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OVERVIEW

The theory of elliptic partial differential equations has been a subject of extended

research in the past decades. Since in general their analytic solution is not known,

or difficult to handle, some kind of approximation and numerical computations are

needed. The numerical solution of linear elliptic partial differential equations often in-

volves finite element or finite difference discretization on a mesh, where the discretized

system is solved by an iterative process, generally by some conjugate gradient method.

The crucial point in the solution of the obtained discretized system is a reliable pre-

conditioning, that is to keep the condition number of the systems reasonably small,

possibly bounded above, no matter how the mesh parameter is chosen.

In this thesis first the investigation and numerical realization of some of the already

known results of operator preconditioning are considered. The required theoretical

background is summarized in the first chapters. Then we extend the scope of the

theoretical results to cases that have not been covered by theory up till now. These

new achievements and the numerical implementation of the considered preconditioning

methods are discussed in the second part of the thesis.

In Chapter 1 we summarize the classical and modern solution methods for linear

systems and turn one’s attention to the importance of preconditioning. Precondition-

ing roughly means that one can transform the obtained linear system into a new one

which is more suitable for iterative solution. This can be a purely algebraic process, but

for discretized elliptic systems one can rely on the functional analytic background of

the corresponding elliptic operators. This approach can be particularly advantageous,

since the theory of the infinite dimensional problem in a Sobolev space is often well

established, hence we can use preconditioning operators instead of preconditioning ma-

trices. Here for the finite dimensional approximation of the original operator equation

the preconditioning matrix is obtained as the projection of the corresponding operator

onto the same finite dimensional subspace.

In Chapter 2 first the required background from functional analysis is summarized

together with the generalized conjugate gradient methods. The choice of the precondi-

tioner often relies on the theory of equivalent operators, which was developed in the late

1980s. The preconditioned conjugate gradient methods with equivalent precondition-

ers provide mesh independent linear convergence. The notion of operator equivalence
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can be refined, leading to the concept of compact-equivalence, which yields superlinear

mesh independent convergence. The proper treatment of the conditions in Hilbert space

that ensure this favourable convergence property closes these introductory chapters.

In the second part of the thesis first we apply the theoretical background developed

in the first chapters to elliptic differential operators, then we extend the theoretical

results to cases that have not been covered by theory before. This part of the thesis

contains the author’s own contribution to the subject. We mainly deal with symmetric

preconditioning, the applications of nonsymmetric preconditioners are briefly discussed

in the last chapter.

In Chapter 3 we consider symmetric preconditioning for elliptic convection-diffusion

equations. This is done under three different circumstances. First the case of homoge-

neous mixed boundary conditions is investigated, based on the papers [41, 42]. Here we

compare the relation between the theoretical convergence estimate and the numerical

results and we show that the convergence rate remains valid even in cases not covered

by the theory. Then we extend the theory to the nonhomogeneous case by using oper-

ator pairs, relying on [40]. In contrast with finite element discretizations which fits in

naturally with the Hilbert space background, there is no such abstract background for

finite difference discretization, only a case-by-case study is possible. We investigate a

special model problem at the end of the chapter (see [38]) and we derive a convergence

estimate analogous to the finite element case.

In Chapter 4 we deal with symmetric preconditioning for elliptic systems. Here

we consider decoupled symmetric preconditioners, which makes the solutions process

much faster, since smaller sized independent linear algebraic systems have to be solved,

hence it is easily parallelizable. First we extend the results of the previous chapter to

systems (see [36]) using the already known results for equations for the case of Dirichlet

boundary conditions. Then the case of mixed boundary conditions is treated using the

operator pair approach with decoupled symmetric preconditioners (cf. [40]). At the end

of this chapter we present a parallel algorithm (based on [39]) which was developed

and implemented in cooperation with the Institute for Parallel Processing in Sofia.

Some related problems are alluded to in Chapter 5. First the application of nonsym-

metric preconditioners is considered for convection-diffusion equations (cf. [37]). This

is useful for problems with large convection terms, where symmetric preconditioning

does not provide good enough approximation of the original elliptic operator. Then

the results of the previous chapter are applied to nonlinear problems (cf. [40]). Finally

a parabolic nonlinear transport system is considered. We formulate a time-dependent

problem, where on each time level a nonlinear elliptic system is solved by using the

preconditioning techniques developed in the preceding chapters (see [35]).



1. PRELIMINARIES

The solution of the system of linear equations

Ax = b, (1.1)

where A ∈ R
n×n is nonsingular and b ∈ R

n, is probably one of the most studied fields in

applied mathematics. Such equations naturally arise from the discretization of partial

differential equations (PDE), which describe some physical phenomena governed by the

laws of nature. The heat and wave propagation, electromagnetic field theory, elasto-

plasticity, fluid dynamics, reaction-convection-diffusion equations, transport problems,

flow models and their linearizations are the primary examples among other problems

from physics, chemistry, engineering, geosciences or biology. Large sized linear sys-

tems also occur when time-dependent PDEs are discretized with respect to time with

some implicit scheme. Although in this thesis this is of secondary importance, it is

worth mentioning that there are a lot of other applications such as economic models or

queueing systems where linear equations arise from processes not described by PDEs.

1.1 Classical solution methods for linear systems

This section is devoted to the brief description of the well-known classical solution

techniques and also serves as a motivation to the further parts of this chapter. The

following topics can be found in a much more detailed form in the vast literature of

numerical linear algebra, we refer to the introductory textbooks [48] and [55] or the

classical monographs [60] and [65].

The taxonomy of solution methods can be described very briefly. Loosely speaking,

there are two types of methods: direct ones and iterative ones. A method applied to

equation (1.1) is called a direct method when the exact solution – neglecting round-

off errors – is available after a finite process. Another possibility is to generate a

sequence of approximate solutions, which – under certain circumstances – converges

to the exact solution, this is the idea of iterative methods. The borderline between

these two classes is rather blurred, there exists methods that can be considered both

as direct or iterative processes, gathering favourable properties from both sides, which
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will be discussed later. Modifications of direct methods are also used to improve the

reliability and robustness of iterative solution methods.

The main feature of the arising systems is their size, n is typically very large, systems

with over a million of unknowns nowadays can be considered as routine problems.

Although the size of the matrix can be huge, the number of non-zero elements is

often small compared to the total number of matrix entries. This phenomenon is

characteristic for systems arising from PDEs, since the discretization of the equations

involves the discretization of the derivatives, which is done locally, i.e. only a certain

neighbourhood of a point is used for the approximation, thus an unknown is coupled

linearly with only a few number of other unknowns, making the matrix sparse. The

sparsity pattern is an important property of the matrix. Sparse matrices can be stored

much more efficiently than dense matrices, since most of the entries of A are zeros,

and several important algorithmic procedures are implemented specifically for sparse

matrices to reduce the total computational cost.

1.1.1 Direct methods

These methods are some versions of the Gaussian elimination (GE) or are matrix

factorization methods that are based on that, such as the LU decomposition and its

variants LDU , LUP , LDMT . There exist slightly modified versions for symmetric,

positive definite (spd) matrices such as LLT (also known as Cholesky decomposition),

LDLT , etc. The main idea behind the GE algorithm is to replace equation (1.1) with

an equivalent system (i.e. which has the same set of solution)

Ux = y, (1.2)

where U is an upper triangular matrix. In one step of the GE algorithm the column

entries under a diagonal element are eliminated by multiplying a row by a non-zero

constant or adding such a multiplied row to another one. When the process does not

break down, the result has the form (1.2). This can be solved with much less effort,

since the solution of triangular systems requires n2 flops, whilst the whole GE procedure

requires a total 2n3/3 flops. The procedure can be used for factorizing the matrix in

the form A = LU , if the coefficients that eliminate the corresponding elements under

the diagonal are stored in a lower triangular matrix L. Then equation (1.1) can be

replaced by

LUx = b ⇐⇒
{

Ly = b

Ux = y,
(1.3)
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where the lower and upper triangular matrices L and U come from the elimination

procedure. The arising equations can be solved by forward and backward substitution.

There exist other variants of the GE algorithm developed for banded systems (arising

from finite difference approximation of PDEs) and block factorization methods. Since

the GE algorithm does not preserve sparsity, another important thing is to keep the

level of fill-in low, which means that the unknowns can be reordered in order to preserve

the sparsity pattern or at least not to lose it completely. Such processes involve graph

theoretical approaches, like the reversed Cuthill–McKee algorithm or greedy coloring

algorithms (see [52]), the nested dissection technique or other reorderings related to

the renumbering of the nodes on the grid, like the classical red-black ordering.

Direct methods are generally robust and the required storage and process time can

be predicted, which properties make them a favourable choice when reliability concerns

come first (cf. [12]). Because of this, in some fields these methods are traditionally pre-

ferred. On the other hand, in two and, above all, three dimensional PDE models, very

large sized system can arise and since the complexity of the GE algorithm is propor-

tional to the cube of the number of unknowns, the application of iterative techniques

simply cannot be disregarded.

1.1.2 Basic iterative methods

An iterative solution of equation (1.1) yields a sequence of approximate solutions

(xk) converging to the exact solution, often denoted by x∗. In each step, the calculation

of a matrix-vector product is the costliest computation, which is generally O(n2) for

dense matrices, but reduced to O(n) for sparse matrices. For direct methods a typical

complexity is O(n2), such as for the banded Cholesky method, but there exist more

sophisticated and efficient solvers for problems arising from the discretization of PDEs.

Thus an iterative method can be competitive with direct solvers when the number of

required iterations for a prescribed tolerance is less than O(n). The most favoured case

is when the number of needed iterations is independent of the size of the problem, i.e.

O(1). When the linear system (or family of systems indexed by the grid parameter

h) arises from discretization of PDEs, then the convergence of an iterative method

possessing the above property is mesh independent.

The Richardson method (also called simple iteration, fixed point iteration, etc.) is

the simplest example of an iteration method. Introducing the non-zero parameter α,

equation (1.1) can be equivalently transformed into

x = x− αAx+ αb,
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leading to the linear first order stationary Richardson method

xk+1 = (I − αA)xk + αb

= xk − αrk,
(1.4)

where rk = Axk − b is the residual vector. The iteration matrix of the method is

MR(α) = I − αA. (1.5)

Assuming that A is spd and denoting its eigenvalues by λi = λi(A), it is known that

� (MR(α)) < 1 ⇐⇒ 0 < α <
2

λmax

. (1.6)

The value of the optimal parameter – which minimizes the spectral radius of MR(α) –

is given by the formula

αopt =
2

λmax + λmin

. (1.7)

Then the convergence factor of the Richardson method (1.4) using the optimal param-

eter given in (1.7) is

� (MR(αopt)) =
λmax − λmin

λmax + λmin

=
κ− 1

κ+ 1
, (1.8)

where κ denotes the spectral condition number of A. Iteration (1.4) can also be ob-

tained from a special splitting of A:

Ax = b ⇐⇒
(
ωI − (ωI − A)

)
x = b ⇐⇒ ωx = (ωI − A)x+ b

⇐⇒ x = x− αAx+ αb, where α = ω−1.

The general idea is the following. Let us split the matrix A into two parts

A = P −N, (1.9)

where P is invertible. Then equation (1.1) can be rewritten as

x = P−1Nx+ P−1b, (1.10)

or alternatively

x = x− P−1(Ax− b). (1.11)
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This gives rise to the iteration procedure of the form

xk+1 = Mxk + v, (1.12)

where M = P−1N and v = P−1b, or alternatively

xk+1 = xk − P−1rk. (1.13)

Here and hereafter vector coordinates and algorithms calculating such coordinates are

not considered, thus the subscript denotes simply the numbering of the elements in the

sequence of vectors. The following well-known result (see e.g. in [55]) gives a necessary

and sufficient condition for the convergence of iteration (1.12).

Proposition 1.1. If A = P − N , M = P−1N and v = P−1b, then the sequence

(xk) generated by the iteration (1.12) converges for all initial vectors x0 if and only if

�(M) < 1, where �(M) is the spectral radius of M .

The classical linear iterative methods are the Jacobi and Gauss–Seidel iterations

and their relaxed versions. Let us consider the decomposition A = L +D + U , where

D is a diagonal matrix consisting of the diagonal of A, further L and U are the lower

and upper triangular parts of A (excluding the diagonal itself), respectively.

Let us assume that there are no zero entries in the diagonal of A. If P = D is

chosen in the splitting (1.9), then

xk+1 = −D−1(L+ U)xk +D−1b (1.14)

is called the Jacobi method, and when P = L+D is chosen then

xk+1 = −(L+D)−1Uxk + (L+D)−1b (1.15)

is called the Gauss–Seidel method. The iteration matrices are

MJ = −D−1(L+ U) = I −D−1A, (1.16)

MGS = −(L+D)−1U = I − (L+D)−1A. (1.17)

The inversion in these matrices does not need to be executed, since the iterations can be

written in a convenient coordinatewise form. In the relaxation methods a relaxation (or

damping) parameter ω is involved. The corresponding schemes are called JOR (over-
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relaxation) and SOR (successive over-relaxation) methods with iteration matrices

MJ(ω) = ωMJ + (1− ω)I = I − ωD−1A, (1.18)

MGS(ω) = (D + ωL)−1 ((1− ω)D − ωU) . (1.19)

Other methods are also common, such as the symmetrized form of the relaxed

Gauss–Seidel, which is called SSOR (symmetric successive over-relaxation) method,

the alternating direction implicit method (also known as Peaceman–Rachford method)

or the cyclic reduction method. Block iterations could be also considered. The boom of

matrix theory in the mid 20th century is closely connected with the profound study of

these methods. Several convergence results were obtained by introducing special classes

of matrices, those arising in practice, such as M-matrices (introduced by Ostrowski),

Stieltjes matrices, nonnegative and irreducible matrices, together with splittings of A

with special properties in (1.9) such as the regular splitting. It has been shown that

the classical iterations (1.14) and (1.15) are convergent for strictly diagonally dominant

matrices and for M-matrices as well. As for the SOR method, the relaxation parameter

has to satisfy the inequality 0 < ω < 2, but for spd matrices this condition is also

sufficient for convergence, due to the theorems of Kahan and Ostrowski. When MJ in

(1.16) happens to be nonnegative, then methods (1.14) and (1.15) are equi-convergent,

that is they either both converge or both diverge, a result known as the Stein–Rosenberg

theorem. Regarding the speed of convergence, it has been shown, for instance, that for

the class of strictly diagonally dominant matrices the Gauss–Seidel iteration is at least

as good as the Jacobi iteration, and in the case of block-tridiagonal matrices the Gauss–

Seidel iteration performs considerably faster than the Jacobi method. The optimal

choice of the acceleration parameter has been also investigated in several circumstances,

often involving demanding eigenvalue analysis. For the precise formulation of the

theorems and proofs we only refer to the books [7, 52, 60, 65], where some interesting

historical remarks can also be found. For further reading for the classical matrix classes

that are related to discretized PDEs, we refer to [29, 30, 65].

1.2 Modern iterative methods

The classical iteration schemes considered in Subsection 1.1.2 were stationary linear

iterative processes of first order, which means that for the computation of the new

approximate solution xk+1 only the previous vector xk was used. Furthermore, the

same iterative process was used to calculate the next vector, the same scheme was

applied repeatedly, using the same parameter (if there were any), since a fixed point

iteration is in the background. The main drawback of these methods is that generally
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it is very difficult to estimate the convergence factor without a priori information and

for many practical problems the convergence of these methods is very slow.

A possible remedy is to allow nonstationary methods, where the parameters in-

volved are chosen dynamically, satisfying some optimality properties, generally of a

geometric nature, i.e. minimizing the error in each step in some subspace or satisfy-

ing some kind of orthogonality conditions. For the construction of such subspace of

constraints one may use all or some of the previous approximate vectors. These opti-

mality requirements can also be satisfied in infinite dimensional inner product spaces,

thus some of these methods can be generalized for solving operator equations in Hilbert

space. Another possibility is to improve the spectral bounds of A, that is to make it

better conditioned, an idea that has become one of the most crucial step in the solu-

tion process. These methods were investigated first in the early 1950s, but soon fell

into oblivion, because their first implementations were not competitive with the then

widely used overrelaxation methods. However, they were paid attention again in the

early 1970s, as the revolutionary growth of computer-aided numerical computations

made it easier to implement and run those algorithms efficiently. The related meth-

ods, the so-called Krylov subspace iterations have become standard topics in numerical

textbooks.

1.2.1 Preconditioning

Let us revisit the Richardson method (1.4) and comment the convergence results

(1.7)-(1.8). The calculation of the optimal α requires exact information about the

extremal eigenvalues of A. They are not known generally, but usually some estimation

is available, thus it is possible to choose α with property (1.6). But for ill-conditioned

systems, when the interval containing the eigenvalues is large, the convergence factor –

even with the optimal parameter – is close to 1, which provides very slow convergence.

This situation is typical for systems arising from the discretization of elliptic boundary

value problems (BVP). If the elliptic PDE is of order 2m, then the condition number

behaves like O(h−2m), where h is the mesh parameter. For second order elliptic PDEs

this means that

κh ∼ O(h−2) → ∞, when h → 0, (1.20)

regardless of the dimension of the domain. The smaller the discretization parameter

h is, the higher the required number of iteration steps is needed, which is a major

drawback, considering that the larger size of the problem itself implies the increase of

computational costs. The remedy is the following: modify algorithm (1.4) and apply
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the iteration scheme to a new equation

P−1Ax = P−1b, (1.21)

where P is some invertible matrix. The idea comes from the observation that the

eigenvalue distribution of P−1A may be more favourable than of A, thus the iteration

could be considerably accelerated. This idea, when one tries to squeeze the spectrum

of A into a small region of the complex field in order to reduce the condition number of

the system (1.1) is called preconditioning, and the matrix P is called preconditioner.

In this case, the modified iteration scheme for the Richardson method is given by

xk+1 = (I − αP−1A)xk + αP−1b

= xk − αP−1(Axk − b)

= xk − αP−1rk

(1.22)

with the iteration matrix

MR,P (α) = I − αP−1A. (1.23)

The convergence factor (1.8) shows that the more the eigenvalues of αP−1A are clus-

tered around 1, the more efficient the preconditioning is.

The Jacobi and the Gauss–Seidel methods – and the classical relaxation methods –

can also be considered as stationary preconditioned Richardson iterations: for instance,

the choices α = 1, P = D, and α = 1, P = L + D give back the iteration matrices

(1.16) and (1.17), respectively.

The matrix P−1A of the preconditioned system is never formed explicitly (unless

P−1 is known exactly), since the inversion of P and matrix-matrix products would be

too expensive. Instead of this, in each step of algorithm (1.22) an auxiliary equation

has to be solved:

Algorithm 1.2 (Preconditioned Richardson method).

1.) Let x0 ∈ R
n be arbitrary, r0 = Ax0 − b;

2.) For given xk

2a.) solve Pyk = rk;

2b.) xk+1 = xk − αyk;

2c.) rk+1 = rk − αAyk.

Preconditioning is thus nothing else than transforming the system (1.1) equiva-

lently into the system (1.21) which has more favourable properties for iterative so-
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lution. Equation (1.21) is also called left-preconditioning, but system (1.1) could be

preconditioned from the right as

AP−1y = b, x = P−1y, (1.24)

or simultaneously from both sides

P−1
1 AP−1

2 y = P−1
1 b, x = P−1

2 y, (1.25)

which is called split or centered preconditioning. When a preconditioner is chosen, one

has to keep the following natural criteria in view:

1. P−1A should be considerably better conditioned than A;

2. (a) the preconditioned system should be easy to solve, that is the solution of

systems with P should not be costly;

(b) the construction of the preconditioner P should be easy and cheap;

An additional requirement can be the following:

(c) P should be close to optimal in the sense that the number of required itera-

tions to reach a prescribed tolerance level should be independent of the size

of the system.

Note that these criteria are conflicting, the optimal choice P = A obviously satisfies

the first criterion, but not the second one, whilst the choice P = I makes the solution

of the auxiliary systems trivial but does not make the convergence faster. The proper

choice of the preconditioner is thus not obvious at all, it can strongly depend on the

structure of A or on the PDE itself hiding behind the discretized system. Although

there is no universal way of obtaining good preconditioners for every problem, generally

a preconditioner is not far from being good if the spectrum of the obtained system is

small enough and the preconditioned matrix is close to a normal matrix (cf. [12]).

There are two approaches to choose preconditioners. The first one disregards the

original problem from which the linear system is originated. This can happen for several

reasons, usually when complete information about the problem is not available or it

would be difficult to use. In this case some universal preconditioner is needed, which

can be far from being optimal, but can be applied to a wider class of problems. This

approach can use only the information that can be obtained from the matrix itself and

the preconditioner is constructed via an algebraic process, thus it is called algebraic

preconditioning.
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In the second approach the goal is to choose an optimal or close to optimal pre-

conditioner for a special class of problems. This approach is used when the continuous

model described by a PDE lying behind the linear system is well understood. All the

available information that can be gathered from the model properties can be used to ob-

tain a good preconditioner, which is usually derived from the discretization of another,

simpler PDE that is close to the original continuous problem in some sense. This

problem-specific way of obtaining preconditioners is called continuous or functional

preconditioning to emphasize the continuous model behind. Here the preconditioning

process can take place on the operator level as well, where the corresponding operators

act between Sobolev spaces, involving elements of functional analysis, usually Hilbert

space theory. In this case the preconditioning matrix is considered as the projection

of the preconditioning operator onto the same finite dimensional discretization space,

where the original operator was discretized. For this reason this technique is also re-

ferred as Sobolev or operator preconditioning. This approach and some results from

operator preconditioning is the main topic of this thesis.

For completeness the most common algebraic preconditioning techniques are sum-

marized here to close this subsection.

Incomplete factorization methods. As explained in Subsection 1.1.1, the LU factoriza-

tion of A may be unsatisfactory due to the high number of fill-ins, destroying

the favourable sparsity pattern of A and increasing the computational cost. The

idea behind the incomplete factorization methods is to preserve (some of) the

sparsity, i.e. the preconditioner P is chosen to be the approximate decomposition

of A:

P = L̃Ũ , (1.26)

where L̃ and Ũ are lower and upper triangular matrices approximating L and

U , respectively, where A = LU . When no fill-in is allowed, that is only those

elements are calculated during the GE process where the original entry differs

from zero, then the process is called the ILU(0) method. Similarly, for symmetric

matrices the corresponding incomplete Cholesky decomposition is called IC or

IC(0). To improve the accuracy, some fill-in can be accepted. In this case, to

every matrix element a fill-in level is assigned, which is being modified during

the algorithm. When this level exceeds some fixed number p ∈ N, then the

corresponding element is set to be zero. The resulting ILU(p) algorithm combined

with some reordering process is a very efficient way of obtaining preconditioners,

even for small values of p. Another way to improve the quality of the factorization

is to enforce the preconditioner to have the same row sums as the original matrix
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by adding the dropped fill-ins to the diagonal elements. This is the idea of the

modified incomplete factorization methods (MILU, MIC).

Sparse approximate inverses. Here a sparse matrix P is computed as the direct approx-

imation of A−1, in other words AP ≈ I, where some a priori sparsity pattern or

bandwidth is given. In one of the main approaches this approximate inverse can

be obtained by solving the Frobenius-norm minimization problem

min
P∈S

‖I − AP‖F

leading to least-square problems, where S is a class of matrices possessing some

given sparsity pattern.

Multigrid and algebraic multilevel methods. The multigrid method (MG) is an itera-

tive solution method constructed for systems arising from either finite difference

(FDM) or finite element (FEM) discretization of elliptic PDEs with optimal com-

putational complexity O(n). The idea behind MG is that the classical iteration

schemes could damp the error associated with high frequency components, al-

though their overall performance in damping the total error is weak. Given an

initial guess x0, a few number of iteration steps of the relaxed Jacobi, SOR or

SSOR methods can smooth out those components from the error significantly. If

r = Ax0 − b is the residual vector, then x1 = x0 − v already satisfies Ax1 = b,

where v is the solution of Av = r. The second system can be solved on a coarser

grid, and (keeping in mind that the high frequency components of the higher

dimensional vector x0 are already obtained), the solution then could be interpo-

lated onto the original grid and the initial guess can be corrected, decreasing the

error in the low frequency components as well. This step is usually referred as

coarse grid correction. The process can be extended for more than two grids,

calling the algorithm recursively and solving the linear equation exactly on the

coarsest grid only.

The MG method then consists of a finite sequence of grids T1 ⊂ T2 ⊂ . . . ⊂ Tm,

linear operators P �
�−1 : T�−1 → T� and R�−1

� : T� → T�−1 called prolongation and

restriction operators and smoothers S� : T� → T� (� = 2, . . . ,m). In the FEM

case, the grids are nested triangulations of the domain (explaining the notation

T�) and other relations hold between the prolongation and restriction.

Algorithm 1.3 (MGC(�, x, b)).

1.) If � = 1, then x = A−1
1 b; % solution on the coarsest grid



1. Preliminaries 12

2.) else

2a.) x = Sν1
� x; % pre-smoothing ν1 times

2b.) r = R�−1
� (A�x− b); % restriction of the residual

2c.) v = 0; % starting guess for the correction term

2d.) for i = 1 : γ % recursive call γ times

2di.) MGC(�− 1, v, r); % calculation of the correction term

2e.) x = x− P �
�−1v; % coarse grid correction

2f.) x = Sν2
� x. % post-smoothing ν2 times

Then the MG method can be obtained by calling this routine on the finest grid

with initial guess x0 = 0. The parameter γ shows how many times each level is

visited, the particularly interesting cases are γ = 1, called V-cycle and γ = 2,

called W-cycle. This procedure is also called geometric multigrid method (GMG),

because of the physical presence of the grids.

Algebraic multilevel methods can be considered as the generalization of the MG

method. Here the grids are obtained from the graph of A and the refinement

is made as selecting subsets of unknowns, without any geometry in mind. This

method – called algebraic multigrid (AMG) – can be extended when the precon-

ditioners are based on the recursive block-partitioning of the matrix associated

with some hierarchical partitioning of matrix graph; this is the starting point of

the algebraic multilevel iterations (AMLI). This is more general than the AMG

method, because of the lack of multigrid components smoothing, restriction and

prolongation, and is based on some approximation of the Schur complement.

Domain decomposition methods. This method is developed for the solution of PDEs

discretized on a complicated domain. The original computational domain Ω is

decomposed into subdomains Ωi (i = 1, . . . ,m), which may or may not overlap.

