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Abbreviations 
 
3-AT – 3-amino-1,2,4-triazole 
aa – amino acid(s) 
Ade – adenine sulphate 
Alg5 – yeast resident ER (control) protein for SUS 
AM – arbuscular mycorrhiza 
BiFC – Bimolecular Fluorescence Complementation 
BLAST – Basic Local Alignment Search Tool 
bp – nucleic acid base pair(s) 
CaMV 35S – cauliflower mosaic virus constitutive 35S promoter 
ccdB – toxin targeting DNA gyrase 
CDS – coding sequence 
CFP – Cyan Fluorescent Protein 
CLSM – Confocal Laser Scanning Microscopy 
Cub – C-terminal half of the Ubiquitin molecule 
DMI2 – Does not Make Infection 2 
dpi – day(s) post infiltration/infection 
DsRed – Red fluorescent protein from Discosoma sp. 
FL – full-length 
FLIM-FRET – Fluorescence Lifetime Imaging Microscopy-Förster Resonance Energy  

 Transfer 
GFP – Green Fluorescence Protein  
GUS – beta-glucuronidase  
H – histidine  
hpi – hours post inoculation  
hyg – hygromycin 
ID – identifier/identity/identification 
IT(s) – infection thread(s) 
kb – nucleic acid kilo base pair(s) 
kDa – kiloDalton  
L – leucine  
LTS – Lotus Transformation Service, Institute of Genetics LMU 
NF – Nodulation Factor  
NFP – Nod Factor Perception 
NFR1 – Nod factor receptor 1 
NFR5 – Nod factor receptor 5 
nm – nanometre(s) 
No. – number  
NubG – mutated N-terminal half of the Ubiquitin molecule 
NubI – native N-terminal half of the Ubiquitin molecule 
OD – optical density 
ON – overnight  
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PIT – pre-infection thread 
PM – plasma membrane  
pUb –polyubiquitin promoter  
Rcf – relative centrifugal force 
RLK(s) – Receptor-like kinase(s)  
RNS – root nodule symbiosis 
Rpm – rotations per minute 
RT – room temperature  
SD – synthetic drop-out medium 
SM – symbiosome membrane  
SUS – split-ubiquitin (yeast) system 
SV – sand-vermiculite 
SYMRK – SYMbiosis Receptor-like Kinase 
T-DNA – transferred DNA 
TF – transcription factor 
Tg – teragram (e.g. 1Tg=1Megatonne) 
TILLING – Targeting Induced Local Lesions IN Genomes 
TM - transmembrane 
UBP – ubiquitin-specific protease 
W – tryptophan  
wpi – week(s) post infection 
wt – wild-type  
X-Gluc – 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid 
YFP – Yellow Fluorescent Protein 
YFPC – C-terminal domain of YFP 
YFPN - N-terminal domain of YFP 
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1. Introduction 

 

 

1.1. The phenomenon of root nodule symbiosis 

 

Beside water, plants require significant amounts of carbon dioxide, oxygen and 

further 14 elements for full nutrition. Insufficient availability of any of these elements 

results in drastically reduced plant growth and yield. Six out of the fourteen mineral 

elements (the macronutrients), N (nitrogen), P (phosphorus), Ca (calcium), K (potassium), 

S (sulphur) and Mg (magnesium) are necessary in larger amount for plants (White and 

Brown, 2010). Nitrogen together with carbon (C) represents essential nutrients for basic 

processes of the plant cell. Both serve as key components of amino acids and proteins and 

thus serve as building blocks of the whole cell machinery. Therefore supply of both 

nutrients is crucial for plant growth, development and life cycle (Zheng 2009). While C is 

obtained via photosynthesis, sources of N are limited. Plants can uptake N in form of 

nitrate (NO3
-) and/or NH4

+ (ammonium) via their root system (Zheng 2009), if they are 

available in the soil. Plants are able to form symbiotic associations with soil bacteria and 

fungi, by the help of which they can overcome nitrogen and other nutritional deficiency.  

In nature symbiotic relationships are established when organisms of two different 

species live together and form an association. These interactions can be beneficial for both 

organisms (mutualism), “half”-beneficial when only one of the symbionts profits from the 

interaction (commensalism) or harmful for one of the partners (parasitism) as well (Burnie, 

1994). A widely spread beneficial relationship is arbuscular mycorrhizae (AM) symbiosis 

that supply plants with P, N and S and further micronutrients. It represents probably the 

most widespread terrestrial symbiosis (Fitter, 2005; Kistner and Parniske, 2002) on which 

70-90% of land plants participate and form endosymbiosis with fungi belonging to 

Glomeromycota (Schüßler et al., 2001; Parniske, 2008). In AM symbiosis the symbiotic 

fungi penetrates with their hyphae into the root cells maintaining endomycorrhiza. In 

contrast, in ectomycorrhiza the symbiotic fungi remain extraradial forming a tight network 

on the root surface (Parniske, 2008). AM-like symbiosis has been observed already in early 

land plants. Whereas the other well-known mutualistic association, the root nodule 

symbiosis (RNS) developed later within orders Fabales, Fagales, Cucurbitales and Rosales 

(Fa Fa Cu Ro) belonging to the Eurosids I (Kistner and Parniske, 2002).  
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RNS adds up to a total of approximately 200 million tons of nitrogen per year 

(Graham and Vance, 2003) that supply the majority of terrestrial biological nitrogen 

fixation (Zhang et al., 2009). It has not only ecological significance but it is also of 

outstanding agronomical importance. The symbiosis has been used for crop rotations in 

many agricultural traditions to enrich soils with organic nitrogen, and today it represents a 

significant part of sustainable agriculture. A broad range of agriculturally important plants 

possesses the ability forming RNS. Therefore, they do not have to be treated with fertilizer. 

Currently agricultural consumption of nitrogen fertilizers is around 90 Tg (teragram) per 

year (Good et al., 2004) that probably will be increased about 40 Tg in the next few 

decades to meet a condition of enough food production for the growing Earth´s population 

(Vance 2001).  

In nitrogen-deficient soils, plants initiate and undergo RNS with their host-

compatible bacteria (Hirsch, 1992). In the process of symbiotic nitrogen fixation (SNF), 

bacteria fix atmospheric nitrogen and supply the plants with ammonia (a form utilized by 

plants) and therefore they receive photosynthetic products (carbon and energy source) from 

their host (Ferguson et al., 2010). Plants belonging to the family of Fabaceae (legumes) 

establish such a symbiotic association with bacteria involving the genera: Rhizobium, 

Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Azorhizobium collectively named 

rhizobia (Gage 2004). The tropical tree, Parasponia (family: Ulmaceae) is able to form 

symbiotic interaction with rhizobia as well (Appleby et al., 1983; Gualtieri and Bisseling, 

2000). Other bacteria that belong to the actinomycetes and are called Frankia have also the 

ability to form root symbiosis with non-leguminous plants of families Betulaceae, 

Elaegnaceae, Casuarinaceae, Rhamnaceae, Myricaceae, Coriariaceae, Datisticaceae and 

Rosaceae also called ‘actinorhizal plants’ (Benson and Silvester, 1993). Both types of 

relationship result in formation of a new organ, called nodules that harbour the symbiotic 

bacteria and SNF takes place. However, nodules of these two interactions differ 

significantly in their anatomy and morphology (Benson and Silvester, 1993).  

 

 

1.2. First dialogues between interacting partners of the legume-rhizobia symbiosis 

 

 Legumes under nitrogen starving conditions initiate the first steps of RNS, by 

attracting their symbiotic bacteria to enter the symbiosis. Secretion of plant exudates 
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(flavonoids) into the rhizosphere (Peters et al., 1986; Redmond et al., 1986) initiates 

molecular dialogues between the symbiotic partners. These compounds specify rhizobia, to 

select compatible bacteria from pathogens. Flavonoids attract bacteria to the host root and 

perception of them induces in rhizobia expression of a number of genes, called nodulation 

genes (nod genes). Binding flavonoids to the bacterial NodD protein activates transcription 

of the other, downstream nod genes (Mulligan and Long, 1985; Fisher et al., 1988; Fisher 

and Long, 1992; Perret et al., 2000). Common nod genes that are widely conserved among 

rhizobia (nod ABC; Lerouge et al., 1990) and host-specific nod genes (nod H and nodQ; 

Lerouge et al., 1990) can be distinguished. Products of host-specific nod genes determine 

nodulation of particular plants (Long, 1996). Activation of nod genes leads to catalyzing 

biosynthesis of the so-called nodulation factors (Mulligan and Long, 1989; Broughton et 

al., 2000; Perret et al., 2000), the rhizobial response elicited by the plant flavonoids 

(Schultze and Kondorosi, 1998; Broughton et al., 2000). Nod factors (NF) are 

lipochitooligosaccharide molecules comprised of an N-acetylglucosamine backbone. 

Strain-specific side-chains decorate the reducing and non-reducing end residues of this 

backbone (Lerouge et al., 1990; Dazzo et al., 1991; Long, 1996; D'Haeze and Holsters, 

2002). These decorations determine the host range that can be infected by the individual 

rhizobial strains (Roche et al., 1991; Long, 1996). Perception of rhizobia and rhizobial NFs 

elicit a series of molecular, biochemical, cellular, physiological, morphological and 

developmental processes that lead to establishment of RNS.  

 

 

1.3. Bacterial infection and nodule formation 

 

 After the first exchange of the plant (flavonoids) and bacterial signal molecules 

(NFs), formation of RNS continues with bacterial entry into the root cells and subsequent 

invasion of the newly formed root organ, the nodule. Following morphological and 

developmental changes can be observed microscopically: root hair deformation and 

curling, infection, primordium formation and subsequent nodule formation (Nap and 

Bisseling, 1990; Figure 1.1). 

Rhizobia invade the root cells usually by intracellular root hair infection, more 

rarely, by an intercellular ‘crack-entry‘ invasion or by infections between epidermal cells 

(Oldroyd et al., 2011). In the case of root hair infection, bacteria attach to the root hair tip 
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(Figure 1.1A). It is assumed that root lectins might promote the adhesion of bacteria to the 

root hair (Diaz et al., 1995; Kijne et al., 1997). Attachment of bacteria causes early 

physiological events as responses to the compatible rhizobia/NF. Changes in calcium level 

(Ca+ flux) are accompanied by membrane depolarization and later on calcium oscillation 

(Ehrhardt et al., 1992; Ehrhardt et al., 1996; Downie and Walker, 1999; Oldroyd and 

Downie, 2004). Subsequent rearrangement of the root hair cytoskeleton (Timmers et al., 

1999; Sieberer et al., 2005) includes rearrangements of actin filaments (Allen at el., 1994) 

and increased cytoplasmic streaming (Heidstra et al., 1994; Mylona et al., 1995). 

Membrane depolarization of root hairs is associated with an extra- and intracellular 

alkalinisation (Felle et al., 1996; Downie and Walker, 1999) as well. These physiological 

changes lead to root hair deformation (Figure 1.1A). Root hair formation and swelling on 

the root of Vicia faba leading to formation of so called tubercle (nodules) were already 

observed by Prof. H. Marshall Ward in 1887 (Ward, 1887; reviewed in Bauer 1981). Root 

hairs curl and capture bacteria attached to the tips (root hair curling) and form so called 

shepherd's crooks (tightly curled root hairs) containing a rhizobial microcolony (Esseling 

et al., 2003; Gage, 2004; Figure 1.1B).  

At the site of entrapment, bacteria enter the root hair through the curl by 

degradation of the root hair wall starting infection of the epidermal root hair cell (Callaham 

and Torrey, 1981). As next step, infection thread (IT) growth is initiated by invagination of 

the plasma membrane at the site of infection (Figure 1.1B). Observations of bacterial entry 

via infection threads (root hair infection) were already made in the first decades of the 20th 

century (Thornton, 1930). Infection threads are tubular structures that distribute rhizobia 

from the root surface (epidermal root hair cell) into the cortex (Thornton, 1930; Dixon, 

1964) that gives rise to the newly formed nodule primordia (Figure 1.1C).  

During steps of the infection process in the epidermis, cortical cell layers below the 

infection site undergo cytological and morphological alterations. These alterations include 

cell division when mitosis of outer cortical cells is re-activated, following pericycle 

activation and subsequent activation of inner cortical cell divisions (Gage, 2004). As a 

result, nodule primordia are formed by newly divided cortical cells and nodule 

organogenesis is initiated (Figure 1.1C).  

Determinate and indeterminate type of nodules can be distinguished within the 

legume-rhizobia symbiosis. Figure 1.1 summarizes the steps of infection and nodule 

formation in both types of nodules. In legumes that develop indeterminate nodules (like the 
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model organism Medicago truncatula, or pea/Pisum sativum and vetch/Vicia sp.), NF 

perception induces periclinal cell divisions in the pericycle followed by inner cortical cell 

proliferation (Brewin, 1991). While in legumes forming determinate nodules (like model 

organism Lotus japonicus or soybean/Glycine max and common bean/Phaseolus vulgaris), 

nodule primordium can be formed either in the middle root cortex (L. japonicus) or in the 

outer root cortex (P. vulgaris) (van Spronsen et al., 2001).  

While the root cortex undergoes mitotic activity, infection threads grow towards 

emerging nodule primordia delivering the first rhizobia (Figure 1.1C). The penetration 

progress of infection threads is prepared by so-called pre-infection thread (PIT) formation, 

cellular structures also known as cytoplasmic bridges, which join the inner and outer 

periclinal cell walls of outer cortical cells (van Brussel et al., 1992; Timmers et al., 1999). 

Cytoplasmic bridges were observed in legumes with indeterminate nodules. Among the 

legumes with determinate nodules, PITs has been found in L. japonicus, since the IT has to 

get to the middle cortex, through the outer cortical cell layer, where nodule primordia form 

(Figure 1.1C). No such structures have been found in common bean (P. vulgaris), which 

develops nodule primordia in the outer cortex (van Spronsen et al., 2001). In the root 

cortex bacteria are released from the infection thread into the cytoplasm of the nodule 

primordia cells. These remain encapsulated by a plant-derived membrane (called 

peribacteroid membrane; Whitehead and Day, 1997) constituting the so-called 

symbiosome (Roth et al., 1988). Within this organelle-like structure, bacteria differentiate 

into nitrogen fixing bacteroids (Bergersen, 1955; Whitehead and Day, 1997). In 

determinate nodules, bacteria divide within the symbiosome membrane and form a certain 

population of cells. Internalized bacteria divide parallel with the symbiosome membrane 

before bacteroid differentiation in the indeterminate nodules (Prell and Pool, 2006; Jones et 

al., 2007). 

For development of indeterminate nodules outer, inner and middle cortical cells are 

re-activated and undergo mitosis as well as cells in endodermis and pericycle (Figure 1.1B-

C). Those cells of the middle cortex that will not become infected will form the nodule 

meristem (Gage 2004). Cells neighbouring the primordium will produce a persistent 

nodule meristem that consists of actively dividing cells and keeps growing outward from 

the root (Foucher and Kondorosi; 2000). First cell divisions in determinate nodules occur 

sub-epidermally in the cells of outer or middle cortex (van Spronsen et al., 2001; Figure 

1.1B-C). Nodules are usually spherical and have a certain life span, since they omit 
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meristematic activity (Figure 1.1D). The inner nodule cells proliferate, differentiate, fix 

and undergo senescence synchronously (Mergaert et al., 2006; Newcomb et al., 1979). 

 

 
 
Figure 1.1 Development of indeterminate and determinate root nodules  
The figure describes the two types of root nodules developed by legumes in symbiotic association with 
rhizobia. (A) Bacteria attach to the root hair tip when they invade the root via root hair infection. (B) Root 
hair curling and infection thread (IT) formation. IT serves to deliver rhizobia into developing nodule tissue. 
Recognition of bacteria triggers several cytological and morphological processes that differ in the two types 
(determinate and indeterminate) of legume nodules. In legumes forming determinate nodules, underneath the 
epidermal root hair cell (perceiving bacteria) the outer and middle cortical cells start to divide. Whereas in 
legumes developing indeterminate nodules, cells of the entire cortical layer and of the pericycle undergo cell 
proliferation. (C) Emerging nodule primordium and branching IT. Development of the nodule primordium is 
accompanied by the presence of a persistent meristem. (D) Zonation of the indeterminate nodule with the 
meristem (zone I), the infection zone (II), an interzone (II-III), the fixation zone (III) and the senescence zone 
(IV). In contrast, determinate nodules derive from cell divisions in the outer root cortex where meristematic 
activity is lost in mature nodules. Modified from Popp and Ott (2011). 
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Since indeterminate nodules grow and are infected continuously, they have an elongated 

shape that can be divided into four zones: I meristematic zone, free of bacteria; II infection 

zone; III nitrogen-fixing zone and IV senescent zone (Vasse et al., 1990; Figure 1.1D). 

 The role of the nodule is to provide a physiologically appropriate environment for 

biological nitrogen fixation. This requires oxygen concentration balance for the activity of 

the rhizobial nitrogenase enzymes. Nodule tissue of the infected cells insures a free oxygen 

concentration less than 1% of the atmospheric one that is required for the obligate aerobe 

bacteria to carry out the biological nitrogen fixation process (Studer et al., 1987; Brewin, 

1991). Such micro-oxic environment is maintained by the existence of an oxygen diffusion 

barrier at the nodule endodermis (Dalton et al., 1998). Furthermore, the expression of 

legume-specific haemoglobins (leghemoglobins) ensures sufficient quenching and 

transport of free oxygen to the site of consumption (mainly the bacteroids) (Ott et al., 

2005). 

 

 

1.4. Molecular players in the signalling of root-nodule symbiosis 

 

 Morphological and developmental changes during pre-infection, infection and 

nodule formation follow diverse players on genetic, molecular and biochemical level. At 

least two different signalling cascades/events responsible for a successful root nodule 

establishment can be distinguished. Initial signalling events occur at the root epidermis 

maintaining bacterial infection and another giving rise to nodule development (Madsen et 

al., 2010; Oldroyd et al., 2011). Figure 1.2 illustrates the two parallel pathways. 

Nod factor perception by LysM-type receptor-like kinases such as NFR5/NFP (in 

L. japonicus/M. truncatula) and NFR1/LYK3 (Amor et al., 2003; Limpens et al., 2003; 

Madsen et al., 2003; Radutoiu et al., 2003) represents the initial step of this molecular 

dialogue. Mutations in the corresponding genes result in the entire loss of cellular 

responses towards NFs and the lack of induction of infection threads or nodule primordia 

in both nfr1 and nfr5 mutants (Madsen et al., 2003; Radutoiu et al., 2003) in L. japonicus. 

Both RLKs are required for the initiation of the infection (infection thread formation) and 

nodule organogenesis as well (Figure 1.2; Madsen et al., 2010). The M. truncatula nfp 

mutant also does not exhibit any of the early responses (like root hair deformation, calcium 

spiking or early nodulin gene expression) to NF application (Amor et al., 2003). In 
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contrast, the hcl-1 (lyk3) mutant is able to respond to NFs by root hair deformation while 

no infections can be observed. Interestingly, root hairs of the hcl-1 mutant branch rather 

than curl because of impaired cytoskeletal (microtubule) rearrangement. Therefore, 

mutants do not form cytoplasmic bridges to create PITs in activated cortical cells (Catoira 

et al., 2001). Weak hcl alleles such as hcl-4 shows blocked infection at the stage of 

infection thread (IT) formation but bacteria were still able to elicit root hair curling while 

ITs show aberrant morphology (Limpens et al., 2003).  

Both L. japonicus receptors exhibit three extracellular LysM domains, which were 

shown to be required for determining host specificity towards the rhizobial NF (Radutoiu 

et al., 2007). The LysM domains are anchored by simple pass transmembrane domain to 

serine/threonine kinase domains (Madsen et al., 2003; Radutoiu et al., 2003). It was shown 

in planta that NFR5 and NFR1 localize to plasma membrane and form a heterocomplex 

triggering downstream signalling. Furthermore, a posphorylation site that was detected in 

vitro, is required for NFR1 function in NF-signalling and for its kinase activity (Madsen et 

al., 2011). Three threonine residues (1 in the juxtamembrane region and 2 in the kinase 

domain) were identified in LYK3 to be indispensible for the biological function of the 

protein but not for kinase activity (Klaus-Heisen et al., 2011). NFP and NFR5 did not show 

kinase activity (Arrighi et al., 2006; Madsen et al., 2011). 

Interestingly both, AM symbiosis and RNS share a common set of signalling 

proteins (common ‘sym’ genes) during initial signal perception and downstream activation 

of cellular signalling. A Leucine-Rich Repeat (LRR) containing receptor-like kinase 

SYMRK/DMI2/NORK (in L. japonicus, M. truncatula and M. sativa, respectively; Stracke 

et al., 2002; Endre et al., 2002; Catoira et al., 2000) downstream of the LysM-type RLKs 

represents the first, shared component of RNS and AM symbiosis signalling (Kistner et al., 

2005; Parniske 2008). SYMRK was found to exist in at least three different structural 

versions, of which the shorter forms from rice and tomato are sufficient for AM, but not for 

functional RNS in the legume L. japonicus. These data indicate that SYMRK sequence 

evolution was involved in the recruitment of a pre-existing signalling network from AM 

symbiosis for the evolution of RNS (Markmann et al., 2008). Its function remains to be 

clarified, however, plants carrying mutation in SYMRK locus show an impaired calcium 

spiking elicited by NF perception, and therefore it might serve as a link between the 

upstream NF receptors and the downstream physiological calcium-related events (Stracke 

et al., 2002). Three Ser/Thr residues were found in the SYMRK intracellular region that 
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are responsible for full kinase activity of the protein and its function involved in both 

endosymbiosis (Yoshida and Parniske, 2005). A mutation in the SYMRK extracellular 

domain (symRK-14) affected normal infection in epidermal cells by fungal or bacterial 

symbionts. Epidermal responses of symRK-14 to bacterial signalling, including calcium 

spiking, NIN gene expression and infection thread formation, were significantly reduced. 

However, negative effects on nodule primordia formation and cortical infection were not 

detected (Kosuta et al., 2011). 

NF perception leads to calcium oscillations in and around the nucleus, molecular 

players involved in calcium-related occurrence represent the so-called common SYM genes 

(like SYMRK, involved in the common symbiosis pathway; Figure 1.3), since each mutant 

shows an altered phenotype in both endosymbiosis. Downstream SYMRK two potassium-

channel proteins CASTOR and POLLUX (Figure 1.3) were identified in Lotus while in 

Medicago it was found only one protein of the same function, DMI1/POLLUX (Ané et al. 

2004). The symbiosis-defective castor and pollux mutants show impairment in perinuclear 

calcium spiking (Miwa et al. 2006; Charpentier et al., 2008). Mutations in these genes and 

in further three components of the nuclear pore complex NUP85, NUP133 and NENA 

(described so far in L. japonicus) are accompanied with impairment in calcium spiking in 

response to NF (Saito et al., 2007; Kanamori et al., 2006; Groth et al., 2010; Figure 1.3). 

All these mutants (castor, pollux, nup85, nup133, nena) show nodulation and AM 

symbiosis affected phenotypes and thus represent common sym genes.  

A molecular component downstream of the calcium spiking, and it is thought to be 

act as a decoder of the calcium signature, is a calcium-calmodulin-dependent protein 

kinase, CCaMK in L. japonicus and DMI3 in M. truncatula (Lévy, et al., 2004; Mitra et 

al., 2004). It interacts with CYCLOPS (IPD3) a phosphorylation substrate of CCaMK in 

the nucleus (Yano et al., 2008; Messinese et al., 2007). Auto-active mutations in CCaMK 

(snf1) in L. japonicus and expression of the DMI31-311 in M. truncatula are able to trigger a 

spontaneous nodule formation in the absence of rhizobia (Tirichine et al., 2006; Gleason et 

al., 2006). At this point, the pathway bifurcates (Figure 1.2), CCaMK initiates nodule 

organogenesis, whereas CCaMK-CYCLOPS interaction (Yano et al., 2008) leads to 

intracellular infection (Madsen et al., 2010). Expression of a gain-of-function mutant of 

CCaMK in different Lotus symbiotic mutant backgrounds also supports this hypothesis 

(Hayashi et al., 2010; Popp and Ott, 2011). Cross-talk between the infection and the 
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organogenesis pathway (or bifurcation of them) was shown by Madsen and colleagues 

(2010) as well.  

