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CHAPTER 1

Overview of this Thesis

In the Introduction, we survey the existing mathematical literature on, and leading upto,

quantum groupoids and the algebraic quantum field theory literature on the symmetry recon-

struction problem with an emphasis on investigations of quantum symmetry in low dimensions.

Chapter two, Quantum groupoids, provides the basic mathematical background on bialge-

broids, Hopf algebroids, distrubutive double algebras (Frobenius Hopf algebroids) and their

categories of modules and comodules. All three structures are generalizations of Hopf algebras

in that the base field is replaced by a noncommutative ring; they are discussed in their order

of appearance in the literature, which is roughly the order of increasingly complex structure.

Chapter three, Galois theory, is an account of the quantum groupoid Galois theory developed

in [3]. By way of introduction, the classical Galois theory of field extensions and the Hopf Galois

theory of ring extensions is reviewed with applications in other areas of mathematics, notably

noncommutative geometry. A section is devoted to the important result that bialgebroid Galois

extensions ([47], generalized to quantum groupoids in [3]) may be characterized as depth 2

extensions. This will be exploited in the final chapter to prove that field algebra extensions in

AQFT are in general Galois.

In chapter five, Scalar extension, we define and examine the generalization of the scalar

extension construction to quantum groupoids and apply it to quantum groupoid Galois theory.

We first explain the motivation, coming from Hopf Galois theory and a precursor result of

Brzeziński and Militaru. Mathematical preliminaries to the construction are Yetter–Drinfel’d

category and braided commutative algebras, which we introduce first for Hopf algebras and

then generalize to quantum groupoids. We prove a few fundamental properties of the quantum

groupoid scalar extension and also look at it from a monadic point of view. We close the

chapter with a result from [3] connecting the scalar extension to Galois theory.

Chapter six on Bicoalgebroids is a summary of results in [4]. Bicoalgebroids are the cate-

gorical dual structure to bialgebroids, and haven’t yet received much attention save for their

defintion in [21]. We construct the monoidal category of comodules and prove a comonadic

version of Schauenburg’s theorem. The main result is a dualization of the scalar extension to

bicoalgebroids, to which end we also define the Yetter–Drinfel’d category over a bicoalgebroid.

Anticipating the application of bicoalgebroids to coextensions of coalgebras, we discuss various

definitions for the cocentralizer of a coalgebra coextension and the cocenter of a bicomodule.

Chapter seven contains An application to Algebraic Quantum Field Theory. We review the

basic postulates of AQFT, the Doplicher–Haag–Roberts theory of superselection sectors, and
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2 Overview of this Thesis

sketch the Doplicher–Roberts reconstruction theorem. So far, an extension of the full DR

theorem to low dimensions is lacking. Working in a pure algebraic setting, we define a field

algebra extension of the observable algebra from a fiber functor on the DHR category and prove

that it is depth 2, hence Galois. In the case of a semisimple DHR category, the field algebra is

shown to be a generalization of the reduced field bundle construction of Fredenhagen, Rehren

and Schroer.

We collect our results in chapter eight, the Summary.



CHAPTER 2

Introduction

In the 1990’s, results coming from diverse areas of mathematics and mathematical physics

pointed in the direction of a new notion of symmetry which subsumes both quantum groups1,

which have been known for some time, and groupoid algebras which have been known for even

longer. For now, we refer to this structure, or in fact family of related structures loosely as

quantum groupoids, but we shall make our usage of this term precise later on. Slightly different

definitions appeared in work related to low dimensional quantum field theory in [8, 9], non-

commutative [55] and Poisson [52] geometry and operator algebras [89]. The most important

feature that these definitions share is the existence of two canonical anti–isomorphic subalge-

bras, which reduce to the base field in the special case of a Hopf algebra. In a vague sense,

it can be said that quantum groupoids generalize quantum groups through the replacement of

the base field with a noncommutative algebra.

Generalizing Hopf algebras was proposed already in 1974 by Sweedler [77], whose construc-

tion was generalized by Takeuchi [86]. Crucial to their construction was the introduction of

a new tensor product ×
R

over a noncommutative ring R, lending the name to ×
R

–bialgebras,

which were analyzed further e.g. in [72] and [73].

A special case of ×R–bialgebras was introduced by Ravenel [70] in algebraic geometry, under

the name (commutative) Hopf algebroid. Originally, in the context of quantum groupoids of

geometric origin, the term ‘Hopf algebroid’ was reserved for cogroupoid objects in the category

of commutative algebras. In present usage, Hopf algebroid refers to a more general structure,

over a noncommutative base algebra. Two definitions of bialgebroid appeared in Poisson

geometry, Lu’s bialgebroid [52] and Xu’s [93] bialgebroid with an anchor. This state of affairs

was simplified somewhat in [21], where it was proven that the definitions of Takeuchi’s ×
R

–

bialgebras, Lu’s bialgebroid and Xu’s bialgebroid with an anchor are in fact equivalent. The

latter structures are in fact generalizations of bialgebras and not Hopf algebras, since there is

no notion of antipode.

Böhm, Nill and Szlachányi introduced weak bialgebras, weak Hopf algebras and C∗–weak

Hopf algebras in [8, 9, 10, 63] with applications to inclusions of unital C∗–algebras [84, 82].

Weak bialgebras were shown to be a special case of Lu’s bialgebroids in [36]. The Hopf

bimodules of Enock and Vallin introduced in [35] are variants of C∗–weak Hopf algebras in the

context of von Neumann algebras.

1We use ’quantum group’ in a general sense, meaning noncommutative, non–cocommutative Hopf algebra which
is not necessarily a deformed enveloping algebra of a Lie group
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4 Introduction

Being more specific, a weak bialgebra (WBA for short) 〈B, γ, π, m, i〉 consists of an algebra

structure 〈B, m, i〉 and a coalgebra structure 〈B, γ, π〉 on the underlying k–module B, such that

multiplication and comultiplication are compatible in the bialgebra sense but comultiplicativity

of the unit and multiplicativity of the counit are replaced by weaker axioms. For future

reference, we reproduce them here:

(γ(1) ⊗ 1)(1 ⊗ γ(1)) = 1(1) ⊗ 1(2) ⊗ 1(3) = (1 ⊗ γ(1))(γ(1) ⊗ 1)(2.0.1)

π(b 1(1))π(1(2) b′) = π(bb′) = π(b 1(2))π(1(1) b′),(2.0.2)

for all b, b′ ∈ B. We used the notation 1(1) ⊗ 1(2) = γ(1) �= 1 ⊗ 1, and 1(1) ⊗ 1(2) ⊗ 1(3) =

(γ ⊗ 1) ◦ γ(1) = (1 ⊗ γ) ◦ γ(1). The maps

πR : B → B, b 	→ 1(1)π(b 1(2)) and πL : B → B, b 	→ π(1(1) b)1(2)

turn out to be idempotent– they are the projections onto the ’source’ and ’target’ subalge-

bras AL = ΠL(B) and AR = ΠR(B), respectively. A weak Hopf algebra (WHA for short)

〈B, γ, π, m, i, S〉 is a weak bialgebra together with an antipode map S : H → H satisfying the

three axioms

[WHA1] h(1)S(h(2)) = ΠL(h)

[WHA2] S(h(1))h(2) = ΠR(h)

[WHA3] S(h(1))h(2)S(h(3)) = S(h)

Finitely generated projective weak Hopf algebras share the property of self–duality with Hopf

algebras, i.e. for a f.g.p. weak Hopf algebra 〈H, μ, η; Δ, ε; S〉, there is a WHA structure (the

’transpose’) 〈Ĥ, μ̂, η̂; Δ̂, ε̂; Ŝ〉 on the k–dual Ĥ = Homk(H, k). Although weak Hopf algebras

are defined over a field k, there are several indications that in fact the source (target) subalgebra

should be regarded as the base field. Most importantly, for a weak Hopf algebra H , the trivial

left H–module in HM is the representation on the k–module AL (or AR). Also, the dual weak

Hopf algebra Ĥ has canonical subalgebras ÂL and ÂR that are isomorphic to AL and AR.

Approaching quantum groupoids from classical groupoid algebras gives valuable insights.

Recall that a groupoid is simply a category in which every arrow is invertible, viz. a group

is a category on one single object with every arrow invertible. Groupoids simultaneously

generalize groups and equivalence relations and have found many applications in topology,

differential, and Poisson geometry, as evidenced by the monograph [26]. Topological and

geometric examples include the fundamental groupoid in homotopy theory and the holonomy

groupoid of foliations in differential geometry. We denote a groupoid G1
s ��

t
�� G0 , with s and

t the source and target maps from the set of arrows to the set of objects. The groupoid algebra

k[G] is then a special case of the quantum groupoid such that the canonical subalgebra is k[G0],

the algebra of functions on the units. An example related directly to weak Hopf algebras is
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the groupoid of matrix units {eij}N
i,j=1, where G1 = {eij}i�=j, G0 = {eii}N

i=1 and the projections

onto the left (right) canonical subalgebras are πL : eij → eii and πR : eij → ejj.

One motivation that research in groupoids and quantum groups have shared is to develop

new notions of symmetry, which are applicable in situations where no conventional (i.e. group–)

symmetry is present (see [90] for an informal introduction to the subject). In some instances,

groupoids are more natural to consider than groups, as in the case of the gauge groupoid of

a (principal) fiber bundle. Groupoids with additional structure include Lie– and Poisson–Lie

groupoids, which are generalized to the noncommutative setting by Lu’s bialgebroids.

A useful way of thinking about how groupoids extend the conventional notion of symmetry is

that groupoids give a unified description of symmetry together with the action of the symmetry.

Considering a classical setup with a geometric (discrete, topological, smooth, etc.) space M
acted on by a (finite, topological, Lie) group G with action γ : M × G → M, the action

groupoid is Gγ = {(m, g, m′) ∈ M × G × M |m′ = m · g}. In fact, the scalar extension

construction to be discussed in this thesis can be seen as a noncommutative cousin of the

action groupoid.

The main motivation behind weak Hopf algebras came from quantum field theory and

operator algebras. The problem is one of symmetry reconstruction: for an extension N ⊆ M

of (C∗– , von Neumann) algebras, find the ‘symmetry’ G (uniquely if possile) acting on M

such that N = MG. The dual problem is to find the dual ‘symmetry’ Ĝ acting on N , such that

M = N �Ĝ is obtained as a cross–product of N and Ĝ. The main difficulty is that determining

what kind of mathematical object the parenthesized ‘symmetry’ is, is part of the problem.

It was shown by Longo in [50] that if N ⊂ M is an irreducible depth 2 extension of von

Neumann factors, then the appropriate symmetry is a finite dimesnional C∗–Hopf algebra. In

[64], it was proven that if one allows the extension to be reducible and N , M are not factors

but have arbitrary finite dimensional centers, then the symmetry is a C∗–weak Hopf algebra.

This approach was worked out in detail for II1 type factors in [61, 62]. The work of Enock

and Vallin fall into this line of work in that their Hopf bimodules are used to describe depth 2

extensions of arbitrary index.

The bearing of quantum groupoids on quantum field theory is through their representation

category [10]. The representation category of a C∗–weak Hopf algebra is a semisimple monoidal

C∗–category with isomorphic left and right duals. This comprises much of the structure of the

Doplicher–Roberts category of superselection sectors in Algebraic Quantum Field Theory. In

terms of this analogy, sectors are the equivalence classes of irreducible morphisms.

In a series of papers [32, 33, 34], Doplicher and Roberts established a reconstruction theo-

rem stating that an abstract symmetric monoidal C∗–category with subobjects and direct sums

(both guaranteed, if the category is semisimple) with irreducible monoidal unit is equivalent to

the representation category of a compact group. These requirements are precisely satisfied by

the Doplicher–Roberts category in spacetime dimensions higher than three, but no analogue

of the reconstruction theorem is known for two spacetime dimensions.
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Model studies in 2d conformal field theory and one dimensional quantum lattice systems

reveal two related phenomena which fall outside the purview of the DR theorem. First, it often

happens that superselection sectors satisfy fusion rules p ⊗ q =
∑

r N r
pq r with integer fusion

coefficients N r
pq that preclude integer dimensions, i.e. the relation dpdq =

∑
r N r

pq dr for the

dimensions of sectors admits no integer solutions. It should be noted that the dimensions dp are

the intrinsic (quantum) dimensions in the sense of [51] which, however, coincide with the integer

dimensions of the representation spaces in the case of groups and even Hopf algebras. Secondly,

it will happen that the monoidal unit is reducible, allowing for inequivalent irreducible vacuum

representations reminiscent of solitonic sectors. The representation categories of quantum

groupoids provide both features, making them candidates for the generic symmetry in low

dimensional quantum field theory.

In [47], Kadison and Szlachányi connected bialgebroids to the theory of depth 2 extensions.

The key advancement was a general definition of depth 2 extensions for rings in a purely alge-

braic setting, divorced from the original context of operator algebras. Earlier results on depth

2 extensions were recovered as special cases, notably ring extensions with separable centralizer

entail weak Hopf algebra symmetry and for trivial centralizer (i.e. irreducible extensions) one

obtains Hopf algebra symmetry. Also, the inherent one–sidedness resulting from the noncom-

mutative base algebra was acknowledged by defining both left and right bialgebroids. The

convention adopted by Lu corresponds to left bialgebroids in this terminology.

It is generally agreed that bialgebroids are the appropriate quantum groupoid generalization

of bialgebras but it is less straightforward to determine what the appropriate notion of Hopf

algebroid is? Böhm and Szlachányi proposed a definition of Hopf algebroid containing one left–

handed and one right–handed constituent bialgebroid in [11]. Here, the antipode was defined

to be bijective, a requirement that was later relaxed in [7]. In [79], Szlachányi formulated an

equivalent description of Frobenius Hopf algebroids in terms of two compatible multiplicative

structures termed Distributive Double Algebras.

In a different line of development, Militaru and Brzeziński examined the structure obtained

by taking the abstract dual of a bialgebroid in [21], calling it bicoalgebroid. Bicoalgebroids

were further investigated in [4].

Applications to Galois theory have been a unifying theme in the research on quantum

groups and quantum groupoids. Galois theory, in such generality, is as old as the concept of

group symmetry itself but even Hopf Galois theory has a history of four decades, dating back

to the work of Chase and Sweedler [28]. Hopf Galois theory accomodates the classical Galois

theory of field extensions, strongly graded group algebras and is the algebraic counterpart

of principle bundles in the spirit of noncommutative geometry. For a survey of Hopf Galois

theory see e.g. the monograph [58]. The appearance of novel symmetry structures and examples

from other areas of mathematics, most notably noncommutative geometry, which did not fit

seamlessly into Hopf Galois theory also spawned various generalizations.
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Two avenues of research unfolded: on the one hand, replacing Hopf algebras by only coal-

gebras as first suggested in [76] and later developed in [17] and [15] and on the other, to allow

bialgebroids instead of Hopf algebras. The former approach has its origins in noncommutative

geometry, the latter was initiated by Kadison and Szlachányi in [47], in relation to depth 2 ring

extensions. Depth 2 ring extension were shown to be the finitary quantum groupoid–Galois

extensions in [83]. A Galois theory was developed for Hopf–algebroids in [6] and in [3], the

latter taking a double algebraic point of view. The equivalence of depth 2 extensions and

bialgebroid–Galois extensions was extended to the equivalence of depth 2 Frobenius extensions

and extensions which are Galois over some Frobenius Hopf algebroid.





CHAPTER 3

Quantum groupoids

Bialgebroids are a generalization of bialgebras that capture some of the features expected

of a quantum symmetry, in that their categories of modules (and comodules) are monoidal and

they possess a Galois theory generalizing the classical Hopf Galois theory. Several definitions of

bialgebroid have appeared in the literature, which have eventually turned out to be equivalent.

In contrast, there is as yet no consensus on how to adjoin an antipode to bialgebroids, i.e. on

the appropriate definition of a Hopf algebroid. Here, we shall stick to the axioms proposed in

[11]. The particular special case of Frobenius Hopf algebroids merits special attention. For one,

this structure enjoys the property of being self–dual, just like Hopf algebras, whereas the dual

of a general Hopf algebroid admits no natural Hopf algebroid structure. Also, the Frobenius

property may be seen as a finiteness condition and Frobenius Hopf algebroid symmetry may be

seen as a (vast) generalization of finite group symmetry. The looser term ’quantum groupoid’

will be meant to refer to a Frobenius Hopf algebroid. In [79], the notion of distributive double

algebras algebras (DDAs) was introduced and was shown to be equiavelent to Frobenius Hopf

algebroid. The word ’double’ refers to that the ring and coring structures of the Hopf algebroid

are represented by two distinct multiplicative structures in a DDA. We shall use the double

algebraic formalism in the remaining part of this Thesis, with the exception of the Chapter on

bicoalgebroids.

The Chapter is organized as follows: algebraic structure are discussed, roughly in the

order of increasing complexity, as Bialgebroid → Hopf algebroid → Frobenius Hopf algebroid

→ Distributive Double Algebra (DDA). In each case, we define modules and comodules and

discuss the appropriate module (comodule) categories.

1. Bialgebroids

A bialgebra B over a field k is an k-algebra 〈B, μ, η〉 and a k–coalgebra 〈B, Δ, ε〉 over the

same k–module B, subject to the compatibility condition that μ and η should be coalgebra

maps (or equivalently, Δ and ε are algebra maps). A generalization to the case where k is

replaced by a noncommutative algebra R requires at least two new ingredients, formulated in

the following two definitions.

Definition 3.1.1. An R–ring A over a k–algebra R is a triple 〈A, μ, η〉, where A is an R–

bimodule and μ : A ⊗
R

A → A is an associative multiplication with unit η : R → A such that

both μ and η are R–bimodule maps. Equivalently, an R–ring A is a monoid in the category of

R–bimodules.
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Furthermore, there is a one–to–one correspondence between R–rings A and k–algebra mor-

phisms j : R → A. We shall often think of R–rings in this latter sense.

Definition 3.1.2. An R–coring C over a k–algebra R is a triple 〈C, δ, ε〉, where C is an

R–bimodule and Δ : C → C ⊗
R

C a coassociative comultiplication with counit ε : C → R

such that both Δ and ε are R–bimodule maps. Equivalently, an R–coring is a comonoid in the

category of R–bimodules.

A direct generalization of bialgebras by simply replacing the algebra (coalgebra) structure

with an R–ring (R–coring) is impossible. The reason is that the compatibility condition

Δ ◦ μ = (μ ⊗ μ) ◦ tw23 ◦ (Δ ⊗ Δ)(3.1.3)

(bb′)(1) ⊗ (bb′)(2) = b(1)b
′
(1) ⊗ b(2)b

′
(2)

makes use of the flip map tw : M ⊗
k

N → N ⊗
k

M , which is a symmetry of the category Mk

but is not well–defined in the category RMR of R–bimodules. In fact, RMR is in general not

even braided.1

The way out is that the ring and coring structures of a bialgebroid are defined over differ-

ent base rings, making a bialgebroid respectively a monoid and a comonoid in two different

categories. This allows one to formulate the compatibility condition 3.1.3. Recall also that

the enveloping algebra of a ring R is defined as Re = R ⊗ Rop. Re–rings are in bijective

correspondence with pairs of k–algebra homomorphisms s : R → A, t : Rop → A whose images

commute in A.

Definition 3.1.4. For a ring R over k, a right bialgebroid B over R consists of a k–algebra

〈B, μ, η〉 and

• an Re–ring structure s ⊗ t : R ⊗ Rop → B on B

• an R–coring structure 〈B, Δ, ε〉 on B

such that the following compatibilty axioms are satisfied:

(1) the R–bimodule structure is related to the Re–ring structure as follows:

r · a · r′ = as(r′)t(r)

(2) the image of Δ lies in the sub–R-bimodule of B ⊗
R

B defined by

(3.1.5) B ×
R

B = {
∑

i

bi ⊗
R

b′i ∈ B ⊗
R

B|
∑

i

s(r)bi ⊗
R

b′i =
∑

i

bi ⊗
R

t(r)b′i, ∀r ∈ R},

which is a ring with factorwise multiplication, so we may require that

Δ : B → B ×
R

B

1in a braided category, replacing the tw–map with the braiding leads to the concept of braided bialgebras, see
e.g. [57].
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be a ring homorphism. A particular consequence is the unitalness of the coproduct,

Δ(1) = 1 ⊗ 1.

(3) the counit is compatible with the ring structure in the sense

(3.1.6) ε(t(ε(a)b)) = ε(ab) = ε(s(ε(a)b)), ∀a, b ∈ B

(4) the counit preserves the unit,

(3.1.7) ε(1) = 1R

Remark 3.1.8. The crucial point in the definition is the introduction of the Takeuchi ×
R

–

product. For a non–commutative ring R, B ⊗
R

B does not have a well–defined ring structure,

but B ×
R

B is actually an Re–ring:

μ̂ : (B ×
R

B) ⊗ (B ×
R

B) → B ×
R

B, (a ×
R

a′)(b ×
R

b′) = (aa′ ×
R

bb′)

η̂ : R ⊗ Rop → B, r ⊗ r′ 	→ t(r′) ⊗ s(r)

Put differently, the Takeuchi submodule is the center of the bimodule R(B ⊗
R

B)R, where the

left– and right R–actions are given by r · (b ⊗
R

b′) · r′ = s(r)b ⊗
R

t(r′)b′.

The definition is inherently asymmetrical, since the compatibility we imposed on the coring

and ring structure was to make B an R–coring via the right Re–action coming from the Re–ring

structure (note that RMR 
 MRe). Choosing the other possibility, we obtain the definition of

left bialgebroids:

Definition 3.1.9. A left bialgebroid B over L consists of a k–algebra 〈B, μ, η〉 and

• an Re–ring structure s ⊗ t : L ⊗ Lop → B on B

• an R–coring structure 〈B, Δ, ε〉 on B

such that the following compatibilty axioms are satisfied:

(1) the R–bimodule structure is related to the Re–ring structure in the sense

l · a · l′ = s(l)t(l′)a

(2) the image of Δ lies in the sub–L-bimodule of B ⊗
L

B defined by

(3.1.10) B ×
L

B = {
∑

i

bi ⊗
L

b′i ∈ B ⊗
R

B|
∑

i

bit(l) ⊗
R

b′i =
∑

i

bi ⊗
R

b′is(l), ∀l ∈ L},

and

Δ : B → B ×
L

B

is a ring homorphism. In particular, the coproduct is unital: Δ(1) = 1 ⊗ 1.

(3) the counit is compatible with the ring structure in the sense

(3.1.11) ε(at(ε(b))) = ε(ab) = ε(a(ε(b))), ∀a, b ∈ B
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(4) the counit preserves the unit,

(3.1.12) ε(1) = 1L

For any bialgebra, taking the opposite algebra structure or co–opposite coalgebra struc-

ture will yield the opposite (respectively, the co–opposite) bialgebra. For bialgebroids, care

has to be taken because of the ’handedness’ of the ( )op and ( )cop operations: for a right

bialgebroid 〈B, R, s, t, Δ, ε〉, passing to the opposite ring structure yields the left bialgebroid

〈Bop, Rop, top, sop, Δ, ε〉. On the other hand, taking the co–opposite coring structure,

〈Bcop, R
op, t, s, Δcop, ε〉 is also a right bialgebroid.

For a finite dimensional bialgebra 〈H, μ, η, Δ, ε〉 over k, the k–dual H∗ = Hom(H, k) is also a

bialgebra. The structure maps of H∗ are the transposes of the structure maps of H , with respect

to the canonical pairing 〈 , 〉 : H∗ ⊗ H → k afforded by the evaluation 〈ϕ, h〉 = ϕ(h). Choosing

a dual basis {hi, ξ
i}N

i=1 ∈ H ⊗ H∗, the identities h =
∑

i hi ξ
i(h) and ϕ =

∑
i ϕ(hi) ξi hold,

independently of the choice of the {hi, ξ
i}. The algebra structure is given by the multiplication

μ∗ : H∗ ⊗ H∗ → H∗, ϕψ(h) = ϕ(h(1))ψ(h(2))

and unit η∗ : k → H∗, 1∗ = εH . The coalgebra structure of H∗ is given in terms of the dual

basis, with comultiplication

Δ∗ : H∗ → H∗ ⊗ H∗, ϕ 	→
∑

i

ϕ(hi ) ⊗ ξi

and counit ε∗ : H∗ → k, ϕ 	→ ϕ(1H).

Defining duals of bialgebroids is more complicated, since instead of the k–module structure

(or the symmetric k–bimodule structure), we have two inequivalent (left and right) R–module

structures, leading to the notions of left and right dual for both left and right bialgebroids,

four cases to consider in total. The assumption taking the place of finite dimensionality is that

the bialgebroid be finitely generated projective over the base ring. A systematic treatment of

bialgebroid duality can be found in [47], here we only consider one of the cases, for reference

and later use.

Consider a right bialgebroid 〈B, sR, tR〉, finitely generated projective as a left R–module.

Introducing the notation ∗B = HomR−(B, R) for the left R–dual, this is equivalent to the

existence of a dual bases {βi}N
i=1 ∈ B and {bi}N

i=1 ∈ ∗B, such that for all b ∈ B, β ∈ ∗B the

identities

(3.1.13) b =
∑

i

βi(b) · bi, β =
∑

i

βi · β(bi)

hold.

The R–bimodule structure of ∗B is given by the left dual of the bimodule B(t), which

carries the R–actions r · b · r′ = t(r′)bt(r). As left and right R–modules, respectively, R(∗B) =
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HomR(B
(t)
R , R) and (∗B)R = HomR(B(t), RR). The R–actions on a β ∈∗ B are

(3.1.14) (r · β)(b) = β(t(r)b), (β · r)(b) = β(b)r

We introduce multiplication on ∗B via the formula

(ββ ′)(b) = β(b(1)s(β
′(b(2))))(3.1.15)

∗B becomes a ring with unit ∗1 = εB. If ∗B is to be a (left) bialgebroid, the source and target

maps should be expressed by the left and right actions on the unit:

∗s : R → ∗B, ∗s = r · ∗1 = εB(t(r) )(3.1.16)

∗t : R → ∗B, ∗t = ∗1 · r = εB( )r(3.1.17)

It is then verified that ∗s and ∗t are indeed ring homomorphisms, whose images commute in
∗B, making 〈∗B, ∗s, ∗t〉 an Re–ring, and that the R–bimodule structure of ∗B is given by

(∗s(r)β)(b) = (r · β)(b) = β(t(r)b)(3.1.18)

(∗t(r)β)(b) = (β · r)(b) = β(b)r(3.1.19)

as it should be for a left bialgebroid. It remains to define the coring structure on ∗B. It is

checked that the comultiplication

∗Δ : ∗B → ∗B ⊗
R

∗B

β 	→
∑

i

βi ⊗
R

β( bi)

is a coassociative R–bimodule map with respect to the R–actions r ·β ·r′ = ∗s(r)∗t(r′)β and the

dual counit is given by evaluation on the unit, ∗ε : ∗B → R, β 	→ β(1B). The remaining left

bialgebroid axioms (compatibility of the ring and coring structures) can be checked by direct

computation.

2. Modules & comodules over bialgebroids

In the following, 〈B, μ, η, Δ, ε, s, t〉 shall denote a right bialgebroid over R. We shall define

modules and comodules of bialgebroids and show that both the module– and comodule cate-

gories are monoidal. The former statement actually characterizes bialgebroids among Re–rings,

and is known as Schauenburg’s theorem.

2.1. Modules over a bialgebroid.

Definition 3.2.1. A module MB over B is a module over the underlying k–algebra of B,

i.e. a pair 〈M, γ〉, where

• M is a k–module

• γ : M ⊗
k

B → M is a k–module map such that

γ ◦ (γ ⊗
k

B) = γ ◦ (M ⊗
k

μ) and γ ◦ (M ⊗
k

η) = idM
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A right B–module map f : 〈M, γM〉 → 〈M ′, γM ′〉 is a k–module map f : M → M ′ that

intertwines the actions γ and γ′:

M ⊗ B
f ⊗B

��

γM

��

M ′ ⊗ B

γM′

��
M

f
�� M ′

The category MB has objects the right B–modules and arrows the right B–module maps.

Recall that a bialgebroid is not only a k–algebra, but an Re–ring with s ⊗ t : R ⊗ Rop → B.

This endows MB with an additional piece of structure, namely a forgetful functor U : MB →
MRe 
 RMR: a right B–module MB is a right Re–module via m · (r ⊗ r̄) = m � s(r)t(r̄).

A salient feature of bialgebras is that their category of modules is monoidal, such that the

coalgebra structure is responsible for the monoidality of the module category. More precisely,

a classic result of Pareigis (see [66]) states that a bialgebra structure on a k–algebra A (for k a

commutative ring) is equivalent to a monoidal structure on MA such that the forgetful functor

U : MA → Mk is strict monoidal. This result generalizes to bialgebroids – we only sketch the

proof.

Theorem 3.2.2. Let R be an algebra over a commutative ring k, then the following data

are equivalent on an Re–ring 〈B, s, t〉:
• a right bialgebroid structure on 〈B, s, t〉
• a monoidal structure on MB, such that U : MB → RMR is strict monoidal

Proof (sketch). On the one hand, the R–coring structure of a bialgebroid B induces a

monoidal structure on the category of B–modules: for (m ⊗ n) ∈ M ⊗
R

N define the right

B–action on the R–tensor product of modules with (m ⊗ n) � b = m � b(1) ⊗ n � b(2) and let

the B–module structure on R be r � b = ε(s(r)b). Due to the bialgebroid axioms, these maps

are well–defined. This is exactly the monoidal structure that renders U : MB → RMR strict

monoidal.

On the other hand, if MB is monoidal, define maps Δ′ : B → B ⊗
R

B, b 	→ (1B ⊗ 1B) � b

and ε′ : B → R, b 	→ 1R � b. Then it can be shown that 〈B, Δ′, ε′〉 defines an R–coring, making

B a bialgebroid. �

Remark 3.2.3. For a left bialgebroid B over L, BM is monoidal such that the forgetful

functor U : BM → LeM is strict monoidal. The proof of theorem 3.2.2 carries over to this case

by taking the opposite right bialgebroid Bop and noting that BM is isomorphic to MBop. In

principle, one could consider left modules over right bialgebroids (or vice versa), but in this

case, there is no natural monoidal structure on the category of modules. In contrast, left (or

right) bialgebroids have both left and right comodule categories (see below).
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2.2. Comodules over a bialgebroid.

Definition 3.2.4. Let R be a k–algebra and B a right bialgebroid over R. A right B–

comodule XB is a pair 〈X, δ〉, where

• X is a right R–module

• δ : X → X ⊗
R

A is a right R–module map such that

(δ ⊗
R

B) ◦ δ = (X ⊗
R

Δ) ◦ δ and (X ⊗
R

ε) ◦ δ = X

(suppressing natural isomorphisms X ⊗
R

R 
 X)

A morphism of B–comodules g : 〈X, δ〉 → 〈Y, ω〉 is a right R–module map g, intertwining the

coactions δ and ω:

X
g

��

δ
��

Y

ω

��
X ⊗

R

B
g ⊗

R
B

�� Y ⊗
R

B

The category MB has objects the right B–comodules and arrows the right B–comodule maps.

For a bialgebra over 〈B, μ, η, Δ, ε〉 over k, not only MB but also MB is a monoidal category

such that the forgetful functor U : MB → Mk is strict monoidal. One would like to extend this

result to bialgebroids, but here an obstacle presents itself already in choosing the appropriate

forgetful functor. A right B–comodule XB is a priori only a right R–module, which leads to

a forgetful functor U ′ : MA → MR. Unlike RMR, however, MR is not monoidal. The following

Lemma (Prop. 1.1 of [3]) allows us to construct a functor U : MB → RMR which will indeed

turn out to be strict monoidal.

Lemma 3.2.5. Let 〈X, δ〉 be a right B–comodule. Then there is a left R–module structure

on X such that

(1) X is an R–bimodule

(2) δ is an R–bimodule map

(3) δ(X) ⊆ X ×R B

(4) every arrow g ∈ MB is an R–bimodule map

where we used the notation

X ×R B = {
∑

i

xi ⊗
R

bi ∈ X ⊗
R

B|

|
∑

i

r · xi ⊗
R

bi =
∑

i

xi ⊗
R

t(r)bi, for all r ∈ R}

for the Takeuchi–product.

Proof. The key observation is that although X is not a left R–module, X ⊗
R

B is, with

the left R–action r · (x ⊗
R

b) = x ⊗
R

s(r)b. If X were a left R-module and δ a left R-module
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map then by the identity

r · x = (r · x)(0) · ε((r · x)(1))

= x(0) · ε(s(r)x(1)),

we’ve expressed the left R–action in terms of the coaction. This proves uniqueness. If we use

the above formula to define r · x then we find that it is indeed a left action because s : R → A

is an algebra homomorphism. It commutes with the right R-action

r · (x · r′) = x(0) · ε(s(r)as(r′)) = (r · x) · r′

so X is an R-R-bimodule and the coaction is a bimodule map,

δ(r · x · r′) = x(0) ⊗
R

s(r)x(1)s(r
′).

Now the Takeuchi property (3) holds automatically,

r · x(0) ⊗
R

x(1) = x(0) · ε(s(r)x(1)) ⊗
R

x(2)

= x(0) ⊗
R

ε(t(r)x(1)) · x(2)

= x(0) ⊗
R

t(r)x(1) .

If g : X → Y is a comodule morphism then

g(r · x) = g(x(0)) · ε(s(r)x(1)) = g(x)(0) · ε(s(r)g(x)(1))

= r · g(x) .

�

We can now state the following theorem2

Theorem 3.2.6. For a right bialgebroid B over R, the category MB is monoidal such that

the forgetful functor U : MB → RMR is strict monoidal.

Proof (sketch). The base ring R is a right B–comodule via the source map s : R →
R ⊗

R

B 
 B. The Theorem is proved by showing that the map

X ⊗
R

Y → (X ⊗
R

Y ) ⊗
R

B(3.2.7)

x ⊗ y 	→ x〈0〉 ⊗ y〈0〉 ⊗ x〈1〉y〈1〉

is a well–defined coaction on the R–tensor product of M, N ∈ MB (in particular, an R–bimodule

map) and that the coherence isomorphisms in RMR lift to MB–maps. �

The above result amounts to only half of Schauenburg’s theorem, i.e. it is not known (and is

not expected to be) whether a monoidal structure on the category MB, such that the forgetful

2This is essentially due to Schauenburg, except for the Lemma 3.2.5
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functor to RMR is strict monoidal, implies a bialgebroid structure on the coring B. We shall

find an analogous result for bicoalgebroids, however, in Section 3 of Chapter 4.

Remark 3.2.8 (Left comodules over a right bialgebroid). As mentioned earlier, the category

of left comodules of right bialgebroids is also monoidal. The results obtained so far for right

comodules go over effortlessly, we only summarize the main points. A left comodule Y over

a right bialgebroid B is a pair 〈Y, δ̄〉, where Y is a left R–module and δ̄ : Y → B ⊗
R

Y is

a map satisfying coassociativity and counitality. By the analogue of Lemma 3.2.5, there is

a right R–module structure on Y such that δ̄ is an R–bimodule map and BM is monoidal

with a strict monoidal forgetful functor into RMR. The monoidal unit is R, with B–comodule

structure furnished by the target map t : R → B 
 B ⊗
R

R and the monoidal product of left

B–comodules is

X ⊗
R

Y → B ⊗
R

(X ⊗
R

Y )(3.2.9)

x ⊗ y 	→ y〈−1〉x〈−1〉 ⊗ x〈0〉 ⊗
R

y〈0〉

Note the reversed order of multiplication with respect to 3.2.7! Needless to say, all previous

results hold just as well for left bialgebroids, mutatis mutandis.

3. Hopf algebroids

A Hopf algebroid should be to a bialgebroid as a Hopf algebra is to a bialgebra. Translating

this intuition into a definition is not straightfroward, however. The antipode for a Hopf algebra

H over k is a bialgebra map S : H → Hop
cop, i.e. it is simultaneously an anti–algebra and an

anti–coalgebra map. Replacing H with a (right, say) bialgebroid, Hop
cop will be a left bialgebroid.

However, any notion of a map of bialgebroids should respect the handedness of a bialgebroid:

hence, if H and Hop
cop are both to be right (left) bialgebroids, then a Hopf algebroid should

carry both a left and a right bialgebroid structure. We present the definition of [11] below –

other definitions can also be found in the literature which, unlike the different definitions for

bialgebroids, are in general not equivalent.

Definition 3.3.1. For k–algebras R and L, a Hopf algebroid is a triple H = (HL, HR, S)

consisting of a left bialgebroid structure HL and a right bialgebroid structure HR (the two

constituent bialgebroids) on the same k–algebra, and the antipode S which is a k–module

map. Structure maps pertaining to HL will carry a subscript L and likewise for HR, e.g. HL

has the L⊗Lop–ring structure 〈H, sL, tL〉 and the L–coring structure 〈H, ΔL, εL〉. The following

compatibilities are satisfied:

(1) sL ◦ εL ◦ tR = tR, tL ◦ εL ◦ sR = sR, sR ◦ εR ◦ tL = tL, tR ◦ εR ◦ sL = sL

(2) (ΔL ⊗
R

H) ◦ ΔR = (H ⊗
L

ΔR) ◦ ΔL and (ΔR ⊗
L

H) ◦ ΔL = (H ⊗
R

ΔL) ◦ ΔR

(3) S(tL(l) h tR(r)) = sR(r) S(h) sL(l), for all l ∈ L, r ∈ R and h ∈ H

(4) μL ◦ (S ⊗
L

H) ◦ ΔL = sR ◦ εR, μR ◦ (H ⊗
R

S) ◦ ΔR = sL ◦ εL.
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Care has to be taken in interpreting these axioms: one has to make use of all module

structures coming from the L ⊗ Lop–ring structure of HL and the R ⊗ Rop–ring structure of

HR. Introduce the following notation for the four L–modules of HL. Let LH stand for the

module l · h = sL(l)h, HL for h · l = tL(l)h, LH for l · h = htL(l), HL for h · l = hsL(l) and

likewise for R–modules, the rule being that left (right) indices stand for left (right) actions

and lower (upper) indices stand for actions through left (right) H–multiplications. Then for

example the left and right hand sides of the axiom (ΔL ⊗
R

H) ◦ ΔR = (H ⊗
L

ΔR) ◦ ΔL are

H → H L ⊗ L H R ⊗ R H maps, where we have indicated precisely which L– and R–actions

are amalgamated. We have to introduce a generalization of Sweedler’s notation to differentiate

between the comultiplication of HL and HR. The HR–coproduct will be denoted with upper

indices ΔR(h) = h(1) ⊗
R

h(2) and the HL–coproduct with lower indices ΔL(h) = h(1) ⊗
L

h(2).

The mixed co-commutativity of the two comultiplications reads

h(1)
(1) ⊗ h(1)

(2) ⊗ h(2) = h(1) ⊗ h(2)
(1) ⊗ h(2)

(2)(3.3.2)

h(1)
(1) ⊗ h(1)

(2) ⊗ h(2) = h(1) ⊗ h(2)
(1) ⊗ h(2)

(2)(3.3.3)

4. Modules & comodules over Hopf algebroids

For a Hopf algebroid (HL, HR, S), a right module is just an HR–module and a left module is

an HL–module. However, since bialgebroids of both handedness have right (and left) comodules,

a right comodule of a Hopf algebroid should be both a right HL and a right HR–comodule in a

compatible way. It turns out that this compatibility is automatic, by the following proposition.

Proposition 3.4.1. (HL, HR, S) be a Hopf algebroid and 〈M, δM〉 a right HR–comodule.

In particular then, M ∈ RMR with r · m · r′ = m〈0〉 · εR(sR(r)m〈1〉sR(r′)). Then M is also an

L − L–bimodule via

(3.4.2) l · m · l′ = εR(tL(l′)) m εR(tL(l))

and

(1) there is a unique HL–coaction δL on M such that δL is HR–colinear and δR is HL–

colinear, meaning

(δR ⊗
L

H) ◦ δL = (M ⊗
R

ΔL) ◦ δR(3.4.3)

(δL ⊗
R

H) ◦ δR = (M ⊗
L

ΔR) ◦ δL(3.4.4)

and also, the HL–coinvariants coincide with the HR–coinvariants.

(2) any HR–colinear map 〈M, δM
R 〉 → 〈N, δN

R 〉 is also an HL–colinear map with respect to

the HL–coactions defined above
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Proof (sketch). The desired right HL–coaction is given by

δL : M → M ⊗
L

H(3.4.5)

m 	→ m〈0〉 · εR(m〈1〉
(1)) ⊗

L

m〈1〉
(2)(3.4.6)

�

Strictly speaking, this proposition implies that comodules of a Hopf algebroid can be defined

in terms of only one of the constituent bialgebroids. Nevertheless, we keep both HL and HR,

treating them symmetrically.

Definition 3.4.7. A right comodule of a Hopf algebroid (HL, HR, S) is a triple 〈M, δL, δR〉,
where 〈M, δR〉 is a HR–comodule, 〈M, δL〉 is a HL–comodule such that the 3.4.2 relates the

R − R– and L − L–bimodule structures and the compatibility 3.4.3 holds.

We do not discuss the Galois theory of Hopf algebroids, which was worked out in detail in

[6]. Instead, we turn immediately to a special case, that of Frobenius Hopf algebroids.

5. Frobenius Hopf algebroids and DDAs

A Hopf algebroid possesses two R– and two L–ring structures, via the source and target

maps sR, tR and sL, tL, respectively. In this section we introduce the additional requirement

that these four algebra extensions be Frobenius extensions. One motivation for this is that

even though the (left and right) duals of finitely generated projective bialgebroids are also

bialgebroids, this is not known to be true for Hopf algebroids.The Frobenius property, however,

is manifestly self–dual and Frobenius Hopf algebroids will dualize to Frobenius Hopf algebroids.

Also, the Frobenius property of an algebra extension R ⊆ A can be viewed as a kind of finiteness

of A over R. Turning to the theory of depth 2 extensions of algebras, we shall find that the

appropriate symmetry object for depth 2 Frobenius extensions is precisely Frobenius Hopf

algebroids. After recalling definitions and basic results about Frobenius Hopf algebroids, we

shall introduce the equivalent formalism of Distributive Double Algebras developed in [79]

which we shall use in the following.

Definition 3.5.1. An R–ring (A, j) is said to be Frobenius if one of the following equivalent

conditions hold:

(1) RA is finitely generated projective and RA 
 HomR−(A, R) as A − R modules

(2) AR is finitely generated projective and AR 
 Hom−R(A, R) as R − A modules

(3) there exists an R–bimodule map Ψ : A → R (called the Frobenius functional) and a

dual basis
∑

i ei ⊗
R

fi ∈ A ⊗
R

A such that

(3.5.2)
∑

i

eiΨ(fia) = a =
∑

i

Ψ(aei)fi

for all a ∈ A
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The classic theorem of Larson and Sweedler states that every finite dimensional Hopf al-

gabra over a field is Frobenius. More generally, the following theorem holds.

Theorem 3.5.3. A Hopf algebra H over k is a Frobenius algebra over k if and only if it

possesses a non–degenerate integral.

An left (right) integral in a Hopf algebra is an invariant of the left (right) regular module,

i.e. l ∈ H is a left integral if hl = εH(h)l. The integral is said to be non–degenerate if the

maps ξ : Ĥ → H , ϕ 	→ ϕ⇀l and ξ̃ : Ĥ → H , ϕ 	→ l↼ϕ are bijections (for Hopf algebras, ξ is

a bijection if and only if ξ̃ is). On the other hand a left (right) integral on a Hopf algebra H

is an invariant of the dual left (right) regular module, i.e. an element of Ĥ . For a left integral

λ ∈ Ĥ on H , λ ⇀ h = 1 λ(h).

Remark 3.5.4. The general idea behind the double algebraic formalism can be explained

in the restricted context of Frobenius Hopf algebras (it is discussed in more detail under 8.9. of

[79]). A Frobenius Hopf algebra is a Hopf algebra with a Frobenius left integral, i.e. a left

integral i ∈ H such that the mapping Ĥ → k, ϕ 	→ ϕ(i) is a Frobenius homomorphism on

the dual Hopf algebra Ĥ . This is equivalent to H being a Frobenius algebra with a Frobenius

homomorphism λ ∈ Ĥ which is a left integral (the dual integral) on H. The dual integrals are

connected by the duality relation λ ⇀ i = 1, or equivalently, i ⇀ λ = ε. There is also a dual

pair of right integrals, afforded by the antipode, j = S(i) and ρ = λ ◦ S−1. The four integrals

satisfy the following relations:

Left Right

hi = ε(h)i jh = jε(h)
ih = iσ(h) hj = τ(h)j

λ ⇀ h = 1 λ(h) h ↼ ρ = 1 ρ(h)
λ(i) = 1 ρ(j) = 1

Figure 1. Left and Right Frobenius integrals

where σ = λ ↼ i is the ’distinguished grouplike element’ and τ = σ ◦ S−1. Furthermore, λ

is a Frobenius homomorphism with dual basis i(2) ⊗ S−1(i(1)) and ρ is a Frobenius homorphism

with dual basis i(1) ⊗ S(i(2)).

Using the dual pair of integrals, we define the Fourier transform F : H → Ĥ with

F(h) = h ⇀ λ and the inverse transform F−1 : Ĥ → H with F−1(ψ) = i ⇀ ψ ◦ S−1.

The convolution product h � h′ = F−1(F(h)F(h′)) transfers the algebra structure of Ĥ (the

transpose of the coalgebra structure of H) to H . The unit for the new algebra structure is the

left integral i. Thus, a Frobenius Hopf algebra admits an equivalent discription in terms of two

multiplicative structures 〈H, ·, 1, �, i〉. Multiplication with the wrong unit produces 4 Frobenius

homomorphisms, ϕL(h) = h � 1 = 1 λ(h), ϕR(h) = 1 � h = 1 ρ(h), ϕB(h) = h · i = ε(h)i and

ϕT (h) = i · h = iσ(h).
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A general double algebra will be a Frobenius algebra over four isomorphic base algebras,

which are however, in general noncommutative rings. The double algebra derived from a Frobe-

nius Hopf algebra as above is, in addition, a distributive double algebra: the two multiplicative

structures satisfy compatibilities of which we list only one, a · (a′ � a′′) = a(1)a
′ ⊗ a(2)a

′′.