Then the original problem can be reformulated on each subdomain, resulting a

family of smaller sized problems coupled through the values of unknowns lying

on the common boundaries or overlapping parts of the subdomains. Treating

them via an iterative process, the coupling can be relaxed and in each iteration

step the smaller problems can be solved independently, thus this method is easily

parallelizable on a multiprocessor architecture. Methods where this idea appeared

were initially introduced by Schwarz in the 19th century, thus they are also known

as Schwarz preconditioners, the method is referred to as Schwarz alternating

procedure.
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These algebraic methods are discussed in much more details in the books [7] and [52],

among other techniques not mentioned here. The idea of the MG method goes back to

Fedorenko’s early papers, for a detailed description of the topic see [25, 26]. Incomplete

factorization methods and the sparse approximate inverse technique are discussed in

the comprehensive survey [12]. The Schwarz method is also treated in [49].

1.2.2 Krylov subspace methods

The Richardson method can be accelerated further if the parameter α in (1.4) is

chosen dynamically. This can be done by either minimizing some functional related to

the equation or satisfying appropriate orthogonality properties. These approaches lead

to essentially the same family of iterative methods, giving the opportunity for further

generalizations.

Assume that A is spd and let us define the quadratic functional Φ : Rn → R as

Φ(x) =
1

2
〈Ax, x〉 − 〈b, x〉 , (1.27)

where 〈·, ·〉 denotes the standard inner product on R
n, generating the eucledian norm

‖x‖ =
√
〈x, x〉. This is called the energy functional of equation (1.1). Denoting the

solution of (1.1) by x∗, a simple calculation shows that the quadratic functional Φ has

a unique minimum attained in x∗. Thus finding the solution of (1.1) is equivalent to

finding the minimizer of the functional Φ.

If only the last approximation xk is used, then the generic step of the algorithm has

the form

xk+1 = xk + αkdk,

where the new approximation is a correction of xk in the search direction dk. When

the vector dk points towards the minimal slope of Φ, that is

∂dkΦ(xk) = min{∂dΦ(xk) : d ∈ R
n, ‖d‖ = 1},

then a nonstationary algorithm can be obtained which is called gradient or steepest

descent method. Calculating the directional derivative of Φ, it is easy to see that

∂dΦ(x) = 〈Ax− b, d〉, which is minimal if d = −(Ax− b) = −r. Thus the iteration has

the form

xk+1 = xk − αkrk.

This is the Richardson iteration (1.4) again. The case αn ≡ α has been already

discussed there, but now it is possible to chose the parameter αn to be optimal in the
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nth step:

Φ(xn − αnrn) = min
α>0

Φ(xn − αrn).

Since the latter is a minimization problem of a quadratic polynomial, it is easy calculate

that the optimal parameter is

αn =
‖rn‖2

〈Arn, rn〉
. (1.28)

Note that the dynamically chosen optimal parameter does not require any estimate of

the extremal eigenvalues.

Algorithm 1.4 (Gradient method).

1.) Let x0 ∈ R
n be arbitrary, r0 = Ax0 − b;

2.) For given xk

2a.) rk = Axk − b.

2b.) αk =
‖rk‖2

〈Ark, rk〉
;

2c.) xk+1 = xk − αkrk;

Another approach is to satisfy some orthogonality constraints. This leads to the

very general framework of projection methods, described in [52]. Following the nota-

tions used there, here in each step the new approximate solution x̃ is located in an

affine subspace x+K in such a way that the residual vector r is orthogonal to another

subspace L having the same dimension as K. A projection method is said to be or-

thogonal if L = K, but in other cases the subspace of constraints L can be completely

unrelated to the search subspace K. In the case of orthogonal projection methods the

orthogonality conditions are called Ritz–Galerkin conditions. When L is different from

K, then it is an oblique projection method with orthogonality constraints referred as

Petrov–Galerkin conditions. If those subspaces are one dimensional in each step, say

K = span{v} and L = span{w}, then for a given vector x, the new approximate solu-

tion has the form x̃ = x − αv, satisfying the orthogonality condition 〈Ax̃− b, w〉 = 0.

From these conditions the value of α can be easily calculated:

α =
〈r, w〉
〈Av,w〉 .

If in the kth step v and w are set to be rk, then this gives back the optimal value (1.28)

in the gradient method. Therefore the gradient method is an orthogonal projection

method, where the subspaces K and L are the one dimensional subspaces spanned by
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the residual vector. There are other popular choices like v := rk and w := Ark for

nonsymmetric positive definite matrices, which is called the minimal residual iteration.

A specific choice of the sequence of subspaces leads to the methods of conjugate

gradients, a family of algorithms that has been selected into the top ten algorithms of

the century. Conjugate means that the descent directions are chosen to be mutually

A-orthogonal, i.e. the new approximation is searched in the direction of dk, where

〈Adi, dj〉 = 0 (i �= j). In the standard methods the search subspace in the kth step is

Kk ≡ Kk(r0) := span{r0, Ar0, . . . , Akr0},

the so-called Krylov subspace, generated by the initial residual r0. In terms of projec-

tion methods, the search subspace in the kth step is Kk, the subspace of constraints

is either Kk or AKk. The process can also be considered as the minimization of the

functional Φ over the affine subspace x0+Kk, or the minimization of the residual (lead-

ing to methods like the GMRES). Applying the standard method for spd matrices the

exact solution can be obtained – in the absence of round-off errors – in at most n steps,

thus it can be considered as a direct method.

The algorithm was introduced by Hestenes and Stiefel in [28], and was considered

first as a direct method, but later it has been discovered that the algorithm provides

good approximation with far fewer iteration steps. Its three term recurrence form for

spd matrices was invented by Lanczos (see [43, 44]). In the past 40 years a number of

related methods have been discovered and investigated, such as generalized conjugate

gradient methods or their variants for nonsymmetric or indefinite matrices.

The standard conjugate gradient method for spd matrices is as follows:

Algorithm 1.5 (Conjugate gradient method (CG)).

1.) Let x0 ∈ R
n be arbitrary, d0 = r0 = Ax0 − b;

2.) For given xk, dk and rk = Axk − b, we let

2a.) xk+1 = xk + αkdk, where αk = − 〈rk, dk〉
〈Adk, dk〉

,

2b.) dk+1 = rk+1 + βkdk, where βk =
‖rk+1‖2

‖rk‖2
;

Note that the method is parameter-free, and for indefinite matrices 〈Adk, dk〉 may be

zero, even if dk �= 0, so the standard CG algorithm can break down. The construction

of the CG algorithm yields the following optimality property (cf. [7, Chap. 13]).
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Proposition 1.6. Let ek = xk−x∗ be the error vector and P
1
k = {pk ∈ R[x] : deg pk ≤

k, pn(0) = 1}. Then

‖ek‖A = min
pk∈P

1
k

‖pk(A)e0‖A , (1.29)

where ‖ek‖A =
√

〈Aek, ek〉.

Remark 1.7. If the eigenvectors of A form an orthonormal basis (which does hold for

symmetric matrices), the bound from the optimality property (1.29) can be further

estimated as
‖ek‖A
‖e0‖A

≤ min
pk∈P

1
k

max
λ∈σ(A)

|pk(λ)| .

The spectrum of an spd matrix is real and bounded by its extremal eigenvalues.

The upper bound above can be estimated by using Chebyshev polynomials of first kind

and we get the following linear convergence theorem.

Theorem 1.8. If A is spd, then the standard CG algorithm 1.5 yields

(‖ek‖A
‖e0‖A

)1/k

≤ 21/k
√
κ− 1√
κ+ 1

(k = 1, . . . , n), (1.30)

where κ = κ(A) is the spectral condition number of A.

One of the most important properties of the conjugate gradient method is superlin-

ear convergence, first proved in [27], where the CGM was formulated in Hilbert space.

The result has been partially extended for nonsymmetric systems which are diagonal-

izable and have positive symmetric part (i.e. A+A∗ > 0), see in [4, 6, 7]. Early results

on the CGM in Hilbert space can be found in [17, 27, 63], other Hilbert space methods

are also summarized in [47].

Consider the matrix A in (1.1) as the perturbation of the identity matrix, that is

A = I + C,

and denote by λk = λk(C) (k = 1, . . . , n) the ordered eigenvalues of C, that is |λ1(C)| ≥
. . . ≥ |λn(C)|. Then the CG method yields

(‖ek‖A
‖e0‖A

)1/k

≤ 2

k

k∑
i=1

∣∣∣∣ λi(C)

1 + λi(C)

∣∣∣∣ (k = 1, . . . , n), (1.31)

where in the bound only separate eigenvalues are involved. If |λi| < 1/3, then for

sufficiently large k the convergence factor is smaller than 1 and decreases, see for more

details in [7, Chap. 13.] and [9]. For spd matrices the following result holds.
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Theorem 1.9. (cf. [11]) The standard CG algorithm 1.5 yields

(‖ek‖A
‖e0‖A

)1/k

≤ 2
∥∥A−1

∥∥(1

k

k∑
i=1

|λi(C)|
)

(k = 1, . . . , n), (1.32)

where |λ1(C)| ≥ |λ2(C)| ≥ . . . ≥ |λn(C)| are the ordered eigenvalues of C.

When the eigenvalues of C accumulate at the origin, the upper bound in (1.32)

decreases as k increases, resulting superlinear convergence.

A lot of other Krylov subspace methods exist, such as the Arnoldi method (intro-

duced for transforming a matrix into Hessenberg form for eigenvalue estimation), the

Arnoldi method for linear systems (called FOM), the Lanczos method (the simplified

version of Arnoldi’s method for symmetric matrices), and the ones based on the residual

minimization approach. For nonsymmetric systems GMRES – a generalized residual

minimizing algorithm which does not break down even for indefinite matrices unless

it has already converged – is widely used, first introduced in [53]. Further methods

are MINRES, CGR (introduced in [19]), Orthomin, Orthodir, or the further general-

ized Bi-CG, Bi-CGSTAB (cf. [58]). There exists hybrid methods, and truncated or

restarted versions of these algorithms can also be considered. Generalized CG algo-

rithms that are suitable for nonsymmetric matrices were introduced in [6] (GCG-LS)

and in [14, 62] (called CGW method), among several others.

For nonsymmetric systems the equation can also be symmetrized by considering

the normal equation

ATAx = AT b

and a method for symmetric problems can be applied, the standard CG algorithm for

instance (CGN method), although the amount of work in each iteration step doubles

and the rate of convergence slows down considerably.

The algorithms of the generalized conjugate gradient methods that will be used in

further chapters and the related convergence theorems are listed in Section 2.2. The

interested reader may find much more details about these methods, their preconditioned

versions and convergence theorems in the monographs [7, Chaps. 11-13], [52, Chaps.

5-9] and [59]. A short summary can be found in [4, 48, 49].



2. SOME BACKGROUND ON OPERATOR PRECONDITIONING

In this chapter the theoretical background of operator preconditioning is summa-

rized. For a given PDE one approximates the differential operator by a simpler (e.g.

symmetric) differential operator to obtain an efficient preconditioner on the operator

level. Then the discretization of the preconditioning operator is used as a precondition-

ing matrix for the corresponding discretized system, which is solved by some conjugate

gradient method. These methods are discussed in Section 2.2. One of the main features

of these algorithms is superlinear convergence which is – under certain circumstances

(see Sections 2.3-2.4) – mesh independent, i.e. independent of the chosen FEM sub-

space and the size of the discretized system. Namely, the convergence factor can be

estimated by some characteristic feature of the preconditioning operator.

2.1 Basic notions

In this section some useful concepts are summarized from functional analysis and

from the theory of Sobolev spaces, which will be used throughout in further chapters.

The Hilbert space setting is also suitable to list the generalized conjugate gradient

methods and the related convergence theorems that will be used later on.

2.1.1 Prerequisites from functional analysis

Let H1, H2 be Hilbert spaces, then the space of bounded linear operators mapping

H1 into H2 is denoted by B(H1, H2). For H1 = H2, let B(H1) := B(H1, H1). The

topological dual space of H – that is, the space of bounded linear functionals – is

denoted by H∗.

Theorem 2.1 (Riesz’ representation theorem). Let H be a Hilbert space, ϕ ∈ H∗ be a

bounded linear functional. Then there exists a uniquely determined y ∈ H such that

ϕ(x) = 〈x, y〉 ∀ x ∈ H,

moreover, ‖ϕ‖ = ‖y‖.
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Theorem 2.2 (Lax–Milgram lemma). (cf. [5]) Assume that H is a Hilbert space,

a : H × H → C is a bounded and coercive sesquilinear functional and ϕ ∈ H∗. Then

there exists a uniquely determined y ∈ H such that

a(x, y) = ϕ(x) ∀ x ∈ H.

Definition 2.3. If A ∈ B(H) is a bounded linear operator, then there exists a uniquely

determined operator A∗ ∈ B(H), called the adjoint of A, such that

〈Ax, y〉 = 〈x,A∗y〉 ∀ x, y ∈ H.

An operator A is self-adjoint if A = A∗, and normal if it commutes with its adjoint,

i.e. AA∗ = A∗A.

Definition 2.4. Let H1 and H2 be Hilbert spaces. A linear operator K : H1 → H2 is

compact if it maps bounded sets into relative compact sets.

Remark 2.5. An operator K is compact if and only if for every bounded sequence

(xn) ⊂ H1 a convergent subsequence can be selected from (Kxn) ⊂ H2.

A compact linear operator is bounded and the set of compact operators is a subspace

in B(H1, H2). Moreover, if H = H1 = H2, the vector space of compact operators form

a two-sided ideal in B(H).

Theorem 2.6 (Hilbert–Schmidt). (cf. [15, 66]) Let H be an infinite dimensional com-

plex separable Hilbert space, A ∈ B(H) be a compact normal operator. Then

1. the spectrum σ(A) ⊂ C of A is a countable set and σ(A) =
⋃

k∈N {λk(A)} ∪ {0},
where λk(A) are the eigenvalues of A;

2. the set of eigenvalues has the zero as the only limit point;

3. for any non-zero eigenvalue of A the corresponding eigenspace is finite dimen-

sional;

4. the eigenvectors can be chosen to form a complete orthonormal basis in H.

Many of the operators that occur in applications (in the theory of PDEs or in

mathematical physics) are not bounded. Here some basic definitions and theorems are

summarized that will be used later on.

Definition 2.7. Let A : D(A) ⊂ H → H be a densely defined linear operator on H.

Let D(A∗) = {y ∈ H : ∃ y∗ ∈ H such that 〈Ax, y〉 = 〈x, y∗〉 ∀ x ∈ D(A)}. Then for

each y ∈ D(A∗), we define A∗y := y∗. The linear operator A∗ is well-defined and called

the adjoint of A.
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Definition 2.8. An operator A : D(A) ⊂ H → H is symmetric if A is densely defined

and

〈Ax, y〉 = 〈x,Ay〉 ∀ x, y ∈ D(A).

Remark 2.9. Let A be a densely defined operator. Then the following statements are

equivalent:

1. A is symmetric;

2. A ⊂ A∗, which means that D(A) ⊂ D(A∗) and A∗
∣∣
D(A)

= A, that is A∗ is an

extension of A;

3. 〈Ax, x〉 ∈ R for any x ∈ D(A).

Definition 2.10. A densely defined operator A is self-adjoint if A = A∗.

According to Remark 2.9, a densely defined operator is self-adjoint if A∗ ⊂ A.

Definition 2.11. An operator A : D(A) ⊂ H → H is called strongly positive if there

exists some positive constant m > 0, such that

〈Ax, x〉 ≥ m ‖x‖2 ∀ x ∈ D(A). (2.1)

Proposition 2.12. (cf. [15]) Let A be a symmetric operator on H and assume that

A is surjective, i.e. R(A) = H. Then A is self-adjoint.

The following proposition, which states the converse in some sense, is a consequence

of the closed range theorem, see [64, Chap. VII].

Proposition 2.13. Let H be a Hilbert space, A be a densely defined closed linear

operator and assume that

Re 〈Ax, x〉 ≥ m ‖x‖2 ∀ x ∈ D(A)

for some positive constant m > 0. Then A∗ is surjective.

An operator is closed if its graph G(A) = {(x,Ax) : x ∈ D(A)} is a closed subset of

H ×H. The adjoint of a densely defined operator is closed, thus with the combination

of Proposition 2.12 and 2.13, the following – frequently used – consequence can be

obtained.

Corollary 2.14. Let A be a symmetric operator satisfying (2.1). Then A is self-adjoint

if and only if R(A) = H.



2. Some background on operator preconditioning 21

Definition 2.15. Let A : D(A) ⊂ H → H be a symmetric operator which is strongly

positive. Then

〈x, y〉A := 〈Ax, y〉 ∀ x, y ∈ D(A)

defines an inner product on D(A). Let HA := [D(A), 〈·, ·〉A], i.e. the completion of

D(A) under the inner product 〈·, ·〉A. The Hilbert space HA is called the energy space

of A endowed with the energy inner product 〈·, ·〉A.

Proposition 2.16. (cf. [66]) There exists a continuous linear map from HA to H,

which is injective, i.e. the energy space HA can be identified with a subspace of H.

This identification justifies the set inclusion notation HA ⊂ H.

Definition 2.17. Let H be a Hilbert space, A be a densely defined linear operator

which is strongly positive, and f ∈ H be a given vector. Then u ∈ HA is called the

weak solution of the operator equation Au = f if

〈u, v〉A = 〈f, v〉 ∀ v ∈ HA.

Proposition 2.18. If the operator A satisfies the assumptions in Definition 2.17, then

for every f ∈ H there exists a unique weak solution of equation Au = f .

Thus the energy space of a differential operator plays a fundamental role in the

weak solution of boundary value problems. In connection with this, it also plays a

key role when one looks for a self-adjoint and surjective extension Ã of A, called the

Friedrichs extension, whose domain satisfies D(A) ⊂ D(Ã) ⊂ HA. For more details

about unbounded operators and operator extensions we refer to the books [15, 50, 64,

66].

2.1.2 Sobolev spaces

Here we go through the definitions and the main properties of Sobolev spaces. These

function spaces play the role of the abstract Hilbert space when the weak solution of

a differential equation is considered. We mainly follow the treatment given in [5, 66].

Some theorems are stated in a simplified form, further details can be found in the

aforementioned books or in the classical monograph [1].

Definition 2.19. Let Ω ⊂ R
d be a bounded domain, and let V be a function space in

R
d−1. The boundary ∂Ω is of class V if for each point x0 ∈ ∂Ω there exists an r > 0

and a function ϕ ∈ V such that (after the transformation of the coordinate system, if

necessary) we have

Ω ∩B(x0, r) = {x ∈ B(x0, r) : xd > ϕ(x1, . . . , xd−1)}.



2. Some background on operator preconditioning 22

In particular, when V is the class of Lipschitz continuous functions, then we say Ω is

a Lipschitz domain. When V = Ck(Ω), then we say Ω is a Ck domain.

Definition 2.20. Let Ω ⊂ R
n be a bounded, Lebesgue-measurable domain, 1 ≤ p ≤

∞. For a Lebesgue-measurable function f : Ω → R define the p-norm

‖f‖Lp(Ω) =

⎧⎪⎪⎨⎪⎪⎩
(∫

Ω

|f |p
)1/p

if 1 ≤ p < ∞,

inf
{
sup
Ω\N

|f | : N ⊂ Ω has measure zero
}

if p = ∞.

The space Lp(Ω) consists of those functions whose the p-norm is finite.

Definition 2.21. Let k ∈ N, 1 ≤ p ≤ ∞. The Sobolev space W k,p(Ω) consists of those

functions u ∈ Lp(Ω) such that for each multi-index α the distributional derivatives ∂αu

exist up to order k, and ∂αu ∈ Lp(Ω). The norm is defined as

‖u‖W k,p(Ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∑

|α|≤k

‖∂αu‖pLp(Ω)

)1/p

if 1 ≤ p < ∞,

max
|α|≤k

‖∂αu‖L∞(Ω) if p = ∞.

When p = 2, W k,2(Ω) is denoted by Hk(Ω). We also introduce a seminorm on the

space Hk(Ω) as

|u|Hk(Ω) =

( ∑
|α|=k

‖∂αu‖2L2(Ω)

)1/2

.

Theorem 2.22. The Sobolev space W k,p(Ω) is a Banach space, and Hk(Ω) is a Hilbert

space with the inner product

〈u, v〉Hk(Ω) =

∫
Ω

∑
|α|≤k

∂αu ∂αv.

Definition 2.23. Let W k,p
0 (Ω) be the closure of C∞

0 (Ω) in the ‖·‖W k,p(Ω) norm. For

p = 2 we write Hk
0 (Ω).

The spaces H1(Ω) and H1
0 (Ω) are of particular importance in the theory of second

order elliptic PDEs. The latter is a closed subspace of H1(Ω), thus it is a Hilbert

space with the inherited ‖·‖H1(Ω) norm. But it is also a Hilbert space with the |·|H1(Ω)

seminorm. The proof relies on the following well-known result.

Theorem 2.24 (Poincaré–Friedrichs inequality). Let Ω ⊂ R
d be a bounded domain,



2. Some background on operator preconditioning 23

then there exists a constant ν > 0 depending only on Ω such that

ν ‖u‖L2(Ω) ≤ ‖∇u‖L2(Ω) ∀ u ∈ H1
0 (Ω). (2.2)

Corollary 2.25. Let Ω ⊂ R
d be a bounded domain, then the norms ‖·‖H1(Ω) and |·|H1(Ω)

are equivalent on H1
0 (Ω).

Theorem 2.26 (Rellich). Let Ω ⊂ R
d be a bounded domain,

1. then the embedding H1
0 (Ω) ↪→ L2(Ω) is compact;

2. moreover, if Ω is a Lipschitz domain, then the embedding H1(Ω) ↪→ L2(Ω) is

compact.

Theorem 2.27. Let Ω ⊂ R
d be a bounded Lipschitz domain. Then there exists a

unique continuous linear operator γ : H1(Ω) → L2(∂Ω) such that γu = u
∣∣
∂Ω

for any

u ∈ H1(Ω) ∩ C(Ω). The operator γ is compact.

This mapping is called the trace operator and for u ∈ H1(Ω) the function γu is

called the generalized boundary value of u. We will not go into further details, but it

is worth mentioning that the trace operator, as a mapping from H1(Ω) to H1/2(∂Ω)

is surjective. For fractional Sobolev spaces and spaces over boundaries we refer to the

books [1, 5].

2.2 Generalized conjugate gradient methods

Let us consider the equation

Au = b (2.3)

in H, where H is a Hilbert space, A : H → H is a linear operator and b ∈ H is a given

vector. In order to ensure the well-posedness of (2.3), assume that A has a bounded

inverse. When H is finite dimensional, e.g. H = R
n then (2.3) is a linear algebraic

system.

The generalized conjugate gradient, least square (abbreviated as GCG-LS) method

is constructed as follows, see in [6, 7]. There are two types of the GCG-LS algorithm:

the full and the so-called truncated versions. The definition also involves an integer

s ∈ N, further, we let sk = min{k, s}, (k ≥ 0). The full version uses all the previous

search directions to construct the sequence of approximate solutions (uk) and search

directions (dk) such that the vectors Adk are linearly independent and uk minimizes

the residual norm corresponding to (2.3) in the subspace spanned by the first k search

directions. The truncated version of the algorithm uses only the previous s+1 directions

(GCG-LS(s) for short). The GCG-LS(s) algorithm is as follows:
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Algorithm 2.28 (GCG–LS(s)).

• Let u0 ∈ H be arbitrary and let r0 = Au0 − b, d0 = −r0;

• For any k ∈ N, when uk, dk, rk are obtained, let

◦ the numbers α
(k)
k−j (j = 0, . . . , k) be the solution of the system

sk∑
j=0

α
(k)
k−j 〈Adk−j, Adk−l〉 = −〈rk, Adk−l〉 (0 ≤ l ≤ sk)

◦ uk+1 = uk +
sk∑
j=0

α
(k)
k−jdk−j;

◦ rk+1 = rk +
sk∑
j=0

α
(k)
k−jAdk−j;

◦ β
(k)
k−j =

〈Ark+1, Adk−j〉
‖Adk−j‖2

(j = 0, . . . , sk);

◦ dk+1 = −rk+1 +
sk∑
j=0

β
(k)
k−jdk−j.

The full version (called GCG-LS method) can be obtained by setting formally s =

+∞, whilst for finite s we get the truncated GCG-LS(s) algorithm. An interesting case

arises when s = 0, since it requires only the current search direction, which property

makes it computationally favourable.

Algorithm 2.29 (GCG–LS(0)).

• Let u0 ∈ H be arbitrary, r0 = Au0 − b, d0 = −r0;

• For given uk, dk, and residual rk = Auk − b, we let

◦ uk+1 = uk + αkdk, where αk = −〈rk, Adk〉
‖Adk‖2

,

◦ rk+1 = rk + αkAdk,

◦ dk+1 = −rk+1 + βkdk, where βk =
〈Ark+1, Adk〉

‖Adk‖2
.

The following result (cf. [6, Thm. 4.1]) states the coincidence of the two algorithms

in the finite dimensional case when A∗ is a polynomial of A (which holds for normal

matrices), see also [20].

Theorem 2.30. Let A be a matrix satisfying A+ A∗ > 0. Assume that there exists a

real polynomial pm ∈ R[x] of degree m such that A∗ = pm(A). If s ≥ m − 1, then the

truncated GCG-LS(s) method coincides with the full GCG-LS algorithm.
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Let us turn to the convergence results. Suppose that

A+ A∗ > 0, (2.4)

that is, A is positive definite with respect to 〈·, ·〉. The following quantities defined

below will be used in the convergence theorems of the algorithms:

λ0 ≡ λ0(A) := inf
‖x‖=1

〈Ax, x〉 > 0, Λ ≡ Λ(A) := ‖A‖ , (2.5)

where the norm ‖·‖ is induced by the inner product 〈·, ·〉.

Proposition 2.31. If (2.4) holds, then with the notations of (2.5) estimate

(‖rk‖
‖r0‖

)1/k

≤
(
1−

(
λ0

Λ

)2
)1/2

(k = 1, 2, . . .) (2.6)

holds for the residual rk = Auk − b of the GCG-LS(s) algorithm.