Another common sym gene has been identified recently in M. truncatula, a plasma 

membrane resident ankyrin protein, VAPYRIN. Mutation in this protein causes 

phenotypical aberration in both endosymbiosis. Vapyrin mutant plants do not show 

impairment in calcium spiking in response to NF application, therefore it can be concluded 

that it acts downstream of the calcium spiking events (Murray et al., 2011). Orthologous 

protein of the NENA in M. truncatula and of the VAPYRIN protein in L. japonicus has not 

been identified so far.  

 

 
 
Figure 1.2 Symbiotic signalling pathways mediating infection and nodule organogenesis 
NF perception induces two parallel signalling transduction pathways to establish root nodule symbiosis. 
Recognition of NF via NFR1 and NFR5 receptor complex induces infection processes in the epidermis via 
deformation and root hair curling of epidermal root hair cells. The parallel pathway facilitating nodule 
organogenesis bifurcates at the CCaMK. One site of the pathway is involved in infection thread formation 
upon CCaMK interaction with its substrate Cyclops via Cerberus, Nap1, Pir1 proteins in epidermis and 
subsequent activation of the transcription regulators Nin, Nsp1 and Nsp2. While in cortex cytokinin 
signalling pathway activated via CCaMK induces nodule organogenesis. Modified from Madsen et al., 2010. 

 

Transcriptional regulators NIN (nodule inception; Schauser et al., 1999), NSP1 

(nodulation signalling pathway 1) and NSP2 (Catoira et al., 2000; Oldroyd and Long, 

2003; Kaló et al., 2005; Heckmann et al., 2006) are involved in both infection and nodule 

organogenesis as well (Madsen et al., 2010; Figure 1.2). NSP1 and NSP2 belong to the 

GRAS protein family. Nin mutants exhibit root hair deformation indicating that the gene is 

not involved in early NF-signalling. Furthermore, it was found to be responsible for 

infection thread formation since nin mutants are defective in root hair curling (inordinate 
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curling) and rhizobial infection is blocked in epidermis while in cortex they are aberrant in 

cell division and nodule primordium formation (Schauser et al., 1999). 

 

 
 
Figure 1.3 Common components of AM and RNS signalling pathway 
Signal perception of rhizobial or AM fungal signals triggers a signal transduction that shares at least nine (7 
on the figure) common component: SYMRK (DMI2), CASTOR (no ortholog in Medicago), POLLUX 
(DMI1), NUP133, NUP85, NENA (in L. japonicus, Groth et al., 2010), CCaMK (DMI3), CYCLOPS (IPD3) 
and VAPYRIN (in M. truncatula, Murray et al., 2011). SYMRK kinase acts downstream of the Nod factor 
receptors (NFR1 and NFR5) and a hypothetical Myc factor receptor, but upstream of the calcium signalling 
that occurs in and around the nucleus. CASTOR and POLLUX are potassium-permeable channels while 
NUP85, NUP133 and NENA (not on the figure, it can be placed as component of the nuclear pore complex) 
are components of the nucleopore complex and required for calcium spiking. CCaMK forms a complex with 
CYCLOPS that activates further downstream elements. The ninth component VAPYRIN can be placed 
downstream of CYCLOPS and CCaMK (from Parniske, 2008; with modifications in text). 
 

The L. japonicus mutants nsp1 and nsp2 are impaired in nodule cortical cell 

division indicating their role in nodule organogenesis (Heckmann et al., 2006). Activation 

of these transcription factors (NSP1, NSP2 and NIN) via CCaMK and subsequent 

cytokinin signalling in the cortical cell layers induces expression of late nodulins (genes 

specifically induced in nodulation and they can be grouped as early and late nodulins; Nap 



Introduction 

16 

 

and Bisseling, 1990) and organogenesis (Madsen et al., 2010). CCaMK-CYCLOPS 

interaction triggered signalling involves further molecular components like CERBERUS 

(Yano et al., 2009), PIR1 and NAP1 (Yokota et al., 2009) that activate NSP1, NSP2 and 

NIN transcription regulators in epidermal cell layer participating in the infection process 

(Madsen et al., 2010; Figure 1.2). Cerberus mutants showed impairment in both infection 

(defects in IT formation) and nodule organogenesis (Yano et al., 2009), whereas pir1 and 

nap1 mutants were aberrant in rearrangement of the actin cytoskeleton (Yokota et al., 

2009). While the abovementioned transcription regulators have not been shown to bind 

directly DNA. In Medicago was found an ERF transcription factor, ERN (EFR Required 

for Nodulation) that directly binds DNA. Plants carrying mutation in this gene show IT 

aberrations and it assumed to act downstream DMI3/CCaMK in NF induced gene 

expression (Middleton et al., 2007). 

Recently a novel component of the symbiotic signalling pathway, the remorin 

protein MtSYMREM1 in M. truncatula was described (Lefebvre et al., 2010). 

 

 

1.5. Remorins, a protein family of unknown function  

 

Remorins represent a plant-specific protein family of unknown function that are 

present in all land plants including ferns and mosses (Figure 1.4). The proteins consist of a 

C-terminal domain that is highly conserved among the whole family and an N-terminal 

region with highly variable sequence. Remorins were ordered into six groups based on 

phylogenetic analysis that were combined with domain features (Figure 1.4). Group 3 

remorins stands for exception because of the lack of the N-terminal domain (Raffaele et 

al., 2007). Figure 1.4 illustrates phylogenetic analysis and clustering of the remorin 

proteins. Remorins represent a novel family with coiled-coil forming filamentous proteins 

that were localized to apical and vascular tissue and leaf primordia (Bariola et al., 2004). 

A member of a plant-specific protein family has been described just two decades 

ago that later was designated as remorins (Farmer et al., 1989; Reymond et al., 1996). It 

was described as a plasma membrane (PM) associated protein, phosphorylated upon 

treatment with polygalacturonic acid (a proteinase inhibitor inducing factor; Farmer et al., 

1989) and it was suggested to play a role in cell-to-cell communication and plant defence 

because of its features similar to viral proteins (Reymond et al., 1996). 
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 Recently, Raffaele and colleagues (2009) showed that a group 1 remorin, 

SlREM1.3 in tomato interacts with a movement protein TGBp1 of potato virus X (PVX) 

and inhibits movement of the virus through the plasmodesmata that are used by viruses for 

intercellular movement.  

 

 
 
Figure 1.4 Phylogenetic and domain organization of the remorin family based on their protein 
sequences. The right box shows the color code used to indicate evolutionary positions within the plant 
kingdom (according to the Angiosperm Phylogeny Group, 2003) and domain elements used for 
classification. In the diagrams domain lengths are proportional to the average protein sequence length (except 
for groups 5 and 6, for which the representation of the N-terminal region is intercepted by ‘‘//,’’indicating a 
variable length of this module within these two groups). Underlined sequences contain Remorin_N domains 
identified by InterProScan. Bootstrap values (%) are given along the most important branch points. True 
branch lengths were inferred by maximum-likelihood analysis; the upper-left scale represents a probability of 
0.1 amino acid changes per site. The tree was reconstructed using parsimony analysis. For clarity of the 
figure, a shortened nomenclature was used (e.g. At1.1 for AtRem1.1) the first number in the proposed name 
indicates the corresponding group (e.g. At1.3 is the third member of group 1). Abbreviations: Ac, Adiantum 
capillus-veneris; Ak, Amborella trichopoda; Ap, Allium cepa; At, Arabidopsis thaliana; Cr, C. richardii; Mc, 
Mesembryanthemum crystallinum; Mt, M. truncatula; Na, Nuphar advena; Nt, tobacco; Os, rice; Pa, Persea americana; 
Pd, Pinus taeda; Pi, Pinus pinaster; Pp, P. patens; Ps, Picea sitchensis; Pt, P. trichocarpa; Sl, tomato; St, Solanum 
tuberosum; Wm, Welwitschia mirabilis; Zm, Zea mays. (From Raffaele et al., 2007) 
 

Other findings (regarding group 1 remorins) such as differential phosphorylation 

upon treatment of Arabidopsis cells with the pathogen-associated molecular pattern 

(PAMP) flg22 (Benshop, 2007) and its dependency on the presence of the resistance 
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protein RPM1 (Widjaja et al., 2009) suggest roles of these proteins during plant-pathogen 

interactions (reviewed in Jarsch and Ott, 2011). Moreover, another member of group 1 

remorins (AtREM1.2) was found to be interacting with RIN4, a protein involved in plant 

immunity (Liu et al., 2009).  

Raffaele and colleagues (2009) suggest that remorins are possible membrane raft 

markers. Plasma membrane microdomains consist of sterols, sphingolipids and proteins 

that serve as a platforms acting in membrane signalling and trafficking (Bessueille et al., 

2009; Lingwood and Simons, 2010; Mongrand et al., 2010; Jarsch and Ott, 2011). They 

were found and were highly enriched in detergent insoluble membrane (DIM) fractions 

(Raffaele et al., 2009; Lefebvre et al., 2007, 2010). It was shown not only biochemically 

but also Raffaele and colleagues (2009) showed that another member of group 1 remorins, 

NtREM1.2 accumulates in purified DIM. Furthermore, when the protein was fused to the 

green fluorescent protein (GFP) and was expressed in tobacco leaves, it was found to be 

localized to distinct PM domains (Raffaele et al., 2009). It was also hypothesised in 

Lefebvre et al. (2010) and summarized in Jarsch and Ott (2011) that some of the remorins 

(e.g. MtSYMREM1) might function as scaffold protein, since they share common features 

with protein described as scaffold in mammalian field, and might recruit other proteins 

involved in signalling and membrane modification to the membrane rafts.   

 

1.5.1. MtSYMREM1, a remorin involved in root-nodule symbiosis 

 

 Group 2 remorins have been found only in legumes and Poplar so far (Raffaele et 

al., 2007, Lefebvre et al., 2010). A group 2 remorin protein was found in organ-specific 

expression profiling qPCR experiment performed in L. japonicus (Colebatch et al., 2004). 

Lefebvre and co-workers (2010) analyzed all remorins found in M. truncatula during the 

symbiosis and only the remorin belonging to the group 2 remorins (MtREM2.2 in Raffaele 

et al., 2007), named MtSYMREM1 was identified as root nodule symbiosis specific. 

MtSYMREM1 was induced in a nodulation-specific manner and 24 hours post application 

of isolated Nod factors from Sinorhizobium meliloti (Lefebvre et al., 2010). Using different 

rhizobial strains that cause altered infection at different stages of infection, revealed 

MtSYMREM1 expression to be dependent on infection and bacterial release rather than 

symbiotic nitrogen fixation. These data suggest a possible role of the protein in 

preinfection steps, IT formation and throughout the nodule life (Lefebvre et al., 2010). 
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Furthermore, Mtsymrem1 mutants were found to compose about 25% less and stunted 

nodules and aborted ITs (formation of sac-like structures and branching ITs) that also 

proves that MtSYMREM1 is required for bacterial infection and nodule development.  

 MtSYMREM1 localizes to the PM of leaf epidermal cells when it was tested as a 

fusion protein with a cyan fluorescent protein (CFP) in N. benthamiana. When 

fractionation was performed on inoculated (with S. meliloti) M. truncatula roots, the 

protein was detected in the DIM fractions, a further evidence for PM and membrane raft 

localization, respectively. The localization of the endogenous protein in M. truncatula was 

examined using in situ immunofluorescence when localization at the PM of ITs  in zone II 

(infection zone) and at the symbiosome membrane in zone III (nitrogen fixing) and at the 

nodular infection thread as well, using immunogold labeling and transmission electron 

microscopy (Lefebvre et al., 2010). Furthermore, it was found that the protein interacts 

with the symbiotic RLKs NFP, LYK3 and DMI2 and homo-oligomerizes with itself as 

well in bimolecular fluorescent complementation and split-ubiquitin yeast assay, 

respectively (Lefebvre et al., 2010).  

 

 

1.6. Aim of this study 

 

A tightly regulated signalling cascade regulates RNS in legumes. Perception of the 

respective host-specific rhizobial symbionts by the plant is mediated by a set of receptor-

like kinases. In M. truncatula, a legume that develops indeterminate nodules, these RLKs 

interact with the remorin protein MtSYMREM1. While almost all signalling components 

are highly conserved between M. truncatula and the second model legume L. japonicus, an 

exceptionally high sequence divergence was observed for the SYMREM1 proteins. These 

data suggest possible functional differentiation that may correlate with differences in 

nodule organogenesis and maturation between both legumes. The aim of this study was to 

functionally characterize the SYMREM1 gene from L. japonicus, to unravel its 

transcriptional regulation and to identify new interaction partners of the LjSYMREM1 

protein. 
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2. Material and Methods 

 

2.1. Material 

 

Chemicals  

 

α-DsRed primary antibody Clontech (Takar Bio Europe), France 
α-GFP primary antibody Rockland Immunochemicals, Gilbertsville, 

USA 
α-HA-HRP antibody     Roche, Penzberg, Germany 
α-LexA  primary antibody    Dualsystems Biotech,  

Schlieren, Switzerland  
α-Mouse-HRP secondary antibody   Biomol, Hamburg, Germany 
α-Rabbit-HRP secondary antibody GE Healthcare UK, Little Chalfont, UK 
α-VP16  primary antibody    BD Bioscience, Heidelberg, Germany 
β-Mercaptoethanol     Sigma-Aldrich, Taufkirchen, Germany 
3,5 Dimethoxy-4-hydroxyacetophenone (DMSO) Finnzymes, Espoo, Finland 
Acetic acid 100% p.a.     Merck, Darmstadt, Germany 
Acetone 99%       Merck, Darmstadt, Germany 
Acetosyringone      Fluka, Buchs, Switzerland 
Acrylamide (Rotiphorese Gel 30)   Roth, Karlsruhe, Germany 
Agar HP696      Kalys S.A, Bernin, France 
APS (Ammonium Persulfate)    Merck, Darmstadt, Germany 
Bacto agar      Becton Dickinson, Heidelberg, Germany 
Bacto peptone      Becton Dickinson, Heidelberg, Germany 
Bacto yeast extract     Becton Dickinson, Heidelberg, Germany 
Bromphenol blue     Roth, Karlsruhe, Germany 
Calcium chloride (CaCl2)    Mallinckrodt Baker, Griesheim, Germany 
Chloroform/Isoamyl alcohol (24/1)   Roth, Karlsruhe, Germany 
Coomassie brilliant blue R250    Serva Electrophoresis,  

Heidelberg, Germany 
Dithiothreitol (DTT)     Roche, Penzberg, Germany 
DNA MG Standard ladders    New England Biolabs, Frankfurt a. Main 
dNTP mix      New England Biolabs, Frankfurt a. Main 
DUALmembrane kit2 (P01001)    Dualsystems, Schlieren, Switzerland 
Ethanol (technical) 99.9%    Merck, Darmstadt, Germany 
Ethidium bromide solution (1%)   Fluka, Sigma-Aldrich,  

Taufkirchen, Germany 
Ethylenediaminetetraacetate (Na2EDTA)  Merck, Darmstadt, Germany 
Gamborg B5 medium (Basal Salt Mixture)  Duchefa, Haarlem, The Netherlands 
Gamborg B5 vitamin mixture    Duchefa, Haarlem, The Netherlands 
Gateway LR Clonase enzyme mix   Invitrogen, Karlsruhe, Germany 
Glucose      Applichem, Darmstadt, Germany  
Glycerine, 99.5 % p.a     Roth, Karlsruhe, Germany 



Material and Methods 

21 

 

Glycine p.a      Applichem, Darmstadt, Germany 
Isopropanol 99.9%     Mallinckrodt Baker, Griesheim, Germany 
LE Agarose      Biozym, Oldendorf, Germany 
Lithium acetate      Roth, Karlsruhe, Germany 
Loading dye 6x      New England Biolabs, Frankfurt a. Main 
LuminogenTM TMA-6 GE Healthcare UK, Little Chalfont, 

Buckinghamshire, UK 
Lyticase (L2524-10KU)    Sigma-Aldrich, Taufkirchen, Germany 
Magnesium chloride (MgCl2) p.a.   Merck, Darmstadt, Germany 
Milk powder      Roth, Karlsruhe, Germany 
Nitrocellulose membrane Hybond N+   Amersham Biosciences,  

Freiburg, Germany 
NucleoBond® PC 500     Macherey-Nagel, Düren, Germany 
NucleoSpin ExtractII®     Macherey-Nagel, Düren, Germany  
NucleoSpin Plasmid®     Macherey-Nagel, Düren, Germany 
pENTR/D-TOPO kit     Invitrogen, Karlsruhe, Germany 
pGEM-T cloning system    Promega, Mannheim, Germany 
Phusion DNA Polymerase    Finnzymes, Espoo, Finnland 
Phenol/Chloroform/Isoamyl alcohol (25/24/1)  Roth, Karlsruhe, Germany 
Phenylmethylsulfonylflurid (PMSF)   Roth, Karlsruhe, Germany 
Polyethylenglycol (PEG 3350)    Sigma-Aldrich, Taufkirchen, Germany 
Polyethylenglycol (PEG 8000)    Sigma-Aldrich, Taufkirchen, Germany 
Potassium dihydrogen phosphate (KH2PO4) p.a.  Merck, Darmstadt, Germany 
Potassium hydroxide (KOH) >85%, p.a   Mallinckrodt Baker, Griesheim, Germany 
Potassium ferrocyanide (K4[Fe(CN)6].3H2O)  Fluka, Sigma-Aldrich,  

Taufkirchen, Germany 
Potassium ferricyanide (K3[Fe(CN)6])   Fluka, Sigma-Aldrich,  

Taufkirchen, Germany 
Protease inhibitor cocktail     Sigma-Aldrich, Taufkirchen, Germany 
Proteinase K       Invitrogen, Karlsruhe, Germany 
Proteinmarker prestained,      
broad range (7-175 kDa)    New England Biolabs, Frankfurt a. Main, 
       Germany 
Restrictionendonucleases     New England Biolabs, Frankfurt a. Main 
Single stranded carrier DNA (P06001)   Dualsystems Biotech,  

Schlieren, Switzerland 
Sodium acetate (NaAcetate), p.a   Merck, Darmstadt, Germany 
Sodium chloride (NaCl) p.a.    Mallinckrodt Baker, Griesheim, Germany 
Sodium dodecyl sulfate (SDS)    Roth, Karlsruhe, Germany 
Sucrose       Applichem, Darmstadt, Germany  
Taq DNA Polymerase     New England Biolabs, Frankfurt a. Main 
T4 DNA Ligase     New England Biolabs, Frankfurt a. Main 
TEMED (Tetramethylethylenediamine)   Roth, Karlsruhe, Germany 
Trichloroacetic acid (TCA) p.a.    Roth, Karlsruhe, Germany 
TrisHCl p.a.       Applichem, Darmstadt, Germany 
Triton-X 100      Roth, Karlsruhe, Germany 
Tween 20      Roth, Karlsruhe, Germany 
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X-Gluc       Roth, Karlsruhe, Germany 
Yeast nitrogen base w/o amino acids   (Difco) BD, Sparks, MD, USA 
Yeast protease inhibitor cocktail   Sigma-Aldrich, Taufkirchen, Germany   
 

Equipment and Devices 

 
ABI 3730 48 capillary sequencer   Applied Biosystems, Darmstadt, Germany 
Allegra 64R Centrifuge     Beckman, Munich, Germany 
Centrifuge, Eppendorf 5424    Eppendorf, Hamburg, Germany 
Confocal laser scanning microscope,   Leica Mikrosysteme, Wetzlar, Germany 
(Leica TCS SP5) 
DNA Engine Tetrad 2 Peltier Thermal Cycler  Bio-Rad, Munich, Germany 
Electroporator      Bio-Rad, Munich, Germany 
Fusion SL detection system    Peqlab, Erlangen, Germany 
Galaxy Ministar Microcentrifuge   VWR, Darmstadt, Germany 
Gene Pulser System      Bio-Rad, Munich, Germany 
(Gene Pulser, Capacitance Extender,     
Pulse Controller)  
HeraSafe biological safety cabinet   Thermo Fisher Scientific,  

Schwerte, Germany 
Incubator, Binder WTB     BINDER GmbH, Tuttlingen, Germany 
Infors HAT Multitron incubator /shaker   INFORS AG, Bottmingen, Germany 
Inverted (epifluorescence) microscope 
(Leica DMI 6000B)      Leica Mikrosysteme, Wetzlar, Germany 
Microcentrifuge 5418R     Eppendorf, Hamburg, Germany 
Nanodrop ND-1000 Spectrophotometer   Labtech International, Burkhardtsdorf, 

Germany 
Pipetman (P10, P20, P200, P1000)   Gilson, Middleton, USA 
Plant growth chamber, SANYO, MLR-350H  SANYO Europe Ltd, Watford UK 
PowerPac Basic Power Supply    Bio-Rad, Munich, Germany 
Protein Blotting Cell     Bio-Rad, Munich, Germany 
Rocker Shaker, UNITWIST    UniEquip, Planegg, Germany 
Sorvall RC 5C Plus     DuPont Sorvall, Bad Homburg, Germany 
Stereo microscope (Leica MZ 16FA)   Leica Mikrosysteme, Wetzlar, Germany 
Thermomixer comfort/compact    Eppendorf, Hamburg 
Tissue lyser      Qiagen, Hilden, Germany 
TProfessional Thermocycler    Biometra, Göttingen, Germany 
Ultra Clear UV Plus water system   Millipore, Schwalbach, Germany 
Ultrospecc 3000pro (UV spectrophotometer)  Amersham Biosciences,  
       Freiburg, Germany 
UV Stratalinker 2400 (UV crosslinker)   Stratagene,Heidelberg, Germany 
Varifuge 3.0R (centrifuge)    Heraeus Sepatech GmbH,  

Osterode, Germany 
Varioklav 135 S steam sterilizer    Thermo Scientific, Schwerte, Germany 
Vertical Electrophoresis Cell    Bio-Rad, Munich, Germany 
Vortex Genie 2      Bender & Hobein AG, Zurich, Switzerland 



Material and Methods 

23 

 

Water bath      GFL, Großburgwedel, Germany 
 

Other implements 

 

Amicon Ultra-4 centrifugal devices   MILLIPORE Corp.; Carrigtwohill, Ireland 
Films Amersham HyperfilmTM ECL GE Healthcare UK, Little Chalfont, UK 
Filter (Celluloseacetat; 0.22μm)    Whatman; GE Healthcare UK 
Glass beads B. Braun Melsungen, Germany 
Glass jars J. WECK GmbH, Wehr-Öflingen, 

Germany 
Parafilm (Laboratory Film) Pechiney Plastic Packaging, Menasha, 

USA 
PVDF membrane GE Healthcare UK, Little Chalfont, UK 
Steritop filter 0.22μm     Millipore GmbH, Schwalbach, Germany 
Tungsten beads      BioRad, Munich, Germany 
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2.1.1. Bacterial and yeast media and solutions 

 

LB medium     

Bacto trypton     10 g 

Bacto yeast extract    5 g 

NaCl       5 g 

adjust pH to ~7.5 with 1 M NaOH 

MQ-H2O      up to 1 l 

 

SOB medium 

 

Bacto tryptone    20 g 

Bacto yeast extract    5 g 

NaCl      0.584 g 

KCl      0.186 g 

MQ-H2O      up to 1 l 

 

TY medium 

Bacto tryptone    5 g 

Yeast extract     3 g 

CaCl2.H2O     0.81 g 

MQ-H2O      up to 1 l 

 

Bacto agar    15 g  1.5% final 

 

YPAD medium 

Bacto yeast extract  10 g  1% final 

Bacto peptone  20 g  2% final 

Glucose monohydrate  20 g  2% final 

Adenine sulphate     40 mg  0.004% final  

MQ-H2O      up to 1 l 

 

Bacto agar     20 g  2% final 
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10x YNB (Yeast Nitrogen Base w/o amino acids) 

67 g    1 l MQ-H2O 

 

40% Glucose 

400 g    1 l MQ-H2O    

 

AA-stock solutions (amino acid solution w/o certain amino acids) 

 

10x AA-LW (w/o Leucine and Tryptophan) 

6.4 g       1 l MQ-H2O   

 

10x AA-LWH (w/o Leucine, Tryptophan and Histidine) 

6.2 g       1 l MQ-H2O   

 

10x AA-LWHAde (w/o Leu, Trp, His and Adenine) 

6.2 g       1 l MQ-H2O   

 

500xHis (500x Histidine stock)  10 g/l 

500xTrp (500x Tryptophane stock)  10 g/l 

100xLeu (100x Leucine stock)  10 g/l 

 

SD (synthetic, minimal) medium, liquid  

10x YNB    0.1 l  0.67 g final 

10x AA-stock solution   0.1 l 

40% Glucose  0.05 l  2% final 

MQ-H2O/       0.75 l  

 

SD (synthetic, minimal) medium, solid 

10x YNB    0.1 l  0.67 g final 

10x AA-stock solution   0.1 l 

40% Glucose  0.05 l  2% final 

Bacto agar   0.75 l  2% final 
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Antibiotics  

Ampicillin      100 mg/ml 

Carbenicillin      50 mg/ml 

Cefotaxim     300 mg/ml 

Gentamicin      25 mg/ml 

Hygromicin      50 mg/ml 

Kanamycin      50 mg/ml 

Rifampicin      25 mg/ml 

Spectinomycin     50 mg/ml 

Streptomycin      50 mg/ml 

 

Rifampicin was dissolved in methanol. All other antibiotics were dissolved in H2O. Stock 

solutions were 1000x diluted or as it is indicated in respective chapters. 

