loop) and blue (the activation loop). Phe584 closed
to the "wedge" region (white) forms a hydrophobic cluster with two residues
(Ile529, Leu543) in the helix-loop-helix and one residue (F466) in the N-terminus
of the relay-helix.

Consequences of the further closure of the SW-II loop affected by the Lys462-Glu580

salt-bridge and hydrophobic cluster probably bring about the conformational changes
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of the nucleotide-binding pocket, which can be characterized through the distance

changes between the SW-I loop and the SW-II loop of myosin (see Figure 31).

1VOMmd and 3A-1VOM-520MU display similar distances in the nucleotide-binding

pocket with the value of 10.37±0.2Å and 10.21±0.19 Å respectively. However,

noticeable changes in the nucleotide-binding pocket closure were observed in

3A-1VOMmd and 3A-1VOM-LP3MU with the values of 9.44±0.22Å and 9.53±0.18Å.

In summary, we conclude that the salt bridge between the activation loop of myosin

and N-terminus of actin directly regulates the further rotation of the converter domain,

the partial closure of the actin-binding cleft and the further closure of the

nucleotide-binding pocket.

To summarize the results in this section, the further closure of the SW-II loop in the

first phase of the power stroke is pushed by a salt-bridge bond and a hydrophobic

cluster between the activation loop and the relay-helix of myosin via interactions

between Arg520 in the activation loop and the N-terminal region of actin.

Figure 31: The distance changes between the SW-I loop and the SW-II loop. The
distance was calculated between the backbone coordinates of the SW-I loop (235-241
in Dictyostelium myosin) and the SW-II loop (456-462 in Dictyostelium myosin). The
colors represent 1VOMmd (blue), 3A-1VOMmd (purple), 3A-1VOM-520MU (yellow)
and 3A-1VOM-LP3MU (cyan).
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5.2.9 Motional correlations of myosin functional regions

According to the results of conformational changes in the actin-binding cleft, the

converter domain and the SW-II loop, we suppose that there is a motion-coupled

mechanism of these myosin functional regions. As we discovered the interactions

between the activation loop and the four negatively charged residues in the

N-terminal region of actin are intensely involved in the conformational changes in

these myosin functional regions upon actin binding. In order to get further insights

into the functional mechanism of the activation loop after actin binding, we analyzed

the motional correlations obtained from the trajectories of the MD simulations.

Motional correlation is defined as when the motion is increased in one region, the

motions of the other regions are also increased (defined as correlation), nonexistent

(defined as non-correlation), or decreased (anti-correlation).

In the absence of actin, we found relatively weak motional correlations between the

activation loop (residue 519-523 in Dictyostelium myosin) and other parts of myosin

in all studied structures (1VOMmd, 1MMDmd and 1Q5Gmd) (see Figure 32). When

actin binds to myosin, some structural elements of myosin exhibit high motional

correlations with the activation loop in three actomyosin complexes (3A-1VOMmd,

3A-1MMDmd and 3A-1Q5Gmd). Firstly, the lower 50 kDa domain is highly correlated

with the activation loop in all three actomyosin complexes. Loop 4 (residue 360-370

in Dictyostelium myosin) from the upper 50 kDa domain is weakly correlated with

the activation loop in the two open-cleft actomyosin complexes (3A-1VOMmd,

3A-1MMDmd), but the correlation becomes stronger in the closed-cleft actomyosin

complexes (3A-1Q5Gmd), which indicates that loop 4 is involved in the actin-binding

cleft open-closed transition in the power stroke. Another region from the upper 50

kDa domain is the CM-loop (residue 390-410 in Dictyostelium myosin), which is

intensely correlated with the activation loop in the two down-lever arm structures

(3A-1MMDmd, 3A-1Q5Gmd), but no correlation was observed in the up-lever arm

structure (3A-1VOMmd), which suggest that different binding region and pattern of

the CM-loop is related with the up and the down position of the myosin lever. We also
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found that loop 2 (residue 620-630 in Dictyostelium myosin) is correlated with the

activation loop in 3A-1VOMmd and 3A-1MMDmd, which is caused by the four

negatively charged residues in the N-terminal region of actin interacted with loop 2

and the activation loop. Meanwhile, the correlation mechanism of loop 2 coupling

with the activation loop in strong actin-binding state (3A-1Q5Gmd) is based on the

helix-loop-helix region. Further correlations were found in the N-terminus of

relay-helix (residue 465-475 in Dictyostelium myosin), the “strut” region (residue