We recall the Double Algebra formalism based on [3] (see also the original reference, [79]). A

double algebra is a k–module A equipped with two associative algebra structures denoted H =

〈A, �, i〉 (the horizontal algebra) and V = 〈A, ◦ , e〉, respectively. The horizontal and vertical

algebras satisfy 8 compatibility axioms ([79], Def. 1.1). The axioms ensure that multiplication

on the left (right) with the wrong units maps onto four subalgebras of A, as follows

ϕL : A → L, a 	→ a � e ϕR : A → R, a 	→ e � a(3.5.5)

ϕB : A → B, a 	→ a ◦ i ϕT : A → T, a 	→ i ◦ a(3.5.6)

The four subalgebras turn out to be strongly related, namely L 
 B 
 Rop 
 T op. In terms of

the maps ϕX , the defining axioms of a double algebra take on the following form:

(A1) ϕL(a) ◦ b = ϕBϕL(a) � b (A5) a ◦ ϕR(b) = a � ϕT ϕR(b)

(A2) a ◦ ϕL(b) = ϕT ϕL(b) � a (A6) ϕR(a) ◦ b = b � ϕBϕR(a)

(A3) ϕB(a) � b = ϕLϕB(a) � b (A7) a � ϕT (b) = a ◦ ϕRϕT (b)

(A4) a � ϕB(b) = ϕRϕB(b) � a (A8) ϕT (a) � b = b ◦ ϕLϕT (a)

A double algebra is a Frobenius double algebra if all four algebra extensions L, R, T, B ⊆ A are

Frobenius. As mentioned above, a Frobenius algebra extension X ⊆ A implies an X coring

structure on A, with comultiplication given by the Frobenius dual bases. The four Frobenius

algebra structures on a double algebra, in the bimodule categories XMX for X = L, R, B, T ,

respectively, imply four comultiplications:

〈A, ΔB, ϕB〉 is a comonoid in BMB, where ΔB(a) ≡ a(1) ⊗
B

a(2) = a � uk ⊗
B

vk,

〈A, ΔL, ϕL〉 is a comonoid in LML, where ΔL(a) ≡ a[1] ⊗
L

a[2] = a ◦ xj ⊗
L

yj,

〈A, ΔT , ϕT 〉 is a comonoid in T MT , where ΔT (a) ≡ a(1) ⊗
T

a(2) = a � uk ⊗
B

vk,

〈A, ΔR, ϕR〉 is a comonoid in RMR, where ΔR(a) ≡ a[1] ⊗
R

a[2] = a ◦ xj ⊗
R

yj ,

where we have introduced special notations for the dual bases of the base homomorphisms

ϕX , and variants of the Sweedler notation to distinguish between the different comultiplica-

tions. The coalgebra structure arising from a Frobenius algebra satisfies a markedly different

compatibility condition with multiplication than we expect from a quantum groupoid, specifi-

cally, it is not multiplicative. However, we can recover Hopf algebroids from a Frobenius double
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algebra if we also postulate the following distributivity rules:

a ◦ (a′ � a′′) = (a(1) ◦ a′) � (a(2) ◦ a′′)(3.5.7)

a � (a′ ◦ a′′) = (a[1] � a′) ◦ (a[2] � a′′)(3.5.8)

(a′ � a′′) ◦ a = (a′ ◦ a(1)) � (a′′ ◦ a(2))(3.5.9)

(a′ ◦ a′′) � a = (a′ � a[1]) ◦ (a′′ � a[2])(3.5.10)

In this case we say that 〈A, ◦ , e, �, i〉 is a distributive double algebra (DDA for short). In [79]

it is shown that in a DDA, the vertical and horizontal algebras, V and H , are Hopf algebroids

such that Hop is the dual of V . We will sometimes refer to the vertical and horizontal Hopf

algebroids of A. The constituent bialgebroids of H are

(3.5.11) 〈H, L, ϕB|L, ϕT |L, ΔL, ϕL〉 and 〈H, R, ϕT |R, ϕB|R, ΔR, ϕR〉
and those of V are

(3.5.12) 〈V, B, ϕL|B, ϕR|B, ΔB, ϕB〉 and 〈V, T, ϕR|T , ϕL|T , ΔT , ϕT 〉
The notation means e.g. that V over T has source map t 	→ ϕR(t), target map t 	→ ϕL(t) and

counit ϕT . Or, H over R has source map r 	→ ϕT (r), target map r 	→ ϕB(r), and counit ϕR.

The antipode of V – called the antipode of the double algebra – is an anti-automorphism S

which is also an anti-automorphism of H but the antipode of H is S−1. It is given by

(3.5.13) S(a) = uk � ϕT (ϕL(a ◦ vk)).

The unit of the horizontal Hopf algebroid i is a Frobenius integral in the vertical Hopf algebroid

V and vice versa, e is a Frobenius integral in the horizontal Hopf algebroid H .

6. Modules & comodules over DDAs

We have defined modules and comodules over Hopf algebroids to be consistent with the

fact that a Hopf algebroid ’contains’ two constituent bialgebroids. We have to do the same

with DDA’s and define modules and comodules as those of the underlying Hopf algebroids in

a consistent manner.

6.1. Modules over DDAs. Let 〈A, ◦ , e, �, i〉 be a double algebra. A right A-module is

a right module over the horizontal right bialgebroid H over R, i.e. a k-module M together

with an associative unital action M ⊗
R

H → M of the horizontal algebra H = 〈A, �, i〉 denoted

m ⊗
R

h 	→ m � h. A right A-module morphism f : X → Y is a right R–module map which is

a right module morphism for the bialgebroid H over R. The category of right A-modules will

be denoted MH .

A left A-module is a left module over the horizontal left bialgebroid H over L. Using the

extra structure of a DDA, we could also define ’top’ and ’bottom’ modules over A as left and

right modules over the vertical algebra V = 〈V, ◦ , e〉. In terms of the constituent bialgebroids,
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these are left modules over the left bialgebroid V over B and right modules over the right

bialgebroid V over T , respectively.

6.2. Comodules over DDAs. A right A-comodule over a Frobenius double algebra is a

right comodule over the vertical Hopf algebroid. It consists of an object M and two arrows

δM : M → M ⊗
B

A, δM : M → M ⊗
T

A in MB ⊗T such that

• 〈MB, δM〉 is a right comodule over the left bialgebroid V over B,

• 〈MT , δM〉 is a right comodule over the right bialgebroid V over T

• such that the two coactions satisfy the mixed coassociativity conditions

m(0)
(0) ⊗

B

m(0)
(1) ⊗

T

m(1) = m(0) ⊗
B

m(1)
(1) ⊗

T

m(1)
(2)(3.6.1)

m(0)
(0) ⊗

T

m(0)
(1) ⊗

B

m(1) = m(0) ⊗
T

m(1)
(1) ⊗

B

m(1)
(2)(3.6.2)

where we used the notation

δM(m) = m(0) ⊗
B

m(1)

δM(m) = m(0) ⊗
T

m(1)

for m ∈ M .

A right A-comodule morphism τ : X → Y is a right B ⊗ T -module map which is a right

comodule morphism for both the left bialgebroid VB and the right bialgebroid VT . The category

of right A-comodules is denoted by MV .

We saw that for Hopf algebroid comodules, mixed coassociativity of the coactions of the

underlying bialgebroids leads to an identification of their comodule categories. It turns out

that for a DDA A, further identification is possible, namely of the comodule category MV and

the module category MH .

Lemma 3.6.3. Let A be a DDA and let δM and δM be two coactions of VB, respectively VT ,

on M . They then determine two right H-actions on M ,

m �
B

h = m(0) . ϕB(m(1) � h)(3.6.4)

m �
T

h = m(0) . ϕT (m(1) � h) .(3.6.5)

The two actions coincide if and only if the two coactions satisfy the mixed coassociativity

condition (3.6.1) and (3.6.2).

Proof. The inverses of (3.6.4) and (3.6.5) can be given in terms of the dual bases of ϕB

and ϕT as

m(0) ⊗
T

m(1) = m �
T

uk ⊗
T

vk(3.6.6)

m(0) ⊗
B

m(1) = m �
B

uk ⊗
T

vk(3.6.7)
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Therefore if �
B

= �
T

then

m(0)
(0) ⊗

B

m(0)
(1) ⊗

T

m(1) = (m �
T

uk) �
B

ul ⊗
B

vl ⊗
T

vk =

= m �
B

(uk � ul) ⊗
B

vl ⊗
T

vk = m �
B

ul ⊗
B

vl � uk ⊗
T

vk =

= m(0) ⊗
B

m(1)
(1) ⊗

T

m(1)
(2).

and similarly for (3.6.2). On the other hand, if mixed coassociativity holds then

m �
T

h = (m �
T

h)(0) . ϕB((m �
T

h)(1)) = m(0)
(0) . ϕB(m(0)

(1) � ϕT (m(1) � h))

= m(0) . ϕB(m(1)
(1) � ϕT (m(1)

(2) � h)) = m(0) . ϕB(m(1) � h)

= m �
B

h.

�

If M is a right module over the DDA A then it is a right V -comodule MV and a right

H-module MH at the same time. The invariants of MH ,

MH :={n ∈ M |n � h = n � ϕT ϕR(h), h ∈ H}(3.6.8)

= {n ∈ M |n � h = n � ϕBϕR(h), h ∈ H}(3.6.9)

and the coinvariants of MV ,

M co-V :={n ∈ M |n(0) ⊗
T

n(1) = n ⊗
T

e}(3.6.10)

= {n ∈ M |n(0) ⊗
B

n(1) = n ⊗
B

e},

yield one and the same k-submodule of M . This is an instance of the more general identifi-

cation between the categories of H-modules, VB-comodules, and VT -comodules. Since ϕT and

ϕB restrict to algebra isomorphisms R → T and Rop → B, respectively [79, Lemma 2.2],

the identifications between H-modules and V -comodules provide a monoidal category isomor-

phism MVT ∼= MH and the antimonoidal category isomorphism MVB ∼= MH . We can use these

isomorphisms to introduce ⊗
R

both in MVT and MVB as the monoidal product while keeping

⊗
T

and ⊗
B

to appear in the coactions. One advantage of this convention is that the difference

between (3.2.9) and (3.2.7) disappears, and we can define the monoidal product of both VB–

and VT –comodules with the same order of multiplication. Now the R becomes a monoidal unit

in three senses: As a right ideal in H it is the trivial right H-module, r � h = r � h. But it

is also a right comodule over VT via r(0) ⊗
T

r(1) = e ⊗
T

r and a right comodule over VB via

r(0) ⊗
B

r(1) = e ⊗
B

r.



CHAPTER 4

Galois theory

We begin by recalling the most important results from the classical Galois theory of field

extensions in a nutshell. Noncommutative Galois theory is largely self–contained so this is

meant only as an aside, to give an idea of the sorts of results one could expect in a more

general theory. Hopf Galois theory is understood to mean the theory of noncommutative

algebra extensions with Hopf algebra symmetry, and has by now also achieved classical status.

Fundamental references are [28], [49], [76]; a review, containing further references, is [74]. It

is well established that Hopf Galois theory may be regarded as the dual picture to principal

bundles in the sense of noncommutative geometry. Consequently, it has geometric applications

and geometry, in turn, has been a constant source of motivation for Hopf Galois theory. We

shall give some references on the noncommutative geometric view, but our concern here is the

generalization of Hopf Galois theory from Hopf algebras to quantum groupoids and ultimately,

the application of this theory to algebra extensions coming from Algebraic Quantum Field

Theory.

Consider an extension of fields E : F (’E over F ’) which is in particular an extension of the

additive and multiplicative groups of the respective fields, hence E and F share the same unit,

zero and characteristic. The extended field E may be considered as a vector space over F (the

module EF ) and the F–dimension of this vector space is called the degree of the extension,

[E : F ] = dim EF . Standard examples of Galois extensions are:

• Q(
√

2)|Q, where Q(
√

2) = {a + b
√

2 | a, b ∈ Q}. The degree is 2, since {1,√2} are a

basis for EF .

• C|R (the complex numbers over the reals), [C : R] = 2 with {1, i} a basis

• for any field K, denote K[X] the polynomial ring with variable X and coefficients in

K. For an irreducible polynomial f(X) ∈ K[X], the roots of f may not lie in K.

However, K[X]/〈f(X)〉 (the polynomial ring modded by the ideal generated by the

polynomial) is an extension field of K and contains the roots of f . We say that we

have added the roots of f to K. This example subsumes the previous two: simply

take the polynomials X2 = 2 and X2 = −1 in Q[X] and R[X], respectively

• for an algebraic variety V , the field of rational functions on V , denoted K(V ) is an

extension of K

Elements of E that are roots of polynomials in F [X] are called algebraic. An extension

such that all elements of E not in F are algebraic, is called an algebraic extension. An element

of the extended field that is not a root is called transcendental, and non–algebraic extensions
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are called transcendental extensions (purely transcendental if there are no algebraic elements

at all in E F ). The smallest extension of a field F which contains all roots of polynomials in

F [X] is called the algebraic closure. Algebraicity may seem like a special property to require

(important and historical examples notwithstanding), but in fact, an extension is algebraic if

and only if it is the union of finite sub–extensions. This is corroborated by our examples: the

finite–index extensions we listed are indeed algebraic, the rest are transcendental.

The fundamental construction in Galois theory is the automorphism group Aut(E|F ), con-

sisiting of those automorphisms of E, which fix F point–wise, i.e. for α ∈ Aut(E|F ), α(x) = x

for all x ∈ F . Note that for a field, it only makes sense to talk about automorphisms, i.e. en-

domorphisms with inverse.

Theorem & Definition 4.0.11. A finite field extension E |F is Galois if any of the

following hold

• E |F is a normal extension and a separable extension

• E is the splitting field of a separable polynomial with coefficients in F

• [E : F ] = |Aut(E|F )|, i.e. the degree of the field extension is equal to the order of the

automorphism group of E|F .

A field extension is called normal if every irreducible polynomial in F [X] that has a root in

L completely factors into linear factors over L. Every algebraic extension E|F admits a normal

closure L, which is an extension field of F such that L|F is normal and which is minimal with

this property. An algebraic extension E|F is called separable, if the minimal polynomial of

every element of E over F is separable, i.e. it has no repeated roots in E.

If any one of the above conditions hold, G = Aut(E|F ) is said to be the Galois group of the

extension E|F , usually denoted Gal(E|F ). If it exists, it is unique. The Fundamental Theorem

of Galois Theory states:

Theorem 4.0.12. There is a one-to-one relationship between subgroups of H ≤ G =

Aut(E|F ) and intermediate extensions F ⊆ K ⊆ E, as follows:

• H 	→ Fix(H); to any subgroup H ≤ Gal(E|F ), associate the intermediate field Fix(H) =

EH consisting of the elements of E fixed by H,

• K 	→ Aut(E|K); to any intermediate field K of E|F , the corresponding subgroup is

just Aut(E|K), the set of those automorphisms in Gal(E|F ) which fix every element

of K.

This bijection between subextensions and subfields of the Galois group constitute an order–

reversing Galois connection1 between the lattices of subgroups of Gal(E|F ) and subextensions

of E|F . It is clearly order–reversing: for subgroups, H1 ⊆ H2 holds if and only if the inclusion

of fields EH1 ⊇ EH2 holds.

1In abstract terms, an order–reversing Galois connection between posets (A,≤) and (B,≤) is a pair of maps
F : A → B and G : B → A such that b ≤ F (a) if and only if a ≤ G(b). In categorical terms, it is an adjoint
pair of contravariant functors between the posets A and B.
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The degrees of extensions are related to orders of groups, in a manner consistent with the

inclusion–reversing property. Specifically, if H is a subgroup of Gal(E|F ), then |H| = [E|EH ]

and [Gal(E|F ) : H ] = [EH : F ]. The field EH is a normal extension of F if and only if H is a

normal subgroup of Gal(E|F ). In this case, the restriction of the elements of Gal(E|F ) to EH

induces an isomorphism between Gal(EH |F ) and the quotient group Gal(E|F )/H.

1. Hopf Galois theory

The history of Hopf Galois theory goes back to the work of Chase, Harrison and Rosenberg

on the Galois theory of groups acting not on fields, but on commutative rings ([27]). This was

extended, by Chase and Sweedler ([28]), to Hopf algebras coacting on commutative algebras

over (commutative) rings. The general definition, featuring Hopf algebras coacting on noncom-

mutative rings appeared in the work of Kreimer and Takeuchi ([49]). This approach is quite

different in flavour from the previous summary of the Galois theory of fields, and the abstract

definition is best understood through the classic examples.

First, a few preliminary definitions. A (right) H–comodule algebra A is a monoid in MH ,

i.e. for a, b ∈ A, (ab)〈0〉 ⊗ (ab)〈1〉 = a〈0〉b〈0〉 ⊗ a〈1〉b〈1〉 and (1A)〈0〉 ⊗ (1A)〈1〉 = 1A ⊗ 1H . We

define the subalgebra of coinvariants Aco−H := {a ∈ A | a〈0〉 ⊗ a〈1〉 = a ⊗ 1H} ⊆ A.

Definition 4.1.1. Let H be a Hopf algebra and A an H–comodule algebra in MH with

coaction ρ : A → A ⊗ H . Then the extension of algebras Aco−H ⊆ A is said to be right

H–Galois if the map

β : A ⊗ Aco−HA → A ⊗ H(4.1.2)

a ⊗ b 	→ (a ⊗ 1) ρ(b) = ab〈0〉 ⊗ b〈1〉

is bijective.

The first question to consider is how this definition relates to classical field extensions?

Example 4.1.3. Consider the classical setup of a finite group G acting on a field E ⊃ k

as automorphisms with F = EG the invariant subfield. The action of G extends linearly to

the group algebra kG, inducing a coaction of dual H = k(G) = (kG)∗ on E. We apply the

definition 4.1.2 to H .

E|F is classically Galois with Galois group G if G acts faithfully on E, or equivalently,

[E : F ] = |G|. Let |G| = n and denote {x1, x2, ..., xn} the elements of G and {b1, b2, ..., bn} the

basis of E over F . If {p1, p2, ..., pn} is the dual basis of {xi}n
i=1 in k(G) (i.e. pi(xj) = δi,j), then

the k(G)–coaction corresponding to the kG–action on E is given by

ρ : E → E ⊗
k

k(G)(4.1.4)

a 	→
n∑

i=1

xi � a ⊗ pi.
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The Galois map β : E ⊗
F

E → E ⊗ k(G) is then β(a ⊗ b) =
∑

i a(xi � b) ⊗ pi.

Example 4.1.5. An important example which does not involve fields is that of graded

rings. Let A be a G–graded algebra, i.e. A = ⊕g∈GAg is a G–graded vector space and for

all g, h ∈ G, AgAh ⊆ Agh and 1A ∈ Ae. Equivalently, A is a kG–comodule algebra with the

coaction ρ(ag) = ag ⊗ g for ag ∈ Ag and extended linearly. Indeed, ρ(agbh) = agbh ⊗ gh so

that agbh ∈ Agh and ρ(1A) = 1A ⊗ e implies 1A ∈ Ae. The kG–coinvariants are precisely the

unit component, Aco−H = Ae. A theorem of Ulbrich describes those extensions Ae ⊆ A which

are Galois.

Theorem 4.1.6. Let A be a G–graded algebra; then the following are equivalent:

(1) Ae ⊆ A is kG–Galois

(2) A is strongly graded, meaning that AxAy = Axy for all x, y ∈ G .

See [58], p. 126 for a proof.

Example 4.1.7. A more geometric example is (the dual of) that of a finite group acting on

a set. Consider a finite group G acting on a set X from the right by the action μ : X×G → X,

denoted (x, g) 	→ x � g. There is a natural map

α : X × G → X × X(4.1.8)

(x, g) 	→ (x, x � g),

often called the fundamental map which encodes several properties of the action. To begin

with, α maps X × G to X ×Y X, the fibered product2 of X with itself over the orbit space

Y = X/G (since x and x � g are in the same G–orbit for any x ∈ X and g ∈ G). The

surjectivity of α, considered as a map to X ×Y X, is equivalent to the action being transitive;

α is injective if and only if μ is free, i.e. there are no fixed points x �= x � g for g �= e.

The connection to Definition 4.1.1 is revealed by considering the dual picture. Denote

A = k(X) the algebra of k–valued functions on X under pointwise addition and multiplication.

The right G–action on X induces a left kG–action on k(X); for α ∈ k(X), g � α(x) = α(x � g).

This, in turn, induces a right k(G)–coaction μ∗ : A → A⊗k(G). With the dual bases {xi, p
i}n

i=1,

the coaction is given by μ∗ : α 	→ xi � α ⊗ pi. Denote B = k(Y ) the functions from X to k

that are constant on G–orbits. Then B = AkG = Aco−k(G) is the subalgebra of kG–invariants,

or equivalently, of the k(G)–coinvariants. Since k(X × X) = k(X) ⊗ k(X), the fundamental

map dualizes to

α∗ : A ⊗
B

A → A ⊗ H(4.1.9)

a ⊗ a′ 	→ (a ⊗ 1)μ∗(a′),

which is exactly the Galois map of 4.1.2, i.e. β = α∗. The Galois map β is bijective if and only

if α is bijective, which is equivalent to the action μ being free and transitive.

2In the present case, X ×Y X is the categorical pullback of two copies of the projection map π : X → X/G,
sending each point x ∈ X to the orbit it is contained in. It is the subset X×Y X = {(x, y) ∈ X×X |π(x) = π(y)}
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Example 4.1.10. A truly geometric example is that of quantum pricipal bundles. In clas-

sical geometry, a principal bundle P (M, G) over base M with structure (gauge) group G is

defined as follows. P is a smooth manifold and G a Lie group such that there is a smooth right

action of G on P , P × G → P, (u, g) 	→ Rg(u) = u � g which is free. Just as in the case of

finite groups acting on sets, this is equivalent to the injectivity of the map

β : P × G → P × P, (u, g) 	→ (u, u � g).(4.1.11)

The orbit space is isomorphic to the base space, P/G ∼= M , and the canonical projection

π : P → M is a smooth map. The bundle P is locally isomorphic to M ×G, meaning that for

an open subset U ⊆ M contained in one chart, there is a map φU : π−1(U) → G such that the

map π−1(U) → M × G, u 	→ (φU(u), π(u)) is an isomorphism.

By the standard practice of noncommutative geometry, the algebraic picture is obtained

by considering the algebra of functions on the geometric spaces. Hence, a quantum principle

bundle is first of all an H–comodule algebra A with coaction ρ : A → A ⊗ H such that the

induced Galois map (μA ⊗ H) ◦ (A ⊗ ρ) : A ⊗ A → A ⊗ H is a surjection. Denote the

subalgebra of coinvariants B = Aco−H , then the Galois map factorizes through A ⊗
B

A and

β : A ⊗
B

A → A ⊗ H is an isomorphism. An example is provided by a classical principle

bundle with A = k(P ), B = k(M) and H = k(G). The inclusion of the subalgebra B ↪→ A is

the analogue of the projection π : P → M in the classical case.

Much work has been done to elaborate this connection between (principal) bundles and

Hopf Galois extensions, we only point out a handful of references. A differential calculus on

quantum groups (in the sense of compact matrix pseudogroups) has been developed in [92],

generalizing the calculus of exterior differential forms; differential calculi on noncommutative

bundles were considered in [67]. Approaching principles bundles from a quantum field theory

point of view, a quantum group gauge theory over noncommutative spaces was proposed in

[18]. Cleft extensions are roughly the analogues of trivial bundles. Their study was initiated

[31] and [5]. A topological invariant of bundles, the Chern character, have been given an

algebraic interpretation in [15]. Also, concrete geometric constructions like the Hopf fibration

also have algebraic counterparts, interpreted as noncommutative monopoles or instantons, see

e.g. [19], [20].

Comparing Hopf Galois theory to the classical Galois theory of field extensions, two differ-

ences stand out. First, classical Galois extensions can be characterized as the normal, separable

field extensions without explicitly mentioning the Galois group. No analogue result is known

in Hopf Galois theory. Also, a Galois field extension determines the Galois group uniquely. A

stronger statement is the Fundamental Theorem of Galois theory, which does not hold in the

Hopf Galois setting. Instead, there is a weaker result due to Chase and Sweedler ([28]):

Theorem 4.1.12. Let K|k be an H–Galois extension; for a Hopf subalgebra H ′, define

Fix(H ′) = {x ∈ K | ∀h ∈ H ′ : h � x = ε(h)x}. Then the mapping from Hopf subalgebras to
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intermediate subalgebras

Fix : {H ′ ⊆ H |H ′ Hopfsubalgebra} → {L | k ⊆ L ⊆ Ksubalgebra}
is inclusion–reversing and injective.

In Hopf Galois theory, explicit counterexamples are known (to be discussed in Chapter

3), where a Hopf Galois extension exhibits two non–isomorphic Hopf algebras both of which

make the extension Galois– little is known in general about the relation of different possible

choices of Hopf Galois symmetry. Both of the above shortcomings of Hopf Galois theory can

be partially remedied by allowing quantum groupoids instead of Hopf algebras. It is the Galois

theory of quantum groupoids which take up in the remaining chapters.

2. Bialgebroid Galois extensions

It was shown in Chapter 1 that for a right bialgebroid 〈B, sR, tR〉 over R, the categories MB,

MB and BM are monoidal with a strict monoidal forgetful functor into RMR. This allows us

to define both (right) B–module and B–comodule algebras as monoids in MB and MB, respec-

tively. This leads to two notions of bialgebroid extension and bialgebroid–Galois extension,

accordingly called the action– and coaction pictures.

2.1. Module– and comodule algebras.

Definition 4.2.1. A right B–module algebra is a monoid 〈M, μM , ηM〉 in MB, i.e. M ∈ MB,

with μ and η arrows in MB (B–comodule maps):

(M ⊗
R

M) ⊗
R

B
γM ⊗ M��

μM ⊗
R

B

��

M ⊗
R

M

μM

��

R

ηM

��

R ⊗
R

BγR��

ηM ⊗
R

B

��
M ⊗

R

B
γM

�� M M M ⊗
R

B
γM

��

or, in terms of formulæ,

(m � b(1))(m
′ � b(2)) = (mm′) � b(4.2.2)

1M � b = 1M � s(ε(b))(4.2.3)

The strict monoidal forgetful functor on U : MB → RMR induces on M the R–bimodule

structure

(4.2.4) M ∈ RMR, r · m · r′ = m � (t(r)s(r′))

The subring of invariants is denoted MB and is defined as

(4.2.5) MB = {n ∈ M |n � b = n � s(ε(b))}
A useful characterization of the invariants is the following
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Lemma 4.2.6. For a right B–module algebra M ,

Hom−B(R, M) 
 MB

as k–algebras, where the algebra structure on Hom−B(R, M) is the convolution algebra.

Proof. It is easily checked that the k–module maps

Hom−B(R, M) → MH , ϕ 	→ ϕ(1R)

and

MH → Hom−B(R, M), n 	→ {r 	→ n · r}
are inverses of each other. Being the monoidal unit in MB, R has a coalgebra structure

R → R ⊗
R

R given by the natural isomorphism r 	→ r ⊗ 1R. The corresponding convolution

product on Hom−B(R, M) is given by ϕψ(r) = ϕ(r(1))ψ(r(2)) = ϕ(r)ψ(1R). The isomorphism

extends to an isomorphism of algebras. �

For any right B–module algebra M , B ⊗
R

M has an M–ring structure, the smash product,

denoted B#M . Multiplication is given by

μ̂ : B#M ⊗
M

B#M → B#M

(b#m)(b′#m′) = bb′(1)#(m � b′(2))m
′

and the unit map is η̂ : M → B#M , m → 1B ⊗
R

m.

All the above constructions may be applied to a left bialgebroid 〈B, sL, tL〉 over L. In

particular, a left B–module M is a monoid 〈M, μM , ηM〉 in BM. The multiplication and unit

maps are arrows in BM,

(b(1) � m)(b(2) � m′) = b � (mm′)(4.2.7)

b � 1M = s(ε(b)) � 1M(4.2.8)

and M is an R–bimodule via r ·m · r′ = (s(r)t(r′)) � m. The subring of invariants is denoted

MB and is defined as

(4.2.9) MB = {n ∈ M | b � n = sL(ε(b)) � n}
We also have the isomorphism HomB−(R, M) 
 MB . For all B–module algebras in BM, the

smash product defines an M–ring structure on M ⊗
L

B with multiplication μ̂ : M#B ⊗
M

M#B → M#B, (m#b)(m′#b′) = m(b(1) � m′)#b(2)b
′ and unit map η̂ : M → M ⊗

L

B,

m 	→ m ⊗
L

1B.

Consider again a right bialgebroid 〈B, sR, tR〉 over R. Turning to the comodule category

MB:
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Definition 4.2.10. A right B–comodule algebra is a monoid in MB, i.e. a B–comodule

〈M, δM〉 ∈ MB, and B–comodule maps μM : M ⊗
R

M → M and ηM : R → M ,

(M ⊗
R

M)
δM ⊗ M��

μM

��

(M ⊗
R

M) ⊗
R

B

μM ⊗
R

B

��

R

ηM

��

δR �� R ⊗
R

B

ηM ⊗
R

B

��

M
δM

�� M ⊗
R

B M
δM

�� M ⊗
R

B

or, on elements,

(mm′)〈0〉 ⊗
R

(mm′)〈1〉 = m〈0〉m
′
〈0〉 ⊗

R

m〈1〉m
′
〈1〉(4.2.11)

(ηM(r))〈0〉 ⊗
R

(ηM(r))〈1〉 = ηM(r) ⊗
R

1B(4.2.12)

The strict monoidal forgetful functor on U : MB → RMR induces on M the R–bimodule

structure

(4.2.13) M ∈ RMR, r · m · r′ = (m · r′)〈0〉εH(t(r)(m · r′)〈0〉)
We define the subring of coinvariants, denoted M co−B, as

(4.2.14) M co−B = {n ∈ M | δM(n) = n ⊗
R

1B}

The coinvariants also admit an abstract definition similar to the invariant subring,

Lemma 4.2.15. For a right B–comodule algebra M ,

Hom−B(R, M) 
 M co−B

as k–algebras, where the algebra structure on Hom−B(R, M) is the convolution algebra.

For any right B–comodule algebra M , M ⊗
R

B has an M–coring structure, given as follows.

M ⊗
R

B ∈ MMM with left– and right M–actions m′ · (m ⊗ b) ·m′′ = m′ m m′′
〈0〉 ⊗

R

bm′′
〈1〉. With

respect to this bimodule structure, the comultiplication and counit

Δ̂ : (M ⊗
R

B) → (M ⊗
R

B) ⊗
M

(M ⊗
R

B), m ⊗ b 	→ m ⊗
R

b(1) ⊗
M

1M ⊗
R

b(2)

ε̂ : M ⊗
R

B → M, m ⊗
R

b 	→ mεB(b)

are M–bimodule maps and make M ⊗
R

B an M–coring. Defining left comodule algebras

analogously for a right bialgebroid is straightforward.

For left bialgebroids we consider the case of right comodule algebras for later reference.

Let 〈B, sL, tL〉 be a left bialgebroid over L, then a right B–comodule algebra is a monoid in

MB, i.e. a B–comodule 〈M, δM〉 ∈ MB, and B–comodule maps μM : M ⊗
R

M → M and
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ηM : R → M , i.e.

(mm′)〈0〉 ⊗
L

(mm′)〈1〉 = m〈0〉m′〈0〉 ⊗
L

m′〈1〉m〈1〉(4.2.16)

(ηM(r))〈0〉 ⊗
L

(ηM(r))〈1〉 = ηM (r) ⊗
L

1B(4.2.17)

The R–bimodule structure induced by the forgetful functor U : MB → RMR is r · m · r′ =

(m ·r′)〈0〉 εH(sL(r)(m ·r′)〈0〉) The subring of coinvariants is given by M co−B = {n ∈ M |δM (n) =

n ⊗
L

1B} and the isomorphism Hom−B(L, M) 
 M co−B holds. For a right B–comodule algebra

M , M ⊗
L

B has an M–coring structure, via the left– and right M–actions m′ · (m ⊗ b) ·m′′ =

m′〈0〉 m m′′ ⊗
L

bm′′〈1〉 and the M–bimodule maps

Δ̂ : (M ⊗
L

B) → (M ⊗
L

B) ⊗
M

(M ⊗
R

B), m ⊗
L

b 	→ m ⊗
L

b(2) ⊗
M

1M ⊗
R

b(1)

ε̂ : M ⊗
L

B → M, m ⊗
R

b 	→ m εB(b)

which make make M ⊗
L

B a coalgebra in MMM .

Relations between module– and comodule algebras are to be expected in the case that the

bialgebroid is finitely generated projective over the base ring. More specifically, we have that

Proposition 4.2.18. For a right bialgebroid 〈B, sR, tR〉, fintely generated projective over

R and let ∗B = HomR−(B, R) denote the left R–dual bialgebroid. Then we have that

(1) there is an isomorphism of categories MB 
 M∗Bop

(2) for a B–comodule algebra M ∈ MB, the B–coinvariant subalgebra M co−B coincides

with the ∗Bop–invariant subalgebra M
∗Bop

Proof. (1) Every right B–comodule 〈M, δM〉 is a right ∗Bop–module via

(4.2.19) m � β = m〈0〉 · β(m〈1〉), m ∈ M, ϕ ∈ ∗B

Indeed, for m ∈ M and β, β ′ ∈ ∗Bop, using 4.2.19 we calculate

(m � β) � β ′ = (m〈0〉 · β(m〈1〉))〈0〉 β ′((m〈0〉 · β(m〈1〉))〈1〉) =

= m〈0〉〈0〉 β ′(m〈0〉〈1〉 s(β(m〈1〉))) = m � (β ′β)

Let f ∈ MB be a B–comodule map, satisfying f(m〈0〉) ⊗
R

m〈1〉 = f(m)〈0〉 ⊗
R

f(m)〈1〉. It is easily

seen that f is then also an ∗Bop–module map:

f(m) � β = f(m)〈0〉 β(f(m)〈1〉) = f(m〈0〉) β(m〈1〉) = f(m � β)

i.e. we have a functor MB → M∗Bop. For the inverse functor of the equivalence, note that a
∗Bop–module M is a B–comodule with the coaction

δM :M → M ⊗
R

B

m 	→ m � bi ⊗
R

βi
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where
∑

i β
i ⊗

R

bi ∈ ∗B ⊗
R

B is the (left) finitely generated projective basis for RB. Coassocia-

tivity follows easily,

(δM ⊗
R

B) ◦ δM (m) = (m � bi) � bj ⊗
R

bj ⊗
R

βi = m � bjbi ⊗
R

βj ⊗
R

βi =

= m � bi ⊗
R

(βi)(1) ⊗
R

(βi)(2) = (M ⊗
R

ΔB) ◦ δM(m)

The equivalence follows from the defining property of the dual basis.

(2) Let M ∈ Alg −MB be a B–comodule algebra. Then n ∈ M co−B iff δM(n) = n ⊗
R

1B. Since

n � β = n � β = n〈0〉 · β(n〈1〉) = n · β(1B) = n s(∗ε(β)),

n is an element of the ∗Bop–invariant subring. �

Having both module– and comodule algebras at our disposal, we can define the class of

bialgebroid Galois extensions from both points of view. In Hopf Galois theory, usually comodule

algebras over a Hopf algebra are considered, viewed as an algebra extension of the co–invariant

subring. This is called the ’coaction picture’, and is predominant in the existing literature.

However, some applications, notably scalar extensions arising from Galois extensions, follow

from the action picture which is also perhaps closer to physicists’ notion of a symmetry acting

on, e.g. the field algebra. We follow closely the definitions and exposition of [3].

2.2. Action picture. Let 〈B, sR, tR〉 be a right bialgebroid and M ∈ MB a right B–

module algebra. We call an algebra homomorphism η̂ : N → M a (right) B–extension, if

η̂ factorizes through an isomorphism N → MB. In a more concrete sense, we could require

N = MB.

For a B–extension N 
 MB → M , N (MB) acts on M from the left by multiplication;

call this action λ. Also, for any extension N → M , there is a right action of End(NM)

(the left N–module endomorphisms) on M that commutes, by definition, with λ making M an

N−End(NM)–bimodule. Here we have to view the endomorphisms in End(NM) as composing

to the right. We shall denote E = End(NM), hence M = NME . Furthermore, there is a

homomorphism H#M → End(NM), defined by m′ · (h#m) = (m′ � h)m, which makes M an

N − H#M–bimodule.

Lemma 4.2.20. For a B–extension N → M , we have the following equalities:

λ(N) = End(ME) = End(MB#M) = λ(MB)(4.2.21)

Proof. We write the action of a γ ∈ EndN−(M) on m ∈ M from the right as m 	→
(m)←−γ . The inclusions λ(N) ⊆ End(ME) ⊆ End(MB#M ) are easily proved. For any n ∈ N ,

γ ∈ EndN−(M) we have (n · m)
←−
β = n · (m)

←−
β by definition, hence λ(N) ⊆ End(ME). The

inclusion End(ME) ⊆ End(MB#M ) follows from the existence of the homomorphism H#M →
End(NM) = E . The Lemma is then a consequence of N = MB and the equality End(MB#M) =

λ(MB). The latter is proved entirely analogously to Lemma 8.3.2 of [58]. The map λ :
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MB → End(MB#M) is obviously injective. To see that it is also surjective, observe that for

σ ∈ End(MB#M) and m ∈ M , σ(m) = σ(1M)m, i.e. σ = λσ(1). But σ(1) ∈ MB , since for all

b ∈ B, σ(1)b = σ(1 · b) = σ(1)εB(b).

�

We introduce some basic notions for bimodules, allowing us to rephrase in abstract terms

what we have just proved. A more detailed treatment is found in [2]. Let R and S be rings,

then note that M ∈ RMS is an R − S–bimodule if and only λ : R → End(MS) (left action by

R) and ρ : S → End(RM) (right action by S) are ring homomorphisms.

Definition 4.2.22. Consider R, S and M ∈ RMS as above. With respect to the homomor-

phisms λ : R → End(MS) and ρ : S → End(RM), the bimodule RMS is balanced if both λ and

ρ are surjective and the bimodule RMS is faithfully balanced if both λ and ρ are isomorphisms.

To every left module RM , there is a canonical bimodule RME where E = EndR−(M) is the

ring of left R–endomorphisms, viewed as acting from the right. Continuing, we can introduce

the biendomorphism ring of the original module RM as BiEnd(RM) = End(ME). Applying

our bimodule–terminology to the canonical bimodule of a left module just defined, we define:

Definition 4.2.23. A module RM over a ring R is balanced if the bimodule RME is balanced

(E = EndN−(M)), i.e. λ : R → End(ME) ≡ BiEnd(RM) is surjective.

With this terminology, we collect these results in the following

Lemma 4.2.24. Let N → M be a right B–extension; then

(1) NME is balanced, i.e. BiEnd(NM) ≡ End(ME) = λ(N), and

(2) the bimodule NMB#M is faithfully balanced if and only if the map B#M → E is an

isomorphism.

As we shall see, this map H#M → E plays a fundamental role in Galois theory.

Definition 4.2.25. For a right bialgebroid B over R, a right B–extension N = MB ⊆ M

is said to be a Galois extension if the M–bimodule map (the canonical map)

ΓM :B ⊗
R

M → EndN−(M)(4.2.26)

b ⊗
R

m 	→ {m′ 	→ (m′ � b)m}

is an isomorphism.

Recall that for any B–extension, B ⊗
R

M has an M–ring structure given by the smash

product B#M . EndN−(M) is an M–ring with composition (to the right) of endomorphisms

as multiplication and unit map M → EndN−(M) sending m ∈ M to ρm. The canonical map

extends to a morphism of M–rings.
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Now let 〈B̄, sL, tL〉 be a left bialgebroid and M ∈ B̄M a left B̄–module algebra. A left

B̄–extension N = M B̄ ⊆ M is said to be a Galois extension if the M − M–bimodule map

ΓM :M ⊗
R

B̄ → End−N(M)(4.2.27)

m ⊗
R

b 	→ {m′ 	→ m(b � m′)}

is an isomorphism. Again, ΓM extends to an M–ring morphism if the M–ring structure on

End−N(M) is given by the composition of endomorphisms (to the left) as multiplication and

left multiplication by M as the unit map. We shall only be considering Galois extensions (in

the action picture) of right bialgebroids in what follows. Nevertheless, the above left–sided

definition can be put to use by noting that for a right bialgebroid 〈B, sL, tL〉, the opposite

〈Bop, top
L , sop

L 〉 is a left bialgebroid. From the categorical isomorphism BM 
 MBop, it follows

that an equivalent formulation of the Galois condition is that the M–bimodule map

ΓM :M ⊗
R

Bop → End−N(M)(4.2.28)

m ⊗
R

b 	→ {m′ 	→ m(m′ � b)}

is an isomorphism.

2.3. Coaction picture. As discussed earlier, right (left) bialgebroids may coact both to

the left and to the right. Correspondingly, there are in principle four cases of bialgebroid

extensions (and Galois extensions) to consider. We collect these in two definitions

Definition 4.2.29. Let 〈B, sR, tR〉 be a right bialgebroid. For a right B–comodule algebra

M ∈ MB, the B–extension N = M co−B ⊆ M is Galois if the M–bimodule map

γM : M ⊗
N

M → M ⊗
R

B(4.2.30)

m ⊗
N

m′ 	→ mm′
〈0〉 ⊗

R

m′
〈1〉

is an isomorphism. For a left B–comodule algebra M ∈ BM, N = M co−B ⊆ M is Galois if the

M–bimodule map

δM : M ⊗
N

M → B ⊗
R

M(4.2.31)

m ⊗
N

m′ 	→ m′
〈−1〉 ⊗

R

mm′
〈0〉

is an isomorphism.

Recall that both M ⊗
R

B and B ⊗
R

M have an M–coring structure. The coring structure

on M ⊗
N

M is called the Sweedler coring, and has the comultiplication

Δ :M ⊗
N

M → (M ⊗
N

M) ⊗
M

(M ⊗
N

M) 
 M ⊗
N

M ⊗
N

M(4.2.32)

m ⊗ m′ 	→ m ⊗ 1M ⊗ m′
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and counit ε = μM : M ⊗
N

M → M , simply the ring multiplication, m ⊗ m′ 	→ mm′. As

expected, both canonical maps γM and δM extend to maps of M–corings.

The left handed twin of the previous definition goes as follows.

Definition 4.2.33. Let 〈B̄, sL, tL〉 be a left bialgebroid. For a left B̄–comodule algebra

M ∈ B̄M, the B̄–extension N = M co−B̄ ⊆ M is Galois if the M–bimodule map

δM : M ⊗
N

M → B̄ ⊗
R

M(4.2.34)

m ⊗
N

m′ 	→ m〈−1〉 ⊗
R

m〈0〉m
′

is an isomorphism. For a right B̄–comodule algebra M ∈ MB̄, the B̄–extension N = M co−B̄ ⊆
M is Galois if the M–bimodule map

γM :M ⊗
N

M → M ⊗
R

B̄(4.2.35)

m ⊗
N

m′ 	→ m〈0〉m
′ ⊗

R

m〈1〉

is an isomorphism.

For bialgebroids that are finitely generated projective over their base ring, we found a

relation between comodule algebras and module algebras over the dual. It is natural to ask

whether this relation extends to Galois extensions?

Theorem 4.2.36. Let 〈B, sR, tR〉 be a right bialgebroid which is finitely generated projective

as an R–module and let N = MB → M ∈ MB be a right B–extension. Then

(4.2.37) γM : M ⊗
N

M → M ⊗
R

B

is an isomorphism if and only if

(4.2.38) ΓN : M ⊗
R

∗B → End−N(M)

is an isomorphism.

Proof. Applying HomM−(M, ) to 4.2.37, we obtain the isomorphism

HomM−(γM , M) : HomM−(M ⊗
R

B, M) → HomM−(M ⊗
N

M, M)(4.2.39)

We shall denote the left M–dual of MX as HomM−(X, M) = ∗X. First, we have that

∗(M ⊗
N

M) 
 End−N(M),

by the inverse equivalences

HomM−(M ⊗
N

M, M) → End−N(M), Θ 	→ {αΘ : m′ 	→ Θ(m′, )}
End−N(M) → HomM−(M ⊗

N

M, M), α 	→ {Θα : m ⊗ m′ 	→ mα(m′)}



38 Galois theory

Secondly, ∗(M ⊗
R

B) = M ⊗
R

∗B by the inverse equivalences

HomM−(M ⊗
R

B, M) → M ⊗
R

∗B, Υ 	→ Υ(1M ⊗
R

bi) ⊗
R

βi

M ⊗
R

∗B → HomM−(M ⊗
R

B, M), m ⊗
R

ϕ 	→ {m′ ⊗
R

b′ 	→ m′mϕ(b′)},

using the finitely generated projective basis
∑

i bi ⊗
R

βi ∈ B ⊗
R

∗B. �

3. Quantum groupoid Galois extensions

The next task is to formulate what we mean by Galois extension in the case of a DDA.

Following the same strategy that we had when defining modules and comodules, we would like

the definition to imply that the extension is Galois with respect to the constituent bialgebroids

in a consistent way. The different notions of bialgebroid Galois extensions (in the action and

coaction pictures) would thus be unified. This is in fact the main result of this section. The

standing assumption is that A is a DDA with vertical and horizontal Hopf algebroids V and

H . Put equivalently, V is a Frobenius Hopf algebroid and Hop is its dual. We begin with the

action picture.