 

All solutions for yeast media were autoclaved for 15 min at 115°C, with exception of 

amino acid solutions and YNB. They were sterile filtrated via 0.22 μm or 0.45 μm filters. 

Bacterial media were autoclaved for 20 min at 120°C. Antibiotics were sterile filtrated. 

 

2.1.2. Plant media and solutions 

 

Fahräeus medium 

MgSO4.7H2O     0.5 mM 

KH2PO4     0.7 mM 

Na2HPO4.2H2O    0.8 mM 

Fe-EDTA     50 μM 

MnSO4     0.1 μg/l 

CuSO4      0.1 μg/l 

ZnSO4      0.1 μg/l 

H3BO3      0.1 μg/l 

Na2MoO4     0.1 μg/l 

H2O      up to 1 l 

adjust pH~6.5     
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add after autoclaving 

CaCl2      1 mM 

 

Gamborg´s medium 

Gamborg B5 Basal Salt   3.3 g 

Sucrose     20 g 

Bacto agar     10 g 

H2O      up to 1 l    

pH~5.5 with NaOH 

 

1% Water-agar 

Bacto Agar     1 g 

ddH2O      0.1 l 

 

GUS staining solution 

Na2HPO4 (pH~7.0)    0.1 M  

Na2EDTA     10 mM  

K3Fe(CN)6     1 mM  

K4Fe(CN)6     1 mM  

Triton-X 100     0.1 %  

X-Gluc     1 mM  

 

100mM X-Gluc   

1 mg X-Gluc     dissolved in 2 ml DMSO 

 

 

Media were autoclaved for 20 min at 120°C. 
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2.2. Methods 

 

2.2.1. Bacterial and yeast growth and transformation 

 

2.2.1.1. Bacterial growth and transformation 

 

Escherichia coli  

E. coli DH5α, TOP10, XL1-Blue and DB3.1 strains (from Invitrogen, Germany; 

Appendix, Table A1) were used for plasmid propagation. E. coli strains were grown in LB 

liquid medium supplemented with appropriate antibiotic at 37°C over-night. Transformed 

bacterial strains were stored as glycerol stocks at - 80°C.  

Electro-competent cells were transformed using Bio-Rad electroporator with the 

following settings: 

 Capacitance: 25 μF 

 Capacitance extender: 125 μF 

 Resistance: 400 Ω 

 Set volt: 2.0 kV 

 Time constant: 0.0 

 Time-constant after transformation: 8-9 

After electroporation cells were grown in SOB medium at 37°C for a maximum of 1 h with 

a gentle shaking (300 rpm, Eppendorf thermomixer) before being plated onto LB solid 

medium containing the appropriate antibiotic and grew in 37°C incubator over-night. 

Chemo-competent cells (prepared as described in Sambrook and Russell, 2001) 

were incubated for 15 min on ice together with the respective plasmid, then heat-shocked 

at 42°C for 1 min. After heat-shock, cells were incubated on ice for 5 min before addition 

of liquid LB medium. Cells were pre-grown at 37°C for a maximum of 1 h with gentle 

shaking (300 rpm; Eppendorf thermomixer) before being plated onto LB medium 

containing the appropriate antibiotic. 

 

Agrobacterium tumefaciens and Agrobacterium rhizogenes 

A. tumefaciens GV3101 (C58:pMP90RK, Koncz and Schell, 1986), AGL1 (Lazo et 

al., 1991) and A. rhizogenes AR1193 (Stougaard et al., 1987) strains (Appendix, Table A1) 
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were used for transient and/or stable plant transformations. All strains were transformed 

via electroporation using Bio-Rad instrument and settings as follow: 

Capacitance: 25 μF 

 Capacitance extender: 125 μF 

 Resistance: 400 Ω 

 Set volt: 1.25 kV 

 Time constant: 0.0 

 Time-constant after transformation: 8-9 

After electro-shock LB medium was added to the cells, they were incubated at 28°C with 

gentle shaking (300rpm, Eppendorf Thermomixer) for at least 2 h then plated onto LB 

supplemented with antibiotic for both the respective plasmid and strain. Plates were 

incubated at 28°C for 2-3 days. 

 

Mesorhizobium loti  

 Mesorhizobium loti (strain MAFF 303099 expressing DsRed fluorophore; Gherbi et 

al., 2008; Appendix, Table A1) was used for L. japonicus infection. Rhizobia were grown 

on TY solid and/or liquid medium containing 15μg/ml Gentamicin, at 28°C for 3-4 days. 

Rhizobia liquid culture were harvested, washed and resuspended in Fåhraeus medium 

(Fåhraeus, 1957; see above) then diluted to a particular OD546 (specified in the respective 

chapter). 

 

2.2.1.2. Yeast growth  

 

For Saccharomyces cerevisiae (Appendix, Table A1) transformation a single yeast 

colony was picked from YPAD (full yeast medium) plates (no older than 3 weeks), 

inoculated in YPAD liquid medium and grown as a pre-culture overnight at 28/30°C in a 

shaking incubator (200 rpm). Transformed yeast cells were plated onto synthetic drop-out 

yeast medium (SD) supplemented with amino acid mixture lacking particular amino acids 

that served as auxotrophic markers (bait vector carrying Leu; prey vector carries Trp 

selection marker). Plates were sealed with parafilm and incubated at 28°C for 3 days. 

For yeast protein extraction and plasmid preparation from yeast, single colonies were 

picked from synthetic drop-out (SD) plates, inoculated in liquid SD medium lacking the 

appropriate auxotrophic markers and grown at 28°C at 200 rpm for 1 or 2 nights. 
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2.2.2. Molecular Biology DNA Techniques 

 

2.2.2.1. PCR application  

 

To amplify a DNA fragment for cloning Phusion Polymerase was used setting up 

the following reaction and conditions: 

 Forward primer (10 pmol/μl)   1 μl 

 Reverse primer (10 pmol/μl)   1 μl 

 Phusion DNA Polymerase (2 U/μl)  0.2 μl 

 10x Phusion buffer    3 μl 

 dNTPs (10 mmol/each)   1 μl 

 MgCl2 (50 mM)    0.3 μl 

 st. MQ-H2O    up to 30 μl 

 

 Initial denaturation  98°C  30 s   1 cycle 

 Denaturation   98°C  10 s   30-35 cycles 

 Annealing   55°C-60°C* 10 s   30-35 cycles 

 Extension   72°C  15 s-1 min**  30-35 cycles 

 Final extension  72°C  1 min   1 cycle 

 

For colony PCR performed on E. coli as well as on Agrobacteria a single colony was 

picked and placed into the PCR-tube using the following set ups: 

 Forward primer (10 pmol/μl)   0.4 μl 

 Reverse primer (10 pmol/μl)   0.4 μl 

 Taq DNA Polymerase (5 U/μl)  0.2 μl 

 10x Taq buffer    2 μl 

 dNTPs (10 mmol/each)   0.4 μl 

 MgCl2 (50 mM)    0.2 μl 

 st. MQ-H2O    up to 20 μl 

 

Initial denaturation  95°C  1 min   1 cycle 

 Denaturation   95°C  30 s   30-35 cycles 

 Annealing   55°C-60°C* 30 s   30-35 cycles 
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 Extension   72°C  30 s-3 min**  30-35 cycles 

 Final extension  72°C  1 min   1 cycle 
* depends on the annealing temperature of the given primer pair  

** depends on the length of the given amplicon 

 

2.2.2.2. Cloning 

 

 Constructs used for plant work were generated using Gateway technology. For this 

purpose LjSYMREM1 (cDNA), pLjSYMREM1:gLjSYMREM1 (genomic DNA) were 

amplified (as described above) using forward primers containing 5´-CACC overhangs and 

gene specific blunt-end reverse primers (see Appendix, Table A5), creating the following 

entry clones in pENTR/D-TOPO® vector (Invitrogen): TOPO:LjSYMREM1 and TOPO: 

pLjSYMREM1:gLjSYMREM1 (see Appendix, Table A3). Entry clones were used for 

subcloning into binary vectors (see Table A3) via LR Clonase reaction according to 

manufacturer (Invitrogen). Entry clones of NFR1 and NFR5 were kindly provided by J. 

Stougaard (University of Aarhus, Denmark). For interaction studies and protein 

localization in the heterologous N. benthamiana system pAM-PAT binary vectors were 

used carrying fluorophore tags. A binary vector pH7YWG2.0 without 35S (modified from 

Karimi et al., 2005) promoter was used in order to create L. japonicus stable transgenic 

lines for localization of LjSYMREM1 fused to YFP and expressed under its native 

promoter (pLjSYMREM1:gLjSYMREM1:YFP). All vectors created for interactions studies 

or protein localization in planta are summarized in Appendix, Table A3. 

A binary vector pUb-gwy containing a hygromycin selection marker for plants 

(Maekawa et al., 2008) was modified in this study. A vector named as pUb:gwy:mOrange 

was created. The gateway cassette (attR1-ccdB gene – Cm resistance-attR2) of the original 

vector (pUb:gwy) was excised. A fragment including gateway (attR1-ccdB gene – Cm 

resistance-attR2) mOrange cassette was amplified from p35S-GW-mOrange-nos binary 

vector (Bayle et al., 2008) using primers containing XbaI and PmeI restriction sites (Table 

A5) and classical cloning was performed. Ligation was performed as described below. 

Ligation reaction was transformed into E. coli DB3.1 cells for plasmid propagation. 

 Constructs for yeast split-ubiquitin system were created via classical cloning 

strategy, restriction-ligation. PCR fragment including SfiI restriction sites of their 5´and 

3´termini were subjected to digestion via SfiI restriction enzyme (see below), gel 
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electrophoresis and subsequent gel extraction. Restricted and cleaned DNA fragments were 

set up for ligation with the respective digested plasmids as follows: 

 Plasmid DNA    40-50 ng 

 DNA fragment   10-50 ng 

 10x T4-DNA ligase buffer  2 μl 

 T4-DNA ligase   0.75 μl 

 st. MQ-H2O    up to 20μl 

Ligation reactions were incubated at RT for 1 h or at 17°C ON and subsequently 

transformed into E. coli for plasmid propagation as described in chapter 2.2.1.1. 

 

2.2.2.3. DNA extraction 

 

Plasmid DNA extraction 

E. coli propagated plasmids were isolated using NucleoSpin® Plasmid QuickPure 

according to the manual provided by the manufacturer. 

Plasmid DNA from yeast was isolated from 4 ml of ON culture and was spun at 

13000 rpm for 1 min. Harvested cells were washed in STE buffer (see below) and spin 

again before resuspending the pellet in 50U/ml Lyticase. After incubation at 37°C for at 

least 30 min with shaking at 600 rpm, the enzyme was heat-inactivated at 95°C that also 

serves for opening the cells. After cooling down the suspension to RT, further procedure 

was performed using NucleoSpin® Plasmid QuickPure and as described by the 

manufacturer including an optional washing step with buffer AW. Plasmids were eluated 

in 30 μl H2O. 

 

1x STE buffer 

NaCl      0.1 M 

Tris-HCl, pH 8.0   10 mM   

Na2-EDTA     1 mM   

 

Genomic DNA extraction 

 For genomic DNA extraction frozen L. japonicus leaves were grinded using 

tungsten beads and tissue lyser. Homogenized tissue were resuspended in extraction buffer 

(see below) and incubated at 65°C for 30 min. After centrifugation (13 000 rpm for 5 min) 
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of the samples, the supernatants were transferred to a new tube and 

phenol:chloroform:isoamyl alcohol (25:24:1) purification was performed twice 

consecutively. Precipitation of the upper aqueous phase after phenol treatment was 

achieved by addition of isopropanol for at least 1 h at -20°C. The pellet was washed twice 

with 70% EtOH, dried and resuspended in 50 μl sterile water.  

 

Extraction buffer 

Tris (pH~7.5)   200 mM 

NaCl    250 mM 

Na2EDTA   25 mM 

SDS    0.5 % 

 

 DNA concentration was determined using Nanodrop spectrophotometer. 

 

2.2.2.4. DNA analysis 

 

Restriction via endonucleases 

Restriction of DNA via endonucleases was not only used in cloning processes, but 

also for control digestions of vectors. For this reason, the following reaction was set up: 

DNA        400-800 ng 

10x buffer (appropriate for the given enzyme) 2 μl 

Restriction endonuclease    0.3 μl 

100x BSA (if required for the given enzyme) 0.2 μl 

sterile MQ-H2O     set up 20 μl 

The reaction was incubated at 37 or 50°C as required for the enzyme activity for at least 30 

min. 

 

Sequencing 

Sequencing of DNA molecules in form of PCR fragment or plasmid was done by 

the Sequencing Service of the Genomic Service Unit (Genetics, LMU Munich) on ABI 

3730 48 capillary sequencer. For this purpose reaction containing 1μl 10pmol/μl of primer, 

150-300 ng of DNA filled up to total volume of 7μl with Tris-HCl buffer (pH~8.0) was 

prepared. 
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2.2.3. Plant growth, transformation and genotyping 

 

2.2.3.1. Lotus growth, transient and stable transformation 

 

Lotus japonicus wild-type (ecotype Gifu B-129; Appendix, Table A2) was used for 

Agrobacterium rhizogenes – mediated hairy root transformations. Dried seeds were treated 

with sulphuric acid (95-98 %) for 5-10 min. Afterwards they were washed three times with 

water before being incubated in 2 % NaClO and washed three times with sterile water. 

Soaked seeds were germinated on 1% water-agar plates for 3 days in dark and 3 days in 

light under controlled conditions (24°C, 8h dark/ 16h light, 60 % humidity; plant growth 

chamber). Roots of seedlings were removed from the shoot and hypocotyls were dipped 

into A. rhizogenes (AR1193) suspension – carrying the respective construct. Transformed 

plants were placed onto Gamborg B5 medium (Gamborg et al 1968; see chapter 2.1.2.) 

supplemented with 100 μg/ml B5 vitamin mixture, incubated in dark for 2 days and then 

placed into a growth chamber with conditions described above. To remove Agrobacteria, 

composite plants were transferred 5 days after transformation onto Gamborg B5 medium 

containing 300 μg/ml Cefotaxim. The transfer was repeated several times. Further 

processing of composite plants is described in respective chapters. 

L. japonicus wild-type (ecotype Miyakojima MG-20; Table A2) was used for 

generation of stable transgenic lines. The T-DNA, used for generation of transgenic plants 

expressing pLjSYMREM1:gLjSYMREM1:YFP, contains a Hygromycin selection marker. A. 

tumefaciens (AGL1) – mediated in vitro transformation and plant regeneration procedures 

were performed by Lotus Transformation Service (LTS, Institute of Genetics LMU; 

coordinated by Griet Den Herder) as described in Lombari et al 2005 with slight 

modifications. Further work with plants received from LTS is described in respective 

chapters. 

 L. japonicus TILLING (EMS mutagenized Gifu B-129, M3 generation; Table A2), 

Gifu wt, MG-20 transgenic (T2 generation) and MG-20 wt seeds that were set up for plant 

growth were surface sterilized using sandpaper. After 5-10 min (pro ~50 seeds) scarifying 

seeds were incubated in 2 % Sodium hypochlorite (NaClO) solution for 7 min and washed 

three times with sterile water. Soaked seeds (few hours incubation in sterile H2O by 

rotation) were germinated for 3 days in dark and 3 days in light under controlled conditions 

described above. 
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2.2.3.2. Genotyping and selection of Lotus japonicus transgenic and mutant lines 

 

 All transgenic or EMS-mutagenized (TILLING) plants that were set up for further 

growth and seed production in the greenhouse, received Plant Number (Plant No.) 

registered in the Lotus Plant and Seeds Database (Parniske Lab Plant and Seed Database; 

[4]; restricted access) at the ZopRA (Zope Research Architecture; [5]) Portal. 

Transgenic L. japonicus plants (generated by LTService, see chapter 2.2.3.1 and 

Table A2) carrying the pLjSYMREM1:gLjSYMREM1:YFP construct were tested for 

presence of the transgene performing PCR (using LjSYMREM1 forward and YFP reverse 

primers; primer list Table A1) on the genomic DNA prepared from leaves of the 

transformed plants (T1 generation) received from the Transformation Service. Seeds of 

confirmed transgenic T1 generation plants were set up for further examination. When 

seedlings were grown on B5 medium containing 40 μg/ml hygromicin selecting for the 

presence of the T-DNA. Seedlings carrying the construct were resistant and grew better on 

the selective medium. T2 offspring that segregated in the expected 3:1 (transgenic:wt) 

phenotypic ratio that represents a 1:2:1 (homozygous:hemizygous:wt) genotyp, were 

selected for further analysis like Confocal Laser Scanning Microscopy (CLSM) and/or 

western blot.  

Genotyping of L. japonicus TILLING lines was performed via sequencing analysis 

of PCR fragments that were amplified using LjSYMREM1 specific primers (Table A1) 

from genomic DNA of TILLING plants. 

 

2.2.3.3. Transient transformation of Nicotiana benthamiana leaves  

 

 For in planta protein localization and protein-protein interaction studies, 

Agrobacterium tumefaciens – mediated transient transformation of N. benthamiana leaves 

was performed. Leaves of six weeks old N. benthamiana (provided by the Greenhouse of 

the Biocenter LMU) were co-infiltrated with A. tumefaciens GV3101 C58 carrying the 

respective construct for protein localization or BiFC assay (Appendix, Table A3) and an 

A.tumefaciens GV3101 C58 strain mediating expression of the silencing inhibitor P19 to 

reduce transgene-silencing (Koncz and Schell, 1986; Voinnet et al., 2003). For infiltration 

of tobacco leaves, Agrobacteria grown in liquid LB medium (supplemented with 

appropriate antibiotics) were harvested and resuspended in a Agro-Mix solution containing 
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10 mM MgCl2, 10 mM MES/KOH and 150 mM Acetosyringone, with final OD600 0.05 of 

each suspension. Leaves were infiltrated using a 2ml syringe. For visualization of 

localization or interactions, leave discs at 2 dpi were excised, infiltrated with water and 

placed on glass slides in a drop of water. Imaging of fluorophore signal was conducted 

under Inverted epifluorescence microscope (Leica DMI 6000B) or Confocal Laser 

Scanning Microscope (SP5, Leica).  

 

2.2.4. Promoter analysis and histochemical ß-glucuronidase assay 

 

  For promoter analysis of LjSYMREM1, a 2kb and a 975bp long sequence upstream 

of the start codon were amplified using primers named LjsymREMprom2k_1F (for 2kb 

amplicon); LjsymREMprom1k_1F (for 975bp amplicon) and a common reverse primer, 

LjsymREMprom_1R (Appendix, Table A5). Initial cloning was performed using the 

pGEM-T cloning system (Promega). Both putative promoter regions were fused to the 

uidA reporter gene encoding ß-Glucuronidase by sub-cloning into the binary vector pBI101 

(Jefferson et al., 1987; Table A3).  

 Composite plants carrying the respective promoter constructs (generated via A. 

rhizogenes-mediated gene transfer, described in chapter 2.2.3.1.) were grown for 4 weeks 

on vertical squared Petri dishes. To induce LjSYMREM1 promoter activity plants were 

inoculated with M. loti (MAFF expressing DsRed fluorophore) for a maximum of four 

weeks or with purified NFs (isolated from M. loti) at 10-8 M for 24 h by placing droplets 2-

4 cm above the root tips, susceptible zone for rhizobial recognition (Heidstra et al., 1994). 

As a control, composite plants carrying the promoter construct were treated with medium 

lacking rhizobia or NF. Plants were planted into sand-vermiculite mixture (1:1) supplied 

with Fåhraeus medium in glass jars, mini-greenhouse or seeding tray before inoculation 

with M. loti. Rhizobia (3 days old liquid culture) were harvested then washed and 

resuspended in Fåhraeus medium (Fahraeus, 1957) and diluted to an OD600 0.01. For each 

experiment composite plants carrying the promoter construct as well as the empty binary 

vector (as negative control) were generated.  

  In order to determine promoter activity in early stages of nodulation, composite 

plants were transferred onto plates with sterile Whatman filter paper that was placed on the 

top of Fåhraeus medium. The medium was supplemented with 0.1 μM AVG 

(aminoethoxyvinylglycine ([S]-trans-2-amino-4-(2-aminoethoxy)-3-butenoic acid 
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hydrochloride) – an inhibitor of endogenous ethylene production that might suppress 

infection process (Groth, 2010) – one day prior to rhizobial infection. Plants were infected 

with rhizobial suspension of OD600 0.001 and grown under controlled conditions in growth 

chamber (24°C 8h dark/16h light). 

 

ß-glucuronidase assay 

For histochemical ß-glucuronidase staining, roots of infected and non-infected 

composite plants were cut and were placed into Falcon tubes containing 5-10 ml of GUS 

staining solution (Chapter 2.1.2.). Vacuum was applied three times for 3 min, and then 

roots were incubated at 37°C in the dark. Roots were checked for blue staining after 4-5 

hours under a stereomicroscope. If no blue staining was found, roots were incubated in the 

staining solution overnight. Evaluation and documentation of roots was performed using 

stereomicroscope Leica MZ16FA and Leica DFC300FX camera. 