590-596 in Dictyostelium myosin), a small helix before the "strut" region that is

called "prestrut" region (residue 586-590 in Dictyostelium myosin) and the SW-II

loop (residue 456-462 in Dictyostelium myosin) in the three actomyosin complexes

(3A-1VOMmd, 3A-1MMDmd and 3A-1Q5Gmd). The correlation between the activation

loop and N-terminus of the relay-helix is due to a hydrophobic cluster formed

between them e.g. Ile529 in the activation loop, Phe466 in the N-terminus of the

relay-helix. The "strut" and the "prestrut" region located between the upper and lower

50 kDa domains might be involved in negotiating the open-closed actin-binding cleft

transition [162, 163]. But the mechanism of correlations between the "strut-prestrut"

region and the activation loop is still unclear. SW-II loop shows correlations with the

activation loop only in the 3A-1VOMmd, but not in the two down-lever arm structures

(3A-1MMDmd, 3A-1Q5Gmd), which means the coupling movement between the

activation loop and the SW-II loop merely existed in the up-lever arm state and not in

the down-lever arm state. The most astonishing findings were that SW-II loop totally

lost its correlation with the activation loop in 3A-1VOM-520MU, but that was still

strongly kept in 3A-1VOM-LP3MU (see Figure 32).

Although the activation loop contains many motional correlations with different

functional regions of myosin, motion of the SW-II loop is somehow directly

influenced by the activation loop via the salt-bridge interaction with actin. For this

reason, we investigated motional correlations between the SW-II loop and other

functional regions of myosin (see Figure 33). In the absence of actin, the SW-II loop

is only weakly correlated with the relay-helix in 1VOMmd and 1MMDmd. Furthermore,

it also correlates with the central β-sheet in 1Q5Gmd. In the presence of actin, the
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SW-II loop correlates to the activation loop in 3A-1VOMmd and 3A-1VOMLP3MU,

but this correlation is not observed in the 3A-1VOM520MU.

Figure 32: Motional correlations between the activation loop and other
functional regions of myosin. In the first line, three colored pictures represent crystal
structures of single myosin in different states (Red: upper 50 kDa domain; Yellow:
lower 50 kDa domain; Green: β-sheet; Orange: loop 4; Purple: CM-Loop; Ice blue:
converter domain; Cyan: relay-helix; White: others). The second third and fourth
lines represent motional correlations between the activation loop and other functional
regions of the MD relaxed myosin, actomyosin complexes in wild type and two
actomyosin mutants. The red color in the second third and fourth line represents
existed correlations and the white color means non-correlation.
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Figure 33: Motional correlations between the SW-II loop and other functional
regions of myosin. In the first line, three colored pictures represent structures as same
as described in Figure 32. The second and third lines represent motional correlations
between the SW-II loop and other functional regions of myosin, actomyosin complex
in wild type and two actomyosin mutants in the weak actin-binding state. The red
color in the second and third lines represents existed correlations and the white color
means non-correlation.

To summarize the results in this section, the dynamics of activation loop correlate

with that of loop 2, the N-terminus of relay-helix, the SW-II loop, the "strut", the

"prestrut" region and so on in the weak actin-binding state. When the R520Q mutant

was introduced to the weak actomyosin complex 3A-1VOMmd, the motional

correlations between the activation loop and other functional region of myosin start to

decrease or vanish. The motional correlation between the activation loop and the

SW-II loop is extremely conspicuous in 3A-1VOMmd and 3A-1VOMLP3MU, but this

correlation is totally abolished in 3A-1VOM520MU. Therefore, we suppose that

point-to-point motional correlations between the activation loop and the SW-II loop

directly contribute to the SW-II loop further closure induced by the actin-binding via

the interaction between Arg520 in the activation loop of myosin and four negatively
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charged residues in the N-terminal region of actin.

5.3.0 Motional correlations of five myosin functional regions in the up-lever

weak actin-binding state

In order to discover this potential coupling mechanism between the activation loop

and SW-II loop, we focused on the motional correlation relationships in five

functional regions, i.e. the activation loop, the SW-II loop, loop 2, the "prestrut"

region and the N-terminal region of the relay-helix. We did this analysis in four

structures, 1VOMmd, 3A-1VOMmd, 3A-1VOM520MU and 3A-1VOMLP3MU.