A remarkable occurrence of the GCG-LS(0) algorithm arises when A can be decom-

posed as

A = I + C, (2.7)

where the matrix C is antisymmetric. This most often comes from symmetric part pre-

conditioning, in which equation (2.3) is replaced by its preconditioned form M−1Au =

M−1b, where M is the symmetric part of A, that is M = (A + A∗)/2. The precondi-

tioned equation has the form

Au = b ⇐⇒ M−1Au = M−1b ⇐⇒ (I +M−1N)u = M−1b,

where N = A − M is the antisymmetric part of A. In this case A∗ = 2I − A with

respect to the M -inner product (M is spd due to (2.4)), i.e. Theorem 2.30 holds with

p1(t) = −t + 2. Owing to decomposition (2.7), we have the following stronger result

for matrices, which provides superlinear convergence estimate in the finite dimensional

case if the eigenvalues |λ1(C)| ≥ |λ2(C)| ≥ . . . ≥ |λn(C)| approach zero.

Proposition 2.32. If assumptions (2.4) and (2.7) hold, then

(‖rk‖
‖r0‖

)1/k

≤ 2

λ0

(
1

k

k∑
i=1

|λi(C)|
)

(k = 1, 2, . . . , n). (2.8)

One can also use the normal equation approach described in Subsection 1.2.2, i.e.
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equation (2.3) can be replaced by

A∗Au = A∗b. (2.9)

Here we can apply the standard symmetric CG method. Since A and b are replaced

by A∗A and A∗b, respectively, we have to replace the residual vector for the normal

equation by sk, because we want to reserve the notation rk for the original residual

rk = Auk − b. Then we get sk = A∗rk.

Algorithm 2.33 (CGN).

• Let u0 ∈ H be arbitrary, r0 = Au0 − b, s0 = d0 = A∗r0;

• For given uk, dk, sk, and rk = Auk − b, we let

◦ zk = Adk,

◦ uk+1 = uk + αkdk, rk+1 = rk + αkzk, where αk = −〈rk, zk〉
‖zk‖2

,

◦ sk+1 = A∗rk+1,

◦ dk+1 = sk+1 + βkdk, where βk =
‖sk+1‖2

‖sk‖2
.

The convergence estimate comes directly from the linear convergence estimate (1.30)

of the symmetric CG method. Since A is replaced by A∗A, ‖ek‖A∗A = ‖Aek‖ = ‖rk‖
and κ(A∗A) = κ(A)2, the following result is obtained.

Corollary 2.34. If (2.4) holds, then using the notations in (2.5) we have

(‖rk‖
‖r0‖

)1/k

≤ 21/k
κ(A)− 1

κ(A) + 1
≤ 21/k

Λ− λ0

Λ + λ0

(k = 1, 2, . . .). (2.10)

If the decomposition (2.7) is valid in the finite dimensional case, then by A∗A =

I + (C∗ + C + C∗C), the superlinear convergence estimate (1.32) implies

Corollary 2.35. If assumptions (2.4) and (2.7) hold, then

(‖rk‖
‖r0‖

)1/k

≤ 2

λ2
0

(
1

k

k∑
i=1

(
|λi(C

∗ + C)|+ λi(C
∗C)

))
(k = 1, 2, . . . , n). (2.11)

2.3 Equivalent and compact-equivalent operators in Hilbert space

Let us consider a system of linear equations which is derived from the discretization

of some elliptic differential operator. The main idea of constructing a preconditioner

for the discrete system is the following: approximate the original differential operator
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with another elliptic operator, which is close to the original one in some sense, and use

its discretization as a preconditioning matrix. A general theory has been developed

using the notion of equivalent operators, which has been introduced and investigated

in the aspect of linear convergence in [21]. With the notions of Subsection 1.2.1 the

main requirements are that systems with Ph should be easier to solve than with Ah and

the condition number of the preconditioned matrix P−1
h Ah should be bounded above,

where the upper bound is independent of the discretization parameter.

Following [21], we sketch the basic notions of operator equivalence, further details

can be found in [23, 31, 45, 46].

Definition 2.36. Let A,P : W → V be linear operators between the Hilbert spaces

W and V . The operators A and P are V -norm equivalent on a set D ⊂ D(A) ∩D(P )

if there exist 0 < α ≤ β < ∞ such that

α ≤ ‖Au‖V
‖Pu‖V

≤ β

for any u ∈ D such that the ratio is defined.

If D is sufficiently dense (that is, D is dense in D(A) and D(P ), further A(D)

is dense in R(A) and P (D) is dense in R(P )), then it follows that κ(AP−1) ≤ β/α,

i.e. the right condition number is bounded. Similarly, for injective operators the W -

norm equivalence of A−1 and P−1 implies the boundedness of κ(P−1A). The notion

of equivalence can be defined between the families of operators (Ah)h>0 and (Ph)h>0,

where the pointwise limit operators A and P exist. When the operators Ah and Ph

are equivalent for any h > 0 and the bounds αh ≥ α > 0 and βh ≤ β < ∞ can be

chosen independently of h, then the families (Ah) and (Ph) are called uniform V -norm

equivalent. It can be shown (cf. [21, Thm. 2.12]) that the uniform V -norm equivalence

of the families (Ah) and (Ph) implies the V -norm equivalence of the limit operators. The

converse statement holds (cf. [21, Thm. 2.15]) if Ah and Ph are obtained via orthogonal

projections from A and P , furthermore A and P are equivalent to the families (Ah)

and (Ph), respectively.

The notion of operator equivalence given above is convenient when L2-equivalence

of elliptic differential operators of second order is considered. Here the uniform bound-

edness of the condition number of P−1
h Ah (or AhP

−1
h ) is ensured when P ∗ and A∗

(or P and A) have the same boundary conditions. But it is more useful to use H1-

equivalence, i.e. equivalence based on the weak formulation of the operators, since in

this case less strict regularity assumptions are needed. The main outcome of [46] is

that the H1-condition number of P−1
h Ah is bounded independently of h if and only if
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A and P have homogeneous Dirichlet boundary conditions on the same portion of the

boundary.

Here we give a uniform treatment of elliptic differential operators on the operator

level using the weak formulation to handle the equivalence and compact-equivalence of

the operators in a general setting. We follow the treatment given in [10].

Let H be a real Hilbert space and consider the operator equation

Lu = g (2.12)

with a linear unbounded operator L in H, where g ∈ H is given. We would like

to consider its preconditioned form in weak sense in an energy space of a suitable

symmetric operator.

Let S : D(S) ⊂ H → H be an unbounded linear symmetric operator which satisfies

the coercivity property

〈Su, u〉 ≥ p ‖u‖2 ∀ u ∈ D(S) (2.13)

for some p > 0 constant. Let HS ⊂ H denote the energy space of S (see Definition

2.15).

Definition 2.37. Let S be a linear symmetric coercive operator in H. A linear operator

L is said to be S-bounded and S-coercive if

1. D(L) ⊂ HS and D(L) is dense in HS in ‖·‖S norm;

2. there exists M > 0 such that

|〈Lu, v〉| ≤ M ‖u‖S ‖v‖S ∀ u, v ∈ D(L); (2.14)

3. there exists m > 0 such that

〈Lu, u〉 ≥ m ‖u‖2S ∀ u ∈ D(L). (2.15)

The set of S-bounded and S-coercive operators is denoted by BCS(H).

Definition 2.38. If L ∈ BCS(H) then let LS ∈ B(HS) be defined by the identity

〈LSu, v〉S = 〈Lu, v〉 (u, v ∈ D(L)).

The definition makes sense, since LS represents the unique extension of the bounded

bilinear form (u, v) �→ 〈Lu, v〉 from D(L) to HS. Because of the density of D(L) in
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HS, inequalities (2.14) and (2.15) hold in HS for the operator LS, i.e.

|〈LSu, v〉|S ≤ M ‖u‖S ‖v‖S , 〈LSu, u〉S ≥ m ‖u‖2S (u, v ∈ HS). (2.16)

Remark 2.39. If R(L) ⊂ R(S), then the operator LS restricted to D(L) is nothing else

than S−1L.

Proposition 2.40. (cf. [11], Prop. 3.4) Let S be a linear symmetric operator satisfying

(2.13) and L and K be S-bounded and S-coercive operators. Then

1. LS and KS are HS-norm equivalent;

2. L−1
S and K−1

S are HS-norm equivalent.

Remark 2.41. If L ∈ BCS(H), then LS and the identity operator I are HS-norm

equivalent.

Definition 2.42. For a given operator L ∈ BCS(H), we call u ∈ HS the weak solution

of equation (2.12) if

〈LSu, v〉S = 〈g, v〉 ∀ v ∈ HS. (2.17)

The existence and uniqueness of the weak solution come from the Lax–Milgram

lemma (cf. Theorem 2.2): the boundedness and coercivity of the bilinear form (u, v) �→
〈LSu, v〉S is a straightforward consequence of (2.16) and the linear functional v �→ 〈g, v〉
is bounded in HS by the coercivity of S.

The theory of compact-equivalent operators has been developed in [10] and sum-

marized in [11]. Here the compact-equivalence of the original and the preconditioning

operators ensures the mesh independent superlinear convergence rate when the CGN

algorithm 2.33 is used for the discretized system. In Section 2.4 similar results will

be obtained for the GCG-LS algorithm 2.28 by using the compact normal operator

framework.

Definition 2.43. Let L and K be S-bounded and S-coercive operators in H. We call

them compact-equivalent in HS if

LS = μKS +QS (2.18)

for some constant μ > 0 and compact operator QS ∈ B(HS).

As an important special case, we can consider compact-equivalence with μ = 1 for

the operators L and S as in Definition 2.37. Then

LS = I +QS (2.19)
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with some compact operator QS. This comes from the fact that S itself is S-bounded

and S-coercive and the corresponding operator SS is the identity operator on HS.

This means that if the operators L and S are compact-equivalent, then LS can be

decomposed as the sum of the identity and a compact operator.

Let us consider the operator equation (2.12) where L ∈ BCS(H), g ∈ H and u ∈ HS

is the weak solution defined in (2.17). To solve it numerically, let

Vh = span{ϕ1, ϕ2, . . . , ϕn} ⊂ HS

be a finite dimensional subspace of dimension n and

Lh =
{
〈LSϕi, ϕj〉S

}n
i,j=1

, gh = {〈g, ϕj〉}nj=1 . (2.20)

Then the discrete solution uh ∈ Vh is uh =
∑n

i=1 ciϕi, where c = (c1, . . . , cn) ∈ R
n is

the solution of the linear system

Lhc = gh,

which is the discretized form of (2.17). Now assume that L and S are compact-

equivalent with μ = 1, i.e. relation (2.19) holds. If S is used as a preconditioner, then

the discretized form of the operator decomposition (2.19) becomes

Lh = Sh +Qh, (2.21)

and the corresponding preconditioned form of equation (2.17) has the form

(
Ih + S−1

h Qh

)
c = S−1

h gh, (2.22)

where

Sh =
{
〈ϕi, ϕj〉S

}n
i,j=1

, Qh =
{
〈QSϕi, ϕj〉S

}n
i,j=1

. (2.23)

If we apply Algorithm 2.33 for equation (2.22) then Corollary 2.35 holds with C =

S−1
h Qh and λ0 = m. It has been proved in [10, Prop. 4.1] that the eigenvalues appear

in (2.11) can be estimated above by the eigenvalues of the corresponding operators,

thus we have

Theorem 2.44. (cf. [10, Thm. 4.1]) Assume that L ∈ BCS(H), L and S are compact-

equivalent with μ = 1, i.e. (2.19) holds. Then the CGN algorithm 2.33 for system (2.22)

yields

(
‖rk‖Sh

‖r0‖Sh

)1/k

≤ 2

m2

(
1

k

k∑
i=1

(
|λi(Q

∗
S +QS)|+ λi(Q

∗
SQS)

)) k→∞−−−→ 0, (2.24)
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where the right-hand side is independent of the subspace Vh.

2.4 The compact normal operator framework

Let us return to the operator equation

Au = b, (2.25)

where A : H → H is a nonsymmetric linear operator on the Hilbert space H and f ∈ H

is a given vector. Assume that A has a bounded inverse to ensure the well-posedness

of (2.25). Algorithms 2.28 and 2.33 can be formulated in Hilbert space without any

modification. The following result, which can be found in [8, Thm. 1], is an extension

of Theorem 2.30 to the infinite dimensional case.

Theorem 2.45. Let H be a real Hilbert space and A : H → H be a bounded linear

operator satisfying A+A∗ > 0. Assume that there exists a real polynomial pm ∈ R[x] of

degree m such that A∗ = pm(A). If s ≥ m− 1, then the truncated GCG-LS(s) method

coincides with the full GCG-LS algorithm.

Remark 2.46. If there exist constants c1, c2 ∈ R such that A∗ = c1A + c2I, then the

truncated GCG-LS(0) method coincides with the full GCG-LS algorithm.

Let equation (2.25) have the form

Au ≡ (I + C)u = f (2.26)

with a compact operator C. Denote by λk ≡ λk(C) (k ∈ N) the ordered eigenvalues

of C, where λk → 0 by the compactness of C. The superlinear convergence estimate

(1.31) can be extended to the infinite dimensional case for operators that can be written

in the form A = I +C, where C is a compact normal operator, which ensures that the

eigenvectors form a complete orthonormal basis in H (cf. Remark 1.7, Theorem 2.6),

proved in [63]. Using the boundedness of A−1, estimate (1.31) has the following infinite

dimensional counterpart (cf. [9, Thm. 2]):

Theorem 2.47. Let H be a complex separable Hilbert space and C : H → H be a

compact normal operator on H with ordered eigenvalues λk(C) (k ∈ N). Suppose that

A can be decomposed as

A = I + C, (2.27)

where I is the identity operator and assume that A has a bounded inverse. Then the
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GCG-LS algorithm 2.28 yields for all k ∈ N

(‖ek‖A
‖e0‖A

)1/k

≤ 2
∥∥A−1

∥∥(1

k

k∑
i=1

|λi(C)|
)

k→∞−−−→ 0. (2.28)

2.4.1 Preconditioned operator equations and superlinear convergence

When the conjugate gradient method is applied to systems arising from the dis-

cretization of elliptic PDEs, the spectral condition number that appears in the linear

convergence estimate (1.30) tends to infinity as the mesh is refined, as pointed out

in (1.20). Thus suitable preconditioning is required to obtain a mesh independent

convergence bound. The application of the conjugate gradient method for the precon-

ditioned form of (2.25) has been investigated in the aspect of linear convergence using

the framework of equivalent operators in Hilbert space (cf. [21, 46]). These results have

been extended in [8, 9], where superlinear convergence has been proved for operator

equations and mesh independent bound for the estimate obtained for the discretized

systems using the GCG-LS algorithm.

Let us consider an operator equation

Lu = g (2.29)

with an unbounded linear operator L : D ⊂ H → H defined on a dense domain D,

and with some g ∈ H. Consider a preconditioned version of (2.29) which has the form

(2.27) in a suitable energy space. Equation (2.29) is assumed to satisfy the following

Assumptions 2.48. Assume that

(i) the operator L is decomposed in L = S + Q on its domain D where S is a

self-adjoint operator in H;

(ii) S is a strongly positive operator, i.e. there exists p > 0 such that

〈Su, u〉 ≥ p ‖u‖2 ∀ u ∈ D; (2.30)

(iii) there exists � > 0 such that Re 〈Lu, u〉 ≥ � 〈Su, u〉 ∀ u ∈ D;

(iv) the operator Q can be extended to the energy space HS, and then S−1Q is assumed

to be a compact normal operator on HS.

We recall that the energy space HS is the completion of D under the energy inner

product 〈u, v〉S = 〈Su, v〉 (u, v ∈ D), and the corresponding norm has the obvious

notation ‖·‖S. Condition (ii) implies HS ⊂ H (cf. Proposition 2.16). By Corollary
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2.14, conditions (i)-(ii) on S in Assumptions 2.48 imply that R(S) = H and hence

S−1Q makes sense. Since now S is onto, the use of the weakly defined operators LS

ans QS (in contrast with Section 2.3) is not needed (cf. Remark 2.39).

Remark 2.49. If Re 〈Qu, u〉 ≥ 0 holds for every u ∈ D, then (iii) holds with � = 1.

This is valid if Q is antisymmetric.

Remark 2.50. The normality of S−1Q on the space HS means that it is S-normal, i.e.

the operator (S−1Q)
∗
S, the adjoint of S−1Q with respect to the inner product 〈·, ·〉S,

commutes with S−1Q.

Now we replace equation (2.29) by its preconditioned form

S−1Lu = f ≡ S−1g. (2.31)

Then the full GCG-LS algorithm 2.28 in HS is as follows. Here for better algorithmiza-

tion four sequences uk, dk, rk, zk are constructed, and the notation Adj = zj is used

throughout the algorithm (where A is replaced by S−1L).

Algorithm 2.51 (Preconditioned GCG–LS(s)).

• Let u0 ∈ D be arbitrary, and let r0 be the solution of Sr0 = Lu0 − g, d0 = −r0,

and z0 be the solution of Sz0 = Ld0;

• For any k ∈ N, when uk, dk, rk, zk are obtained, let

◦ the numbers α
(k)
k−j (j = 0, . . . , k) be the solution of the system

sk∑
j=0

α
(k)
k−j 〈Szk−j, zk−l〉 = −〈rk, Szk−l〉 (0 ≤ l ≤ sk)

◦ uk+1 = uk +
sk∑
j=0

α
(k)
k−jdk−j;

◦ rk+1 = rk +
sk∑
j=0

α
(k)
k−jzk−j;

◦ β
(k)
k−j =

〈Lrk+1, zk−j〉
‖zk−j‖2S

(j = 0, . . . , sk);

◦ dk+1 = −rk+1 +
sk∑
j=0

β
(k)
k−jdk−j;

◦ zk+1 be the solution of Szk+1 = Ldk+1.

In the truncated GCG-LS(0) algorithm 2.29 the vectors zk can be determined within

the kth cycle since no previous indices are used:
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Algorithm 2.52 (Preconditioned GCG–LS(0)).

• Let u0 ∈ D be arbitrary, and let r0 be the solution of Sr0 = Lu0 − g, d0 = −r0;

• For any k ∈ N, when uk, dk, rk are obtained, let

◦ zk be the solution of Szk = Ldk;

◦ uk+1 = uk + αkdk, where αk = −〈rk, Szk〉
〈Szk, zk〉

,

◦ rk+1 = rk + αkzk,

◦ dk+1 = −rk+1 + βkdk, where βk =
〈Lrk+1, zk〉
〈Szk, zk〉

.

Owing to the decomposition of L, equation (2.31) is equivalent to

(
I + S−1Q

)
u = f ≡ S−1g, (2.32)

that is, it has the form (2.27) with

A = I + S−1Q.

Using Assumptions 2.48 it has been shown in [9] that A in a linear operator in HS

which has a bounded inverse, hence equation (2.32) has a unique solution u ∈ HS.

This can be considered as the weak solution of (2.29), since

〈u, v〉S + 〈Qu, v〉 = 〈g, v〉 ∀ v ∈ HS. (2.33)

Furthermore, condition (iii) implies that ‖u‖A = ‖u‖L and ‖A−1‖S ≤ 1/� holds. Then

we have

Theorem 2.53. (cf. [9, Thm. 3]) Let Assumptions 2.48 hold. Then the GCG-LS

algorithm 2.28 applied for equation (2.31) in HS yields for all k ∈ N

(‖ek‖L
‖e0‖L

)1/k

≤ 2

�

(
1

k

k∑
i=1

∣∣λi

(
S−1Q

)∣∣) k→∞−−−→ 0, (2.34)

where λk (S
−1Q) (k ∈ N) are the ordered eigenvalues of the compact normal operator

S−1Q.

Equation (2.29) can be solved numerically using Galerkin discretization. Let

Vh = span{ϕ1, ϕ2, . . . , ϕn} ⊂ HS
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be a finite dimensional subspace of dimension n. Then the discrete solution uh ∈ Vh is

uh =
∑n

i=1 ciϕi, where c = (c1, c2, . . . , cn) ∈ R
n is the solution of the linear algebraic

system

Lhc = gh, (2.35)

where gh = {〈g, ϕj〉}nj=1 and the matrix Lh is defined as Lh = Sh +Qh, where

Sh =
{
〈ϕi, ϕj〉S

}n
i,j=1

, Qh = {〈Qϕi, ϕj〉}ni,j=1 .

Hence equation (2.35) can be written as

(Sh +Qh) c = gh,

which is the discretized form of (2.33). If the operator S is used as a preconditioner,

then the discretized form of the preconditioned operator equation (2.32) becomes

(
Ih + S−1

h Qh

)
c = S−1

h gh. (2.36)

Similarly to the mesh independent result of CGN algorithm in the previous section,

the eigenvalues of the matrix in the finite dimensional estimate (2.8) can be estimated

above by the eigenvalues of the corresponding operator, thus we have

Theorem 2.54. (cf. [9, Cor. 4]) Suppose that H is a complex separable Hilbert space,

Assumptions 2.48 are satisfied and the matrix S−1
h Qh is Sh-normal. Then the GCG-LS

algorithm 2.28 for system (2.36) yields

(
‖ek‖Lh

‖e0‖Lh

)1/k

≤ 2

�

(
1

k

k∑
i=1

∣∣λi(S
−1Q)

∣∣) k→∞−−−→ 0, (2.37)

where the right-hand side is independent of the subspace Vh.

2.4.2 Symmetric part preconditioning

Here the symmetric part preconditioning strategy is summarized briefly, i.e. when

the symmetric part of an operator is used as preconditioning operator. It has been in-

troduced and analysed in [14, 62] (see also [6]), and efficiently applied to nonsymmetric

elliptic problems (convection-diffusion equations). For the solution of discretized ellip-

tic problems it has proved an efficient tool, see in [8, 9] for problems with Dirichlet

boundary conditions, and in [34] for mixed problems.
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Strong symmetric part

Consider equation (2.29) with the additional coercivity assumption

Re 〈Lu, u〉 ≥ p ‖u‖2 ∀ u ∈ D(L) (2.38)

with some positive constant p > 0. Let S and Q be the symmetric and antisymmetric

part of L, that is

Su =
Lu+ L∗u

2
, Qu =

Lu− L∗u

2
∀ u ∈ D(L) ∩D(L∗)

and assume that D(L) ∩D(L∗) is dense in H, R(S) = H, further, Q can be extended

to HS and S−1Q is a compact operator on HS. Then S is self-adjoint by Corollary 2.14

and L is decomposed as L = S + Q on the dense domain D := D(L) ∩D(L)∗. Since

〈Su, u〉 = Re 〈Lu, u〉, S is strongly positive by (2.38). The operator S−1Q is normal in

HS, since

〈
S−1Qu, v

〉
S
= 〈Qu, v〉 = −〈u,Qv〉 = −

〈
u, S−1Qv

〉
S

∀ u ∈ HS,

which means that S−1Q in HS inherits the antisymmetry of Q in D.

Thus we have proved that using symmetric part preconditioning Assumptions 2.48

are satisfied and Theorem 2.53 holds (with � = 1) for equation (2.31) with the sym-

metric part S of L as preconditioner. Moreover, the antisymmetry of S−1Q implies

that A∗
S = 2I − A (see [8] and the analogous argument for matrices on page 25), thus

the truncated GCG-LS(0) algorithm coincides with the full version.

Remark 2.55. It follows from the above argument that if Sh is the symmetric part of

Lh in the preconditioned form of the discretized equation (2.36), then estimate (2.37)

holds for the GCG-LS(0) algorithm with � = 1, the error is measured in Sh-norm

and the Sh-normality of S−1
h Qh does not need to be assumed, since it is automatically

satisfied.

Weak symmetric part

When D ⊂ H is not known to be dense, the symmetric part of L has to be defined

in weak sense. We go through the basic steps of the construction, further details and

the proofs can be found in [34]. Assume that (2.38) hold and let the weak symmetric

part of L be the sesquilinear form

〈u, v〉S =
〈Lu, v〉+ 〈u, Lv〉

2
∀ u, v ∈ D(L),
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which defines an inner product on D(L). Then HS is defined as the completion of D(L)

under the inner product 〈·, ·〉S. Assume further that there exists M > 0 such that

|〈Lu, v〉| ≤ M ‖u‖S ‖v‖S ∀ u, v ∈ D(L). (2.39)

Then S−1Q can be replaced by the operator QS : HS → HS, defined as

〈QSu, v〉S =
〈u, v〉L − 〈v, u〉L

2
∀ u, v ∈ HS, (2.40)

where the bounded sesquilinear form 〈·, ·〉L is the unique extension of the form (u, v) �→
〈Lu, v〉 from D(L) to HS. Then we have

〈u, v〉L = 〈u, v〉S + 〈QSu, v〉S ∀ u, v ∈ HS.

It has been shown that there exists f ∈ HS such that 〈g, v〉 = 〈f, v〉S for any v ∈ HS,

thus the weak form

〈u, v〉L = 〈g, v〉 ∀ v ∈ HS

of (2.29) becomes

(I +QS) u = f

in HS, which is a generalized form of (2.32). Assuming that (2.38) and (2.39) hold

and QS is compact on HS, it has been proved in [34] that the conditions of Theorem

2.47 satisfied with A = I + QS in HS. Thus estimate (2.28) holds when λi(S
−1Q)

is replaced by λi(QS) with ‖A−1‖S ≤ 1, the error is measured in ‖·‖S norm and the

truncated algorithm coincides with the full version.

Remark 2.56. The construction of the weak symmetric part and the weak form of the

equation is analogous to the construction of the weakly defined operator LS in HS

and the weak solution (2.17). The main difference is that in Definitions 2.37-2.38 the

operator S was given in advance, but here it was constructed directly from the operator

L and only in weak sense.

Remark 2.57. Since now the weak form of the operators are used, the matrices Lh, Sh

and Qh are defined as in (2.20) and (2.23). The observations in Remark 2.55 hold with

replacing the eigenvalues of the strongly defined operator S−1Q by the eigenvalues of

the weakly defined operator QS.



3. SYMMETRIC PRECONDITIONING FOR LINEAR ELLIPTIC

EQUATIONS

The Hilbert space setting of the FEM enables us to estimate the superlinear conver-

gence factors in the discrete case from above by the analogous factors in the operator

level, where the latter is based on the eigenvalues of the preconditioned operator. Us-

ing the theoretical background of Section 2.4 for problems with homogeneous mixed

boundary conditions, first we investigate the relation between the known theoretical

convergence estimate and the numerical results (cf. [41, 42]). Then we extend the the-

ory to the case of nonhomogeneous mixed boundary conditions using operator pairs

(see [40]) and the background of Section 2.3. For FDM discretizations we do not have

such abstract Hilbert space background, hence no general results exist for the mesh

independent convergence of the discretized systems. The study of a special model

problem is considered in Section 3.3, based on [38]. From now on, the content of the

chapters consists of the author’s results, published in the mentioned and other papers.