 

2.2.5. Interaction methods 

 

2.2.5.1. Split-ubiquitin yeast system 

 

 The split-ubiquitin system is a yeast-based assay for protein-protein interaction 

studies. By the help of this assay one can investigate interactions between membrane 

proteins, membrane-associated proteins and soluble proteins, if one of the proteins of 

interest is membrane-associated. The system is based on the small ubiquitin molecule that 

labels proteins for proteasomal degradation (ubiquitin-proteasome system). The molecule 

was split into an N-terminal (Nub) and a C-terminal half (Cub). The two halves can refold 

and form a native-like ubiquitin molecule (Johnsson and Varshavsky, 1994). An artificial 

transcription factor (TF) is fused to the Cub domain, which is cleaved off when the two 

domains are rebuilt and recognized by ubiquitin specific proteases (UBPs). The released 

TF (LexA-VP16) diffuses into the nucleus and starts the transcription of the reporter genes 

serving as readout of the system (Stagljar et al, 1998). Here the DUALmembrane split-

ubiquitin system from the Dualsystems Biotech Company was used. The system consists 

of the S. cerevisiae NMY32 strain (MATa his3Δ200 trp1-901 leu2-3,112 ade2 

LYS2::(lexAop)4-HIS3 URA3::(lexAop)8-lacZ ade2::(lexAop)8 ADE2 GAL4), prey 

vectors for creation of NubG fused proteins with Trp auxotrophic marker, bait vectors 
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carrying Cub domain fusion with a LexA-VP16 TF and Leu selection marker. 

Furthermore, positive and negative control vectors carrying Alg5 yeast resident membrane 

protein for testing the localization and right folding the protein of interest in this system. 

Vectors and clones created for interaction studies in yeast are summarized in Appendix, 

Table A3.  

Split-ubiquitin based yeast assays were performed to test protein-protein 

interactions of membrane-associated proteins. Small-scale transformation was performed 

in order to test interactions on 1 to 1 basis. Yeast strain S. cerevisiae NMY32 was 

transformed via LiAc/PEG method as described by the manufacturer (Dualsystems, 

P01001). For small-scale transformation, homemade solutions (50% PEG 3350; 1M LiAc) 

and homemade, shared herring sperm DNA (ss-DNA, 2mg/ml), ~150 ng/μl of prey and 

~200ng/μl of bait vector were used. Large-scale transformation was performed for library 

screening. A modified large-scale transformation protocol was established and described 

below.  

 

Screening procedure 

The pDL2-Nx prey vector was used to clone cDNAs deriving from nodulated and 

mycorrhized roots and fused N-terminally to the NubG domain (NubG:cDNA library; 

kindly provided by M. Parniske, LMU Munich). The cDNA-library prepared from E. coli 

using DNA-extraction kit was re-transformed into E. coli cells. Colony PCR was 

performed on 96 colonies (using 96-well plate) using vector-specific primers (Table A1) to 

check the diversity of the library. Amplicons of different sizes (from 200bp-1800bp) were 

detected on 1% agarose gels. 

After performing two pilot screen experiments (following the protocol provided by 

the manufacturer DUALmembrane, P01001-B03) in order to establish an optimized 

screening procedure, a third large-scale transformation experiment was performed. A 

sequential transformation (NMY32::Cub:LjSYMREM1 was over-transformed with 

NubG:library) and a simultaneous co-transformation (yeast strain NMY32 was co-

transformed with the bait and the prey at the same time) procedure were done in parallel. 

As a control, co-transformations of Cub:LjSYMREM1 and Alg5:NubG were performed to 

assess the specificity and stringency of the experiment. The sequential transformation 

procedure was performed as described by the manufacturer (Dualsystems). The 

simultaneous co-transformation was performed as described in manual (Yeast Protocols 
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Handbook, PT3024-1) provided by Clontech with the following minor modifications. Co-

transformant yeast cells were resuspended in 0.1% in 1.5 ml NaCl, when 400 μl were 

plated onto big round plates with SD-LW, SD-LWH + 15 mM and 30 mM 3-AT, SD-

LWHAde medium, respectively. To determine the transformation efficiency 100 μl were 

plated onto small SD-LW plates in dilution series (non-diluted, 10-1 to 10-5). This 

experiment was considered as a successful screen therefore it is summarized in chapter 3. 

Results.  

Yeast clones grown on the SD-LWH + 30 mM 3-AT master plate were picked and 

they were grown in SD-LW liquid culture for recovery of the plasmid carrying the putative 

interaction partner. Plasmids purified from yeast (see chapter 2.2.2.3.) were re-transformed 

into bacteria since the amount of the DNA and the purity of the plasmid preparations is 

unsatisfactory for further analysis. E. coli XL1-Blue cells were used for re-transformation. 

When re-transformation was unsuccessful, plasmid preps were dialysed and re-

transformation into bacterial cells was repeated. Colony PCR was performed, one strip per 

each re-transformed E. coli plate to check the diversity of plasmids carried by independent 

bacterial colonies. Yeast cells are able to take up more plasmids, whereas E. coli only one 

that is why more colonies were tested using vector specific primers. Plasmids (NubG: 

putative interactors) isolated from E.coli were re-co-transformed with Cub:LjSYMREM1 

into yeast strain NMY32 as well as with the negative control construct Alg5:Cub. Yeast 

colonies were picked and inoculated into 100 μl SD-LW medium and they were grown ON 

at 28°C with shaking at 200 rpm. On the next day dilution series (non-diluted, 10-1 to 10-5) 

were set up in sterile water from the ON-culture and stamped (using a 48 or 96-teeth metal 

pin replicator) onto SD-LW, SD-LWH + 15 mM 3-AT and SD-LWH + 30 mM 3-AT 

selective plates. Via these drop-tests, positive putative interactors could be selected and the 

negative ones filtered out. Putative positive interaction partners were sequenced and 

sequences analyzed in silico. 

 

2.2.5.2. Bimolecular Fluorescence Complementation Assay  

 

Bimolecular Fluorescence Complementation Assay (BiFC) is an in planta method 

for investigating protein-protein interactions, based on a similar principal as split-ubiquitin 

system. A fluorophore (YFP or GFP) is divided into N-terminal (YFPN) and C-terminal 

(YFPC) sub-domains that are not able of spontaneous re-assembly. However, when each 
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half is fused to proteins that interact, the two halves are brought into a physical connection 

and they are able to form de novo fluorescence (Hu et al., 2002; Bhat et al., 2006). In this 

study, proteins of interest were fused (listed in Appendix, Table A2) to the N-terminal half 

(YFPN or YN) as well as to the C-terminal half (YFPC or YC) of the YFP fluorophore. N. 

benthamiana leaves were infiltrated with the respective constructs using A. tumefaciens 

mediated gene transfer (see chapter 2.2.3.3.). Leaves co-expressing the respective 

constructs were inspected to microscopical analysis 2 dpi. 

 

2.2.6. Protein extraction and Western blot analysis 

 

2.2.6.1. Protein extraction from Saccharomyces cerevisiae and Lotus japonicus roots 

 

Total protein extraction from yeast 

For both, total protein extraction and fractionation 10 ml of ON yeast culture was 

harvested and cells were washed with 1 mM EDTA. Cells for total protein extraction were 

incubated in 2 M NaOH for 10 min on ice before 1 volume 50% TCA was added and 

further incubated on ice for at least 1 hour. The pellet was washed with ice-cold acetone 

and spun again at 14000 rpm for 20 min at 4°C. The pellet was resuspended in 5% SDS 

and the same volume of SDS-sample buffer for yeast (described below) was added and 

samples were incubated at 37°C for 15 min. Samples were spun down, supernatants were 

transferred into a new tube and stored at -20°C or used for further analysis. 

 

Fractionation of yeast proteins 

For protein fractionation, yeast cells were resuspended in 700 μl Protein Extract 

Lysis Buffer (PELB, see below) and grinded with glass beads via vortexing, in between the 

samples were chilled on ice for 1 min. This was repeated for at least seven times. Samples 

were spin down at 4°C for 20 min at 700x g and transferred to a new tube and 

centrifugation was repeated. Samples were subsequently subjected to ultracentrifugation 

for 1h at 100 000xg at 4°C. Supernatants containing the soluble proteins were transferred 

to a fresh tube and stored at -20°C or used for Western blot analysis. Pellets were 

resuspended in SDS-sample buffer for yeast, incubated at 37°C for 15 min before samples 

were sedimented at 4°C, 100 000x g for 1 h. Supernatants containing the membrane 

fractions (or insoluble proteins) were used for further investigation.  
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SDS-sample buffer for yeast 

Tris-HCl, pH 6.8  25 mM  

Urea   9 M  

EDTA   1 mM  

SDS   1 %  

-mercaptoethanol 0.7 M  

Glycerol  10 %  

  

“PELB” (Protein Extract Lysis Buffer) 

50mM Tris-HCl, pH 7.5 

Yeast Protease Inhibitor Cocktail (for fungal and yeast extracts, Sigma P8215) 

 

Total protein extraction from Lotus japonicus roots 

Roots of L. japonicus were grinded in liquid nitrogen using a mortar and and pestle. 

Proteins were solubilised by addition of homogenization buffer (100 μl buffer for 100 mg 

of plant material) and incubation at 37°C for 45 min. 

 

Homogenization buffer  

HEPES, pH 7.5 240 mM 

EDTA, pH8.0  10 mM 

Sucrose  10% (w/v) 

NaCl   150 mM 

SDS   1% 

Urea   5 M 

Thiourea  2 M 

DTT   2 mM 

Protease Inhibitor Coctail 

 

2.2.6.2. Western blot analysis 

 

SDS-PAGE 

Before performing SDS gel electrophoresis, protein samples were incubated 

together with loading buffer (125 mM Tris-HCl; 50 % Glycerol; 4 % SDS; Bromophenol 
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blue) for 10 min at 70°C. Samples were loaded on 10% SDS-Polyacrylamide gel 

(described below) and subjected for separation via vertical electrophoresis at 150V for 1 h 

in 1x SDS-running buffer (see below). SDS-Polyacrylamide gels were prepared as 

described below. 

 

1x SDS running buffer 

Tris     25 mM 

Glycine    192 mM 

SDS     0.1 % 

 

Separation gel 

Polyacrylamide solution    10 % 

(30 % Acrylamide/ 0.8 % Bisacrylamide) 

Tris-HCl, pH~8.8    0.36 M 

SDS      0.1 % 

APS      0.1 % 

TEMED     0.04 % 

 

Stacking gel 

Polyacrylamide solution   5 % 

(30 % Acrylamide/ 0.8 % Bisacrylamide)   

Tris-HCl, pH~6.8    0.18 M 

SDS      0.1 % 

APS      0.1 % 

TEMED     0.1 % 

 

Immunoblot 

After the separation procedure, proteins were transferred onto PVDF 

(polyvinylidene fluoride) membrane using 1x transfer buffer (see below) for 1h-2h at RT 

and 100V or ON at 4°C and 30V. Before incubation with antibody, the membranes were 

treated with blocking solution (5% Milk in1xTBS0,1%Tween) at RT for 1h.  

Yeast NubG-HA tagged proteins were incubated with α-HA-HRP antibody (applied at a 

1:2000 dilution), the Cub-LexA-VP16 tagged proteins with primary α-LexA (1:5000) or α-
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VP16 (1:1000), following a treatment with secondary α-Mouse-HRP (1:10000) or α-

Rabbit-HRP antibodies (1:20000). YFP-tagged proteins were incubated with α-GFP 

primary antibody (1:5000), following a treatment with secondary α-Mouse-HRP (1:10000) 

and mOrange-tagged proteins were detected using primary α-DsRED antibody and a 

subsequent incubation with α-Rabbit-HRP (1:20000) secondary antibody. Antibody 

treatment was performed in 5% Milk (in TBS-T) solution in the case of HRP-conjugated 

antibody at RT for 1 h and incubation with non-conjugated antibody was performed ON at 

4°C, following a 10 min washing step in1xTBS0,1%Tween (TBS-T ) three times repeated. 

Between primary antibody and secondary antibody application, membranes were washed 

three times for 10 min in 1x TBS-T buffer. Proteins were detected using chemiluminescent 

reagent (Luminogen, GE Healthcare or PIERCE) and subsequent radiographical record 

using Amersham Hyperfilm ECL film or camera (Fusion detection system) detecting for 

chemiluminescent. 

 

Solutions 

 

1x TBS buffer 

Tris    20 mM 

NaCl    140 mM 

Adjust pH~7.6 with HCl 

 

1x Transfer buffer 

Tris    25 mM 

Glycine   192 mM 

Adjust pH~8.3 with HCl 

 

 



Results 

44 

 

3. Results 

 

 

3.1. LjSYMREM1, ortholog of MtSYMREM1  

 

MtSYMREM1 is a plasma membrane-associated signalling component involved in 

the nodulation process of Medicago truncatula, a legume that forms indeterminate nodules. 

Mutant Mtsymrem1 plants showed alterations in IT formation and nodule morphology, 

indicating a role during rhizobial infection and its regulation. The protein is localized on 

nodular infection thread and symbiosome membranes and it interacts with at least three 

symbiotic receptor-like kinases NFP, LYK3 and DMI2 (Lefebvre et al., 2010). 

MtSYMREM1 is a member of the group 2 remorin protein family that is legume-specific. 

 

3.1.1. Identification of Lotus japonicus SYMREM1 

 

Using MtSYMREM1 as a template we identified L. japonicus 

chr4.CM0004.60.r2.d (Lotus database, [1]) as the most closely related sequence on 

nucleotide and amino acid level. Investigating the expression profile of this gene in silico 

revealed a nodulation-specific expression pattern (Hogslund et al., 2009) as previously 

described for MtSYMREM1 (Colebatch et al., 2004; Lefebvre et al., 2010). To test 

whether Ljchr4.CM0004.60.r2.d share the same common ancestor with MtSYMREM1 we 

retrieved all putative group 2 remorin sequences from soybean, common bean and poplar 

in addition to L. japonicus and M. truncatula. Phylogenetic analysis based on sequence 

comparisons in 172 independent positions revealed that both genes indeed originate from a 

common ancestor (Figure 3.1). We thus named the gene ‘LjSYMREM1’.  

LjSYMREM1 (chr4.CM0004.60.r2.d; Lotus database, [1]) is located on the 

chromosome IV of the diploid L. japonicus. The gene represents a 1282bp long genomic 

sequence that consists of five exon and four intron regions as MtSYMREM1, with a 

difference in length of the first and the second intron regions (Figure 3.2; Tóth et al., 

accepted). The exon regions encompass a 624bp long CDS encoding LjSYMREM1 protein 

consisting of 207 aa.  
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Figure 3.1 Phylogenetic analysis shows orthology between LjSYMREM1 and MtSYMREM1 
LjSYMREM1 sequence is similar to the published one of MtSYMREM1, a group 2 remorin protein. (A) 
Phylogenetic analysis based on 147 amino acid remorin sequences using 101 unambiguously aligned residues 
in the conserved C-terminal region identified the group 2 of the plant specific remorin protein family (marked 
in red). (B) Amino acid sequences of 11 group 2 remorins from legumes and poplar were aligned and 
analyzed in 172 positions. MtSYMREM1 and LjSYMREM1 cluster together that indicates orthology of these 
two remorin proteins. True branch lengths were inferred by maximum-likelihood analysis; scale represents a 
probability of 0.1 amino acid changes per site (analysis performed by Dr. Arthur Schüßler, LMU; modified 
from Tóth et al., accepted).  
 

 

 
 
Figure 3.2 Exon-intron structure comparison of LjSYMREM1 and MtSYMREM1 
Both remorins comprise of 5 exon regions (red boxes) and 4 intron regions (interspaces, black line). Numbers 
demonstrate the length of the respective region in base pairs (Modified from Tóth et al., accepted). 
 

Both SYMREM1 proteins are composed of a highly variable, unstructured N-

terminal region and a conserved C-terminal region encompassing a coiled-coil domain 

(COILS probability > 90%; Tóth et al., accepted). Figure 3.3 shows sequence alignment of 
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LjSYMREM1 and MtSYMREM1 on amino acid level. There is an overall 55.5 % identity 

between the two proteins meanwhile their conserved C-terminal regions share 72.9 % 

identity. However their N-terminal regions exhibit only 27.2 % identity (Table 3.1).  

 

 
 
Figure 3.3 Sequence alignment of MtSYMREM1 and LjSYMREM1  
Overall identity of the two SYMREM1 proteins is 55.5 %. Identity of N-terminal regions 27.2 % (1-80 aa; 
marked with bright red), identity of C-terminal regions is 72.9 % (81-207aa; marked in gray). Red boxes 
show the identical amino acid residues.  
 

Because of the low conservation found between the two SYMREM1 proteins, we 

performed sequence comparison analysis of other member proteins of the group 2 

remorins. Using MtSYMREM1 as a template we compared SYMREM1 remorins and their 

homologs from legumes soybean (G. max) and common bean (P. vulgaris) and non-

legumes poplar (P. trichocarpa) and grape wine (V. vinifera). Interestingly, a similarly 

high difference between the N-terminal regions (sequence similarity of the N-terminal 

regions were around 40 %) of the involved proteins was found (Table 3.1). While their C-

terminal parts show the characteristic high conservation (Table 3.1). 

 

Identity/Similarity values in % for putative SYMREM1 homologs 
(based on MtSYMREM1) 

Domain Medicago Lotus Soybean Poplar Common bean Grape wine 

Full-length 100 55.5/67.1 53.1/65.1 49.8/62.9 52.4/65.0 42.9/59.0 

C-term 100 72.9/85.3 67.4/79.1 63.6/76.0 67.4/79.1 58.9/76.0 

N-term 100 27.2/38.3 30.0/42.5 26.3/40.8 27.3/41.6 15.8/30.3 
 
Table 3.1 Sequence comparison of several remorins within the group 2 
Sequences of LjSYMREM1 and MtSYMREM1 were compared with other putative homologs (sequences 
derived from the best hit against the genome sequences) of the group 2 remorins, based on MtSYMREM1 
sequence. N-terminal regions of the compared proteins were found to exhibit a high variability (showed 
identity/ similarity). While their C-terminal region showed a high sequence identity/ similarity (%) 
characteristic for the conserved C-terminal region of the remorin proteins (from Tóth et al., accepted). 
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This relatively low conservation between SYMREM1s gave rise to perform sequence 

analysis of a few known players of the symbiotic signalling pathway from L. japonicus and 

M. truncatula. We compared orthologous symbiotic proteins (NFR5/ NFP; SYMRK/ 

DMI2; POLLUX/ DMI1; CCaMK/ DMI3; CYCLOPS/ IPD3; NIN/ NIN; NSP2/ NSP2; 

Leghemoglobin 1b/ Leghemoglobin 1) from L. japonicus and M. truncatula to define their 

sequence identity and similarity (Table 3.2). All of these proteins exhibit a higher 

conservation among each other than SYMREM1s. The found high divergence between the 

two remorin proteins prompted us to gain a deeper insight into the function of 

LjSYMREM1 in the nodulation process of a legume with determinate nodules. 

 

Medicago Lotus identity similarity 

NFP NFR5 72.0% 82.8% 

DMI2 SYMRK 81.6% 87.6% 

DMI1 POLLUX 80.8% 85.3% 

DMI3 CCAMK 85.7% 92.2% 

IPD3 CYCLOPS 78.2% 87.1% 

NIN NIN 57.4% 67.5% 

NSP2 NSP2 73.9% 83.4% 

Leghemoglobin 1 Leghemoglobin 1b 70.3% 80.4% 
 
Table 3.2 Sequence analysis of symbiotic proteins from L. japonicus and M. truncatula 
Sequence analysis of proteins involved in symbiotic signalling pathway of L. japonicus (a legume developing 
determinate nodules) and M. truncatula (developing indeterminate nodules). All of them show higher 
identity/similarity with its orthologs than LjSYMREM1 and MtSYMREM1. With exception of the two NIN 
orthologs that exhibit only 57.4% identity (from Tóth et al., accepted). 
 
 
3.2. Spatio-temporal expression analysis of LjSYMREM1  

 

  Remorins of the group 2 were found to be highly induced during nodulation in both 

model legume L. japonicus and M. truncatula (Colebatch et al., 2004; Høgslund et al., 

2009; Lefebvre et al., 2010). Nevertheless, an approach to resolve spatial expression of 

SYMREM1s during the entire process has not been performed so far. To reveal the spatial 

expression pattern of LjSYMREM1, promoter activity analysis using GUS (β-

glucuronidase-activity) -histochemical assay (Jefferson et al., 1987) was carried out. 
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3.2.1. Identification and functional analysis of LjSYMREM1 promoter region 

 

  In order to identify a functional promoter, 2kb and 975bp long sequence upstream 

of the ATG initiation codon of LjSYMREM1 were amplified and fused to the ß-

Glucuronidase (GUS) reporter gene (pLjSYMREM1:GUS). Composite plants expressing 

the pLjSYMREM1:GUS reporter constructs were inoculated with M. loti and analyzed 15 

dpi for the functionality of the putative promoter regions. Both putative promoter regions 

showed strongest GUS activity in nodules at 15 dpi. Promoter activity was detected in 

inner cortical cells of root nodules while no staining was found in out cortical cells (Figure 

3.4).  

 

 
 
Figure 3.4 LjSYMREM1 promoter activity.  
To identify a functional promoter region of LjSYMREM1, a 2kb (A) and 975bp (B) region upstream of the 
start codon of the gene were fused to the β-glucuronidase reporter gene to follow the functionality of the 
promoter regions by the help of the histochemical GUS staining. Both promoter regions showed the same 
pattern: activity in inner cells of the nodule (blue staining) but no staining in the outer cortical cell layer 
15dpi with M. loti, after 5 hours GUS staining. Scale bars indicate 250μm. 
 

3.2.2. Spatio-temporal analysis of LjSYMREM1 using its 975bp promoter region 

 

  Since both promoter regions tested in GUS-activity assay exhibited the same spatial 

pattern, the shorter 975bp LjSYMREM1 promoter (975pLjSYMREM1:GUS) was used for 

further analysis. 

  In order to test whether pLjSYMREM1 can also be activated upon application of 

isolated NFs, 10-8 M NFs were locally applied to transgenic L. japonicus roots carrying 

975pLjSYMREM1:GUS construct as well as empty vector as negative control (Figure 

3.5A) to recognize possible background staining. Promoter activity was detected in 

epidermal and cortical cells above the root tip (Figure 3.5B, Figure 3.6A). 

  To follow the dynamics of LjSYMREM1 gene activity, composite plants were 

inoculated with M. loti and roots were harvested every 24 hours post infection and 



Results 

49 

 

subjected to histochemical GUS staining. First blue staining was observed at 2 dpi 

indicating promoter activation in root epidermal and cortical cells above the root tip along 

a 2-3cm zone (Figure 3.5C) showing a similar pattern to that observed upon NF 

application. Rarely, blue staining could be observed in vascular tissue or in root tip, but 

there were never observed completely blue stained roots or nodules in negative control 

plants transformed with empty vector (Figure 3.5A). 

 

 
 
Figure 3.5 LjSYMREM1 expression pattern through the entire nodulation process 
In order to follow LjSYMREM1 expression during the symbiosis, 975bp long sequence upstream of the ATG 
start codon of LjSYMREM1 was fused to the GUS reporter gene. Transgenic L. japonicus roots carrying the 
reporter construct (975pLjSYMREM1:GUS) were investigated and subjected to histochemical GUS staining 
24h after NF (10-8M) treatment (B); 2dpi with M. loti (expressing DsRed) (C). In both cases promoter 
activity can be observed in epidermal and cortical cells above the root tip, in a susceptible zone for rhizobial 
infection. While no GUS staining was observed in transgenic roots transformed with the empty vector control 
and treated with NF (A). Four days after rhizobial inoculation, the promoter activity disappeared from the 
epidermal cells and it was detected in dividing cortical cells (nodule primordia) coinciding with rhizobial 
infection that could be detected via DsRed fluorescence produced by bacteria (D-E). In later stages as in 
young nodules (6dpi with M. loti) the expression of LjSYMREM1 can be observed in nodule cortex 
underneath rhizobial infection (F-G). In old nodules (3wpi with M. loti) LjSYMREM1 promoter activity was 
detected in infected cells of the nodule as it can be followed by DsRed fluorescence derived from bacteria 
expressing DsRed (H-I). Scale bars indicate 500 μm. 
 