In the absence of actin, there are anti-correlations between the SW-II loop and the

activation loop, the SW-II loop and the "prestrut" region, the SW-II loop and loop 2

(see Figure 34A). The N-terminal region of the relay-helix is correlated with the

"prestrut" region because of a strong salt-bridge formed between Glu467 in the

N-terminal region of the relay-helix and Lys587 in the "prestrut" region with the

correlation value around 0.4. This result suggests that the structural movements of the

"prestrut" region are coupled with the relay-helix even in the absence of actin via the

salt-bridge. The effects of other functional regions of myosin are not very significant

in the correlation value as their values are close to zero.

In the presence of actin (see Figure 34B), the correlation patterns changed in the

3A-1VOMmd are compared to that of the structure of 1VOMmd. Five functional

regions are almost coupled to each other with the average correlation values above

0.5. Besides that the correlation values are around 0.3 between the SW-II loop and the

activation loop, the SW-II loop and the "prestrut" region, the SW-II loop and loop 2.

The SW-II loop is anti-correlated with the above three regions in 1VOMmd, but the

correlation intensity between the SW-II loop and other three regions increased to ~

0.3 in the actin-attached state is a considerable degree of enhancement by comparing

with actin detached single myosin states. Four regions (N-terminal region of the

relay-helix, the activation loop, the "prestrut" region and loop 2) are cross-correlated

in the values above 0.5.
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Figure 34: Motional correlations of five significant myosin functional regions. A:
1VOMmd, B: 3A-1VOMmd, C: 3A-1VOM520MU, D: 3A-1VOMLP3MU. The
correlation value scale ranged from -1 to +1 represents from anti-correlation to
correlation. Color from blue to yellow suggests motional correlation from
anti-correlation to non-correlation. Motional correlations from weak to strong are
represented by color from orange to red.

In 3A-1VOM-520MU (see Figure 34C), two motional correlations are decreased

between the N-terminal region of the relay-helix and the activation loop, N-terminal

region of the relay-helix and loop 2. The cause of reduced correlations in the first

group (the relay-helix and the activation loop) is due to the N-terminal region of the

relay-helix is away from the activation loop in the absence of the pushing force from

the actin through the salt-bridge bond formed between Arg520 of the activation loop

and the N-terminus of actin. In the second group (N-terminal region of the relay-helix

and loop 2), there is an interaction between the N-terminus of actin and loop 2, which

transfers motions of loop 2 through the salt-bridge bond formed between Arg520 and

the N-terminus of actin up to the N-terminal region of the relay-helix. Correlation

between the activation loop and the "prestrut" region is reduced to zero in



PhD Thesis - Yang Zhenhui

102

3A-1VOM-520MU. Two backbone H-bonds between Asp530, Ser533 of the

helix-loop-helix and Lys588 of the "prestrut" region are formed in 3A-1VOMmd.

However, such H-bonds are not formed in 3A-1VOM-520MU and 1VOMmd. R520Q

mutation breaks the interactions between the activation loop and the "prestrut" region

via this helix-loop-helix region. Correlation is reduced between the "prestrut" region

and loop 2, which cannot be satisfactorily explained from directly structural coupling.

However, we suppose that loop 2 correlation with the "prestrut" region is related to

interactions between the activation loop and the N-terminal region of actin.

In 3A-1VOM-LP3MU (see Figure 34D), R562Q breaks the salt-bridge bonds formed

between Lys562 of myosin and Glu99/Glu100 of actin, which shows similar

correlation features in the five functional regions of myosin to those of the wild type

3A-1VOMmd.

5.3.1 Structural analysis of the myosin "prestrut" region

When actin binds to myosin, the "prestrut" region shows motional correlations with

the SW-II loop, the N-terminal region of the relay-helix, loop 2 and the activation

loop. This suggests an important functional role of the "prestrut" region in mediating

the SW-II loop further closure through the activation loop. The structure of the

"prestrut" region is conserved in all myosin families with the Glu-Lys-Asn-Lys-Asp

sequence. Conformation of this structure looks like a claw surrounded by neighboring

side-chains. In 1VOMmd, Glu586 and Lys589 form a salt-bridge bond to keep the

"prestrut" region in a stable conformation, but this bond is not formed in two

down-lever arm structures (1MMDmd and 1Q5Gmd)(see Table 18). Asp530 and Ser533

of the helix-loop-helix are connected to Asn588 of the "prestrut" region with

hydrogen bonds. Lys587 is probably involved in the lever arm movement via a

salt-bridge formed with Glu467 in the N-terminal region of the relay-helix. In

addition, Asp590 does not have any interactions in single myosin (1VOMmd,

1MMDmd and 1Q5Gmd).