3.1. Action picture. Let A be a DDA, M a right A–module algebra and N = MA the

subring of invariants. We define the canonical maps

ΓM : M ⊗
R

H → End(MN)(4.3.1)

m ⊗ h 	→ {m′ 	→ m(m′ � h)}
and

ΓM : H ⊗
R

M → End(NM)(4.3.2)

h ⊗ m 	→ {m′ 	→ (m′ � h)m}
A right A–module is a right module over the horizontal right bialgebroid and indeed, 4.3.1 and

4.3.2 are nothing but the two canonical maps belonging to the right horizontal bialgebroid H

over R, as defined in 4.2.28 and 4.2.26. We recall the facts established there, that ΓM extends

to a map of M–rings ΓM : M ⊗
R

Hop → Endl(MN) and ΓM extends to a map ΓM : H ⊗
R

m →
Endr(MN), where Endl(MN ) means that we regard endomorphisms as acting from the left and

accordingly, the elements of Endr(MN ) act from the right.

3.2. Coaction picture. Now let M be an A–comodule algebra, N = M co−A the subring

of coinvariants (which, by our earlier results, coincides with the A–invariant subring). The

canonical maps in the coaction picture are

γM :M ⊗
R

M → M ⊗
T

V(4.3.3)

m ⊗ m′ 	→ mm′(0) ⊗
T

m′(1)
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and

γM :M ⊗
R

M → M ⊗
B

V(4.3.4)

m ⊗ m′ 	→ m(0)m
′ ⊗

B

m(1)

A right A–comodule is exactly a right comodule over the vertical Hopf algebroid V , and 4.3.3

and 4.3.4 are precisely the canonical maps for the left vertical bialgebroid V over B and the

right vertical bialgebroid V over T , respectively. Recall that both γM and γM are M–bimodule

maps and furthermore, both extend to M–coring maps. We re-write the M–bimodule structure

on M ⊗
T

V and M ⊗
B

V in the double algebraic notation,

m′ · (m ⊗
T

v) · m′′ = m′mm′′(0) ⊗
T

v ◦ m′′(1)(4.3.5)

m′ · (m ⊗
B

v) · m′′ = m′
(0)mm′′ ⊗

B

m′
(1) ◦ v(4.3.6)

We saw in the discussion of Hopf algebroids that the existence of a bijective antipode leads to

the equivalence of the comodule categories over the constituent (left and right) bialgebroids.

This removes some of the ambiguity in defining a Galois extension. The content of the next

Lemma is that for a right V –comodule algebra M , it is immaterial whether we define the Galois

property of N = M co−V ⊆ M as being bialgebroid Galois with respect to the left or to the

right constituent bialgebroid.

Lemma 4.3.7. Let M be a right V -comodule algebra over the Hopf algebroid V . Then γM

is an isomorphism if and only if γM is.

Proof. Let φ denote the composite

M ⊗
T

V
δM ⊗

T
V

�� M ⊗
B

V ⊗
T

V
M ⊗

B
V ⊗S

�� M ⊗
B

V ⊗
R

V
M ⊗

B
μV

�� M ⊗
B

V

i.e., m ⊗
T

v 	→ m(0) ⊗
T

m(1)S(v), where S is the antipode of the Hopf algebroid V .

Then φ has inverse

φ−1(m ⊗
B

v) = m(0) ⊗
T

S−1(v)m(1) .

and one obtains that φ ◦ γM = γM . �

A module over a DDA is simultaneously a a module over the horizontal Hopf algebroid and a

comodule over the vertical Hopf algebroid (such that the respective invariants and co-invariants

coincide). This means that in a sense, the DDA is a large enough structure to encompass both

the action and coaction pictures of Hopf algebroid (bialgebroid) extension. The next theorem

shows that the notion of ’double algebra Galois extension’ is essentially unique.

Theorem & Definition 4.3.8. Let A be a distributive double algebra and M a right

H-module algebra, equivalently a right V -comodule algebra, over the horizontal, resp. vertical

Hopf algebroid of A. Let N = MH ≡ M co-V . Then N ⊆ M is called an A-Galois extension if

anyone of the following equivalent conditions hold:
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(1) γM is iso. (2) γM is iso.

(3) ΓM is iso and MN is fgp. (4) ΓM is iso and NM is fgp.

Proof. (1) ⇒ (3) Considering it as a right M-module map, γM induces the isomorphism

(of left M-modules)

γM ∗
: Hom−M(M ⊗

T

V, M)
∼→ Hom−M(M ⊗

N

M, M) .

If χ ∈ Hom−M(M ⊗
T

V, M) then χ(1 ⊗
T

) ∈ Hom(VT , MT ) because

χ(1 ⊗
T

v � t) = χ(1 ⊗
T

v ◦ ϕR(t))

= χ

(
j(ϕR(t))(0) ⊗

T

v ◦ j(ϕR(t))(1)

)

= χ(1 ⊗
T

v)j(ϕR(t)) .

Thus we have a well defined map (of left M-modules)

Hom−M(M ⊗
T

V, M) → Hom(VT , MT )(4.3.9)

χ 	→ χ(1 ⊗
T

)

We claim that this map is an isomorphism with inverse

κ 	→ {m ⊗
T

v 	→ κ(v ◦ S−1(m(1)))m(0)}

This follows from the computation

χ(m ⊗
T

v) = χ(m(0) ⊗
T

ϕT (m(1)) � v) = χ(m(0) ⊗
T

v ◦ ϕLϕT (m(1)))

= χ(m(0) ⊗
T

v ◦ S−1(m(1)
(2)) ◦ m(1)

(1))

= χ(m(0)
(0) ⊗

T

v ◦ S−1(m(1)) ◦ m(0)
(1))

= χ(1 ⊗
T

v ◦ S−1(m(1))) m(0)

on the one hand and on the other hand from δM(1) = 1 ⊗
B

e. Composing the map (4.3.9) with

the isomorphism

Hom(VT , MT ) → M ⊗
R

H(4.3.10)

κ 	→ κ(xj) ⊗
R

yj
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where xj ⊗
R

yj ≡ ΔR(e) is the dual basis of ϕR, we obtain the left vertical arrow in the diagram

(4.3.11) Hom−M(M ⊗
T

V, M) γM∗

��

��

Hom−M(M ⊗
N

M, M)

��
M ⊗

R

H
ΓM

�� End(MN )

The vertical arrow on the right is the isomorphism σ 	→ σ( ⊗
N

1) therefore the composite along

the top and right is χ 	→ χ( ⊗
T

e). The other two compose to give

χ 	→ χ(1 ⊗
T

xj) ⊗
R

yj 	→ χ(1 ⊗
T

xj)( � yj) .

In order to see commutativity of the diagram we need a calculation.

χ(1 ⊗
T

xj)(m � yj) = χ(1 ⊗
T

xj) m(0) . ϕT (m(1) � yj)

= χ(m(0) ⊗
T

xj ◦ m(1) ◦ ϕRϕT (m(2) � yj))

= χ(m(0) ⊗
T

xj ◦ (m(1) � ϕT (m(2) � yj))

= χ(m(0) ⊗
T

xj ◦ (m(1) � yj)

= χ(m(0) ⊗
T

ϕLϕT (m(1)))

= χ(m(0) . ϕT (m(1)) ⊗
T

e) = χ(m ⊗
T

e) ,

where in the fifth equality we used [79, Equation (4.16)]. So (4.3.11) is commutative and

therefore ΓM is an isomorphism.

The proof of (2) ⇒ (4) goes similarly by proving commutativity of the diagram

(4.3.12) HomM−(M ⊗
B

V, M)
γ∗

M ��

��

HomM−(M ⊗
N

M, M)

��
H ⊗

R

M
ΓM

�� End(NM)

with the left hand side arrow being the isomorphism χ 	→ xj ⊗
R

χ(1 ⊗
B

yj) and the one on the

right hand side being σ 	→ σ(1 ⊗
N

).

(3) ⇒ (2) Consider the diagram

(4.3.13) M ⊗
N

M γM ��

��

M ⊗
B

V

��

HomM−(End(MN ), M)
ΓM∗

�� HomM−(M ⊗
R

H, M)
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The lower horizontal arrow is an isomorphism since ΓM is. The vertical arrow on the left,

mapping m ⊗
N

m′ to the homomorphism α 	→ α(m)m′, is an isomorphism because MN is fgp.

The other vertical arrow is the composite of two maps,

HomM−(M ⊗
R

H, M) �� Hom( RH, RM) �� M ⊗
B

V

where the second one is the isomorphism κ 	→ κ(uk) ⊗
B

vk with uk ⊗
B

vk ≡ ΔB(i) denoting the

dual basis of ϕB. The first one, χ 	→ χ(1 ⊗
R

), is obviously invertible (in contrast to the similar

map in the (3) ⇒ (5) part) because the left M-module structure of M ⊗
R

H we need here is

the trivial one. It remains to show commutativity of (4.3.13). So we compute the action of the

lower three arrows,

m ⊗
N

m′ 	→ {α 	→ α(m)m′} 	→ {m′′ ⊗
R

h 	→ m′′(m � h)m′}
	→ {h 	→ (m � h)m′} 	→ (m � uk)m′ ⊗

B

vk

which is indeed γM if we compare the right H-action with the right V -coaction δM . This proves

that γM is invertible.

The proof of the implication (4) ⇒ (1) can be done similarly by using the diagram

(4.3.14) M ⊗
N

M γM

��

��

M ⊗
T

V

��

Hom−M(End(NM), M)
Γ∗

M

�� Hom−M(H ⊗
R

M, M)

where on the left hand side we have the map m⊗
N

m′ 	→ {α 	→ mα(m′)} which is an isomorphism

because NM is fgp. �

Ever since the classic paper [49] in Hopf Galois theory, there has been interest in results

that show that the Galois map is an isomorphism already if it is epi. This is important

for applications, since the latter statement is usually easier to prove. The next result is an

immediate generalization of [58, Theorem 8.3.1].

Proposition 4.3.15. Assume that V is a Frobenius Hopf algebroid and M is a right V -

comodule algebra with coinvariant subalgebra N . Then γM being epi implies that γM is an

isomorphism and MN is finitely generated projective.

Proof. Let V and H be the vertical and horizontal Hopf algebroid of a distributive double

algebra 〈A, ◦ , e, �, i〉. Then M is a right H-module algebra and e, the unit of V , is an integral

for H , therefore m � e ∈ N , m ∈ M . By the hypothesis there exists
∑

j mj ⊗
N

m′
j ∈ M ⊗

N

M

such that ∑
j

mjm
′(0)
j ⊗

T

m′(1)
j = 1 ⊗

T

i .
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Therefore we can write for arbitrary m ∈ M that∑
j

mj((m
′
jm) � e) =

∑
j

mj(m
′
j � e[1])(m � e[2])

=
∑

j

mj

(
m′(0)

j
. ϕT (m′(1)

j � e[1])
)

(m � e[2])

= (1 � (i ◦ e[1]))(m � e[2]) = (1 � i[1])(m � i[2])

= m � i = m

proving that (m′
j ) � e is dual basis of mj for MN , thus MN is fgp.

Next we show that γM is mono. Let
∑

i zi ⊗
N

wi ∈ Ker γM . Then

∑
i

zi(0)wi ⊗
B

zi(1) = 0 .

Using the dual bases for MN we find that∑
i

zi ⊗
N

wi =
∑

i

∑
j

mj((m
′
jzi) � e) ⊗

N

wi

=
∑

j

mj ⊗
N

∑
i

(
m′

j (0)
zi(0) . ϕB((m′

j (1)
◦ zi(1)) � e)

)
wi

=
∑

j

mj ⊗
N

∑
i

m′
j (0)

zi(0)wi . ϕB(m′
j (1)

◦ zi(1))

= 0 .

Therefore γM is mono. But it is also epi because γM is. Therefore γM is iso, and so is γM . �

We can thus enlarge Theorem 4.3.8 with two further equivalent conditions:

Corollary 4.3.16. Let A be a distributive double algebra and M a right H-module algebra,

equivalently a right V -comodule algebra, over the horizontal, resp. vertical Hopf algebroid of

A. Let N = MH ≡ M co-V . Then N ⊆ M is called an A-Galois extension if anyone of the

following equivalent conditions hold:

(1) γM is epi. (2) γM is epi.

(3) γM is iso. (4) γM is iso.

(5) ΓM is iso and MN is fgp. (6) ΓM is iso and NM is fgp.

4. Depth 2 extensions

In [47] a general, purely algebraic notion of depth 2 was introduced for ring extensions

and it was proven that for any balanced, depth 2 extension N ⊆ M there is a dual pair of

bialgebroids acting, respectively coacting on M such that N is the subalgebra of invariants,

respectively coinvariants and making the extension Galois. This result may be compared to

the fundamental Theorem of classical Galois theory which states that a normal and separable

extension of fields is a Galois extension. The analogy is that ’depth 2 and balanced’ is an intrisic
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characterization of a ring extension which makes no reference to an action of a symmetry, just

like ’normal and separable’ is an intrisic characterization of a field extension which makes no

reference to any Galois group.

We recall the necessary definitions from [47].

Definition 4.4.1. A ring extension N ⊆ M is called left depth 2 if

NM ⊗
N

MM ⊕ ∗ ∼= ⊕n
NMM

for some positive integer n; it is called right depth 2 if

MM ⊗
N

MN ⊕ ∗ ∼= ⊕m
MMN

for some integer m. It is simply depth 2 if it is both left– and right depth 2.

A more useful equivalent definition is in terms of the depth 2 quasibasis. Introducing the

notation A = End NMN and B = (M ⊗
N

M)N , the following Lemma holds.

Lemma 4.4.2. An extension N ⊆ M is left depth 2 if and only if there exist bi ∈ B and

βi ∈ A such that ∑
i

b1
i ⊗ b2

i βi(m) = m ⊗ 1 for all m ∈ M,

and it is left depth 2 if and only if there exist ci ∈ B and γi ∈ A such that

∑
i

γi(m)c1
i ⊗ c2

i = m ⊗ 1 for all m ∈ M.

{b1
i , β

2
i } is the left D2 quasibasis and {c1

i , γ
2
i } is the right D2 quasibasis.

Theorem 4.4.3. Let N → M be a depth 2 extension of rings; then A = End NMN is a left

bialgebroid over R with a left action of A on M . If MN is a balanced module, then the subring

of invariants is N . The base ring is the centralizer R = CM(N) and the structure maps of the

bialgebroid 〈A, R, sA, tA, ΔA, εA〉 are

(1) sA(r) = λ(r) : m 	→ rm, tA(r) = ρ(r) : m 	→ mr

(2) r · α · r′ = λ(r)ρ(r′)α : m 	→ rα(m)r′

(3) ΔA(α) =
∑

i γi ⊗
R

c1
i α(c2

i )

(4) εA(α) = α(1M)

Tha action of A on M is the canonical action of endomorphisms, α � m = α(m). The map

ΓM : M � A → End(MN)(4.4.4)

m � α 	→ λ(m)α

is an isomorphism, making N ⊆ M an A–Galois extension.

The DDA generalization of this Theorem is related to the special case of Frobenius D2

extensions.
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Theorem 4.4.5. For an algebra extension N ⊆ M the following conditions are equivalent.

(1) There is a Frobenius Hopf algebroid V and a coaction of V on M such that N ⊆ M

is V -Galois.

(2) N ⊆ M is of depth 2 and Frobenius and MN is balanced.

Proof. (1) ⇒ N ⊆ M is Frobenius: Consider the composite

(4.4.6) M ⊗
N

M γM

�� M ⊗
T

V M ⊗S �� M ⊗
R

H ΓM

�� End(MN)

where the middle arrow is meaningful in the double algebraic picture because V and H have

the same underlying k-module A and S(t�a) = S(a)�ϕBϕR(t) = ϕR(t) ◦ a holds for all a ∈ A,

t ∈ T , see [79, Lemma 5.4]. Computing the value of the map (4.4.6) on m ⊗
N

m′ we obtain

mm′(0)(m′′ � S(m′(1))) = mm′(0)m′′(0) . ϕT (m′′(1) � S(m′(1)))

= mm′(0)m′′(0) . ϕT ϕL(m′(1) ◦ m′′(1))

= m(m′m′′)(0) . ϕT ((m′m′′)(1) � e)

= m((m′m′′) � e)

Therefore (4.4.6) has the familiar form m ⊗
N

m′ 	→ mψm′ in terms of the N -N -bimodule map

ψ = � e from M into N . Since (4.4.6) is isomorphism it follows that ψ is a Frobenius

homomorphism with dual basis obtained from id M by applying the inverse of (4.4.6) .

(1) ⇒ N ⊆ M is D2 : Since T V is fgp and γM provides an M-N -bimodule isomorphism

M ⊗
N

M
∼→ (MMN ) ⊗

T

V , it follows that N ⊆ M is right D2. Similarly, the existence of the

isomorphism γM and the BV being fgp imply that N ⊆ M is left D2.

(1) ⇒ N ⊆ M is balanced : This follows from that every V -extension is balanced, see

Lemma 4.2.25.

(2) ⇒ (1): The endomorphism algebra Hop := End( NMN ) has a natural structure of a

Frobenius Hopf algebroid, see [79, Subsection 8.6] or [12]. Moreover, the natural action of Hop

on M makes it a left Hop-module algebra and the corresponding smash product M#Hop is

isomorphic to End(MN ) via ΓM by [47, Corollary 4.5]. So N ⊆ M will be V -Galois, for V the

dual of Hop, provided N = MH . But this is equivalent to MN being balanced. �

Note that in the presence of the Frobenius condition left D2 is equivalent to right D2 and

in the presence of the D2 Frobenius condition MN is balanced iff NM is balanced.





CHAPTER 5

Scalar extension

In the most basic sense, ’extension of scalars’ refers to replacing the field over which an

algebraic structure is defined with another. The simplest such construction is perhaps the

complexification of a real vector space: let V 
 Rn be an n–dimensional real vector space.

Then the complexification of V is the complex vector space V C = C ⊗
R

V of complex dimension

n.

A similar construction exists for Hopf algebras over a field. For a Hopf algebra H over k

and an extension field k ⊆ k′ of k, k′ ⊗
k

H has the structure of a Hopf algebra over the extended

field k′. Both constructions are clearly functorial. Underlying both is tensor functor,

C ⊗
R

: RM → CM

in the first case and

k′ ⊗
k

: kM → k′M

in the second. Replacing Hopf algebra, above, with Hopf algebroid and the fields k and k′ whith

noncommutative rings R′ and R, there is no obvious way that R′ ⊗
R

H carries a Hopf algebroid

structure. In the present section, we shall show that in a more involved sense, the scalar

extension construction does carry over to Hopf algebroids if we assume additional structure on

R′, namely that it is a braided commutative algebra over H .

The motivation for such a construction is a phenomenon in Hopf Galois theory which we

have already mentioned in Section 1 of Chapter 2. In [44], Greither and Pareigis show that

there are separable field extensions that are H–Galois for two non–isomorphic Hopf algebras

H and H ′ (note that this is a Hopf Galois extension, despite that it is an extension of fields),

which however, become isomorphic after an appropriate extension of scalars k ⊆ K, i.e. the

Hopf algebras H and H ′ are ’forms’ of each other.

Example 5.0.7 (Forms of Hopf algebras in Hopf Galois extensions). The first surprising

result is that it is possible that a separable field extension E|F is H–Galois for some Hopf

algebra H , yet it is not Galois in the classical sense. The example of Greither and Pareigis is

the following. Let the base field be the rationals, k = Q and K = Q( 4
√

2) the extension by the

real fourth root of 2 (which will be abbreviated ω = 4
√

2). It is known that Q( 4
√

2) |Q is not

Galois in the classical sense. It is however H∗
Q–Galois, where H∗

Q is the circle Hopf algebra over

base field H∗
Q. Over a field k, Hk is defined as an algebra with a presentation on generators
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Figure 1. H , H ′ are non–isomorphic Hopf algebroids; E = EndN−N(M) is the
endomorphism Hopf algebroid

and relations as

(5.0.8) H = k[c, s]/〈c2 + s2 − 1, cs〉.
The coalgebra structure is given on the generators by Δ(c) = c ⊗ c−s ⊗ s, Δ(s) = c ⊗ s+s ⊗ c,

ε(c) = 1, ε(s) = 0, S(c) = c and S(s) = −s. The action of H on K is given by the action on

ω, which is

1 ω ω2 ω3

c 1 0 −ω2 0

s 0 −ω 0 ω3

From the table above, it is clear that if k(ω) | k were Galois in the classical sense for some field

k, then the Galois group would be cyclic of order four (presented here redundantly on two

generators). In fact, extending the base field from Q to Q(i), the extension Q(i)⊗Q(ω) |Q(i)

becomes Galois with HQ extended to the Galois group QC4. Hence, Q and the group algebra

QC4 are Q(i)–forms of each other.

Interestingly, if the base field is further extended to Q(i, 4
√

2), then the extended ring

Q(i, 4
√

2)⊗Q( 4
√

2) becomes isomorphic to the dual of the extended group algebra, (Q(i, 4
√

2)C4)
∗,

as H∗
Q–comodules. In other words, the H∗

Q–comodule algebra K = Q(ω) is a form of the trivial

H∗
Q–comodule algebra H∗

Q.

There is also a second Hopf algebra H ′ which acts on K = Q( 4
√

2) such that the extension

Q( 4
√

2) |Q is Galois. As an algebra, it is given on generators and relations as

(5.0.9) H ′ = Q[c, s]/〈s2 − 2c2 + 2, cs〉.
The comultiplication on the generators is Δ(c) = c ⊗ c− 1

2
s ⊗ s, Δ(s) = c ⊗ s + s ⊗ c. The

action of H on K is given by the action on ω, which is

1 ω ω2 ω3

c 1 0 −ω2 0

s 0 ω3 0 −2ω

This Hopf algebra turns out to be a Q( 2
√

2)–form of Q(Z2 × Z2).
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This example illustrates that it is possible that a (separable) extension is Hopf Galois with

two different Hopf algebras (the previous example shows that this also holds for extensions

which are classicaly Galois). This ambiguity of Hopf Galois extensions is borne out by the

following theorem (Theorem 4.3 of [65]).

Theorem 5.0.10. Any classical Galois extension K|k can be endowed with an H–Galois

structure such that the Fundamental Theorem holds in the following form: there is a canonical

bijection between Hopf subalgebras of H and normal intermediate fields k ⊆ E ⊆ K.

The main result of this chapter can now be stated as follows: for any Hopf algebroid–

Galois extension N = MH ⊆ M , the endomorphism Hopf algebroid E is a Hopf algebroid

scalar extension (to be defined below) of H . Since any Galois extension is also Galois with

the endomorphism Hopf algebroid, we can say that any Galois Hopf–algebroid is a form of the

endomorphism Hopf algebroid.

The Hopf algebroid scalar extension is modelled on the construction of the Breziński–

Militaru theorem [21]. Briefly, it states that for a Hopf algebra H and a braided commutative

algebra A in the Yetter–Drinfel’d category HYDH over H , there is a Hopf algebroid structure

(over A) on the smash product A#H and may be regarded as a source of examples for Hopf

algebroids. We shall now state the necessary definitions and the theorem without proof to

lend substance to the preceding remarks and as an introduction to this chapter. Note that we

follow the conventions and notations of [21].

Let H be a Hopf algebra over k. A Yetter–Drinfel’d module 〈M, � , ρM〉 over H is si-

multaneously a module and a comodule over H with the left action � : H ⊗ M → M and

right coaction ρM : M → M ⊗ H , such that the action and coaction satisfy the following

compatibility condition:

(5.0.11) h(1) � m〈0〉 ⊗ h(2)m〈1〉 = (h(2) � m)〈0〉 ⊗ (h(2) � m)〈1〉h(1)

An algebra 〈A, μA, ηA〉 is called a braided commutative algebra (BCA) over H if it is an H–

module H–comodule algebra such that for all a, b ∈ A

(5.0.12) b〈0〉(b〈1〉 � a) = ab

is satisfied. Now, Theorem 4.1 of [21] states

Theorem 5.0.13. (Breziński – Militaru) Let H be a bialgebra, 〈A, � 〉 a left H–module

algebra and 〈A, ρA〉 a right H–comodule. Then 〈A, � , ρA〉 is a BCA in HYDH if and only if

〈A#H, s, t, Δ, ε〉 is a bialgebroid over A with source, target, comultiplication and counit given

by

• s(a) = a#1H , t(a) = a〈0〉 ⊗ a〈1〉
• Δ(a#h) = a#h(1) ⊗

A

1A#h(2)

• ε(a#h) = εH(h)a

for all a ∈ A, h ∈ H, where A#H denotes the smash product algebra.
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In [3], this construction was generalized to bialgebroids, Hopf algebroids and Frobenius Hopf

algebroids in the sense that from a bialgebroid (resp. (Frobenius) Hopf algebroid) H and a BCA

Q, the scalar extension Q#H is also a bialgebroid (resp. (Frobenius) Hopf algebroid) with base

algebra replaced by Q. It was argued that this construction plays the rôle of the extension of

scalars. In fact, it is even more useful: if N ⊆ M is a Galois extension for a (Frobenius) Hopf

algebroid, then the center CM(N) of the extension is always a braided commutative algebra

for H and the corresponding scalar extension CM(N)#H is the endomorphism Hopf algebroid

for the extension.

1. The YD category and the monoidal center

To introduce the basic ideas and relate them to standard and well–known constructions,

we first restrict ourselves to Hopf algebras. Generalizing the definitions to Hopf algebroids will

then be relatively straightforward. So, for a Hopf algebra 〈H, μ, η; Δ, ε; S〉, we define

Definition 5.1.1. The category of Yetter–Drinfel’d modules, HYDH has objects 〈Z, � , τ〉,
such that

• 〈Z, � 〉 is a right H–module,

• 〈Z, τ〉 is a left H–comodule, and

• the Yetter–Drinfel’d compatibility condition holds:

(5.1.2) h(2)(z � h(1))〈−1〉 ⊗ (z � h(1))〈0〉 = z〈−1〉h(1) ⊗ z〈0〉 � h(2)

the arrows f : Z → Z ′ in HYDH are simultaneously H–module and H–comodule maps.

The Yetter–Drinfel’d category HYDH is monoidal and –more surprisingly– braided. To

obtain the monoidal product of two Yetter–Drinfel’d modules Z and Z ′, we equip Z ⊗ Z ′ with

the following action and coaction:

(z ⊗ z′) � h = (z � h(1)) ⊗ (z′ � h(2))(5.1.3)

(z ⊗ z′)〈−1〉 ⊗ (z ⊗ z′)〈0〉 = z′〈−1〉z〈−1〉 ⊗ (z〈0〉 ⊗ z′〈0〉)(5.1.4)

where the alternate order of z and z′ in the second line should be noted. The monoidal unit is

k with the (trivial) action and coaction of k as monoidal unit of MH and HM, respectively.

The importance of the Yetter–Drinfel’d category stems from the fact that it is not only

monoidal but also braided. In terms of the action and coaction, the braiding is given by

βZ,Z′ : Z ⊗ Z ′ → Z ′ ⊗ Z(5.1.5)

z ⊗ z′ 	→ z′ � z〈−1〉 ⊗ z〈0〉

The existence of the antipode guarantees that the map β has an inverse, given by

β−1
Z,Z′(z ⊗ z′) = z � S(z′〈−1〉) ⊗ z′〈0〉.
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In the absence of antipode (i.e. for a bialgebra) β generally has no inverse and we only have

a pre–braiding. Recall that for 〈HYDH ,⊗, k; β〉 to be a braided category, β : ⊗ →̇ ⊗op should

be natural and it should satisfy the compatibilities

(5.1.6) βV ⊗W,Z = βV,Z ◦ βW,Z & βV,W⊗Z = βV,Z ◦ βV,W

In particular, βV,W is an H–comodule map

V ⊗ W
βV,W

��

δV ⊗ W

��

W ⊗ V

δW ⊗ V

��
H ⊗ V ⊗ W

βV,W

�� H ⊗ W ⊗ V

evaluating the diagram on v ⊗ w ∈ V ⊗ W yields

δW ⊗V ◦ βV,W (v ⊗ w) = v〈0〉〈−1〉(w � v〈−1〉)〈−1〉 ⊗ (w � v〈−1〉)〈0〉v〈0〉〈0〉 =

= w〈−1〉v〈0〉 ⊗ w〈0〉 � v〈0〉〈−1〉 ⊗ v〈0〉〈0〉 = (H ⊗ βV,W ) ◦ δV,W (v ⊗ w),

where the second equality holds because of the Yetter–Drinfel’d compatibility condition. It is

similarly proved that βV,W is an H–module map. The relations 5.1.6 hold ’automatically’, by

the H–module and H–comodule properties alone – we omit the simple proof.

Example 5.1.7. Crossed kG–modules Let kG be the group algebra of a finite group G. A

Yetter–Drinfel’d module V is a kG–module that is simultaneously G–graded such that

(5.1.8) |v � g| = g−1|v|g
is satisfied, where | · | : V → G defines the grading. Indeed, kG–comodule is nothing but a

G–graded module, and the YD–compatibility condition reduces to 5.1.8. The braiding, for

v ∈ V , w ∈ W is given by

(5.1.9) βV,W (v ⊗ w) = w � |v| ⊗ v

The most well–known example of this sort is undoubtedly the category of Z/2–graded (’super’)

vector spaces.

The paradigmatic example of a braided monoidal category is the module category of a

quasi–triangular Hopf algebra, where the braiding is given by the quasi–triangular structure

(the R–matrix). The celebrated Drinfel’d (or quantum–) double construction associates to any

Hopf algebra H a quasi–triangular Hopf algebra structure D(H) on H∗ ⊗ H . As it turns out,

there is an intimate connection with the Yetter–Drinfel’d category.

Proposition 5.1.10. Let H be a Hopf algebra, and D(H) = H∗op �� H the associated

Drinfel’d double. Then there is an equivalence of categories HYDH 
 MD(H).
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Proof. Recall that the Drinfel’d double D(H) = H∗op �� H has underlying k–module

H∗ ⊗ H , with multiplication μD given by

(5.1.11) (ϕ ⊗ h)(ψ ⊗ g) = ψ(2)ϕ ⊗ h(2)g 〈Sh(1), ψ(1)〉〈h(3), ψ(3)〉
for all ϕ, ψ ∈ H∗ and h, g ∈ H with unit 1D = ε ⊗ 1 and comultiplication

(5.1.12) ΔD(ϕ ⊗ h) = (ϕ(1) ⊗ h(1)) ⊗ (ϕ(2) ⊗ h(2))

with counit εD(ϕ ⊗ h) = ε̂(ϕ)ε(h). If H is finite dimensional (or at least f.g.p.), then D(H) is

quasi–triangular with R–matrix given by

(5.1.13) R =
∑

a

(ξa ⊗ 1) ⊗ (1̂ ⊗ ea)

where {ξa, ea}N
a=1 is a dual basis.

Clearly, H and H∗op are subalgebras of D(H) with inclusions given by ι : H → D(H),

ι(h) = 1̂ ⊗ h and ι : H∗op → D(H), ι(ϕ) = ϕ ⊗ 1. We then have ι(ϕ)ι(h) = ϕ ⊗ h and

(5.1.14) ι(h)ι(ϕ) = ι(ϕ(2))ι(h(2))〈Sh(1), ϕ(1)〉〈h(3), ϕ(3)〉
A right D(H)–module is then a right H–module by restriction of the action to ι(H) and a

left H–comodule by restriction to ι(H∗op) and the isomorphism HM ∼= MH∗op. The Yetter–

Drinfel’d compatibility of the action and coaction is equivalent to the commutation relation of

the subalgebras H and H∗op given by 5.1.14.

Looking at HYDH this way, the braided structure is due to the canonical R–matrix of the

Drinfel’d double. �

The monoidal center construction was introduced originally by Majid ([54], see also [41]

and [48]). It associates to any abstract monoidal category a braided monoidal category and

reproduces the Yetter–Drinfel’d category in the case of the module (or comodule) category

MH (MH). For now, let 〈C,⊗, ι〉 be a monoidal category. The center Z(C) is a category with

objects the pairs 〈Z, θ〉, where Z ∈ C and θ : Z ⊗ →̇ ⊗ Z is a natural isomorphism (with

components θY : Z ⊗ Y → Y ⊗ Z) satisfying

(5.1.15) θX ⊗Y = (X ⊗ θY ) ◦ (θX ⊗ Y ) and θι = Z

An arrow 〈Z, θ〉 → 〈Z ′, θ′〉 is an arrow α : Z → Z ′ in C such that

(5.1.16) (Y ⊗ α) ◦ θY = θ′Y ◦ (α ⊗ Y )

for all objects Y ∈ C.

This category is monoidal. For objects, the monoidal product is defined by

(5.1.17) 〈Z, θ〉 ⊗ 〈Z ′, θ′〉 = 〈Z ⊗ Z ′, (θ− ⊗ Z ′) ◦ (Z ⊗ θ′−)〉
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For arrows, it is simply the ordinary monoidal product in C. The category Z(C) is braided

with

(5.1.18) β〈Z,θ〉,〈Z′,θ′〉 = θZ′ .

Remark 5.1.19. A natural relaxation of the definition of the monoidal center is to let the

natural isomorphism θ be only a natural transformation (without inverse). This leads to the

notion of left (right) weak center, which seems to appear in [73], Definition 4.3 (see also [25],

Section 1.3 and [3]).

The left weak center
−→Z (C) has objects 〈Z, θ〉 with θ a (not necessarily invertible) natural

transformation θY : Z ⊗ Y → Y ⊗ Z which satisfies 5.1.15. The right weak center
←−Z (C) has

objects 〈Z, θ̄〉 with θ̄X : X ⊗ Z → Z ⊗ X. Of course, the relation 5.1.15 has to be modified

accordingly, i.e. θ̄X satisfies

(5.1.20) θ̄X ⊗Y = (θ̄X ⊗ Y ) ◦ (X ⊗ θ̄Y ) and θ̄ι = Z

This has the immediate consequence that the left and right weak centers are only pre–braided,

with the pre–braiding defined as
−→
β 〈Z,θ〉,〈Z′,θ′〉 = θZ′ for the left weak center and

←−
β 〈Z,θ̄〉,〈Z′,θ̄′〉 = θ̄Z

for the right weak center. Taking C = MH , with H a Hopf algebra, we shall see that the

existence of antipode guarantees that the center is always braided, not just pre–braided. For

bialgebras (bialgebroids) however, the weak center is the appropriate notion.

The center Z(MH) is the full subcategory of
−→Z (MH) in which the objects 〈Z, θ〉 have

invertible θ. For such objects 〈Z, θ−1〉 is an object in
←−Z (MH) in which θ̄ is invertible. The

center is braided monoidal.

Next, we would like to connect this abstract construction with Yetter–Drinfel’d modules.

To be in line with later generalizations to bialgebroids we consider bialgebras and accordingly,

the one–sided weak center for the reason explained above. We find the following

Proposition 5.1.21. For a bialgebra H, there is an isomorphism of categories
−→Z (MH) 


HYDH which is prebraided.

Proof. First, consider the functor
−→Z (MH) → HYDH . Let 〈Z, θ〉 ∈ −→Z (MH). The crucial

step is to introduce the left coaction

(5.1.22) τ : Z → H ⊗ Z, τ(z) = θH(z ⊗ i) = z〈−1〉 ⊗ z〈0〉

Before checking that this coaction makes Z a Yetter–Drinfel’d module, we note the following

important fact: the natural transformation θ may be re–expressed in terms of this coaction as

(5.1.23) θX(z ⊗ x) = x � z〈−1〉 ⊗ z〈0〉
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This is proved by evaluating the following diagram expressing the naturality of θX on z ⊗ i:

Z ⊗ H
θH ��

Z ⊗αx

��

H ⊗ Z

αx ⊗Z

��

z ⊗ i ��

��

z〈−1〉 ⊗ z〈−1〉

��

z ⊗ x �� θX(z ⊗ x) = x � z〈−1〉 ⊗ z〈−1〉

Z ⊗ X
θX

�� X ⊗ Z

where the map αx : H → X is defined as the evaluation of the action on x, αx(h) = x � h.

Composing the upper and right sides of the diagram yields z ⊗ i 	→ z〈−1〉 ⊗ z〈−1〉 	→
	→ x � z〈−1〉 ⊗ z〈−1〉, by 5.1.22 and the definition of αx. The left and lower sides compose to

give z ⊗ i 	→ z ⊗ x 	→ θX(z ⊗ x), proving 5.1.22. It is now easy to see that the coassocitivity

and counitality of the coaction τ follow from 5.1.15. �

The right weak center
←−Z (MH) =

−→Z (Mcoop
H ) =

−→Z (MHcoop) is the co-opposite of the left weak

center, and consists of objects 〈Z, θ̄〉 where the natural transformation θ̄Y : Y ⊗
R

Z → Z ⊗
R

Y

is subject to 5.1.20. θ̄ determines a right coaction

τ̄ : Z → Z ⊗
R

H , z 	→ z〈0〉 ⊗
R

z〈1〉 = θ̄H(i ⊗
R

z)

and can be expressed with this coaction as

(5.1.24) θ̄Y (y ⊗
R

z) = z〈0〉 ⊗
R

y � z〈1〉 .

In the language of Yetter-Drinfeld modules the objects of the center are two-sided Yetter-

Drinfeld modules 〈Z, � , τ, τ̄〉 ∈ HYDH
H in which the two coactions are inverse to each other,

i.e.,

z〈0〉
〈0〉 ⊗

R

z〈−1〉 � z〈0〉
〈1〉

= z ⊗
R

i(5.1.25)

z〈1〉 � z〈0〉
〈−1〉 ⊗

R

z〈0〉
〈0〉

= i ⊗
R

z .(5.1.26)

Combined with proposition 5.1.10, we have the following three–way isomorphism.

Theorem 5.1.27. For a bialgebra H, the following categories are isomorphic:

(1) the Yetter–Drinfel’d category HYDH

(2) the left weak center
−→Z (MH)

(3) the module category of the Drinfel’d double MD(H)

It would be desirable that the various generalizations of bialgebras (Hopf algebras) preserve

Theorem 5.1.27.
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We shall see that the isomorphism HYDH 
 −→Z (MH) holds true for bialgebroids. In the

case of bicoalgebroids, for example, the reasoning in the proof of Proposition 5.1.21 breaks

down, but HYDH is still a subcategory of
−→Z (MH).

2. Yetter–Drinfel’d modules over quantum groupoids

The constructions of the previous section generalize in a more or less straightforward manner

to bialgebroids. The difficulties are due to the fact that we are working over the underlying

category 〈RMR, ⊗
R

, R〉 instead of Mk, as we have done for bialgebras. From now on, MH shall

mean the module category over a bialgebroid H . We begin with the monoidal center: our

previous definition may be repeated almost verbatim.

Definition 5.2.1. For a right bialgebroid H over R, the left weak center
−→Z (MH) is the

category which has

• for objects, the pairs 〈Z, θ〉, where Z ∈ MH and θY : Z ⊗
R

Y → Y ⊗
R

Z a natural

transformation satisfying

(5.2.2) θX ⊗
R

Y = (X ⊗
R

θY ) ◦ (θX ⊗
R

Y ) and θR = Z

• for arrows, α : 〈Z, θ〉 the H–module maps α : Z → Z ′ which satisfy

(5.2.3) (Y ⊗
R

α) ◦ θY = θ′Y ◦ (α ⊗
R

Y )

for all objects Y ∈ MH .

−→Z (MH) is monoidal, with the monoidal product on objects given by

(5.2.4) 〈Z, θ〉 ⊗
R

〈Z ′, θ′〉 = 〈Z ⊗
R

Z ′, (θ− ⊗
R

Z ′) ◦ (Z ⊗
R

θ′−)〉

and on arrows, by the ordinary monoidal product of MH , namely ⊗
R

. The category Z(MH) is

pre–braided with

(5.2.5) β〈Z,θ〉,〈Z′,θ′〉 = θZ′

We now define the Yetter–Drinfel’d category over a bialgebroid.

Definition 5.2.6. For a right bialgebroid 〈H, �, i, R, ϕT , ϕB, ΔR, ϕR〉 the category HYDH

has objects 〈Z, � , τ〉 where

(1) 〈Z, � 〉 is a right H-module

(2) 〈Z, τ〉 is a left H-coaction

(3) The action and coaction satisfy the Yetter-Drinfeld condition

(5.2.7) h[2] � (z � h[1])〈−1〉 ⊗
R

(z � h[1])〈0〉 = z〈−1〉 � h[1] ⊗
R

z〈0〉 � h[2] .
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The arrows are the H-module H-comodule maps Z → Z ′. The monoidal product of two

Yetter-Drinfeld modules Z and Z ′ is Z ⊗
R

Z ′ equipped with

(z ⊗
R

z′) � h = (z � h[1]) ⊗
R

(z′ � h[2])

(z ⊗
R

z′)〈−1〉 ⊗
R

(z ⊗
R

z′)〈0〉 = z′〈−1〉
� z〈−1〉 ⊗

R

(z〈0〉 ⊗
R

z′〈0〉)

The monoidal unit is R with r � h = r � h and r〈−1〉 ⊗
R

r〈0〉 = ϕB(r) ⊗
R

e. The prebraiding is

defined by

(5.2.8) βZ,Z′ : Z ⊗
R

Z ′ → Z ′ ⊗
R

Z, z ⊗
R

z′ 	→ z′ � z〈−1〉 ⊗
R

z〈0〉

The definition is essentially identical to the bialgebra case, however one should bear in mind

the R-R-bimodule properties that are implied. We note, for reference, that 〈Z, � 〉 being a right

H-module means it is also an R-R-bimodule via r · z · r′ = z � (ϕB(r) � ϕT (r′)). Furthermore,

〈Z, τ〉 being a left H-coaction means

(1) τ : Z → H ⊗
R

Z is an R-R-bimodule map in the sense of

(5.2.9) (r · z · r′)〈−1〉 ⊗
R

(r · z · r′)〈0〉 = ϕB(r′) � z〈−1〉 � ϕB(r) ⊗
R

z〈0〉 ,

(2) τ is coassociative and counital,

z〈−1〉 ⊗
R

z〈0〉
〈−1〉 ⊗

R

z〈0〉
〈0〉

= z〈−1〉[1] ⊗
R

z〈−1〉[2] ⊗
R

z〈0〉

ϕR(z〈−1〉) · z〈0〉 = z

(3) τ factorizes through H ×
R

Z ⊆ H ⊗
R

Z, i.e. the Takeuchi property holds:

(5.2.10) ϕT (r) � z〈−1〉 ⊗
R

z〈0〉 = z〈−1〉 ⊗
R

z〈0〉 � ϕT (r)

The proof of the isomorphism
−→Z (MH) ∼= HYDH is along the lines of the proof for bialgebras.

We indicate here the finer points. For an object 〈Z, θ〉 ∈ −→Z (MH), introduce again the coaction

τ(z) = θH(z ⊗
R

i) = z〈−1〉 ⊗
R

z〈0〉 which is the composite map:

τ : Z �� Z ⊗
R

R
Z ⊗

R
ϕB

�� Z ⊗
R

H θH �� H ⊗
R

Z

τ is an R-R-bimodule map. The left R-module structure is clearly preserved, since all maps in

the composite are left R-module maps. As for the right R-module structure, we have

ϕB(r) � z〈−1〉 ⊗
R

z〈0〉 = ϕB(r) � z〈−1〉 ⊗
R

z〈0〉 = θH(z ⊗
R

ϕB(r))

= θH(z � ϕT (r) ⊗
R

i) = τ(z � ϕT (r)) = τ(z · r).

In particular, this means that the right R–action we could construct from the H–coaction, as

we did in Lemma 3.2.5, coincides with the original R–action.
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For τ to be a coaction, the Takeuchi property 5.2.10 must also hold, i.e. for r ∈ R, z ∈ Z:

ϕT (r) � z〈−1〉 ⊗
R

z〈0〉 = ϕT (r) � z〈−1〉 ⊗
R

z〈0〉 = θH(z ⊗
R

ϕT (r))

= θH((z ⊗
R

i) � ϕT (r)) = τ(z) � ϕT (r)

= z〈−1〉 ⊗
R

z〈0〉 � ϕT (r).

Again, the naturality of θ allows us to re-express θX in terms of the coaction τ for all X:

(5.2.11) θX(z ⊗
R

x) = x � z〈−1〉 ⊗
R

z〈0〉

The coassociativity and counitality of τ is proved as in Proposition 5.1.21, and the condition for

5.2.11 to be an H-module map is equivalent to the Yetter–Drinfel’d condition 5.2.7. Summing

up, we have

Theorem 5.2.12. For a right bialgebroid H over R, there is a monoidal pre–braided iso-

morphism of categories
−→Z (MH) ∼= HYDH .

Definition 5.2.13. For a right bialgebroid H the commutative monoids in Z(MH) are

called BCAs (braided commutative algebras) over H . The commutative monoids in
−→Z (MH)

and
←−Z (MH) are called left and right pre-BCAs over H , respectively.

Therefore a left pre-BCA consists of an algebra Q with an algebra map η : R → Q and a

Yetter-Drinfeld module structure 〈Q, � , τ〉 ∈ HYDH such that

η(r) q η(r′) = r · q · r′(5.2.14)

(qq′) � h = (q � h[1])(q′ � h[2])(5.2.15)

1 � h = η ϕR(h)(5.2.16)

(qq′)〈−1〉 ⊗
R

(qq′)〈0〉 = q′〈−1〉
� q〈−1〉 ⊗

R

q〈0〉q′〈0〉(5.2.17)

η(r)〈−1〉 ⊗
R

η(r)〈0〉 = ϕB(r) ⊗
R

1(5.2.18)

and the prebraided commutativity

(5.2.19) (q′ � q〈−1〉)q〈0〉 = qq′

holds. If Q is a BCA then there exists also a right coaction τ̄ with which 〈Q, � , τ̄〉 ∈ YDH
H and

which is inverse to τ in the sense of equations (5.1.25), (5.1.26).