A stronger promoter activity was observed 4 dpi with M. loti in nodule primordia at the site 

of successful rhizobial infections where bacteria were detectable via DsRed fluorescence 

(Figure 3.5D-E). Promoter activity of similar staining intensity was observed in young 

nodules at 6 dpi coinciding with bacterial release into the nodule cortex (Figure 3.5F-G). 
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Furthermore, in mature nodules (3 wpi) also a very intensive accumulation of β-

glucuronidase activity was detected together with presence of rhizobia in the fixation zone 

and in nodule parenchyma, but not in nodule outer cortical cells (Figure 3.5H-I, 3.6B).  

 

 
 
Figure 3.6 Root and nodule section showing LjSYMREM1 expression pattern  
(A) Longitudinal section of a GUS-stained root carrying 975pLjSYMREM1:GUS reporter construct. Promoter 
activity detected in epidermal and cortical cells of roots 24 hpi with 10-8M NF. (B) In order to detect in which 
cell layers of the nodule LjSYMREM1 is expressed, a mature nodule (3wpi with M. loti) carrying the 
975pLjSYMREM1:GUS reporter construct was subjected to sectioning. LjSYMREM1 promoter showed 
activity in the infected cells and in nodule parenchyma as well. No GUS staining was detected in nodule 
cortex. Material was embedded in 5% low melt agarose and sections (100μm-150μm) were prepared. Scale 
bar indicates 50 μm (A) and 250 μm (B). 
 

 

3.3. Localization of LjSYMREM1 

 

3.3.1. LjSYMREM1 protein localization expressed under its native promoter 

 

In order to study localization of the protein under native expression conditions, 

stable transgenic lines carrying the pLjSYMREM1:gLjSYMREM1:YFP construct were 

created. Generation of stable transgenic L. japonicus (MG20 ecotype) lines via 

A.tumefaciens mediated gene transfer carrying the fusion construct was initiated by the 

help of the Lotus Transformation Service (LTS) at the Institute of Genetics LMU. Six 

independent stable transgenic lines were obtained and were subjected for genotyping via 

PCR to isolate plants carrying the transgene. These plants (T1 generation) were selected 

for further growth and seed production (Table 3.3). In order to define presence or absence 

of the insertion cassette that includes a hygromycin selectable marker gene, seeds from all 

six T1 lines (Table 3.3) were germinated on water-agar plates containing 40 μg/ml 

hygromycin. Progeny plants carrying the T-DNA are resistant and thus selectable on 
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growth performance. Individuals of T2 generation that segregated in a 3:1 (transgenic:wt) 

phenotypic ratio – standing for a 1:2:1 (wt:hemizygous:homozygous) genotype – and 

showed the strongest resistance towards the antibiotic were selected for further analysis. 

 

Plant No. 

(T1 generation) 

Seed bag No. Phenotypic segregation 

of T2 generation 

transgenic:wt 

Protein expression 

L9713 87138 3:1 No further analysis 

L9714 87139 1:3 No further analysis 

L9716 87140 1:3 No further analysis 

L9717 86645 3:1 CLSM, Western blot 

L9720 87142 1:1 No further analysis 

L9723 87141 1:3 CLSM, not detected 

 
Table 3.3 Summary of stable pLjSYMREM1:gLjSYMREM1:YFP transgenic L. japonicus lines  
All putative transgenic plants were genotyped for presence of the transgene, entered into the database (Plant 
Number) and set up for seed production. Seeds originating from the T1 generation were harvested and 
independently collected in a seed bag (Seed bag No.). Seedlings of segregating T2 generation were grown on 
W/A plates supplemented with 40μg/ml hygromycin selecting for the presence of the T-DNA. Plants 
exhibiting 3:1 (transgenic: wt) phenotypic segregation ratio – that represents a 1:2:1 (wt: hemizygous: 
homozygous) genotype – were selected for further analysis. 
 

T2 offsprings of the lines L9717 and L9723, segregated in the expected 3:1 ratio, 

were selected and inoculated with M. loti. First CLSM analysis searching for YFP 

fluorescent signal deriving from the LjSYMREM1:YFP fusion protein was performed at 8 

dpi. To discriminate YFP from background auto-fluorescence λ-scans for emission 

fingerprinting were performed in the range of 500-600nm. Fluorescence that was detected 

by microscopy and/or by laser scanning was a false positive signal arising from auto-

fluorescence of L. japonicus roots.  

YFP fluorescence could be detected in nodules (of T2 plants of the line L9717) at 3 

wpi with M. loti, when they were sectioned. YFP signal of the LjSYMREM1:YFP fusion 

protein coincided with DsRed signal deriving from cells harbouring rhizobia (Figure A-D, 

E-H). 
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Figure 3.8 LjSYMREM1 localizes to the infected cells in nodule 
Stable transgenic L. japonicus lines were generated in order to investigate LjSYMREM1 localization fused to 
YFP fluorophore and expressed under its endogenous promoter (pLjSYMREM1:gLjSYMREM1:YFP). 
Sections of nodules 21 dpi with M. loti (expressing DsRed) were made to inspect the localization using 
CLSM. The YFP-tagged LjSYMREM1 localizes to the infected cells in the central zone of the nodule (B). 
Presence of bacteria could be observed by the help of DsRed fluorophore expressed by the symbiont M. loti 
(C). Overlay (of B and C) demonstrates that localization of LjSYMREM1:YFP coinciding with infected cells 
(D). Closer look at the infected cells (E-H). Cells that were not infected (ui) did express neither DsRed nor 
YFP fluorescence. V-vacuole located in the centre of infected cells. Sign “*” indicates nodular infection 
threads. YFP signal of the fusion protein coinciding with bacterial DsRed signal (merge, G-H). Non-
transgenic wild type nodule was investigated to exclude unspecific auto-fluorescence background of L. 
japonicus roots (I-L). Nodules were embedded in 5% low-melt agarose and 150μm sections were made. 
Scale bars indicate 100 μm (A-D, I-L), 20 μm (E-G) and 10 μm (H). BF-bright field. 
 

No YFP fluorescence was observed in non-infected cells indicated by the lack of rhizobial 

DsRed signal (Figure 3.8A-D, E-H). Since analysis of λ-scan spectra did not allow fully 

reliable discrimination of the signals, nodules of non-transgenic MG-20 wt plants were 

sectioned and analyzed via CLSM. In these control nodules, no fluorescence in the 

emission spectrum of YFP fluorophore could be detected (Figure 3.8 I-L). Western blot 

analysis (using α-GFP antibody against the YFP-tag) of proteins extracted from nodules 

also confirmed the presence of LjSYMREM1:YFP fusion protein (Figure 3.10B). 
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To test whether the signal indeed resulted from symbiosome membranes, individual 

bacteroids were isolated by application of mechanical force. Indeed the LjSYMREM1:YFP 

signal co-localized with the bacteria indicating localization of the protein on the 

symbiosome membrane (Figure 3.9A-C). Furthermore, a closer look at the infected cells of 

a sectioned nodule (3 wpi with M. loti) showed that the LjSYMREM1 localizes to the 

nodular infection threads as well (3.9D-F). 

 

 
 

Figure 3.9 LjSYMREM1 localizes at the symbiosome membrane and to nodular infection threads 
Nodules expressing pLjSYMREM1:gLjSYMREM1:YFP were mechanically destroyed to observe the exact 
localization of the protein. LjSYMREM1:YFP co-localizes with DsRed signal expressed by rhizobia on the 
symbiosome (peribacteroid) membrane (A-C). Closer look at the nodular infection threads (in nodules 3 wpi 
with M. loti expressing DsRed) showed that LjSYMREM1 localizes to the nodular infection thread followed 
by DsRed fluorophore (D-F). Nodule was embedded in 5% low-melt agarose, 150 μm sections were made 
and inspected using CLSM. Scale bars indicate 5 μm (A-C) and 10 μm (D-F). 
 

3.3.2. Plasma Membrane localization in Lotus japonicus roots 

 

Localization of natively expressed LjSYMREM1 (pLjSYMREM1:gLjSYMREM1: 

YFP) could not be detected in root epidermal and cortical cells as it was shown in 

LjSYMREM1 expression experiments using pLjSYMREM1:GUS construct (chapter 3.2.2.). 

In order to ascertain localization of LjSYMREM1 protein within root epidermal cells 

where LjSYMREM1 promoter activity was shown, transgenic L. japonicus roots expressing 

LjSYMREM1:mOrange fusion protein under control of the constitutive Lotus 

polyubiquitin promoter (pUb:LjSYMREM1:mOrange) were generated. Expression of the 
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polyubiquitin promoter in all root and nodule cell types was described previously 

(Maekawa et al., 2008). Since we experienced a high level auto-fluorescence of L. 

japonicus roots in emission spectrum of the YFP fluorophore (maximal excitation at 514 

nm; maximal emission at 527 nm), we decided to use mOrange fluorophore with another 

emission spectrum (maximal excitation at 548 nm; maximal emission at 562 nm) and a 

brighter fluorescence signal. A clear mOrange fluorescence signal was detected at the 

periphery of root epidermal cells, indicating a PM-associated localization of LjSYMREM1 

protein (Figure 3.11A).  

Protein expression in pLjSYMREM1:gLjSYMREM1:YFP stable line (described in 

chapter 3.3.1.) and in transgenic roots expressing the pUb:LjSYMREM1:mOrange 

construct was verified and presence of the fusion proteins was detected at different time 

points. LjSYMREM1:mOrange expressed constitutively was detected at each time-point 

tested (Figure 3.10A). In contrast LjSYMREM1:YFP driven by its native promoter could 

only be detected 15 dpi with M. loti (Figure 3.10 B), indicating over-expression of 

LjSYMREM1 when expressed under control of the polyubiquitin promoter. 

 

 
 
Figure 3.10 Detection of LjSYMREM1 protein expressed under control of different promoters 
To verify the proteins detected via CLSM, total protein extraction was performed on L. japonicus transgenic 
roots expressing LjSYMREM1:mOrange under control of the constitutive pUb promoter 
(pUb:LjSYMREM1:mOrange) and on transgenic roots expressing LjSYMREM1:YFP fusion protein driven 
by its native promoter (pLjSYMREM1:gLjSYMREM1:YFP). Expression of the fusion proteins were detected 
at 0, 7 and 15 dpi with M. loti. (A) LjSYMREM1 expressed constitutively could be detected at each time-
point using α-DsRed antibody against the mOrange fluorophore (~ 43 kDa). (B) LjSYMREM1: YFP 
expressed under its native promoter could be detected 15 dpi (using α-GFP antibody against the YFP 
fluorophore, ~ 50 kDa). 

 
3.3.2.1. The C-terminal region of LjSYMREM1 is responsible for its PM localization 

of the protein 

 

 In order to ascertain whether the unstructured N-terminal region or the highly 

conserved C-terminal region directs the protein to the PM, both regions were cloned 

independently as a 78 aa long stretch (LjSYMREM1N; 1-78 aa) defining the N-terminal 
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and 129 aa for the C-terminal part of the protein (LjSYMREM1C; 79-207 aa). Both regions 

were tagged with mOrange fluorophore (LjSYMREM1C: mOrange, LjSYMREM1N: 

mOrange) and they were expressed under control of the constitutive polyubiquitin 

promoter in transgenic roots. Roots were subjected to CLSM analysis to detect the 

localization of the individual halves. The C-terminal region localized to the periphery of 

epidermal cells indicating and showing the same PM localization (Figure 3.11B) pattern as 

the full-length protein (Figure 3.11A). While LjSYMREM1N localized in the cytosol and 

in the nucleus (Figure 3.11C) of root epidermal cells.  

 

 
 

3.11 LjSYMREM1 and its C-terminal region localizes to the plasma membrane while the N-terminal 
region is cytoplasmic 
LjSYMREM1 and its N-terminal and C-terminal part were fused to mOrange fluorophore and they were 
expressed under control of the constitutive Lotus polyubiquitin promoter in L. japonicus transgenic roots. 
LjSYMREM1 full-length (A) as well as LjSYMREM1 C-terminal region (B) yielded in fluorescence located 
at the periphery of root epidermal cells. In contrast, N-terminal region of LjSYMREM1 (C) showed a 
cytosolic and nuclear localization. Scale bars indicate 200μm. 
 

As a conclusion, the C-terminal part or a hidden pattern for PM-anchoring 

harboured in this region is responsible for the PM-associated localization of the 

LjSYMREM1 protein. The lonely N-terminal region has not only a cytosolic localization 

but also a nuclear one that might be explained with its small size that allows the tagged-

protein to enter the nucleus. 
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3.4. Assessing LjSYMREM1 phenotype  

 

3.4.1. Phenotype caused by over-expression of LjSYMREM1 

 

 In order to assess a role of LjSYMREM1 in RNS, nodulation phenotype was 

followed up upon LjSYMREM1 over-expression. Moreover, the individual remorin halves, 

LjSYMREM1N and LjSYMREM1C were also over-expressed. Plants carrying the full-

length (FL) protein, the C-terminal and the N-terminal region fused to mOrange and 

expressed under control of the Lotus polyubiquitin promoter as well as plants carrying 

empty vector control were inoculated with M. loti and nodulated for eight weeks.  
 

 
Figure 3.12 Over-expressing LjSYMREM1, its N-terminal and C-terminal regions caused increased 
nodule number  
Increased nodule number was observed on the roots of composite plants over-expressing LjSYMREM1 full-
length protein (about 40 % more nodules), LjSYMREM1 N- (about 23.4 % more nodules) and C-terminal 
regions (about 30 % more nodules) under control of the Lotus polyubiquitin promoter in comparison with 
transgenic roots carrying the empty binary vector. Plants were analyzed 8 wpi with M. loti (* t-test p< 0.01; 
plants expressing FL LjSYMREM1= 21; expressing Cterm= 27; expressing Nterm= 33; expressing empty 
vector control= 29). Error bars indicate standard errors.  
Transgenic root systems were investigated for presence of the fluorophore-tagged proteins 

prior to phenotypic analysis of nodulated roots. Composite plants expressing 

LjSYMREM1FL exhibited significantly (p< 0.01) about 40 % more nodules in comparison 

with plants carrying the empty vector construct (Figure 3.12). Interestingly, over-

expression of the individual remorin regions resulted in significantly increased nodule 

number (p< 0.01) as well. Over-expressing LjSYMREM1C resulted in about 30 % more 

while LjSYMREM1N over-expression caused about 23.4 % more nodules (Figure 3.12). 
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Figure 3.13 Increased nodulation phenotype caused by LjSYMREM1 over-expression  
In order to determine the putative function of LjSYMREM1 protein in nodulation process, the protein was 
overexpressed in L. japonicus. (A) Composite plants carrying LjSYMREM1 fused to mOrange fluorophore 
and expressed under control of the constitutive polyubiquitin promoter exhibit significantly more (* t-test p< 
0.01) in comparison with empty vector control. (B) Morphologically non-altered nodules were observed on 
transgenic roots carrying the pUb:LjSYMREM1 and on roots carrying the empty vector control, as well. 
Plants were analyzed 4 wpi with M. loti. Nodules were morphologically analyzed using stereomicroscope. 
Scale bars indicate 1 mm. 
 

Experiment was repeated once, when composite plants carrying the over-expression 

construct of the FL protein were inoculated and analyzed 4 wpi with M. loti. Root systems 

were subjected to microscopical analysis to define the transgenic ones. The increased 

nodulation phenotype could be confirmed, composite plants possessed about 25% more 

nodules (p> 0.01) than roots carrying the empty vector control (Figure 3.13B). Nodules 

were microscopically analyzed and they were found morphologically non-altered and 

fixing (Figure 3.13 A). In this experiment, bumps and infection threads were also 

evaluated. No significant changes were observed in terms of number of bumps (Figure 

3.13B). Aborted and non-aborted ITs also showed a similar number to that of those 

observed on control roots (data not shown). 

The fact that over-expressing LjSYMREM1 and its N-terminal and C-terminal regions 

caused increased nodule number indicates an important role of the protein involved in 
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nodulation process and that both LjSYMREM1 regions are important for the biological 

function of the protein. 

 

3.4.2. EMS mutagenized LjSYMREM1 lines  

 

To identify potential knock-out mutants and assess a Ljsymrem1 phenotype, we 

screened for mutant lines in an EMS mutagenized population (L. japonicus Gifu 

background) taking the advantage of the TILLING (Targeting Induced Local Lesions IN 

Genomes) platform at John Innes Centre (RevGen UK, Norwich Research Park, Norwich, 

UK; Perry et al., 2003). The PCR-based screen (performed by the TILLING facility) 

identified three independent mutant lines of which seeds from the M3 progeny were 

obtained. One (SL0061-N) of these lines carries a premature stop codon, one (SL4207-1) 

of them possess a missense point mutation in coding region and the third one (SL6600-1) 

carries a point mutation on the first exon-intron junction (Figure 3.14). All plants were 

genotyped via sequencing to identify homozygous mutant lines. Among M3 plants of the 

lines carrying the missense point mutation and the mutation on the first exon-intron border 

homozygous one were isolated, while homozygous M3 plant carrying the premature stop 

codon could not be identified. Table 3.4 summarizes the lines, their genotype and the 

current state of analysis.  

Seeds of the homozygous line carrying a missense mutation (SL4207; 165D>N), a 

wt homozygous line for the given mutation in the LjSYMREM1 locus and L. japonicus 

Gifu wt from the seed storage of Institute of Genetics (LMU) were grown in parallel for 

nodulation experiments at two different temperatures 18°C and 26°C. Such permissive 

temperatures have been found to pronounce weak phenotypes in several lines (Jens 

Stougaard, University of Aarhus, Denmark; personal communication). Plants were 

preceded for phenotypical analysis 4 wpi with M. loti, when shoot and root length were 

measured and nodule numbers were counted. This mutation did not cause a phenotype 

neither on the plants grown at 18°C nor on the plants grown at 26°C (data not shown). 

Homozygous plants of the line carrying the splice-site mutation (SL6600-1) were 

investigated. The experiment was repeated three times in order to find out the authenticity 

of the increased nodulation phenotype caused by the point mutation on the first exon-intron 

border. All three experiments were evaluated 4 wpi with M. loti.  
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Figure 3.14 Point mutations in LjSYMREM1 locus 
In order to assess a phenotype caused by knockdown or knockout of LjSYMREM1, an EMS mutagenized 
population of L. japonicus was screened for mutations in LjSYMREM1 locus. Among a few lines that were 
found via TILLING analysis (RevGen UK, Norwich Research Park, Norwich, UK; Perry et al., 2003), three 
lines: SL6600-1 carrying a point mutation at the first exon-intron border, the line SL0061-N carrying a 
mutation causing a premature stop codon and a missense mutation causing an amino acid change in the line 
SL4207-1. Grey boxes represent exons and the black lines in between illustrate introns of LjSYMREM1 gene. 
Numbers demonstrate the length of exons and introns in bp. Arrows indicate the mutation sites. 
 

Line Mutation  Change caused Genotype/Phenotype 

SL0061-N* 

received as M3 

stop-codon mutation W123X heterozygous, 

tested, no phenotype 

SL4207-1 

received as M3 

missense in coding 

region 

D165N homozygous, 

tested, no phenotype 

SL6600-1 

received as M3 

mutation at the first 

exon-intron site  

no homozygous, tested, 

nodulation phenotype 

 
Table 3.4 LjSYMREM1 EMS mutagenized lines 
Summary of three LjSYMREM1 EMS mutagenized lines received from TILLING analysis (RevGen UK, 
Norwich Research Park, Norwich, UK; Perry et al., 2003). All lines exhibit G >A point mutation. The point 
mutation in line SL0061-N (* seeds originating from different mother plants) causes a premature stop codon 
(W changed to X) and homozygous plants were used for phenotyping. An amino acid substitution (D 
changed to N) in line SL4207-1 and analysis of homozygous mutant plants did not show a nodulation 
phenotype. Line SL6600-1 possesses a point mutation at the first exon-intron junction resulting in a 
significantly increased nodulation phenotype. 
 

Plants developed significantly more nodules (about 20%, p< 0.01) in comparison 

with wild type plants (Figure 3.15). Plants carrying the mutation also developed 

significantly longer shoots (p< 0.01) compared to wild type plants (Figure 3.15). A detailed 

transcript analysis remains to be performed in order to determine whether the phenotype is 

caused by altered transcript variants. 

Seeds (offsprings of generation M3) of three heterozygous plants carrying the point 

mutation causing premature stop codon (SL0061-N) were set up for phenotypical analysis 

4 wpi with M. loti. About 300 plants of a segregating population were analyzed with 

respect to shoot length, root length and nodulation. 
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Figure 3.15: Nodulation phenotype caused by a point mutation on the first exon-intron junction of 
LjSYMREM1 
The TILLING line carrying a point mutation on the first exon-intron junction in LjSYMREM1 locus exhibits 
an increased nodulation phenotype in comparison with wild type Lotus Gifu plants (columns left; average 
nodule number). Plants were subjected to phenotypic analysis 4 wpi with M. loti. As a consequence of the 
significantly higher nodule number (* t-test p < 0.01), the shoot length of the mutant plants (n=42) is also 
significantly longer (* t-test p < 0.01) than those of the wild type plants (n=46). Error bars indicate standard 
errors. 

 

Genotypes of 36 randomly chosen individuals were determined by sequencing 

LjSYMREM1. 23 sequences could be analyzed resulting in identification of 11 wild-type 

plants, 11 heterozygous and only one homozygous mutant plant. Unfortunately, the 

expected 1:2:1 (wt: heterozygous: homozygous) segregation ratio was not obtained not 

only in genotyping, but the plants also did not exhibit a remarkable phenotype (data not 

shown). The experiment was carried out once. Therefore, it has to be repeated to gain a 

rational conclusion. 

 

 

3.5. LjSYMREM1 interacts with symbiotic receptor-like kinases 

 

 It was shown that MtSYMREM1 interacts with upstream elements of the symbiotic 

signalling pathway, such as the symbiotic receptor-like kinases NFP, LYK3 and DMI2 

(Lefebvre et al., 2010). Here we tested whether LjSYMREM1 exhibits the same 

interaction pattern as MtSYMREM1.  
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3.5.1. Interactions and oligomerization of LjSYMREM1 in Bimolecular Fluorescence 
Complementation assay 
 

Bimolecular Fluorescence Complementation (BiFC) studies were performed in 

order to investigate interactions assumed between LjSYMREM1 and L. japonicus RLKs 

NFR1, NFR5 and SYMRK. Nicotiana benthamiana leaves were used to perform BiFC 

assay, a tool for investigating protein-protein interactions in planta (Bhat et al., 2006). 

Since these experiments required expression of proteins investigated in heterologous 

system, the proteins were tagged with a fluorophore and they were expressed under control 

of the constitutively active CaMV 35S promoter. A C-terminal fusion of LjSYMREM1 to 

Cyan Fluorescent Protein (CFP; LjSYMREM1:CFP) fluorophore was created and leaves 

were transformed with this construct using A. tumefaciens mediated gene-transfer. N. 

benthamiana leaves transiently expressing the fusion-proteins were analyzed 2 dpi. Strong 

fluorescent CFP signal was exclusively detected at the periphery of the cells indicating PM 

localization (Figure 3.16A). Before investigating the putative interactions, localizations of 

NFR1 and NFR5 fused C-terminally to YFP fluorophore were also tested in N. 

benthamiana leaves. They also showed PM-associated localization of leaf epidermal cells 

(Figure 3.16B-C). 

In order to examine interactions assumed between LjSYMREM1 and Lotus RLKs 

NFR1 and NFR5, we created C-terminal fusion proteins to N-terminal (YFPN=YN) and C-

terminal (YFPC=YC) halves of the YFP fluorophore (split YFP) for BiFC assay.  