However, we found some changes in bond formations of the "prestrut" region after
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actin binding (see Table 18). In 1Q5Gmd, Glu586 has interactions with Arg418 that

belong to the CM-loop of the upper 50 kDa domain, which suggest that the

actin-binding cleft closure is probably related with bonds formation between the

"prestrut" region and the CM-loop. Another salt-bridge interaction is observed

between Glu586 of the "prestrut" region and Lys413 of the CM-loop in two partially

closed cleft structures (3A-1VOMmd and 3A-1MMDmd). The salt-bridge interaction

between Lys587 of the "prestrut" region and Glu467 of the N-terminal regions of the

relay-helix displays the same binding pattern as that is found in actin detached

myosin. Asn588 and Lys589 have same interaction patterns with Asp530 and Ser533

of the helix-loop-helix region between 3A-1VOMmd and 3A-1MMDmd. but Lys589

only interacts with Glu412 of the CM-loop in 3A-1Q5Gmd. In three actomyosin

complexes (3A-1VOMmd, 3A-1MMDmd and 3A-1Q5Gmd), there is a strong

salt-bridge formed between Asp590 of the "prestrut" region and residue Lys265.

Lys265 located in a loop, which has close backbone interactions with the SW-I loop

(see Figure 35). This implies that this Asp590-Lys265 salt-bridge is probably

important in regulating open-closed transition of the actin-binding cleft via the SW-I

loop. This model might be confirmed by recent experimental findings as the deletion

mutation of Asp590 in the "prestrut" region abolished the in vivo motor functions of

myosin and showed defects in the strong actin-binding state [162, 164].

Table 18: Interactions of the "prestrut" region in different myosin structures
"Prestrut" region

GLU586 LYS587 ASN588 LYS589 ASP590

1VOMmd LYS589 GLU467 ASP530/SER533 LYS589 -

1MMDmd - GLU467 ASP530/SER533 - -

1Q5Gmd - GLU467 ASP530/SER533 SER533 -

3A-1VOMmd LYS413 GLU467 ASP530/SER533 SER533/PHE535 LYS265

3A-1MMDmd LYS413 GLU467 ASP530/SER533 SER533/PHE535 LYS265

3A-1Q5Gmd ARG418 GLU467/SER465 ASP530/SER533 GLU412 LYS265

To summarize the results in this section, the "prestrut" region has distinct interaction

patterns in the absence or presence of actin. It looks like a claw interacting with the

SW-II loop, the helix-loop-helix region in the absence of actin. However, upon actin
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binding, the interactive areas of the "prestrut" region are further increased to the

CM-loop and the SW-I loop in our three actomyosin complexes. It suggests an

important functional role of the "prestrut" region in transducing the SW-II loop

further closure, actin-binding cleft partial closure and the converter domain further

rotation in the first phase of the power stroke.

Figure 35: The "prestrut" region of myosin in the weak actin-binding state.
These color-codes for functional domains of myosin were represented by the drawing
method of cartoon. (Green: central β-sheet; Orange: loop 4; Purple: CM-Loop; Cyan:
relay-helix; Yellow: lower 50kDa domain; Red: upper 50 kDa domain; Light ice blue:
converter domain; Blue: activation loop)

5.3.2 Discussion

The effective power stroke is initiated by actin weakly binding to myosin in low actin

binding-affinity state (open actin-binding cleft) [63]. The selection of the pathways to

the effective power stroke is regulated by a kinetic pathway selection mechanism,

which has been proved by several decades of investigations. However, structural

mechanism of actin-binding induced myosin conformational changes and the

potential mechanism of structure-based transition pathway of the power stroke have

not been uncovered [165].

In this thesis, we describe a novel actin-binding site (Arg520 in the Dictyostelium
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myosin) located in the activation loop of myosin that is responsible for transduction

of actin-binding induced conformational changes towards myosin functional regions.