We note that the ground ring R of the bialgebroid is always a BCA with the structure

〈R, μR, R〉 that comes from R being the monoidal unit of
−→Z (MH).

3. Scalar extension of quantum groupoids

We shall first state the generalization of 5.0.13 to bialgebroids and give a straightforward

proof. After presenting a more categorical approach we prove some important properties of

the construction and discuss the extension to Hopf algebroids and Frobenius Hopf algebroids.
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Theorem 5.3.1. Let H be a right bialgebroid and let Q be a left pre-BCA over H. Then

the smash product G := H#Q is a right bialgebroid over Q with structure maps

sG(q) = i#q(5.3.2)

tG(q) = q〈−1〉#q〈0〉(5.3.3)

ΔG(h#q) = (h[1]#1) ⊗
Q

(h[2]#q)(5.3.4)

εG(h#q) = η(εH(h))q(5.3.5)

where η : R → Q is the unit of Q. Moreover, h 	→ h#1 is a bialgebroid map ι : H → G.

Proof. First note that sG (tG) is an algebra morphism (anti–algebra morphism) from Q

to Q#H , respectively, and the Q-Q-bimodule structure on H#Q is given by:

q′ · (h#q) = (h#q)tG(q′) = hq′〈−1〉
#q′〈0〉q, and(5.3.6)

(h#q) · q′ = (h#q)sG(q′) = h#qq′(5.3.7)

(recall that H#Q is a right bialgebroid). The comultipliction is a map

(5.3.8) ΔG : H#Q → H#Q ×
Q

H#Q

in other words, the Takeuchi property holds:

sG(q′)(h#q)[1] ⊗
Q

(h#q)[2] = i � h[1][1]#q′ � h[1][2] ⊗
Q

h[2]#q

= h[1]#1 ⊗
Q

h[2](q′ � h[1][2])〈−1〉#(q′ � h[1][2])〈0〉q

= h[1]#1 ⊗
Q

q′〈−1〉
h[2][1]#(q′〈0〉 � h[2][2])q

= h[1]#1 ⊗
Q

(q′〈−1〉
#q′〈0〉)(h[2]#q) = (h#q)[1] ⊗

Q

tG(q′)(h#q)[2].

ΔG is easily seen to be comultiplicative, and also multiplicative by the following calculation:

ΔG((h#q)(h′#q′)) = ΔG(h � h′[1])#(q � h′[2])q′)

= (h � h′[1])[1]#1 ⊗
Q

(h � h′[1])[2]#(q � h′[2])q′

= h � h′[1][1]#1 � h′[1][2] ⊗
Q

h[2] � h′[2][1]#(q � h′[2][2])q′

= ΔG((h#q)ΔG(h′#q′).

The rest of the bialgebroid axioms are easily checked. �

We can look at the bialgebroid structure on H#Q more abstractly as follows. Recall that

for any H-module algebra Q, the category of modules over the smash product algebra MH#Q

can be identified with the category of internal Q-modules in MH , which we denote (MH)Q. To

any action X ⊗
R

Q → X, x ⊗ q 	→ x · q in MH , we can associate the H#Q–action

X ⊗ (H#Q) → X, x ⊗ (h#q) 	→ (x � h) · q
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Vice versa, any H#M–module is both an H–module and an M–module, and the M–action

is an H–module map. If Q is moreover a BCA, then pre–braided commutativity ensures that

right Q-modules in MH are also left Q-modules. This defines a categorical embedding

(5.3.9) I : MH#Q = (MH)Q ↪→ Q(MH)Q

into the category of internal Q-Q-bimodules. Composing with the forgetful functor

U : Q(MH)Q → QMQ, we have:

MH#Q


� I ��

����
���

��
��

�
Q(MH)Q

U
��

QMQ

Both I and U are strong monoidal, hence also the composite UI : MH#Q → QMQ. By

Schauenburg’s theorem, this is equivalent to a Q-bialgebroid structure on H#Q such that the

monoidal structure of MH#Q is that of the module category of the bialgebroid! The forgetful

functor UI is associated to the algebra morphism

Qop ⊗ Q → H#Q(5.3.10)

q ⊗ q′ 	→ q〈−1〉#q〈0〉q′(5.3.11)

Compared with 5.3.1, this is just the map tG ⊗ sG : Qop ⊗ Q → H#Q.

In the motivating example of Hopf algebra scalar extensions, the tensor functor K ′ ⊗
K

extended to Hopf algebra map H → K ′ ⊗
K

H . For the present case of bialgebroid scalar

extensions, we have the following

Proposition 5.3.12. If H is a right bialgebroid over R and Q is a left pre-BCA over H

then the functor ⊗
R

Q : MH → (MH)Q is strong monoidal.

Proof. The monoidal structure of the functor ⊗
R

Q is given by the invertible natural

transformation:

QY,Y ′ : (Y ⊗
R

Q) ⊗
Q

(Y ′ ⊗
R

Q) → (Y ⊗
R

Y ′) ⊗
R

Q

(y ⊗
R

q) ⊗
Q

(y′ ⊗
R

q′) 	→ (y ⊗
R

y′ � q〈−1〉) ⊗
R

q〈0〉q′

the inverse is given by (y ⊗
R

y′) ⊗
R

q 	→ (y ⊗
R

1) ⊗
Q

(y′ ⊗
R

q). The unit part of the monoidal

structure is the H#Q-module map

Q0 : Q → R ⊗
R

Q , q 	→ e ⊗
R

q

which is obviously also invertible. �

In fact, this leads to yet another proof of the Theorem: consider the comonoid 〈H, ΔH , εH〉
in MH . The strong monoidal functor ⊗

R

Q maps H precisely to the comonoid 〈G, ΔG, εG〉 in
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MG (with G = H#Q and the notations of 5.3.1), which is a strong comonoid. By the results

of [80], EndG G 
 G has a bialgebroid structure.

We now prove two important properties of the scalar extension. First, it is transitive in the

following sense.

Proposition 5.3.13. If Q is a BCA over H and P is a BCA over H#Q then P is a BCA

over H, too. Furthermore, (H#Q)#QP ∼= H#RP .

Proof. The unit of P as a monoid in
−→Z (MH) will be the composition of the unit of Q as

an H-module and the unit of P as an H#Q-module: η = ηP ◦ ηQ : R → P . The H-module

structure on P is the restriction of the H#Q-action: p � h = p � (h#1). The H-comodule

structure on P is slightly more complicated. For p ∈ P , it will be denoted p 	→ p{−1} ⊗
R

p{0}

(note the curly brackets!) and is defined as

p{−1} ⊗
R

p{0} = (H ⊗
R

ηP )(p〈−1〉)p〈0〉 ≡ p〈−1〉H ⊗
R

p〈0〉Q · p〈0〉(5.3.14)

= p〈−1〉H ⊗
R

p〈0〉 � tH#Q(p〈−1〉Q).

Recall that p〈−1〉 ⊗
R

p〈0〉 denotes the H#Q-coaction on P . In the second equality, we introduced

the notation g = gH ⊗
R

gQ for elements g ∈ H#Q, to be used throughout.

It is simple to check counitality:

εH(p{−1}) · p{0} = εH(p〈−1〉H) · (p〈−1〉Q · p〈0〉)
= (εH(p〈−1〉H) · p〈−1〉Q) · p〈0〉 = εH#Q(p〈−1〉) · p〈0〉 = p.

Coassociativity requires a longer, but straightforward calculation:

p{−1} ⊗
R

p{0}
{−1} ⊗

R

p{0}
{0}

= p〈−1〉H ⊗
R

(p〈0〉〈−1〉tH#Q(p〈−1〉Q))H ⊗
R

(p〈0〉〈−1〉tH#Q(p〈−1〉Q))Q · p〈0〉〈0〉

= p〈−1〉H ⊗
R

p〈0〉〈−1〉H � p〈−1〉Q〈−1〉 ⊗
R

p〈−1〉Q〈0〉p〈0〉〈−1〉Q · p〈0〉〈0〉

= p〈−2〉H ⊗
R

p〈−1〉H � p〈−2〉Q〈−1〉 ⊗
R

p〈−2〉Q〈0〉p〈−1〉Q · p〈0〉

= p〈−2〉H ⊗
R

p〈−2〉Q · (p〈−1〉H ⊗
R

p〈−1〉Q) · p〈0〉

= p〈−1〉H[1] ⊗
R

p〈−1〉H[2] ⊗
R

p〈−1〉Q · p〈0〉 = p[−1][1] ⊗
R

p[−1][2] ⊗
R

p[0],

where we have used the definition 5.3.14 in the first equality, 5.3.3 in the third equality, the

Q-Q-bimodule structure 5.3.6 in the third equality and the definition of the coproduct of G

5.3.4 in the fifth.
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To prove the Takeuchi property, we use 5.3.6 and the fact that sH#Q(Q) and tH#Q commute

p{−1} ⊗
R

p{0} � sH(r) = p〈−1〉H ⊗
R

p〈−1〉Q · (p〈0〉 � (sH(r)#1))

= p〈−1〉H ⊗
R

p〈−1〉Q · (p〈0〉 � (sH#Q(ηQ(r))) = sH(r) � p〈−1〉 ⊗
R

p〈0〉.

With the Yetter–Drinfel’d condition,

h[2] � (p � h[1])〈−1〉 ⊗
R

(p � h[1])〈0〉

= h[2] � (p � (h[1]#1))〈−1〉H ⊗
R

(p � (h[1]#1))〈−1〉Q · (p � (h[1]#1))〈0〉

= p〈−1〉H � h[1] ⊗
R

(p〈−1〉Q � h[2]) · (p〈0〉 � h[3]) = p[−1] � h[1] ⊗
R

p[0] � h[2],

we have then established that P is an object of
−→Z (MH). It remains to show that it is also a

commutative monoid in the weak center. The bimodule property 5.2.14 holds:

r · p · r′ = p � (tH(r) � sH(r′)#1) = p � tH#Q(ηQ(r))sH#Q(ηQ(r′))

= ηP (ηQ(r))pηP (ηQ(r′)) = η(r)pη(r′)

P is obviously an H–module algebra by restriction of the H#Q–action. It is also an H–

comodule algebra, by the following calculation.

(pp′){−1} ⊗
R

(pp′){−1} = p′〈−1〉H
� p〈−1〉H[1] ⊗

R

(p′〈−1〉Q
� p〈−1〉H[2])p〈−1〉Q · p〈0〉p′〈0〉

= p′〈−1〉H
� p〈−2〉H ⊗

R

p〈−2〉Q(p′〈−1〉Q
� p〈−1〉H)p〈−1〉Q · p〈0〉p′〈0〉

= p′〈−1〉H
� p〈−1〉H ⊗

R

p〈−1〉Q · ηP (p′〈−1〉Q
� p〈0〉〈−1〉)p〈0〉〈0〉p′〈0〉

= p′〈−1〉H
� p〈−1〉H ⊗

R

ηP (p〈−1〉Q)p〈0〉ηP (p′〈−1〉Q
)p′〈0〉

= p′{−1}
� p{−1} ⊗

R

p〈0〉p′〈0〉

In the second equality, we used the coassociativity of the H#Q–coaction and 5.3.4. In the

fourth, we made use of the braiding formula 5.2.8. The H–coaction is unital, 1{−1} ⊗
R

1{0} =

i ⊗
R

1, and pre–braided commutativity also holds,

(p′ � p{−1})p{0} = (p′ � p〈−1〉)p〈0〉 = pp′

Summing up, we have shown that P is a BCA in
−→Z (MH). The isomorphism between the

iterated smash product and H#P is provided by the map h ⊗
R

q ⊗
Q

p 	→ h ⊗
R

q · p. It is easily

seen to be an invertible bialgebroid map. �

Remark 5.3.15 (A note on coring extensions). Answering a question of Gabriella Böhm

in the affirmative, we show that the coaction 5.3.14 is in fact derived from the (left) coring

extension H of H#Q. Coring extensions were defined in [14]; in this paper, the author only

considers right coring extensions, observing that the case of left extensions follow from an
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obvious left–right correspondence. We shall quote the left–sided versions of definitions and

results on coring extensions, but refer the reader to [14] for details.

Definition 5.3.16. Let A, B ∈ k − Alg, C an A–coring and D a B–coring; then D is a left

coring extension of C iff C is an D-C bicomodule with right coaction ΔC.

The bialgebroids H and H#Q provide an example of a coring extension. Indeed, H is an

R–coring and H#Q is a Q–coring; moreover, H#Q ∈ HMH#Q with ΔH#Q as right coaction:

the bicomodule property follows trivially from the coassociativity of ΔH .

Proposition 5.3.13 then follows from the following fundamental result on coring extensions

(cf. theorem 2.6 of [14]).

Theorem 5.3.17. Let C and D be corings over A and B, respectively. Then the following

are equivalent:

(1) D is a left extension of C
(2) there exists a k–additive functor F : CM → DM with the factorization property

CM
F ��

UC 		�
��

��
��

�
DM

UD

��
��

��
��

Mk

where UC and UD are the canonical forgetful functors.

For the full proof, cf. [14]. We note, however, that the functor F is constructed as follows.

Denote σ : C → D ⊗ C the D–coaction on C; for a left C–comodule M ∈ CM, define a

D–comodule structure on M with

M
∼→ C �C M

σ�M−→ (D ⊗
B

C) �C M
∼→ D ⊗

B

M(5.3.18)

m 	→ m〈−1〉{−1} ⊗
C

εC(m〈−1〉{0}) · m〈0〉,

where we used the notation σ(c) = c{−1} ⊗ c{0}.

Setting C = H#Q and D = H , it follows that we have a functor F : H#QM → HM,

which is essentially the content of proposition 5.3.13. The H–coaction on H#Q is given by

σ : H#Q → H ⊗
R

(H#Q), h#q 	→ h[1] ⊗ (h[2] ⊗ q). For a comodule P ∈ H#QM, the H–coaction

(from 5.3.18) is given by

p 	→ p〈−1〉H ⊗ p〈−1〉Q ⊗ p〈0〉 	→ (p〈−1〉H)[1] ⊗ (p〈−1〉H)[2] ⊗ p〈−1〉Q ⊗ p〈0〉 	→
	→ (p〈−1〉H)[1] ⊗ (εH((p〈−1〉H)[2])p〈−1〉Q) · p〈0〉 = p〈−1〉H ⊗ p〈−1〉Q · p〈0〉,

which is exactly the coaction 5.3.14.

The next proposition is, in a sense, a converse to the transitivity of scalar extension.
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Proposition 5.3.19. If η : Q → P is a monoid morphism in
−→Z (MH) between commutative

monoids (pre–BCAs over H) then there is a unique pre–BCA structure on P over H#Q which

returns the original pre–BCA over H when Proposition 5.3.13 is applied to it

Proof. The H#Q–action on P is

(5.3.20) p � (h#q) = (p � h)η(q)

The action 5.3.20 is the unique H#Q–action on P which restricts to the original H–action.

It is clearly an associative and unital action, since η is both an H–module map and an algebra

morphism, and makes P an H#Q–module algebra. The Q–bimodule structure induced by the

H#Q–action is the same as the one coming from the map η. It is obvious from the definitions

that p � sH#Q = pη(q). For the left action, we use braided commutativity in MH to obtain

(5.3.21) η(q)p = (p � η(q){−1})η(q){0} = (p � q〈−1〉)η(q〈0〉) = p � tH#Q(q).

The H#Q–coaction on P is

(5.3.22) p〈−1〉 ⊗
Q

p〈0〉 = (p〈−1〉H ⊗
R

1Q) ⊗
Q

p〈0〉H

This is the unique H#Q–coaction which projects to the original H–coaction. From 5.3.14,

we should have p〈−1〉H ⊗
R

p〈−1〉Q · p〈0〉 = p{−1} ⊗
R

p{0}. Applying the inverse of the natural

isomorphism Q ⊗
Q

→̇ id to both sides, we have

(5.3.23) (p{−1}#1Q) ⊗
Q

p{0} = (p〈−1〉H#p〈−1〉Q) ⊗
Q

p〈0〉 = p〈−1〉 ⊗
Q

p〈0〉

The bimodule property of 5.2.9 is obtained as follows.

(q·p · q′)〈−1〉 ⊗
Q

(q · p · q′)〈0〉 = (η(q)pη(q′)){−1}#1 ⊗
Q

(η(q)pη(q′)){0}

= η(q′){−1} � p{−1} � η(q){−1}#1 ⊗
Q

η(q){0}p{0}η(q′){0}

= q′〈−1〉
� p{−1} � q〈−1〉#1 ⊗

Q

η(q〈0〉)p{0}η(q′〈0〉)

= q′〈−1〉
� p{−1}[1] � q〈−1〉#1 ⊗

Q

η(q〈0〉)(η(q′〈0〉) � p{−1}[2])p{0}

= q′〈−1〉
� p{−1}[1] � q〈−1〉#q〈0〉(q′〈0〉 � p{−1}[2]) ⊗

Q

p{0}

= q′〈−1〉
� p{−1}[1] � q〈−2〉#(q′〈0〉 � p{−1}[2] � q〈−1〉)q〈0〉 ⊗

Q

p{0}

= (q′〈−1〉
#q′〈0〉)(p{−1}#1)(q〈−1〉#q〈0〉) = tH#Q(q′)p〈−1〉tH#Q(q) ⊗

Q

p〈0〉.

Coassociativity and counitality of 5.3.22 follow simply from the coalgebra structure 5.3.4

and 5.3.5 of the smash product. For P to be a Yetter–Drinfel’d module in
−→Z (MH), we need
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the Takeuchi property,

p〈−1〉 ⊗
Q

p〈0〉 � (i#q) = p{−1}#1 ⊗
Q

p{0}η(q) = p{−2}#1 ⊗
Q

(η(q) � p{−1})p{0}

= p{−1}[1]#q � p{−1}[2] ⊗
Q

p{0} = (i#q)p〈−1〉 ⊗
Q

p〈0〉,

and Yetter–Drinfel’d compatibility:

(h[2]#q)(p � h[1])〈−1〉 ⊗
Q

(p � h[1])〈0〉 = h[2] � (p � h[1]){−2}#q � (p � h[1]){−1} ⊗
Q

(p � h[1]){0}

= h[2] � (p � h[1]){−1}#1 ⊗
Q

(p � h[1]){0}η(q) = p{−1} � h[1]#1 ⊗
Q

(p{0} � h[2])η(q)

= p〈−1〉(h#q)[1] ⊗
Q

p〈0〉 � (h#q)[2].

We used 5.2.8 in the second equality and the Yetter–Drinfel’d condition for MH , 5.2.7 in the

third equality.

Now to see that P is also a BCA. The multiplication of P is an H#Q–module map:

(p � (h[1]#q)[1])(p′ � (h[2]#q)[2]) = (p � (h[1]#1)) (p′ � (h[2]#1)) = (p � h[1])(p′ � h[2])η(q)

= ((pp′) � h) η(q) = (pp′) � (h#q)

and also an H#Q–comodule map:

(pp′)〈−1〉 ⊗
Q

(pp′)〈0〉 = (pp′){−1}#1 ⊗
Q

(pp′){0} = p′{−1}
� p{−1}#1 ⊗

Q

p{0}p′{0}

= p′〈−1〉
p〈−1〉 ⊗

Q

p〈0〉p′〈0〉

The unit η is both an H–module map and H–comodule map and pre–braided commutativity

holds. �

The previous two results imply that the study of successive scalar extensions reduces to the

study commutative monoids in
−→Z (MH). This is a loose statement of the functoriality of the

scalar extension construction, in the following sense.

Corollary 5.3.24. Let H be a (right) bialgebroid over R, then there is a functor

S : (R ↓ BCA(MH)) → (H ↓ Bgd)

which associates to each object R → Q the scalar extension of H by Q.

Until now, we looked at the scalar extension as a map of bialgebroids. We now show that

it extends to a map of Hopf algebroids and Frobenius Hopf algebroids (double algebras). Let

〈H, R, sR, tR, ΔR, εR, S〉 be a Hopf algebroid, represented as right constituent bialgebroid +
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antipode, i.e. the antipode S : H → Hop
cop is a (co–) algebra anti–isomorphism satisfying

S(h[2])[1] ⊗
R

h[1]S(h[2])[2] = S(h) ⊗
R

1(5.3.25)

h[2]S−1(h[1])[1] ⊗
R

S−1(h[1])[2] = 1 ⊗
R

S−1(h)(5.3.26)

S ◦ tR = sR(5.3.27)

Proposition 5.3.28. Let (HR, HL, SH) be a Hopf algebroid as above, and Q a BCA over

the right constituent bialgebroid HR. Then the scalar extension H#Q is a Hopf algebroid over

Q with the inverse antipode

S−1 : H#Q → (H#Q)op
cop , h#q 	→ q〈−1〉S−1

H (h)[1]#q〈0〉 � S−1
H (h)[2](5.3.29)

Furthermore, if e is a Frobenius integral in H, then e#1 is a Frobenius integral in H#Q.

Proof. Observe that the antipode on H#Q can be expressed with its restrictions S|H#1

and S|i#Q to the subalgebras H and Q, respectively. Any element h#q ∈ H#Q can be written

h#q = (h#1)(i#q); using that S and S−1 are algebra anti–isomorphisms, we have

(5.3.30) S(h#q) = S(i#q)S(h#1) = SQ(s(q))(SH(h)#1),

and the same for the iverse antipode:

(5.3.31) S−1(h#q) = S−1(i#q)S−1(h#1) = S−1
Q (s(q))(S−1

H (h)#1)

(introducing the notation SH and SQ). The antipode and its inverse are anti–isomorphisms

when restricted to the image of s or t. Axiom 5.3.27 fixes the restriction of S to Im t,

(5.3.32) S(t(q)) = s(q)

and the restriction to Im s can be written

(5.3.33) S(s(q)) = ν ◦ t(q) := t(q′)

which defines the isomorphism ν, or equivalently, the element q′. Using 5.3.32 and 5.3.33, we

can express ν from S(s(q)) = S2 ◦ t(q) = ν ◦ t(q), i.e. ν = S2|Im t. For H#Q Frobenius

over Q, the map ν is then the Nakayama automorphism. For reference, the definition of the

amalgamated product over Q, to be used below:

(h′#q′)s(q) ⊗
Q

h′′#q′′ = h′#q′q ⊗
Q

h′′#q′′ = h′#q′ ⊗
Q

h′′q〈−1〉#q〈0〉q′′(5.3.34)

= h′#q′ ⊗
Q

(h′′#q′′)t(q)

Collecting the above results, the Ansatz for the antipode can be written

S(h#q) = t(q′)(SH(h)#1) = q′〈−1〉
SH(h)[1]#q′〈0〉 � SH(h)[2](5.3.35)

S−1(h#q) = t(q′)(S−1
H (h)#1) = q′〈−1〉

S−1
H (h)[1]#q′〈0〉 � S−1

H (h)[2](5.3.36)
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We have used 5.3.27 in deriving the Ansatz, so it remains to prove 5.3.25 and 5.3.26. It will

only be necessary to check 5.3.26:

(h#q)[2]S−1((h#q)[1])[1] ⊗
Q

S−1((h#q)[1])[2] = (h[2]#q)S−1(h[1]#1)[1] ⊗
Q

S−1(h[1]#1)[2]

= (h[2]#q)(i � S−1
H (h[1])[1]#1 � S−1

H (h[1])[2])[1] ⊗
Q

(i � S−1
H (h[1])[1]#1 � S−1

H (h[1])[2])[2]

= (h[2]#q)(S−1
H (h[1])[1]#1) ⊗

Q

(S−1
H (h[1])[2]#1 � S−1

H (h[1])[3])

YD
= (h[2]#q)(S−1

H (h[1])(1)#1) ⊗
Q

S−1
H (h[1])[2][2](1 � S−1

H (h[1])[2][1])〈−1〉#(1 � S−1
H (h[1])[2][1])〈0〉

⊗
Q

= (h[2]#q)(S−1
H (h[1])[1]#1 � S−1

H (h[1])[2][1]) ⊗
Q

S−1
H (h[1])[2][2]#1

= h[2]S−1
H (h[1])[1]#(q � S−1

H (h[1])[2])(1 � S−1
H (h[1])[3]) ⊗

Q

S−1
H (h[1])[4]#1

= h[2]S−1
H (h[1])[1]#q � S−1

H (h[1])[2] ⊗
Q

S−1
H (h[1])[3]#1

S−1
H= i#q � S−1

H (h[1])[1] ⊗
Q

S−1
H (h[1])[2]#1

= i#1 ⊗
Q

S−1
H (h[1])[2](q � S−1

H (h[1])[1])〈−1〉#(q � S−1
H (h[1])[1])〈0〉

YD
= i#1 ⊗

Q

q〈−1〉S−1
H (h[1])[1]#q〈0〉 � S−1

H (h[1])[2] = i#1 ⊗
Q

S−1
H (q#h).

Some comments on the calculation: we used the Ansatz 5.3.36 for the inverse antipode in the

second equality, Yetter–Drinfel’d compatibility for the BCA Q ∈ HYDH in the fourth, equation

5.3.34 in the fifth, axiom 5.3.26 for S−1
H in the eighth and YD–compatibility again in the tenth.

Since 5.3.35 and 5.3.36 only differ in that q is replaced by q′, the proof of 5.3.35 is exactly the

same. �

We could have arrived at this result by amending the proof of Theorem 5.3.1. If H is a

Frobenius Hopf algebroid then it has a distributive double algebra structure [79]. Therefore we

may assume that H is the horizontal Hopf algebroid of 〈A, ◦ , e, �, i〉. Then 〈H, ΔR, ϕR, ◦ , R ↪→
H〉 is a Frobenius algebra in MH , so mapped by the strong monoidal functor of Proposition

5.3.12 to a Frobenius algebra in MG. The comonoid part of this Frobenius algebra has already

been determined to be 〈G, ΔG, εG〉. The monoid part will provide a convolution product with

unit on G which, together with the smash product algebra structure, will make G a distributive

double algebra. This convolution product (vertical multiplication) is obtained as the composite

(h#q) ⊗
Q

(h′#q′) 	→ (h ⊗
R

h′ � q〈−1〉) ⊗
R

q〈0〉q′ 	→ h ◦ (h′ � q〈−1〉)#q〈0〉q′

and its unit element eG is the image of 1 ∈ Q under the map

Q
∼→ R ⊗

R

Q → H#Q .

So eG = e#1 is a two-sided Frobenius integral in G.
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Remark 5.3.37. The construction of a vertical multiplication on H#Q suggests the new

interpretation of the smash product as a double algebraic one. If 〈A, ◦ , e, �, i〉 is a DDA and

Q is a BCA over the bialgebroid H over R then there is a smash product double algebra A#Q

with

• underlying k-module A ⊗
R

Q,

• horizontal multiplication (a#q) � (a′#q′) = a � a′[1]#(q � a′[2])q′ ,

• horizontal unit i#1,

• vertical multiplication (a#q) ◦ (a′#q′) = a ◦ (a′ � q〈−1〉)#q〈0〉q′ ,

• and vertical unit e#1.

As a byproduct of the double algebraic picture we obtain the following result.

Proposition 5.3.38. For Frobenius Hopf algebroids H the prebraiding of the left weak

center
−→Z (MH) is a braiding. Therefore

−→Z (MH) = Z(MH) =
←−Z (MH) and every pre-BCA is a

BCA over H.

Proof. We claim that the inverse braiding encoded in the right coaction τ̄ by (5.1.24) is

given by

(5.3.39) q〈0〉 ⊗
R

q〈1〉 = ηQϕRϕT (xj � q〈−1〉)q〈0〉 ⊗
R

yj .

The proof is motivated by the double algebraic structure on H#Q given in the above

Remark but we do not use that the given structure maps satisfy the axioms of a DDA. Let us

compute the would-be ϕR of H#Q. It is

ΦR(h#q) = (e#1) � (h#q) = e#ηQϕR(h)q .

One conjectures (xj#1) ⊗
Q

(yj#1) to be its dual basis. Instead of proving that we prove its

special case

ΦR((i#q) ◦ (xj#1)) ◦ (yj#1) = (e#ηQϕRϕT (xj � q〈−〉)q〈0〉) ◦ (yj#1)

= yj � (ϕRϕT (xj � q〈−2〉) ◦ q〈−1〉)#q〈0〉

= yj � q〈−1〉 � ϕBϕRϕT (xj � q〈−2〉)#q〈0〉

= ϕR(i ◦ ϕR(q〈−1〉)[1]) ◦ ϕR(q〈−1〉)[2]#q〈0〉

= i ◦ ϕR(q〈−1〉)#q〈0〉

= i#q .

Comparing the first row with the Ansatz (5.3.39) and then using the vertical multiplication of

H#Q we arrive to

i#q = (e#q〈0〉) ◦ (q〈1〉#1)

= q〈1〉 � q〈0〉
〈−1〉

#q〈0〉
〈0〉
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which is equation (5.1.26). The verification of (5.1.25) is a bit longer,

q〈0〉
〈0〉 ⊗

R

q〈−1〉 � q〈0〉
〈1〉

= ηQϕRϕT (xj � q〈−1〉)q〈0〉 ⊗
R

q〈−2〉 � yj

= ηQϕRϕT (S−1(q〈−2〉) � xj � q〈−1〉)q〈0〉 ⊗
R

yj

= ηQϕRϕT (S−1(xk) � xj � (yk ◦ q〈−1〉))q〈0〉 ⊗
R

yj

= ηQϕRϕT ((S−1(yk) ◦ (S−1(xk) � xj)) � q〈−1〉)q〈0〉 ⊗
R

yj

= ηQϕRϕT ((xk ◦ (yk � xj)) � q〈−1〉)q〈0〉 ⊗
R

yj

= ηQϕRϕT (ϕRϕT (xj) � q〈−1〉)q〈0〉 ⊗
R

yj

= ηQϕR(ϕT (xj) � q〈−1〉)q〈0〉 ⊗
R

yj

= ηQϕR(q〈−1〉)q〈0〉 � ϕT (xj) ⊗
R

yj

= q ⊗
R

ϕRϕT (xj) ◦ yj

= q ⊗
R

i .

�

4. A monadic look at the scalar extension

In [81] a monadic characterization of bialgebroids was given, leading to the definition of a

2–category of bialgebroids. Without going into the details of this construction, we explain how

scalar extension fits in this picture.

For a right bialgebroid H over R, the forgetful functor U : MH → MRe is strong monoidal

(even strict monoidal, as dictated by Schauenburg’s theorem) and is right adjoint to the in-

duction functor I = ⊗
Re

H : MRe → MH . By the Eilenberg–Moore construction (see [53]) the

adjunction I � U gives rise to a monad T = 〈T, μ, η〉 on the category MRe with underlying

endofunctor T = UI : MRe→̇MRe and a comonad G = 〈G, Δ, ε〉 on the category MH with

underlying endofunctor G = IU : MH → MH . The monad multiplication is μ = UεI : TT→̇T

and the monad unit η : MRe→̇T is the unit of the adjunction. The comultiplication on the

comonad is Δ = IηU : G→̇GG and the counit ε : G→̇MH is the counit of the adjunction.

Denote MT the Eilenberg–Moore category of T–algebras, then MT can be identified with MH ,

since T = ⊗
Re

HRe . Also, the canonical forgetful functor UT : MT → MRe can be identified

with U : MH → MRe . The situation is summarized in the Figure 2.

By Prop. 2.1. of [81], the (strong) monoidal structure on U implies an opmonoidal structure

on the left adjoint I, and the adjunction is in the category of monoidal categories. This implies

that the unit and counit are monoidal natural transformations. The following definition is

essentially from [81] (see also [56]):
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Figure 2. Eilenberg monad and comonad

Definition 5.4.1. Let 〈M, ⊗ , i〉 be a monoidal category. Then a bimonad on M is a

monoid in the category of opmonoidal endofunctors from M to M. Thus, it is an endofunctor

T : M → M, furnished with:

• a natural transformation TX,Y : T (X ⊗ Y ) → T X ⊗ T Y , and

• an arrow T0 : T i → i

such that 〈T, TX,Y , T0〉 is an opmonoidal functor;

• a natural transformation μX : TTX → TX and

• a natural transformation ηX : X → TX

such that 〈T, μ, η〉 is a monoid in MM, and four compatibility axioms stating that μ is op-

monoidal,

TX,Y ◦ μX ⊗Y = (μX ⊗ μY ) ◦ TTX,TY ◦ TTX,Y(5.4.2)

T0 ◦ TT0 = T0 ◦ μi(5.4.3)

and that η is opmonoidal

ηX ⊗ ηY = TX ⊗Y ◦ ηX ⊗Y(5.4.4)

T0 ◦ ηi = i(5.4.5)

We state the following proposition without proof.

Proposition 5.4.6. The endofunctor T = UI = ⊗
Re

H : MRe → MRe is an opmonoidal

monad with the structure maps:

μX : X ⊗
Re

H ⊗
R

H → X ⊗
Re

H, x ⊗ h ⊗ h′ 	→ x ⊗ hh′(5.4.7)

ηX : X → X ⊗
Re

H, x 	→ x ⊗ 1H(5.4.8)

γX,Y : (X ⊗
R

Y ) ⊗
Re

H → (X ⊗
Re

H) ⊗
R

(Y ⊗
Re

H)(5.4.9)

(x ⊗ y) ⊗ h 	→ (x ⊗ h[1]) ⊗ (y ⊗ h[2])

π : R ⊗
Re

H → R, r ⊗ h 	→ ε(s(r)h)(5.4.10)
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For a scalar extension H#Q of a right bialgebroid H over R, the inclusion ι : H ↪→ H#Q

induces a monoidal forgetful functor U : MH#Q → MH . The left adjoint I � U is

I : MH → MH#Q, X 	→ X ⊗
H

(H#Q)

with unit

η : X → X ⊗
H

(H#Q)H(5.4.11)

x 	→ x ⊗ (i#1Q)

and counit

ε : Y ⊗
H

(H#Q)H#Q → Y(5.4.12)

y ⊗ (h ⊗ q) 	→ y � (h#q) = (y � h) · q

As R−R–bimodules, H#Q = H ⊗
Re

Q, so the induction functor ⊗
H

(H#Q) is isomorphic

to ⊗
R

Q. By Lemma 5.3.12, this functor is strong monoidal, hence also monoidal. It will

remain monoidal upon composition with the monoidal forgetful functor, making the canonical

monad T = 〈UF, UεF, η〉 a monoidal endofunctor. The compatibility of the monoidal and

monadic structure make T a monoidal monad, as opposed to the opmonoidal monad we called

bimonad earlier.

Definition 5.4.13. A monoidal monad in a monoidal category 〈M, ⊗ , i〉 a monoid in the

category of monoidal endofunctors M → M, i.e. a monoidal endofunctor 〈T, TX,Y , T0〉, with

• a natural map TX,Y : TX ⊗ TY → T (X ⊗ Y ), and

• an arrow T0 : T i → i

satisfying the appropriate coherence laws, and monad structure maps consisting of

• a natural transformation μX : TTX → TX and

• a natural transformation εX : X → TX

making 〈T, μ, η〉 a monoid in MM. In particular, the compatibility of the monoidal and monad

structures imply the following four diagrams:

T 2X ⊗ T 2Y
TTX,Y ◦TTX,TY

��

μX ⊗μY

��

T 2(X ⊗ Y )

μX ⊗ Y

��

i
Tη ◦ η

�� T 2i

μi

��
TX ⊗ TY

TX,Y

�� T (X ⊗ Y ) i
η

�� T i

for the monoidality of μ : TT→̇T , and
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X ⊗ Y

ηX ⊗ ηY

��

X ⊗ Y

ηX ⊗Y

��

i i

ηi

��
TX ⊗ TY

TX,Y

�� T (X ⊗ Y ) T i
T0

�� i

for the monoidality of η : id →̇T .

Braided commutative algebras can now be characterized as follows.

Proposition 5.4.14. Let Q be a BCA over the right bialgebroid H. Then the endofunctor

T = ⊗
R

Q is a monoidal monad on MH .

Proof. Recall from 5.3.12 that QX,Y : (X ⊗
R

Q) ⊗
R

(Y ⊗
R

Q) → (X ⊗
R

Y ) ⊗
R

Q reads,

on elements: (y ⊗
R

q) ⊗
Q

(y′ ⊗
R

q′) 	→ (y ⊗
R

y′ � q〈−1〉) ⊗
R

q〈0〉q′ and Q0 : Q → R ⊗
R

Q is

the natural isomorphism q 	→ e ⊗ q. The monad structure follows trivially from the algebra

structure of Q; we only check the compatibility of the monad and monoidal structure, i.e. the

four commutative diagrams above. For monoidality of multiplication,

μX,Y ◦ (QQX,Y ◦ QQX,QY ) [ (x ⊗ q ⊗ q′) ⊗ (y ⊗ q′′ ⊗ q′′′) ]

= μX,Y ◦ QQX,Y

[
(x ⊗ q ⊗ (y ⊗ q′′) � q′〈−1〉

) ⊗ q′〈0〉q′′′
]

= μX,Y ◦ QQX,Y

[
(x ⊗ q) ⊗ (y � q′〈−1〉(1) ⊗ q′′q′〈−1〉(2)

) ⊗ q′〈0〉q′′′
]

= μX,Y

[
x ⊗ (y � q′〈−1〉(1)

q〈−1〉) ⊗ q〈0〉q′′q′〈−1〉(2) ⊗ q′〈0〉q′′′
]

= x ⊗ (y � q′〈−1〉(1)
q〈−1〉) ⊗ q〈0〉q′′q′〈−1〉(2)

q′〈0〉q′′′

= x ⊗ y � (qq′)〈−1〉 ⊗ (qq′)〈0〉q′′q′′′

= QX,Y ◦ (μX ⊗ μY ) [ (x ⊗ q ⊗ q′) ⊗ (y ⊗ q′′ ⊗ q′′′) ] ,

where we have used braided commutativity in the fifth equality, and the second diagram reduces

to a triviality. We check one of the diagrams corresponding to monoidality of the unit map,

QX,Y ◦ (ηX ⊗ ηY )(x ⊗ y) = QX,Y (x ⊗ 1Q ⊗ y ⊗ 1Q)

= x ⊗ y � i ⊗ 1Q = ηX ⊗Y (x ⊗ y)

the other being even simpler. �

5. Application to Galois extensions

Our most important application of scalar extension by BCAs appears in Galois extensions.

We shall be working in the action picture.

Proposition 5.5.1. Let M be a monoid in MH over the right bialgebroid H and let N =

MH . Assume that HR is fgp and that the canonical map ΓM : H#M → End( NM) is an

isomorphism. Then the centralizer MN = {c ∈ M |nc = cn, n ∈ N} of the extension N ⊆ M
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is a left pre-BCA over H with H-module algebra structure inherited from MN ⊆ M (the

Miyashita-Ulbrich action) and with left coaction τ(c) := Γ−1
M (λM(c)) where λM(c) = {m 	→

cm}.

Proof. For each h ∈ H the action � h is an N -N -bimodule map. Therefore MH ⊆ M

is a sub-H-module algebra. As such the unit η : R → M has image in MH . Since ΓM is an

N -N -bimodule map, it restricts to an isomorphism (H ⊗
R

M)N ∼→ End( NMN ) between the

centralizers. The HR being fgp we have (H ⊗
R

M)N = H ⊗
R

MN . Since λ(c) for c ∈ MN

belongs to End( NMN ), the τ is a map MN → H ⊗
R

MN . The τ is uniquely determined by the

equation

(5.5.2) (m � c〈−1〉)c〈0〉 = cm , m ∈ M

from which the bimodule property (5.2.9) and the centrality (5.2.10) easily follow. The calcu-

lation

c(mm′) = ((mm′) � c〈−1〉)c〈0〉 = (m � c〈−1〉(1))(m′ � c〈−1〉(2))c〈0〉

(cm)m′ = (m � c〈−1〉)c〈0〉m′ = (m � c〈−1〉)(m′ � c〈0〉
〈−1〉

)c〈0〉
〈0〉

will imply coassociativity after verifying the next

Lemma 5.5.3. Under the assumptions of the Proposition and with the notations E :=

End( NMN ), C := MN the maps

E ⊗
C

E → HomN-N(M ⊗
N

M, M)(5.5.4)

α ⊗
C

α′ 	→ {m ⊗
N

m′ 	→ α(m)α′(m′)}
H ⊗

R

H ⊗
R

C → HomN-N(M ⊗
N

M, M)(5.5.5)

h ⊗
R

h′ ⊗
R

c 	→ {m ⊗
N

m′ 	→ (m � h)(m′ � h′)c}

are isomorphisms.

Proof. Using both the isomorphism ΓM and its restriction H#C
∼→ E we have a sequence

of isomorphisms

E ⊗
C

E
∼→ (H ⊗

R

C) ⊗
C

E
∼→ H ⊗

R

E = H ⊗
R

HomN-N (M, M)

∼→ HomN-N(M, H ⊗
R

M)
∼→ HomN-N(M, HomN-(M, M))

∼→ HomN-N(M ⊗
N

M, M)

The action of these isomorphisms can be computed by inserting α = ( � h)c and α′ = ( � h′)c′:

α ⊗
C

α′ 	→ (h ⊗
R

c) ⊗
C

α′ 	→ h ⊗
R

c α′( ) 	→ {m 	→ h ⊗
R

c α′(m)}
	→ {m 	→ {m′ 	→ α(m′)α′(m)}} 	→ {m′ ⊗

N

m 	→ α(m′)α′(m)}
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This proves that (5.5.4) is an isomorphism. The map in (5.5.5) is the composite

H ⊗
R

H ⊗
R

C

H ⊗
R

Γ

��

HomN−N(M ⊗
N

M, M)

H ⊗
R

E
∼= �� H ⊗

R

C ⊗
C

E
Γ⊗

C
E

�� E ⊗
C

E

∼=
��

of isomorphisms. �

Returning to the proof of the Proposition counitality of τ can be seen as

ϕR(c〈−1〉) · c〈0〉 = (1 � c〈−1〉)c〈0〉 = c1 = c .

As for the Yetter-Drinfeld compatibility condition it suffices to verify the equality

(m � c〈−1〉 � h(1))(c〈0〉 � h(2)) =
(
(m � c〈−1〉)c〈0〉

)
� h = (cm) � h

= (c � h(1))(m � h(2)) =
(
m � h(2) � (c � h(1))〈−1〉) (c � h(1))〈0〉

In order to see compatibility of τ with multiplication and unit in C it suffices to check

c′cm = c′(m � c〈−1〉)c〈0〉 = (m � c〈−1〉 � c′〈−1〉
)c′〈0〉c〈0〉 .

Finally, braided commutativity (c′ � c〈−1〉)c〈0〉 = cc′ follows from the more general relation

(5.5.2). �

Corollary 5.5.6. If N ⊆ M is a right A-Galois extension for a distributive double algebra

A then MN is a BCA over the horizontal Hopf algebroid H.

Proof. It suffices to prove that the prebraiding is invertible. Define the right coaction

τ̄(c) := (ΓM)−1(ρM(c)) where ρM is right multiplication on M . This is equivalent to τ̄ (c) =

c〈0〉 ⊗
R

c〈1〉 satisfying

(5.5.7) c〈0〉(m � c〈1〉) = mc , m ∈ M .

Applying (5.5.2) to (5.5.7) we obtain

(m � i)c = mc = (m � c〈−1〉 � c〈0〉
〈−1〉

) c〈0〉
〈0〉

from which equation (5.1.26) follows. Equation (5.1.25) can be seen similarly. �

Notice that this proof does not use very much from the Hopf algebroid structure. Therefore

the Corollary holds true for any right bialgebroid for which both HR and RH are fgp and for

all extensions for which both ΓM and ΓM are invertible.

For any Galois extension N = MH ⊆ M , the centralizer MN is a canonical BCA over H .

This begs the question what is the scalar extension of M by the centralizer?

Proposition 5.5.8. Let N ⊆ M be a Galois extension over the Frobenius Hopf algebroid

H. Then the restriction of the Galois map ΓM provides an isomorphism of Hopf algebroids

H#C ∼= E where E is the endomorphism Hopf algebroid of the extension.
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Proof. The structure maps (5.3.2), (5.3.3), (5.3.4) and (5.3.5) of the smash product are

mapped by ΓM to

sE : C → E c 	→ {m 	→ mc}(5.5.9)

tE : Cop → E c 	→ {m 	→ cm}(5.5.10)

ΔE : E → E ⊗
C

E such that α[1](m)α[2](m′) = α(mm′)(5.5.11)

εE : E → C α 	→ α(1)(5.5.12)

respectively, where note that multiplicativity of ΔE uniquely fixes it by Lemma 5.5.3, (5.5.4).

Now it is easy to check that ΓM : H#C → E satisfies the axioms of bialgebroid maps. �

This result gives partial control over the ambiguity in quantum groupoid extensions. If

H and H ′ are non–isomorphic quantum groupoids such that N = MH ⊆ M is Galois over

both (i.e. H and H ′ are forms of each other in the terminology of Greither and Pareigis),

then 5.5.8 implies that H#C ∼= H ′#C ∼= E, meaning that both H and H ′ are forms of the

endomorphism Hopf algebroid E. This leaves open the question whether H and H ′ are perhaps

scalar extensions of each other?



CHAPTER 6

Bicoalgebroids

Bicoalgebroids are a dualization of bialgebroids in the categorical sense (in the sense of

’reversing arrows’) and were proposed in [21]. This notion of dual is not to be confused

with the different kinds of bialgebroid–duals that were later introduced in [47], and that we

have mentioned in Chapter 1. The motivation for studying bicoalgebroids is two–fold. First,

it is well established that a bialgebroid may be thought of as a non–commutative analogue

of the algebra of functions on a groupoid, the latter being a bialgebroid over commutative

base, namely the algebra of functions on the 0–cells. It follows that a bicoalgebroid, in turn,

should be regarded as a non–commutative analogue of the groupoid itself. One can hope then

that geometric constructions on groupoids have direct non–commutative generalizations in the

context of bicoalgebroids. Secondly, just as bialgebroids play a fundamental rôle in depth–two

extensions of algebras, it is expected that bicoalgebroids are just as important in extensions

of coalgebras 1. A dual Hopf Galois theory for extensions of coalgebras was put forward in

[76]. Since Hopf algebra is a self–dual structure, a Hopf–Galois theory of coalgebra extensions

involves Hopf algebras acting (coacting) on coalgebras. A similar dualization of bialgebroid–

Galois theory however, should involve bicoalgebroids.