3.1 Equations with homogeneous mixed boundary conditions

In this section convection-diffusion equations are considered with the aim of investi-

gating the relation between the theoretical convergence estimates (2.34)-(2.37) and the

numerical results. The main goal of this section is twofold: first to confirm the mesh

independent superlinear convergence property of the CGM when symmetric part pre-

conditioning is applied to the FEM discretization of the boundary value problem (3.3).

Second, we have also analysed cases not covered by theory through experiments, i.e.

when another symmetric operator is used as a preconditioner, not only the symmetric

part of the operator.

For a given densely defined operator L the standard way of constructing its sym-

metric part is

S =
L+ L∗

2
,

as described in Subsection 2.4.2. This is feasible for Dirichlet problems, but for mixed

problems it is generally impossible, because the domain of L may differ from the domain

of its adjoint, i. e. D(L) �= D(L∗). Hence the density property of the domain of S may
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not be valid anymore, thus the definition of S requires a more general approach, it can

be defined in weak sense as at the end of Subsection 2.4.2.

We would like to use Theorem 2.53 – and mainly its discrete counterpart, Theorem

2.54 – for the equation

Lu = g, (3.1)

where L is a densely defined unbounded linear operator, g ∈ H is a given vector,

and L is decomposed in L = S + Q on the domain D(L), where S is a self-adjoint

operator. Preconditioning with the operator S, we can replace equation (3.1) by its

preconditioned form

S−1Lu = S−1(S +Q)u = (I + S−1Q)︸ ︷︷ ︸
A

u = f ≡ S−1g. (3.2)

Based on Subsection 2.4.2, in the case of symmetric part preconditioning the S-adjoint

of A is a linear polynomial of A (see Remark 2.46), thus only the truncated GCG-

LS(0) algorithm will be considered. This method is closely related to the so-called

CGW-method, see [14, 62]. In what follows, we summarize the application of the

above theory to convection-diffusion equations, including the construction of the weak

symmetric part. These results can be found in detail in [9, 34] for Dirichlet and mixed

boundary conditions, respectively.

3.1.1 The problem and the algorithm in Sobolev space

In this subsection we define the linear elliptic second-order differential operator

L, where the role of the abstract Hilbert space H is played by the function space

L2(Ω). Let us consider an elliptic convection-diffusion equation with mixed boundary

conditions
Lu ≡ −Δu+ b · ∇u+ cu = g

u
∣∣
ΓD

= 0,
∂u

∂ν
+ αu

∣∣
ΓN

= 0

⎫⎬⎭ (3.3)

satisfying the following assumptions:

Assumptions 3.1. Suppose that

(i) Ω ⊂ R
d is a bounded piecewise C1 domain; ΓD,ΓN are disjoint open measurable

subparts of ∂Ω such that ∂Ω = ΓD ∪ ΓN ;

(ii) b ∈ C1(Ω)d, c ∈ L∞(Ω), α ∈ L∞(ΓN) and c, α ≥ 0;

(iii) we have the coercivity properties

ĉ := c− 1

2
divb ≥ 0 in Ω, α̂ := α +

1

2
(b · ν) ≥ 0 on ΓN ; (3.4)
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(iv) g ∈ L2(Ω);

(v) either ΓD �= ∅, or ĉ or α̂ is not constant zero.

Let us consider the complex Hilbert space H = L2(Ω) with the usual inner product

〈u, v〉L2(Ω) =

∫
Ω

uv dx

and define the operator L as

Lu ≡ −Δu+ b · ∇u+ cu

with the domain

D ≡ D(L) :=

{
u ∈ H2(Ω) : u

∣∣
ΓD

= 0,
∂u

∂ν
+ αu

∣∣
ΓN

= 0

}
, (3.5)

which is dense in H. We have

〈Lu, v〉L2(Ω) =

∫
Ω

(∇u · ∇v + (b · ∇u) v + cuv) dx+

∫
ΓN

αuv dσ (u, v ∈ D(L)).

(3.6)

The weak symmetric part of L is constructed in Subsection 2.4.2, which is now the

following sesquilinear form:

〈u, v〉S =
1

2

(
〈Lu, v〉L2(Ω) + 〈u, Lv〉L2(Ω)

)
=

∫
Ω

(∇u · ∇v + ĉuv) dx+

∫
ΓN

α̂uv dσ (u, v ∈ D(L)),
(3.7)

and the energy space HS – which is defined as the completion of D under the inner

product 〈·, ·〉S – is

HS = H1
D(Ω) :=

{
u ∈ H1(Ω) : u

∣∣
ΓD

= 0
}
. (3.8)

By (2.40) we define the operator QS : HS → HS, which has the form

〈QSu, v〉S =
1

2

(∫
Ω

(b · ∇u) v dx−
∫
Ω

u (b · ∇v) dx

)
. (3.9)

Here the strong form of the operator S corresponding to the sesquilinear form (3.7)

cannot be used, since it is generally not known to be surjective (i.e. it may not be self-

adjoint) due to the lack of H2-regularity result on the weak solution in the presence

of mixed boundary conditions. Therefore S−1 may not make sense, thus the precondi-
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tioned GCG-LS(0) algorithm 2.52 has to be reformulated using the weak formulation

of S.

Algorithm 3.2 (Preconditioned GCG–LS(0) in weak form).

• Let u0 ∈ H1
D(Ω) be arbitrary, and let r0 ∈ H1

D(Ω) be the weak solution of⎧⎨⎩ −Δr0 + ĉr0 = Lu0 − g

r0
∣∣
ΓD

= 0,
∂r0
∂ν

+ α̂r0
∣∣
ΓN

= 0;

d0 = −r0;

• For any k ∈ N, when uk, dk, rk are obtained, let

◦ zk ∈ H1
D(Ω) be the weak solution of⎧⎨⎩ −Δzk + ĉzk = Ldk

zk
∣∣
ΓD

= 0,
∂zk
∂ν

+ α̂zk
∣∣
ΓN

= 0,

◦ uk+1 = uk + αkdk, where αk = −〈rk, zk〉S
〈zk, zk〉S

,

◦ rk+1 = rk + αkzk,

◦ dk+1 = −rk+1 + βkdk, where βk =
〈rk+1, zk〉L
〈zk, zk〉S

.

The following theorem shows that the assumptions on the differential equation (3.3)

ensure that the assumptions on the abstract operator equation (2.29) hold.

Theorem 3.3. Let problem (3.3) satisfy Assumptions 3.1. Then the PCG Algorithm

3.2 converges superlinearly, i.e. for all k ∈ N

(‖ek‖S
‖e0‖S

)1/k

≤ 2

k

k∑
i=1

|λi(QS)| k→∞−−−→ 0, (3.10)

where λi(QS) are the ordered eigenvalues of the operator QS.

The proof can be found in [9, Cor. 1] for Dirichlet problems and in [34, Thm. 4.1]

for mixed problems.

3.1.2 FEM discretization and mesh independence

Now we consider finite element discretizations of problem (3.3). Let HS be de-

fined as in (3.8) and let Vh = span{ϕ1, ϕ2, . . . , ϕn} ⊂ HS be a given FEM sub-

space. The FEM solution uh ∈ Vh of equation (3.3) in Vh is uh =
∑n

i=1 ciϕi, where
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c = (c1, c2 . . . , cn) ∈ C
n is the solution of the n× n system

Lhc = gh, (3.11)

where

(Lh)i,j =

∫
Ω

(
∇ϕi∇ϕj + (b · ∇ϕj)ϕi + cϕiϕj

)
dx+

∫
ΓN

αϕiϕj dσ

and

(gh)j =

∫
Ω

gϕj.

Let Sh and Qh be the symmetric and antisymmetric parts of Lh, that is

Sh =
Lh + L∗

h

2
, Qh = Lh − Sh.

Using the symmetric part Sh as preconditioner, equation (3.11) is replaced by

S−1
h Lhc =

(
Ih + S−1

h Qh

)
c = S−1

h gh. (3.12)

Since Theorem 3.3 holds by Assumptions 3.1, the general mesh independent result of

Theorem 2.54 and Remarks 2.55 and 2.57 imply the following

Corollary 3.4. Let problem (3.3) satisfy Assumptions 3.1. Then algorithm (2.29)

applied for (3.12) yields

(
‖ek‖Sh

‖e0‖Sh

)1/k

≤ 2

k

k∑
i=1

|λi(QS)| k→∞−−−→ 0, (3.13)

where ek = uk−uh is the error vector, λi(QS) are the ordered eigenvalues of the operator

QS, hence the sequence on the right-hand side is independent of the subspace Vh and

tends to zero.

3.1.3 Numerical experiments

The numerical superlinear convergence will be investigated for a special test prob-

lem. Symmetric part preconditioning is in focus to confirm the previously cited mesh

independent theoretical estimate and what is more, much better results are shown

than the rather pessimistic estimate (3.13). Furthermore, similar numerical results

are obtained when not the symmetric part of the operator L but another symmetric
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elliptic operator is used as preconditioner. The theory does not cover this case, but

the numerical results show much similar behaviour.

Our test problems are the following elliptic convection-diffusion equation with two

possible boundary conditions (a) and (b):⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lu ≡ −Δu+

∂u

∂x
+ cu = g

(a) u
∣∣
∂Ω

= 0

(b) u
∣∣
ΓD

= 0,
∂u

∂ν
= 0.

(3.14)

This special model problem has the following properties:

(i) Ω = [0, 1]× [0, 1] is the unit square. We have the boundary portions

(a) ΓD = ∂Ω;

(b) ΓD = {(x, y) ∈ ∂Ω : x = 0 or x = 1};

(ii) b = (1, 0), c ≥ 0 is a constant;

(iii) g is a polynomial.

It is easy to verify that Assumptions 3.1 for the general problem are satisfied.

Numerous experiments have been performed in connection with the test problems.

The vector b = (1, 0) is fixed, but in the last part of this subsection convection-

dominated equations will be considered, in that case b = (η, 0), η � 1. Denoting by

cL the constant c ≥ 0 in operator L and cS in operator S, the focus is on the superlinear

convergence property of the two test problems. If the symmetric part of L is used for

preconditioning, then cL = cS (since ĉ = c ≡ cL). The case of different constants in

the operator L and S is also investigated.

The following notation will be used throughout this subsection for the quotient of

the error vectors according to the left-hand side of estimate (3.13) in Corollary 3.4:

qk :=
‖ek‖Sh

‖e0‖Sh

, Qk :=

(
‖ek‖Sh

‖e0‖Sh

)1/k

.

Experiment 1 In the first set of experiments equation (3.14) has been considered with

boundary conditions (a) and (b), cL = cS = 1.

For h = 1/4 the results are much better compared with the others, which must have

been caused by the very few points on the grid. The numbers in each column tend to

zero which shows the superlinear convergence for every mesh parameter h. Considering
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the rows, the numbers increase but the growth rate becomes slower, which is enough

for a numerical evidence of the mesh independence.

Tab. 3.1: Values of Qk, boundary conditions (a).

1/h
Itr. 4 8 16 32 64 128 256

1 0.06127 0.07448 0.07802 0.07892 0.07914 0.07920 0.07921
2 0.04978 0.06510 0.06904 0.07004 0.07029 0.07035 0.07037
3 0.03809 0.05820 0.06291 0.06410 0.06440 0.06447 0.06449
4 0.03332 0.05195 0.05761 0.05903 0.05939 0.05948 0.05950
5 0.02904 0.04618 0.05277 0.05443 0.05485 0.05495 0.05498
6 0.02555 0.04156 0.04843 0.05034 0.05082 0.05094 0.05097
7 0.01888 0.03957 0.04461 0.04671 0.04726 0.04739 0.04743
8 0.01778 0.03922 0.04148 0.04352 0.04412 0.04427 0.04431
9 0.01958 0.03784 0.03981 0.04073 0.04135 0.04173 0.04377

The results for the mixed problem in Table 3.2 are similar to the previous, simpler

problem in Table 3.1.

Tab. 3.2: Values of Qk, boundary conditions (b)

1/h
Itr. 4 8 16 32 64 128 256

1 0.08893 0.09945 0.10219 0.10289 0.10306 0.10311 0.10312
2 0.07836 0.09024 0.09317 0.09390 0.09409 0.09413 0.09414
3 0.07105 0.08428 0.08753 0.08835 0.08855 0.08860 0.08862
4 0.06726 0.07962 0.08292 0.08375 0.08397 0.08401 0.08403
5 0.06047 0.07567 0.07911 0.07997 0.08019 0.08025 0.08026
6 0.04935 0.07062 0.07493 0.07597 0.07623 0.07630 0.07632
7 0.04367 0.06431 0.06990 0.07125 0.07159 0.07167 0.07170
8 0.03924 0.05828 0.06478 0.06639 0.06679 0.06690 0.06692
9 0.03441 0.05436 0.06057 0.06223 0.06265 0.06276 0.06279

An important question here is the relationship between these numbers and the

right-hand side of the estimates in (3.10) and (3.13). To answer this question, the

eigenvalues of the operator QS have to be determined. It follows from the divergence

theorem that∫
Ω

(b·∇u)v = −
∫
Ω

u(b·∇v)−
∫
Ω

(divb)uv+
∫
ΓN

(b·ν)uv dσ
(
u, v ∈ H1

D(Ω)
)
, (3.15)

but in our case divb = 0 and 0 = (1, 0) · (0,±1) = b · ν on ΓN . Considering this

equation and the definition of the operator QS : H1
D(Ω) → H1

D(Ω) in equation (3.9),
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QS can be written as

〈QSu, v〉H1
D
=

∫
Ω

(b · ∇u)v ∀ u, v ∈ H1
D(Ω). (3.16)

The eigenvalue problem for QS can be formulated in the following way:

QSu = λu

u
∣∣
ΓD

= 0

⎫⎬⎭⇐⇒

⎧⎨⎩ 〈QSu, v〉H1
D
= λ 〈u, v〉H1

D
∀v ∈ H1

D(Ω)

u
∣∣
ΓD

= 0.
(3.17)

Transforming the first equation on the right-hand side and replacing λ by 1/μ we get

0 =

∫
Ω

(−Δu− μ (b · ∇u) + cu) v +

∫
ΓN

∂u

∂ν
v ∀ v ∈ H1

D(Ω). (3.18)

We have H1
0 (Ω) ⊂ H1

D(Ω), hence the eigenvalue problem has the form in the cases (a)

and (b)

−Δu− μ
∂u

∂x
+ cu = 0

u
∣∣
∂Ω

= 0;

⎫⎬⎭ (3.19)

and

−Δu− μ
∂u

∂x
+ cu = 0

u
∣∣
ΓD

= 0,
∂u

∂ν

∣∣
ΓN

= 0,

⎫⎪⎬⎪⎭ (3.20)

respectively. Let us consider the second problem for instance. We have to find a nonzero

function u and some number μ which satisfy equation (3.20) and the two additional

boundary conditions. Following the way of calculation for a similar problem in [45,

Sec. 2], let us consider an auxiliary equation instead of solving our problem directly:

−Δv − μ
∂v

∂x
+ cv = δ(μ)v (3.21)

with the same boundary conditions as in equation (3.20). The eigenfunctions of this

problem are also the eigenfunctions for the original problem (3.20) and the values of μ

are computable by solving the equation δ(μ) = 0. It is easy to verify that the functions

vjk(x, y) = exp
(
−μ

2
x
)
sin(jπx) cos(kπy)

(
j ∈ N

+, k ∈ N
)

are non-zero and satisfy the boundary conditions and equation (3.21) as well with the

corresponding numbers

δjk(μ) =
(
j2 + k2

)
π2 +

μ2

4
+ c.
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The other problem (3.19) with respect to the eigenvalue problem for test problem (a)

can be solved in the same way, the functions and δ’s are

vjk(x, y) = exp
(
−μ

2
x
)
sin(jπx) sin(kπy)

(
j, k ∈ N

+
)

and

δjk(μ) =
(
j2 + k2

)
π2 +

μ2

4
+ c

which are formally the same as the previous ones, but the indices are different. Solving

equation δ(μ) = 0 and replacing μ by 1/λ, the eigenvalues of QS are

λjk = ± i

2
√

(k2 + j2) π2 + c

where j, k �= 0 for problem (a) and j �= 0 for problem (b). Note that the eigenvalues

are purely imaginary and accumulate in the origin. Now we can compare the values of

Qk and the upper bound provided by the estimate in Corollary 3.4.

Tab. 3.3: Comparison between the values of Qk and estimate (3.13)

problem (a) problem (b) 2
k

k∑
i=1

|λi(QS)|
Itr. 64 128 256 64 128 256 (a) (b)

1 0.0791 0.0792 0.0792 0.1031 0.1031 0.1031 0.2196 0.3033
2 0.0703 0.0704 0.0704 0.0941 0.0941 0.0941 0.2196 0.3033
3 0.0644 0.0645 0.0645 0.0886 0.0886 0.0886 0.1934 0.2754
4 0.0594 0.0595 0.0595 0.0840 0.0840 0.0840 0.1803 0.2615
5 0.0549 0.0550 0.0550 0.0802 0.0803 0.0803 0.1724 0.2406
6 0.0508 0.0509 0.0510 0.0762 0.0763 0.0763 0.1671 0.2267
7 0.0473 0.0474 0.0474 0.0716 0.0717 0.0717 0.1592 0.2144
8 0.0441 0.0443 0.0443 0.0668 0.0669 0.0669 0.1533 0.2053
9 0.0414 0.0417 0.0438 0.0627 0.0628 0.0628 0.1474 0.1981

Table 3.3 shows that the computational results are approximately three times better

than the predicted theoretical estimate in both cases.

Experiment 2 (cS �= 1 = cL) Turning one’s attention to preconditioning with not the

symmetric part of L, i.e. cS �= cL, surprisingly similar results are shown. In this case the

preconditioner is different from the one the theorems are about. The surprise is that

nearly the same convergence results are shown with using the GCG-LS(0) algorithm

(which now does not coincide with the full version), although the conditions for the

convergence theorems are not satisfied.
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Tab. 3.4: Values of Qk boundary conditions (b), cS �= 1 = cL.

1/h=32 1/h=128
Itr. cS = 0 cS = 0.5 cS = 1.5 cS = 5 cS = 0 cS = 0.5 cS = 1.5 cS = 5

1 0.1032 0.1023 0.1047 0.1331 0.1034 0.1025 0.1049 0.1332
2 0.0940 0.0939 0.0939 0.1160 0.0943 0.0942 0.0941 0.1162
3 0.0924 0.0897 0.0888 0.1005 0.0926 0.0900 0.0890 0.1008
4 0.0911 0.0856 0.0847 0.0923 0.0914 0.0858 0.0849 0.0923
5 0.0897 0.0845 0.0833 0.0988 0.0899 0.0847 0.0835 0.0985
6 0.0937 0.0857 0.0846 0.0989 0.0939 0.0860 0.0848 0.0990
7 0.0945 0.0869 0.0860 0.0967 0.0947 0.0871 0.0862 0.0968
8 0.0926 0.0879 0.0866 0.0902 0.0929 0.0881 0.0868 0.0906
9 0.0945 0.0872 0.0865 0.0896 0.0948 0.0875 0.0868 0.0896

The results show that the superlinear convergence is not realized during 8-9 iter-

ations, but the numbers are very close to that rate, even when cS is large. Let us

solve problem (b) numerically and set cL = 1. The case cS = 1 has been investigated

already. Table 3.4 shows the results of numerical computations for several other con-

stants cS. For a fixed value of cS one can also see the mesh independence by comparing

the numbers in the appropriate columns.

Experiment 3 (cS �= 0 = cL) The same result is shown in Table 3.5, when the roles

of c has been transposed, i.e. cL = 0 and cS varies. In this case there is no zeroth-

order term in the operator L, but this term has been put with some constant cS in S.

The constant cS can be negative and for this case the results are similar as columns

for cS = ±0.5 show. When negative cS is used, then the coercivity condition (iii) in

Assumptions 3.1 is not satisfied.

Tab. 3.5: Values of Qk boundary conditions (b), cS �= 0 = cL.

1/h=32 1/h=128
Itr. cS = −1

2
cS = 1

2
cS = 1 cS = 5 cS = −1

2
cS = 1

2
cS = 1 cS = 5

1 0.1072 0.1100 0.1132 0.1551 0.1075 0.1102 0.1134 0.1552
2 0.0986 0.0985 0.0987 0.1383 0.0989 0.0987 0.0990 0.1384
3 0.0945 0.0933 0.0944 0.1224 0.0948 0.0936 0.0946 0.1226
4 0.0900 0.0891 0.0938 0.1286 0.0903 0.0893 0.0940 0.1286
5 0.0890 0.0876 0.0929 0.1393 0.0892 0.0878 0.0931 0.1396
6 0.0908 0.0894 0.0956 0.1302 0.0910 0.0897 0.0958 0.1304
7 0.0919 0.0910 0.0984 0.1226 0.0921 0.0912 0.0987 0.1229
8 0.0925 0.0910 0.0970 0.1256 0.0928 0.0912 0.0972 0.1258
9 0.0919 0.0909 0.0968 0.1275 0.0922 0.0912 0.0971 0.1280

Experiment 4 Not every symmetric operator has the same good property. The pur-
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pose of this experiment is to prove the importance of the required boundary conditions

of S with respect to the given operator L. Let us consider equation (3.14) with bound-

ary conditions (b). Let S be the symmetric part of L, but with the different boundary

conditions (a). The values of qk in Table 3.6 show that the algorithm does not even

converge in this case, as theoretical results for equivalent operators predicted in [46].

The reason is that S and L must have Dirichlet boundary conditions on the same por-

tion of the boundary (cf. [46, 31]) and this is not realized in this case. The norm of the

error vector does not converge to zero, this procedure is useless.

Tab. 3.6: Values of qk, boundary conditions (b) in L, boundary conditions (a) in S

1/h
Itr. 4 8 16 32 64 128

1 0.8338 0.8064 0.7989 0.7970 0.7965 0.7964
2 0.8321 0.8038 0.7961 0.7941 0.7936 0.7934
3 0.8321 0.8038 0.7960 0.7940 0.7935 0.7934
4 0.8321 0.8038 0.7960 0.7940 0.7935 0.7934
5 0.8321 0.8038 0.7960 0.7940 0.7935 0.7934

Experiment 5 (b = (η, 0)) Finally problems with large convection term are consid-

ered. In the previous experiments only 8-10 iterations were needed to reach a pre-

scribed accuracy, say ‖e9‖Sh
≤ 10−13. The number of the required iterations for larger

η grows. Let us fix cL = cS = 1 and run the algorithm with convection parameter

η = (1), 10, 20, . . . , 50.

Tab. 3.7: Values of Qk, boundary conditions (b), η = 10

1/h
Itr. 4 8 16 32 64 128

1 0.6047 0.6463 0.6562 0.6587 0.6593 0.6594
2 0.5742 0.6202 0.6309 0.6335 0.6342 0.6344
3 0.5316 0.5848 0.5965 0.5994 0.6001 0.6002

14 0.1859 0.3726 0.3978 0.4118 0.4160 0.4171
15 0.0983 0.3676 0.3898 0.3952 0.3993 0.4005
16 0.3612 0.3890 0.3846 0.3864 0.3873

23 0.2923 0.3482 0.3508 0.3531 0.3535
24 0.2840 0.3411 0.3489 0.3437 0.3445
25 0.3361 0.3474 0.3408 0.3472
26 0.3302 0.3421 0.3481 0.3585
27 0.3468 0.3575 0.3591
28 0.3570 0.3598 0.3544

See Table 3.7 for the numerical results when the convection term η is larger. The
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required number of iterations rapidly grows, but the superlinear convergence property

still holds. If the accuracy is fixed to 10−8, then the number of needed iterations

is shown in Table 3.8 for different values of b = (η, 0) and mesh parameters h. If

we set aside from the coarse mesh parameters h−1 ≤ 8, the other partitions show

similar behavior for large values of η, as it turns out from Table 3.8. Considering the

rows for h−1 = 32, 64, 128 and 256, the number of iterations grows together, i.e. the

mesh independence property is also valid. Nevertheless, for problems with large η the

required number of iterations is also large and the problem might be handled with

proper modifications this algorithm, such as using a mixed formulation or involving

coefficients that only vary on boundary layers.

Tab. 3.8: Required number of iterations, ‖ek‖Sh
≤ 10

−8.

η
1/h 1 10 20 30 40 50 100 500

8 7 17 24 30 37 40 62 119
16 7 18 27 36 44 51 91 338
32 7 18 29 38 46 55 99 415
64 7 18 29 39 46 55 99 430

128 7 18 29 39 46 55 99 439
256 7 18 29 40 46 55 99 444

Summing up, the conjugate gradient method with symmetric and symmetric part

preconditioning has proven an efficient algorithm for convection-diffusion problems with

small or medium convection term.

3.2 Equations with nonhomogeneous mixed boundary conditions

In this section the PCG method is applied to solving convection-diffusion equations

with nonhomogeneous mixed boundary conditions. Using the approach of equivalent

and compact-equivalent operators in Hilbert space, it is shown that for a wide class of

elliptic problems the superlinear convergence of the obtained preconditioned CGM is

mesh independent under FEM discretization.

The theory of compact-equivalent operators has been summarized in Section 2.3.

This was based on [10], where the CGN algorithm was applied and superlinear conver-

gence estimate was obtained for elliptic equations with homogeneous mixed boundary

conditions. Here we complete those results for convection-diffusion equations with non-

homogeneous mixed boundary conditions. In this case, the main difficulty arises from

the proper definition of the corresponding unbounded operator, since including the

boundary conditions in the domain of L results that the domain of the operator does
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not form a subspace in H. Hence it should consist of a pair of operators defined on

the domain itself and on the Neumann boundary. Here the CGN method will be used

instead of the GCG-LS algorithm, since the compact-equivalence property will be used

and we can get rid of the restrictive normality condition of Section 2.4.

3.2.1 Coercive elliptic differential operators

Let us consider the elliptic partial differential equation

− div(A ∇u) + b · ∇u+ cu = g
∂u

∂νA
+ αu

∣∣
ΓN

= γ

u
∣∣
ΓD

= 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.22)

where
∂u

∂νA
= Aν · ∇u

is the weighted form of the normal derivative. We assume that the following assump-

tions are satisfied:

Assumptions 3.5. Suppose that

(i) Ω ⊂ R
d is a bounded piecewise C1 domain; ΓD,ΓN are disjoint open measurable

subparts of ∂Ω such that ∂Ω = ΓD ∪ ΓN ;

(ii) A ∈ L∞(Ω,Rd×d) and for all x ∈ Ω the matrix A(x) is symmetric; further,

b ∈ W 1,∞(Ω)d, c ∈ L∞(Ω), α ∈ L∞(ΓN);

(iii) we have the coercivity properties

∃ p > 0 such that A(x)ξ · ξ ≥ p |ξ|2 ∀ x ∈ Ω, ξ ∈ R
d (3.23)

ĉ := c− 1

2
divb ≥ 0 in Ω, α̂ := α +

1

2
(b · ν) ≥ 0 on ΓN ; (3.24)

(iv) either ΓD �= ∅, or ĉ or α̂ has a positive lower bound.