 

 
 
Figure 3.16 Plasma membrane localization of LjSYMREM1 and the symbiotic RLKs NFR1 and NFR5  
LjSYMREM1 fused to CFP (A), NFR1 and NFR5 fused to YFP (B and C) were tested for localization in N. 
benthamiana leaf epidermal cells prior to work with the proteins in Bimolecular Fluorescence 
Complementation assay. The fluorescence signal of the fusion proteins localized at the periphery of the leaf 
epidermal cells demonstrating a plasma membrane-associated localization of each protein tested. Leaves 
were inspected under epifluorescent microscope 2dpi. Scale bars indicate 50μm. 
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Interactions of LjSYMREM1 with NFR5, NFR1 and SYMRK (SYMRK constructs 

were kindly provided by M. Antolín-Llovera, LMU Munich) were investigated in N. 

benthamiana leaves co-expressing the respective constructs 2 dpi (Table 3.5). All 

combinations tested, resulted in YFP fluorescence (as a consequence of re-assembly of the 

split YFP halves when they fused to proteins that interact) observed at the periphery of leaf 

epidermal cells that indicates interactions occurring in the PM region (Figure 3.17A-C). 

Interestingly, co-expression of LjSYMREM1 with NFR1 and NFR5 showed fluorescence 

not only at the PM but also fluorescent foci could be observed (Figure 3.17A-B). In order 

to test authenticity of these results, co-expression of MtSYMREM1 with Lotus symbiotic 

RLKs was performed (Table 3.5). Co-expressing YN/YC:MtSYMREM1 and NFR5/NFR1/ 

SYMRK:YC/YN did not result in interactions (Figure 3.17D-F), although these 

MtSYMREM1 constructs showed interactions with Medicago symbiotic RLKs fused also 

C-terminally to YFP halves (Lefebvre et al., 2010). In contrast co-expression of the 

proteins owning the same fusion direction with split YFP halves (RLKs:YC/YN and 

MtSYMREM1:YC/YN; Table 3.5) surprisingly yielded a fluorescent signal at the PM 

(Figure 3.17G-I; Table 3.5). This fact might be a consequence of the strong coiled-coil 

domain encompassed in the conserved C-terminal region of both remorins and/or an 

influence of the fluorophore fusion direction on the proteins. Probably, it can be excluded 

that the detected interactions are a consequence of an over-expression artefact (originating 

from the constitutive CaMV 35S promoter), since YN/YC:MtSYMREM1 did not show 

interactions with LjRLKs:YC/YN. Interestingly, co-expression of MtSYMREM1 with 

NFR5 and NFR1 also showed a “dotted” pattern (Figure 3.17G-H). 

Furthermore, homo-oligomerization of LjSYMREM1 was tested as it is known that 

MtSYMREM1 oligomerizes with itself in BiFC experiments (Lefebvre et al., 2010). Co-

expression of LjSYMREM1:YN and LjSYMREM1:YC resulted in reconstitution of the two 

split YFP halves and in fluorescence located at the periphery of N. benthamiana leaf 

epidermal cells (Figure 3.18A), suggesting homo-oligomerization of the protein. Since 

both SYMREM1 proteins are able to undergo homo-oligomerization, the question arose 

whether they might be able to hetero-oligomerize with each other. Co-expression of 

LjSYMREM1 C-terminally fused to split YFP moieties (LjSYMREM1:YN/YC) with 

MtSYMREM1 N-terminally fused split YFP fusion protein (YN/YC:MtSYMREM1) did 

not lead to a YFP fluorescence (Figure 3.18B). While co-expressing SYMREM1s, both C-

terminally tagged with the fluorophore halves (LjSYMREM1:YN/YC and 
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MtSYMREM1:YC/YN), yielded a YFP signal in the PM (Figure 3.18C; Table 3.5), 

indicating interaction (hetero-oligomerization) of the two remorin proteins derived from 

relative species. 

 

 
 
Figure 3.17 Interactions of SYMREM1s with L. japonicus symbiotic RLKs  
In BiFC assay interactions of LjSYMREM1 with symbiotic RLKs NFR1, NFR5 and SYMRK were tested. 
Fluorescence at the periphery of the leaf epidermal cells was detected when LjSYMREM1 was co-expressed 
with NFR5 (A), NFR1 (B) and SYMRK (C), as a result of reassembly of the split YFP halves when the 
proteins fused to them interact. Upon co-expression of LjSYMREM1 with NFR1 and NFR5 fluorescent foci 
could be also observed (A-B). Co-expressing N-terminally fused MtSYMREM1 to split YFP halves with the 
Lotus RLKs (as a control experiment) NFR5, NFR1, SYMRK did not result in interactions (D-F). While co-
expression of C-terminally tagged MtSYMREM1 with the same RLKs resulted in YFP fluorescence at the 
periphery of the transformed epidermal cells (G-I). Fluorescent foci could be observed as well (G-H). When 
co-expressing N-terminally fused MtSYMREM1 and C-terminally fused RLKs, re-assembled YFP 
fluorescence could not be observed, because of a putative sterical hindering or physical distance of the split 
YFP halves. N. benthamiana leaves expressing the respective constructs were inspected 2 dpi using CLSM. 
Scale bars indicate 30μm. 
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These data indicate that the polymorphisms between both SYMREM1 proteins are 

not essential for oligomerization of the protein. Since re-assembly of the YFP halves could 

happen only when both SYMREM1s were tagged C-terminally, it might be concluded that 

the possible interaction surface is their conserved C-terminal region. To highlight this issue 

in more details, an experiment was performed when C-terminally fused MtSYMREM1 

(MtSYMREM1:YC/YN) was co-expressed with N-terminally tagged MtSYMREM1 

(YN/YC:MtSYMREM1), however the trial failed and the experiment has to be repeated. 

 

 LjSYMREM1:YFPN MtSYMREM1:YFPN YFPN:MtSYMREM1 

NFR1:YFPC + + ‒ 

NFR5:YFPC + + ‒ 

SYMRK:YFPC + + ‒ 

LjSYMREM1:YFPC + + ‒ 

MtSYMREM1:YFPC + —— —— 

YFPC:MtSYMREM1 ‒ —— + 

 
Table 3.5 Interactions tested in BiFC assay 
To determine interactions of LjSYMREM1 BiFC studies were performed. LjSYMREM1 was co-expressed 
with L. japonicus symbiotic RLKs NFR1, NFR5 and SYMRK. In order to test authenticity of the results 
obtained, we co-expressed MtSYMREM1 with L. japonicus RLKs. When we co-expressed proteins having 
the same fusion direction to split YFP halves, they resulted in fluorescence (+). N-terminal fused constructs 
of MtSYMREM1 did not display YFP signal in any combinations (-) except co-infiltration with itself. “——
“results of these combinations could not be obtained, since the experiment failed. 
 

 
 
Figure 3.18 LjSYMREM1 forms homo- and heterooligomers  
In order to determine whether LjSYMREM1 is able to interact with itself and to answer the question whether 
the conserved coiled-coil containing C-termini of the two SYMREM1s (from related species) are able to 
oligomerize, C-terminally tagged LjSYMREM1 was co-expressed with itself, with C-terminally tagged 
MtSYMREM1 and with N-terminally tagged MtSYMREM1. (A) Co-expression of LjSYMREM1:YFPN with 
LjSYMREM1:YFPC resulted in YFP fluorescence at the periphery of the leaf epidermal cells. (B) Co-
expression of LjSYMREM1:YFPN with MtSYMREM1:YFPC resulted in fluorescence as well, while (C) 
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LjSYMREM1:YFPN with YFPC:MtSYMREM1. N. benthamiana leaves carrying the respective constructs 
were investigated 2 dpi using CLSM. Scale bars indicate 50 μm (A, B) and 30μm (C).  
 

3.5.2. Interactions of LjSYMREM1 in split-ubiquitin yeast assay 

 

 In order to verify interactions between LjSYMREM1 and NFR5, NFR1 and 

SYMRK detected in BiFC studies, the yeast split-ubiquitin system (SUS) was used as an 

independent assay. SUS was optimised for detection of interactions between PM resident 

proteins. The facts, that LjSYMREM1 is a PM-associated protein and previous reports on 

the successful use of this system when investigating interactions of MtSYMREM1 with 

Medicago symbiotic RLKs (Lefebvre et al., 2010), support this system to be suitable for 

this approach. Proteins tested were expressed as bait (Cub construct, protein of interest is 

fused to the C-terminal part of ubiquitin) as well as a prey (NubG construct, protein of 

interest is fused to the mutated N-terminal ubiquitin) in the yeast strain (NMY32) used for 

interaction studies. Before investigating interactions, expression and localization of 

LjSYMREM1 was verified in yeast cells. Membrane protein extraction and immunoblot 

analysis demonstrated membrane-associated localization of LjSYMREM1 (Figure 3.19). 

To assay whether all constructs (Cub/NubG:LjSYMREM1; NFR5:Cub/NubG; 

NFR1:Cub/NubG; SYMRK:Cub/NubG; RLK constructs were kindly provided by M. 

Antolín-Llovera, LMU) used for interaction studies are correctly expressed and functional 

in this system, co-transformations of bait constructs (Cub) with positive control Alg5:NubI 

(a yeast resident membrane protein fused to native N-terminal ubiquitin moiety) were 

performed. Conceptually, the Cub domain will form a native-like Ubiquitin molecule with 

the wild-type Nub(I) domain. Recognition of this molecule by ubiquitin-binding proteins 

(UBPs) will lead to cleavage of the artificial transcription factor (LexA-VP16) that is fused 

to the Cub domain and subsequent activation of the reporter genes ADE2 and HIS3. 

Expression of these genes will result in complementation of the histidine and adenine 

auxotrophy of the yeast strain.  

 To verify that neither the bait nor the prey constructs form unspecific (false 

positive) interactions, we co-transformed the bait constructs with Alg5:NubG, the preys 

with Alg5:Cub negative control constructs (see chapter 2.2.5.1). All co-transformants were 

grown on synthetic yeast medium (SD) lacking the amino acids leucine (L) and tryptophan 

(W) (SD-LW) to select for presence of both plasmids. Colonies were then stamped onto 

medium depleted in LWH (SD-LWH) and supplemented by 15mM 3-amino-1,2,4-triazole 
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(3-AT), a competitive inhibitor of the HIS3 gene product, to check for unspecific 

interactions or autoactivation of the system. Co-transformants of Cub:LjSYMREM1 and 

RLKs:Cub with Alg5:NubG did not show any growth of yeast on the triple selective 

medium supplemented with 15mM 3-AT (Figure 3.20, right panel). While all bait 

constructs co-tramsformed with the positive control Alg5:NubI leaded to yeast growth 

indicating the functionality of the proteins in the system (Table 3.6)  

 

 
 
Figure 3.19 Detection of LjSYMREM1 protein expression in yeast 
LjSYMREM1 fused N-terminally to the split ubiquitin moieties was 
detected in microsomal fraction demonstrating membrane-associated 
localization of the protein. Cub:LjSYMREM1 (52 kDa) was detected using 
α-LexA antibody against the LexA-VP16 transcriptional factor fused to the 
Cub half. NubG:LjSYMREM1 (25 kDa) was detected via α-HA antibody 
against the HA epitop placed between the NubG half and the protein. Non-
transformed yeast culture was used as a negative control using both 
antibodies, the lane “empty” represents control for α-HA antibody. 

 

 

 

 

 
 
Figure 3.20 Functionality of the constructs used in split-ubiquitin yeast assay 
Before testing interactions between LjSYMREM1 and the symbiotic RLKs, proteins were tested for their 
functionality in the split-ubiquitin yeast system. All proteins were co-expressed with the positive control 
construct Alg5:NubI (the native N-terminal ubiquitin moiety) to test whether they localize to the plasma 
membrane. Furthermore, they were co-expressed with the negative control construct Alg5:NubG, to check 
that the proteins in question do not from false positive interactions with the yeast resident PM-localized Alg5 
control protein. Yeast colonies were grown on the SD-LW auxotrophic medium to control the yeast growth 
and on the selective SD-LWH medium supplemented with 15mM 3-AT (an inhibitor of the endogenous 
histidine metabolism) to establish stringent selection conditions for the protein interaction study. Drop-tests 
were performed on both media, where the yeast suspensions were applied as a drop in dilution series (non-
diluted, 10-1, 10-2; from left to the right). 
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 Next, interactions of LjSYMREM1 with the RLKs NFR5, NFR1 and SYMRK 

(Table 3.7) were examined and they were confirmed in this yeast assay (Figure 3.21). 

Colonies of co-transformants were subjected to drop-test. They were dropped as dilution 

series (non-diluted, 10-1 to 10-3) onto SD-LWH + 15mM 3-AT (as well as onto SD-LW as 

control for yeast growth) to determine positive interactions. 
 

 Alg5:Cub Alg5:NubG Alg5:NubI 

Cub:LjSYMREM1 —— ‒ + 

NubG:LjSYMREM1 ‒ —— —— 

NFR5:Cub —— ‒ + 

NFR5:NubG ‒ —— —— 

NFR1:Cub —— ‒ + 

NFR1:NubG ‒ —— —— 

SYMRK:Cub —— ‒ ‒ 

SYMRK:NubG ‒ —— —— 

 
Table 3.6 Testing functionality of the constructs used in yeast split-ubiquitin assay 
Functionality of the constructs in the split-ubiquitin yeast system was tested, using the yeast resident 
membrane protein Alg5:NubI, the construct serves as positive control because the native NubI half is able of 
reassembly with the Cub domain if they get into close physical proximity via the proteisn fused to them. All 
co-transformations showed a functional assay (+). No interaction with the negative controls Alg5:Cub and 
Alg5:NubG (-) was detected indicating specificity of the proteins in this assay. ”——“combination not tested. 
 

 In a next set of experiments oligomerization patterns of the LjSYMREM1 protein 

was tested. Due to the high degree of sequence diversification in the N-terminal regions 

between LjSYMREM1 and MtSYMREM1, this pair provides an interesting opportunity to 

study the impact of this domain on remorin oligomerization. Thus Cub:LjSYMREM1 was 

independently co-expressed with NubG:LjSYMREM1 and NubG:MtSYMREM1, to test 

whether it displays the same oligomerization pattern as in the BiFC assay. Co-expression 

of LjSYMREM1 with itself resulted in yeast growth on triple selective medium (SD-LWH 

+ 15mM 3-AT), confirming homo-oligomerization as also shown by BiFC above (Figure 

3.22). In contrast, hetero-oligomerization of the two remorins found in BiFC, could not be 

confirmed in yeast (Figure 3.22). These data support the results obtained in BiFC, since 

only the C-terminal fusion proteins (LjSYMREM1:YN/YC and MtSYMREM1:YC/YN) 

were able to hetero-oligomerize. In contrast, co-expression of N-terminally fused 

MtSYMREM1 proteins (YC/YN:MtSYMREM1) with C-terminally fused LjSYMREM1 
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(LjSYMREM1:YN/YC) did not yield fluorescence (Figure 3.18). However, LjSYMREM1 

was able to form homo-oligomers (Cub:LjSYMREM1 with NubG:LjSYMREM1; Figure 

3.22) using the same fusion direction as in hetero-oligomerization experiments with 

MtSYMREM1. 

 

 Cub:LjSYMREM1 NubG:LjSYMREM1 

NFR5:Cub —— + 

NFR1:Cub —— + 

SYMRK:Cub —— + 

NFR5:NubG + —— 

NFR1:NubG + —— 

SYMRK:NubG + —— 

 
Table 3.7 LjSYMREM1 interacts with symbiotic RLKs in SUS 
Co-expression of Cub:LjSYMREM1 with NFR5:NubG, NFR1:NubG, SYMRK:NubG as well as co-
expression of NubG:LjSYMREM1 with RLKs fused to the Cub resulted in interaction (+). ”——
“combinations not tested. 
 

 
 
Figure 3.21 LjSYMREM1 interacts with symbiotic RLKs in yeast assay 
LjSYMREM1 interacts with symbiotic RLKs NFR5, NFR1 and SYMRK (left panel). The RLKs were also 
co-expressed with the negative control Alg5:Cub, in order to check authenticity of the interactions. Yeast 
were grown in dilution series (non-diluted, 10-1 to 10-2) on SD-LW auxotrophic medium as control of yeast 
growth and on SD-LWH supplemented with 15mM 3-AT to detect interactions. Yeast growth on the triple 
selective medium indicates interaction due to activation of the reporter gene (HIS3) system. 

 

These results suggest that SYMREM1 proteins oligomerize via their C-terminal part. N-

terminally fused LjSYMREM1 (Cub:LjSYMREM1/NubG:LjSYMREM1) homo-

oligomerizes. However, co-expression of Cub:LjSYMREM1 with NubG:MtSYMREM1 

resulted in slight yeast growth that was considered as no interaction (Figure 3.22). This 
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suggests a possible impact of the variable N-terminal region of both remorins on 

oligomerization or interaction event. 

 
 
Figure 3.22 Homo- and hetero-oligomerization of LjSYMREM1 in yeast assay 
Homo-oligomerization of LjSYMREM1 shown in BiFC assay could be confirmed in yeast. 
Hetero-oligomerization of LjSYMREM1 with MtSYMREM1 only resulted in slight, presumably unspecific 
yeast growth. Yeast grew on SD-LW indicating the presence of both plasmids. Growth on  SD-LWH 
supplemented with 15mM 3-AT in three dilution series (non-diluted; 10-1; 10-2) indicated interaction between 
the proteins. 
 

 

3.6. Identification of new putative interactors using the yeast split-ubiquitin system 

 

  In order to gain more insights into the role of the LjSYMREM1 protein, novel 

putative interaction partners were identified using yeast split-ubiquitin system (SUS). The 

availability of a cDNA-library derived from nodulated and mycorrhized roots and cloned 

into prey vector (kindly provided by Martin Parniske, LMU) favoured this approach.  

 

3.6.1. Preparation for large-scale cDNA-library screen and screen performance 

 

  For large-scale screening, library was created as prey (NubG) and the protein 

targeted as bait (LjSYMREM1:Cub). As described above (chapter 3.5.2.) expression and 

PM associated localization of LjSYMREM1:Cub construct was verified in Western blot 

analysis (Figure 3.19). Transformation efficiency and conditions of the experiment 

considered as a successful library screen are summarized in Table 3.8 and 3.9. In this 

experiment, two large-scale transformations (a “sequential transformation” and a 

“simultaneous co-transformation”) were carried out in parallel using two different 

protocols. In both transformation events Cub:LjSYMREM1 was co-transformed not only 
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with NubG:library to screen for interaction partners, but it was also co-transformed with 

Alg5:NubG to follow specificity and authenticity of the screening procedure. 

 

 Sequential Transformation  

(DUALsystems protocol) 

Co-transformation  

(Clontech protocol with 

modifications) 

Co-transformants NMY32 carrying 

Cub:LjSYMREM1 

+ NubG:Library 

NMY32 carrying 

Cub:LjSYMREM1 

+ Alg5:NubG 

Cub:LjSYMREM1 

+ NubG:Library 

Cub:LjSYMREM1 

+ Alg5:NubG 

10-2, SD-LW >1000 >1000 302 262 

10-3; SD-LW 257 215 38 26 

10-4; SD-LW 34 32 2 5 

Total number of 

transformants * 3.85x106 3.225x106 5.7x105 3.9x105 

Transformation 

efficiency 
5.5x105 4.6x105 5.7x104 3.9x104 

Table 3.8 Transformation efficiency of the library screen considred as successful 
Applying a sequential and a co-transformation procedure conducted two rounds of initial screening. 
Transformed cells were plated in dilution serried onto SD-LW selective plates to determine transformation 
efficiency. *Counted from number of colonies on 10-3 SD-LW plates. 
 

Transformed yeast cells were plated onto SD-LW, SD-LWH + 15mM and 30mM 3-AT 

and SD-LWHAde selective plates to apply appropriate selection stringency. In addition 

cells were plated onto small SD-LW plates in dilutions 10-2, 10-3, 10-4 as readout of the 

transformation efficiency (Table 3.8). The screen done by “sequential transformation” 

achieved a higher transformation efficiency (5.5x105, Table 3.8), while the number of 

colonies growing on the most stringent selective medium (SD-LWH + 30mM 3-AT) was 

also higher than colony number on the plates from the “co-transformation” procedure 

(Table 3.9). Furthermore, no difference was observed with respect to colony number of 

LjSYMREM1-library co-transformants and LjSYMREM1-Alg5:NubG co-transformants 

(Table 3.9). This fact reflects high numbers of false positive clones. Thus the yeast 

colonies obtained in screening procedure performed by “co-transformation protocol” were 

further investigated. 

Finally 160 yeast colonies were selected from the SD-LWH + 30mM 3-AT 

selective screen master plate (from the “co-transformation” procedure). Plasmids were 

extracted from all colonies and re-transformed into E. coli. A total number of 166 plasmids 



Results 

71 

 

were obtained due to the fact that yeast cells are able to carry more than one plasmid at the 

time. In order to verify interactions between LjSYMREM1 and its putative interactors, 

plasmids isolated from E. coli were re-transformed into yeast as small-scale co-

transformations independently with the Cub:LjSYMREM1 construct and with Alg5:Cub 

negative control to test specificity of these interactions. Colonies of co-transformants were 

subjected to drop-test analysis, where they were grown as dilution series (non-diluted, 10-1 

to 10-5) on SD-LWH + 15mM and 30mM 3-AT (as well as on SD-LW as control for yeast 

growth) to define positive interactions. Clones that yielded in positive interactions with 

LjSYMREM1 and that were negative in co-transformation with Alg5:Cub were sequenced 

in order to identify the cDNA insert (Table 3.10). Sequences were subjected to BLAST 

analysis to ascertain the identity of clones isolated as putative interaction partners of 

LjSYMREM1. In case, when BLAST analysis against the L. japonicus genome using 

Lotus database (Kazusa DNA Research Institute; [1]) did not yield any significant hit, 

sequences were compared to those deposited at the National Center for Biotechnology 

Information (NCBI; [6]). 

 

 Sequential Transformation  

(DUALsystems protocol) 

Co-transformation  

(Clontech protocol with modifications) 

Co- 

transformants 

NMY32 carrying 

Cub:LjSYM-REM1 

+ Library 

NMY32 carrying 

Cub:LjSYM-REM1 

+ Alg5:NubG 

Cub:LjSYM-REM1 

+ Library 

Cub:LjSYM-REM1 

+ Alg5:NubG 

SD-LW uncountable uncountable uncountable uncountable 

SD-LWH + 

15mM 3-AT 

uncountable 

less than -LW 

uncountable 

less than -LW 

184 105 

SD-LWH + 

30mM 3-AT 

1000 1100 160 4 

SD-

LWHAde 

1440 1422 880 ~470 

Table 3.9 Summary of library screens performed using two transformation procedures 
Co-transformants of both procedures were plated onto different selective media, where colonies were counted 
5 days post transformation. Yeast suspension was plated onto SD-LW as control of yeast growth and onto 
triple selective media supplemented with 15mM and 30mM 3-AT respectively and onto SD-LWHAde (take 
advantage of the second reporter gene Ade2) to find out the most appropriate selection stringency.  
 

From 85 clones found as putative positive interactors, about 40 clones were 

considered as false positive after sequencing. Such decision was based on their identities 
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where 29 clones encoding highly abundant ribosomal proteins were discarded from further 

analysis. Clones carrying empty vectors or inserts encoding histone proteins were also 

ignored during subsequent tests. Interestingly, the screen also identified a clone encoding 

LjSYMREM1, an interaction that was already shown independently before (Figure 3.22).  

Among the identified putative interaction partners listed below (Table 3.10) can be 

found an MtN5-like protein, an ENOD40 peptide and a cell-wall associated hydrolase. The 

first two were already described involved in the nodulation process (Pii et al., 2009; Wan 

et al., 2007). The cell-wall associated hydrolase might be involved in hydrolysis of the root 

hair cell wall when entrapping bacteria in the root hair curl. Proteins such a copper 

transport protein ATOX1-like and ammonium transporter are interesting in terms of 

nutrition exchange between the symbiotic partners. Proteases involved in RNS have been 

already reported (Takeda et al., 2007), therefore the identified aspartic proteinase is also an 

interesting candidate for further investigations. The heat-shock protein 70 (Hsp70) might 

be interesting with respect to LjSYMREM1 structure. LjSYMREM1 N-terminal region 

exhibits a disordered structure (Tóth et al., accepted). Hsp70 is a chaperone that is known 

to be involved in protein folding (Sharma et al., 2009). Interactions of LjSYMREM1 with 

the above-mentioned putative interaction partners and further putative interaction partners 

listed below remain to be confirmed using other protein-protein interaction techniques and 

further investigation to unravel their roles within the symbiotic signalling pathway. Several 

proteins were selected for verification of the interaction with LjSYMREM1, those are 

described in the following chapter. 