We begin by defining the module– and comodule categories over bicoalgebroids (Section 1).

The construction of the monoidal category of bicomodules over a ring is presented in Appendix

A. A Schauenburg–type result, which characterizes bicoalgebroids with the monoidality of their

comodule category, is proven in Section 2. Various notions of the cocenter of a coalgebra and

the cocentralizer of a coalgebra extension are discussed in Section 3. Section 4 is devoted

to a central result of this Chapter, the scalar extension for bicoalgebroids. We prove results

analogous to those proven for bialgebroids and supply a few examples. Finally, Section 5

rephrases scalar extension in comonadic terms, in analogy with Sect. 4 of Chap. 4.

1. The Definition

Throughout this chapter, k will be a field and the category M = Mk of k–modules will serve

as our underlying category. The unadorned ⊗ will always mean ⊗k. Just as a bialgebroid

H over R is a comonoid in the category RMR, a bicoalgebroid H over C is a monoid in the

bicomodule category over the base coalgebra C (see App. A). The frequently occuring C–

coactions will be denoted with square brackets, e.g. ρM : M → M ⊗ C, ρM(m) = m[0] ⊗ m[1]

to avoid confusion with coactions of the bicoalgebroid H .

1From a different approach, in [46] Kadison constructs bialgebroids from depth 2 extensions of coalgebras
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Definition 6.1.1. A left bicoalgebroid 〈H, Δ, ε, μ, η, α, β, C〉 consists of

• a k–coalgebra 〈H, ΔH , εH〉
• two coalgebra maps α : H → C and β : H → Ccop, such that α and β ’cocommute’,

i.e. α(h(1)) ⊗ β(h(2)) = α(h(2)) ⊗ β(h(1)). These maps furnish H with a (C ⊗
C)–bicomodule structure, such that (H ; λL, λR; ρL, ρR) ∈ C ⊗CMC ⊗C . The four C–

coactions are:

λL(h) = α(h(1)) ⊗ h(2) , ρL(h) = h(2) ⊗ β(h(1))

λR(h) = β(h(2)) ⊗ h(1) , ρR(h) = h(1) ⊗ α(h(2))

• C–bicomodule maps μH : H �C H → H and ηH : C → H (multiplication & unit)

making (H, λL, ρL) an algebra in CMC,

subject to the following axioms:

(1) The multiplication map μ : H �C H → H satisfies:

(6.1.2)
∑

i

μ(gi ⊗ hi
(1)) ⊗ α(hi

(2)) = μ(gi
(1) ⊗ hi) ⊗ β(gi

(2))

(2) and it is comultiplicative:

(6.1.3) Δ ◦ μ(
∑

i

gi ⊗ hi) =
∑

i

μ(gi
(1) ⊗ hi

(1)) ⊗ μ(gi
(2) ⊗ hi

(2))

(3) Furthermore, the product is counital (note that this axiom seems to be missing in Ref.

[21]):

(6.1.4) ε(g)ε(h) = ε ◦ μ(g ⊗ h)

(4) The unit map η : C → H satisfies the unit axiom:

(6.1.5) μ ◦ (η �H) ◦ λL = H = μ ◦ (H � η) ◦ ρL

(5) The unit map is compatible with the coalgebra structure in the following sense:

(6.1.6) Δ(η(c)) = η(c)(1) ⊗ η(α(η(c)(2))) = η(c)(1) ⊗ η(β(η(c)(2)))

(6.1.7) ε(η(c)) = ε(c)

In the original reference [21], it is first proved that the condition 6.1.2 makes sense, i.e. the

two sides of the equation are well–defined maps. This, in turn, implies that 6.1.3 makes sense,

which boils down to (μ �μ) ◦ tw23 ◦ (Δ � Δ) being a well–defined map. The condition 6.1.2 on

the multiplication map may be rephrased by saying that μ factorizes through the cocenter of

the C–bicomodule CH �HC, where the two coactions are λR and ρR. The notion of cocenter

will be discussed further in Section 4.
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Definition 6.1.8. Let M ∈ CMC a C–bicomodule. Define the map

Φ : M ⊗ C∗ → M

m ⊗ ϕ 	→ m[0] ϕ(m[1]) − m[0] ϕ(m[−1])

where C∗ denotes the k-dual of the coalgebra C. Then, the cocenter of M is defined by the

cokernel map ζ : M → Z(M), where

M ⊗ C∗ Φ �� M
ζ

�� Z(M) �� 0

Introduce also the epi–mono factorization Φ : M ⊗ C∗ e→ JM
i→ M

The cocenter satisfies the following universal property. Let

WM = {m[0] ⊗ m[1] − m[0] ⊗ m[−1] |m ∈ M} ⊆ M ⊗ C

then for all k–module maps f : M → N which satisfy

(6.1.9) (f ⊗ C)(WM) = 0

i.e. f(m[0]) ⊗ m[1] = f(m[0]) ⊗ m[−1], there is a unique f ′ : Z(M) → N such that f = f ′ ◦ ζ :

M
f

��

ζ
��

N

Z(M)

f ′

���
�

�
�

�

Indeed, applying (N ⊗ ϕ) to 6.1.9, we find that (f ⊗ ϕ)(WM) = 0 for all ϕ ∈ C∗, i.e. f

annihilates JM .

If the coalgebra C is locally projective as a k–module (see [22], 42.9), then

(ζ ⊗ C)(WM) = 0. To see this, note that for C locally projective, (ζ ⊗ C)(WM) = 0 if and

only if (id ⊗ ϕ) ◦ (ζ ⊗ C)(WM) = 0 for all ϕ ∈ C∗. This, however, holds by the definiton of

ζ .

Thus, for locally projective C, a k–module map f : M → N factorizes through ζ : M →
Z(M) if and only if (f ⊗ C) (WM) = 0. Since, throughout this paper, we are working over a

field, it is in fact unnecessary to explicitly assume local projectivity: modules over a field are

always free, hence they are projective. A projective module is also locally projective.

We apply the above definition to the bicomodule CH �HC afforded by the coactions λR

and ρR. For reference, the bicomodule structure is

(λR �H) :
∑

i

gi
�hi 	→

∑
i

β(gi
(2)) � gi

(1) �hi(6.1.10)

(H � ρR) :
∑

i

gi
�hi 	→

∑
i

gi
�hi

(1) �α(hi
(2))(6.1.11)

We make the following
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Definition 6.1.12. H � H is the cocenter of the bicomodule CH �HC ,

H �C H ⊗ C∗ Φ2 �� H �C H
ζ2 �� H � H

where Φ2(g
i
�hi ⊗ ϕ) = gi

�hi
(1) ϕ(α(hi

(2))) − gi
(1) �hi ϕ(β(gi

(2)))

Using 6.1.10 and 6.1.11, the multiplication map μ : H �C H → H factorizes through H�H ,

i.e.

H �C H
μ

��

ζ
��

H

H � H

f ′

��	
	

	
	

	

precisely if
∑

i μ(gi ⊗ hi
(1)) ⊗ α(hi

(2)) = μ(gi
(1) ⊗ hi) ⊗ β(gi

(2)) (condition 6.1.2) holds.

This construction can be seen as dual to that of the Takeuchi product ×R. For a left

bialgebroid A, the submodule A×RA ↪→ A ⊗
R

A is the center of the R–bimodule r ·(A ⊗ A)·r′ =

At(r) ⊗ As(r). It is well–known that there is no well–defined multiplication on A ⊗
R

A, but

A ×R A is a ring with component–wise multiplication. The dual result is that even though

comultiplication is not well-defined on H �C H , the factor H � H becomes a well–defined

coalgebra. This ensures that 6.1.3 is well-defined.

Remark 6.1.13. The reader may easily convince herself that the axioms 6.1.1 are dual

to those of a left bialgebroid 〈A, μA, ηA, ΔA, εA, s, t, R〉 in the sense of reversing the direction

of maps and making the following substitutions: 〈A, μA, ηA〉 ↔ 〈H, ΔH , εH〉, {ΔA, εA} ↔
{μH , ηH}, {s, t} ↔ {α, β}, R ↔ C. A right bicoalgebroid is a C–bicomodule algebra with

the coactions λR and ρR, i.e. we require (H, λR, ρR) to be a monoid in the category of C–

bicomodules. The axioms dualize those of a right bialgebroid (cf. the Example below).

Example 6.1.14. The simplest right bialgebroid over a ring R is the enveloping algebra

Re = R ⊗ Rop (its opposite is a left bialgebroid). The co–enveloping coalgebra Ce = C ⊗ Ccop

provides our first example of a bicoalgebroid. The source– and target maps are given by

α : C ⊗ Ccop → C, c ⊗ c̄ 	→ c ε(c̄) and(6.1.15)

β : C ⊗ Ccop → Ccop, c ⊗ c̄ 	→ ε(c) c̄(6.1.16)

Multiplication is given by

μe : (C ⊗ Ccop) � (C ⊗ Ccop) → C ⊗ Ccop(6.1.17)

(c ⊗ c̄) � (d ⊗ d̄) 	→ dε(c) ε(d̄) ⊗ c̄(6.1.18)

and the unit map is Δcop, ηe : C → C ⊗ Ccop, ηe(c) = c(2) ⊗ c(1). Just as in the dual case

(where Re,op = Rop ⊗ R is a left bialgebroid), we also have that Ce
cop = Ccop ⊗ C is a left

bicoalgebroid.
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2. Modules & comodules over bicoalgebroids

Based on experience with bialgebroids and dualization arguments, it may be expected that

a categorical approach to bicoalgebroids leads to the study of its category of comodules.

2.1. Comodules over bicoalgebroids. Recall that a left module 〈M, � 〉 over a bialge-

broid B is a left Re–module ReM together with an associative and unital action � : B ⊗ ReM →
M . Note that this is equivalent to the underlying k–module M being a left module of the un-

derlying k–algebra of B, since the k–algebra action factorizes as

� : B ⊗ M
π �� B ⊗ ReM �� M ,

i.e. the left Re–action of M is exactly the one induced by the left B–action. Dualizing to the

case of bicoalgebroids, one can say that comodules over a bicoalgebroid are simply comodules

over the underlying coalgebra, or equivalently:

Definition 6.2.1. A left H–comodule over a left bicoalgebroid H is a pair 〈M, δM〉, where

M ∈ Ce

M, and δM : M → H �Ce M is a left Ce–comodule map for which

M
δM ��

δM

��

H �Ce M

Δ �Ce M
��

M
δM��

lM ������������ H �Ce M

ϕ�Ce M
��

H �Ce M
H �Ce δM

�� H �C H �Ce M Ce
�Ce M

where ϕ = (α ⊗ β) ◦ Δ. This makes δM a coassociative & counital coaction.

The category of H–comodules HM has objects the left H–comodules, and the arrows f :

〈M, δM〉 → 〈N, δN〉 are the Ce–bicomodule maps f : M → N such that

M
f

��

δM

��

N

δN

��
H �Ce M

H �Ce f
�� H �Ce N

2.2. Modules over a bicoalgebroid. We now define modules over a bicoalgebroid, which

will be necessary to construct Yetter–Drinfel’d modules in Section 5.

Definition 6.2.2. A right module over a left bicoalgebroid H (over C) is a pair 〈X, � 〉,
where X ∈ MC is a right C–comodule and the action is a right C–comodule map � :

X �C HC → XC . Similarly, a left module is a pair 〈Y, � 〉 with Y ∈ CM and � : CH �C Y → Y

a left C–comodule map. H is a C–bicomodule through the coactions λL and ρL.

The module category of a bicoalgebroid is expected to be monoidal as well, coming with an

embedding into CMC. The above definition doesn’t seem to allow for this, but luckily, a dual

of Prop. 1.1. of [3] holds:
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Proposition 6.2.3. Let 〈X, � 〉 be a right module over the bicoalgebroid H. Then X has

a unique left C–comodule structure such that

(1) X is a C–bicomodule

(2) the action is a C–bicomodule map

(3) � : X �C H → X factorizes through X � H

Proof. Note that the action being a right C–comodule map means

(6.2.4) (x � h)[0] ⊗ (x � h)[1] = x � h(2) ⊗ β(h(1))

The left comodule structure in question will be denoted τ(x) = x[−1] ⊗ x[0]. In fact, τ is uniquely

determined by demanding that the right H action be also a left C–comodule map w.r.t τ . Note

that X �C H is a left C–comodule through the left C–coaction λR(h) = β(h(2)) ⊗ h(1) on H ,

i.e. we impose:

(6.2.5) (x � h)[−1] ⊗ (x � h)[0] = β(h(2)) ⊗ x � h(1)

The identity x = x[0] � η(x[1]) and 6.2.5 yield an explicit formula for the left coaction τ :

x[−1] ⊗ x[0] = (x[0] � η(x[1]))[−1] ⊗ (x[0] � η(x[1]))[0] =

= β(η(x[1])(2)) ⊗ x[0] � η(x[1])(1)

This is indeed a coaction, i.e. (C ⊗ τ) ◦ τ = (ΔC ⊗ X) ◦ τ . Inserting definitions, the

LHS = β(η(x[1])(2)) ⊗ β{η[(x〈0〉 � η(x〈1〉)(1))[1]](2)}⊗
⊗ (x〈0〉 � η(x〈1〉)(1))[0] � η[(x〈0〉 � η(x〈1〉)(1))[1]](1)

Using 6.2.4, we find:

LHS = β(η(x[1])(2)) ⊗ β{η[α(η(x[1])(1)(2))](2)}⊗
⊗ (x[0] � η(x[0])(1)(1)) � η[α(η(x[1])(1)(2))](1)

which, by the bicoalgebroid axiom 6.1.6, is further equal:

LHS = β(η(x[1])(2)) ⊗ β(η(x[1])(1)(2))(2) ⊗ x[0] � η(x[1])(1)(1)η(x[1])(1)(2)(1) =

= β(η(x[1])(3)) ⊗ β(η(x[1])(2)) ⊗ x[0] � η(x[1])(1) = β(η(x[1])(2))(1) ⊗
⊗ β(η(x[1])(2))(2) ⊗ x[0] � η(x[1])(1) = RHS.

In the first equality, we used comultiplicativity of the unit and coassociativity. In the second,

the fact that β is an anti–coalgebra map.
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As for (1), the coaction τ makes X a bicomodule. Using the definition of the left coaction,

and that the H–action is a right C comodule map:

x[−1] ⊗ x[0][0] ⊗ x[0][1] = β(η(x[1])(2)) ⊗ (x[0] � η(x[1])(1))[0] ⊗
⊗ (x[0] � η(x[1])(1))[1] = β(η(x[1])(2)) ⊗ x[0] � η(x[1])(1)(2) ⊗ β(η(x[1])(1)(1))

Using that η : CC → HC is a C–bicomodule map,

(6.2.6) η(c(1)) ⊗ c(2) = η(c)(2) ⊗ β(η(c)(1))

and the coassociativity of the coaction:

x[−1] ⊗ x[0][0] ⊗ x[0][1] = β(η(x[1])(2)(2)) ⊗ x[0] � η(x[1])(2)(1) ⊗ β(η(x[1])(1)) =

= β(η(x[1](1))(2)) ⊗ x[0] � η(x[1](1))(1) ⊗ x[1](2) = β(η(x[0][1])(2))⊗
⊗ x[0][0] � η(x[0][1])(1) ⊗ x[1] = x[0][−1] ⊗ x[0][0] ⊗ x[1]

(we apply 6.2.6 to c = x[1] in the second equality). The action will then (by construction) be

a C–bicomodule map, proving (2). It remains to see that the action factorizes through the

cocenter of X �C H , meaning:

(6.2.7) (x[0] � η(x[1])(1)) � h ⊗ β(η(x[1])(2)) = x[0] � h ⊗ x[−1]

This is a simple consequence of 6.2.5:

LHS = (x[0] � η(x[1]))[0] � h ⊗ (x[0] � η(x[1]))[−1] = RHS.

�

3. A dual of Schauenburg’s theorem

The forgetful functor associated to the map ϕ : H → Ce,

F : HM → Ce

M 
 CMC(6.3.1)

〈M, δM〉 → 〈M, (ϕ ⊗ M) ◦ δM〉
is faithful and left adjoint to H �Ce : Ce

M → HM. In the dual case, a left bialgebroid A over

R is an Re–ring with s ⊗ t : R ⊗ Rop → A, i.e. a monoid in ReMRe. The forgetful functor

U : AM → ReM is right adjoint to A ⊗ Re :Re M → AM. Furthermore, Schauenburg’s theorem

states that bialgebroid structures on the Re–ring A are in one-to-one correspondence with

monoidal structures on the category AM such that the forgetful functor U is strict monoidal.

This raises the question whether a dual of this theorem holds for bicoalgebroids, namely: is

there a one-to-one correspondence between bicoalgebroid structures on the coalgebra 〈H, Δ, ε〉
and monoidal structures on the category HM such that F : HM → CMC is strict monoidal?

The next theorem gives the forward implication.

Theorem 6.3.2. Let H be a left bicoalgebroid over C. Then there is a monoidal structure

on HM making the forgetful functor F : HM → Ce

M 
 CMC strict monoidal. Identifying
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H–comodules with their underlying C–bicomodules, the monoidal product is �C , the cotensor

product over C and C is the monoidal unit.

Proof. Assume there is a monoidal structure 〈HM,�, I〉 on HM such that the forgetful

functor is strict monoidal, meaning that we have a triple 〈F, F 2, F 0〉, where the maps F M,N :

F (M � N) → F (M) �C F (N) and F 0 : F (I) → C are identities. This amounts to specifying

• an H–comodule structure on C,

δC : C → H �Ce C, and

• an H–comodule structure on the cotensor product of objects M, N ∈ CMC ,

δM �N : M �C N → H �Ce (M �C N),

natural in M and N

The bicoalgebroid structure on H allows us to construct such maps δC and δM �N .

The unit map η : C → H provides the desired H–comodule structure on C:

δC = (H ⊗ α) ◦ Δ ◦ η, δC(c) = η(c)(1) ⊗ α(η(c)(2))

This is indeed a coaction,

(H ⊗ δC) ◦ δC(c) = η(c)(1) ⊗ η(α(η(c(2))))(1) ⊗ α((η(α(η(c(2))))(1))(2)) =

= η(c)(1) ⊗ η(c)(2)(1) ⊗ α(η(c)(2)(2)) = η(c)(1)(1) ⊗ η(c)(1)(2) ⊗ α(η(c)(2)) =

= (ΔH ⊗ C) ◦ δC(c),

applying 6.1.6 in the second equality and coassociativity in the third.

For M, N ∈ HM, define the coaction δM �N : M �C N → H �Ce (M �C N) as the composite

map:

δM �N : M �C N
δM �C δN�� (H �Ce M) �C (H �Ce N)

κ �� H �Ce (M �C N)

Implicit in this definition is the map

(6.3.3) κ : (H �Ce M) �C (H �Ce N) → H �Ce (M �C N)

which we define as the unique arrow in the following diagram

(H �Ce M) �C (H �Ce N)
κ ��������

ιH � M,H � N

��

H �Ce (M �C N)

ῑH,M � N

��

(H �Ce M) ⊗ (H �Ce N)

ῑH,M ⊗ ῑH,N

��

H ⊗ (M �C N)

H ⊗ ιM,N

��

(H ⊗ M) ⊗ (H ⊗ N)
(μH ⊗M ⊗N) ◦ tw23

�� H ⊗ (M ⊗ N)
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By the definition of the kernel maps ιM,N : M �C N → M ⊗ N and ῑU,V : U �Ce V →
U ⊗ V , (h ⊗ m) ⊗ (h′ ⊗ n) ∈ (H �Ce M) �C (H �Ce N) if and only if the following identities

hold:

(h(1) ⊗ α(h(2)) ⊗ m) ⊗ (h′ ⊗ n) = (h ⊗ m[−1] ⊗ m[0]) ⊗ (h′ ⊗ n)(6.3.4)

(h(1) ⊗ β(h(2)) ⊗ m) ⊗ (h′ ⊗ n) = (h ⊗ m[1] ⊗ m[0]) ⊗ (h′ ⊗ n)(6.3.5)

(h ⊗ m) ⊗ (h′
(1) ⊗ α(h′

(2)) ⊗ n) = (h ⊗ m) ⊗ (h′ ⊗ n[−1] ⊗ n[0])(6.3.6)

(h ⊗ m) ⊗ (h′
(1) ⊗ β(h′

(2)) ⊗ n) = (h ⊗ m) ⊗ (h′ ⊗ n[1] ⊗ n[0])(6.3.7)

and

(6.3.8) h(2) ⊗ m ⊗ β(h(1)) ⊗ h′ ⊗ n = h ⊗ m ⊗ α(h′
(1)) ⊗ h′

(2) ⊗ n

The arrow κ is defined by the universal property of the composite kernel map (H ⊗ ιM,N) ◦
ῑH,M �N , provided

(μH ⊗ M ⊗ N) ◦ tw23 ◦ (ῑH,M ⊗ ῑH,N) ◦ ιH �M,H �N ((h ⊗ m) ⊗ (h′ ⊗ n)) =

= (hh′) ⊗ (m ⊗ n) ∈ H �Ce (M �C N)

This leads to the following equations:

(hh′) ⊗ m[0] ⊗ m[1] ⊗ n = (hh′) ⊗ m ⊗ n[−1] ⊗ n[0](6.3.9)

(hh′)(1) ⊗ α((hh′)(2)) ⊗ m ⊗ n = (hh′) ⊗ m[−1] ⊗ m[0] ⊗ n(6.3.10)

(hh′)(1) ⊗ β((hh′)(2)) ⊗ m ⊗ n = (hh′) ⊗ n[1] ⊗ m ⊗ n[0](6.3.11)

Observe that by the multiplicativity of the coproduct and because (H, λL, ρL) is a monoid

in CMC , we have the following identities:

α(hh′) = α(h)ε(h′)(6.3.12)

β(hh′) = ε(h)β(h′)(6.3.13)

To show 6.3.12, compute

α(hh′) = α((hh′)(1))ε((hh′)(2)) = α(h(1))ε(h(2))ε(h
′) = α(h)ε(h′),

and analagously for 6.3.13. Note that 6.3.12 and 6.3.13 are dual to the relations ΔA(t(r)) =

1A ⊗ t(r) and ΔA(s(r)) = s(r) ⊗ 1A, which hold for a left bialgebroid A over R.

To prove 6.3.10, use 6.3.12 in the first equality and 6.3.4 in the second:

(hh′)(1) ⊗ α((hh′)(2)) ⊗ m ⊗ n = h(1)h
′ ⊗ α(h(2)) ⊗ m ⊗ n =

= (hh′) ⊗ m[−1] ⊗ m[0] ⊗ n
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Similarly, 6.3.11 is by proved by using 6.3.13 in the first equality and 6.3.6 in the second:

(hh′)(1) ⊗ β((hh′)(2)) ⊗ m ⊗ n = hh′
(1) ⊗ β(h′

(2)) ⊗ m ⊗ n =

= (hh′) ⊗ n[1] ⊗ m ⊗ n[0],

To prove 6.3.9, applying 6.3.5 and 6.3.6 to the left– and right hand sides, respectively, yields

h(1)h
′ ⊗ m ⊗ β(h(2)) ⊗ n = hh′

(1) ⊗ m ⊗ α(h′
(2)) ⊗ n

which holds precisely because multiplication satisfies the property 6.1.2.

Let us check that δM,N : M �C N → H �Ce (M �C N) is indeed a coaction. Expressed on

elements, δM,N(m ⊗ n) = m[−1]n[−1] ⊗ m[0] ⊗ n[0] (we think of the domain and range of δM,N

as embedded into M ⊗ N and H ⊗ (M ⊗ N), respectively).

(H � δM,N) ◦ δM,N(m ⊗ n) = m[−1]n[−1] ⊗ m[0][−1]n[0][−1] ⊗ m[0] ⊗ n[0] =

= m[−1](1)n[−1](1) ⊗ m[−1](2)n[−1](2) ⊗ m[0] ⊗ n[0] =

= (m[−1]n[−1])(1) ⊗ (m[−1]n[−1])(2) ⊗ m[0] ⊗ n[0] =

= (Δ ⊗ M) ◦ δM,N(m ⊗ n)

where we used the comultiplicativity of the multiplication on H in the third equality.

For 〈HM, � , C〉 to be a monoidal category, we have still to define the natural isomorphisms

αM,N,P : (M �N) �P → M � (N �P ) (the associator), λM : C �M → M and ρN : N �C →
N . Due to the strict monoidality of F , these maps may be defined as the lifting of the respective

coherence morphisms of CMC to HMH , provided they induce H–comodule maps. This, however,

follows from the associativity and unit property of the multiplication and unit on H . �

For the converse direction, assume the existence of a strict monoidal forgetful functor F :
HM → Ce

M on the comodule category of the coalgebra 〈H, Δ, ε〉. We construct a bicoalgebroid

structure on H as follows. Define a multiplication map μ : H �C H → H as the composite

H �C H
δH,H

�� H �Ce (H �C H) 

� �� H ⊗ (H �C H)

H ⊗ (ε �C ε)
�� H

and define a unit map η : C → H with

η = (H �Ce εC) ◦ δC : C → H �Ce C → C.

Note that these maps exactly dualize Δ : H → H ⊗
R

H, h 	→ h � (1H ⊗
R

1H) and εH :

H → R, h 	→ h � 1H which produce a bialgebroid structure on the underlying algebra, given

a strong monoidal forgetful functor U : HM → ReM (cf. [72] and the discussion of Theorem

3.2.2). Instead of directly proving the bicoalgebroid axioms satisfied by μ and η, we reformulate

the problem in terms of comonads and apply a result on ’liftings of functors’. We start with a

monadic formulation of the bicoalgebroid structure.
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Definition 6.3.14. Let 〈M, � , I〉 be a monoidal category. Then a bicomonad on M is a

comonoid in the category of monoidal endofunctors from M to M. Thus, it is an endofunctor

G : M → M, furnished with:

• a natural transformation κX,Y : (G X) � (G Y ) → G (X �Y ), and

• an arrow ξ : C → G C

such that 〈G, κX,Y , ξ〉 is a monoidal functor;

• a natural transformation δX : G X → GGX and

• a natural transformation εX : G X → X

such that 〈G, δ, ε〉 is a comonoid in MM, and four compatibility axioms stating that δ is

monoidal,

δX⊗Y ◦ κX,Y = (G κX,Y ◦ κG X,G Y ) ◦ (δX ⊗ δY )(6.3.15)

δI ◦ ξ = G ξ ◦ ξ(6.3.16)

and that ε is monoidal

εX⊗Y ◦ κX,Y = εX ⊗ εY(6.3.17)

ε ◦ ξ = I(6.3.18)

Not surprisingly, there is an analogue of Theorem 5.4.6:

Proposition 6.3.19. The endofunctor G = FI = Ce

H �Ce : Ce

M → Ce

M is a monoidal

comonad with the structure maps:

δX : H �Ce X → H �Ce (H �Ce X)(6.3.20)

h ⊗ x 	→ h(1) ⊗ (h(2) ⊗ x)

εX : H �Ce X → X(6.3.21)

h ⊗ x 	→ εH(h)x

κX,Y : (H �Ce X) �C (H �Ce Y ) → H �Ce (X �C Y )(6.3.22)

(h ⊗ x) ⊗ (h′ ⊗ y) 	→ hh′ ⊗ (x ⊗ y)

ξ : C → H �Ce C(6.3.23)

c 	→ η(c)(1) ⊗ α(η(c)(2))

Proof. The associativity of κ corresponds to the associativity of the multiplication μ of

H , and ξ is a unit for κ precisely because η is a unit for μ. The monoidality of δX and εX are

due to the multiplicativity and unitalness of ΔH and εH . Finally, G is a comonad because H

is a coalgebra. �

A monoidal structure on HM such that F : HM → Ce

M 
 CMC is strict monoidal implies

that the monoidal product on Ce

M is lifted to the Eilenberg–Moore category of G-coalgebras
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in the following sense:

GM × GM
�̂ ��

F×F
��

GM

F
��

Ce

M × Ce

M
�C

�� Ce

M

This is a special case of the problem of liftings of functors, orginally considered by Johnstone

([39]). We refer to [91], from which we quote part (1) of Theorem 3.3 .

Theorem 6.3.24. Let G = 〈G, δ, ε〉 and G′ = 〈G′, δ′, ε′〉 be comonads on the categories M

and M′, respectively, and let T : M′ → M be a functor. Denote U : GM → M and U ′ : G′

M → M′

the canonical forgetful functors.

Then, the liftings T̂ : G′

M → GM of T , in the sense:

G′

M
T̂ ��

U ′

��

GM

U
��

M′
T

�� M

are in bijective correspondence with natural transformations κ : TG′ → GT for which the

following diagrams commute:

TG′ Tδ′ ��

κ

��

TG′G′ κG �� GTG′

Gκ
��

TG′ Tε′ ��

κ

��

T

GT
δT

�� GGT GT

εT

����������

Taking M′ = Ce

M × Ce

M, M = Ce

M and T = �C : Ce

M × Ce

M → Ce

M, we find that

liftings of the monoidal structure to GM 
 HM are in bijective correspondence with natural

transformations

κM,N : (H �Ce M) �C (H �Ce N) → H �Ce (M �C N)

inducing commutative diagrams

G(M) �C G(N)
δM �δN��

κM,N

��

G2(M) �C G2(N)
κG(M),G(N)

�� G(G(M) �C G(N))

GκM,N

��

G(M �C N)
δM,N

�� G2(M �C N)

(6.3.25) δM �N ◦ κM,N = GκM,N ◦ κG(M),G(N) ◦ (δM �C δN)
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and

G(M) �C G(N)
ε �C ε

��

κM,N

��

M �C N

G(M �C N)

εM � N

��������������

(6.3.26) εM �N ◦ κM,N = εM �C εN

The two diagrams above recover two of the compatibility relations (6.3.15 and 6.3.17) of a

bicomonad. If, furthermore, we have an arrow ξ : C → G(C) making C a G–coalgebra

such that the remaining two bicomonad conditions (6.3.16 and 6.3.18) are satisfied, then GM

becomes a (unital) monoidal category. Summarizing, we have the following monadic version

of Schauenburg’s theorem:

Theorem 6.3.27. Let 〈H, Δ, ε〉 be a comonoid in Ce

M. Then there is a bijective correspon-

dence between

(1) monoidal structures on HM such that the forgetful functor F : HM → Ce

M is strict

monoidal

(2) a map κM,N : (H �Ce M) �C (H �Ce N) → H �Ce (M �C N), natural in both ar-

guments and a map ξ : C → H �Ce C such that 〈H �Ce , Δ, ε, κ, ξ〉 constitutes a

bicomonad, i.e. the compatibilty conditions 6.3.15, 6.3.16, 6.3.17 and 6.3.18 are sat-

isfied.

4. Cocenter and cocentralizer

We have already had to define the cocenter of a bicomodule in order to be able to define

bicoalgebroids in full analogy (or, rather, full duality) with bialgebroids. Recall that the

multiplication map of a bicoalgebroid H factorizes through the cocenter of the tensor square

H �C H , which is dual to Takeuchi’s ×R–product. It was stated but wasn’t proved, that unlike

H �C H , the cocenter H � H has a coalgebra structure. We shall give the proof now and

also explore ways to define the cocenter of a bicomodule and the cocentralizer of a coalgebra

extension, beginning with the latter.

4.1. The cocentralizer. A coalgebra coextension is simply a morphism of coalgebras

π : C → X, and we say that X is a coextension of C. Recall that the map π induces an X–

bicomodule structure on C. The left and right X–coactions will be denoted δl
π = (π ⊗ C) ◦ Δ

and δr
π = (C ⊗ π) ◦ Δ, respectively. We would like to dualize the centralizer construction for

ring extensions to the coalgebraic setting.

First, we shall take an abstract, categorical approach and define the cocentralizer as a

universal object in an appropriate category. Consider the comma category (C ↓ k − Coalg),

consisting of

• Objects 〈C π→ X〉, where π is a coalgebra map
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• Arrows 〈C π→ X〉 f→ 〈C π′→ X ′〉, where f : X → X ′ is a coalgebra map π′ = f ◦ π

Each object of (C ↓ k − Coalg) corresponds to a coextension of the coalgebra C. In a similar

vein, k–algebra extensions can be looked at as objects in (A ↓ k−Alg). The universal property

of the centralizer of an algebra extension B ⊆ A is that it contains all subalgebras commuting

with the subalgebra B. As a first step, we define a notion of cocommutation of ’coalgebras

under C’.

Definition 6.4.1. Two objects 〈C π→ X〉, 〈C π′→ X ′〉 ∈ (C ↓ k − Coalg) will be said to

cocommute if δr
π : C → C ⊗ X is an X ′–comodule map with respect to the coaction δπ′

Remark 6.4.2. This relation is in fact symmetric: δr
π : C → C ⊗ X is an X ′–comodule

map if and only if δr
π′ : C → C ⊗ X ′ is an C–comodule map.

C
δop

π′
��

δX

��

X
′cop ⊗ C

X
′cop ⊗ δπ

��

C ⊗ X
δop

π′

�� X
′cop ⊗ C ⊗ X

Reading the same diagram horizontally and vertically, we obtain the equivalence of the two

statements above.

Now consider the full subcategory of (C ↓ k−Coalg) consisting of the objects cocommuting

with a given object C
π→ X.

Definition 6.4.3. Let CX(C)
full

⊆ (C ↓ k − Coalg) be the subcategory of objects 〈C π′→
X ′〉 ∈ CX(C) for which δπ′ : C → C ⊗ X ′ is an X–comodule map with respect to the coaction

δπ

The following proposition gives a useful property of CX(C), given only in terms of the maps

π and π′.

Proposition 6.4.4. If 〈C π′→ X ′〉 is any object in CC(X), then

(6.4.5) (π′ ⊗ π) ◦ Δ = (π′ ⊗ π) ◦ Δcop
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Proof. Inserting the definitions of δπ and δπ′, the desired relation is the outermost hexagon:

C
Δcop

C ��

ΔC

��

C ⊗ C
π′ ⊗C �� X

′cop ⊗ C

X′ ⊗ΔC

��

X′ ⊗π

��

C ⊗ C

C ⊗π

��

X
′cop ⊗ C ⊗ C

X′ ⊗C ⊗π
��

C ⊗ X
Δcop

C ⊗X
��

π′ ⊗X
��

C ⊗ C ⊗ X
π′

�� X ′cop ⊗ C ⊗ X
X′ ⊗ εC ⊗X

��������������

X ′ ⊗ X

The inner diagram expresses that X ′ ∈ CC(X). Consider the lower diagrams,

C ⊗ X
Δop

D ⊗X
��

π′ ⊗X
��

C ⊗ C ⊗ X

π′ ⊗C ⊗X
��

X ′ ⊗ C
X′ ⊗π ��

X′ ⊗ΔC

��

X ′ ⊗ X

X ′ ⊗ X X ′ ⊗ C ⊗ X
X′ ⊗ εC ⊗X

�� X ′ ⊗ C ⊗ C
X′ ⊗C ⊗π

�� X ′ ⊗ C ⊗ X

X′ ⊗ εC ⊗X

��

they commute by the counit property of X and X ′, since π′(c(2))ε(c(1)) = π′(c) and ε(c(1))π(c(2)) =

π(c). �

Note that this is nothing but the dualization of the following simple reasoning for an algebra

extension. A subalgebra ι′ : B′ → A is in the centralizer CA(B) of anoter subalgebra ι : B → A

if and only if λB′ : B′ ⊗ A → A, b′ ⊗ a 	→ ι′(b′)a′ is an BM–map, that is

λB′(b′)(b · a) = b · λB′(b′)(a)

Taking a = 1A, we find bb′ = b′b. For coalgebras, ’if and only if’ fails to hold, rather, we use

the property 6.4.5 to define a category C̃C(X) as follows.

Definition 6.4.6. Let C̃X(C)
full

⊆ (C ↓ k − Coalg) be the subcategory of objects 〈C π′→
X ′〉 ∈ CX(C) for which

(π′ ⊗ π) ◦ Δ = (π′ ⊗ π) ◦ Δcop

which leads to our main

Definition 6.4.7. The cocentralizer Cco
C (X) of a coalgebra coextension π : C → X is the

initial object in the category C̃X(C)

The coalgebra structure of the initial object (if it exists!) comes from the universal property.

Denoting the coalgebra structure 〈C̃C(X), Δ̃, ε̃〉, the structure maps are defined by the unique
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arrows

C

π

��

(π ⊗π) ◦Δ

���������������� C

π

��

ε

����
��

��
��

��

C̃C(X)
Δ̃

����� C̃C(X) ⊗ C̃C(X) C̃C(X)
Δ̃

����� k

Since the centralizer of an algebra extension is a subalgebra of the extended algebra, we can

hope to define the cocentralizer CC(X) constructively as a factor coalgebra. We require that

X be locally projective as a k–module (see [22]). First, a lemma:

Lemma 6.4.8. W = k − 〈c(1)ϕ(π(c(2))) − c(2)ϕ(π(c(1)))〉ϕ∈X∗ is a Hopf–ideal in C

Proof. We need to prove ΔC(W ) ⊆ W ⊗ C + C ⊗ W and εC(W ) = 0. Taking the

coproduct of an element of w = c(1)ϕ(π(c(2))) − c(2)ϕ(π(c(1))) ∈ W , we find:

Δ(w) = c(1) ⊗ c(2)ϕ ◦ π(c(3)) − ϕ ◦ π(c(1))c(2) ⊗ c(3) = c(1) ⊗ [c(2)ϕ ◦ π(c(3))−
− ϕ ◦ π(c(2))c(3)] − [c(1)ϕ ◦ π(c(2)) − ϕ ◦ π(c(1))c(2)] ⊗ c(3) ∈ W ⊗ C + C ⊗ W

Obviously,

(6.4.9) ε(c(1)ϕ(π(c(2))) − c(2)ϕ(π(c(1)))) = ϕ(π(c)) − ϕ(π(c)) = 0

�

Note that by the local projectivity of X, the disappearance of W is equivalent to c(1) ⊗
π(c(2)) = c(2) ⊗ π(c(1)). We can now define the cocentralizer coalgebra as follows:

Definition 6.4.10. ζ : C → C/W is the projection onto the cocentralizer coalgebra of X

in C.

Because W is a Hopf–ideal, C/W is a coalgebra. The connection to our previous definition

is the following:

Proposition 6.4.11. For X a locally projective coalgebra, and π : C → X a coalgebra

coextension, the factor coalgebra ζ : C → C/W , with W the Hopf–ideal defined above, is an

initial object in the category C̃C(X)

Proof. Suppose we have a coalgebra morphism γ : C → D that annihilates the coideal

W ,

(6.4.12) γ(c(1)) ϕ(π(c(2))) = γ(c(2)) ϕ(π(c(1))).

By the local projectivity of X, this is equivalent to:

(6.4.13) γ(c(1)) ⊗ π(c(2)) = γ(c(2)) ⊗ π(c(1))
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which says precisely that γ : C → D is an object in C̃C(X). On the other hand, all morphisms

〈C γ→ D〉 ∈ C̃C(X) annihilate W , hence factor uniquely through C/W : γ = γ′ ◦ ζ :

C
γ

��

ζ
��

D

C/W

γ′

���
�

�
�

This diagram states that 〈C ζ→ C/W 〉 is initial in C̃C(X). �

4.2. The cocenter. Our first definition is categorical, similar in spirit to the abstract

definition of the cocentralizer.

Definition 6.4.14. For a coalgebra C, and Y ∈ CMC a bicomodule over C, let

CY

full

⊆ (Y ↓ Mk) be the category consisting of objects 〈Z, t〉, where t : Y → Z is an arrow in

Mk satisfying t(m〈0〉) ⊗ m〈1〉 = t(m〈0〉) ⊗ m〈−1〉 and arrows induced from the comma category

(Y ↓ Mk)

Definition 6.4.15. The cocenter 〈Zco(Y ), ζ : Y → Zco(Y )〉 of a C–bicomodule Y ∈ CMC

is the (unique) initial object in CY

Note that Zco(Y ) is a k–module, and has no natural C–comodule structure. It is well–

known that for a ring R, and M an R–bimodule, the center of M is Z(M) = HomR−R(R, M).

A similar characterization is possible for the cocenter of a bicomodule, using Takeuchi’s cohom

functor. We briefly recall the definition, referring to the original paper [85] and the monograph

[22]. Recall (see [85]) that for X ∈ CMC quasi–finite, the left adjoint of ⊗ X : Mk → CMC

exists, and it is the cohom functor hC−C(X, ) : CMC → Mk. The adjunction is completely

determined by a natural map θ : id CMC → hC−C(X, ) ⊗ X, such that for all Y ∈ CMC ,

〈hC−C(X, Y ), θY 〉 is universal from Y to the functor ⊗ X, i.e.

Y
θY ��

f ��������������� hC−C(X, Y ) ⊗ X

f ′ ⊗X

���
�
�

hC−C(X, Y )

f ′ ⊗X

���
�
�

W ⊗ X W

for any f : Y → W ⊗ X in CMC . Of course, this means precisely that the map f ′ 	→
(f ′ ⊗ X) ◦ θY defines a bijection Ψ : Homk(h

C−C(X, Y ), W ) 
 HomC−C(Y, W ⊗ X). The

universality of 〈θY , hC−C(X, Y )〉 can be rephrased (see [53]) by saying that it is an initial object

in the comma category (Y ↓ ⊗ X).

Theorem 6.4.16. For Y ∈ CMC, and C quasi–finite, 〈hC−C(C, Y ), θY 〉 is initial in CY

Proof. In view of the previous discussion, the proof rests on the following

Lemma 6.4.17. The categories CY and (Y ↓ ⊗ C) are equivalent
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Proof. The functor CY → (Y ↓ ⊗ C) has

• Object map:

〈Y t→ Z〉 	→ 〈Y ft→ Z ⊗ C〉
t 	→ ft = (t ⊗ C) ◦ δR

Y = (t ⊗ C) ◦ δL,op
Y

• Arrow map:

{α : 〈Y t→ Z〉 → 〈Y t′→ Z ′〉} 	→ {α ⊗ C : 〈Y ft→ Z ⊗ C〉 → 〈Y ft′→ Z ′ ⊗ C〉}

The functor (Y ↓ ⊗ X) → CY has

• Object map:

〈Y f→ Z ⊗ C〉 	→ 〈Y tf→ Z〉
f 	→ tf = (Z ⊗ εC) ◦ f

• Arrow map:

{β : 〈Y f→ Z ⊗ C〉 → 〈Y f→ Z ′ ⊗ C〉} 	→ {β : 〈Y tf→ Z〉 → 〈Y tf ′→ Z ′〉}

We have to check that ft is a C–bicomodule map. First, it is a right C–comodule map:

M
δR
Y ��

δR
Y

��

M ⊗ C
t⊗C ��

M ⊗ΔC

��

N ⊗ C

N ⊗ΔC

��
M ⊗ C

δR
Y ⊗C

�� M ⊗ C ⊗ C
t⊗C ⊗C

�� N ⊗ C ⊗ C

the outer rectangle states that ft = (t ⊗ C) ◦ δR
Y is a bicomodule map. Clearly, it commutes

by the coassociativity of the coaction δR
Y . We express the left C–comodule structure as a right

Ccop–comodule structure,

M
δL,op
Y ��

δL,op
Y

��

M ⊗ C
t⊗C ��

M ⊗Δcop
C

��

N ⊗ C

N ⊗Δcop
C

��
M ⊗ C

δL,op
Y ⊗C

�� M ⊗ C ⊗ C
t⊗C ⊗C

�� N ⊗ C ⊗ C

here, the outer rectangle states that ft = (t ⊗ C) ◦ δL,op
Y is a right Ccop comodule map. The

proof is the same mutatis mutandis.

In the reverse direction, we check that tf = (Z ⊗ εC) ◦ f satisfies

(6.4.18) tf (y〈0〉) ⊗ y〈1〉 = tf (y〈0〉) ⊗ y〈−1〉
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By assumption, f is a bicomodule map, i.e.

f(y〈0〉) ⊗ y〈1〉 = (Z ⊗ Δ) ◦ f(y)

f(y〈0〉) ⊗ y〈−1〉 = (Z ⊗ Δcop) ◦ f(y)

Now,

tf (y〈0〉) ⊗ y〈1〉 = (Z ⊗ εC ⊗ C)(f(y〈0〉) ⊗ y〈1〉) = (Z ⊗ εC ⊗ C) ◦ (Z ⊗ Δ) ◦ f(y)

= (Z ⊗ εC ⊗ C) ◦ (Z ⊗ Δcop) ◦ f(y) = tf (y〈0〉) ⊗ y〈−1〉,

proving 6.4.18.

To see that the arrow map of CY → (Y ↓ ⊗ C) is well–defined, we check that

(α ⊗ C) ◦ (t ⊗ C) ◦ δR
Y = (α ◦ t ⊗ C)δR

Y = (t′ ⊗ C) ◦ δR
Y .

Simlarly, for the functor (Y ↓ ⊗ X) → CY ,

β ◦ tf = β ◦ (Z ⊗ εC) ◦ f = (Z ′ ⊗ εC) ◦ f ′ = tf ′ .