As a highly conserved residue in myosin families, Arg520 interacts with the four

negatively charged residues at the N-terminal region of actin in both weak and strong

actin-binding states. The negatively charged N-terminus of actin is necessary for the

force generation of actomyosin [148, 149]. In addition, Lys623 of loop 2 also

interacts with this actin region in weak actin-binding states (3A-1VOMmd and

3A-1MMDmd), but this interaction is disrupted in strong actin-binding states

(3A-1Q5Gmd) because of Lys623 forms a strong salt-bridge bond with Asp530 in the

helix-loop-helix. Altered interaction profiles of Lys623 are able to assist the activation

loop moving towards the C-terminus of actin in the power stroke. This effect might be

confirmed by recent experiments in which loop 2 was shown to participate in actin

activation [147]. Actin-binding induced three specific myosin conformational changes

were observed in the weak actin-binding state. When R520Q mutation was introduced

to myosin in order to prevent salt bridge formation with actin, three specific myosin

conformational changes i.e. the partial closure of the actin-binding cleft, the further

up rotation of the lever arm and further closure of SW-II loop were prevented or

weakened. Motional correlations between the activation loop and other four regions

decreased to the same level as that of in the absence of actin.

Two residues (Ile517 and Leu526) of the activation loop formed hydrophobic

interactions with Leu469 of the myosin relay-helix in the actomyosin complexes. This

bond formation causes a small local conformational change that is amplified in the

relay-helix of myosin and resulting in a significant lever movement [166]. In addition,

four residues (Ile529, Leu543 in the lower 50 kDa domain, Trp584 is closed to the

"wedge" loop and Phe466 in N-terminus of the relay-helix) formed another

hydrophobic cluster and mediate the correlation movements between the activation

loop and the SW-II loop. The Lys462-Glu580 salt-bridge is substituted by

His465-Glu580 in myosin VI as the recent X-ray crystal structure revealed [167].

Similar hydrophobic cluster is existed in myosin VI except that Leu543 in myosin II

is replaced by phe543, which even contributes stronger effects to this hydrophobic
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cluster than what we found in the myosin II complexed with actin. The recent myosin

VI structure also represents the further lever up state of myosin. This experimental

data validates our computational structural model of the actomyosin pre-power stroke

state which shows the same further-up lever state of myosin.

Based on motional correlations, five functional regions of myosin (the activation loop,

loop 2, the N-terminal region of the relay-helix, the "prestrut" region and the SW-II

loop) can be divided into two groups in the weak actin-binding state. The first group

consists of the N-terminal region of the relay-helix, the "prestrut" region and the

SW-II loop. The N-terminal region of the relay-helix plays a central role in this group

including Glu467 formed a salt-bridge with Lys587 of the "prestrut" region, and

Asn475 interacted with Ser456 of the SW-II loop, which interaction was revealed in

the recovery step by recent in siliso simulations [39]. The second group consists of

the activation loop and loop 2, which are negotiated by the N-terminus of actin (see

Figure 36).

Figure 36: Two efficient routes between the activation loop and the SW-II loop.
The first route starts from the activation loop to the SW-II loop through a
hydrophobic cluster between the activation loop and the N-terminal of relay-helix.
The second route starts from the apex of the helix-loop-helix to the "prestrut" region
based on the bonds of Asn588-Asp530/Ser533, and then from the "prestrut" region to
the SW-II loop based on the bond of Lys587-Glu467.

When actin binds to myosin, salt-bridge bonds are formed between Arg520 of the

activation loop and four negatively charged residues in the N-terminus of actin also

jointed with Lys623 of loop 2. Then, interactions start to push the activation loop
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close to the relay-helix through a hydrophobic cluster and also close to the "prestrut"

region via bonds formed between Asn588 of the "prestrut" region and Asp530/Ser533

of the helix-loop-helix region. Two deduced routes existed in these two groups are

possible mechanism of actin-binding induced three specific myosin conformational

changes prior to the power stroke. The first route starts from the activation loop to the

SW-II loop through a hydrophobic cluster between the activation loop and the

N-terminal of relay-helix. The second route starts from the apex of the

helix-loop-helix to the "prestrut" region based on the bonds of

Asn588-Asp530/Ser533, and then from the "prestrut" region to the SW-II loop based

on the bond of Lys587-Glu467. Both routes are responsible for consequences of the

SW-II loop further closure and converter domain further rotation. In addition, the

second route is also possibly involved in the actin-binding cleft further closure

according to the interaction between the SW-I loop and the "prestrut" region. In the

pre-power stoke state of the actomyosin complex, these two communication pathway

may play a crucial role in channeling the reaction pathway into the effective power

stroke.
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CONCLUSIONS:

According to raised scientific questions focused on the recovery step and acin-induced

structural rearrangements of myosin pre-power stroke state stated in the chapter 1, we

conclude our results to answer those questions.