The definition of the operator L which corresponds to equation (3.22) has to be

understood as a pair of operators: one acts on Ω and the other one acts on the Neumann

boundary. Formally we have

L ≡
(
M

P

)
, L

(
u

η

)
=

(
Mu

Pη

)
=

⎛⎝− div(A ∇u) + b · ∇u+ cu
∂η

∂νA
+ αη

∣∣
ΓN

⎞⎠ . (3.25)
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Let us define a symmetric elliptic operator on the same domain in an analogous way:

S ≡
(
N

R

)
, S

(
u

η

)
=

(
Nu

Rη

)
=

⎛⎝− div(G ∇u) + σu
∂η

∂νG
+ βη

∣∣
ΓN

⎞⎠ (3.26)

satisfying similar assumptions as of L:

Assumptions 3.6. Suppose that

(i) substituting G for A, Ω, ΓD, ΓN and G satisfy Assumptions 3.5;

(ii) σ ∈ L∞(Ω), σ ≥ 0, β ∈ L∞(ΓN), β ≥ 0; further, if ΓD �= ∅, then σ or β has a

positive lower bound.

If γ = 0 in equation (3.22) then under Assumptions 3.5-3.6 the operator L is S-

bounded and S-coercive, which has been proved in [11, Prop. 3.9]. Here we extend

the scope of that result to the nonhomogeneous case. Let us consider the differential

equation (3.22) again. We are interested in solving the analogous operator equation

L

(
u

u
∣∣
ΓN

)
=

(
g

γ

)
, (3.27)

which is the appropriately modified version of the operator equation (2.12). Now we

would like to apply the framework developed in Section 2.3 for the elliptic operator L.

The Hilbert space H is defined as the product space

H = L2(Ω)× L2(ΓN)

endowed with the inner product〈(
u

η

)
,

(
v

ζ

)〉
H

:= 〈u, v〉L2(Ω) + 〈η, ζ〉L2(ΓN ) .

We define the energy space

HS :=

{(
u

u
∣∣
ΓN

)
: u ∈ H1(Ω), u

∣∣
ΓD

= 0

}
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with the inner product〈(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

=

〈
S

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
H

=

〈(
Nu

Ru
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
H

= 〈Nu, v〉L2(Ω) +
〈
Ru
∣∣
ΓN

, v
∣∣
ΓN

〉
L2(ΓN )

=

[∫
Ω

(G ∇u · ∇v + σuv)−
∫
ΓN

∂u

∂νG
v

]
+

∫
ΓN

(
∂u

∂νG
+ βu

)
v

=

∫
Ω

(G ∇u · ∇v + σuv) +

∫
ΓN

βuv.

(3.28)

Proposition 3.7. If Assumptions 3.5-3.6 hold, then the operator L is S-bounded and

S-coercive in H, i.e. L ∈ BCS (L
2(Ω)× L2(ΓN)).

Proof. Following [11], we have to verify the properties listed in Definition 2.37. The

domain of L is

D(L) :=

{(
u

u
∣∣
ΓN

)
: u ∈ H2(Ω), u

∣∣
ΓD

= 0

}
,

D(L) ⊂ HS and D(L) is dense in HS in the S-inner product. Since the trace of an H2-

function on the Neumann boundary belongs to L2(ΓN), we have L : D(L) ⊂ H → H,

i.e. L is well-defined on H. Using Green’s formula we have〈
L

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
H

=

〈(
Mu

Pu
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
H

= 〈Mu, v〉L2(Ω) +
〈
Pu
∣∣
ΓN

, v
∣∣
ΓN

〉
L2(ΓN )

=

∫
Ω

(A ∇u · ∇v + (b · ∇u) v + cuv) +

∫
ΓN

αuv.

(3.29)

Using this, properties 2. and 3. in Definition 2.37 have to be verified, but since formally

we have the same expressions for the bilinear form of L and for the S-norm as in the

homogeneous case, from here the proof goes exactly the same way as in [11, Prop. 3.9],

so we omit the further details.

It follows from Green’s formula that the weak solution of (3.27) described in Defi-

nition 2.42 is nothing else than the weak solution of the PDE (3.22) in the usual sense,

i.e. for a given pair of functions g ∈ L2(Ω) and γ ∈ L2(ΓN) we have〈
LS

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

=

〈(
g

γ

)
,

(
v

v
∣∣
ΓN

)〉
H

((
v

v
∣∣
ΓN

)
∈ HS

)
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if and only if〈
LS

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

=

∫
Ω

(A ∇u · ∇v + (b · ∇u) v + cuv) +

∫
ΓN

αuv

=

∫
Ω

gv +

∫
ΓN

γv = 〈g, v〉L2(Ω) +
〈
γ, v

∣∣
ΓN

〉
L2(ΓN )

=

〈(
g

γ

)
,

(
v

v
∣∣
ΓN

)〉
H

,

(3.30)

that is the weak solution is the uniquely existing solution of∫
Ω

(A ∇u · ∇v + (b · ∇u) v + cuv) +

∫
ΓN

αuv

=

∫
Ω

gv +

∫
ΓN

γv
(
v ∈ H1(Ω), v

∣∣
ΓD

= 0
)
. (3.31)

Remark 3.8. The energy space HS can be identified with the space

H1
D(Ω) =

{
u ∈ H1(Ω) : u

∣∣
ΓD

= 0
}
,

with the obvious correspondence u �→
(
u, u

∣∣
ΓN

)
, which is the usual energy space for

the homogeneous differential operator.

Consider two elliptic differential operators of the form (3.22) with homogeneous

Dirichlet boundary conditions on the same part of the boundary. Then the compact-

equivalence of these operators can be characterized as follows, see [10, Prop. 3.1].

Proposition 3.9. Elliptic differential operators satisfying Assumptions 3.5 are com-

pact-equivalent in H1
D(Ω) if and only if their principal parts coincide up to some con-

stant μ > 0.

3.2.2 Symmetric compact-equivalent preconditioners and mesh independent

superlinear convergence

Now we consider the finite element discretization of problem (3.22), where the

corresponding operator L is S-bounded and S-coercive, g ∈ L2(Ω), γ ∈ L2(ΓN). We

note that the finite element method fits naturally in the framework developed in Section

2.3, since we are looking for the weak solution described in Definition 2.42, which is

nothing else than the variational form (3.31) of equation (3.22).

Let

Vh = span{ϕ1, ϕ2, . . . , ϕn} ⊂ H1
D(Ω)
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be a given n-dimensional subspace. The finite element solution uh ∈ Vh is uh =∑n
j=1 ciϕj, where c = (c1, c2, . . . , cn) ∈ R

n is the solution of the linear system

Lhc = dh, (3.32)

where

(Lh)ij =

∫
Ω

(A ∇ϕi · ∇ϕj + (b · ∇ϕj)ϕi + cϕiϕj) +

∫
ΓN

αϕiϕj (3.33)

and

(dh)j =

∫
Ω

gϕj +

∫
ΓN

γϕj. (3.34)

Let us take the symmetric operator described in Definition 2.37 and introduce the

stiffness matrix of S in HS

(Sh)ij = 〈ϕi, ϕj〉S =

∫
Ω

(G ∇ϕi · ∇ϕj + σϕiϕj) +

∫
ΓN

βϕiϕj.

To solve the preconditioned system

S−1
h Lhc = S−1

h dh (3.35)

one can turn to the conjugate gradient methods in Section 2.2 using the Sh-inner

product 〈·, ·〉
Sh

.

A sometimes good strategy to solve (3.32) is to choose the preconditioner as the

symmetric part of Lh, as it has done in the previous subsection for similar equations

with homogeneous boundary conditions. Let us define

Sh :=
Lh + LT

h

2
, Qh :=

Lh − LT
h

2
,

the symmetric and antisymmetric parts of Lh and chose the matrix Sh as preconditioner

for Lh. In this case the preconditioned equation (3.35) becomes

(
Ih + S−1

h Qh

)
c = S−1

h dh, (3.36)

where the matrix S−1
h Qh is antisymmetric in 〈·, ·〉

Sh
, thus the GCG-LS algorithm 2.28

coincides with the truncated GCG-LS(0) algorithm 2.29. Now we have to define an

appropriate elliptic operator S such that the stiffness matrix Sh becomes the symmetric
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part of Lh, which belongs to the operator L defined in (3.22). Just as in Subsection

3.1 the symmetric part has to be defined in weak sense (cf. Subsection 2.4.2).

For the given elliptic equation (3.22), its symmetric part can be constructed as

S

(
u

u
∣∣
ΓN

)
≡

⎛⎝− div(A ∇u) + ĉu
∂u

∂νA
+ α̂u

∣∣
ΓN

⎞⎠ (3.37)

where

ĉ = c− 1

2
divb, α̂ = α +

1

2
(b · ν) . (3.38)

Since L satisfies Assumptions 3.5, it is easy to see that S satisfies Assumptions 3.6.

The corresponding S-inner product on HS is〈(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

=

∫
Ω

(A ∇u · ∇v + ĉuv) +

∫
ΓN

α̂uv. (3.39)

Using the divergence theorem and Green’s formula, it is easy to check that

〈(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

=
1

2

[〈
LS

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

+

〈(
u

u
∣∣
ΓN

)
, LS

(
v

v
∣∣
ΓN

)〉
S

]
, (3.40)

that is the corresponding matrix Sh is indeed the symmetric part of Lh, hence the

operator LS can be decomposed as

LS = I +QS,

where I is the identity and QS is an antisymmetric operator on HS defined by〈
QS

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

=

=
1

2

[〈
LS

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

−
〈(

u

u
∣∣
ΓN

)
, LS

(
v

v
∣∣
ΓN

)〉
S

]

=
1

2

∫
Ω

(
(b · ∇u)v − u(b · ∇v)

)
. (3.41)

Consider again the differential equation (3.22) with the corresponding operator L in

(3.25) and preconditioner S in (3.26) and assume that A = G, then it follows from

Proposition 3.9 that L and S are compact-equivalent with μ = 1, thus (2.19) holds.
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Now let us consider the preconditioned equation (3.36), when Lh and Sh now come

from the elliptic operators L and S, Qh = Lh − Sh and now S is not necessarily the

symmetric part of L, i.e. S has general coefficients as in (3.26). In this case the operator

QS is defined as

〈
QS

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

=

〈
LS

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

−
〈(

u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

=

∫
Ω

(
(b · ∇u)v + (c− σ)uv

)
+

∫
ΓN

(α− β)uv, (3.42)

which coincides with (3.41) if σ = ĉ and β = α̂, where these coefficients are given in

(3.38).

When symmetric part preconditioning is used as in Subsection 2.4.2, i.e. when the

preconditioner S is defined as in (3.37), then the antisymmetric part QS ∈ B(HS) –

which is given in (3.41) – is compact normal operator and the matrix S−1
h Qh is Sh-

normal with respect to 〈·, ·〉
Sh

. In this case the superlinear convergence estimate (3.13)

holds, and the GCG-LS method reduces to the truncated GCG-LS(0) algorithm 2.29.

When S is not the symmetric part of L, then S is given as in (3.26) and QS ∈ B(HS)

is defined as (3.42). Now the conditions of Theorem 2.44 are satisfied, thus the CGN

algorithm 2.33 provides a similar mesh independent superlinear convergence result

(with appropriately modified QS).

Corollary 3.10. With Assumptions 3.5 and 3.6 and A = G, the CGN algorithm 2.33

for system (3.36) yields

(
‖rk‖Sh

‖r0‖Sh

)1/k

≤ 2

m2

(
1

k

k∑
i=1

(
|λi(Q

∗
S +QS)|+ λi(Q

∗
SQS)

)) k→∞−−−→ 0,

where m > 0 comes from the S-coercivity of L in Proposition 3.7.

3.2.3 Numerical experiments

We would like to illustrate the obtained mesh independent superlinear convergence

results with a simple numerical example using symmetric part preconditioning. The

test problem is the following elliptic convection-diffusion equation

−Δu+
∂u

∂x
+ cu = g

u
∣∣
ΓD

= 0,
∂u

∂ν
+ αu

∣∣
ΓN

= γ.

⎫⎪⎬⎪⎭ (3.43)

The parameters of this special model problem has the following properties:
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(i) Ω = [0, 1] × [0, 1] is the unit square. The homogeneous Dirichlet boundary con-

dition is given on ΓD = {(x, y) ∈ ∂Ω : x = 0 or x = 1};

(ii) b = (1, 0), c = 1 and α = 1 are constants;

(iii) g and γ are polynomials.

One can verify that Assumptions 3.5 for the general problem are satisfied. Using (3.37)

the coefficients ĉ, α̂ in operator S can be readily calculated. Owing to the symmetric

part preconditioning strategy, the truncated GCG-LS(0) algorithm 2.29 can be used

instead of the full algorithm. The superlinear convergence of the algorithm is provided

by the compact-equivalence of L and S with μ = 1. Since we have the decomposition

(2.19) with a compact antisymmetric operator QS, the truncated algorithm yields the

mesh independent convergence estimate

(
‖ek‖Sh

‖e0‖Sh

)1/k

≤ 2

k

k∑
j=1

|λj(QS)| k→∞−−−→ 0, (3.44)

since m = 1 and the Lh-norm equals to the Sh-norm, as in (3.13).

Remark 3.11. Now Algorithm 2.29 is applied for a system with A = S−1
h Lh, thus r0

is the solution of equation Shr0 = Lhu0 − b, similarly the calculation of the vector

zk := Adk inside the loop leads to the solution of the auxiliary problem Shzk = Lhdk.

Considering the meaning of the matrices Sh and Lh, the vectors r0 and dk are the finite

element solution of the problems⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δr0 + ĉr0 = −Δu0 + b · ∇u0 + cu0 − g

∂r0
∂ν

+ α̂r0
∣∣
ΓN

=
∂u0

∂ν
+ αu0

∣∣
ΓN

− γ

r0
∣∣
ΓD

= 0

(3.45)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δzk + ĉzk = −Δdk + b · ∇dk + cdk

∂zk
∂ν

+ α̂zk
∣∣
ΓN

=
∂dk
∂ν

+ αdk
∣∣
ΓN

zk
∣∣
ΓD

= 0,

(3.46)

respectively.

In the numerical experiment piecewise linear elements were used, the stopping cri-

terion was ‖ek‖Sh
≤ 10−13. In Table 3.9 Qk denotes the quotient of the error vectors
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according to the left-hand side of estimate (3.44):

Qk :=

(
‖ek‖Sh

‖e0‖Sh

)1/k

.

As expected, the numbers in Table 3.9 shows that the convergence is superlinear, i.e.

the sequence Qk tends to zero for any value of the mesh parameter.

Tab. 3.9: Values of Qk for equation (3.43).

1/h
Itr. 8 16 32 64 128 256

1 0.0685 0.0706 0.0711 0.0713 0.0713 0.0713
2 0.0761 0.0786 0.0793 0.0794 0.0795 0.0795
3 0.0724 0.0752 0.0759 0.0760 0.0761 0.0761
4 0.0707 0.0738 0.0746 0.0748 0.0748 0.0748
5 0.0667 0.0698 0.0706 0.0708 0.0709 0.0709
6 0.0634 0.0670 0.0679 0.0682 0.0682 0.0682
7 0.0585 0.0630 0.0641 0.0644 0.0644 0.0644
8 0.0543 0.0597 0.0610 0.0613 0.0614 0.0614
9 0.0508 0.0562 0.0577 0.0580 0.0581 0.0582

10 0.0490 0.0542 0.0556 0.0560 0.0561 0.0561
11 0.0544 0.0551 0.0565 0.0590

The numbers in each row show the boundedness of Qk as the parameter h increases,

which yields the desired mesh independent convergence property. Thus using compact-

equivalent preconditioner, the superlinear convergence rate of Algorithm 2.29 is also

valid for problems with nonhomogeneous mixed boundary conditions.

When the convection term b = (b1, b2) is large, then the mesh independent super-

linear convergence property still holds, although the number of required iterations to

reach the prescribed tolerance level increases rapidly. Table 3.10 shows these results

for b = (η, 0).

Tab. 3.10: Required number of iterations, ‖ek‖Sh
≤ 10

−8.

η
1/h 1 10 20 30 40 50 100 500

8 7 17 23 30 37 40 63 127
16 7 18 27 36 44 53 92 367
32 7 18 28 37 47 56 101 438
64 7 18 28 37 47 57 103 460

128 7 18 29 37 47 58 105 468
256 7 18 30 39 49 58 107 475
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The results are very similar to Table 3.8, which shows the iteration numbers for

the homogeneous case. Altogether symmetric part preconditioning provides a good

approximation of L for mildly convection-dominated problems, further comments on

singularly perturbed problems can be found in [10, Sec. 5] and [11, Sec. 9].

3.3 Finite difference approximation for equations with Dirichlet

boundary conditions

In this section the goal is to study the same problem in the case of finite differ-

ence discretizations, i.e. to study the superlinear convergence of the preconditioned CG

iteration under equivalent operator preconditioning and to find mesh independent be-

haviour. Here an important difference arises between FEM and FDM discretizations,

pointed out already in [21]. Namely, the FDM lacks the organized Hilbert space back-

ground that FEM is based on, hence a case-by-case study of convergence is required for

FDM discretizations with equivalent operator preconditioning. For linear convergence

such a work has been started already in [18, 24] and extended in [21, 45, 46].

The present section aims to take a first step to verify mesh independence of super-

linear convergence, and hence a model problem with Dirichlet boundary conditions is

considered on a simple domain with a uniform FD grid. The required mesh indepen-

dent bound is proved for a certain class of coefficients, and numerical calculations show

similar behaviour for other coefficients as well.

3.3.1 Equivalent operator preconditioning

Let us consider an elliptic convection-diffusion equation

Lu ≡ −Δu+ b · ∇u+ cu = g

u
∣∣
ΓD

= 0

}
(3.47)

on a bounded domain Ω ⊂ R
d. We assume that b ∈ C1(Ω)d and c ∈ L∞(Ω); further,

there holds the usual coercivity condition

c− 1

2
divb ≥ 0. (3.48)

Here we focus on regularly perturbed problems. The coercivity condition (3.48) implies

that for all g ∈ L2(Ω) problem (3.47) has a unique weak solution in H1
0 (Ω).

The FDM discretization of (3.47) on a given grid ωh leads to a linear algebraic

system

Lhuh = gh (3.49)
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of order N for some N ∈ N. Our goal is to solve (3.49) by iteration, applying a suitable

preconditioned conjugate gradient method. The proposed preconditioner is obtained

via a symmetric preconditioning operator

Su := −Δu+ σu for u
∣∣
∂Ω

= 0, (3.50)

where σ ∈ L∞(Ω), σ ≥ 0: namely, the matrix Sh is defined as the FDM discretization

of the operator S on the same grid ωh. The preconditioned form of the discretized

system is

S−1
h Lhuh = fh ≡ S−1

h gh. (3.51)

Here we are interested in the superlinear convergence property of the PCG Algorithm

2.51, where the operators L, S are replaced by the matrices Lh, Sh, respectively. Denot-

ing by u∗
h the unique solution of (3.49), we study the error vector ek = uk −u∗

h and use

the norm ‖vh‖2Lh
= Re 〈Lhvh, vh〉. The related results are formulated by considering the

preconditioned matrix as a perturbation of the identity (see (2.7)). Let us decompose

our operators as

L = S +Q,

that is, letting γ = c− σ,

Qu = b · ∇u+ γu. (3.52)

Further, let the matrix Qh be defined as the FDM discretization of the operator Q on

the same grid ωh as for L in (3.49). Then Lh = Sh + Qh, hence (3.51) can be written

as (
Ih + S−1

h Qh

)
uh = fh ≡ S−1

h gh, (3.53)

where Ih is the corresponding identity matrix. Let us define

� :=
1∥∥L−1

h Sh

∥∥
Sh

≥ min
vh �=0

Re 〈Lhvh, vh〉
〈Shvh, vh〉

.

Then the following convergence result holds (cf. Proposition 2.32, and Theorem 2.53

for the analogous infinite dimensional case):

Theorem 3.12. The GCG-LS method applied for equation (3.51) yields

(
‖ek‖Lh

‖e0‖Lh

)1/k

≤ 2

�

(
1

k

k∑
i=1

∣∣λi(S
−1
h Qh)

∣∣) (k = 1, 2, . . . , N), (3.54)

where λi(S
−1
h Qh) are the ordered eigenvalues of the matrix S−1

h Qh.

This shows superlinear convergence if the eigenvalues λi(S
−1
h Qh) accumulate in
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zero. When symmetric part preconditioning is used, i.e. Sh = 1
2
(Lh + LT

h ), then the

GCG-LS(0) algorithm is applicable. Further, due to the obvious identity 〈Lhvh, vh〉 =
〈Shvh, vh〉, we have � = 1 in this case in (3.54).

In the case of FEM discretization, when Lh and Qh are the stiffness matrices of L

and Q in a FEM subspace, the analogue of the sequence (3.54) can be estimated in a

mesh uniform superlinear way (cf. Corollary 3.4). We demonstrate an analogous result

for certain finite difference discretizations. For this we need to find a sequence (εk),

where εk → 0 independently of h such that for all h > 0 the eigenvalues λi(S
−1
h Qh)

satisfy

1

k

k∑
i=1

∣∣λi(S
−1
h Qh)

∣∣ ≤ εk. (3.55)

3.3.2 A model problem and the properties of the eigenvalues

Let us consider a special case of (3.47) which has been analysed in [45] in the

context of linear convergence. The convection-diffusion problem

Lu ≡ −Δu+ b · ∇u+ cu = g

u
∣∣
ΓD

= 0

}
(3.56)

is posed on the unit square Ω := [0, 1]2 ⊂ R
2 with constant coefficients b = (b1, b2) ∈ R

2

and c ∈ R. We assume c ≥ 0, then the coercivity condition (3.48) holds. Similarly, in

the preconditioning operator

Su := −Δu+ σu for u
∣∣
∂Ω

= 0, (3.57)

we set σ ∈ R, σ ≥ 0.

Let ωh be a uniform grid on [0, 1]2, b1, b2 ≥ 0 and let us define upwind or centered

differencing for the first order and centered differencing for the second order derivatives,

respectively. The upwind scheme now coincides with the backward differencing due to

the sign conditions on b = (b1, b2). Denote by n the number of interior gridpoints in

each direction, and by h = 1/(n + 1) the grid parameter. Let Lh, Sh and Qh denote

the n2 × n2 matrices corresponding to the discretizations of L, S and Q = L − S,

respectively. Then by [45], the eigenvalues

μjm := λjm(S
−1
h Qh) (3.58)



3. Symmetric preconditioning for linear elliptic equations 62

of the preconditioned matrix S−1
h Qh satisfy

−
(
4 + σh2

)
μjm +

(
(c− σ)h2 + (b1 + b2)h

)
= −2

((
μ2
jm − μjmb1h

)1/2
cosmπh+

(
μ2
jm − μjmb2h

)1/2
cos jπh

)
(3.59)

(for j,m = 1, . . . , n) in the case of the backward differencing and

−
(
4 + σh2

)
μjm + (c− σ)h2

= −2
((

μ2
jm − b21h

2/4
)1/2

cosmπh+
(
μ2
jm − b22h

2/4
)1/2

cos jπh
)

(3.60)

(for j,m = 1, . . . , n) in the case of the centered differencing approximation of the first

order derivative.

3.3.3 Some mesh independent superlinear convergence results

Since the eigenvalues (3.58) are given with double indexing, in view of (3.55) we

wish to find a mesh independent sequence εk → 0 independently of h such that for all

h > 0
1

k2

k∑
j,m=1

|μjm| ≤ εk.

In general, the relations (3.59)-(3.60) lead to fourth order algebraic equations whose

roots cannot be handled in explicit form. In what follows, first a special class of

coefficients is considered where μjm are obtained directly and an explicit expression can

be derived for εk. Then some numerical calculations are given which show favourable

convergence rates also for other types of coefficients.

Proposition 3.13. Let us consider problem (3.56) with a convection term b = (b, b),

where b ∈ R
+ is arbitrary, and let σ := c in (3.57), i.e. S is the symmetric part

of L. Then, using either centered or backward differencing, the eigenvalues μjm :=

λjm(S
−1
h Qh) satisfy

1

k2

k∑
j,m=1

|μjm| ≤ εk (k = 1, 2, . . . , n), (3.61)

where

εk :=
2
√
2b

k2

� k+1

2 �∑
j,m=1

1√
σ + 4m2 + 4j2

k→∞−−−→ 0 (3.62)

and εk is independent of h.
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Proof. In the present case relation (3.60) turns into

−
(
4 + σh2

)
μjm = −2

(
μ2
jm − b2h2/4

)1/2
(cosmπh+ cos jπh) (3.63)

(for j,m = 1, . . . , n), whose roots are purely imaginary and satisfy

|μjm| =
bh |cosmπh+ cos jπh|√

(4 + σh2)2 − 4 (cosmπh+ cos jπh)2
. (3.64)

The numerator is at most 2bh, and in the denominator we can use the estimates

(
4 + σh2

)2 ≥ 16 + 8σh2,

(cosmπh+ cos jπh)2 ≤ 2
(
cos2 mπh+ cos2 jπh

)
= 4− 2

(
sin2mπh+ sin2 jπh

)
.

Hence we obtain

|μjm| ≤
bh√

2
(
σh2 + sin2mπh+ sin2 jπh

) . (3.65)

If 1 ≤ j,m ≤ k+1
2

≤ n+1
2

= 1
2h

, then we can use the estimate sin t ≥ (2/π)t, whence the

expression under the root becomes 2h2 (σ + 4m2 + 4j2) and we obtain

|μjm| ≤
b√

2 (σ + 4m2 + 4j2)
=: βjm. (3.66)

If j or m is greater than k+1
2

and k ≤
⌊
n+1
2

⌋
, then estimate (3.66) is still valid and

|μjm| ≤ βjm holds. Further, there exists an injective mapping (j,m) �→ (j′,m′) from

the set of index pairs I12 := {(j,m) : 1 ≤ j ≤ k+1
2
, k+1

2
< m ≤ k} to the set

I11 := {(j′,m′) : 1 ≤ m′, j′ ≤ k+1
2
} such that βjm ≤ βj′m′ (such a mapping is (j,m) �→

(j,m −
⌊
k+1
2

⌋
)). One can readily check the two other cases for the sets of indices I21

and I22, hence estimate

1

k2

k∑
j,m=1

|μjm| ≤
4

k2

� k+1

2 �∑
j,m=1

βjm

holds, which, together with (3.66), implies the required estimate. Similar argument

can be used if
⌊
n+1
2

⌋
< k ≤ n. For an arbitrary pair of indices (j,m) from one of the

index sets I12, I21 or I22, there is a corresponding index pair (j′,m′) ∈ I11 such that

|μjm| can be estimated above by βj′m′ . Since the right-hand side of (3.66) tends to 0,

and εk is constant times the arithmetic mean of this sequence, therefore εk → 0 as well.