�

By definition, 〈hC−C(C, Y ), θY 〉 is initial in CY → (Y ↓ ⊗ C) and by the previous Lemma,

it is also initial in CY . �

Just as for the cocentralizer, we can take the more concrete approach and define the cocenter

as a factor module, as we have done in Definition 6.1.8. Slightly rephrased:

Definition 6.4.19. Let C be a localy projective k–coalgebra. The cocenter of a bicomodule

Y ∈ XMX is the k–module Zco(Y ) = M/W , where W is the submodule k − 〈c[0] ϕ(c[1]) −
c[0] ϕ(c[−1])〉ϕ∈X∗ .

With the notation of Definition 6.1.8, 〈Y ζ→ Zco(Y )〉 is an initial object in CY . Furthermore,

for Clearly, for the C–bicomodule structure induced by a coalgebra map π : D → C on D, the

cocenter Zco(D) of the bicomodule D ∈ CMC is isomorphic to Cco
D (C) as k–modules.

The following phenomenon is well–known from the theory of R–rings. For an R–ring

j : R → A, it turns out that the R–tensor square of A, A ⊗
R

A has no natural ring structure,

but the subring A×R A ⊆ A ⊗
R

A is a ring with multiplication (a ⊗ a′)(b ⊗ b′) = (ab ⊗ b′a′).

Here A ×R A is the center of the R–bimodule AA ⊗
R

AA, known as the Takeuchi product.

The dual result for coalgebra coextensions states that the cocenter of the bicomodule
C(D �X D)C is a well-defined coalgebra. This result was cited in Definition 6.1.12 without

proof. First of all, we define the C–bicomodule structure on D �C D. Assume that C is flat
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as a k–module, then the lower line of the following diagram is an equalizer:

D �C D
i ��

ρD

���
�
�

D ⊗ D
D ⊗λD ��

ρD ⊗D
��

D⊗ ρD

��

D ⊗ C ⊗ D

D ⊗C ⊗ ρD

��
D �C D ⊗ C

i⊗C �� D ⊗ D ⊗ C
D ⊗λD ⊗C

��

ρD ⊗D ⊗C
�� D ⊗ C ⊗ D ⊗ C

ρD �D is defined by the universal property of the equalizer (i ⊗ C). Indeed, because the

rectangle on the right is serially commutative, (D ⊗ ρD) ◦ i equalizes the parallel maps D ⊗
λD ⊗ C and ρD ⊗ D ⊗ X. The definition of λD �D is entirely similar. In terms of formulæ,

λD �D(d �C d′) = d(1) ⊗ d(2) � d′(6.4.20)

ρD �D(d �C d′) = d � d′
(1) ⊗ d′

(2)(6.4.21)

We define a coalgebra structure on the cocenter of the bicomodule CD �C DC ,

(6.4.22) ζ2 : D �C D → (D �C D)/W2,

where W2 = k − 〈 d ⊗ d′
(1) ϕ(π(d′

(2))) − d(2) ⊗ d′ ϕ(π(d(1))) 〉ϕ∈C∗

D �C D
ζ2 ��

β
��

Z2

Δ2

���
�
�

D �C D
ζ2 ��

i
��

Z2

ε2

���
�
�

D �C D ⊗ Z2
ζ2 ⊗Z2

�� Z2 ⊗ Z2 D �C D
ε⊗ ε

�� k

The map β is defined by the following unique arrow, based on the universal property of the

equalizer (i ⊗ Z2). Of course, we need to assume that Z2 is flat.

D �C D
Δ �Δ ��

β ���������
D ⊗ D �C D ⊗ D

D ⊗ ζ2 ⊗D
�� D ⊗ Z2 ⊗ D

twZ2,D

��
D �C D ⊗ Z2

i⊗Z2

�� D ⊗ D ⊗ Z2

we only have to check that the composite map of the upper row satisfies the appropriate

equalizer property:

twZ2,D ◦ (D ⊗ ζ2 ⊗ D) ◦ (Δ � Δ) :
∑

i

di
� d′i 	→ di

(1) � di
(2) � d′i

(1) � d′i
(2) 	→

	→ di
(1) � d′i

(2) ⊗ ζ2(d
i
(2) � d′i

(1))

This indeed factorizes through (i ⊗ Z2):

di
(1) ⊗ π(di

(2)) ⊗ d′i
(2) ⊗ ζ2(d

i
(3) � d′i

(1)) = di
(1) ⊗ π(d′i

(2)) ⊗ d′i
(3) ⊗ ζ2(d

i
(2) � d′i

(1))
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Returning to the definition of Δ2 and ε2, it remains to show that (ζ2 ⊗ Z2) ◦ β and

(ε ⊗ ε) ◦ i annihilate W2, or equivalently:

(ζ2 ⊗ Z2) ◦ β(di ⊗ d′i
(1)) ⊗ π(d′i

(2)) = (ζ2 ⊗ Z2) ◦ β(di
(2) ⊗ d′i) ⊗ π(di

(1))(6.4.23)

(ε ⊗ ε) ◦ i(di ⊗ d′i
(1)) ⊗ π(d′i

(2)) = (ε ⊗ ε) ◦ i(di
(2) ⊗ d′i) ⊗ π(di

(1))(6.4.24)

As for 6.4.23,

LHS = ζ2(d
i
(1) ⊗ d′i

(2)) ⊗ ζ2(d
i
(2) ⊗ d′i

(1)) ⊗ π(d′i
(3)) =

= ζ2(d
i
(2) ⊗ d′i

(2)) ⊗ ζ2(d
i
(3) ⊗ d′i

(1)) ⊗ π(di
(1)) = RHS

where we used coassociativity and that, by the definition of ζ2, the left and right coactions are

equal on ζ2(d
i
1 � d′i

(2)). 6.4.24 is similarly verified,

LHS = (ε ⊗ ε) ◦ i(d � d′
(1)) ⊗ π(d′

(2)) = ε(d)π(d′) = ε(d′)π(d) =

= (ε ⊗ ε) ◦ i(d(2) � d′) ⊗ π(d(1)) = RHS

the third equality is a simple consequence of the fact that
∑

i d
i ⊗ d′i ∈ D �C C, since

ε(d)π(d′) = ε(d)π(d′
(1))ε(d

′
(2)) = ε(d(1))π(d(2))ε(d

′) = π(d)ε(d′).

We have shown that the maps Δ2 and ε2 are uniquely defined, and satisfy

Δ2(ζ2(d
i ⊗ d′i)) = ζ2(d

i
(1) ⊗ d′i

(2)) ⊗ ζ2(d
i
(2) ⊗ d′i

(1))(6.4.25)

ε2(ζ2(d
i ⊗ d′i)) = ε2(d

i)ε(d′i)(6.4.26)

5. The scalar extension for bicoalgebroids

In this section we dualize the scalar extension construction to bicoalgebroids, and give a few

simple examples. We begin by defining the smash coproduct, with a slight variation compared

to [58].

Definition 6.5.1. Let H be a bicoalgebroid over C and D an H–comodule coalgebra.

Then their smash coproduct D � H is a coalgebra, isomorphic to D �C H as C–bicomodules

and with the coalgebra structure:

Δ(d � h) = d(1) � d(2)
〈−1〉h(1) �D d(2)

〈0〉 � h(2)(6.5.2)

ε(d � h) = ε(d)εH(h)(6.5.3)

That these maps define a coalgebra is easily verified. The category of (D � H)–comodules

may also be described as the internal D–comodules in HM, i.e. D(HM) = D � HM. Indeed, assume

X ∈ D(HM). To every coaction δD : X → D �C X in HM, we can associate a coaction of D � H ,

namely δD � H = (D⊗ δ) ◦ δD : X → D⊗X → D⊗ (H ⊗X), δD � H(x) = x[−1] ⊗x[0]
〈−1〉 ⊗x[0]

〈0〉.

A straightforward calculation proves that (ΔD � H ⊗ X) ◦ δD � H = ((D � H) ⊗ δD � H) ◦ δD � H ,

using that δD � H is an H–comodule map. In the reverse direction, an (D � H)–comodule is both
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an H-comodule and a D–comodule such that the D–coaction is an H–comodule map, which

means precisely that it is an internal D–comodule in HM.

5.1. Cocommutative coalgebras over bicoalgebroids. Keeping with the method of

reversing arrows, we arrive at the following definition for Yetter–Drinfel’d modules over a

bicoalgebroid.

Definition 6.5.4. Let H be a (left–) bicoalgebroid over C. A Yetter–Drinfel’d module

over H is a triple 〈Z, � , δ〉 such that the C–bicomodule Z is simultaneously a right H–module

with � : Z �C H → Z and a left H–comodule with δ : Z → H �Ce Z so that the action and

coaction satisfy the compatibility condition

(6.5.5) d〈−1〉h[1] �C d〈0〉 � h[2] = h[2](d � h[1])
〈−1〉

�C (d � h[1])
〈0〉

The Yetter–Drinfel’d category, denoted HYDH over H has objects the Yetter–Drinfel’d

modules over H and arrows the C–bicomodule maps that are at the same time H–module

maps and H–comodule maps.

The category HYDH becomes monoidal if we define the monoidal product of two Yetter–

Drinfel’d modules Z, Z ′ as Z �C Z ′ with action and coaction:

(z �C z′) � h = z � h(2) �C z′ � h(1)

(z �C z′)〈−1〉 �C (z �C z′)〈0〉 = z〈−1〉z′〈−1〉 �C z〈0〉 �C z′〈0〉

The monoidal unit is of course C, with c � h = c ε(h) and c〈−1〉 ⊗ c〈0〉 = η(c(1)) ⊗ c(2). Moreover,
HYDH is pre–braided with

(6.5.6) τZ,Z′ : Z �C Z ′ → Z ′
�C Z, z ⊗ z′ 	→ z′〈0〉 �C z � z′〈−1〉

From experience with Hopf algebras, weak Hopf algebras and bialgebroids, we expect that

the Yetter–Drinfel’d category over a bicoalgebroid is related to the (weak) center of the category

of comodules, as defined in Section 1 of Chapter 3. We proved that the Yetter–Drinfel’d

category over a bialgebroid is equivalent to the monoidal weak center. Unfortunately this isn’t

true for bicoalgebroids in general. Nevertheless, the YD category over a bicoalgebroid still

embeds into the monoidal weak center.

Lemma 6.5.7. For a Yetter–Drinfel’d module 〈Z, δ, � 〉, the map

θX : Z �C X → X �C Z(6.5.8)

z ⊗ x 	→ x〈0〉 ⊗ z � x〈−1〉

makes 〈Z, θ〉 an object in
−→Z (HM) and defines an embedding of categories HYDH ↪→ −→Z (HM).
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Proof. θX is natural in X, since the arrows of
−→Z (HM) are H–comodule maps. For 〈Z, θ〉

to be an object of the left weak center, θX should satisfy

θX �C Y = (X �C θY ) ◦ (θX �C Y )(6.5.9)

θC = Z.(6.5.10)

6.5.10 is trivially satisfied and

θX �Y (x ⊗ y) = x〈0〉 ⊗ y〈0〉 ⊗ z � (x〈−1〉y〈−1〉) = x〈0〉 ⊗ y〈0〉 ⊗ (z � x〈−1〉) � y〈−1〉

= (X � θY )(x〈0〉 ⊗ z � x〈−1〉 ⊗ y) = (X � θY ) ◦ (θX �Y )(x ⊗ y).

�

Remark 6.5.11. We mention, for the sake of completeness, the analogous result for the

right weak center. The one–sided Yetter–Drinfel’d category H
HYD is embedded into

←−Z (HM).

The objects of H
HYD are triples 〈Z, δ, � 〉, C–bicomodules which are simultaneously H–modules

and H–comodules, satifying the compatibilty condition

(6.5.12) h(1)z
〈−1〉

�C h(2) � z〈0〉 = (h(1) � z)〈−1〉h(2) �C (h(1) � z)〈0〉

H
HYD is then a pre–braided monoidal category with the pre–braiding

(6.5.13) κZ′,Z(z′ ⊗ z) = z′〈−1〉
� z ⊗ z′〈0〉.

The functor H
HYD → ←−Z (HM) is given by associating to 〈Z, δ, � 〉 ∈ H

HYD the map

(6.5.14) θ̄X : X �C Z → Z �C X, x〈−1〉 � z ⊗ x〈0〉,

which is easily seen to satisfy 5.1.20.

To construct a functor in the reverse direction, we can associate to every object 〈Z, θ〉 of−→Z (HM) a right action of H as follows:

� : Z �C H → Z(6.5.15)

z ⊗ h 	→ (εH ⊗ Z) ◦ θH(z ⊗ h)

It is easily checked that this is indeed a right H–action, and is the candidate to make Z a

Yetter–Drinfel’d module. If θ enjoys the property θX(z ⊗ x) = x〈0〉 ⊗ θH(z ⊗ x〈−1〉) for all

objects X ∈ HM, then 〈Z, δ, � 〉 becomes a Yetter–Drinfel’d module and, moreover, HYDH and−→Z (HM) are isomorphic categories. This would mean that the natural map θ can be expressed

with it’s component θH . This is indeed the case with bialgebroids, since any bialgebroid is a

generator in the category of modules over itself, and natural transformations are determined

by their value on the generator (cf. the discussion of Proposition 5.1.21).

Now, a braided cocommutative coalgebra (hereinafter abbreviated BCC) over H is defined

as a cocommutative comonoid in HYDH . Spelled out in detail, we have the
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Definition 6.5.16. A BCC over H is a coalgebra D, equipped with a coalgebra map

ε : D → C and the structure of a Yetter–Drinfel’d module 〈D, � , δ〉 ∈ HYDH so that the

left/right C–comodule structures on D are given by ε(d(1)) ⊗ d(2) and d(1) ⊗ ε(d(2)), respectively

and the relations stating that D is an H–module and H–comodule coalgebra:

(d � h)(1) ⊗ (d � h)(2) = d(1) � h(1) ⊗ d(2) � h(2)(6.5.17)

ε(d � h) = ε(d)εH(h)(6.5.18)

d(1)
〈−1〉d(2)

〈−1〉 ⊗ d(1)
〈0〉 ⊗ d(2)

〈0〉 = d〈−1〉 ⊗ d〈0〉
(1) ⊗ d〈0〉

(2)(6.5.19)

d〈−1〉 ⊗ ε(d〈0〉) = η(ε(d)(1)) ⊗ ε(d)(2)(6.5.20)

and braided cocommutativity:

(6.5.21) d(1) ⊗ d(2) = d(2)
〈0〉 ⊗ d(1) � d(2)

〈−1〉

We have the following functorial characterization of BCC’s, entirely analogous to 5.3.12:

Lemma 6.5.22. If D is a BCC in HYDH , then the functor D �C : HM → D(HM) = D � HM

is strong monoidal

Proof. Denote the opmonoidal structure 〈D �C , D2, D0〉. The natural transformation

(D2)X,Y :D �C (X �C Y ) → (D �C X) �D (D �C Y )

d ⊗ x ⊗ y 	→ (d(1) ⊗ x〈0〉) ⊗ (d(2) � x〈−1〉 ⊗ y)

has the inverse (d ⊗ x) ⊗ (d′ ⊗ y) 	→ dεC(ε(d′)) ⊗ x ⊗ y. Furthermore, D0 : D �C C → D

is obviously an isomorphism. �

We now come to the dualization of Theorem 5.3.1, the bicoalgebroid scalar extension.

Theorem 6.5.23. Let 〈H, Δ, ε; μ, η; α, β; C〉 be a (left–) bicoalgebroid over C and D a BCC

over H, then 〈D � H, Δ̃, ε̃; μ̃, η̃; α̃, β̃; D〉 is a (left–) bicoalgebroid over D, with the following

structure maps:

Δ̃(d � h) = d(1) � d(2)
〈−1〉h(1) �D d(2)

〈0〉 � h(2)(6.5.24)

ε̃(d � h) = εC(ε(d))εH(h)(6.5.25)

μ̃(d � h �D d′ � h′) = dεC(ε(d′)) � hh′(6.5.26)

η̃(d) = d(1) � η(ε(d(2)))(6.5.27)

α̃(d � h) = dεH(h), β̃(d � h) = d � h(6.5.28)

Proof. First, we check that α̃ (β̃) is a coalgebra (anti–coalgebra) map, respectively. In-

serting the definitions, a trivial calculation shows

α((d � h)(1)) ⊗ α((d � h)(2)) = d(1) ⊗ d(2)ε(h) = (α(d � h))(1) ⊗ (α(d � h))(2)
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As required, β is an anti–coalgebra map:

β((d � h)(2)) ⊗ β((d � h)(1)) = β(d(2)
〈0〉 � h(2)) ⊗ β(d(1) � d(2)

〈−1〉h(1)) =

= d(2)
〈0〉 � h(2) ⊗ d(1) � d(2)

〈−1〉h(1) = d(1) � h(2) ⊗ d(2) � h(1) = (d � h)(1) ⊗ (d � h)(2) =

= (β(d � h))(1) ⊗ (β(d � h))(2).

where we have used 6.5.21 in the third equality, and the fact that D is an Hcop–coalgebra in

the fourth.

To prove that μ̃ : (D � H) �D (D � H) → D � H factorizes through (D � H) � (D � H), we

calculate the D–comodule structure of D � H :

λ̃L : d � h 	→ α((d � h)(1)) ⊗ (d � h)(2) = α(d(1) � d(2)
〈−1〉h(1)) ⊗ d(2)

〈0〉 � h(2) =

= d(1) ⊗ d(2) � h

ρ̃L : d � h 	→ (d � h)(2) ⊗ β((d � h)(2)) = d(2)
〈0〉 � h(2) ⊗ d(1) � (d(2)

〈−1〉h(1)) =

= d(1) � h(2) ⊗ d(2) � h(1),

using (6.5.21) in the last step. The definition of the cotensor product over D then reads:

(d ⊗ h) ⊗ (d′ ⊗ h′) ∈ (D � H) �D (D � H) iff

(d � h)(2) ⊗ β((d � h)(1)) ⊗ (d′ � h′) = (d � h) ⊗ α((d′ � h′)(1)) ⊗ (d′ � h′)(2)

or, using (6.5.21):

(6.5.29) d(1) � h(2) ⊗ d(2) � h(1) ⊗ d′ � h′ = d � h ⊗ d′
(1) ⊗ d′

(2) � h′

We now prove (d � h)(d′ � h′)(1) ⊗ α((d′ � h′)(2)) = (d � h)(1)(d
′ � h′) ⊗ β((d � h)(2)). Inserting

definitions, and using the Yetter–Drinfel’d condition (6.5.5) we find:

RHS = d(1)εC(ε(d′)) � d(2)
〈−1〉h(1)h

′ ⊗ d(2)
〈0〉 � h(2) =

= d(1)εC(ε(d′)) � h(2)(d(2) � h(1))
〈−1〉h′ ⊗ (d(2) � h(1))

〈0〉,

using the Yetter–Drinfel’d condition (eq. 6.5.5). Applying (6.5.29), we arrive at

RHS = dεC(ε(d′
(2))) � hd′

(1)
〈−1〉

h′ ⊗ d′
(1)

〈0〉
= d � hd′〈−1〉

h′ ⊗ d′〈0〉

A quick calculation shows that the

LHS = dεC(ε(d′
(1))) � hd′

(2)
〈−1〉

h′ ⊗ d′
(2)

〈0〉
= d � hd′〈−1〉

h′ ⊗ d′〈0〉,

as claimed.

Comultiplicativity of the product (which makes sense due to our above assertion) means

(Δ̃ ◦ μ̃)[(d � h) �D (d′ � h′)] = (μ̃�D μ̃) ◦ τ23 ◦ (Δ̃ �D Δ̃)[(d � h) �D (d′ � h′)]

inserting our definitions, we have:

LHS = Δ̃(dεCε(d′) � hh′) = d(1)εCε(d′) � d(2)
〈−1〉(hh′)(1) �D d(2)

〈0〉 � (hh′)(2),
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on the other hand, the

RHS = (d(1) � d(2)
〈−1〉h(1))(d

′
(1) � d′

(2)
〈−1〉

h′
(1)) �D (d(2)

〈0〉 � h(2))(d
′
(2)

〈0〉
� h′

(2)) =

= d(1)εCε(d′
(1)) � d(2)

〈−1〉h(1)d
′
(2)

〈−1〉
h′

(1) �D d(2)
〈0〉εCε(d′

(2)
〈0〉

) � h(2)h
′
(2) =

= d(1)εC(ε(d′
(1))) � d(2)

〈−1〉h(1)η(ε(d′
(2)))h

′
(1) �D d(2)

〈0〉εC(ε(d′
(3))) � (hh′)(2),

where we made use of 6.5.20 and coassociativity in the third equality. Now, d′
(1) ⊗ ε(d′

(2)) ⊗ h′ =

d′ ⊗ α(h′
(1)) ⊗ h′

(2), because d � h ∈ D �C H . From this, and the unit property of η, the

statement follows.

The product is counital:

ε̃(d � h)ε̃(d′ � h′) = εC(ε(d))εC(ε(d′))εH(hh′) = ε̃(dεC(ε(d)) � hh′)(6.5.30)

The unit map η̃ is indeed a unit for μ̃. The first unit property reads:

μ̃ ◦ (η̃ �D � H) ◦ λ̃L(d � h) = (d(1)(1) � η(ε(d(1)(2))))(d(2) � h) =

= d(1)εCε(d(3)) � η(ε(d(2)))h = d � h,(6.5.31)

using d � h ∈ D �C H and the unit axiom (for H) in the last equality. The second,

μ̃ ◦ (D � H � η̃) ◦ ρ̃L(d � h) = (d(1) � h(2))((d(2) � h(1))(1) � η((d(2) � h(1))(2))) =

= d(1)εCε(d(2) � h(1)) � h(2)η(ε(d(2) � h(1))(2)) = d(1) � η(ε(d(2)))h = d � h

is proved using that D is an Hcop–algebra in the third equality, and d � h ∈ D �C H in the last.

As a coalgebra, D � H is the smash coproduct. The algebra structure of 〈D � H, μ̃, η̃〉 and the

remaining axioms are easily verified. �

Example 6.5.32. The action groupoid2

In the category Set, there is a unique comultiplication, namely the diagonal coproduct:

x ∈ X, ΔX(x) = x× x. The counit is just a constant map to a (the) one–element set 1, hence

εX(x) = ∗ for all x ∈ X, where ∗ is the unique element of 1. The coaction of a group G on X is

completely specified by an arbitrary function ϕ : X → G, via δϕ(x) = x〈−1〉 × x〈0〉 = ϕ(x) × x.

Now, consider a G–Set 〈X, � 〉, carrying a right action of G. Choosing a G–coaction δϕ, the

Yetter–Drinfel’d compatibility condition takes the form

(6.5.33) ϕ(x)g × x � g = gϕ(x � g) × x � g

so 〈X, δϕ, � 〉 is a YD–module in GYDG if and only if g−1ϕ(x)g = ϕ(x � g). Moreover, X is a

BCC if x × x = x × x � ϕ(x), i.e. iff

(6.5.34) x � ϕ(x) = x

2see also [24], Prop. 4.2.
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6.5.34 implies that the value of ϕ at a point x must lie in the stabilizer subgroup Gx of the

point x, and from 6.5.33 we conclude that it suffices to define ϕ for a single representative, say

x0 of each G-orbit. Then, if x0 ∈ Gx0, ϕ(x) = ϕ(x0 � g) = g−1ϕ(x0)g ∈ Gx.

Choosing a trivial coaction ϕ(x) ≡ e, the scalar extension of G by X is nothing but the

action groupoid. Indeed, α̃(x � g) = x and β̃(x � g) = x � g, so (X � G) � X(X � G) is the set of

composable pairs in the action groupoid and the multiplication μ̃ is the composition of arrows

in the action groupoid.

The phenomenon behind this example is that in Set, the fibered product of two parallel

maps α, β : X → Y , defined by the pullback

X ×α,β X
q

��

p

��

X

α

��
X

β
�� Y

is equivalent to the equalizer

X ×α,β X → X × X
X×λ ��

ρ×X
�� X × Y × X

where λ and ρ are the ’coactions’ λ = (α × X) ◦ Δdiag and ρ = (X × β) ◦ Δdiag. It is in this

sense that a groupoid may be regarded as a classical ancestor of a bicoalgebroid.

Example 6.5.35. The regular BCC for H a Hopf algebra

k–Hopf algebras (and bialgebras) are examples both of bialgebroids and bicoalgebroids. It is

not immaterial, however whether we consider the Yetter-Drinfel’d category HYDH as embedded

in
−→Z (MH) (the ’bialgebroid view’, see [3]), or in

−→Z (HM) (the ’bicoalgebroid view’). Namely,

the braiding is different in the two cases,
−→Z (MH) is pre–braided with

−→
β Z,Z′ = z′ � z〈−1〉 ⊗ z〈0〉

and
−→Z (HM) is pre–braided with −→γ Z,Z′ = z′〈0〉 ⊗ z � z′〈−1〉.

A k–Hopf algebra H , with invertible antipode is a Yetter–Drinfel’d module 〈H, AdR, Δ〉
in

−→Z (MH) (the regular module) via the coproduct, considered as left H–coaction and the

right adjoint action, AdR : H ⊗ H → H, h ⊗ h′ 	→ S−1(h′
(2))hh′

(1). Furthermore, Hop is a

BCA in
−→Z (MH), that is μop ◦ β(h ⊗ h′) = μop(h ⊗ h′). Indeed, h′h = h′ � h(1) ⊗ h(2) =

S(h(1)(2))h
′h(1)(1) ⊗ h(2).

Dually, a k–Hopf algebra H is a Yetter–Drinfel’d module 〈H, μ, ÃdL〉 in
−→Z (HM) (the regular

module) via the multiplication considered as a right action, and the left adjoint coaction,

ÃdL : H → H ⊗ H(6.5.36)

h 	→ S−1(h(3))h(1) ⊗ h(2)
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Yetter–Drinfel’d compatibility is easily checked:

h′
(2)(hh′

(1))
〈−1〉 ⊗ (hh′

(1))
〈0〉 = h′

(2)S
−1((hh′

(1))(3))(hh′
(1)) ⊗ (hh′

(2)) =

= h′
(2)S

−1(h′
(1)(3))S

−1(h(3))h
′
(1)(1)h(1) ⊗ h(2)h

′
(1)(2) = S−1(h(3))h(1)h

′
(1) ⊗ h(2)h

′
(2) =

= h〈−1〉h′
(1) ⊗ h〈0〉 � h′

(2)

As one might expect from the previous example, Hcop is a BCC in
−→Z (HM),

−→
β ◦ Δcop(h) =

−→
β (h(2) ⊗ h(1)) = h(1)(2) ⊗ h(2)S

−1(h(1)(3))h(1)(1) = h(2) ⊗ h(1)

To construct an example which does not require the invertibility of the antipode, consider
H
HYD as being in the right weak center

←−Z (HM). The Yetter–Drinfel’d condition takes the form

(6.5.37) h(1)z
〈−1〉 ⊗ h(2) � z〈0〉 = (h(1) � z)〈−1〉h(2) ⊗ (h(1) � z)〈0〉,

and the pre–braiding is
←−
β Z′,Z : z′〈−1〉 � z ⊗ z′〈0〉. We find that for an arbitrary Hopf algebra,

〈H, AdL, μH〉 is a BCC in H
HYD, where

AdL : H → H ⊗ H

h 	→ h(1)S(h(3)) ⊗ h(2),

and
←−
β H,H ◦ Δ(h) = h(1)(1)S(h(1)(3))h(2) ⊗ h(1)(2) = h(1) ⊗ h(2).

6. Bicoalgebroids and Weak Bialgebras

It was observed in [75] and [82] that the base algebra R of a WBA B over R is Frobenius

separable. Moreover, [75] and [82] prove a converse to this result, namely that for a bialge-

broid B over R, a Frobenius separability structure on R determines a WBA structure on the

underlying k–module of B. In a sense, this result is a characterizes WBAs within bialgebroids,

as precisely those bialgebroids which have Frobenius separable base.

As it was shown by G. Böhm3, a WBA always has a bicoalgebroid structure. This raises

the question whether WBAs could also be characterized as bicoalgebroids whose base coalgebra

posesses a dual Frobenius separability structure?

We briefly recapitulate basic results on Frobenius separability –together with the dual

notion– and sketch the proof of the case of WBAs and bialgebroids over Frobenius separable

base. We shall be working over a field k, although it is possible to be more general.

Definition 6.6.1 (Frobenius separable algebra). For a k–algebra R, a separability structure

is an R–bimodule map δ : RRR → RR ⊗ RR that splits multiplication, i.e. μR ◦ δ = id R. The

element δ(1R) =
∑

i e
(1)
i ⊗ e

(2)
i ∈ R ⊗ R is called the separability idempotent. By definition, it

satisfies
∑

i e
(1)
i e

(2)
i = 1R. A separable algebra R is said to be Frobenius separable if it possesses

a Frobenius structure with Frobenius functional Ψ : R → k (recall defintion 3.5.1) such that

3Private communication. Note that her construction is not the same as that appearing in [21]!
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the separability idempotent is a Frobenius quasibasis, i.e. for all r ∈ R,

Ψ(re(1)) e(2) = r = e(1) Ψ(e(2)r).

In the terminology of Frobenius algebras, the separability property implies that a Frobenius

separable algebra is a Frobenius algebra of index 1.

The dual notion structure is that of a Frobenius co–separable coalgebra:

Definition 6.6.2 (Frobenius co–separable coalgebra). For a k–coalgebra R, a co–separability

structure is a C–bicomodule map ω : CC ⊗ CC → CCC such that ω ◦ ΔC = id C . The func-

tional ê = εC ◦ ω ∈ Hom(C ⊗ C, k) is the called the co–separability functional. By definition,

it satisfies ê(c(1) ⊗ c(2)) = εC(c) for all c ∈ C. A Frobenius co–separable coalgebra has a

co–Frobenius element t : k → C (we mean t = t(1), by abuse of notation) such that for all

c ∈ C,

t(1) εC ◦ ω(t(2) ⊗ c) = c = εC ◦ ω(c ⊗ t(1))) t(2)

holds.

The following observation is instrumental in proving that a bialgebroid over separable base

possesses a WBA structure. For R–modules MR and RN , a separability structure δ : R →
R ⊗ R gives rise to a natural transformation

δM,N : M ⊗
R

N → M ⊗
k

N, m ⊗ n 	→
∑

i

m · e(1)
i ⊗ e

(2)
i · n,(6.6.3)

which splits the canonical epimorphism πM,N : M ⊗
k

N → M ⊗
R

N ,

πM,N ◦ δM,N = id M ⊗
R

N .

This follows straightforwardly from the definition of the ⊗
R

–tensor product and the separability

property e(1)e(2) = 1R. We formulate the dual result in the following lemma.

Lemma 6.6.4. For C–comodules MC and CN , a co–separability structure on C determines

a natural transformation

ωM,N : M ⊗
k

N → M �C N, m ⊗ n 	→ m〈0〉εC ◦ ω(m〈0〉 ⊗ n〈−1〉) ⊗ n〈0〉,(6.6.5)

such that ιM,N ◦ ωM,N = id M �C N , where ιM,N : M �C N → M ⊗ N is the canonical embedding

of the cotensor product.

Proof. We need only to show that ωM,N is indeed an identity on m ⊗ n ∈ M �C N :

ωM,N(m ⊗ n) = m〈0〉εC ◦ ω(m〈1〉 ⊗ n〈−1〉) ⊗ n〈0〉

= m〈0〉〈0〉εC ◦ ω(m〈0〉〈1〉 ⊗ m〈1〉) ⊗ n〈0〉

= m〈0〉εC(ω(m〈1〉(1) ⊗ m〈1〉(2))) ⊗ n〈0〉 = m ⊗ n,

using the definition of M �C N and coassociativity. �
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As observed first by Abrams [1], a Frobenius algebra 〈R, μ, η, δ, Ψ〉 also has a coalgebra

structure (cf. the comultiplications in DDAs, section 5 of chapter 3) with comultiplication and

counit supplied by the Frobenius structure as follows:

ΔF : R → R ⊗ R, r 	→ re(1) ⊗ e(2) and εF : R → k, r 	→ Ψ(r).(6.6.6)

The algebra and coalgebra structures satisfy the compatibility relations

(R ⊗ μ) ◦ (ΔF ⊗ R) = ΔF ◦ μ = (μ ⊗ R) ◦ (R ⊗ ΔF )

and a Frobenius separable algebra also satisfies μ ◦ ΔF = id R. Likewise, a co–Frobenius

coalgebra 〈C, Δ, ε, ω, t〉 is also an algebra via the co–Frobenius structure. The mutiplication

and unit are

μF : C ⊗ C → C, c ⊗ c′ 	→ c(1)εC ◦ ω(c(2) ⊗ c′) and ηF : k → C, k 	→ t(k)(6.6.7)

and a Frobenius co–separable coalgebra satisfies μF ◦ Δ = id C . The following Lemma tells us

that Frobenius separable algebra (Frobenius co–separable coalgebra) is a self–dual structure.

Lemma 6.6.8. A Frobenius separable algebra 〈R, μ, η, δ, Ψ〉 is Frobenius co–separable as a

coalgebra, with Frobenius structure given by the multiplication ω := μ : R ⊗ R → R and unit

t := η : k → R. Dually, a Frobenius co–separable coalgebra 〈C, Δ, ε, ω, t〉 is Frobenius separable

as an algebra, with Frobenius structure given by the comultiplication δ := Δ : C → C ⊗ C and

counit Ψ := ε : C → k.

We only sketch the proof of the equivalence of WBAs and bialgebroids over separable base.

For details, consult [82] and [75].

Proposition 6.6.9. Let 〈B, γ, π, μ, η〉 be a weak bialgebra, with structure maps satisfying

axioms 2.0.1 – 2.0.2. Then, the subalgebra R := AR = ΠR(B) ⊆ B is Frobenius separable and

there are maps Δ : B → B ⊗
R

B and ε : B → R making 〈B, R, Δ, ε, μ, η〉 a right bialgebroid

over R.

Conversely, let 〈B, R, Δ, ε, μ, η〉 be a right bialgebroid over R such that the base algebra R

is Frobenius separable over k. Then there are maps γ : B → B ⊗ B and π : B → k making

〈B, γ, π, μ, η〉 a weak bialgebra.

Sketch of proof. Consider the first implication. First, B is an R ⊗Rop–ring with source

map the inclusion R = AR ↪→ B and target map the restriction to R of the map Π′L : B → B,

b 	→ εb1(1)1(2) (in fact, Π′L is an anti–isomorphism AR,op → AL hence the images of the source

and target maps commute, since the subalgebras AL and AR commute in a WBA).

Making B an R − Rop–bimodule via right multiplication by the above source and target

maps, the comultiplication gotten by composing the WBA’s comultiplication and the canonical

projection onto the ⊗
R

–product,

Δ = πH,H ◦ π : H → H ⊗ H → HR ⊗
R

HRop
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is an R −R–bimodule map. The counit is ε = ΠR : H → R. The R ⊗ Rop–ring and R–coring

structures (which are checked to be compatible) make 〈B, R; Δ, ε; μ, η〉 a right bialgebroid.

The Frobenius separability structure on R = AR is given as follows: the Frobenius functional

is the restriction of the counit, Ψ = ε|R : R → k and the associated quasibasis is 1(1) ⊗ΠR(12) ∈
R ⊗ R. Note that by lemma 6.6.8, R may just as well be regarded as a Frobenius co–separable

coalgebra.

For the reverse implication, we make use of the natural transformation δM,N defined in 6.6.3.

Since R is Frobenius separable, we have at our disposal the natural map δH,H : H ⊗
R

H →
H ⊗

k

H . The WBA comultiplication is then given by the composition

γ := δH,H ◦ Δ :B → B ⊗
R

B → B ⊗
k

B,(6.6.10)

b 	→ b(1) ⊗
R

b(2) 	→
∑

i

b(1) · e(1)
i ⊗

R

e
(2)
i · b(2).

The WBA counit, π := Ψ ◦ ε : H → R → k, is the composition of the counit with the Frobenius

functional. It is checked that the algebra structure 〈B, μ, η〉 and coalgebra structure 〈B, γ, π〉
are compatible in the sense of weak bialgebras, i.e. axioms 2.0.1 and 2.0.2 are satisfied. �

A dual result relating weak bialgebras and bicoalgebroids rests on the existence of the

natural transformation ωM,N : M ⊗
k

N → M �C N for comodules over a Frobenius co–separable

coalgebra and the self–duality of weak bialgebras. We state the result and sketch the proof.

Proposition 6.6.11. Let 〈B; γ, π; m, i〉 be a weak bialgebra, and denote C := AR =

ΠR(B) ⊆ B the Frobenius separable subalgebra, considered as a coalgebra. Then C is a Frobe-

nius co–separable coalgebra, B is a C ⊗ Ccop–bicomodule and there are maps μ : B �C B → B

and η : C → B making 〈B, C; Δ, ε; μ, η〉 a right bicoalgebroid over C.

Conversely, let 〈B, C; Δ, ε; μ, η〉 be a bicoalgebroid over C such that the base coalgebra C is

Frobenius co–separable over k. Then there are maps m : B ⊗ B → B and i : k → B making

〈B; Δ, ε; μ, η〉 a weak bialgebra.

Sketch of proof. To see the first implication, we need to show first that B is a C ⊗
Cop-bicomodule. As shown in the previous proposition, AR is a coalgebra via the Frobenius

structure given by the quasibasis 1(1) ⊗ ΠR(12) ∈ R ⊗ R. Similarly, AL = ΠL(B) is a coalgebra

via the Frobenius quasibasis ΠL(1(1)) ⊗ 1(2) ∈ R ⊗ R and moreover, AL and AR are anti–

isomorphic as coalgebras as well. The maps α : H → C and β : H → Ccop are given by ΠR

and the composition of ΠL with the coalgebra anti–isomorphism AL ∼→ Ccop.

Define the bicoalgebroid multiplication as the composition of the canonical injection of the

�C –product and weak bialgebra multiplication,

μ = m ◦ ιH,H : H �C H → H ⊗ H → H

which is a C − C–bicomodule map and is checked to satisfy 6.1.2. The unit map is just the

inclusion η : C ⊆ B.
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As shown in lemma 6.6.8, Frobenius co–separability of the coalgebra C follows immediately

from the Frobenius separability of the algebra AR.

As expected from a duality argument, the reverse implication hinges on the natural trans-

formation ωM,N : M ⊗
k

N → M �C N of 6.6.5. By the Frobenius co–separability of C, we have

for the C–comodules BC and CB a natural map ωB,B : B ⊗
k

B → B �C B. Define the WBA

multiplication as the composite map

m := μ ◦ ωB,B : B ⊗ B → B �C B → B,(6.6.12)

b ⊗ b′ 	→ b[0]ε ◦ ω(b[1] ⊗ b′[−1])b
′
[0].

The WBA unit map, i := η ◦ t : k → C → B, is the image of the co–Frobenius element under

the unit map. It is checked that the algebra structure 〈B, μ, η〉 and coalgebra structure 〈B, γ, π〉
are compatible in the sense of weak bialgebras, i.e. axioms 2.0.1, 2.0.2 are satisfied. �



CHAPTER 7

An application to Algebraic Quantum Field Theory

Algebraic Quantum Field Theory emerged out of axiomatic approaches to quantum field

theory through the seminal work of R. Haag and D. Kastler. Its departure from earlier ax-

iomatics (such as the Wightman framework) was the realization that the physical content of

a quantum field theory resides in the abstract algebraic structure of its algebra of observables

rather than in the unobservable fields (e.g. Dirac spinor valued fermionic fields in QED) or

in the different representations of the field content (the most common being the Fock space

representation), which are only of secondary nature. From this ambitious point of view, the

complete field algebra and the (global) gauge group of a quantum field theory are to be recon-

structed from the algebra of observables or more precisely, from a net of local subalgebras of

observables.

This is closely connected to the problem of superselection sectors. To fix ideas, consider

Quantum Electrodynamics, which exhibits charge superselection, meaning that the Hilbert

space of the theory splits into a direct sum of subspaces indexed by electric charge, each

carrying a distinct representation of the global gauge group U(1). The ’behind the Moon’

argument, due originally to Haag, is often used to illustrate that any which of these sectors

contains all physical information on the theory. Following the account of [43], assume we have

to calculate a scattering process (for example Mœller scattering) but only the charge–11 sector

is at our disposal. This is not an obstacle since we may prepare an in–state with 2 e−s and place

13 e+s far enough (e.g. behind the moon) so as not to interfere with our scattering experiment.

One can convince oneself that the same result will be calculated for this scattering process in

sectors of all charges and more generally, that it is impossible to distinguish between different

sectors by such local measurements.

The basic mathematical object of study in AQFT is the net of observable local subalge-

bras. The local algebras are modelled mathematically as abstract C∗–algebras (von Neumann

algebras) and the most important physical property required of the net is (Einstein) locality,

meaning that observables in spatially separated regions should commute. Abstract means that

no representation of the observable algebra –as an algebra of bounded operators acting on a

concrete Hilbert space– is assumed. Different representations of the observable algebra are

seen to roughly correspond to different states of the same theory.

This philosophy underlies the AQFT interpretation of charge superselection sectors. Con-

sider two distinct superselection sectors in the conventional (Wigner) sense, i.e. two Hilbert

subspaces H and H′ carrying different irreducible representations πG and π′
G of the global
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gauge group G. It can then be proven that H and H′ carry inequivalent irreducible representa-

tions of the observable algebra. This result suggests that it should be possible to define charge

superselection sectors without reference either to charge carrying fields or a gauge group. In-

deed, Doplicher, Haag and Roberts defined a special class of representations of the observable

algebra (the DHR representations) which corresponds intuitively to localized charges. Charge

superselection sectors in AQFT are then defined as the irreducible DHR representations.

This definition went a long way and achieved great successes, culminating in the Doplicher–

Roberts reconstruction theorem. In mathematical terms, the set of DHR representations carry

the structure of a braided and rigid monoidal category. In physical terms, the monoidal product

corresponds to the composition of charges, the braiding corresponds to particle statistics and

rigidity reflects the existence of antiparticles. The essence of the reconstruction theorem is that

in more than three space–time dimensions, the DHR category is equivalent to the representation

category of a compact group, which is interpreted as the global gauge group. Furthermore,

there is a canonical embedding of the observable algebra into an extended field algebra carrying

an action of the gauge group such that the observable algebra is the invariant subalgebra.

Thus, two problems are solved simultaneously: both the field algebra and the gauge group

are reconstructed from the observable net alone, at least for d + 1 ≥ 3. Much work has been

done to extend this result to 1 + 1 space–time dimensions. It is known from model studies

(e.g. the chiral Ising model) that physically relevant fusion rules exist which preclude group

symmetry. Also, in low space–time dimension, the DHR category is not symmetric but only

braided. Mathematically, the reconstruction problem is one of finding the appropriate algebraic

structure that is to be reconstructed.

In this chapter, we first review the axioms of AQFT and the basic results of the DHR theory.

We then consider the problem of field algebra reconstruction (i.e. half of the Doplicher–Roberts

theorem’s undertaking) from the perspective of quantum groupoid Galois theory. Note that

we shall only be using a small part of the mathematical structure of AQFT. The physical

essence is in the locality of the observable algebra, which has no place (yet) in the framework

of Galois theory. We conclude with remarks on the full Doplicher–Roberts problem in arbitrary

dimensions.

1. The Observable Net

The standard exposition of algebraic quantum field theory intends to capture the most

salient properties of a local, relativistic quantum field theory defined on Minkowski space.

The local subsystems to consider are the algebras A(O) of ’observables measurable within a

given causally complete spacetime region O’. The coherent association of algebras to spacetime

regions provides the observable algebra with a locality structure. The axioms of AQFT identify

structural properties that hold in most models of relativistic quantum field theory.
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(I) Net structure.

Let K be the poset of causally complete spacetime regions (these are usually taken to be

’diamonds’, i.e. intersections of forward– and backward oriented light cones) in Minkowski

space, ordered by inclusion. K satisfies the additional property that for any O1,O2 ∈ K, there

exists an O3 ∈ K, such that both O1 ⊆ O3 and O2 ⊆ O3, i.e. K is not only a poset, but

a net. The local structure of the observable algebra is then encoded by a covariant functor

ι : K → C∗ − Alg with

object map O 	→ ι(O) = A(O) and

arrow map 〈O1 ⊆ O2〉 	→ ιO1,O2 = 〈A(O1) ↪→ A(O2)〉,
where the category C∗−Alg is understood to have arrows the unital ∗–homomorphisms, and K is

a poset category. The isotony property of the net is the functoriality of ι, i.e. for O1 ⊆ O2 ⊆ O3,

ιO1⊆O2 ◦ ιO2⊆O3 = ιO1⊆O3.

The net property implies that the mapping O → A(O) constitutes an inductive system and

the inductive limit algebra Aloc =
⋃

O∈K A(O) of strictly local observables exists1. Aloc possesses

a unique C∗–norm; the quasi–local algebra A = Aloc
C∗

=
⋃

O∈K A(O)
C∗

is the completion in

this norm.

In non–simply connected spacetimes, the set K of double cones is not directed and the

isotony property fails. It may still be possible to define the quasilocal algebra, e.g. for the

case that spacetime is S1. Then the non–trivial topology of spacetime is reflected in that the

quasilocal algebra A develops a non–trivial center.

(II) Locality.

The fact that we are considering relativistic field theories is represented by the axiom of

locality, which is sometimes referred to as microcausality or Einstein causality. Denote O1×O2

that O1 and O2 are space–like separated; the corresponding subalgebras are then required to

commute,

[A(O1), A(O2)] = 0, for O1 ×O2.

Define A(O′) =
⋃

O1×O′ A(O1)
C∗

the C∗–subalgebra generated by all A(O1) with O1 × O;

then [A(O), A(O′)] = 0.

(III) Spacetime (Poincaré–) Covariance.

The action of the Poincaré group on Minkowski space induces an action on the observable

net. There is a group homomorphism α : P↑
+ → Aut(A), such that for all O ∈ K and all

1Note that this coincides with the categorical colimit of the functor ι. Although the local structure of the
observable algebra is essential from a physical point of view, our algebraic constructions will always refer to the
global algebra A. Nevertheless, the above formulation suggests a strategy for generalization, replacing algebras
by algebra–valued functors.
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Λ ∈ P↑
+

(7.1.1) αΛ(A(O)) = A(Λ(O))

(IV) Vacuum State.