First: Strain along the relay-helix of myosin is rearranged by eliminating the pivoting

point in the seesaw-like motions at the beginning stage of the recovery step.

Second: A three-phase model of the recovery step deduced on the basis of a free

energy profile with the post-recovery state in a lower free energy is more preferred

than the pre-recovery state.

Third: In the three-phase model of the recovery step, the formation of the hydrogen

bond cluster (γ-phosphate~Gly457~Asn475) accelerates structure transformation to

overcome the activation energy barrier in the first phase.

Fourth: Our intermediate state 1 (IM-1) has similar conformation to the unique

intermediate state of Fischer's model, but the IM-1 state with 37% converter domain

rotation is in a middle structural state of the recovery step was not demonstrated

before.

Fifth: Phe487/Phe503 hydrophobic cluster closely packing with some indispensable

structural rearrangements in our second phase of the recovery step was not regarded

as separated phases in Fischer's model. We could distinguish this phase based on the

free energy profile of the recovery step.

Sixth: The weak and strong actin-binding states of actomyosin were obtained by

protein-protein docking and long time-range molecular dynamics relaxations. The

lower binding free energy of the strong actin-binding state is due to the involvement

of more residues in the binding surface than that of in the weak actin-binding state.

Seventh: The conserved positive tip (Arg520) of the activation loop interacts with

four negatively charged residues in the N-terminus of actin in various binding

patterns of weak and strong actin-binding state.

Eighth: Three specific myosin conformational changes induced by the actin binding

were observed in the weak actin-binding state: 1. the partial closure of the
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actin-binding cleft, 2. the further up rotation of the lever arm and 3. further closure of

SW-II loop. The R520Q mutation in myosin prevented these conformational changes.

Ninth: The motions of the activation loop are correlated with four mainly functional

regions of myosin (loop 2, the N-terminus of the relay-helix, the SW-II loop and the

"prestrut" region) in the weak actin-binding state. The motional correlations of

R520Q mutation between the activation loop and other four regions in the weak

actin-binding state decrease to the same level as that of in the absence of actin.

Tenth: Two communicational pathways were speculated between the actin binding

regions and the myosin nucleotide binding site, which might be a reasonable

mechanism of the actin-induced myosin conformational changes at the initial stage of

the power stroke.
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APPENDIX

Table 2: Programs and web servers useful in comparative modeling
Name Type[a] WWW address
Databases
GenBank S http://www.ncbi.nlm.nih.gov/Cenbank/
MODBASE S http://www.salilab.org/modbase/
PDB S http://www.rcsb.org/pdb/
TrEMBL S http://srs.ebi.ac.uk
Template search
BLAST S http://www.ncbi.nlm.nih.gov/BLAST/
FastA S http://www.ebi.ac.uk/fasta33/
MATCHMAKER P http://bioinformatics.burnham-inst.org
Sequence alignment
BLAST2 S http://www.ncbi.nlm.nih.gov/gorf/bl2.html
CLUSTAL S http://www2.ebi.ac.uk/clustalw/
FASTA3 S http://www2.ebi.ac.uk/fasta3/
Modeling
COMPOSER P http://www.Tripos.com
ICM P http://www.molsoft.com
Insightll P http://www.accelrys.com
MODELLER P http://www.salilab.org/modeller/
QUANTA P http://www.accelrys.com
SYBYL P http://www.Tripos.com
WHAT IF P http://www.cmbi.kun.nl/whatif/

[a].S, server, P, program.
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ABBREVIATIONS

ADP adenosine 5’diphosphate

AIR ambiguous interaction restraints

Arg, R arginine amino acid

ATP adenosine 5’ triphosphate

BSA buried surface area

CM-loop cardiomyopathy loop

EM-map electron microscopy density map

EMA essential motional analysis

Gln, Q glutamine amino acid

Glu, E glutamic amino acid

IM-1 intermediate state 1

IM-2 intermediate state 2

Lys, K lysine amino acid

MD molecular dynamic

Mg magnesium

MM/PBSA molecular mechanic poisson-boltzmann surface area

NEB nudged elastic band

Pi inorganic phosphate group

PMF potentials of mean force

Pro, P proline amino acid

RMSD root-mean-square deviation

RMSIP root-mean-square inner product

RMSF root-mean-square fluctuation

S1 myosin subfragment-1

SW-I switch-1 loop

SW-II switch-2 loop

WHAM weighted histogram analysis method
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