Finally, εk is obviously independent of h.
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The case of backward differencing is similar. Relation (3.59) becomes

−
(
4 + σh2

)
μjm + 2bh = −2

(
μ2
jm − μjmbh

)1/2
(cosmπh+ cos jπh) , (3.67)

(for j,m = 1, . . . , n), whose roots are

μjm =

2bh

(
(4 + σh2)− (cm + cj)

2 ± i |cm + cj|
√
2 (σh2 + 2)− (cm + cj)

2

)
(4 + σh2)2 − 4 (cm + cj)

2 ,

where cm = cosmπh and cj = cos jπh. By elementary calculation, we have

|μjm| =
2bh

(4 + σh2)2 − 4 (cm + cj)
2

[ ((
4 + σh2

)
− (cm + cj)

2)2
+ (cm + cj)

2
(
2(σh2 + 2)− (cm + cj)

2
) ]1/2

=
2bh√

(4 + σh2)2 − 4(cm + cj)2
, (3.68)

which coincides with the trivial upper bound of (3.64), thus the proof goes on the same

way as in the centered differencing case.

Remark 3.14. The eigenvalue bound (3.66) is almost the same as the one obtained

in [9, Subsec. 3.4] for the FEM case, differing only in the constants. Hence we have

the same rate as proved there if returning to simple indices in εk. Namely, let is, js

(s ∈ N
+) denote the indices of the eigenvalues ordered as |μi1,j1| ≥ |μi2,j2 | ≥ . . . Then

there holds
1

k

k∑
s=1

|μis,js | ≤
C√
k

(k = 1, 2, . . .)

where C > 0 is independent of k.

The superlinear and the mesh independent behaviour of the arithmetic mean of∣∣λjm(S
−1
h Qh)

∣∣ in (3.61) is shown by the columns and rows of the following tables,

respectively. In the first part of Table 3.11 centered differencing is considered for a

problem in the setting of Proposition 3.13. The last columns show that the behaviour

of the eigenvalue mean is almost the same for backward differencing. Table 3.12 shows

similar results for b1 �= b2. We note that [45] suggests σ = O(b21 + b22) as an efficient

choice in S, which is in correlation with this table in the sense that a smaller σ in Table

3.12 has produced similar numerical results for b1 = 0 as a greater σ in Table 3.11 for

b1 > 0.
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Tab. 3.11: c = σ = 20, b1 = b2 = 4.

centered differencing backward differencing
1/h 1/h

Itr. 16 32 64 128 16 32 64 128

1 0.4413 0.4467 0.4482 0.4486 0.4490 0.4488 0.4487 0.4487
2 0.4413 0.4467 0.4482 0.4486 0.4490 0.4488 0.4487 0.4487
3 0.4037 0.4100 0.4117 0.4122 0.4136 0.4127 0.4124 0.4124
4 0.3849 0.3917 0.3935 0.3940 0.3960 0.3946 0.3943 0.3942
5 0.3736 0.3807 0.3826 0.3831 0.3854 0.3838 0.3834 0.3833
6 0.3661 0.3734 0.3753 0.3758 0.3783 0.3766 0.3761 0.3760
7 0.3523 0.3601 0.3622 0.3627 0.3656 0.3636 0.3631 0.3629

15 0.2903 0.3004 0.3031 0.3038 0.3090 0.3053 0.3043 0.3041
16 0.2856 0.2958 0.2986 0.2993 0.3047 0.3009 0.2999 0.2996
17 0.2798 0.2903 0.2931 0.2938 0.2995 0.2955 0.2944 0.2941

63 0.1710 0.1888 0.1936 0.1948 0.2078 0.1984 0.1960 0.1954
64 0.1698 0.1877 0.1924 0.1937 0.2069 0.1974 0.1949 0.1943
65 0.1685 0.1866 0.1914 0.1926 0.2059 0.1963 0.1939 0.1932

255 0.0676 0.1020 0.1109 0.1132 0.1436 0.1210 0.1157 0.1144
256 0.0673 0.1018 0.1107 0.1130 0.1435 0.1208 0.1155 0.1142
257 0.1016 0.1106 0.1128 0.1206 0.1153 0.1140

Tab. 3.12: c = σ = 4, b1 = 0, b2 = 4.

centered differencing backward differencing
1/h 1/h

Itr. 16 32 64 128 16 32 64 128

1 0.4033 0.4086 0.4100 0.4104 0.4103 0.4104 0.4105 0.4105
2 0.4033 0.4086 0.4100 0.4104 0.4103 0.4104 0.4105 0.4105
3 0.3577 0.3630 0.3644 0.3648 0.3662 0.3653 0.3650 0.3650
4 0.3349 0.3402 0.3417 0.3420 0.3442 0.3427 0.3423 0.3422
5 0.3198 0.3262 0.3279 0.3283 0.3296 0.3288 0.3286 0.3285
6 0.3097 0.3168 0.3187 0.3192 0.3198 0.3195 0.3194 0.3194
7 0.2948 0.3024 0.3044 0.3049 0.3056 0.3053 0.3052 0.3051

15 0.2315 0.2410 0.2435 0.2442 0.2459 0.2448 0.2445 0.2445
16 0.2265 0.2364 0.2391 0.2398 0.2413 0.2403 0.2401 0.2400
17 0.2217 0.2313 0.2340 0.2346 0.2368 0.2354 0.2350 0.2349

63 0.1271 0.1416 0.1460 0.1472 0.1542 0.1486 0.1478 0.1477
64 0.1261 0.1407 0.1451 0.1463 0.1534 0.1478 0.1469 0.1468
65 0.1251 0.1398 0.1442 0.1454 0.1526 0.1469 0.1460 0.1459

255 0.0544 0.0732 0.0805 0.0826 0.0820 0.0868 0.0839 0.0835
256 0.0542 0.0730 0.0803 0.0825 0.0819 0.0867 0.0837 0.0833
257 0.0728 0.0802 0.0823 0.0866 0.0836 0.0832



4. SYMMETRIC PRECONDITIONING FOR LINEAR ELLIPTIC

SYSTEMS

The CGM for nonsymmetric equations in Hilbert space has been studied in Section

3.1. Using the theoretical background described in Section 2.4, superlinear convergence

has been proved in Hilbert space and, based on this, mesh independence of the super-

linear estimate has been derived for FEM discretizations of elliptic Dirichlet problems.

The numerical realization of this method has been demonstrated in Section 3.1 for

mixed elliptic problems.

Here the mesh independent superlinear convergence results are extended from a

single equation to systems. First the compact normal operator approach is used for

systems with homogeneous boundary conditions (cf. [36]), then we extend the results

of Section 3.2 to systems using the operator pair technique (see [40]). An important

advantage of the proposed preconditioning method for systems is that one can define

decoupled preconditioners, hence the size of the auxiliary systems remains as small as

for a single equation, moreover, parallelization of the auxiliary systems is available.

The development and the numerical realization of an efficient parallel algorithm are

presented at the end of this chapter, based on [39].

4.1 Systems with Dirichlet boundary conditions

4.1.1 The problem and the approach

Let us consider systems of the form

− div(Ki ∇ui) + bi · ∇ui +
�∑

j=1

Vijuj = gi

ui

∣∣
∂Ω

= 0

⎫⎪⎬⎪⎭ (i = 1, . . . , �) (4.1)

satisfying the following assumptions:

Assumptions 4.1. Suppose that

(i) the bounded domain Ω ⊂ R
d is C2-diffeomorphic to a convex domain;

(ii) for all i, j = 1, . . . , � the functions Ki ∈ C1(Ω), Vij ∈ L∞(Ω) and bi ∈ C1(Ω)d;



4. Symmetric preconditioning for linear elliptic systems 67

(iii) there exists m > 0 such that Ki ≥ m holds for all i = 1, . . . , �;

(iv) letting V = {Vij}�i,j=1, the coercivity property

λmin(V + V T )− max
1≤i≤�

divbi ≥ 0 (4.2)

holds pointwise on Ω, where λmin denotes the smallest eigenvalue;

(v) gi ∈ L2(Ω) for all i = 1, . . . , �.

The coercivity assumption implies that problem (4.1) has a unique weak solution.

Systems of the form (4.1) arise e.g. from the time discretization and Newton lineariza-

tion of nonlinear reaction-convection-diffusion (transport) systems

∂ci
∂t

− div(Ki ∇ci) + bi · ∇ci +Ri(x, c1, . . . , c�) = 0

ci
∣∣
∂Ω

= 0

⎫⎬⎭ (i = 1, . . . , �). (4.3)

In many real-life problems, e.g. where ci are concentrations of chemical species, such

systems may consist of a huge number of equations (cf. [68]). Using a time discretization

with sufficiently small step length τ , the systems obtained from the Newton lineariza-

tion of (4.3) around some c = (c1, . . . , c�)
T satisfy Assumptions 4.1. Namely, in this

case

V (x) =
∂R(x, c)

∂c
+

1

τ
I

(where I is the identity matrix), which ensures the coercivity (the only nontrivial

assumption) for small enough τ .

For brevity, we write (4.1) as

Lu ≡ − div(K ∇u) + b · ∇u+ V u = g

u
∣∣
∂Ω

= 0

}
(4.4)

where

u =

⎛⎜⎜⎝
u1

...

u�

⎞⎟⎟⎠ , g =

⎛⎜⎜⎝
g1
...

g�

⎞⎟⎟⎠ , − div(K ∇u) =

⎛⎜⎜⎝
− div(K1 ∇u1)

...

− div(K� ∇u�)

⎞⎟⎟⎠ , b ·∇u =

⎛⎜⎜⎝
b1 · ∇u1

...

b� · ∇u�

⎞⎟⎟⎠
and V has been defined in Assumption 4.1, condition (iv). For the numerical solution

of system (4.4), one usually considers its FEM discretization, which leads to a linear

algebraic system

Lhc = gh. (4.5)
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Then (4.5) can be solved by the CGM using some suitable preconditioner. Here we

consider preconditioners based on the following preconditioning operator. Letting σi ∈
L∞(Ω), σi ≥ 0 be suitable functions and

Siui := − div(Ki ∇ui) + σiui (i = 1, . . . , �) (4.6)

for ui

∣∣
∂Ω

= 0, and define the �-tuple of independent elliptic operators

Su =

⎛⎜⎜⎝
S1u1

...

S�u�

⎞⎟⎟⎠ . (4.7)

The goal of this section is twofold. First, we prove mesh independent superlinear

convergence of the preconditioned CGM in the framework of compact normal operators

in Hilbert space (cf. Section 2.4). This is achieved in two steps: on the theoretical level,

the preconditioned form of system (4.4)

S−1Lu = f ≡ S−1g (4.8)

will be considered and it will be proved that the CGM converges superlinearly in the

Sobolev space H1
0 (Ω)

�. Based on this, on the practically relevant discrete level we

consider the preconditioned form of the algebraic system (4.5)

S−1
h Lhc = fh ≡ S−1

h gh, (4.9)

where Sh denotes the discretization of S in the same FEM subspace as for Lh, and prove

that the superlinear convergence of the CGM is mesh independent, i.e. independent

of the considered FEM subspace. These properties are the extension of the results of

Section 3.1 to systems. On both levels the full and a truncated GCG-LS algorithms 2.28

and 2.29 are considered, and the results are proved under certain special assumptions

that ensure the normality of the preconditioned operator in the corresponding Sobolev

space (analogously to [9]). The second goal is the numerical testing of the proposed

PCG method. Similarly to the results in Subsection 3.1.3, it turns out that the mesh

independent superlinear convergence property is even valid when some of the technical

conditions do not hold, i.e. beyond the normal operator framework of Section 2.4.

Besides the mesh independent convergence result, this preconditioning method has

an advantage of efficient realization since the symmetric elliptic operators Si are de-

coupled, hence the size of the auxiliary systems is smaller than of the original one and,

moreover, parallel solution of the auxiliary systems is available. This may significantly
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decrease the cost when the system (4.1) consists of many equations. This is illustrated

with an example involving chemical reactions at the end of this section.

4.1.2 Iteration and convergence in Sobolev space

Let us consider the complex Hilbert space H = L2(Ω)� with inner product and

corresponding norm

〈u,v〉 =
∫
Ω

�∑
i=1

uivi, ‖u‖2 =
∫
Ω

�∑
i=1

|ui|2 (4.10)

and define the operators L and S as given in (4.4) and (4.7), respectively, with the

domain

D(L) = D(S) = D :=
(
H2(Ω) ∩H1

0 (Ω)
)�

which is dense in H. We consider problem (4.4) in H, preconditioned by S as proposed

in Subsection 4.1.1. The goal is to prove Theorem 2.53 for this problem in the space

L2(Ω)� by verifying that L and S satisfy Assumptions 2.48.

This will be done in two cases: first, we prove Theorem 2.53 using the truncated

GCG-LS(0) algorithm 2.29 when S is the symmetric part of L. Then we consider

the full GCG-LS algorithm 2.28 and prove Theorem 2.53 for problems with constant

coefficients when the normality of the preconditioned operator in the corresponding

Sobolev space can be ensured. This is an extension of the previous result from a single

equation to systems (cf. [9]).

Remark 4.2. When the preconditioned conjugate gradient algorithms 2.51 or 2.52 are

applied with L and S from (4.4) and (4.7), respectively, the auxiliary problems like

Sz = Ld have the following form:

− div(Ki ∇zi) + σizi = Lid

zi
∣∣
∂Ω

= 0

}
(i = 1, . . . , �),

where Lid ≡ − div(Ki ∇di) + bi · ∇di +
�∑

j=1

Vijdj for d ∈ D(L), that is, decoupled

symmetric elliptic equations have to be solved.

Convergence of the truncated algorithm

In this part we study the case when S is the symmetric part of L, i.e.

S =
L+ L∗

2
.
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Then the preconditioned operator A = S−1L has an important property in the energy

space HS (see Subsection 2.4.2). Namely, the antisymmetry of

Q = L− S =
L− L∗

2

in H,

〈Qu,v〉 = −〈u, Qv〉 (4.11)

is equivalent to the antisymmetry of S−1Q in HS:

〈
S−1Qu,v

〉
S
= −

〈
u, S−1Qv

〉
S
, (4.12)

i.e. the S-adjoint operator (S−1Q)
∗
S (cf. Remark 2.50) satisfies

(
S−1Q

)∗
S
= −S−1Q. (4.13)

Since A = I + S−1Q, therefore A∗
S = 2I − A, hence by Remark 2.46 the truncated

GCG-LS(0) version 2.52 for equation (2.31) coincides with the full algorithm 2.51.

Let us determine the symmetric part of the operator L in (4.4). We have for

u,v ∈ D

〈Lu,v〉 =
∫
Ω

(
�∑

i=1

(
Ki ∇ui · ∇vi + (bi · ∇ui)vi

)
+

�∑
i,j=1

Vijujvi

)
. (4.14)

The divergence theorem and the homogeneous Dirichlet boundary condition imply∫
Ω

(bi · ∇ui)vi +

∫
Ω

ui(bi · ∇vi) = −
∫
Ω

(divbi)uivi, (4.15)

hence it is easy to see that for u,v ∈ D

〈Su,v〉 =
∫
Ω

(
�∑

i=1

(
Ki ∇ui · ∇vi −

1

2
(divbi)uivi

)
+

1

2

�∑
i,j=1

(Vij + Vji) ujvi

)
. (4.16)

Hence we have coordinatewise

Siu = − div(Ki ∇ui)−
1

2
(divbi)ui +

1

2

�∑
j=1

(Vij + Vji)uj. (4.17)

This operator falls into the type (4.6) if and only if the antisymmetry

Vij = −Vji (i �= j) (4.18)
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is valid and σi in (4.6) is chosen as

σi = Vii −
1

2
(divbi), (4.19)

hence (4.18)-(4.19) are assumed to hold from now on.

As stated before, the task is to prove that the operators L and S satisfy Assumptions

2.48 in H = L2(Ω)�. Together with the argument after (4.13), this will imply that the

preconditioned GCG-LS(0) algorithm 2.52 converges according to Theorem 2.53.

Let us check that the conditions in Assumptions 2.48 are satisfied, when S is the

symmetric part of L.

(i) S is self-adjoint by Proposition 2.12 since Si maps onto L2(Ω) (see [32]), hence

S maps onto L2(Ω)�.

(ii) Formula (4.16) yields

〈Su,u〉 =
∫
Ω

(
�∑

i=1

(
Ki |∇ui|2 −

1

2
(divbi) |ui|2

)
+

1

2

�∑
i,j=1

(Vij + Vji)ujui

)
.

Then conditions (iii)-(iv) in Assumptions 4.1 imply

〈Su,u〉 ≥ m
�∑

i=1

‖∇ui‖2L2(Ω) , (4.20)

whence, using the Poincaré–Friedrichs inequality (2.2), letting p = mν and using

notation (4.10), we have

〈Su,u〉 ≥ p ‖u‖2 (u ∈ D). (4.21)

(iii) The antisymmetry (4.11) implies Re 〈Qu,u〉 = 0. Since L = S +Q, we obtain

Re 〈Lu,u〉 = 〈Su,u〉 . (4.22)

(iv) Formula (4.16) implies that HS = H1
0 (Ω)

� and the energy inner product 〈u,v〉S
is the expression on the right-hand side of (4.16), equivalent to the usual one.

Using (4.17)-(4.19), the antisymmetric part Q satisfies coordinatewise

Qiu = Liu− Siui = bi · ∇ui +
1

2
(divbi)ui +

�∑
j=1

j �=i

Vijuj (4.23)



4. Symmetric preconditioning for linear elliptic systems 72

for u ∈ (H2(Ω) ∩H1
0 (Ω))

� and the same expression is valid for u ∈ H1
0 (Ω)

�. Then

the operator S−1Q on H1
0 (Ω)

� is given by

〈
S−1Qu,v

〉
S
= 〈Qu,v〉 =

∫
Ω

�∑
i=1

(Qiu)vi

=

∫
Ω

(
�∑

i=1

(
bi · ∇ui +

1

2
(divbi)ui

)
vi +

�∑
i,j=1

j �=i

Vijujvi

)
(
u,v ∈

(
H2(Ω) ∩H1

0 (Ω)
)�)

which is compact owing to the compact embedding H1
0 (Ω) ↪→ L2(Ω) (cf. Theorem

2.26). Further, (4.13) obviously implies that (S−1Q)
∗
S commutes with S−1Q, i.e.

S−1Q is S-normal (cf. Remark 2.50).

Corollary 4.3. Under Assumptions 4.1 and (4.18)-(4.19), the preconditioned truncated

GCG-LS(0) algorithm 2.52 for system (4.1) with the preconditioning operator (4.6)-

(4.7) converges superlinearly in the space H1
0 (Ω)

� according to the estimate (2.34).

In particular, in (2.34) we have the parameter � = 1 and the norm equality ‖u‖L = ‖u‖S
from (4.22).

Convergence of the full algorithm

Now let us turn to the general case, when S is not the symmetric part of L, i.e.

S has the form (4.6)-(4.7), but (4.18)-(4.19) are not assumed to hold. It may be

important in practice to have this freedom to choose the coefficients σi of S. First,

we have frequently Ki = 1 in (4.1), i.e. the term − div(Ki ∇ui) coincides with the

Laplacian, and in such cases it may be efficient to choose σi constant. Namely, for

auxiliary problems with constant coefficients, various fast direct solvers are available

(such as fast Fourier transform or cyclic reduction, see [51, 57]) which turn S into a

cheap preconditioner. Second, as shown in [45] for a single equation, large values chosen

for σ may compensate for large convection terms b, hence such a preconditioner can

be useful for singularly perturbed problems as well.

As stated earlier, in order to verify Theorem 2.53 for this case, the task is to prove

that the operators L and S as given in 4.4 and 4.7, respectively, satisfy Assumptions

2.48 in H = L2(Ω)�. This will be proved under the restrictive condition that L has

constant coefficients itself, moreover, in addition to Assumptions 4.1 the following extra

properties are also assumed to hold.

Assumptions 4.4. Suppose that



4. Symmetric preconditioning for linear elliptic systems 73

(i) for all i = 1, . . . , �, Ki ≡ K ∈ R, σi ≡ σ ∈ R and bi ≡ b ∈ R
d;

(ii) V ∈ R
�×� is a normal matrix.

Then Assumptions 2.48 can be verified as follows.

(i) The same argument can be used as for the case of symmetric part preconditioning:

S is self-adjoint by Proposition 2.12 since Si maps onto L2(Ω), hence S maps onto

L2(Ω)�.

(ii) Using the required form of the proposed preconditioner (4.6)-(4.7), we have

〈Su,u〉 =
∫
Ω

�∑
i=1

(
K |∇ui|2 + σ |ui|2

)
. (4.24)

From this the assumptions K > 0 and σ ≥ 0 imply (4.21) in the same way as it

followed from (4.20).

(iii) We have for u ∈ D

〈Lu,u〉 =
∫
Ω

(
�∑

i=1

(
K |∇ui|2 + (b · ∇ui) ui

)
+

�∑
i,j=1

Vijujui

)

from (4.14). Now for constant b, (4.15) yields∫
Ω

(b · ∇ui)ui = −
∫
Ω

ui(b · ∇ui),

further, (4.2) now reduces to the assumption that V +V T is positive semidefinite.

Hence

Re 〈Lu,u〉 =
∫
Ω

(
�∑

i=1

(
K |∇ui|2

)
+

�∑
i,j=1

1

2
(Vij + Vji)ujui

)

≥ K
�∑

i=1

‖∇ui‖2L2(Ω) + λ0

�∑
i=1

‖ui‖2L2(Ω) ,

where

λ0 = λmin

(
Vij + Vji

2

)
≥ 0.

Further, using (4.24) and the Poincaré–Friedrichs inequality (2.2), we obtain

inf
u∈D
u �=0

Re 〈Lu,u〉
〈Su,u〉 ≥ inf

(x,y)∈R2

x≥νy>0

Kx+ λ0y

Kx+ σy
= min

{
νK + λ0

νK + σ
, 1

}
,
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where the latter equality comes from an elementary calculation. Therefore con-

dition (iii) in Assumptions 2.48 holds with

� = min

{
νK + λ0

νK + σ
, 1

}
. (4.25)

(iv) Similarly to item (iv) in the previous case, we have HS = H1
0 (Ω)

� and the energy

inner product 〈u,v〉S is equivalent to the usual one, further, the antisymmetric

part satisfies

Qiu = b · ∇ui − σui +
�∑

j=1

Vijuj

(
u ∈ H1

0 (Ω)
�
)
, (4.26)

whence the operator S−1Q on H1
0 (Ω)

� is compact by the same argument as for

(4.23).

On the other hand, the normality of S−1Q in HS is not as trivial as in the previous

subsection (since it is not antisymmetric), but this is the main property to be

verified now in two steps.

Lemma 4.5. Let us define the operators R,W : L2(Ω)� → L2(Ω)� by

Ru :=
(
b · ∇ui

)�
i=1

(
u ∈ D(R) = H1

0 (Ω)
�
)

Wu := V u− σu
(
u ∈ L2(Ω)�

)
,

(4.27)

respectively. Then the following operators commute:

(a) S−1W and S−1W ∗;

(b) S−1R and S−1W ;

(c) S−1R and S−1W ∗.

Proof. First we observe

SWu = WSu (u ∈ D(S)) (4.28)

since, using Su = −K diag(Δui), (4.28) is coordinatewise equivalent to

Δ

(
�∑

j=1

Wijuj

)
=

(
�∑

j=1

WijΔuj

)
.

Replacing u by S−1u in (4.28) (which makes sense since S maps onto L2(Ω)�) and
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applying S−1 to both sides, we obtain

WS−1u = S−1Wu
(
u ∈ L2(Ω)�

)
(4.29)

(a) Using (4.29) and its analogue for W ∗, further that W is normal (inheriting this

from V ), we obtain

WS−1W ∗ = S−1WW ∗ = S−1W ∗W = W ∗S−1W.

Applying S−1 to both sides we obtain the required statement.

(b) Introducing the operators S0 := −KΔ and R0 := b · ∇, we have S = diag(S0)

and R = diag(R0). Using that these operators have constant coefficients, one can

prove R0S
−1
0 = S−1

0 R0 (see [9, Prop. 1]), therefore we obtain RS−1 = S−1R. We have

RW = WR similarly to (4.28), and using also (4.29) we obtain

RS−1W = S−1RW = S−1WR = WS−1R.

Applying S−1 to both sides again, we obtain the required statement.

(c) This follows from (b) by replacing W by W ∗.

Proposition 4.6. The operator S−1Q is normal in HS.

Proof. Relations (4.26) and (4.27) imply Q = R +W , hence

S−1Q = S−1R + S−1W. (4.30)

Here the S-adjoints of the operators on the right-hand side are as follows. First, now

for constant b the equality (4.15) implies for all u,v ∈ H1
0 (Ω)

�

〈Ru,v〉 = −〈u, Rv〉 ,

that is,

〈
S−1Ru,v

〉
S
= −

〈
u, S−1Rv

〉
S

which means that (S−1R)∗S = −S−1R. Further,

〈
S−1Wu,v

〉
S
= 〈Wu,v〉 = 〈u,W ∗v〉 =

〈
u, S−1W ∗v

〉
S
,
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i.e. (S−1W )∗S = S−1W ∗. Altogether, we have

(
S−1Q

)∗
S
= −S−1R + S−1W ∗,

which by (4.30) and Lemma 4.5 commutes with S−1Q.

Corollary 4.7. Under Assumptions 4.1 and 4.4, the preconditioned full GCG-LS al-

gorithm 2.51 for system (4.1) with the preconditioning operator (4.6)-(4.7) converges

superlinearly in the space H1
0 (Ω)

� according to the estimate (2.34).

In particular, we have the expression (4.25) for the parameter � in (2.34).