We specify a vacuum state on A, which is equivalent to specifying –via the GNS-construction–

a vacuum representation of the observable algebra. There is a pure state ω0 on A, with GNS–

construction 〈π0,H0, Ω, U0〉, such that π0 is faithful and irreducible and the spectrum of U0 lies

in the future light cone,

SpU0 ⊆ V̄+

This requirement is usually referred to as the spectrum condition and is a Lorentz covariant

expression of the positivity of energy, or stability of the vacuum. This additional input is in

fact enough to translate all pure (C∗–) algebraic constructions to concrete C∗–algebras realized

as operators in Hilbert space, if we content ourselves with using only the vacuum Hilbert space

H0.

(V) Haag duality.

This axiom is of topological nature. For each O ∈ K, we require that π0(A(O)) be equal to

the commutant of its complement (i.e. as large as possible, since it is always contained in it):

π0(A(O)) = π(A(O′))′

More precisely, the above requirement should be called ’Haag duality in the vacuum repre-

sentation’. One particular consequence is that all local algebras become von Neumann algebras,

since they are equal to their double commutants: π0(A(O))′′ = π0(A(O)).

(VI) Additivity.

If
⋃

α Oα is a covering of the double cone O ∈ K, then A(O) is contained in the von

Neumann algebra generated by the {A(Oα)}α,

A(O) ⊆ (∪αA(Oα))′′

This property may be interpreted to state the absence of a smallest length scale, in the

sense that any observable can be generated with observables from arbitrarily small regions.

2. Representations of the Observable Net

In this section we recall the Doplicher–Haag–Roberts definition of superselection sectors

and show how the structure of a rigid, monoidal, symmetric (resp. braided) category emerges.

As already noted, the different inequivalent representations of the C∗–algebra of observables

correspond to different states of the system. For the purposes of particle physics, it seems

reasonable to select from the plethora of representations those, which are localized in some

sense. Such a representation is then said to describe a localized charge.
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The category of representations of the (quasilocal) observable algebra will be denoted RepA.

It has objects 〈π,Hπ〉 ∈ RepA, with Hπ ∈ Hilb and π : A → B(H) a C∗–morphism. An arrow

T : 〈π,Hπ〉 → 〈π′,Hπ′〉 is an interwiner, i.e. a unitary T : Hπ → Hπ′ satisfying T π(A) =

π′(A) T for all A ∈ A. The module category RepA comes equipped with the forgetful functor

U : RepA → Hilb, 〈π,Hπ〉 	→ Hπ sending all representations to their underlying Hilbert space.

The additional ∗– and topological structure of A enriches the category of representations,

making RepA a C∗–category (see below).

2.1. The category of localized representations. Doplicher, Haag and Roberts pro-

posed the following criterion to single out those representations of the observable algebra which

describe localized charges. Essentially, these are the representations which are equivalent to

the vacuum outside a bounded region.

Definition 7.2.1. (The DHR selection criterion) An irreducible representation π of A is

localized in a double cone O ∈ K, if the restriction of π to the complement of O is unitarily

equivalent to the vacuum:

(7.2.2) ∃V : Hπ → H0, so that V π(A) = π0(A)V for all A ∈ A(O′)

The subcategory of localized representations will be denoted Reploc(A).

It should be noted that this selection criterion is quite restrictive in view of realistic models

of particle physics. For example, an electrical charge in quantum electrodynamics cannot

be described as a DHR charge due to Gauss’ law. Indeed, we could measure the charge by

measuring the flux of the electrical field strength through a sphere of arbitrary radius around

the charge. This is just a manifestation of the long–range character of the electromagnetic

interaction or, equivalently, the vanishing of the photon mass. This problem is to be expected

in all gauge theories. Buchholz and Fredenhagen have shown that massive gauge theories may

be accomodated by modifying the selection criterion to representations that are equivalent to

the vacuum outside an infinitely extended cone around some space–like direction.

2.2. The category of localized endomorphisms. The pivotal trick in the DHR anal-

ysis is the following observation. Consider a localized representation π ∈ Reploc(A) acting in

a Hilbert space Hπ; we can replace π by an equivalent representation acting on the vacuum

Hilbert space H0 by introducing the algebra endomorphism ρ : A → A

(7.2.3) ρ(A) = V −1π0(A)V, A ∈ A,

where V : Hπ → H0 is a unitary. In this way, all superselection sectors may be represented

inside the vacuum Hilbert space H0. Furthermore, by the selection criterion 7.2.2 applied to π,

the unitary V : Hπ → H0 may be chosen such that it defines an equivalence between π and the

vacuum representation π0 on the complement O′ of some double cone O. The endomorphism

ρ will then be localized in O in the sense that ρ(A) = A for all A ∈ A(O′).
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Proposition 7.2.4. For a double cone O ∈ K, there is a one-to-one correspondence up to

unitary equivalence between the following:

• representations π ∈ Reploc(A), i.e. for which there is a unitary V : Hπ → H0 such that

π(B) = V −1π0(B)V, ∀B ∈ A(O′)

• representations of A which are of the form π0 ◦ ρ where ρ : A → A is a localized

endomorphism, i.e.

ρ(B) = B, ∀B ∈ A(O′).

The correspondence is established by ρ(A) = V −1π0(A)V .

Put differently, we have defined an inclusion Reploc(A) ↪→ End(A) of categories, where

End(A) is the category of endomorphisms of A. The category End(A) has objects the endo-

morphisms of A and arrows T : ρ → σ the intertwiners T ∈ A : Tρ(A) = σ(A)T . The crucial

observation is that the category End(A) has a much richer structure than Reploc(A) ⊆ Rep(A)—

in particular, it is monoidal with the monoidal product given by the composition of endo-

morphisms. This suggests that the superselection sector structure should be captured as an

appropriate subcategory (the DHR category) of End(A), rather than Rep(A).

It is clear from Proposition 7.2.4 that we should restrict ourselves to the localized endo-

morphisms. A further restriction is transportability.

Definition 7.2.5 (Transportable morphisms). A morphism is transportable if we can find

morphisms equivalent to it in all translates of its region of localization: for ρ ∈ End(O), and

any double–cone O1 = O + x there is a unitary U and ρ1 localized in O1 such that2

Uρ(A) = ρ1(A)U.

We can now define the objects of the DHR category as elements of Δ:

Definition 7.2.6. For any double cone O ∈ K, let Δ(O) denote the set of transportable

morphisms localized in O and further denote Δ =
⋃

O∈K Δ(O).

The arrows of the DHR category are the arrows induced from End(A) such that Δ ↪→
End(A) is a full subcategory, i.e. for objects ρ, ρ′ in Δ, the set Hom(ρ, ρ′) of arrows between ρ

and ρ′ is defined as follows:

HomΔ(ρ1, ρ2) ≡ (ρ2|ρ1) = {T ∈ A | ρ2(A)T = Tρ1(A), ∀A ∈ A}.
Elements of the Hom–space (ρ2|ρ1) are called intertwiners from ρ1 to ρ2. Spaces of in-

tertwiners are linear subspaces of A, and respect the localization of the source– and target

morphisms in the sense that for ρi ∈ Δ(Oi) (i = 1, 2), (ρ2 | ρ1) ⊆ A(O1 ∪O2).

2From a physical point of view, it is reasonable to further restrict attention to Poincaré covariant morphisms
ΔP ⊆ Δ for which there is a unitary representation V : U(P) → U(H0) of the whole Poincaré group imple-
menting Poincaré transformations on ρ, i.e. ρ(α(Λ,x)(A)) = V(Λ,x)ρ(A)V −1

(Λ,x).
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Composition of arrows is simply by multiplication in A: for T : ρ → ρ′ and T ′ : ρ′ → ρ′′,

the product T ′ ◦ T ≡ T ′T : ρ → ρ′′ is an intertwiner from ρ to ρ′′. The identity of A is the

identity arrow for all objects ρ ∈ Ob Δ, 1 = id ρ.

Remark 7.2.7 (Charge quantum numbers). The set of objects ObΔ is much too large to

be identified with the superselection sectors in the physical sense. Instead, we take unitary

equivalence classes of morphisms. Call a unitary U on H0 localized in O ∈ K if U ∈ A(O);

then AdU(A) = UAU−1 defines a localized automorphism. We consider two morphisms ρ and

ρ′ equivalent if ρ′ = AdU ◦ ρ for some localized unitary U . The set of equivalence classes

(7.2.8) [Δ] = {[ρ] | ρ′ ∈ [ρ] ⇔ ρ′ = AdU ◦ ρ} = Δ/ ∼
is then identified with physical superselection sectors, or ’charge quantum nubers’.

Remark 7.2.9 (Local structure of Δ). Although the local aspect of the observable algebra

is ignored in the application to Galois theory, it is of utmost importance to AQFT.

The causal structure of the observable algebra A carries over to the morphisms, in the sense

that morphisms with space–like separated supports commute, i.e. for ρ1 ∈ Δ(O1), ρ2 ∈ Δ(O2)

(7.2.10) for O1 ×O2 : ρ1 ρ2 = ρ2 ρ1

To prove 7.2.10, it is sufficient to prove that ρ1 ρ2(A) = ρ2 ρ1(A) holds for any localized ob-

servable A. However, since the ρi are transportable, we can choose for any region O ∈ K and

A ∈ A(O) transported morphisms ρ′
1 ∼ ρ1 and ρ′

2 ∼ ρ2 which are localized space–like to ρ1

and ρ2, respectively and both are space–like to O. Then clearly ρ′
1ρ

′
2(A) = ρ′

2ρ
′
1(A) and this

holds for the equivalent morphisms ρ1 and ρ2 as well.

The category of endomorphisms End A of an algebra A is enriched by the extra structure

that A may possess. In particular, the quasilocal C∗–algebra structure of the observable algebra

A has the consequence that

(1) Δ is a monoidal ∗–category, and

(2) Δ is a C∗–category.

2.3. Δ(A) is a C∗–category. The notion of C∗–category is the categorical analogue of a

C∗–algebra. For

Definition 7.2.11. A C∗–category has Hom–spaces which are C–linear, such that for all

X, Y, Z ∈ Ob C the following properties hold:

• composition is a bilinear map ◦ : Hom(X, Y ) × Hom(Y, Z) → Hom(X, Z),

• there is a positive ∗–operation ∗ : Hom(X, Y ) → Hom(Y, X) and

• a norm ‖ · ‖X,Y on Hom(X, Y ) making it a Banach space, such tha

‖g ◦ f‖X,Z ≤ ‖g‖Y,Z‖f‖X,Y and ‖f ∗ ◦ f‖X,X = ‖f‖2
X,Y

As promised, we have that
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Lemma 7.2.12. The DHR category Δ is a C∗–category: for all ρ, σ ∈ Ob Δ, HomΔ(ρ, σ) =

(σ | ρ) is a complex vector space with positive ∗–operation and norm ‖ · ‖ρ,σ inherited from A.

Two important properties which follow from the C∗–structure is that the DHR category

Δ has subobjects and direct sums. Rep(A) has subobjects and direct sums, inherited from Hilb

via the forgetful functor Rep(A) → Hilb. For an abstract category, however, establishing these

properties is far from trivial.

Definition 7.2.13. Let C be a ∗–category. For objects X, Y ∈ Ob C, X is a subobject of Y

if there is an isometry s ∈ Hom(X, Y ) i.e. X is isometrically embedded into Y . C has subobjects

if for each Y ∈ Ob C and each projection p ∈ End(Y ) there is an object X ∈ Ob C and an

isometry s : X → Y such that p = s ◦ s∗.

For objects X, Y, Z ∈ Ob C, Z ∼= X ⊕ Y is a direct sum of X and Y , defined up to

isomorphism, if there are isometries f ∈ Hom(X, Z), g ∈ Hom(Y, Z) such that f ◦ f ∗+g ◦ g∗ =

id Z and f ∗ ◦ g = 0. C has direct sums if for any pair of objects X, Y ∈ Ob C, there is a direct

sum Z ∼= X ⊕ Y .

Proposition 7.2.14. The category Δ has subobjects and direct sums3; for ρ, σ ∈ Ob C, the

direct sum is denoted ρ ⊕ σ.

An object X in a C–linear category C is said to be simple, or irreducible, if it is nonzero

and End(X) = C id X . The category C is semisimple if every object is a finite direct sum of

irreducible objects.

2.4. Δ(A) is a monoidal ∗–category. The DHR category Δ inherits its monoidal struc-

ture from End(A). As a first step, consider that Δ ⊂ End(A) is a submonoid, i.e. composition

restricts properly to transportable, localized morphisms.

It is clear from the definitions that for ρ ∈ Δ(O1) and σ ∈ Δ(O2), the composition ρσ is

again localized, in O1 ∪O2. To see that ρσ is also transportable, consider an arbitrary double

cone O3. Since ρ and σ are transportable, there are unitaries U : ρ → ρ′ and V : σ → σ′ with

ρ′, σ′ ∈ Δ(O3). But then Uρ(V ) : ρσ → ρ′σ′ and ρ′σ′ ∈ Δ(O′). Since O3 was arbitrary, ρσ is

also transportable.

Remark 7.2.15. By an entirely similar reasoning, we can check that composition of endo-

morphsims is well–defined on the unitary equivalence classes of [Δ],

(7.2.16) [ρ1ρ2] = [ρ1][ρ2].

It is in fact the monoid structure on [Δ] which we take to mean the ’charge composition

algebra’.

3Both assertions rely on Borcher’s ’Property B’, which is satisfied iff for each O,O1 ∈ K such that O− ⊆ O1,
every projection E of A(O) is equivalent to the unit in A(O1), i.e. there is an isometry W ∈ A(O1) such that
WW ∗ = E and W ∗W = 1. This is a technical assumption, since it is fulfilled for any additive, causal net
satisfying the spectral condition.
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It remains to define the monoidal product on arrows. For intertwiners S1 : ρ1 → ρ′
1,

S2 : ρ2 → ρ′
2, let

S1 × S2 = S1ρ1(S2) = ρ′
1(S2)S1 : ρ1ρ2 → ρ′

1ρ
′
2,

where the two expression coincide because of the intertwiner property of S1. The cross

product is associative,

(7.2.17) S1 × (S2 × S3) = (S1 × S2) × S3

and is compatible with the composition of intertwiners in the sense of the interchange law :

(7.2.18) (S ′
1 ◦ S1) × (S ′

2 ◦ S2) = (S ′
1 × S ′

2) ◦ (S1 × S2),

whenever both sides are well–defined, e.g. Si : ρi → ρ′
i and S ′

i : ρ′
i → ρ′′

i are composable

intertwiners. In other words, we have that

Proposition 7.2.19. 〈Δ,⊗, id A〉 is a (strict) monoidal ∗–category. The monoidal unit id A

is the identity endomorphism in End A and the monoidal product is given on objects ρ, σ ∈ ObΔ

by the composition of endomorphisms ρ⊗σ = ρσ and on arrows S ∈ Hom(ρ, ρ′), T ∈ Hom(σ, σ′)

by S ⊗ T = S × T = Sρ(T ).

Furthermore, since for all objects ρ, σ, Hom(ρ, σ) is closed in the norm inherited from A

and for any pair of arrows ‖S × T‖ ≤ ‖S‖ · ‖T‖, Δ is a C∗–monoidal category.

2.5. Δ(A) is a braided and rigid monoidal category. The composition of charges is

reflected mathematically in the monoidal structure on Δ. Two other fundamental features of

relativistic quantum field theory is particle statistics (in more than 3 spacetime dimensions, the

Bose/Fermi alternative) and the existence of antiparticles. AQFT captures these properties

mathematically in the braiding and rigidity structure on the DHR category.

For two arbitrary morphisms ρ1 ∈ Δ(O1) and ρ1 ∈ Δ(O1), let Õ1,2 be space–like separated

double cones and introduce unitaries Ui ∈ Hom(ρi, ρ̃i) such that ρ̃i ∈ Δ(Oi). Then U1 × U2 ∈
Hom(ρ1ρ2, ρ̃1ρ̃2) and U∗

1 × U∗
2 ∈ Hom(ρ̃2ρ̃1, ρ2ρ1). Since O1 × O2, the morphisms ρ̃1 and ρ̃2

commute. Consider the following unitary intertwiner in Hom(ρ1ρ2, ρ2ρ1):

(7.2.20) ερ1,ρ2(U1, U2) := (U2 × U1)
∗ ◦ (U1 × U2) = ρ2(U

∗
1 )U∗

2 U1ρ1(U2).

It is then proved that ερ1,ρ2(U1, U2) is independent of the choice of U1 and U2, except for

their relative localization. The analysis boils down to two distinct cases, depending on the

dimensionality of spacetime4. Note that for D = d + 1 ≤ 2, there is a well–defined notion of

left and right; we use O < O′ to denote that O is to the left of O′.

Lemma 7.2.21. In space–time dimension D = d + 1 ≤ 2, ερ1,ρ2(U1, U2) is definable in

terms of ρ1 and ρ2 depends on Õ1 and Õ2 only through their relative spatial orientation; let

Ui : ρi → ρ̃i with O1 < O2 and let U ′
i : ρi → ˜̃ρi with ˜̃O1 > ˜̃O2 having the opposite orientation.

4This is the first instance in the discussion of AQFT, where the dimension of the underlying spacetime enters.
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Then

ερ1,ρ2(U1, U2) = [ερ2,ρ1(U
′
2, U

′
1)]

∗
.

For D = d + 1 ≥ 3, ερ1,ρ2(U1, U2) is independant of the choice of (Õ1, Õ2) as long as they are

space–like separated and

ερ1,ρ2 = (ερ2,ρ1)
−1.

For D ≥ 3, the braiding is defined with ερ1,ρ2 = ερ1,ρ2(U1, U2) for U1 and U2 space–like

separated; in the case that D ≤ 2, there are two possible conventions to define ερ1,ρ2. According

to Lemma 7.2.21, one convention is the complex conjugate of the other.

Proposition 7.2.22. ερ1,ρ2 is a braiding on the DHR category 〈Δ,⊗, id A〉. For spacetime

dimension D ≤ 2, ερ1,ρ2 is the unique braiding such that ερ1,ρ2 = id for morphisms ρi ∈ Δ(Oi)

with O2 < O1. For D ≥ 3, ερ1,ρ2 is the unique braiding such that ερ1,ρ2 = id for morpshims

ρi ∈ Δ(Oi) with O2 and O1 space–like separated. In this case, ερ1,ρ2 is in fact a symmetry.

The existence of antiparticles is fundamental to relativistic quantum field theories. In

AQFT, the conjugate ρ̄ of a charge ρ ∈ Δ is identified with the conjugate object in the

categorical sense.

Definition 7.2.23. Let C be a monoidal ∗-category. The conjugate of an object X ∈ Ob C
is a triple (X̄, r, r̄), where X̄ ∈ Ob C and the arrows R : 1 → X̄ ⊗ X and R̄ : 1 → X ⊗ X̄

satisfy

(R̄∗ ⊗ id X) ◦ (id X ⊗ R) = id X(7.2.24)

(R∗ ⊗ id X̄) ◦ (id X̄ ⊗ R̄) = id X̄ .(7.2.25)

The category C has conjugates if there is a conjugate for every object in C; in this case, C is

said to be rigid.

In AQFT, the existence of a conjugate (ρ̄, R, R̄) for an object ρ means that there is a

subobject of ρ ρ̄ equivalent to the monoidal unit. This is consistent with the intuition that

conjugate charges annihilate each other.

The notion of categorical (or quantum–) dimension is closely connected to the theory of

conjugates. For an object X ∈ Ob C with standard conjugate (X̄, r, r̄), the dimension d(X) of

X is defined by

(7.2.26) d(X) id 1 = R∗ ◦ R.

If no conjugate exists, the dimension is formally set to be d(X) = +∞. The dimension function

satisfies properties one would expect, in particular d(X) ≥ 0 for all X ∈ Ob C, and the following

relation hold:

(7.2.27) d(X̄) = d(X), d(X ⊗ Y ) = d(X) · d(Y ), d(X ⊕ Y ) = d(X) + d(Y ),
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and the dimension of the monoidal unit is d(ι) = 1. In a symmetric C∗–category, the quantum

dimensions are restricted to the integers. For the representation category of a compact group in

particular, the quantum dimensions coincide with the linear dimensions of the representation

spaces. A strong result holds for the restriction of the DHR category Δ to the full subcategory

of finite–dimensional objects Δf with objects

Ob Δf = {ρ ∈ ObΔ | d(ρ) < +∞},
i.e. the full subcategory of objects with conjugates. It can be proved that d : Ob Δf → R+

takes values only in [1,∞) and in the interval [1, 2] only the discrete values 2 cos(π/k) (k ≥ 3)

can appear5

Remark 7.2.28 (Non–integer quantum dimensions in low spacetime dimension). Another

salient feature of low–dimensional QFT is the appearance of non–integer quantum dimensions.

Recall that for D = d + 1 ≥ 3 the DHR category is symmetric, and this forces quantum

dimensions to be integers; for D ≤ 2, this restriction does not apply. In the Lee–Yang model,

for example, there is a self–dual sector ρ with the fusion rule ρ⊗ρ = ρ⊕1. Thus, the quantum

dimension must satisfy d(ρ)2 = d(ρ) + 1 which has the irrational solution d(ρ) = 1+
√

5
2

.

The Doplicher–Roberts reconstruction theorem identifies the DHR category Δ with the rep-

resentation category of the gauge group. Clearly, in a theory exhibiting non–integer quantum

dimensions, the reconstructed ’gauge group’ cannot possibly be a group. In fact, it cannnot

even be a Hopf algebra: it can be proved that the quantum dimensions in Rep(H) with H a

semi–simple Hopf algebra are also necessarily integers. This observation is one of the main

motivations for studying quantum groupoids, as a candidate symmetry in low–dimensional

QFT models.

3. The Doplicher–Roberts reconstruction theorem

Formulating QFT in terms of the observable net leads to an elegant interpretation of su-

perselection sectors and particle statistics, but to make contact with conventional QFT, two

major ingredients are missing: so far, we are ignorant of the charge carrying fields and the

gauge group. The DR theorem solves both problems in one stroke, by simultaneously recon-

structing both the field algebra –the extension of the observable algebra by charge–carrying

fields– and the gauge group from the DHR category Δ.

The approach of conventional QFT is exactly opposite. There one starts with a field algebra

F ⊆ B(Hu) acting irreducibly as bounded operators on the state space Hu (the superscript

refers to ’universal’) of the theory and gauge group G, together with a unitary representation

πu : G → U(Hu) on Hu. There is a privileged direct sum decomposition of Hu into orthogonal

subspaces Hu =
⊕

ξ Hu
ξ , where the subspaces Hu

ξ are labelled by the characters (unitary

5This is an instance of the connection of AQFT to the theory of subfactors. Assuming that every local von
Neumann algebra A(O) is a factor, i.e. has trivial center, an endomorphism ρ ∈ Δ(O) gives rise to an inclusion
of factors ρ(A(O)) ⊆ A(O). The index of this inclusion is related to the categorical dimension through
[A(O) : ρ(A(O))] = d(ρ)2. The index of subfactors has been classified in the work of V.F.R. Jones.
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equivalence classes of irreducible representations) of G, such that Hu
ξ carries the representation

Dξ ∈ πu(G). This is, in the conventional sense, the decomposition of the state space into

superselection sectors. The observable algebra is defined as the algebra of gauge invariant

elements of F , i.e. πu(A) = F ∩ πu(G)′. The representation πu : A → B(Hu) is reducible, and

is in fact reduced by the subspaces Hu
ξ , i.e. there is a direct sum decomposition πu =

⊕
πξ,

into representations πξ on subspaces Hu
ξ , respectively.

AQFT captures this setting in the notion of field system.

Definition 7.3.1. Denoting (H0, π0) the vacuum representation on A, a field system is a

triple {πu, G,F} where (Hu, πu) is a (reducible) representation of the observable algebra, G

is a strongly compact group of unitaries on Hu and F is a local net of field algebras acting

irreducibly on Hu such that the following properties are satisfied:

(1) (H0, π0) is a subrepresentation of (Hu, πu): there is an isometry V : H0 → Hu,

V π0 = πu V ;

(2) V maps H0 into the G–invariant subspace of Hu;

(3) the automorphisms αg : G → AutF induced by G leave the local field algebras

F(O) globally fixed and (πu(A(O)))′′ ⊆ F(O) is the invariant subalgebra under the

G–action;

(4) for any O ∈ K, F(O)V (H0) spans a dense subspace of Hu (i.e. V (H0) is cyclic for any

local field algebra);

(5) fields are local relative to observables: whenever O1 × O2, F(O1) commutes with

πu(A(O2)).

The field system is called normal if the field algebra F satisfies Z2–graded commutativity,

i.e. odd (fermionic) elements anticommute at spacelike separations while even (bosonic) ele-

ments commute. The field system is called complete if every superselection sector appears as a

subrepresentation of πu. Lastly, two field systems (πu
i , Gi,Fi) (i = 1, 2) are equivalent if there

is a unitary W : Hu
1 → Hu

2 intertwining the representations πu
1 and πu

2 , the two gauge groups

and the two field nets.

Remark 7.3.2 (Recovering DHR representations from the field system ). In this rigorous

formulation of the field system, it is possible to show that the subrepresentations appearing in

(Hu, πu) are precisely the DHR representations. In other words, localized representations (in

the DHR sense) are precisely the ones that can be reached from the vacuum by the application

of localized fields, see e.g. [59] Section 9.

Stated briefly, the DR reconstruction theorem says that with the standing assumptions of

AQFT and the observable net there is a complete, normal field system (πu, G,F) which is

unique up to equivalence. In regard to the reconstruction of the gauge group, the following

Theorem tells us what to expect.



The Doplicher–Roberts reconstruction theorem 119

Theorem 7.3.3. A strict symmetric rigid monoidal category6 〈T,⊗, ι〉 with subobjects, di-

rect sums and one–dimensional monoidal unit End ι = C 1 is the abstract dual of a unique com-

pact group G, i.e. there is a concrete representation category Rep(G) and a functor Δ → Rep(G)

which is an isomorphism of symmetric monoidal categories.

3.1. Tannaka–Krein theory. Note that 〈T,⊗, ι〉 is an abstract monoidal category; hence,

7.3.3 is a much stronger result than the classical Tannaka–Krein theorem, which reconstructs

a compact group from a concrete monoidal category, i.e. a monoidal category equipped with

a fiber functor. A fiber functor for T is a faithful and exact strong monoidal functor E : T →
VecC. If it exists, it can be proven to be unique up to unitary natural isomorphism. A fiber

functor from a symmetric monoidal category 〈T,⊗, ι; cX,Y 〉 is symmetric if it maps the symme-

try of T to the canonical symmetry of VecC, E(cX,Y ) =
∑

E(X),E(Y ). Thus, 7.3.3 characterizes

compact group duals within abstract categories, wheras Tannaka–Krein theory characterizes

compact group duals within categories of finite dimensional Hilbert spaces.

Assuming T is equipped with a ∗–preserving symmetric fiber functor E, denote GE the

set of unitary monoidal natural transformations from E to itself. GE has the structure of a

compact topological group with the identical natural transformation as unit. By definition,

GE acts on spaces E(X) for all X ∈ T. Taking an element g ∈ GE, the representation πX(g)

on E(X) is the X–component of the natural transformation g, πX(g) = gX : E(X) → E(X).

Tannaka–Krein reconstruction is essentially the following

Proposition 7.3.4. Let T be a symmetric monoidal ∗–category with End ι = C 1, equipped

with a symmetric ∗–preserving fiber functor E : T → VecC. With GE defined as above, F :

T → Repf(GE), X 	→ (E(X), πX) is a faithful symmetric ∗–functor to the finite–dimensional

representations of GE, such that U ◦ F = E where U : Repf (GE) → VecC is the canonical

forgetful functor (V, π) 	→ V ; moreover, F is an equivalence of symmetric monoidal categories.

The uniqueness of fiber functors implies the uniqueness of the reconstructed group: if

E1, E2 : T → VecC are two symmetric ∗–preserving fiber functors then E1
∼= E2 and hence

GE1
∼= GE2 . The Tannaka–Krein theorem can be generalized to Hopf algebras and quantum

groupoids [88], [42], [71].

3.2. The cross product construction. The reconstruction of field system in AQFT is

a more difficult problem in that no fiber functor is available a priori. Interestingly, it can

nevertheless be solved, and the fiber functor arises as a by–product of the field algebra con-

struction. However, since the gauge group and the field algebra are constructed simultaneously,

the classical Tannaka–Krein theory is circumvented altogether.

The key idea is to costruct the field algebra as a cross product C∗–algebra F = A�T of the

observable algebra and the DHR category. In the case that T maybe identified as a compact

6In the discussion of DR duality, an abstract category satisfying the requirements of 7.3.3 shall be denoted T

in accordance with the literature. In relation to AQFT, it should be thought of as the DHR category Δ.
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group dual Δ ∼= RepG, and F will carry an action of the gauge group such that the invariant

subalgebra is just A. The main result is the following:

Theorem 7.3.5. Let A be a C∗–algebra with trivial center and T ⊆ End A a full monoidal

subcategory with subobjects, direct sums, conjugates and (T, ε) symmetric. Then there is a

unique C∗–algebra F and a group G ⊆ Aut(F) such that

(1) A = FG is the G–invariant subalgebra;

(2) the extension A ⊆ F is irreducible, i.e. A′ ∩ F = C 1 ;

(3) F is generated as a C∗–algebra by A and the Hρ, where

Hρ := {ψ ∈ F |ψA = ρ(A)ψ, ∀A ∈ A}
are finite dimensional Hilbert spaces in F for al objects ρ ∈ T;

(4) ε(ρ, σ) = θHρ,Hσ for each pair of objects ρ, σ ∈ T, where θH,K is the unique unitary in

F such that θH,Kψψ′ = ψ′ψ for all ψ ∈ H, ψ′ ∈ K.

With the conditions (1) through (4) above, G = Fix(A) ⊆ Aut(F) is compact in the strong

topology. Moreover, the system (F , G) is unique up to ∗–isomorphism.

Assuming the field algebra structure promised by the above theorem, one can see at this

point how the missing fiber functor emerges. The Hilbert spaces Hρ are naturally interpreted

as multiplets of field operators creating charge ρ; the endomorphisms of A become inner in

the extended field algebra A � T. Restricting the action of G to Hρ ⊆ F , one obtains a repre-

sentation (Hρ, Dρ) of G. Intertwiners (Dρ,Hρ) → (Dρ′ ,Hρ′) are in one–to–one correspondance

with arrows ρ → ρ′; the mapping between Hom–spaces is given by

HomT(ρ, ρ′) → HomRep(G)(Dρ, Dρ′)(7.3.6)

(ρ
T→ ρ′) 	→ {T · : Hρ # ψ → Tψ ∈ Hρ′}.(7.3.7)

Hence, there is an isomorphism of T with a concrete representation category Rep(G).

The proof and detailed analysis of Theorem 7.3.5 can be found in the classic papers [32], [33]

and [34], we only sketch the main points. First, it suffices to construct the cross product of the

observable algebra with a single endomorphism ρ ∈ T, in the sense that every category fulfilling

the requirements of 7.3.3 is shown to be an inductive limit T = lim−→Tρ of full subcategories each

of which is generated by a single object ρ. Denoting Tρ

full

⊆ T the full subcategory on objects

{ι, ρ, ρ2, ρ3, ...}, the cross product Fρ = A�Tρ incorporates a single multiplet of field operators

creating charge ρ. The full gauge group is then obtained from the Gρ = AutA A � Tρ as the

projective limit G = lim←−Gρ.

The key idea in the construction of the cross product Fρ = A � Tρ with a single object is

to embed Tρ into an appropriate C∗–algebra, the Cuntz algebra Oρ and to construct A � Oρ.

The details of this procedure lie outside our scope (see [33]), but we sketch how the Cuntz

algebra structure can be identified within Fρ.
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Consider a d–dimensional Hilbert space of isometries Hρ corresponding to the sector ρ. The

elements {ψk}k=1...d spanning Hρ may then be chosen to satisfy the relations

ψ∗
i ψk = δik 1 (i, k = 1, ..., d) and

d∑
k=1

ψkψ
∗
k = 1.(7.3.8)

There is a unique norm on the ∗–algebra generated by {1, ψk, ψ
∗
k}; the Cuntz algebra is the

C∗–algebra obtained by completion in this norm and is denoted Od. The scalar product is

defined, by 7.3.8 as

ψ′∗ψ = 〈ψ′, ψ〉 1
Furthermore, every Cuntz algebra Od comes equipped with a canonical endomorphism σOd

which, in the case of a field multiplet of charge ρ, reproduces the endomorphism ρ. Taking an

element ψ ∈ Hρ and an arbitrary algebra element C ∈ Od, we find

(7.3.9) ψ C = σOd
(C) ψ,

where σOd
∈ EndOd is the inner endomorphism σOd

(C) =
∑d

k=1 ψkCψ∗
k. The canonical endo-

morphism is independent of the choice of basis {ψk} and clearly, σOd
= ρ.

It seems useful to separate the problems raised –and solved– by the DR theorem according

to the following schematic7.

E : T → VecC

1©





��
2©

��

G ��

3©
�� A ⊆ F

1© represents the setting of Tannaka Reconstruction: determining from a category T and

fiber functor E : T → VecC a group (resp. Hopf algebra, quantum groupoid) such that E

factorizes through an equivalence of categories T
∼→ RepG and U is the canonical forgetful

functor U : RepG → VecC, (Va, Da) 	→ Va.

T ��

E 		�
��

��
��

��
RepG

U
��

VecC

2© represents a two–way relation between the field algebra extension and the fiber functor.

Given a field algebra, identifying the subspaces Hρ ⊆ F of ’operators of charge ρ’, as explained

7The interrelations represented by the arrows should be read in an informal sense. They do not necessarily
refer to mathematically rigorous results, but should be seen as plausible conjectures
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earlier, defines a fiber functor

End A ⊃ T → VecC

ρ 	→ Hρ

In the reverse direction, given a fiber functor, the field algebra arises as a cross product F =

A � E(P ), where P ∈ T is a distinguished (generating) object. This connection shall be

examined in the next chapter

3© represents a two–way direction between the gauge group G and the field algebra extension

A ⊆ F : this is the setting of (noncommutative) Galois theory.

4. Field algebra from a fiber functor

To investigate the connection between fiber functors on the DHR category and Galois

extensions of the observable algebra, we develop the example of a fiber functor which arises

from a generating universal object in the category. This is in fact the setting of the Doplicher–

Roberts theory. Recall, that if one assumes finitely many simple objects, the existence of such

a (simple) generating object is automatic.

We make the following assumptions.

Assumption 7.4.1. Let A be a noncommutative k–algebra. We shall consider a DHR

category C ↪→ End A such that

(1) C is abelian such that every epi in C is split

(2) there is a generator γ ∈ C with right dual (γ̄, R, R̄)

A definition and brief discussion of abelian categories may be found in [59], Appendix A.5

or [53]. Recall that in an abelian category, finite sums and finite direct products coincide. For

objects α, β ∈ Ob C in an abelian category, the binary product or coproduct a
∏

b ∼= a
∐

b ∼=
a ⊗ b is called the biproduct or also the direct sum8. Hence, with the additional assumption

that all epimorphisms should be split, we reproduce Doplicher and Roberts’ requirements that

the DHR category should have direct sums and subobjects.

Also, in abelian categories, generators and finite cogenerators coincide. With the assump-

tions of 7.4.1, an object γ ∈ Ob C is a generator if every object α ∈ Ob C is contained in a finite

direct sum of γ’s as a direct summand. This is a strong requirement; one particular conseqence

that we shall often rely on is that there exist dual bases {fi, gi}i=1...N

γγ̄γ ... γγ̄
fi �� γ

gi �� γγ̄γ ... γγ̄

such that
∑N

i=1 gifi = id γγ̄...γ̄γ for all finite products of γ’s and γ̄’s. The Hom spaces of arrows

between such objects are finite direct sums of Hom(γ, γ) = End γ. For example, take dual bases

8To take a familiar example of an abelian category, the module category MR over a ring R, the biproduct is in
fact the direct sum of R–modules.
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pk ∈ Hom(γγ, γ) and qk ∈ Hom(γ, γγ), satisfying
∑

k qkpk = id γ2 . Then for f ∈ Hom(γγ, γγ)

and all qk and pl, the composite

γ
qk �� γγ

f
�� γγ

pl �� γ

defines a map in fk,l ∈ Hom(γ, γ). By the dual basis property of the qk and pk, the map f is

written in components as f =
∑

m,n qn fm,n pm, hence Hom(γγ, γγ) ∼= ⊕
m,n Hom(γ, γ).

We assume our category to be embedded in End A, hence every object is an endomorphism

of A and the monoidal product is the composition of endomorphisms. We do not, however,

assume a local structure on A which is the most important departure from the setting of AQFT.

Treating the general case of a quasilocal observable algebra would require a quantum groupoid

Galois theory of nets of local algebras, which is not yet available.

We shall construct the field algebra as a cross product of A and the fiber functor image of the

generator γ ∈ Ob C. The resulting field algebra extension will then be shown to be right depth

2, hence bialgebroid Galois, by explicit construction of the depth 2 quasibases. Restricting to

the special case of a semi–simple category, we also present the field algebra on generators and

relations and show that it is essentially equivalent to the non–braided generalization of reduced

field bundle (’exchange algebra’) construction of Fredenhagen, Rehren and Schroer.

The fiber functor we consider is motivated by the following result (see [69]).

Theorem 7.4.2. For a cocomplete, closed monoidal category 〈C, ⊗ , I〉 with progenerator P ,

the functor HomC(P, P ⊗ ) is a right exact monoidal embedding into RMR, where R = End P .

Our aim is to construct the field algebra from the strong monoidal fiber functor U =

Hom(γ, ◦ γ) : Δ → RMR, denoting End γ = R. Besides the dual bases pk ∈ Hom(γγ, γ),

qk ∈ Hom(γ, γγ), we shall need

1
ui �� γ

ei �� 1

satisfying
∑

i eiui = id 1. We define the cross product field algebra as follows.

Theorem & Definition 7.4.3. Denoting RV = U(γ) = Hom(γ, Rγγ), define the field

algebra with F = A ⊗
R

V . The multiplication

(7.4.4) a ⊗ v, b ⊗ w ∈ A ⊗
R

V : (a ⊗ v)(b ⊗ w) = aγ(b)qk ⊗ pkγ(w)v

and unit

(7.4.5) 1F = ei ⊗ ui

define an associative unital algebra structure on F , and

ι : A ↪→ A ⊗
R

V, a 	→ aei ⊗ ui
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is a unital algebra inclusion9 of the observable algebra into the field algebra, making AFA an

A–ring.

Proof. To see associativity we compute, on the one hand:

((a ⊗ u)(b ⊗ v))(c ⊗ w) =
∑

i

∑
j

aγ(b)qjγ(c)qi ⊗
R

piγ(w)pjγ(v)u =

=
∑

i

∑
j

aγ(b)γ2(c)qjqi ⊗
R

pipjγ
2(w)γ(v)u,

and on the other hand:

(a ⊗ u)((b ⊗ v)(c ⊗ w)) =
∑

k

∑
l

aγ(bγ(c)ql)qk ⊗
R

pkγ(plγ(w)v)u =

=
∑

k

∑
l

aγ(b)γ2(c)γ(ql)qk ⊗
R

pkγ(pl)γ
2(w)γ(v)u.

Associativity holds if and only if

(7.4.6)
∑

i

∑
j

qjqi ⊗
R

pipj =
∑

k

∑
l

γ(ql)qk ⊗
R

pkγ(ql).

This is proved using that qjqi =
∑

k

∑
l γ(ql)qkC

ji
kl, where Cji

kl = pkγ(pl)qjqi. Cji
kl lies in R, and

using the definition of the amalgamated tensor product over R yields 7.4.6. The unit property

is an easy calculation using the definition of the multiplication,

(a ⊗ v)(ei ⊗ ui) =
∑

j

∑
i

a ⊗
R

γ(ei)qjpjγ(ui)v = a ⊗
R

v

(el ⊗ ul)(b ⊗ w) =
∑
m

∑
l

bejqm ⊗
R

pmγ(w)uj = b ⊗
R

ejγ(w)uj = b ⊗
R

w

It is easily checked that ι is a unital algebra morphism:

ι(a)ι(b) = (aei ⊗ ui)(bej ⊗ uj) = aeiγ(bej)qk ⊗ pkγ(uj)ui =

= aeiγ(b)γ(ej)qkpkγ(uj) ⊗
R

ui = abeiγ(ej)γ(uj) ⊗
R

ui = abei ⊗
R

ui = ι(ab),

where in the second equality we used that pkγ(uj) ∈ R, and the unit of A is mapped onto the

unit of F , 1F = ι(1A) = 1A ei ⊗
R

ui.

F is an A–ring with the inclusion ι : A → F . The corresponding A–bimodule structure is:

a′ · (a ⊗
R

v) = (a′ei ⊗ ui)(a ⊗ v) = a′eiγ(a)qk ⊗
R

pkγ(v)ui =(7.4.7)

= a′a ⊗
R

(eiqkpkui)v = a′a ⊗
R

v

(a ⊗ v) · a′′ = (a ⊗ v)(a′′ej ⊗ uj) = aγ(a′′ej)qk ⊗
R

pkγ(uj)v =(7.4.8)

= aγ(a′′)γ(ej)qkpkγ(uj) ⊗
R

v = aγ(a′′) ⊗
R

v.

9Note that ui ∈ Hom(1, γ) ⊆ Hom(γ, γ2)
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We only check that multiplication is a right A–module map:

(a ⊗
R

v)((b ⊗
R

w) · a′) = (a ⊗
R

v)(bγ(a′) ⊗
R

w) = aγ(b)γ2(a′)qk ⊗
R

pkγ(w)v

= aγ(b)qkγ(a′) ⊗
R

pkγ(w)v = ((a ⊗
R

v)(b ⊗
R

w)) · a′.

�

Knowing the A–actions on F explicitly, we can identify the subspaces F ρ of charge creation

operators within F . The Fρ are the analogues of the internal Hilbert spaces Hρ in the setting of

Doplicher–Roberts. An element a ⊗ v ∈ A⊗
R

V creates charge α ∈ C if (a⊗ v)·b = α(b)·(a⊗ v).

Substituting the A–actions above:

(7.4.9) (a ⊗ v) ∈ F ρ ⇔ aγ(b) ⊗ v = α(b)a ⊗ v for all b ∈ A

If RV is finitely generated projective over R, with dual basis ϕi ⊗ vi ∈ V ∗ ⊗
R

V , then any

element v ∈ V can be written v =
∑

i ϕ
i(v)vi, hence a ⊗ v =

∑
i aϕi(v) ⊗

R

vi. Applying ϕi to

7.4.9, we find

aϕi(v)γ(b) = α(b)aϕi(v),

meaning that aϕi(v) ∈ Hom(γ, α) for all (a ⊗ v) ∈ F α, and

(7.4.10) F α 
 Hom(γ, α) ⊗
R

V

Similarly, we can introduce the charge annihilation operators. An element a ⊗ v ∈ A ⊗
R

V

annihilates charge β ∈ C if b · (a ⊗ v) = (a ⊗ v) · β(b) (alternatively, it creates charge β from

the right). Using 7.4.7, we have

(7.4.11) (a ⊗ v) ∈ F̄ β ⇔ ca ⊗ v = aγβ(c) ⊗ v for all c ∈ A

Appealing again to the finitely generated projectivity of RV , we have

(7.4.12) F̄ β 
 Hom(γβ,1) ⊗
R

V 
 Hom(γ, β̄) ⊗
R

V,

where β̄ is the right dual of β.

We can now establish the inverse relation between the fiber functor and the field algebra.

As proposed earlier, the fiber functor should associate to any sector ρ ∈ Ob C the subalgebra

Fρ ⊂ F of field operators creating charge ρ.

Proposition 7.4.13. Let UF : C → RMR be the functor with object–map α 	→ F α and

arrow–map 〈α T→ β〉 	→ T · : F α → F β, where R = A′ ∩F is the centralizer of A in F . Then

〈UF , Uα,β , U0〉 is strong monoidal with the structure maps

Uα,β : U(α) ⊗
R

U(β) → U(αβ), F α ⊗
R

F β 	→ F αF β(7.4.14)

and

U0 :R → UF (1), R 
 V (γ, 1) ⊗
R

V.(7.4.15)
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Furthermore, R = End γ and UF
∼= U = Hom(γ, ◦ γ).

Proof. For all α ∈ C, F α is obviously in RMR. For any T ∈ Hom(α, β), UF (T ) :

Hom(γ, α) ⊗
R

V → Hom(γ, β) ⊗
R

V , a ⊗ v 	→ Ta ⊗ V is an RMR–map. It is a left R–module

map precisely because of the centralizer property. The composition of arrows corresponds to

the multiplication of intertwiners in A.

As for the monoidal structure, U0 is simply the isomorphism between R and V (γ, 1) ⊗
R

V .