 

3.6.2. Verification of selected putative interaction partners identified in yeast screen 

 

 Sequencing of the putative interaction partners revealed possible frameshifts in the 

fusion protein that would lead to truncated variants. To test this aspect more specifically a 

selection of genes (Table 3.11) was re-cloned as full-length coding sequences into the 

respective vectors (NubG:gene of interest) and re-transformed into yeast cells. Genes were 

selected by aspects of their possible involvement in nodulation (like MtN5-like protein), in 

signalling and protein modification (Phosphatase, PeptidaseA1, AAA+ATPase domain 

containing protein) or by their putative localization to the PM or membrane rafts (like LTP 

or GPX). 
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Number of yeast colonies 

pick up 

160 

Isolated plasmids from E.coli  166 

Confirmed as positive in 

Drop-test  

85 

Probably false positive  8 empty vectors 

29 ribosomal proteins  

2 G. intraradices RNA-binding protein  

2-3 Histone proteins  

Among the positive ones  

 

LjSYMREM1; chr4.CM0004.60.r2.d  

NmrA-like protein; chr2.CM0249.1420.r2.m 

AAA+ATPase domain containing protein; BT052457 

UPF0497 membrane protein 7; LjSGA_029690.2 

MtN5-like protein; chr2.CM0667.240.r2.m 

Acid-phosphatase; chr2.CM0065.740.r2.d 

Epoxide hydrolase; chr3.CM0160.40.r2.m 

Aspartic proteinase; chr1.CM0982.580.r2.d 

GPX*; chr4.CM0042.1400.r2.m 

LTP**; chr3.CM0160.370.r2.m 

Oxoglutarate; chr2.CM0338.120.r2.m 

Cell wall-associated hydrolase; chr3.CM0396.440.r2.d 

Heat-shock protein 70; chr6.LjT47N10.130.r2.a 

Class-10 pathogenesis-related protein 1; LjSGA_063085.1  

Copper transport protein ATOX1-like; XM_003536270 

Pollen Ole e 1 allergen and extensin family protein; 
chr2.CM0002.600.r2.m 
ENOD40-2 protein; chr4.CM0161.400.r2.m 

Ammonium transporter 1; LjSGA_028202.1 

Aquaporin PIP2-7; chr3.CM0136.110.r2.m 

Glutaredoxin-like protein 4; chr1.CM1413.390.r2.m 

Table 3.10 Summary of the identified and sequenced putative interactors 
160 yeast colonies resulted in 166 plasmids isolated form E.coli, 85 plasmids were found as putative positive 
interactors in drop-test. About 45 (out of these 85) clones are considered as false positive. Among those that 
are considered as putative positive ones, LjSYMREM1 could be found as well.  
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Construct name  Protein expressed Gene ID 

NubG:Phosphatase full-length chr2.CM0065.740.r2.d 

NubG:PeptidaseA1 full-length chr1.CM0982.580.r2.d 

NubG:MtN5-like full-length chr2.CM0667.240.r2.m 

NubG:GPX* full-length chr4.CM0042.1400.r2.m 

NubG:AAA-ATPase AAA+ATPase domain# not found in Lotus database 

NubG:LTP** full-length chr3.CM0160.370.r2.m 

 
Table 3.11 List of proteins selected for verification 
Several putative interactions of LjSYMREM1 indentified in yeast screen were chosen for re-cloning and 
verification of the interactions. IDs of the genes encoding the proteins listed are from the Lotus database; [1] 
*phospholipid hydroperoxide glutathione peroxidase; **plant lipid transfer protein 
#protein prediction based on sequence homology with its putative Medicago ortholog found at NCBI 
 

 
 
Figure 3.23 Identification of new interaction partners of LjSYMREM1  
Co-expression of LjSYMREM1 with the newly identified and re-cloned putative interaction partner resulted 
in two clearly detected interactions. (A) Interaction with an AAA+ATPase core domain containing protein 
(upper panel) and with an Acid Phosphatase (bottom panel). Yeast was grown on SD-LW as control for yeast 
growth and on SD-LWH triple selective medium supplemented with 15mM 3-AT to detect the interactions. 
The putative interaction partners were co-expressed with the negative control construct Alg5:Cub to avoid 
false positive results. Yeast was dropped in dilutions series (non-diluted, 10-1, 10-2) on both types of medium. 
(B) Expression of the prey constructs was verified using α-HA antibody against the HA epitope build in 
between the NubG half and the protein investigated. 
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Coding sequences of the selected proteins were amplified from the original yeast clones 

that were identified during the screen. As an exception the single exon PeptidaseA1 gene 

was directly cloned from genomic DNA. Furthermore, and due to availability of only the 

AAA+ATPase core domain this region was used for independent experiments. 

A clear result was obtained only in the case of the Acid Phosphatase (Plant acid 

phosphatase; TIGR01675; [7]) and the AAA+ATPase core domain (SM00382; [8]) when 

the proteins showed positive interactions with LjSYMREM1 but no interactions with the 

negative control Alg5:Cub on the SD-LWH + 15mM 3-AT plates Figure 3.23A). Western 

blot analysis revealed integrity of the expressed proteins (Figure 3.23B). In all other cases, 

either the drop test resulted in slight yeast growth comparable to growth obtained with the 

negative controls or the protein could not be detected by Western blot analysis (data not 

shown). This indicates either unspecific interactions or auto-activation of the reporter 

genes by the particular protein. Thus, no conclusions could be drawn from these results. 

Further work is required to assess the interaction patterns in a reliable manner. 
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4. Discussion  

 

 

4.1. LjSYMREM1 a putative functional homolog of MtSYMREM1 

 

 The plant-specific remorin protein family is comprised of six subgroups where 

members show remarkable high degrees of sequence divergence in their N-terminal 

regions (Raffaele et al., 2007). While remorins proteins of any of the subgroups can be 

found in all land plants, the presence of group 2 is restricted to legumes and closely related 

species such as Populus trichocarpa and Vitis vinifera. Latter two belong to the FaFaCuRo 

clade that shows a predisposition for nodulation (Kistner and Parniske 2002).  

The aim of this thesis was to characterize the SYMREM1 gene from L. japonicus and to 

unravel possible orthology between SYMREM1 genes and proteins from the model 

legumes M. truncatula and L. japonicus. Despite being evolutionary relatively closely 

related species these legumes exhibit major differences in the nodule type they develop. 

While M. truncatula builds indeterminate nodules that have a persistent meristem and are 

continuously infected by rhizobia, L. japonicus plants develop determinate nodules that 

have a defined life span and are not continuously colonized (Brewin, 1991; Popp and Ott, 

2011).  

 Comparing remorin gene expression in L. japonicus with published data for the 

Medicago MtSYMREM1 gene revealed only one gene to exhibit nodulation-specific 

expression (LjSYMREM1; chr4.CM0004.60.r2.d; Tóth et al., accepted). Surprisingly 

sequence alignments between the two corresponding proteins showed only very low 

degrees of overall sequence similarity (67.1%; Table 3.1) despite clear phylogenetic 

separation and clustering of the proteins (Figure 3.1; Tóth et al., accepted). In contrast full-

length protein sequences of symbiotic receptor-like kinases and other components of the 

symbiotic signalling pathway show overall similarities between 75-90% when comparing 

these two legumes (Table 3.2; Tóth et al., accepted). Detailed phylogenetic analysis 

revealed that LjSYMREM1 and MtSYMREM1 indeed derive from a common ancestor 

strongly implying orthology between these two proteins (Figure 3.1). Due to the lack of 

homozygous knockout mutants for LjSYMREM1 this question could not be assessed 

phenotypically. However, a line carrying a point mutation at the border of the first exon 

and intron exhibited an increased nodulation phenotype (Figure 3.15). The phenotype 
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could be confirmed in three independent experiments. The homozygous mutant plants 

exhibit not only about 20% more nodules, but they also have significantly longer shoots in 

comparison with wild type plants suggesting that this nodulation phenotype is caused by 

this point mutation in the LjSYMREM1 gene. The nodules showed non-altered morphology 

and fixing phenotype, whether the longer shoots are a possible consequence of the higher 

nodule number requires further investigations. In order to explain, whether the mutation 

could have caused a splicing alteration and therefore a possible different protein product, 

transcript analysis has to be done. Further evidence for orthology of LjSYMREM1 and 

MtSYMREM1 was obtained in the group when an RNAi approach against another group 2 

remorin protein (LjMYCREM) resulted in a nodulation phenotype similar to the one 

described for MtSYMREM1 (Joana Bittencourt-Silvestre and Thomas Ott, unpublished 

data). While this construct potentially also targeted LjSYMREM1, the use of a LjMYCREM-

specific RNAi construct did not result in a nodulation phenotype. However, efficient 

silencing with the above-mentioned construct remains to be proven experimentally. 

  High sequence divergence in the N-terminal region of the SYMREM1 proteins 

may suggest several evolutionary possibilities and may question functional requirement of 

these domains. Interestingly, not only the full-length LjSYMREM1 over-expression, but 

also its individual N-terminal and C-terminal regions also caused an increased nodulation 

phenotype (Figure 3.12). These results suggest that both regions contribute to the 

biological function of the protein involved in the nodulation process.  

 

4.2. LjSYMREM1 accompanies nodulation process 

 

 A nodule-specific induction of the LjSYMREM1 gene was found in transcriptomic 

analysis of L. japonicus (Colebatch et al., 2004; Høgslund et al., 2009). Quantitative real-

time PCR approach revealed that MtSYMREM1 is not only nodule-specifically expressed 

already at 4 dpi with S. meliloti but also 24 hours after application of 10-8 M isolated NFs 

(Lefebvre et al., 2010). To follow the spatio-temporal expression pattern of the 

LjSYMREM1 gene, LjSYMREM1 promoter activity was analyzed using a 

pLjSYMREM1:GUS reporter construct. This study unraveled LjSYMREM1 to be induced 

24 hours upon NF application in epidermal as well as cortical cells in a susceptible zone 

above the root tip (Figure 3.5B, 3.6A). GUS staining was not observed in non-treated roots 
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suggesting no promoter activity, however a basic level expression could have been 

observed in expression profiling studies (Høgslund et al., 2009; Lefebvre et al., 2010). 

 Early nodulin promoters have been described that were activated earlier than 24h 

upon NF application in histochemical promoter:GUS studies, showing an expression 

pattern in root epidermis (Journet et al., 1994; Boisson-Dernier et al., 2005; Marsh et al., 

2007). The MtENOD12 promoter is activated in differentiating root epidermal cells of 

secondary roots 2-3 hours later upon NF application (Journet et al., 1994). The 

pMtENOD11 exhibits the earliest activation 6 hours in the epidermis (Catoira et al., 2000; 

Charron et al., 2004; Marsh et al., 2007) while Boisson-Dernier et al. (2005) investigated 

the promoter activity 16 hours after NF treatment.  

 LjSYMREM1 promoter activity was observed on roots at 2 dpi with M. loti (Figure 

3.5C). Such pattern was also reported for pMtENOD12 expression monitored 20 h after S. 

meliloti inoculation (Pichon et al., 1992). However, GUS staining was restricted to 

epidermal cell layers. Additionally, Boisson-Dernier et al. (2005) described a specific 

activation of pMtENOD11:GUS construct in curled root hairs and in the adjacent outer 

cortical cells 3 dpi with S. meliloti. LjSYMREM1 promoter activity was assessed in nodule 

primordia cells 4 dpi that coincided with rhizobial infection (Figure 3.5D-E). From this 

time-point no GUS-activity was observed in epidermal cells. Similar GUS staining pattern 

was monitored in dividing cortical cells of composite plants involving pCYCLOPS:GUS 

construct upon M. loti treatment (Yano et al., 2008). Furthermore, β-glucuronidase-activity 

co-localizing with DsRed signal deriving from rhizobia harboured by the infected cells was 

detected in young (6 dpi) and mature nodules (3wpi) (Figure 3.5F-G). Such pattern was 

also observed for the CYCLOPS promoter (Yano et al., 2008). 

 Since SYMREM1 has been shown to interact with the symbiotic receptors, it 

remains to be answered whether expression of the corresponding genes coincides with each 

other. So far localization data have only been presented for the Medicago RLKs DMI2, 

NFP and LYK3. These genes are expressed in the developing root hair zone above the root 

tip observed in non-inoculated transgenic roots carrying GUS reporter construct of the 

respective RLKs (Bersoult et al., 2005; Arrighi et al., 2006; Mbengue et al., 2010). GUS-

activity could be observed 2 dpi with S. meliloti in inner and middle cortex (DMI2 and 

NFP) and in nodule primordium (LYK3). Their expression was also observed in nodules, 

in pre-infection and in infection zones (Bersoult et al., 2005; Arrighi et al., 2006; Mbengue 

et al., 2010).  
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 In summary data presented here clearly show transcriptional patterns known for 

early nodulins. Expression of LjSYMREM1 coincides with bacterial infection and nodule 

organogenesis. These processes have recently been dissected genetically (Madsen et al., 

2010). Downstream of NF perception and root hair curling a set of proteins such as the 

GRAS-like transcription factors NSP1 and NSP2 (Kaló et al., 2005; Heckmann et al., 

2006), proteins involved in actin re-arrangement (NAP1, PIR1; Yokota et al., 2009) and 

the E3 ubiquitin ligase CERBERUS (Yano et al., 2009) are required for infection thread 

formation. Signal transduction and organogenesis appears to be regulated by an 

independent pathway that is controlled by SYMRK and genetic components required for 

calcium spiking. Similarities to expression patterns of CYCLOPS and a recent finding that 

MtSYMREM1 induction is specifically blocked in a Medicago ipd3 mutant (the ortholog of 

CYCLOPS) suggest a close relationship of SYMREM1 and CYCLOPS and genetically 

places it immediately downstream of calcium-spiking (Ovchinnikova et al., 2011). 

  

4.2.1. LjSYMREM1 localizes to symbiosome membranes and to nodular infection 

threads 

 

 In M. tuncatula MtSYMREM1 localized to nodular infection threads and 

symbiosome membranes (Lefebvre et al., 2010). Similar patterns were observed in stable 

transgenic Lotus plants expressing the pLjSYMREM1:gLjSYMREM1:YFP construct. The 

fusion protein was also detected on nodular infection threads interconnecting infected cells 

(Figure 3.9D-F). Such localization has not been observed for MtSYMREM1 while this 

protein localized to nodular IT membranes within the infection zone of the indeterminate 

nodule (Lefebvre et al., 2010). Full PM localization was also retained when over-

expressing an LjSYMREM1:CFP construct heterologously in N. benthamiana leaves 

(Figure 3.16) and LjSYMREM1: mOrange homologously in L. japonicus roots (Figure 

3.11). Furthermore, independent expression of the C- and N-terminal regions of 

LjSYMREM1 indicated the presence of a membrane-binding domain in the C-terminal 

region of the protein (Figure 3.11). The nature of this motif remains to be studied in detail. 

However, in silico prediction did not yield any known membrane-binding motif, 

suggesting that remorins anchor via a so far non-described mechanism to plasma 

membranes.  
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 While no fluorescent signal could be observed in root hairs upon NF treatment, the 

abovementioned promoter:GUS data suggest LjSYMREM1 transcription in these epidermal 

cells (Figure 3.5B, 3.6A). Interestingly, a LYK3:GFP fusion protein expressed under the 

native LYK3 promoter was recently visualized in these cells (Haney et al., 2011). LYK3 

was found to cluster in defined membrane micro-domains that co-localize with the flotillin 

protein FLOT4 upon inoculation of the plants with rhizobia (Haney et al., 2011). Such 

membrane domains had been previously shown for two flotillin proteins FLOT2 and 

FLOT4 independently of the presence of rhizobia and/or Nod Factors (Haney et al., 2010). 

Remorin proteins have been described to serve as marker proteins for membrane domains, 

called membrane rafts (reviewed in Jarsch and Ott, 2011). A group 1 remorin from potato 

(StREM1.3) was shown to localize to such domains when being expressed in tobacco 

leaves (Raffaele et al., 2009). While no such domains were observed when expressing C-

terminally tagged LjSYMREM1 protein in the stable transgenic L. japonicus line nor in N. 

benthamiana leaves, unpublished data indicate membrane domain clustering of N-

terminally tagged MtSYMREM1 protein (Popp and Ott, unpublished data). Such clusters 

were not observed when expressing C-terminally tagged versions of the LjSYMREM1 

protein. Thus, it cannot be ruled out that C-terminal tagging of LjSYMREM1 prevents 

domain formation while association with the plasma membrane is not impaired.  

 Both, LjSYMREM1 protein and promoter activity were detected in infected cells 

(Figures 3.6B, 3.8A-D, E-H). However, clear GUS staining was observed in outer cortical 

cells of mature nodules, while no fluorescence of the LjSYMREM1:YFP fusion protein 

was detected in these cell layers. This may be due to low abundance of the protein and thus 

below detection limit. However, post-transcriptional regulation can also be assumed. 

Similarly, no protein fluorescence was detected during early stages of infection while 

promoter:GUS studies clearly showed promoter activity upon NF application and in nodule 

primordia (Figures 3.5). Indeed micro-RNA-mediated regulation of non-symbiotic remorin 

transcripts has been described in Arabidopsis thaliana (Fahlgren et al., 2007). Whether 

such mechanism also plays a role in regulation of SYMREM1 genes remains to be studied. 

However, it should be noticed that L. japonicus roots also exhibit high levels of auto-

fluorescence that hinder detection of YFP signals at low levels. 
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4.3. LjSYMREM1 interaction partners 

 

 Earlier work showed that MtSYMREM1 interacts with the Medicago receptor-like 

kinases LYK3, NFP and DMI2 (Lefebvre et al., 2010). To test whether LjSYMREM1 

shows the same interaction patterns and to support putative orthology between the two 

proteins, interactions of LjSYMREM1 with the homologous L. japonicus RLKs was tested 

using BiFC and split-ubiquitin yeast assay. Interactions of LjSYMREM1 with NFR1, 

NFR5 and SYMRK were shown by the help of both protein-protein interaction methods 

(Figure 3.17 and Figure 3.21). Furthermore, interaction of LjSYMREM1 and NFR1 was 

confirmed with an independent, FLIM-FRET analysis (Tóth et al, accepted). By the help of 

this technique the interaction was quantified using Cerulean-mOrange FRET pair. Upon 

interaction of the investigated proteins tagged with the two fluorophores, it comes to 

fluorescence lifetime reduction because of energy transfer from the donor fluorophore 

(Cerulean) to the acceptor fluorophore (mOrange) that can be quantified. 8.8% FRET 

efficiency could be observed that clearly demonstrates physical interaction between 

LjSYMREM1 and NFR1 (Tóth et al., accepted). Data presented by Tóth and colleagues 

clearly show that a stable interaction between LjSYMREM1 and the kinase domains of the 

symbiotic RLKs is mediated by the remorin C-terminal region. This region harbours a 

coiled-coil domain. These motifs have been frequently reported to support protein-protein 

interactions (Strauss and Keller, 2008). However, data from in vitro phosphorylation 

assays identified phosphorylation sites in the N-terminal region of the protein (Tóth et al., 

accepted) suggesting transient interaction with this region. Interestingly, no fluorescence 

was observed in BiFC assays where N-terminally tagged MtSYMREM1 proteins were co-

expressed with the Lotus RLKs (Figure 3.17) despite high sequence conservation of the 

SYMREM1 C-terminal region. It remains to be elucidated if such lack of fluorescence is 

caused by steric hindrance of the interaction. 

 It was shown that LjSYMREM1 is able to interact with itself (Figure 3.18, 3.22). 

Homo-oligomerization of LjSYMREM1 was found in BiFC as well as in split-ubiquitin 

yeast assay (Figure 3.18A, 3.22). Moreover, it was detected that SYMREM1s of the two 

model legumes can undergo a hetero-oligomerization with each other suggesting that the 

highly conserved C-terminal half might allow an interaction between the two remorins 

from related species (Figure 3.18). However, their interaction could not be confirmed when 

LjSYMREM1 is tagged C-terminally and MtSYMREM1 is tagged N-terminally with the 
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split YFP halves (Figure 3.18). In split-ubiquitin yeast assay their co-expression also did 

not result in interaction (Figure 3.22). These results suggest that oligomerization might 

happen via their evolutionary conserved coiled-coil domains.  

 

4.3.1. Newly identified putative interaction partners of LjSYMREM1 

 

 It was suggested that remorins may act as molecular scaffold proteins (Lefebvre et 

al., 2010; Jarsch and Ott, 2011). Such scaffold proteins exhibit a variety of functions and 

mediate recruitment of signalling components to specialized membrane domains and/or 

facilitate signalling complex assembly (Lajoie et al., 2009). The molecular mechanism of 

signal transduction between the plasma membrane resident receptor-like kinases and 

downstream nuclear activation of calcium-spiking has not been resolved, yet. However a 

set of proteins interacting with the RLKs has been identified (Popp and Ott, 2011). Two 

putative interactors of Lotus SYMRK and Medicago NORK have recently been described. 

The ARID-type DNA binding protein (SIP1) interacts with SYMRK via its C-terminal 

domain, while the N-terminal helix-turn-helix domain (ARID) is required for DNA 

interaction (Zhu et al., 2008). No mechanism has been postulated that would explain the 

mechanism of interaction between the nuclear SIP1 protein with the PM-resident SYMRK. 

Furthermore a PM-resident 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase1 

(HMGR1) was reported to interact with the SYMRK homolog NORK (Kevei et al., 2007). 

The authors suggested that HMGR1 that catalyzes a step in mevalonate biosynthesis is 

involved in flavonoid production that is triggered by the plant upon nitrogen-starvation. 

Indeed the strong phenotype where ITs were aborted in root hairs and outer cortical cells 

supports a function of HMGR1 during early steps of root nodule symbiosis.  

 Here a large-scale split-ubiquitin yeast library screen was performed to identify 

putative new interaction partners of LjSYMREM1. This approach aimed to identify novel 

components that act between PM signal perception and downstream nuclear responses.  

In this yeast screen experiment a number of interesting putative interactors was identified 

(Table 3.10). The fact that LjSYMREM1 was identified as a putative interactor indicates a 

successful screening procedure, since oligomerization of the protein was also shown in 

independent assays (Figure 3.18, 3.22). Two other candidates, whose interactions with 

LjSYMREM1 could be confirmed after re-cloning them, are a Plant Acid Phosphatase and 

an AAA+ATPase core domain containing protein fragment (Figure 3.23). In silico analysis 
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of the expression of their putative Medicago orthologs using the Medicago expression atlas 

(Benedito et al., 2008), no characteristic nodulation specific expression patterns could be 

found neither for the Acid Phosphatase nor for the AAA+ATPase core domain containing 

protein. It is known that proteins with disordered structure are involved in protein-protein 

interactions, signalling events, forming protein complexes and they might get folded upon 

interaction occurrence or just prior to involvement in an interaction, the AAA+ATPase 

protein family is involved in such processes (Wright and Dyson, 1999; Dyson and Wright, 

2005; Dunker et al., 2008). AAA+ATPases represent a large protein family which 

members are involved in many diverse processes of the cell. They might participate in 

membrane dynamics, protein folding, proteolysis, vesicle transport and in performing 

many other cellular functions (Ogura and Wilkinson, 2001; White and Lauring, 2007) 

Identification of the AAA+ATPase core domain as a possible interactor of LjSYMREM1 

supports the hypothesis that LjSYMREM1 might act as a scaffold protein recruiting other 

proteins implied in protein complex formation of the symbiotic receptor-like kinases. Since 

it is a predicted cytosolic protein, it might be recruited from the cytosol to the PM or 

membrane rafts via LjSYMREM1. The exact role of this AAA+ATPase core domain 

containing protein is an exciting task with respect to not only its role to LjSYMREM1 but 

also whether it can affect the receptor-like kinases or other component of the symbiotic 

signalling pathway. 