4.1.3 Mesh independent superlinear convergence for the discretized problem

In this section we derive the main result from practical point of view. Let us

consider the FEM discretization of system (4.4) in some FEM subspace

Vh = span{ϕ1, ϕ2, . . . , ϕn} ⊂ H1
0 (Ω)

�,

which leads to an n× n linear algebraic system

Lhc = gh. (4.31)

Let Sh denote the discretization of S in the same FEM subspace Vh as for Lh. We

consider the preconditioned form of the algebraic system (4.31)

S−1
h Lhc = fh ≡ S−1

h g. (4.32)

Here we show that the superlinear convergence of the CGM is mesh independent, i.e.

independent of the subspace Vh. Namely, by Section 4.1.2, under the given conditions,

the operators L and S as given in (4.4) and (4.7), respectively, satisfy Assumptions

2.48 for the operator equation (2.29). Let Vh ⊂ HS be a finite dimensional subspace,

Sh and Qh the corresponding Gram matrices of S and Q, respectively. If the matrix

S−1
h Qh is Sh-normal, then the conditions of Theorem 2.54 are satisfied and the mesh

independent superlinear convergence estimate (2.37) holds.

Consequently, mesh independence result for the elliptic system (4.1) is obtained

under the conditions considered in Subsection 4.1.2 to verify Assumptions 2.48. To

formulate this, we note that with symmetric part preconditioning, the Sh-normality of

the matrix S−1
h Qh need not be assumed since it holds for an arbitrary FEM subspace

(cf. Remark 2.55).
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Corollary 4.8. Let Assumptions 4.1 hold. Consider the FEM discretization of system

(4.1), using the stiffness matrix of (4.7) as preconditioner, under one of the following

conditions:

(a) properties (4.18)-(4.19) hold, Vh ⊂ H1
0 (Ω)

� is an arbitrary FEM subspace and the

truncated GCG-LS(0) algorithm 2.52 is used (here the Sh-normality of S−1
h Qh

automatically holds);

(b) Assumptions (4.4) hold, Vh ⊂ H1
0 (Ω)

� is a FEM subspace for which the matrix

S−1
h Qh is Sh-normal, and the full GCG-LS 2.51 is used.

Then the mesh independent superlinear convergence estimate (2.37) is valid.

If symmetric part preconditioning is used, that is, the conditions in item (a) hold,

then estimate (2.37) holds with � = 1 and the error is measured in Sh-norm.

Remark 4.9. Following Remark 4.2, the CGM for system (4.32) involves the FEM

solution of decoupled Helmholtz problems of the following type in the subspace Vh:

− div(Ki ∇zi) + σizi = Lid

zi
∣∣
∂Ω

= 0

}
(i = 1, . . . , �),

This provides the following advantages for the studied PCG algorithm:

• the size of the auxiliary systems is considerably smaller than that of the original

system when � is large;

• parallel solution of the auxiliary systems is available;

• for Helmholtz preconditioners various efficient solvers are available (like fast

Fourier transform, cyclic reduction or multigrid, see e.g. [25, 51, 57]).

4.1.4 Numerical experiments

In this subsection some numerical results are presented. Besides illustrating the

preceding theorems, the main outcome of this test is that the mesh independent su-

perlinear convergence property is even valid when some of the previous theoretical

conditions do not hold. This means that the normal operator framework of Section 2.4

seems to be only technical, although currently the obstacles are deemed to be insuper-

able. Consequently, the proposed preconditioned CGM is an efficient solution method

for general elliptic problems.

In what follows, let Ω ⊂ R
2 be the unit square and Ki = 1 (i = 1, . . . , �) in (4.1),

i.e. for simplicity only the case of Laplacian is considered for the principal part of the
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elliptic operators. Since in this subsection only Dirichlet boundary conditions ui

∣∣
∂Ω

= 0

are investigated, the indication of the boundary conditions will be omitted. Both of

the studied algorithms will be used: the truncated one where possible and the full

algorithm throughout.

In the first part of this subsection, systems consisting of 2 and 3 equations are

investigated. In both cases we consider a system that does and one that does not

satisfy the theoretical conditions. Finally we consider a larger model involving chemical

reactions between 10 pollutants. The numbers in the tables are the values of

Qk :=

(
‖ek‖Lh

‖e0‖Lh

)1/k

for the iteration counter parameter k = 1, 2, . . . In all the experiments numerical super-

linear convergence has been observed (i.e. that Qk decreases) up to some point when

this decrease has stopped. Here we usually had

‖ek‖Lh

‖e0‖Lh

≈ 10−14,

which has justified stopping the iteration.

Experiment 1 Let

b ≡ bi = (1, 0), V =

(
0 1

−1 0

)
The system according to these parameters is the following:

−Δu1 + ∂xu1 + u2 = g1,

−Δu2 + ∂xu2 − u1 = g2.

}
(4.33)

Here the truncated algorithm is also applicable since Vij = −Vji (i, j = 1, 2). If

we choose σi = Vii = 0 (i = 1, . . . , �), i.e. the preconditioner is Siui = −Δui (see

the conditions (4.18)-(4.19)), then the corresponding full GCG-LS algorithm coincides

with the truncated version.

The values of Qk in the columns of Table 4.1 show the superlinear convergence,

moreover, the rows show the boundedness of Qk as the mesh parameter increases.

Larger values of σi can also improve the convergence of the full algorithm, although

the computational cost is increased by assembling the mass matrix. Similar results can

be found in Table 4.2 for the second experiment.
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Tab. 4.1: Values of Qk for system (4.33).

1/h
truncated algorithm full algorithm, σi = 8

Itr. 32 64 128 32 64 128

1 0.0774 0.0776 0.0776 0.0636 0.0638 0.0638
2 0.0777 0.0780 0.0780 0.0624 0.0626 0.0626
3 0.0802 0.0805 0.0805 0.0642 0.0644 0.0644
4 0.0777 0.0780 0.0781 0.0643 0.0645 0.0646
5 0.0720 0.0723 0.0724 0.0616 0.0618 0.0619
6 0.0663 0.0666 0.0667 0.0579 0.0581 0.0582
7 0.0617 0.0620 0.0621 0.0542 0.0545 0.0546
8 0.0587 0.0590 0.0590 0.0511 0.0514 0.0515
9 0.0574 0.0576 0.0577 0.0489 0.0491 0.0491

10 0.0564 0.0567 0.0568 0.0482 0.0483 0.0483

Experiment 2 Let

b1 = (1, 0), b2 = (0, 1), V =

(
0 1

−1 0

)
,

in other words we have
−Δu1 + ∂xu1 + u2 = g1

−Δu2 + ∂yu2 − u1 = g2.

}
(4.34)

Tab. 4.2: Values of Qk for system (4.34).

1/h
truncated algorithm full algorithm, σi = 8

Itr. 32 64 128 32 64 128

1 0.0851 0.0853 0.0854 0.0671 0.0672 0.0672
2 0.0838 0.0841 0.0841 0.0678 0.0680 0.0680
3 0.0762 0.0766 0.0766 0.0638 0.0641 0.0641
4 0.0705 0.0709 0.0709 0.0598 0.0601 0.0601
5 0.0675 0.0678 0.0678 0.0566 0.0569 0.0570
6 0.0665 0.0668 0.0668 0.0548 0.0551 0.0552
7 0.0656 0.0659 0.0660 0.0545 0.0547 0.0547
8 0.0633 0.0637 0.0638 0.0545 0.0547 0.0548
9 0.0600 0.0605 0.0606 0.0532 0.0535 0.0536

10 0.0569 0.0574 0.0576 0.0510 0.0514 0.0515
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Experiment 3 Let

b = bi = (1, 0), V =

⎛⎜⎜⎝
2 1 0

−1 2 −1

0 1 2

⎞⎟⎟⎠ ,

Thus we have following system:

−Δu1 + ∂xu1 + 2u1 + u2 = g1

−Δu2 + ∂xu2 − u1 + 2u2 − u3 = g2

−Δu3 + ∂xu3 + u2 + 2u3 = g2

⎫⎪⎪⎬⎪⎪⎭ (4.35)

Here the truncated algorithm is again applicable. Since Vii = 2, the truncated and the

full algorithms provide the same result when σi = 2 is chosen in the preconditioner Si.

Table 4.3 shows the results for both algorithms.

Tab. 4.3: Values of Qk for system (4.35).

1/h
truncated alg. full alg., σi = 0 full alg., σi = 2 full alg., σi = 8

Itr. 32 128 32 128 32 128 32 128

1 0.0860 0.0863 0.0910 0.0913 0.0860 0.0863 0.0741 0.0743
2 0.0834 0.0837 0.0878 0.0882 0.0834 0.0837 0.0729 0.0731
3 0.0816 0.0819 0.0861 0.0865 0.0816 0.0819 0.0713 0.0716
4 0.0804 0.0807 0.0853 0.0856 0.0804 0.0807 0.0697 0.0699
5 0.0779 0.0782 0.0823 0.0827 0.0779 0.0782 0.0676 0.0678
6 0.0742 0.0745 0.0778 0.0782 0.0742 0.0745 0.0652 0.0655
7 0.0697 0.0701 0.0725 0.0730 0.0697 0.0701 0.0624 0.0627
8 0.0657 0.0661 0.0681 0.0686 0.0657 0.0661 0.0595 0.0598
9 0.0628 0.0633 0.0652 0.0657 0.0628 0.0633 0.0570 0.0574

10 0.0612 0.0617 0.0635 0.0640 0.0612 0.0617 0.0555 0.0559

Experiment 4 Let

b1 = (1, 0), b2 = (0, 1), b3 = (2,−1), V =

⎛⎜⎜⎝
1 0 −1

0 2 1

0 0 −3

⎞⎟⎟⎠ , (4.36)

In (4.36) the matrix V does not satisfy the antisymmetry relation (4.18), it is not even

normal, the coercivity property (4.2) does not hold (because of the presence of negative

eigenvalues of V + V T ) and every bi is different.
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Tab. 4.4: Values of Qk for system (4.36).

1/h
full alg., σi = 0 full alg., σi = 2 full alg., σi = 8

Itr. 32 128 32 128 32 128

1 0.1685 0.1689 0.1595 0.1598 0.1376 0.1379
2 0.1626 0.1630 0.1549 0.1553 0.1359 0.1362
3 0.1485 0.1489 0.1429 0.1434 0.1285 0.1288
4 0.1360 0.1365 0.1318 0.1323 0.1208 0.1212
5 0.1254 0.1261 0.1222 0.1229 0.1136 0.1141
6 0.1175 0.1182 0.1147 0.1154 0.1073 0.1079
7 0.1107 0.1114 0.1081 0.1088 0.1015 0.1022
8 0.1042 0.1050 0.1019 0.1026 0.0962 0.0969
9 0.0985 0.0993 0.0966 0.0973 0.0917 0.0924

10 0.0946 0.0954 0.0929 0.0937 0.0885 0.0892
11 0.0915 0.0924 0.0900 0.0908 0.0857 0.0864
12 0.0887 0.0895 0.0871 0.0879 0.0828 0.0836

Here the symmetric part of the equation does not provide decoupled precondition-

ers, thus only Algorithm 2.51 was used. Table 4.4 shows that the algorithm still has

the superlinear property in spite of the fact that none of the required conditions are

valid. Although the numbers Qk are larger, the level of decreasing is approximately

the same.

Experiment 5 Now let us consider a more realistic problem. The following system of

equations comes from a simplified meteorological model after time discretization and

linearization, based on [68]. We have

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 k5 0 0 −k6 0 −k4 −k3 0 0
0 −k5 0 0 k6 0 k4 k3 −k9 0
0 0 0 0 0 0 0 0 −k1 0
0 0 0 −k2 0 0 0 k3 2k1 0
0 k5 0 0 −k6 0 0 −k8 0 0
0 0 0 0 0 0 0 0 k9 0
0 0 0 2k2 0 0 −k4 k3 0 0
0 0 0 0 0 0 0 −k3 4k1 0
0 −k9 −k6 0 0 0 k4 + 2k8 0 0 0
0 −k8 0 0 k7 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.37)

where the coefficients ki can be determined from chemical reactions, see Table 4.5.

Further, we have bi = (1/10, 0) and the right-hand sides of the equations come from

the results from the previous time-step.

The time step τ = 0.2829·10−3 was chosen sufficiently small to ensure the coercivity
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Tab. 4.5: The coefficients of the chemical reactions.

k1 6.00 · 10−12 1.60 · 10−14 k6
k2 7.80 · 10−05 1.90 · 10−04 k7
k3 8.00 · 10−12 2.30 · 10−10 k8
k4 8.00 · 10−12 1.00 · 10−11 k9
k5 1.00 · 10−02 2.90 · 10−13 k10

property. Further, for suitable balancing different coefficients σi were chosen, namely:

σ = τ ·
(
1, 100, 1, 10, 1, 1, 1, 1,

1

10
,

1

100

)
.

In this experiment the time of computing has also been measured: since this system

consists of ten equations, the iteration with solving only block-diagonal symmetric

auxiliary problems is expectedly faster than the direct solution with the nonsymmetric

full matrix.

Tab. 4.6: Values of Qk for the chemical system.

1/h
Itr. 8 16 32 64

1 0.0073 0.0076 0.0076 0.0077
2 0.0067 0.0071 0.0072 0.0072
3 0.0060 0.0065 0.0066 0.0066
4 0.0054 0.0060 0.0061 0.0061
5 0.0048 0.0054 0.0056 0.0056
6 0.0043 0.0050 0.0052 0.0053

In the first phase of the algorithm the matrices Sh and Qh are constructed. The

direct solution requires solving the nonsymmetric linear algebraic system

Lhc ≡ (Sh +Qh)c = gh.

The iterative algorithm solves equations like Shzh = dh as many times as many iter-

ation step is chosen. Here the auxiliary equations were solved by using the Cholesky

decomposition of Sh.

The run-times for this system can be found in Table 4.7. The last two colums show

the difference between the direct solution and the preconditioned conjugate gradient

method. The numbers in the last column are the total time of the decomposition and

the iteration. It also shows that the CGM with suitable decoupled preconditioners

provides better results even for mid-sized problems.
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Tab. 4.7: Computational time

1/h Sh, Lh Cholesky iteration direct solution PCG

8 0.0470 0.0470 0.5780 0.0150 0.6250
16 0.1090 0.0620 1.2350 0.3130 1.2970
32 0.4220 0.1880 3.9680 9.5780 4.1560
64 1.9070 2.3600 17.8120 177.7030 20.1720

4.2 Systems with nonhomogeneous mixed boundary conditions

The results of the previous section can be generalized further for systems with

homogeneous mixed boundary conditions, using the operators in weak form and the

weakly defined symmetric part of Subsection 2.4.2. Moreover, it has turned out from

Section 3.2 that nonhomogeneous mixed boundary conditions cause no difficulties, they

can be handled by using operator pairs. Here we sum up briefly the results of Section

3.2 for systems where the preconditioners are chosen to be decoupled as in Section 4.1.

Let us consider elliptic systems of the form

− div(Ai ∇ui) + bi · ∇ui +
�∑

j=1

Vijuj = gi

∂ui

∂νAi

+ αiui

∣∣
ΓN

= γi

ui

∣∣
ΓD

= 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(i = 1, . . . , �) (4.38)

satisfying the combination of Assumptions 3.5 and 4.1:

Assumptions 4.10. Suppose that

(i) Ω ⊂ R
d is a bounded piecewise C1 domain; ΓD,ΓN are disjoint open measurable

subparts of ∂Ω such that ∂Ω = ΓD ∪ ΓN ;

(ii) for all i, j = 1, . . . , � the matrix-valued functions Ai ∈ L∞(Ω,Rd×d) and for all

x ∈ Ω the matrices Ai(x) are symmetric; further, bi ∈ W 1,∞(Ω)d, Vij ∈ L∞(Ω)

and αi ∈ L∞(ΓN);

(iii) There exists p > 0 such that Ai(x)ξ · ξ ≥ p |ξ|2 for all x ∈ Ω, ξ ∈ R
d and for any

i = 1, . . . , �;

(iv) letting V = (Vij)
�
i,j=1, the coercivity property

ĉ := λmin(V + V T )− max
1≤i≤�

divbi ≥ 0 (4.39)
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holds pointwise on Ω, where λmin denotes the smallest eigenvalue, and

α̂i := αi +
1

2
(bi · ν) ≥ 0 (4.40)

holds on ΓN for any i = 1, . . . , �;

(v) gi ∈ L2(Ω), γi ∈ L2(ΓN) for all i = 1, . . . , �;

(vi) either ΓD �= ∅, or ĉ or min
1≤i≤�

α̂i has a positive lower bound.

These assumptions imply that problem (4.38) has a unique weak solution. For

brevity, we write (4.38) as

− div(A ∇u) + b · ∇u+ V u = g

u
∣∣
ΓD

= 0,
∂u

∂νA
+αu

∣∣
ΓN

= γ

⎫⎬⎭ (4.41)

The equivalent operator approach can be extended to systems, where the corre-

sponding operator L is defined as an �-tuple of operator pairs:

L = (L1, . . . , L�) =

((
M1

P1

)
, . . . ,

(
M�

P�

))
, (4.42)

where

Li ≡
(
Mi

Pi

)
, Li

(
u

ηi

)
=

(
Miu

Piηi

)
=

⎛⎝− div(Ai ∇ui) + bi · ∇ui + (V u)i
∂ηi
∂νAi

+ αiηi
∣∣
ΓN

⎞⎠ . (4.43)

Using the notations of Subsection 3.2.1 and the preconditioning approach of Subsection

4.1.1, one can define the preconditioning operator

S = (S1, . . . , S�) =

((
N1

R1

)
, . . . ,

(
N�

R�

))
(4.44)

as the �-tuple of independent operators

Si ≡
(
Ni

Ri

)
, Si

(
ui

ηi

)
=

(
Niui

Riηi

)
=

⎛⎝− div(Gi ∇ui) + σiui

∂ηi
∂νGi

+ βiηi
∣∣
ΓN

⎞⎠ (4.45)

satisfying similar assumptions as of L:

Assumptions 4.11. Suppose that (for all i = 1, . . . , �)

(i) substituting Gi for Ai, Ω, ΓD, ΓN and Gi satisfy Assumptions 4.10;
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(ii) σi ∈ L∞(Ω), σi ≥ 0, βi ∈ L∞(ΓN), βi ≥ 0; further, if ΓD �= ∅, then min
1≤i≤�

σi or

min
1≤i≤�

βi has a positive lower bound.

As in (3.27) for a single equation, here we look for the weak solution of the operator

equation

L

(
u

u
∣∣
ΓN

)
=

(
g

γ

)
. (4.46)

If Vh ⊂ H1
D(Ω) is a finite dimensional FEM subspace, then the discretization of (4.38)

in V �
h leads to a linear algebraic system

Lhc = dh. (4.47)

Let us take the symmetric operator given in (4.44)-(4.45) and introduce the correspond-

ing stiffness matrix Sh in H1
D(Ω)

�. Then the preconditioned form of (4.47) becomes

S−1
h Lhc =

(
Ih + S−1

h Qh

)
c = S−1

h dh, (4.48)

where Qh = Lh − Sh. Extending the results of Subsection 3.2.1 to systems, it is easy

to verify that for Gi = Ai (i = 1, . . . , �) the operators L and S are compact-equivalent

with μ = 1, i.e.

LS = I +QS

holds in HS with some compact operator QS. The energy inner product has the form〈(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

=

〈
S

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
H�

=
�∑

i=1

(
〈Niui, vi〉L2(Ω) +

〈
Riui

∣∣
ΓN

, vi
∣∣
ΓN

〉
L2(ΓN )

)

=

∫
Ω

[
�∑

i=1

(Gi ∇ui · ∇vi + σiuivi)

]
+

∫
ΓN

�∑
i=1

βiuivi.

(4.49)

Similarly to Section 3.2, Green’s formula implies that

〈
LS

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

=
�∑

i=1

(
〈Miu, vi〉L2(Ω) +

〈
Piui

∣∣
ΓN

, vi
∣∣
ΓN

〉
L2(ΓN )

)

=

∫
Ω

[
�∑

i=1

(
Ai ∇ui · ∇vi + (bi · ∇ui) vi +

�∑
j=1

Vijujvi

)]
+

∫
ΓN

�∑
i=1

αiuivi.
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Analogously to the construction of (3.40), the symmetric part of LS has the form

∫
Ω

[
�∑

i=1

(
Ai ∇ui · ∇vi −

1

2
(divbi) uivi

)
+

1

2

�∑
i,j=1

(Vij + Vji) uivj

]

+

∫
ΓN

�∑
i=1

(
αi +

1

2
(bi · ν)

)
uivi,

which falls into the type of (4.49) if and only if Gi = Ai and

Vij = −Vji (i �= j), σi = Vii −
1

2
(divbi), βi = α̂i ≡ αi +

1

2
(bi · ν) . (4.50)

Now let us consider the preconditioned equation (4.48), when Lh and Sh now come from

the elliptic operators L and S, Qh = Lh − Sh. When symmetric part preconditioning

is used, that is, the preconditioner S is defined as in (4.45) with the conditions (4.50),

then QS ∈ B (HS), which is now the sum of bilinear forms that can be constructed

analogously to (3.41), is a compact normal operator and the matrix S−1
h Qh is Sh-normal

with respect to 〈·, ·〉
Sh

. In this case the superlinear convergence estimate (3.13) holds,

and the GCG-LS method reduces to the truncated GCG-LS(0) algorithm 2.29.

When S is not the symmetric part of L, then QS ∈ B (HS) can be defined as

the sum of similar operators corresponding to (3.42). Now the conditions of Theorem

2.44 are satisfied, thus the CGN algorithm 2.33 provides a similar mesh independent

superlinear convergence result.

Corollary 4.12. With Assumptions 4.10-4.11 and Ai = Gi (i = 1, . . . , �), the CGN

algorithm 2.33 for system (4.48) yields

(
‖rk‖Sh

‖r0‖Sh

)1/k

≤ 2

m2

(
1

k

k∑
j=1

(
|λj(Q

∗
S +QS)|+ λj(Q

∗
SQS)

)) k→∞−−−→ 0,

where m > 0 comes from the S-coercivity of L in Proposition 3.7.

The main advantage of the preconditioner (4.45) is that the corresponding stiffness

matrix is block diagonal. This means that � independent auxiliary linear systems have

to be solved in the CGN algorithm (twice in each iteration step), as explained in

Remark 3.11 for the GCG-LS algorithms.

4.3 A parallel algorithm for decoupled preconditioners

Let us return to system (4.1) and apply the preconditioned (full or truncated) GCG-

LS algorithm. As it has turned out from Section 4.1, using the proposed preconditioner
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(4.6)-(4.7) one has to solve auxiliary decoupled elliptic problems

− div(Ki ∇zi) + σizi = Lid

zi
∣∣
∂Ω

= 0

}
(i = 1, . . . , �), (4.51)

in the FEM subspace Vh. The main advantage is that the stiffness matrix of the

proposed preconditioner is block diagonal, hence the size of the auxiliary systems is

much smaller than the size of the original system. Moreover, fast solvers are available

for Helmholtz problems, i.e. for constant coefficients in (4.51). In this section a parallel

algorithm is developed and tested on a multiprocessor architecture.

4.3.1 Parallelization of the GCG-LS algorithm

The basic advantage of the proposed preconditioner is its inherent parallelism. The

kth iteration of the full version of the preconditioned GCG-LS algorithm 2.51 consists

of two matrix-vector multiplications with matrix Lh, one preconditioning step (solving

a system of equations with the preconditioner), solving a system of sk equations, 3sk+2

inner products, and sk + 2 linked triads (a vector updated by a vector multiplied by a

scalar).

Let us consider a parallel system with p processors. We divide the vectors uk, dk, rk,

zk (defined in Algorithm 2.51) in such a way that the first
⌈
�
p

⌉
blocks are stored in the

first processor, blocks for i =
⌈
�
p

⌉
+1, . . . , 2

⌈
�
p

⌉
in the second processor and so on. Then

the preconditioning step and linked triads do not need any communication between

processors. The computation of inner products requires one global communication to

accumulate the local inner products computed on each processor. Communication time

for computing inner products increases with the number of processors but in general

it is small. The matrix-vector multiplication requires exchanging of data between all

processors. Communication time for matrix-vector multiplication depends on the size

of the matrix and on the number of processors.

4.3.2 Numerical experiments

In this section the results of the numerical experiments are presented. The compu-

tations have been executed on a Linux cluster consisting of 4 dual processor PowerPCs

with G4 450 MHz processors, 512 MB memory per node. The developed parallel code

has been implemented in C and the parallelization has been facilitated using the MPI

library, see in [54, 61]. We use the LAPACK library [2] for computing the Cholesky

factorization of the preconditioner and for solving the auxiliary linear systems arising

in the preconditioned CGM. The optimization options of the compiler have been tuned
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to achieve the best performance. Times have been collected using the MPI provided

timer. Here the best results from multiple runs are reported.

The first test problem is a class of systems of the form (4.1) with � = 2, 3, . . . , 10

equations, where bi = (1, 0) and the matrix V is skew-symmetric with elements which

are randomly generated constants. Our second test problem comes from the time dis-

cretization and Newton linearization of a nonlinear reaction-convection-diffusion sys-

tem of 10 equations, used in meteorological air-pollution models (cf. [68]). Since the

run times here have proved to be very similar to the case of a random 10× 10 matrix

in the first test problem, we will only present the test results for the first problem.

In what follows, we analyze the obtained parallel time Tp on p processors, relative

parallel speed-up Sp =
T1

Tp
≤ p and relative efficiency Ep =

Sp

p
≤ 1.

In the experiments we used a stopping criterion ‖rk‖ ≤ 10−14. Table 4.8 shows the

required number of iterations.

Tab. 4.8: Number of iterations.

1/h �
1 2 3 4 5 6 7 8 9 10

8 9 10 11 12 12 12 13 13 14 14
16 9 10 12 12 13 13 13 14 14 14
32 9 10 12 12 13 13 14 14 14 14
64 9 10 12 12 13 13 14 14 14 14

128 9 10 12 12 13 13 14 14 14 14

The obtained parallel time Tp on p processors is presented in Tables 4.9 and 4.10.

Here � denotes the number of equations. The first column consists of the number of

processors. The execution time for problems with h−1 = 32, 64, 128, 192, 256 in seconds

is shown in the next columns. The execution times of the full and truncated version

of the algorithm are similar. Because of that we put in Table 4.10 execution times

only for systems of 8 and 10 equations. One can see that for relatively small problems,

the execution time on one processor is less than one second and parallelization is not

necessary. For medium size problems the parallel efficiency on two processors is close to

90% but on three and more processors it decreases. The reason is that communication

between two processors in one node is much faster than communication between nodes.