Indeed, a ⊗ v ∈ A′ ∩ (A ⊗
R

V ) means (a ⊗ v) · b = b · (a ⊗ v) for all b ∈ A. Using that RV if

finitely generated projective,

baϕi(v) ⊗ vi = aϕi(v)γ(b) ⊗ vi

hence, by the familiar argument,

A′ ∩ (A ⊗
R

V ) 
 Hom(γ, 1) ⊗
R

V = UF (1)

Take (aα ⊗ v) ∈ F α, (aβ ⊗ w) ∈ F β with aα ∈ Hom(γ, α) and aβ ∈ Hom(γ, β). Using 7.4.4,

we find

(aα ⊗ v)(aβ ⊗ w) = aαγ(aβ)qk ⊗
R

pkγ(w)v ∈ Hom(γ, αβ) ⊗
R

V,

i.e. Uα,β(F α ⊗
R

F β) = F αF β ⊂ F αβ = F αβ. Introducing bases {aα
i }i in Hom(γ, α) and {aβ

j }j

in Hom(γ, β), respectively, calculate

Uα,β((aα
i ⊗ v)(aβ

j ⊗ w)) = aα
i γ(aβ

j )qk ⊗
R

pkγ(w)v

Observe that γ
qk→ γ2

γ(aβ
j )→ γβ

aα
i→ αβ is a basis in Hom(γ, αβ), hence

(7.4.16) F αF β = F αβ,

meaning that Uα,β is an isomorphism, i.e. UF is strong monoidal. The coherence diagrams

required of a monoidal functor are equivalent to the associativity and unitalness of F .

The natural isomorphism τ : Hom(γ, γγ)
∼→ UF ,

Hom(γ, αγ)
τα ��

U(f)

��

Hom(γ, α)⊗ R Hom(γ, γγ)

UF (f)

��

Hom(γ, βγ)
τβ

�� Hom(γ, β)⊗ R Hom(γ, γγ)

is given by

τα : Hom(γ, α) ⊗
R

Hom(γ, γγ) → Hom(γ, αγ), f ⊗
R

v 	→ fv

with inverse

τ−1
α : Hom(γ, αγ) → Hom(γ, α) ⊗

R

Hom(γ, γγ), g 	→ qα
i ⊗

R

pα
i g
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where {qα
i , pα

i } is the pair of dual bases α
pα

i �� γ
qα
i �� α , satisfying

∑
i q

α
i pα

i = id α. They

are clearly inverses,

τ−1
α ◦ τα(f ⊗

R

v) = qα
i ⊗

R

(pα
i f)v = qα

i pα
i f ⊗

R

v = f ⊗
R

v,

and

τα ◦ τ−1
α (g) = qα

i pα
i g = g.

�

Next, we look at the extension A ⊂ F and prove that it is depth 2 in the sense of [47]. From

4.4.3, it will follow that the field algebra extension is bialgebroid Galois. We shall construct

the depth 2 quasibases explicitly as elements in End AFA and (F ⊗
A

F )A, respectively. First, a

useful

Lemma 7.4.17. As k–modules,

End AFA 
 End RV and(7.4.18)

(F ⊗
A

F )A 
 (Hom(γ2, 1) ⊗
R

V ) ⊗
R

V(7.4.19)

Proof. Denote λR : R ⊗
R

M
∼→ M the natural isomorphism {r ⊗ m 	→ r · m} in RMR,

with inverse {m 	→ 1 ⊗ m}. To prove 7.4.18, define the isomorphism

(7.4.20) ρ : End RV
∼→ EndA−A(A ⊗

R

V ), β 	→ {a ⊗ v 	→ a ⊗ β(v)}

Obviously, ρ(β) is an A–bimodule map. It is easily seen that

(7.4.21) ρ−1 : EndA−A(A ⊗
R

V )
∼→ End RV , f 	→ {v 	→ λR ◦ f(1A ⊗

R

v)}

is an inverse for ρ. From the A–bimodule property of f , it follows that f(r ⊗ v) ∈ R ⊗
R

V for any

r ∈ R and v ∈ V , hence also f(1A ⊗ v) ∈ R ⊗
R

V so that the definition makes sense. Moreover,

ρ−1(f) is left R–linear, ρ−1(f)(r · v) = λR ◦ f(1A ⊗
R

r · v) = λR(r · f(1A ⊗
R

v)) = r · ρ−1(f)(v).

We check that ρ and ρ−1 are indeed inverses, i.e.

(ρ−1 ◦ ρ)(β) = {v 	→ λR ◦ (1A ⊗
R

β(v)) = β(v)}

and

(ρ ◦ ρ−1)(f) = {a ⊗ v 	→ a ⊗
R

λR ◦ f(1A ⊗
R

v) = a · f(1A ⊗
R

v) = f(a ⊗
R

v)}.

To prove 7.4.19, we first observe that F ⊗
A

F ∼= (A ⊗
R

V ) ⊗
R

V in RMR, by the isomorphism

ρ′ : (A ⊗
R

V ) ⊗
A

(A ⊗
R

V ) → (A ⊗
R

V ) ⊗
R

V(7.4.22)

(a ⊗
R

v) ⊗
A

(b ⊗
R

w) = (aγ(b) ⊗
R

v) ⊗
R

w
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with inverse (ρ′)−1((a ⊗
R

v) ⊗
R

w) = (a ⊗
R

v) ⊗
A

(1A ⊗
R

w). The placement of parentheses is

important: (A ⊗
R

V ) ⊗
R

V is the kernel of maps ((a · r ⊗
R

v) ⊗
R

w − (a ⊗
R

r · v) ⊗
R

w) and

((a ⊗
R

v) ⊗
R

r ·w− (a · γ(r) ⊗
R

v) ⊗
R

w). With this in mind, it is easy to check that ρ′ and (ρ′)−1

are well–defined R–bimodule maps.

(A ⊗
R

V ) ⊗
R

V is an A–bimodule with the actions b · ((a ⊗
R

v) ⊗
R

w) · c = (baγ2(c) ⊗
R

v) ⊗
R

w.

Assuming R(V ⊗
R

V ) is finitely generated projective with dual bases {Φij , vi ⊗ vj}, we may

write elements of (A ⊗
R

V ) ⊗
R

V as (a ⊗ v) ⊗ w = (aΦij(v ⊗
R

w) ⊗
R

vi) ⊗
R

wj. Then, (a ⊗
R

v) ⊗
R

w ∈
(F ⊗

A

F )A precisely if

(7.4.23) b(a Φij(v ⊗
R

w)) ⊗
R

vi ⊗
R

wj = ((a Φij(v ⊗
R

w))γ2(b) ⊗
R

vi) ⊗
R

wj,

i.e. for all Φ ∈ (V ⊗
R

V )∗, aΦ(v ⊗
R

w) ∈ Hom(γ2, 1), proving 7.4.19. �

Recall that ι : A ↪→ F = A ⊗
R

V is a right depth 2 extension if there exists a pair of dual

D2 quasibases {γi}m
i=1 ∈ End AFA, {c1

i ⊗ c2
i }m

i=1 ∈ (F ⊗
A

F )A, such that

(7.4.24) ∀f ∈ F : γi(f) c1
i ⊗

A

c2
i = 1F ⊗

A

f,

and it is a left depth 2 extension if there exists a pair of dual D2 quasibases {βi}m
i=1 ∈

End AFA, {b1
i ⊗ b2

i }m
i=1 ∈ (F ⊗

A

F )A, such that

(7.4.25) ∀f ∈ F : bi
1 ⊗

A

bi
2 βi(f) = f ⊗

A

1F

Denote {(ai ⊗
R

r1
i ) ⊗

R

r2
i }i=1...m ∈ (A ⊗

R

V ) ⊗
R

V and {ρi}i=1...m ∈ End V the images of the

right depth 2 quasibases under the isomorphsims (ρ′)−1 : (F ⊗
A

F )A ∼→ (A ⊗
R

V ) ⊗
R

V and

ρ−1 : End AFA
∼→ End V . Then, using 7.4.4 and 7.4.22, the depth 2 condition 7.4.24 takes the

following form.

(7.4.26) ∀(a ⊗
R

v) ∈ A ⊗
R

V : (aγ(ai)qk ⊗
R

pkγ(r1
i ) ρi(v)) ⊗

R

r2
i = (aei ⊗

R

ui) ⊗
R

v

We shall make use of two further pairs of dual bases,

(1) γγ̄
p̄k �� γ

q̄k �� γγ̄,
∑

k q̄kp̄k = id γγ̄

and

(2) γ̄γγ̄
sl �� γ̄

tl �� γ̄γγ̄,
∑

l tlsl = id γ̄γγ̄.

The second condition in particular means that that γ ∈ C ⊂ End A is a depth 2 arrow in the

sense of [82] and [12].
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We shall obtain the depth 2 quasibases {ρi}i=1...m and {(ai ⊗
R

r1
i )⊗

R

r2
i }i=1...m as the images of

the abstract depth 2 quasibases {tl}i=1...m and {sl}i=1...m under isomorphisms Hom(γ̄, γ̄γγ̄) →
End RV and Hom(γ̄γγ̄, γ̄) → (Hom(γ2, 1) ⊗

R

V ) ⊗
R

V , respectively.

Proposition 7.4.27. The maps

κ : Hom(γ̄, γ̄γγ̄)
∼→ End RV

t 	→ {β : v 	→ γ(R)vRγ(t)γ(R̄)}
(7.4.28)

κ′ : Hom(γ̄γγ̄, γ̄)
∼→ (Hom(γ2, 1) ⊗

R

V ) ⊗
R

V

s 	→
(

Rγ(s)q̄kγ(q̄l) ⊗
R

p̄kγ(R̄)

)
⊗
R

p̄lγ(R̄)
(7.4.29)

are isomorphisms.

Proof. Fig. 1 shows the pictorial representation of the maps κ and κ′, in the standard

notation for tensor categories (see e.g. [59], Appendix): vertical lines represent objects, juxta-

position of lines denotes monoidal product and intertwiners are represented as boxes with in–

and outgoing lines the source and target, respectively (to be read from top to bottom).

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γγ

γγ

γ̄

γ̄γ̄

γ̄

γ̄ γ̄

R

R
R

R̄R̄

R̄

κ

κ′

Figure 1. Graphical representation of the maps κ and κ′

The map

(κ′)−1 : (Hom(γ2, 1) ⊗
R

V ) ⊗
R

V → Hom(γ̄γγ̄, γ̄)(7.4.30)

(a ⊗
R

v) ⊗
R

w 	→ γ̄(a)γ̄γ2(R)γ̄γ(w)γ̄γ(R)γ̄(v)R̄
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is an inverse for κ. Indeed:

(
κ′ ◦ (κ′)−1

)
((a ⊗

R

v) ⊗
R

w) = κ′ (
γ̄(a)γ̄γ2(R)γ̄γ(w)γ̄γ(R)γ̄(v)R̄

)
= R

[
γγ̄(a)γγ̄γ2(R)γγ̄γ(w)γγ̄γ(R)γγ̄(v)

]
γ(R̄)q̄kγ(q̄l) ⊗

R

p̄kγ(R̄) ⊗
R

p̄lγ(R̄)

= aγ2(R)γ(w)γ(R)v [Rγ(R̄)] q̄kγ(q̄l) ⊗
R

p̄kγ(R̄) ⊗
R

p̄lγ(R̄)

= aγ2(R)γ(w) [γ(R)vq̄k] γ(q̄l) ⊗
R

p̄kγ(R̄) ⊗
R

p̄lγ(R̄)

= aγ2(R)γ(w)γ(q̄l) ⊗
R

γ(R)v [q̄kp̄k] γ(R̄) ⊗
R

p̄lγ(R̄)

= aγ(γ(R)wq̄l) ⊗
R

γ(R)vγ(R̄) ⊗
R

p̄lγ(R̄)

= a ⊗
R

γ(R)vγ(R̄) ⊗
R

γ(R)w [q̄lp̄l] γ(R̄) = (a ⊗
R

v) ⊗
R

w.

In the fifth equality, we used that γ(R)vq̄k ∈ End γ = R and the definition of the amalgamated

product ⊗
R

; in the sixth equality, we used that
∑

q̄kp̄k = 1γγ̄; in the seventh, the A–bimodule

structure of F 7.4.7, and the dual basis property again in the eighth. On the other hand,

(
(κ′)−1 ◦ κ′) (s) = (κ′)−1

[
(Rγ(s)q̄kγ(q̄l) ⊗ p̄kγ(R̄)) ⊗ p̄lγ(R̄)

]
= γ̄ (Rγ(s)q̄kγ(q̄l)) γ̄γ2(R)γ̄γ(p̄lγ(R̄)) γ̄γ(R)γ̄(p̄kγ(R̄)) R̄

= γ̄(Rγ(s)q̄kγ(q̄l))γ̄γ(p̄l)γ̄(p̄k)R̄ = γ̄(R)γ̄γ(s)γ̄(q̄k)γ̄γ(q̄lp̄l)γ̄(p̄k)R̄

= γ̄(R)γ̄γ(s)R̄ = γ̄(R)R̄s = s.

In the third equality, we used that p̄k, p̄l are γγ̄ → γ intertwiners and the rigidity relation; in

the fifth the dual basis properties of {q̄k, p̄k} and {q̄l, p̄l} and finally, the rigidity relation once

more.

The map

κ−1 : End RV → Hom(γ̄, γ̄γγ̄)(7.4.31)

β 	→ γ̄(q̄k)γ̄γ(R)γ̄(α(p̄kγ(R̄)))R̄

is an inverse for κ.

(κ ◦ κ−1)(β) = κ(γ̄(q̄k)γ̄γ(R)γ̄(α(p̄kγ(R̄)))R̄)

=
{
v 	→ γ(R)vR

[
γ

(
γ̄(q̄k)γ̄γ(R)γ̄(α(p̄kγ(R̄))) R̄

)]
γ(R̄)

}
=

{
v 	→ γ(R)vR γγ̄

(
q̄kγ(R) α(p̄kγ(R̄))

)
γ(R̄)γ(R̄)

}
=

{
v 	→ γ(R)vq̄k γ(R)α(p̄kγ(R̄)) [Rγ(R̄)] γ(R̄)

}
=

{
v 	→ γ(R) α

(
γ(R)v [q̄kp̄k] γ(R̄)

)
γ(R̄)

}
=

{
v 	→ γ(R) α

(
[γ(R)γ2(R̄)] v

)
γ(R̄)

}
= [γ(R)γ2(R̄)] α(v) = α(v).

In the fourth equality, we use that R is an γγ̄ → 1 intertwiner; in the fifth, we note that

γ(R)vq̄k ∈ End γ = R and the R–linearity of α ∈ EndR− V . In the sixth equality, we use the

dual basis property of {q̄k, p̄k} and the rigidity axiom Rγ(R̄) = 1γ in the last two steps. We
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also have

(κ−1 ◦ κ)(t) = κ−1
({v 	→ γ(R)vRγ(t)γ(R̄)}) = γ̄(q̄k)γ̄γ(R) γ̄

(
γ(R)p̄kγ(R̄)Rγ(t)γ(R̄)

)
R̄

= γ̄(q̄k)γ̄γ(R)γ̄γ(R)γ̄(p̄kγ(R̄)) γ̄(R) γ̄γ(tR̄)R̄ = γ̄(q̄k)γ̄γ(R)γ̄γ(R)γ̄(p̄kγ(R̄)) [γ̄(R)R̄] tR̄

= γ̄(q̄k)γ̄γ(R) γ̄γ(R)γ̄(p̄kγ(R̄)) tR̄ = γ̄(q̄k)γ̄γ(R) γ̄(p̄k [γγ̄(R)γ(R̄)]) tR̄

= γ̄(γγ̄(R)q̄k)γ̄(p̄k)tR̄ = γ̄(γγ̄(R) [q̄kp̄k])tR̄ = tγ̄(R)R̄ = t

In the fourth equality, we use the intertwiner property of R̄ : 1 → R̄R; we use rigidity in the

fifth, seventh and last equalities; in the sixth, the intertwiner property of p̄k : γγ̄γ and in the

eighth, the dual basis property of {q̄k, p̄k}. �

Substituting the abstract depth 2 bases {ti, si} into 7.4.28 and κ′, we obtain

(ai ⊗
R

r1
i ) ⊗

R

r2
i = κ′(si) = (Rγ(si)q̄kγ(q̄l) ⊗

R

p̄kγ(R̄)) ⊗
R

p̄lγ(R̄)(7.4.32)

ρi = κ(ti) = {v 	→ γ(R)vRγ(ti)γ(R̄)}(7.4.33)

It remains to prove 7.4.26. Inserting the identity
∑

i eiui = id , and using
∑

k qkpk = id γ2

in the second equality, we find(
aγ(ai)qk ⊗

R

pkγ(r1
i ) ρi(v)

)
⊗
R

r2
i =

(
aei ⊗

R

uiγ(ai) [qkpk] γ(r1
i ) ρi(v)

)
⊗
R

r2
i

= aei ⊗
R

ui ⊗
R

γ(ai)γ(r1
i ) ρi(v)r2

i .

Substituting 7.4.33 and 7.4.32, the rightmost tensorand evaluates to

γ(ai)γ(r1
i ) ρi(v)r2

i = γ(Rγ(si)q̄kγ(q̄l)) γ(p̄kγ(R̄)) γ(R)vRγ(ti)γ(R̄) p̄lγ(R̄)

= γ(Rγ(si)γγ̄(q̄l)) [q̄kp̄k] γ
2(R̄)γ(R)vRγ(ti)γ(R̄)p̄lγ(R̄)

= γ(R) γ2(siγ̄(q̄l)R̄) γ(R)vRγ(ti)γ(R̄) p̄lγ(R̄)

= γ(R) γ(R)vRγ(ti)γ(R̄) γ(si)γγ̄(q̄l)γ(R̄)) p̄lγ(R̄)

= γ(R)vRγ(ti) [γ(R̄γ̄(R))] γ(si)γγ̄(q̄l)γ(R̄)) p̄lγ(R̄)

= γ(R)vR [γ(tisi)] γγ̄(q̄l)γ(R̄))p̄lγ(R̄)

= γ(R)vq̄l [Rγ(R̄)] p̄lγ(R̄) = γ(R)v [q̄lp̄l] γ(R̄)

= γ(R)vγ(R̄) = γ(Rγ(R̄))v = v,

proving 7.3.5. In the fourth equality, we used the intertwining property of γ(R)vRγ(ti)γ(R̄) :

γ → γγ, and in the fifth, the intertwining property of vRγ(ti) : γ → γγ̄γγ̄.

4.1. The reduced field bundle. We add the assumption that the category C is semi-

simple, with finitely many simple objects. A skeleton of the subcategory of simple morphisms

will be denoted C0, i.e. C0 contains one representative of each equivalence class of simple objects.
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We take a more concrete approach, and let the universal object be a direct sum

(7.4.34) γ =
⊕
α∈C0

nαα,

containing all simple objects as direct summands with multiplicities nα. The universal object

then defines the functor

U : Δ → RMR, U(ρ) = Hom(γ, γρ).

Clearly, R = End γ =
⊕

α Matnα(C). If we choose nα = 1 for all α ∈ C0, then R would be

a commutative ring generated by the idempotent projections on the simple direct summands.

We shall keep the multiplicities at our disposal, and work over the bimodule category over the

noncommutative ring R.

The monoidal structure of U is the triple 〈U, Uρ,ρ′, U0〉, where

Uρ,ρ′ : U(ρ) ⊗
R

U(ρ′) → U(ρρ′)(7.4.35)

Uρ,ρ′(T ⊗
R

S) = T ◦ S = TS : P → Pρ′ → Pρρ′

is a natural map, and

U0 : R → U(1), R 
 Hom(γ, γ)

is an isomorphism (in fact, the definition of R). The semi–simplicity of C allows us to coordi-

natize functors and natural transformations in the distinguished basis of simple objects.

Considering first a simple object δ ∈ C0, U(ρ) may be decomposesed as

(7.4.36) U(δ) = Hom(γ, γδ) =
⊕
α,β

nαnβ Hom(α, βδ)

In order to obtain explicit formulas and also to make contact with the AQFT literature, we

introduce bases {(T α
βδ)

i}Nα
βδ

i=1 for the Hom–spaces Hom(α, βδ), where Nα
βδ is the fusion coefficient:

(7.4.37) dim(β) dim(δ) =
∑
α∈C0

Nα
βδ dim(α)

The (T )i are thus intertwiners (T α
βδ)

i : α → βδ. Taking into account the multiplicities nα, nβ ,

we can label the basis elements of the U(δ) as

(7.4.38) {(T α
βδ)

i,ab} ; i = 1...Nα
βδ , a = 1...nα , b = 1...nβ

The index–pair a, b carries the R–bimodule structure of U(ρ). More precisely, U(ρ)α,β is an

Matnα(C)-Matnβ
(C)–bimodule.

Since any object is equivalent to an appropriate direct sum of copies of simple objects, we

can express the functor U in the basis introduced above. For ρ =
⊕

δ∈C0 kδγ,

(7.4.39) U(ρ) =
⊕
δ∈C0

kδ

⊕
α,β∈C0

nαnβ Hom(α, βδ)
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Next, we obtain a similar decomposition in irreducibles of the natural transformation Uρ,ρ′ .

To this end, we choose bases for the intertwiner spaces Hom(α, β (ρ1ρ2...ρm)), where the ρi ∈
C0 are irreducibles. To write down the general formula for Hom(α, β(ρ1...ρn)), we employ a

convenient graphical representation10.

T α,i
βρ

αα

β

β

ρρ
ii

Figure 2. Representations of intertwiners in Hom(α, βρ)

From semi–simplicity, it follows that a basis for Hom(α, β (ρ1ρ2)) is afforded by

(T α,ij
β(ρ1ρ2)

) := β(T γ,i
ρ1ρ2

) T α,j
βγ , i = 1...Nγ

ρ1ρ2
, j = 1...Nα

βγ(7.4.40)

A basis for Hom(α, β (ρ1ρ2ρ3)) may be built up in a similar way:

(T α,ijk
β(ρ1ρ2ρ3)) := β(ρ1(T

ε,k
ρ2ρ3

)) β(T γ,j
ρ1ε) T α,k

βγ , i = 1...N ε
ρ2ρ3

, j = 1...Nγ
ρ1ε, k = 1...Nα

βγ

αα

αα

β

β

β
β

γ
γ δ

ρ

ρ

ρ′

ρ′

ρ1

ρ1

ρ2

ρ2

ρ3

ρ3

ii
jj

k

n
n mm l

μμ ν

T α,ij
β(ρρ′) = β(T γ,i

ρρ′) T α,j
βγ T α,ijk

β(ρ1ρ2ρ3)
= β(ρ1(T

δ,i
ρ2ρ3

)) β(T γ,j
ρ1δ) T α,k

βγ

T̃ α,mn
β(ρρ′) = T μ,m

βρ T α,m
μρ′ T̃ α,lmn

β(ρ1ρ2ρ3)
= T ν,n

βρ1
T μ,m

νρ2
T α,l

μρ3

Figure 3. ’Right ordered’ and ’left ordered’ bases

For irreducibles ρ and ρ′, choose T α,i
γ,ρ ⊗

R

T γ,j
βρ′ ∈ U(ρ) ⊗

R

U(ρ′), then

(7.4.41) Uρ,ρ′(T
α,i
γ,ρ ⊗

R

T γ,j
βρ′ ) = T α,i

γρ T γ,j
βρ′ ∈ Hom(α, βρρ′),

is the product in A of the two interwiners. It may be re–expressed in the canonical basis 7.4.40

via the 6j–symbol. By the associativity of the monoidal product, a three–fold product of simple

objects can be decomposed into simple objects in two equivalent ways; the 6j–symbol connects

the two decompositions. More precisely, taking irreducible morphisms β, ρ and ρ′ for con-

creteness we have (βρ)ρ′ 
 β(ρρ′), so for all irreducibles α, Hom(α, (βρ)ρ′) 
 Hom(α, β(ρρ′)).

10We shall stick to the ‘triangle representation’, which is geometrically dual to the more conventional ‘star’
notation for intertwiners.
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Decompositions corresponding to the first Hom–space are given by intertwiners of the type

α → βγ → β(ρρ′). A basis is given by

(7.4.42) {β(T γ,i
ρ1ρ2

) T α,j
βγ }i,j

The decomposition corresponding to the second Hom–space are given by interwiners of the

type α → δρ′ → (βρ)ρ′, which are spanned by

(7.4.43) {T δ,k
βρ T α,l

δρ′ }k,l

The 6j–symbol is the unitary relating Hom(α, (βρ)ρ′) and Hom(α, β(ρρ′)), expressed in the

bases of 7.4.42 and 7.4.43,

(7.4.44) T δ,k
βρ T α,

δρ′ = D
( α

βρρ′
)[ jk

γδ
il

]
β(T γ,i

ρ1ρ2
) T α,j

βγ

The tensor notation employed in the previous equation lies close to physicist practice, but

it is somewhat redundant and misleading. The set of 10 indices are not independent of each

other, e.g. the range of the indices i, j, k and l depend on the remaining indices through the

fusion coefficients. The 6j–symbol is best visualized in the geometric formalism, which also

makes explicit the summation convention implied in 7.4.44. Comparing with 7.4.40 and 7.4.41,

α α

α

β

β

β

γ

γδ

δ

ρ

ρ

ρ

ρ′

ρ′ρ′

i

jk

l

D
( α

βρρ′
)[ jk

γδ
il

]

β(T γ,i
ρ1ρ2

) T α,j
βγ T δ,k

βρ T α,
δρ′

Figure 4. Definition of the 6j–symbol

we see that expressing Uρ,ρ′ in the basis 7.4.40 requires precisely the 6j–symbol. An element

Φ ⊗
R

Ψ ∈ U(ρ) ⊗
R

U(ρ′) may be expanded as Φ ⊗
R

Ψ = (Φβ
δ,kΨ

δ
α,l) T δ,k

βρ ⊗
R

T α,l
δρ′ , and an element

Ω ∈ U(ρρ′) takes the form Ω = Ωβ
α,ij β(T γ,i

ρ1ρ2
) T α,j

βγ . The desired explicit formula is then

(7.4.45) Uρ,ρ′(Φ ⊗
R

Ψ)β
α,ij =

∑
k,l

Φβ
δ,kΨ

δ
α,l D

( α
βρρ′

)[ jk
γδ
il

]

Each equivalent basis in Hom(α, β(ρ1...ρm)) corresponds to a different decompositions into

irreducibles of the m–fold composite charge (ρ1...ρm), which in turn correspond to different

orderings of an m–fold product of T α,i
βρ ’s. Considering Hom(α, β(ρ1ρ2ρ3)), the left– and right–

ordered bases of Figure 3 are two of the possible decompositions. Figure 5 shows two ways
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of obtaining the transformation connecting the bases {T̃ α,lmn
β(ρ1ρ2ρ3) = T ν,n

βρ1
T μ,m

νρ2
T α,l

μρ3}l,m,n and

{T α,ijk
β(ρ1ρ2ρ3) = β(ρ1(T

δ,i
ρ2ρ3

)) β(T γ,j
ρ1δ) T α,k

βγ }i,j,k through successive applications of the 6j–symbol.

The two composite maps must coincide, yielding a coherence condition for the 6j–symbol,

known as the Pentagon Equation. If we represent the 6j–symbol as the tetrahedron connecting

its Northern and Southern hemispheres, then Figure 5 has the following geometric interpre-

tation. Identify the boundaries of the two pentagons of Figure 3, obtaining a solid with 6

triangular faces. The two sides of the Pentagon Equation are then represented by the de-

composition of this solid into two– and three tetrahedra, respectively. We shall write down

the explicit form of the Pentagon Equation momentarily, showing at the same time that is

equivalent to the strong monoidality of the functor U = Hom(γ, γ ◦ ).
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α

α
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β

β

β
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δ
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ρ2

ρ2

ρ2

ρ3

ρ3

ρ3

ρ3

ρ3

μ

μ

λ

λ

ν

ν

DD

DD

D

Figure 5. The Pentagon Equation

Omitting associators (i.e. assuming that our monoidal categories are strict), the hexagon ex-

pressing the monoidality of 〈U, Uρ1,ρ2, U0〉 reduces to the rectangle

(7.4.46) Uρ1ρ2,ρ3 ◦ (Uρ1,ρ2 ⊗
R

U) = Uρ1,ρ2ρ3 ◦ (U ⊗
R

Uρ2,ρ3)

We can now write down 7.4.46 in our canonical (i.e. right ordered) basis. We present the

calculation in the geometric formalism, which shows the precise meanings of contractions of

indices.
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(U ⊗
R

Uρ2,ρ3)(T
nu,n
βρ1

⊗ T μ,m
νρ2

⊗ T α,l
μρ3

) =

(Uρ1,ρ2 ⊗
R

U)(T ν,a
βρ1

⊗ T μ,b
νρ2

⊗ T α,c
μρ3

) =

=

=

=

=Uρ1,ρ2ρ3

Uρ1ρ2,ρ3
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T nu,n
βρ1

⊗ T μ,m
νρ2

T α,l
μρ3

T ν,n
βρ1

⊗ D
(

α
νρ2ρ3

)[ pr
μδ
ml

]
ν(T δ,r

ρ2ρ3
) T α,p

νδ

D
(

α
νρ2ρ3

)[ pr
μδ
ml

]
βρ1(T

δ,r
ρ2ρ3

) T ν,n
βρ1

T α,p
νδ D

(
α

νρ2ρ3

)[ pr
μδ
ml

]
D

(
α

βρ1δ

)[ sq
γμ
np

]
βρ1(T

δ,r
ρ2ρ3

) β(T γ,q
ρ1δ) T α,s

βγ

T ν,a
βρ1

T μ,b
νρ2

⊗
R

T α,c
μρ3

D
( μ

βρ1ρ2

)[ de
νλ
ab

]
β(T λ,e

ρ1ρ2
) T μ,d

βλ ⊗
R

T α,c
μρ3

D
( μ

βρ1ρ2

)[ de
νλ
ab

]
β(T λ,e

ρ1ρ2
) T μ,d

βλ T α,c
μρ3

D
( μ

βρ1ρ2

)[ de
νλ
ab

]
D

( α
βλρ3

)[ gh
μγ
de

]
β(T λ,e

ρ1ρ2
) β(T γ,h

λρ3
) T α,g

βγ

β(T λ,e
ρ1ρ2

T γ,h
λρ3

) T α,g
βγ = D

(
γ

ρ1ρ2ρ3

)[ jk
λδ
he

]
βρ1(T

δ,r
ρ2ρ3

) β(T γ,q
ρ1δ) T α,s

βγ

Comparing the left/lower and upper/right sides of the rectangle, the Pentagon Equation

reads:

D
(

α
νρ2ρ3

)[ pr
μδ
ml

]
D

(
α

βρ1δ

)[ sq
γμ
np

]
= D

( μ
βρ1ρ2

)[ de
νλ
ab

]
D

(
α

βλρ3

)[ gh
μγ
de

]
D

(
γ

ρ1ρ2ρ3

)[ jk
λδ
he

]

Recall that in DHR–theory, there is an equivalence of categories DHR(A) ∼= Reploc(A). The

object map of the equivalence functor given by ρ 	→ 〈πρ,Hρ〉, where πρ is a DHR–representation
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with respect to the vacuum representation 〈π0,H0〉. There exists an isometry Vρ : Hρ → H0

such that Vρπρ = (π0 ◦ ρ)Vρ. The image under the equivalence of the object P =
⊕

α∈Δ0 nαα

is πγ =
⊕

α∈Δ0 nαπα, a (completely) reducible representation of A on H = ⊕Hα.

We shall define the Field Algebra through the functor

(7.4.47) U ′ = HomDHR(πγ, πγ ◦ ) : C → RMR

For ρ ∈ Δ0, U ′(ρ) decomposes as Hom(πγ, πγ ◦ρ) 
 ⊕
α,β nαnβ Hom(πα, πβ ◦ ρ). Furthermore,

intertwiners ϕ ∈ Hom(πα, πβ ◦ ρ) are in one–to–one correspondence with interwiners V ∗
β ϕVα ∈

Hom(π0 ◦ α, π0 ◦ βρ), or in other words

V ∗
β ( )Vα : Hom(πα, πβ ◦ ρ) → Hom(π0 ◦ α, π0 ◦ β)

is an isometry. Using our previously developed notation, we immediately find that the

(F ρ,i)α,a;β,b = (V b
β )

∗
π0(T

α;i,ab
β,ρ )V a

α ; i = 1...Nα
βρ, a = 1...nα, b = 1...nβ(7.4.48)

are a basis for Hom(πα, πβ ◦ ρ). Denote F ρ,i =
⊕

α,a;β,b (F ρ,i)α,a;β,b. The F ρ shall be called

the charge creation operators for the sector ρ. The terminology is justified by the following

property

Lemma 7.4.49. The F ρ,i, defined as above, create charge ρ in the representation πγ in the

sense

F ρ,iπγ(A) = πγ ◦ ρ(A)F ρ,i

Proof. We omit the multiplicity indices to un–clutter our formulas.

(Vβ
∗π0(T

α,i
β,ρ)Vα)πα(A) = Vβ

∗T α,i
β,ρπ0 ◦ α(A)Vα = Vβ

∗π0 ◦ βρ(A)T α,i
β,ρVα =

= πβ ◦ ρ(A)(Vβ
∗π0(T

α,i
β,ρ)Vα)

Extending the unitaries Vα : Hα → H0 to isometries on H, the statement follows. �

We proceed to calculate the relations satisied by the charge creation operators among

themselves. Substituting the definitions,

F ρ′,j
βγ F ρ,i

γα = (Vβ
∗π0(T

γ,j
βρ′ )Vγ)(Vγ

∗π0(T
α,i
γρ )Vα) = Vβ

∗π0(T
γ,j
βρ′T

α,i
γρ )Vα =(7.4.50)

= Vβ
∗D

( α
βρ′ρ

)[ ki
δγ
lj

]
β(T δ,l

ρ′ρ)T
α,k
βδ Vα = D

( α
βρ′ρ

)[ ki
αγ
lj

]
πβ(T α,l

ρ′ρ) F δ,k
βα

Up to now, we have only worked with charge creation operators for irreducible morphisms

(i.e. sectors). However, the definition is easily extendable to arbitrary composite charges, using

our bases for the intertwiner spaces Hom(α, β (ρ1...ρn)). In particular, charge creation operators

for the composite charge (ρ′ρ) will be labelled F ρρ′,kl
αβ = Vβ

∗T α,kl
β(ρρ′)Vα = Vβ

∗πβ(T δ,l
ρ′ρ) T α,k

βδ Vα.

Using our earlier, condensed notation, the matrix elements of charge creation operators for

composite charges (ρ1...ρm) read

(7.4.51) F
(ρ1..ρm),i1..1m

αβ = Vβ
∗T α,i1..im

β(ρ1..ρm)Vα
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We can now cast 7.4.50 in the more transparent form

(7.4.52) F ρ′,j
βγ F ρ,i

γα = D
( α

βρ′ρ

)[ ki
αγ
lj

]
F

(ρ′ρ),kl
βα

We are now ready to define the Field Algebra, as a ’cross–product’ of the observable algebra

and the charge creation operators.

Definition 7.4.53. The Field Algebra is generated by the {πγ(A) ⊗
R

F σ}σ∈Δ0 , subject to

the following relations:

(πγ(A) ⊗ F ρ,i) (πγ(A′) ⊗ F ρ′,j) = (πγ(Aρ(A′)) ⊗ F ρ,iF ρ′,j)

This is essentially Fredenhagen, Rehren and Schroer’s reduced field bundle construction

(see [37]). In their terminology, for irreducible α, β and a morphism ρ, triples e = (α, ρ, β) =

(s(e), c(e), r(e)) are called ’fusion channels’ or ’coloured edges’ with range β, source α and

charge ρ. Our bases of intertwiners T β
αρ are denoted simply Te. The reduced field bundle is

generated by elements F (e, A), which in turn are defined by their action on the Hilbert space

H = ⊕αHα. Denoting (α, Ψ), Ψ ∈ H0 the elements of the Hilbert space Hα,

F (e, A)(α, Ψ) = (β, (T ∗
e α(A))Ψ).

Thus, apart from the fact that our semidirect product field algebra is based on the left action

of the charge creation operators on the observable algebra, the F (e, A) correspond to matrix

elements (πβ ⊗ F ρ,i
αβ ). The reduced field bundle is said to have a ’path algebra’ structure. A

path η is a composition of edges η = en ◦ ... ◦ ei such that s(ei+1) = r(ei). Field bundle elements

F (e2, A2), F (e1, A1) can be multiplied only if e2 and e1 are compatible, i.e. s(e2) = r(e1) must

hold, but the charges c1 and c2 may be arbitrary. This is an intuitive formulation of the algebra

of field operator matrix elements. It must be remarked that the reduced field bundle of [37] also

possesses additional structure which does not arise in our construction. Namely, the statistics

operator ε : ρ1ρ2 → ρ2ρ1 endows the reduced field bundle with an additional ’exchange algebra’

structure. Since we hadn’t considered a braiding on the category C, this piece of structure is

of course missing.
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Summary

The novel results presented in this Thesis are based on the publications [3] (by K. Szlachányi

and the Author) and [4] (by the Author). We summarize the main points, as they appear in

the Thesis.

In chapter 3, we introduce basic definitions and results leading up to, and including quan-

tum groupoids. No new results are presented here, the emphasis is on presenting successive

generalizations of the Hopf algebra structure together with the the respective module and co-

module categories. We describe the Distributive Double Algebra (DDA) approach to Frobenius

Hopf algebroids, introduced in [79], which we use throughout Chapters 4 and 5.

Following a brief overview of classical and Hopf Galois theory, Chapter 4 gives an account

of quantum groupoid Galois theory, based on the paper [3]. We understand the term quantum

groupoid to mean Frobenius Hopf algebroid or Distributive Double Algebra. The starting

point is Theorem&Definition 4.3.8, which shows that a Galois extension over a DDA may be

defined equivalently as a Galois extension over the vertical or over the horizontal constituent

Hopf algebroids. A key result is Theorem 4.4.5, which establishes the equivalence between

Galois extensions over a Frobenius Hopf algebroid and depth 2 balanced Frobenius extensions.

This theorem characterizes quantum groupoid Galois extensions without explicitly assuming

a quantum groupoid (co–) action. It is a generalization of the analogous result stated for

bialgebroids in [47].

Chapter 5 introduces a notion of scalar extension for quantum groupoids based on the paper

[3]. After collecting results on Yetter–Drinfel’d modules and braided commutative algebras

(BCAs), the basic construction appears in Thm. 5.3.1. It associates to a bialgebroid H over

R and a braided commutative algebra Q over H the scalar extension, a bialgebroid H#Q

with base algebra extended to Q. It generalizes both Brzeziński and Militaru’s construction

for Hopf algebras [21] and the coring extensions of [14]. In Proposition 5.3.28, we extend

the scalar extension construction to Hopf algebroids by defining an antipode for the extended

bialgebroid. We prove in Proposition 5.3.13 that scalar extension is transitive in the sense that

the composition of scalar extensions is again a scalar extension. An important application of

the construction comes from Galois theory: in Propositions 5.5.1 and 5.5.8, we prove that the

centralizer of a bialgebroid Galois extension is a braided commutative algebra and moreover,

that scalar extension by the centralizer gives precisely the canonical endomorphism bialgebroid

associated to the extension. This gives us partial control over the ambiguity in the ’Galois
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group’ for quantum groupoid Galois extension; notably, no similar result is available in Hopf

Galois theory.

Chapter 6 is about bicoalgebroids and is based on the paper [4]. We define module and

comodule categories over bicoalgebroids and prove, in Theorem 6.3.2 that the comodule cate-

gory is monoidal with a strict monoidal forgetful functor to the bicomodule category over the

base coalgebra. We prove a comonadic Schauenburg–type theorem for bicoalgebroids in 6.3.27.

We consider the notions of cocenter and cocentralizer for bicomodules and coalgebra exten-

sions, respectively, and prove the equivalence of different definitions in Section 4 of Chapter 5.

We define the Yetter–Drinfel’d category and braided cocommutative coalgebras (BCCs) over

bicoalgebroids and define a scalar extension for bicoalgebroids in Theorem 6.5.23.

Chapter 7 is devoted to an application from Algebraic Quantum Field Theory (AQFT).

We recall the axioms of AQFT, the field algebra construction and the Doplicher–Roberts Re-

construction Theorem. With mild assumptions on the DR category we give a purely algebraic

construction for the field algebra similar in spirit to Doplicher and Roberts’ and prove that

it defines a depth 2 extension of the observable algebra. This promises a quantum groupoid

symmetry by our earlier results from quantum groupoid Galois theory. In the special case that

the DR category is semi–simple, our field algebra construction reduces to a generalization of

Fredenhagen, Rehren and Schroer’s reduced field bundle.



Összefoglalás

Az dolgozatban talalható új eredmények a [3] (Szlachányi Kornél és a Szerző munkája), és a

[4] (a Szerző munkája) publikaciókon alapulnak. A főbb pontokat a az értekezésbeli tárgyalásuk

sorrendjében foglaljuk össze.

A harmadik fejezetben a kvantum gruppoidok elméletét megalapozó alapvető defińıciókat

és tételeket tekintjük át. Új eredményeket nem mutatunk be, a hangsúlyt a Hopf algebrát

általánośıtó szimmetria struktúrák valamint a megfelelő modulus– és komodulus kategóriáik

együttes bemutatására helyeztük. Ismertetjük a Frobenius Hopf algebroidokat léıró Disztribut́ıv

Dupla Algebra (DDA) formalizmust (ld. [79]), amit a negyedik és ötödik fejezetben alka-

lmazunk.

A klasszikus– és Hopf Galois elmélet tömör áttekintését követően a negyedik fejezetben

mutatjuk be a kvantum gruppoidok Galois elméletét a [3] cikk alapján. A kvantum grup-

poid kifejezés alatt Frobenius Hopf algebroidot értünk, melynek leŕására a DDA formalizmust

használjuk. Kiindulópontunk a 4.3.8 tétel&defińıció, mely szerint egy DDA fölötti Galois kiter-

jesztés ekvivalens módon definiálható vertikális, illetve horizontális Hopf algebroidja fölötti Ga-

lois kiterjesztésként. Fontos eredmény továbbá a 4.4.5 tétel, amely megállaṕıtja a Frobenius

Hopf algebroid fölötti Galois kiterjesztések és a 2–es mélységű balansźırozott Frobenius kiter-

jesztések ekvivalenciáját. Ez a tétel a szimmetria struktúra explicit emĺıtése nélkül jellemzi a

kvantum gruppoid–Galois kiterjesztéseket, és a [47]–ben található, bialgebroidokra vonatkozó

eredmény általánośıtása.

Az ötödik fejezet tárgyalja a kvantumgruppoidok skalár–kiterjesztését a [3] cikk alapján.

A Yetter–Drinfel’d modulusok és fonott kommutat́ıv algebrák (az angol kifejezés rövid́ıtés

alapján BCA–k) elmélete alapvető eredményeinek áttekintése után az alapvető konstrukciót

a 5.3.1 tétel tartalmazza. A konstrukció egy R fölötti H bialgebroidhoz és egy H fölötti Q

BCA–hoz egy H#Q, Q fölötti bialgebroidot rendel és egyszerre általánośıtja Brzeziński és

Militaru Hopf algebrákra vonatkozó konstrukcióját valamint a [14] értelmében vett kogyűrű

kiterjesztéseket. A skalár–kiterjesztést általánośıtjuk Hopf algebroidokra is (5.3.28 álĺıtás),

azáltal, hogy kiterjesztett bialgebroidhoz antipódot konstruálunk. A 5.3.13 álĺıtás szerint a

skalár–kiterjesztés tranzit́ıv abban az értelemben, hogy két egymást követő skalár–kiterjesztés

kompoźıciója szintén skalár–kiterjesztést eredményez. A skalár–kiterjesztés fontos szerephez jut

a Galois elméletben: az 5.5.1 és 5.5.8 álĺıtásokban bebizonýıtjuk, hogy egy bialgebroid–Galois

kiterjesztés centralizátora mindig fonott kommutat́ıv és továbbá, hogy a cenztralizátorral való

skalár–kiterjesztés éppen a Galois bőv́ıtéshez tartozó kanonikus endomorfizmus bialgebroidot
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adja. Ezzel részben le tudjuk ı́rni a kvantum gruppoid szimmetria többértelműségét – a Hopf

Galois elméletben ismeretesen nem áll rendelkezésre hasonló eredmény.

A hatodik fejezetet a bialgebroid struktúrát dualizáló bikoalgebroidoknak szenteljük, és a

[4] cikken alapul. Definiáljuk a bikoalgebroid fölötti modulus– és komodulus kategóriát. A

6.3.2 tételben bebizonýıtjuk, hogy egy bikoalgebroid komodulus kategórián létezik monoidális

struktúra valamint egy szigorúan monoidális felejtőfunktor a bázis koalgebra feletti bikomod-

ulus kategóriába. A 6.3.27 tétel egy bikoalgebroidokra vonatkozó Schauenburg–t́ıpusú tétel

komonádikus változata. A hatodik fejezet negyedik szakaszában áttekintjük a bikomodulus ko-

centrumának, illetve koalgebra kiterjesztés kocentralizátorának fogalmát és bizonýıtjuk néhány

különböző defińıció ekvivalenciáját. Definiáljuk a bikoalgebroid fölötti Yetter–Drinfel’d modu-

lusok és fonott kokommutat́ıv koalgebrák (az angol kifejezés rövid́ıtés alapján BCC–k) fogalmát

és a 6.5.23 tételben bevezetjük a skalár–kiterjesztés fogalmát bikoalgebroidokra.

A hetedik fejezetben egy Algebrai Térelméletbeli alkalmazást mutatunk be. Vázoljuk

az Algebrai Térelmélet axiómarendszerét, a téralgebra konstrukciót és a Doplicher–Roberts–

féle rekonstrukciós tételt. Enyhe feltevésekkel élve a szuperszelekciós szektorok Doplicher–

Roberts (DR) kategóriájáról, adunk egy Doplicher és Robertséhez hasonló ám tisztán alge-

brai téralgebra konstrukciót, és bebizonýıtjuk, hogy az a megfigyelheő algebra 2–es mélysǵű

kiterjesztését definiálja. Ez az eredmény a korábbi, Galois–elméletbeli eredményeink alapján

kvantum gruppoid szimmetriát ı́gér. Abban a speciális esetben amikor a Doplicher–Roberts

kategória féligegyszerű, téralgebránk a Fredenhagen-Rehren-Schroer–féle ’reduced field bundle’

konstrukció általánośıtását adja vissza.
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