 The acid phosphatase might de-phosphorylate the protein, since LjSYMREM1 

phosphorylation via NFR1 and SYMRK kinase domains could be detected (Tóth et al., 

accepted) indicating that LjSYMREM1 needs to be phosphorylated perhaps with regards to 

its biological function. DeLong (2006) reviewed possible roles of PP1, PP2, PP4, PP5, PP6 

and nuclear phophatases that are involved in embryogenesis, defence, brassinosteroid, 

blue-light and abscisic acid signalling and also can modulate receptor-like kinases. The 

acid phosphatase found in the screen cannot be classified in more details because of the 

lack of further information. Whether it interacts and/or deposphorylates LjSYMREM1 

remains a challenging topic of another study.  
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5. Summary 

 

 Remorins are plasma membrane-resident proteins that may serve functions of 

molecular scaffold proteins to facilitate assembly of signalling complexes in membrane 

rafts. The fact that the remorin protein MtSYMREM1 from Medicago truncatula interacts 

with a number of receptor-like kinases (RLKs) and controls bacterial infection support this 

hypothesis. In this study, its putative ortholog LjSYMREM1 from Lotus japonicus was 

identified and further characterized. As MtSYMREM1, LjSYMREM1 localizes to 

symbiosome membranes and nodular infection threads and follows the same interaction 

patterns with the orthologous symbiotic receptor-like kinases NFR1, NFR5 and SYMRK 

from L. japonicus. 

The spatio-temporal expression pattern of LjSYMREM1 was investigated using its 

promoter region fused to the GUS reporter gene. Promoter activity of LjSYMREM1 was 

observed in epidermal and cortical cells in proximity of the root tip, a susceptible zone for 

perception of rhizobial signalling molecules at 24h after NF treatment and 2 dpi upon M. 

loti inoculation. While expression vanished in epidermal cells 4 days post inoculation with 

M. loti, strong promoter activity was detected in nodule primordial cells at the sites of 

bacterial infection. In young nodules (6 dpi) and mature nodules (3 wpi) promoter activity 

followed rhizobial infection and remained in the central zone of nodules and the nodule 

parenchyma while LjSYMREM1 is not expressed in the nodule cortex. Whereas the 

LjSYMREM1 protein fused to YFP was localized to infected cells of nodules, at the 

symbiosome membrane and the nodular infection threads. 

Interestingly over-expression of full-length LjSYMREM1 as well as the sole N-

termimal and C-terminal regions resulted in nodulation phenotype where plants developed 

significantly more nodules demonstrating the importance of both domains of this 

oligomeric protein during root nodule symbiosis.  

In large-scale split-ubiquitin yeast screen further interaction partners of 

LjSYMREM1 were identified. Beside others an interactions with an acid phophatase and 

AAA+ATPase core domain-containing protein were confirmed in independent yeast re-

transformation experiments. Since LjSYMREM1 is phosphorylated by the NFR1 and 

SYMRK kinase domains (Tóth et al., accepted), it can be hypothesized that the acid 

phosphatase might play a role during dephosphorylation of LjSYMREM1. The 

cytoplasmatic AAA+ATPase core domain-containg protein might be recruited to the 



Summary 

85 

 

plasma membrane via LjSYMREM1 to serve any of the various functions such as protein 

folding, membrane dynamics, proteolysis, vesicle transport have been described for this 

protein family.  
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Future Perspectives 

 

This thesis provides the basis for further analysis of SYMREM1 function in legumes. Data 

presented here clearly show that SYMREM1 proteins from L. japonicus and M. truncatula 

share a common ancestor. However, their N-terminal regions have remarkably diverged 

during evolution. While functional complementation was not achieved by expression of a 

pLjSYMREM1:gLjSYMREM1:YFP construct a number of other approaches can be taken to 

assess this question. For this LjSYMREM1 may be expressed under the control of the 

pMtSYMREM1 or the constitutively active pUbiquitin promoter in the Mtsymrem1 mutant 

background. Furthermore, complementation analysis when expressing chimeric constructs 

which were created in frame of this PhD project (e.g. the N-terminal region LjSYMREM1 

fused to the C-terminal region of MtSYMREM1) will give insights into functional 

divergence of these proteins.  

In frame of this thesis a number of new putative interaction partners of SYMREM1 have 

been identified. While an acid phosphatase may be involved in SYMREM1 

dephosphorylation, an AAA+-ATPase core domain containing protein might play roles in 

protein folding. Furthermore a number of proteins involved in lipid transfer and re-

arrangement that were found to interact with SYMREM1 may possess functions during 

infection thread progression and/or bacterial release. Future experiments will have to 

independently verify interaction with SYMREM1 and demonstrate their indispensability 

for root nodule symbiosis by reverse genetic approaches. These studies will provide novel 

insights into SYMREM1 function and thus regulation of the symbiotic signalling pathway.  
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Összefoglalás 
 

A plazmamembrán lokalizációval rendelkező növényi remorin fehérjék scaffold 

fehérjeként működhetnek, ezáltal elősegíthetik szignalizációs komplexumok 

összeszerelését. Az a tény, hogy az MtSYMREM1 remorin családba tartozó fehérje 

Medicago truncatula-ban kölcsönhat számos receptor-szerű kinázzal, ezáltal saját 

ellenőrzése alá vonva a Rhizobium és pillangósvirágú közötti bakteriális fertőzés 

folyamatát, szintén alátámasztja a fent említett gondolatot. Ebben a tanulmányban, 

azonosítottuk és jellemeztük az MtSYMREM1 fehérje ortológját Lotus japonicus-ban és 

elneveztük LjSYMREM1-nek. LjSYMREM1 az MtSYMREM1 fehérjéhez hasonlóan a 

szimbioszóma membránon és a gümőkben található infekciós fonalon helyezkedik el, 

valamint kölcsönhatásban működik a szimbiotikus receptor-szerű kinázokkal: az NFR1, az 

NFR5 és a SYMRK fehérjékkel.. 

Az LjSYMREM1 gén promótere vizsgálatával kiderítettük, hogy a promóter 24 

órával Nod Faktor alkalmazása és két nappal a rhizobiális fertőzés után az epidermális és 

kortikális gyökérsejtekben aktiválódik. Ez az aktivitás a 4. napon a bakteriális fertőzés után 

eltűnik az epidermális sejtekből, de jelen van az osztodó kortikális sejtekben (gyökérgümő 

kezdemények), valamint azokban a sejtekben amelyekben a bakteriális fertőzés folyamata 

megindult. Követve a bakteriális fertőzés helyét a promóter aktivitását regisztráltuk fiatal 

(6 nappal fertőzés után) illetve érett gümőkben (3 héttel fertőzés után) is. Az LjSYMREM1 

fehérjét az epidermális sejtek plazma membránjában valamint a gyökérgümőn belül a 

szimbioszóma membránon, illetve a fertőzött sejteket összekötő infekciós fonalon 

lokalizáltuk. 

 Transzgénikus L. japonicus növényekben az LjSYMREM1 fehérjét valamint N- és 

C-terminális doménjeit túltermeltettük. Ezen fehérjék megnövekedett mennyisége 

megnövekedett számú gyökérgümő képződéshez vezetett, amely arra utal, hogy az 

LjSYMREM1 fehérje és mindkét terminális doménje jelentős szerepet játszik a biológiai 

funkcióban. 

 Élesztő két-hibrid eljárás segítségével, az LjSYMREM1 fehérje további interakciós 

partnereit fedeztük fel. Ezek közül az egyik egy növényi savas foszfatáz, amely 

valószinűleg az NFR1 és SYMRK által foszforilált LjSYMREM1 fehérjét defoszforilálja 

(Tóth et al., PloS ONE közlésre elfogadva). A másik kölcsönható fehérje egy 

AAA+ATPáz core domént hordozó fehérje, amely különböző sejtfunkciókban vesz részt 
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(mint például fehérjék harmadlagos szerkezetének kialakítása (folding/refolding), 

membrán dinamika, proteolízis, vezikuláris transzport. 
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Appendix 

 
Table A1: Strains used in this study 

Species Strain Resistance/Auxo- 
trophic marker 

Growth 
conditions 

Purpose of use 

Bacteria  
Agrobacterium 
rhizogenes 

AR1193 Rif, Carb 28°C Hairy root induction 

Agrobacterium 
tumefaciens 

AGL1 Rif, Carb 28°C Stable transfomation 

Agrobacterium 
tumefaciens 

GV3101 Rif, Gent, Kan 28°C Transient tobacco leaves 
infiltration 

Escherichia coli DH5α no 37°C Plasmid multiplying and 
maintenance  

Escherichia coli TOP10 no 37°C Plasmid multiplying and 
maintenance 

Escherichia coli DB3.1 no 37°C Plasmid multiplying and 
maintenance 

Escherichia coli XL1-Blue no 37°C Plasmid multiplying and 
maintenance 

Mesorhizobium loti MAFF 303099, 
expressing DsRed 

Gent 28°C L. japonicus infection 

Yeast  
Saccharomyces 
cerevisiae 

NMY32 Leu, Trp 28-30°C Interaction studies 

 
 
Table A2: Plant species and lines used in this study 
Species Ecotype Background Selection 

marker 
Purpose of use 

Lotus japonicus Gifu B-129 Wild-type - Hairy root experiments 
Lotus japonicus Gifu B-129 EMS population - Assessing phenotype 
Lotus japonicus MG-20 Wild-type - Stable transformation 
Lotus japonicus MG-20 pLjSYMREM1gLjSYM 

REM1:YFP 
hyg Protein localization 

Nicotiana 
benthamiana 

- Wild-type - Interaction studies 
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Table A3: Constructs used in this study 
Construct name Vector backbone Insert Selection 

marker 
Purpose of use Origin 

TOPO: 
LjSYMREM1 

pENTR/D-TOPO LjSYMREM1 
cDNA 

KanR Entry clone for 
subcloning 

This study 

TOPO: 
pLjSYMREM1 
gLjSYMREM1 

pENTR/D-TOPO 975bp 
pLjSYMREM1
+ genomic 
LjSYMREM1 

KanR Entry clone for 
subcloning 

This study 

pDONR207:NFR1 pDONR207 NFR1 
cDNA 

GentR Entry clone for 
subcloning 

Aarhus, 
Denmark 

pDONR207:NFR5 pDONR207 NFR5 
cDNA 

GentR Entry clone for 
subcloning 

Aarhus, 
Denmark 

pGEM-T:975bp 
pLjSYMREM1 

pGEM-T 
easy 

975 bp 
LjSYMREM1 
promoter 

CarbR Clone for 
subcloning 

This study 

pGEM-T:2kb 
pLjSYMREM1 

pGEM-T 
easy 

2 kb 
LjSYMREM1 
promoter 

CarbR Clone for 
subcloning 

This study 

LjSYMREM1: 
CFP 

pAM-PAT binary 
vector* 

LjSYMREM1 
cDNA 

CarbR Protein 
localization in 
planta 

This study 

LjSYMREM1: 
YFPN 

pAM-PAT binary 
vector* 

LjSYMREM1 
cDNA 

CarbR BiFC studies 
in planta 

This study 

LjSYMREM1: 
YFPC 

pAM-PAT binary 
vector* 

LjSYMREM1 
cDNA 

CarbR BiFC studies 
in planta 

This study 

YFPN: 
MtSYMREM1 

pAM-PAT binary 
vector* 

MtSYMREM1 
cDNA 

CarbR BiFC studies 
in planta 

T. Ott# 

YFPC: 
MtSYMREM1 

pAM-PAT binary 
vector* 

MtSYMREM1 
cDNA 

CarbR BiFC studies 
in planta 

T. Ott# 

MtSYMREM1: 
YFPN 

pAM-PAT binary 
vector* 

MtSYMREM1 
cDNA 

CarbR BiFC studies 
in planta 

Claudia  
Popp# 

MtSYMREM1:  
YFPC 

pAM-PAT binary 
vector* 

MtSYMREM1 
cDNA 

CarbR BiFC studies 
in planta 

Claudia  
Popp# 

NFR1: YFP pAM-PAT binary 
vector* 

NFR1 
cDNA 

CarbR Protein 
localization in 
planta 

This study 

NFR5: YFP pAM-PAT binary 
vector* 

NFR5 
cDNA 

CarbR Protein 
localization in 
planta 

This study 

NFR1: YFPC pAM-PAT binary 
vector* 

NFR1 
cDNA 

CarbR BiFC studies 
in planta 

This study 

NFR1: YFPN pAM-PAT binary 
vector* 

NFR1 
cDNA 

CarbR BiFC studies 
in planta 

This study 

NFR5: YFPC pAM-PAT binary 
vector* 

NFR5 
cDNA 

Carb BiFC studies 
in planta 

This study 

NFR5: YFPN pAM-PAT binary 
vector* 

NFR5 
cDNA 

Carb BiFC studies 
in planta 

This study 
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Construct name Vector backbone Insert Selection 
marker 

Purpose of use Origin 

SYMRK: YFPC pAM-PAT binary 
vector* 

SYMRK 
cDNA 

Carb BiFC studies 
in planta 

M. 
Antolín-
Llovera# 

SYMRK: YFPN pAM-PAT binary 
vector* 

SYMRK 
cDNA 

Carb BiFC studies 
in planta 

M. 
Antolín-
Llovera# 

pLjSYMREM1 
gLjSYMREM1: 
YFP 

pH7YWG2.0 
w/o 35S** 

975bp 
pLjSYMREM1
+ genomic 
LjSYMREM1 

Spec/ 
Hyg 

Protein locali- 
zation in Lj 
roots 

This study 

pUb:gwy:mOrange pUb:gwy*** Gwy:mOrange Kan/Hyg Binary vector 
for protein loca- 
lization 

Modified in 
this study 

pUb:LjSYMREM1 pUb:gwy:mOrange LjSYMREm1: 
mOrange 

Kan/Hyg Protein locali- 
zation in Lj 
roots and OE 
studies 

This study 

 
*Lefebvre B, Timmers T, Mbengue M, Moreau S, Herve C, et al. (2010). A remorin protein interacts with 

symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci U S A 107: 2343-2348. 
**Karimi M, De Meyer B, Hilson P (2005). Modular cloning in plant cells. Trends Plant Sci 10: 103-105. 
***Maekawa T, Kusakabe M, Shimoda Y, Sato S, Tabata S, et al. (2008). Polyubiquitin promoter-based 

binary vectors for over-expression and gene silencing in Lotus japonicus. Mol Plant Microbe 
Interact 21: 375-382. 

# Institute of Genetics, LMU, Munich 
OE – over-expression  
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Table A4: Plasmids used for interaction studies in yeast assay 
Backbone 
vector 

Insert Auxotrophic 
marker 

Antibiotic 
resistance  

Origin 

Baits  
pCCW-Alg5 Alg5:Cub:LexA-VP16 Leu2 KanR Provided by the 

manufacturer 
pCCW:LjSYMREM1 LjSYMREM1:Cub: 

LexA-VP16 
Leu2 KanR Created in this 

study 
pBT3-N: 
LjSYMREM1 

LexA-VP16: 
Cub:LjSYMREM1 

Leu2 KanR Created in this 
study 

pBT3-C:NFR5 NFR5:Cub: 
LexA-VP16 

Leu2 KanR Provided by M. 
Antolín-Llovera 

pTMBV4:NFR1 NFR1:Cub: 
LexA-VP16 

Leu2 KanR Provided by M. 
Parniske 

pTMBV4:SYMRK SYMRK:Cub: 
LexA-VP16 

Leu2 KanR Provided by M. 
Parniske 

Preys  
pAI-Alg5 Alg5:NubI Trp AmpR Provided by the 

manufacturer 
pDL2-Alg5 Alg5:NubG Trp AmpR Provided by the 

manufacturer 
pDL2xN: 
LjSYMREM1 

LjSYMREM1:NubG Trp AmpR Created in this 
study 

pDSL-Nx: 
LjSYMREM1 

NubG:LjSYMREM1 Trp AmpR Created in this 
study 

pDL2xN:NFR1 NFR1:NubG Trp AmpR Provided by M. 
Parniske 

pDL2xN:NFR5 NFR5:NubG Trp AmpR Provided by M. 
Parniske 

pDL2xN:SYMRK SYMRK:NubG Trp AmpR Provided by M. 
Parniske 

pDL2Nx: 
cDNA-library 

NubG:cDNA Trp AmpR Provided by M. 
Parniske 

pDSL-Nx No insert Trp AmpR DualMEMBRANE 
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Table A5: Primers used in this study 

 

 

Primer name Sequence Amplicon Restriction 
site included 

Cloned into vector 

LjsymREM1prom2k_1F 5´AAGCTTCAGAAGCAGCCAAGGAGATG 3´ 2kb pLjSYMREM1 HindIII pGEM-T 
LjsymREM1prom1k_1F 5´AAGCTTCGCATGTAGATTCTCTGAGG 3´ 975bp pLjSYMREM1 HindIII pGEM-T 
LjsymREM1prom_1R 5´GTGTGTGCTAGTTAACATAGGATCC 3´ pLjSYMREM1 BamHI pGEM-T 
LjsymREM1prom1k_FwTopo 5´caccCGCATGTAGATTCTCTGA 3´ 975bp pLjSYMREM1 no pENTR/D-TOPO 
LjsymREM1prom_Rev 5´TATGTTAACTAGCACACACTTAGA 3´ pLjSYMREM1 no pENTR/D-TOPO 
LjSYMREM1_TOPO1F 5´caccATGGGAGAAGAAGAGACCAAAC 3´ LjSYMREM1 no pENTR/D-TOPO 
LjSYMREM1_TOPO1R 5´TTAAAAGCTGAAGTTGAAGCAT 3´  LjSYMREM1 no pENTR/D-TOPO 
LjSymrem1_Topo2R 5´AAAGCTGAAGTTGAAGCATGAC 3´ LjSYMREM1 no pENTR/D-TOPO 
LjSYMREM1_pDSL-Nx Fw 5´TAGGCCATTACGGCCATGGGAGAAGAAGA 

GACCAAA 3´ 
LjSYMREM1 SfiI pDSL-Nx and pBT3-N ; SUS 

vectors 
LjSYMREM1_pDSL-Nx Rev 
 

5´TAGGCCGAGGCGGCCGTTAAAAGCTGAAGTTG
AAGCATG 3´ 

LjSYMREM1 SfiI pDSL-Nx ; SUS vector 

LjSYMR1_Rev_SfiI    5´TTGGCCGAGGCGGCCTTTTAAAAGCTGAAGTT 
GAAGCATGA 3´  

LjSYMREM1 SfiI pBT3-N ; SUS vector 

GWYmOrange_FwXbaI 
 

5´TTGTCTAGAACAAGTTTGTACAAAAAAGCTGA
AC 3´ 

GWYcasette:mOrange XbaI pUb-gwy-HYG 
binary plant vector 

GWYmOrange_RevKpnI 
 

5´TTGGTACCTTACTTGTACAGCTCGTCCATGC 3´ GWYcasette:mOrange KpnI pUb-gwy-HYG 
binary plant vector 

LjATPase_pDSL-NxFw 5´TAGGCCATTACGGCCATGGCGCCAATCGTTC 
AGA 3´ 

AAA+ATPase 
core domain 

SfiI pDSL-Nx ; SUS vector 

LjATPase_pDSL-NxRev 
 

5´TAGGCCGAGGCGGCCGTCAGGTCCTTGAAGAA
ATGTGAGA 3 ´ 

AAA+ATPase 
core domain 

SfiI pDSL-Nx ; SUS vector 
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Primers used in this study 

 

 

 

 

Primer name Sequence Amplicon Restriction 
site included 

Cloned into vector 

LjN5_pDSL-NxFw 5´TAGGCCATTACGGCCATGGCACAGTCTA 
GTGGCA 3´ 

MtN5-like SfiI pDSL-Nx ; SUS vector 

LjN5_pDSL-NxRev 
 

5´TAGGCCGAGGCGGCCGTCACTGACATTC 
CGGAGGT 3´ 

MtN5-like SfiI pDSL-Nx ; SUS vector 

LjPEPT_pDSL-NxFw 
 

5´TAGGCCATTACGGCCATGAATTTCAAGTT 
TTTTACTGCT 3´ 

PeptidaseA1 SfiI pDSL-Nx ; SUS vector 

LjPEPT_pDSL-NxRev 
 

5´TAGGCCGAGGCGGCCGCTAGTTACAAAG 
TTCACGGGCT 3´ 

PeptidaseA1 SfiI pDSL-Nx ; SUS vector 

LjLTP_pDSL-NxFw 
 

5´TAGGCCATTACGGCCATGGCTTCCAAGG 
CTGCTAT 3´ 

LTP SfiI pDSL-Nx ; SUS vector 

LjLTP_pDSL-NxRev 
 

5´TAGGCCGAGGCGGCCGTTAATAGCATAC 
GAATCCCTTAG 3´ 

LTP SfiI pDSL-Nx ; SUS vector 

LjPhosphatase_pDSL-NxFw 
 

5´TAGGCCATTACGGCCATGGATCCCGCCGT 
ACCGT 3´ 

Phosphatase SfiI pDSL-Nx ; SUS vector 

LjPhosphatase_pDSL-NxRev 5´TAGGCCGAGGCGGCCGTTAAGAAATATA 
ATACATTGGGTT 3´ 

Phosphatase SfiI pDSL-Nx ; SUS vector 

LjGPX_pDSL-NxFw 
 

5´TAGGCCATTACGGCCATGGCTGAACAAA 
CCTCCAAATCT 3´ 

GPX SfiI pDSL-Nx ; SUS vector 

LjGPX_pDSL-NxRev 
 

5´TAGGCCGAGGCGGCCGTCAAGAAGATTG 
TAAGAGCTTCT 3´ 

GPX SfiI pDSL-Nx ; SUS vector 



Appendix 

110 

 

Primers used in this study  

 

 

 

  
 
  
 
 
 
 
 
 

 
 
 

Primer name Sequence Purpose of use 
dslNx_seqFw 5´AGTCGAAAATTCAAGACAAGG 3´ Forward sequencing of inserts in SUS vectors : pDSL-Nx  and 

pDL2-Nx 
dslNx_seqRev 5´GTGAATGTAAGCGTGACATAACT 3´ Reverse sequencing of inserts in SUS vectors : pDSL-Nx, pDL2-

Nx and pBT3-N 
pBT3-N_seqFw 5´CAGAAGGAGTCCACCTTACA 3´ Forward sequencing of inserts in SUS vectors : pBT3-N 
LjSYMREM1_TOPO1F 5´caccATGGGAGAAGAAGAGACCAAAC 3´ Genotyping of pLjSYMREM1:gLjSYMREM1:YFP Lj lines and 

EMS mutagenized Lj lines 
YFP_rev 5´GTTTAAACTTACTTGTCAGCTCGTCCATGC 3´ Genotyping of pLjSYMREM1:gLjSYMREM1:YFP Lj lines  
LjSYMREM1_TOPO1R 5´TTAAAAGCTGAAGTTGAAGCAT 3´  Genotyping of EMS mutagenized Lj lines 
M13Fw 5´GTAAAACGACGGCCAG 3´ Colony PCR and sequencing of TOPO entry clones  
M13Rev 5´CAGGAAACAGCTATGAC 3´ Colony PCR and sequencing of TOPO entry clones 
SP6 (fw) 5´ATTTAGGTGACACTATAG 3´ Sequencing of pGEM-T clones 
T7 (rev) 5´TAATACGACTCACTATAGGG 3´ Sequencing of pGEM-T clones 