For the largest problems (h−1 = 256) the available physical memory was not enough

to solve the problem on one processor. The corresponding numbers in boxes show an

atypical progression which is due to the usage of swap memory. The numerical results

show that the main advantage of the parallel algorithm is that we can easily solve large

problems using a parallel system with distributed memory.
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Tab. 4.9: Execution time for full version of GCG-LS.

p h−1

32 64 128 256
� = 2

1 0.13 1.06 11.30 130.06
2 0.46 0.99 6.50 69.31

� = 3
1 0.22 1.91 19.05 207.86
2 0.55 1.47 13.24 143.40
3 0.60 1.39 8.41 79.30

� = 4

1 0.32 2.64 25.62 648.18
2 0.63 1.86 14.43 332.55
3 0.62 1.67 14.58 149.23
4 0.65 1.66 10.05 84.37

� = 5

1 0.43 3.44 32.73 912.90
2 0.66 2.26 20.79 216.12
3 0.68 2.10 16.25 153.08
4 0.69 1.95 16.31 155.75
5 0.76 2.06 12.38 94.59

� = 6

1 0.54 3.96 39.92 1237.71
2 0.74 2.59 22.10 219.50
3 0.75 2.22 17.15 156.95
4 0.76 2.24 18.09 161.69
5 0.82 2.19 19.06 165.57
6 0.86 2.27 14.98 105.21

p h−1

32 64 128 192 256
� = 7

1 0.66 5.13 47.11 171.49 1479.28
2 0.79 3.17 28.60 103.44 667.80
3 0.77 2.74 23.54 82.53 227.45
4 0.82 2.70 19.14 62.73 166.62
5 0.88 3.55 20.95 66.59 361.98
6 0.94 2.80 21.71 68.22 176.53
7 0.97 2.78 18.56 51.21 119.14

� = 8

1 0.79 5.96 54.17 306.79 1725.53
2 0.86 3.74 29.99 104.48 771.83
3 0.84 3.30 25.52 86.95 233.69
4 0.86 3.08 19.95 64.44 170.92
5 0.94 3.55 22.14 69.20 178.03
6 1.02 3.62 24.37 73.58 183.49
7 1.07 3.78 25.52 76.36 190.79
8 1.08 4.67 22.30 59.38 132.55

� = 10

1 1.08 7.97 70.15 688.04
2 0.97 4.89 38.64 132.98 1111.04
3 0.95 4.16 32.82 113.15 685.93
4 0.99 4.43 28.75 94.33 248.61
5 1.12 4.13 25.35 76.26 434.87
6 1.18 4.50 27.88 81.52 197.62
7 1.22 4.69 29.99 86.40 205.91
8 1.30 5.49 32.45 92.05 212.42

Tab. 4.10: Execution time for GCG-LS(0).

p h−1

32 64 128 256
� = 8

1 0.84 6.07 57.02 2046.74
2 0.48 3.46 31.01 935.01
3 0.51 3.16 26.69 255.81
4 0.59 2.99 21.45 189.93
5 0.67 3.52 23.86 428.05
6 0.76 3.62 26.81 437.50
7 0.82 4.15 29.04 215.17
8 0.85 5.38 26.00 155.73

p h−1

32 64 128 256
� = 10

1 1.16 8.51 76.50
2 0.65 4.87 41.57 1335.88
3 0.67 4.55 36.44 817.74
4 0.71 4.46 32.03 275.20
5 0.86 4.72 29.53 522.18
6 0.96 5.14 32.62 533.91
7 1.06 5.77 35.31 471.83
8 1.09 6.60 38.63 482.45
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Figure 4.1 shows the speed-up Sp of the full version of the algorithm obtained for

h−1 = 128 and � = 3, 4, . . . , 10. As it was expected when the number of equations � is
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Fig. 4.1: Speed-up of the full version of GCG-LS algorithm.

divisible by the number of processors p the parallel efficiency of the parallel algorithm

is higher. The reason is the partitioning of the vectors uk, dk, rk, zk onto the processors

described in previous subsection.

The proposed preconditioner has inherent parallelism—the preconditioning step

is implemented without any communications between processors. It has been shown

that the code parallelizes well, resulting in a highly efficient treatment of large-scale

problems confirmed by the numerical results.



5. OTHER PROBLEMS

In the last chapter we touch upon some related topics where the results of the

previous chapters can be used. First we consider the application of nonsymmetric

preconditioners to convection-diffusion equations, which can be useful when symmetric

operators do not approximate the original operator well, e.g. when the convection term

is large (cf. [37]). Then we apply the results of Section 4.2 to nonlinear problems (based

on [3, 40]), where the linearized auxiliary equation in the damped inexact Newton

method has the form (4.41). Finally a parabolic transport system is considered, where

– after time discretization – a nonlinear elliptic system has to be solved on each time

level (see [35]).

5.1 Some results on singularly perturbed problems

We consider the iterative solution of large linear systems arising form the discretiza-

tion of nonsymmetric elliptic problems such as convection-diffusion systems. A precon-

ditioned conjugate gradient method is used, where a nonsymmetric preconditioning op-

erator with constant coefficients is proposed. In this section we study the behaviour of

convergence as convection is increasingly dominating. For such convection-dominated

problems the suitable choice of preconditioning operator includes nonsymmetric (first

order) terms.

Let us consider a general elliptic convection-diffusion BVP

− div(A ∇u) + b · ∇u+ cu = g

u
∣∣
ΓD

= 0,
∂u

∂νA
+ αu

∣∣
ΓN

= γ,

⎫⎬⎭ (5.1)

where Assumptions 3.5 are supposed to be hold, and g ∈ L2(Ω), γ ∈ L2(ΓN). Then the

corresponding operator L has the form (3.25). Further, we introduce the symmetric

operator S as defined in (3.26) satisfying Assumptions 3.6 and the energy inner product

(3.28). We define the Sobolev space H1
D(Ω) = {u ∈ H1(Ω) : u

∣∣
ΓD

= 0} which can be

identified with the energy space HS (see Remark 3.8). Then Assumptions 3.5 ensure

that problem (5.1) has a unique weak solution u ∈ H1
D(Ω).

We wish to solve equation (5.1) applying finite element discretization of the problem.
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Let Vh = span{ϕ1, . . . , ϕn} ⊂ H1
D(Ω) be a given n dimensional FEM subspace. We

seek the FEM solution uh ∈ Vh, which requires solving the n× n system

Lhc = dh, (5.2)

where Lh and dh are defined in (3.33) and (3.34), respectively. System (5.2) is solved

by a proper preconditioned conjugate gradient method. Owing to its nonsymmetry, we

use the preconditioned CGN algorithm 2.33. Let us define the nonsymmetric precon-

ditioning operator

K ≡
(
T

V

)
, K

(
u

η

)
=

(
Tu

V η

)
=

⎛⎝− div(A ∇u) +w · ∇u+ zu
∂η

∂νA
+ ζη

∣∣
ΓN

⎞⎠ (5.3)

for some properly chosen functions w, z, ζ, where K satisfies Assumptions 3.5 in the

obvious sense. Then by Proposition 3.7 the operators L,K ∈ BCS(L
2(Ω) × L2(ΓN)).

Accordingly, the preconditioner for the discretized problem (5.2) is the nonsymmetric

stiffness matrix

(Kh)ij =

∫
Ω

(A ∇ϕi · ∇ϕj + (w · ∇ϕj)ϕi + zϕiϕj) +

∫
ΓN

ζϕiϕj.

Then the preconditioned form of the discrete system (5.2) becomes

K−1
h Lhc = K−1

h dh. (5.4)

For such preconditioners, it is crucial that systems with Kh are much cheaper to solve

(e.g. with some fast solver) than systems with Lh. This is the case, e.g. if K is symmetric

(i.e. w = 0) or if K has constant coefficients. Since the principal parts of L and K

coincide, they are compact-equivalent in H1
D(Ω) with μ = 1, that is, relation

LS = KS +QS

holds in HS with a compact operator QS ∈ B(HS), which is defined – similarly to

(3.42) – as

〈
QS

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

=

〈
LS

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

−
〈
KS

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)〉
S

=

∫
Ω

(
((b−w) · ∇u)v + (c− z)uv

)
+

∫
ΓN

(α− ζ)uv. (5.5)
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Now we apply Algorithm 2.33 for equation (5.4) with A = K−1
h Lh and – by calculating

the Sh-adjoint of K−1
h Lh – with A∗ = S−1

h LT
hK

−T
h Sh. Then the following result holds.

Proposition 5.1. (cf. [10, Thm. 4.3]) Suppose that Assumptions 3.5 hold for the

operators L and K (defined in (3.25) and (5.3), respectively), and Assumptions 3.6

hold for the operator S (given in (3.26)). Let the compact operator QS be defined as in

(5.5). Let Vh ⊂ H1
D(Ω) be an arbitrary FEM subspace and consider the discrete equation

(5.2) with the stiffness matrix Kh as preconditioner. Then the preconditioned CGN

algorithm 2.33 converges superlinearly in a mesh independent way, i.e. the residuals

satisfy

(
‖rk‖Sh

‖r0‖Sh

)1/k

≤ 2M2
K

m2
L

(
1

k

k∑
i=1

(
2

mK

√
λi(Q∗

SQS) +
1

m2
K

λi(Q
∗
SQS)

))
k→∞−−−→ 0, (5.6)

where the positive constants mL,mK ,MK come from the S-coercivity and S-bounded-

ness of L and K.

Let us consider the following special case of problem (5.1):

−νΔu+ b · ∇u+ cu = g

u
∣∣
ΓD

= 0,
∂u

∂ν
+ αu

∣∣
ΓN

= γ,

⎫⎬⎭ (5.7)

where ν > 0 is constant. The coefficient functions b, c, α satisfy Assumptions 3.5. In

such problems ν is often small, which means that the problem is convection-dominated.

Accordingly, the preconditioning operator (5.3) is

K

(
u

u
∣∣
ΓN

)
=

⎛⎝−νΔu+w · ∇u+ zu
∂u

∂ν
+ ζu

∣∣
ΓN

⎞⎠ , (5.8)

and now we chose w, z, ζ to be constant functions. Then systems with Kh are much

cheaper to solve than systems with Lh, e.g. either with multigrid methods or with some

fast solver for separable equations on proper domains, see e.g. [56].

The choice of w is motivated by the following consideration. When ν is small,

Theorem 5.1 is not so relevant since it is easy to see that the sequence in (5.6) is

proportional to the reciprocal of ν. Although it still tends to zero, this convergence is

numerically less relevant since a prescribed accuracy is achieved increasingly later as

ν → 0 (see Tables 3.8 and 3.10 in Chapter 3). The reason is that the above result is

based on the symmetric part of K, i.e. it essentially gives the same result if w ≡ 0 or w

is large. Therefore, it is recommended to define w to be a good constant approximation

of b. Then, as ν → 0, the limit operators of L and K are b · ∇u+ cu and w · ∇u+ zu,
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respectively. To obtain proportional quantities, we assume from now on that b satisfies

and w is chosen as

0 < β1 ≤ |b| ≤ β2, 0 < β1 ≤ |w| ≤ β2, (5.9)

respectively, for some constants β1, β2. In fact, if we have coordinatewise β
(i)
1 := inf bi

and β
(i)
2 := supbi, then one can define wi :=

1
2

(
β
(i)
1 + β

(i)
2

)
.

For our tests, we consider the following problem:

−νΔu+ b · ∇u+ u = g

u
∣∣
∂Ω

= 0

}
(5.10)

on the unit square Ω = [0, 1]2 ⊂ R
2, where ν > 0 and b = (b1,b2) is a piecewise

constant:

b1(x, y) :=

{
λ if 0.5 < y ≤ 1

2λ if 0 ≤ y ≤ 0.5,
b2(x, y) :=

{
μ if 0 ≤ x ≤ 0.5

2μ if 0.5 < x ≤ 1.

The preconditioning operator is

Ku := −νΔu+w · ∇u+ u

for the same Dirichlet boundary conditions, where the constant vector

w := (1.5λ, 1.5μ)

provides an approximation for the first order term of (5.10). To solve (5.10) numerically,

we used FEM discretization of the problem with piecewise linear elements and the

stopping criterion was

qk :=
‖rk‖Sh

‖r0‖Sh

≤ 10−8

for the CGN algorithm 2.33, where Sh denotes the symmetric part of Lh. The cor-

responding number of iterations is shown in Table 5.1 for the parameters λ = 1 and

μ = 0 (compare with Tables 3.8 and 3.10).

Although the results in Table 5.1 show that the number of iterations is increasing as

ν decreases, it is still reasonable even for small values of ν. Using the symmetric part

of L as preconditioner, the convergence remains slow, but much better results can be

achieved by using the nonsymmetric preconditioner K. This shows that for singularly

perturbed problems the addition of first order terms in the preconditioner improves

the performance of the algorithm considerably.
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Tab. 5.1: Number of iterations for problem (5.10).

1/h
preconditioner: Sh Kh

ν 16 32 64 16 32 64

1 4 4 4 4 4 4
0.1 12 13 13 10 10 10

0.01 53 57 58 18 17 17
0.001 183 239 262 34 31 22

0.0001 308 613 799 50 90 96

5.2 Applications of compact-equivalence to nonlinear problems

The operator pair approach can be applied to nonlinear systems. Here we identify

again the spaces H1
D(Ω)

� and HS, and the inner product in the product space H1
D(Ω)

�

will be denoted by simply 〈·, ·〉H1
D
.

Consider the nonlinear transport system

− div(Ki ∇ui) + bi · ∇ui + fi(x, u1, . . . , u�) = gi

ui

∣∣
ΓD

= 0, Ki
∂ui

∂ν
= γi

⎫⎬⎭ (i = 1, . . . , �) (5.11)

on a bounded domain Ω ⊂ R
d (d = 2 or 3) under the following assumptions:

Assumptions 5.2. Suppose that

(i) Ω ⊂ R
d is a bounded piecewise C1 domain; ΓD,ΓN are disjoint open measurable

subparts of ∂Ω such that ∂Ω = ΓD ∪ ΓN ;

(ii) Ki ∈ L∞(Ω), bi ∈ C1(Ω)d, gi ∈ L2(Ω) and γi ∈ L2(ΓN) (i = 1, . . . , �), further,

the function f = (f1, . . . , f�) : Ω × R
� → R

� is measurable and bounded with

respect to the variable x ∈ Ω and C1 in the variable ξ ∈ R
�;

(iii) there exists m > 0 such that Ki ≥ m holds for all i = 1, . . . , �, further,

f ′
ξ(x, ξ)η · η −

1

2

(
max
1≤i≤�

divbi(x)

)
|η|2 ≥ 0 ∀ (x, ξ) ∈ Ω× R

d, η ∈ R
d;

(iv) let 3 ≤ p (if d = 2) or 3 ≤ p ≤ 6 (if d = 3), then there exists constants c1, c2 > 0

such that for any (x, ξ1), (x, ξ2) ∈ Ω× R
�

∥∥f ′
ξ(x, ξ1)− f ′

ξ(x, ξ2)
∥∥ ≤

(
c1 + c2 (max{|ξ1| , |ξ2|})p−3) |ξ1 − ξ2| .
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Systems of the form (5.11) arise for instance from the time discretization of nonlin-

ear reaction-convection-diffusion systems. Such systems with homogeneous Dirichlet

boundary conditions have been investigated in [3]. The first part of this section is

based on that. The proofs given there can be easily modified for the present situation.

For brevity, we write (5.11) as

− div(K ∇u) + b · ∇u+ f(x,u) = g

u
∣∣
ΓD

= 0, K
∂u

∂ν
= γ

⎫⎬⎭ (5.12)

using vector notations. For any u ∈ H1
D(Ω)

� let

〈F (u),v〉H1
D
=

∫
Ω

�∑
i=1

(
Ki ∇ui · ∇vi + (bi · ∇ui) vi + fi(x,u)vi

)
=

∫
Ω

(
K ∇u · ∇v + (b · ∇u) · v + f(x,u) · v

) (
v ∈ H1

D(Ω)
�
) (5.13)

Owing to Assumptions 5.2 this relation defines a Gâteaux differentiable operator F :

H1
D(Ω)

� → H1
D(Ω)

� via the Riesz representation theorem, since for any given u ∈
H1

D(Ω)
� the integral above defines a bounded linear functional on H1

D(Ω)
�. The proof

of the theorem below, which relies on the Riesz representation theorem, can be found

in [3] for Dirichlet boundary conditions, but it can be easily modified for the present

case.

Proposition 5.3. System (5.11) has a unique weak solution, i.e. there exists u ∈
H1

D(Ω)
� such that

〈F (u),v〉H1
D
=

∫
Ω

g · v +

∫
ΓN

γ · v
(
v ∈ H1

D(Ω)
�
)
.

Let us consider the FEM discretization of (5.13) in the n dimensional FEM subspace

Vh = span{ϕ1, . . . , ϕn} ⊂ H1
D(Ω) and we seek the FEM solution uh ∈ V �

h :

〈F (uh),vh〉H1
D
=

∫
Ω

g · vh +

∫
ΓN

γ · vh

(
vh ∈ V �

h

)
.

The operator Fh : V �
h → V �

h and the function fh ∈ V �
h are defined by the identities

〈Fh(uh),vh〉H1
D
= 〈F (uh),vh〉H1

D

(
vh ∈ V �

h

)
,

〈fh,vh〉H1
D
=

∫
Ω

g · vh +

∫
ΓN

γ · vh

(
vh ∈ V �

h

)
,
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thus the problem can be written as a nonlinear algebraic system

Fh(uh) = fh. (5.14)

We apply the damped inexact Newton method (DIN) for the iterative solution of

problem (5.14). The construction of the DIN method and the related convergence

result is as follows.

Let u0 ∈ V �
h be arbitrary. The sequence (un) ⊂ V �

h is constructed as

Algorithm 5.4 (DIN).

• un+1 = un + τnpn, where

• denoting the residual by rh = fh − Fh(un), the vector pn is the solution of

‖F ′
h(un)pn − rh‖H1

D
≤ δn ‖rh‖H1

D
with 0 < δn ≤ δ0 < 1,

• τn = min

{
1,

1− δn
(1 + δn)2

m2

L ‖Fh(un)− fh‖H1
D

}
.

Theorem 5.5. Let Assumptions 5.2 hold. If δn ≤ const · ‖Fh(un)− fh‖γH1
D

with some

0 < γ ≤ 1, then the convergence is locally of order 1 + γ, that is the convergence is

linear for n0 steps until ‖Fh(un)− fh‖γH1
D

≤ ε, where ε ≤ (1 − δ0)
m2

2L
(here and in the

definition of τn the constant L comes from the Lipschitz continuity of F ′), and further

on (as τn ≡ 1)

‖un − uh‖H1
D
≤ d1q

(1+γ)n−n0

with some d1 > 0, 0 < q < 1, which provides mesh independent convergence rate for

the DIN method.

It can be shown that the conditions of [22, Thm. 5.12] are satisfied. This has been

done for Dirichlet boundary conditions in [3] and that argument can also be applied to

the present case with minor modifications. In each step the construction of un requires

the approximate solution of the linearized problem

F ′
h(un)ph = rn, (5.15)

which is equivalent to the FEM solution in V �
h of the linear elliptic system

− div(Ki ∇pi) + bi · ∇pi +
�∑

j=1

∂jfi(x,un)pj = ri

pi
∣∣
ΓD

= 0, Ki
∂pi
∂ν

= �i

⎫⎪⎪⎬⎪⎪⎭ (i = 1, . . . , �) (5.16)
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where

ri = gi + div(Ki ∇un,i)− bi · ∇un,i − fi(x,un) and �i = γi −Ki
∂un,i

∂ν
.

Denoting by c and d the coefficient vectors of ph and rh, and by L
(n)
h the stiffness matrix

corresponding to (5.16), equation (5.15) requires the solution of the linear algebraic

system

L
(n)
h c = d. (5.17)

The equivalent operator framework of Section 4.2 can be applied to the auxiliary lin-

ear problem (5.16), since it has the form (4.38). The preconditioner for the discrete

system (5.17) is defined as the stiffness matrix Sh of S in H1
D(Ω)

�, where S is defined

as in (4.44)-(4.45) with Gi = Ki. Then we apply the CGN algorithm 2.33 for the

preconditioned system

S−1
h L

(n)
h c = S−1

h d.

Combining the convergence results for the CGN and the DIN algorithms 2.33 and 5.4,

the combined iteration provides mesh independent convergence, with superlinear con-

vergence rate for both the inner and outer iterations (see Corollary 4.12 and Theorem

5.5). Moreover, the operators Si are decoupled, hence in each Newton step the lin-

earized system (5.16) is preconditioned by an �-tuple of independent symmetric elliptic

operators.

5.3 A convergent time discretization scheme for nonlinear parabolic

transport systems

Nonlinear parabolic systems arise in various mathematical models where transport

type processes are involved, and their numerical solution is a challenging task ([68]).

This is both due to the compound nature of the equations that involve second, first

and zeroth-order terms (i.e. describing diffusion, convection and reaction type parts of

the process), and the large size of the problem that comes both from the possibly huge

number of equations and from the discretization.

In this section we introduce an approach combining time discretization with outer-

inner iterations, proposed for the finite element discretization of the problem. The

outer-inner iterations for the elliptic subproblems involve the damped inexact Newton

and the preconditioned conjugate gradient methods (PCG), exploiting their superlinear

convergence properties, based on [3, 10]. First we describe the problem, then some

numerical experiments are presented for reaction-convection-diffusion systems from air
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pollution models.

We consider systems of the form

∂ui

∂t
− div(Ki(x) ∇ui) + bi · ∇ui + ci(x)ui + fi(x, t, u1, . . . , u�) = 0

ui(x, 0) = ϕi(x) (x ∈ Ω), ui

∣∣
∂Ω×R+

= 0,

⎫⎬⎭ (5.18)

(i = 1, . . . , �), under the following assumptions:

Assumptions 5.6. Suppose that

(i) the bounded domain Ω ⊂ R
d is C2-diffeomorphic to a convex domain;

(ii) for all i = 1, . . . , � the functions Ki ∈ C1(Ω) and bi ∈ C1(Ω)d, further, the

function f = (f1, . . . , f�) : Ω × R
+ × R

� → R
� is measurable and bounded with

respect to the variable x ∈ Ω and C1 in the variables t ≥ 0 and ξ ∈ R
�;

(iii) there exists m > 0 such that

Ki ≥ m and ci −
1

2
divbi ≥ 0 (i = 1, . . . , �);

(iv) there exists c0 > 0 such that

f ′
ξ(x, ξ)η · η −

1

2

(
max
1≤i≤�

divbi(x)

)
|η|2 ≥ −c0 |η|2 ∀ (x, ξ) ∈ Ω× R

d, η ∈ R
d;

(v) let p∗ := +∞ (if d = 2) or p∗ := 2d
d−2

(if d > 2, where d is the space dimension).

Then there exist constants c1 ≥ 0 and α ≤ p∗

d
such that for any x ∈ Ω, ξ1, ξ2 ∈ R

�

and t ≥ 0

|f(x, t, ξ1)− f(x, t, ξ2)| ≤ c1 (1 + max {|ξ1|α , |ξ2|α}) |ξ1 − ξ2| ;

(vi) ϕi ∈ C(Ω) for all i = 1, . . . , �.

Systems of the form (5.18) arise e.g. in nonlinear reaction-convection-diffusion sys-

tems such as air pollution models [68], where fi describe the rate of chemical reactions.

Here typically

fi(x, t, u1, . . . , u�) =
�∑

j=1

cijuiuj , (5.19)

in which case α = 1 in assumption (iv).
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For brevity, using obvious vector notations, (5.18) can be written as

∂u

∂t
+ Lu+ f(x, t,u) = 0

u(x, 0) = ϕ(x),

⎫⎬⎭ (5.20)

where

Lu := − div (K ∇u) + b · ∇u+ cu for u ∈
(
H2(Ω) ∩H1

0 (Ω)
)�
. (5.21)

Now some numerical results are presented. Let Ω ⊂ R
2 be the unit square and

Ki ≡ 1 (i = 1, . . . , �) in (5.18), i.e. for simplicity only the case of Laplacian is considered

as the principal part of the elliptic operators. Having chosen the convection term to

be b = (1, 1), the following type of equations are used for the numerical tests:

∂ui

∂t
−Δui +

∂ui

∂x
+

∂ui

∂y
+ fi(x, y, t, u1, . . . , u�) = 0

ui(x, y, 0) = ϕi(x) ((x, y) ∈ [0, 1]2)

ui

∣∣
∂Ω×R+

= 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(i = 1, . . . , �), (5.22)

where a bounded time interval [0, T ] is considered with maximal time T = 1. The

initial function ϕ is a polynomial satisfying the boundary conditions. The nonlinear

terms in (5.22) have the form

f(x, y, t,u) = 4A |u|2 u,

where A ∈ R
�×� is a lower triangular matrix with all 1 entries. This specific choice

ensures that f ′
ξ(x, y, t, ξ) is positive definite. In the first experiment an additional term

has to be added, since an exact solution has to be known to be able to compute the

errors.

In the following tables the number of outer DIN iterations executed is every time

step and the number of outer PCG iterations carried out in each DIN step are denoted

by n and ninn, respectively. The stopping criterion in the DIN method was chosen to

be ‖Fh(u)− bh‖ < 10−8.

First the results of an experiment with 4 equations are presented, with the emphasis

of the mesh independent convergence of the numerical solutions. The exact solutions

of (5.18) were chosen in the form

u∗(x, y) = C ·
(
x− x2

) (
y − y2

)
e−t, (5.23)
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thus another term was added to the nonlinear term fi.

In Table 5.2 the errors are shown in four different points in the time interval, when

various spatial (h = 1/N) and time parameters (τ) were chosen.

Tab. 5.2: First order convergence in τ for 4 equations.

error = ‖uh − u∗‖
t τ N = 8 N = 16 N = 32 N = 64

1/4 0.01111 0.01111 0.01111 0.01111
1/8 0.00597 0.00595 0.00595 0.00595

0.25 1/16 0.00310 0.00307 0.00306 0.00306
1/32 0.00159 0.00156 0.00155 0.00154

1/4 0.01063 0.01061 0.01060 0.01060
1/8 0.00518 0.00515 0.00515 0.00514

0.50 1/16 0.00254 0.00252 0.00251 0.00251
1/32 0.00127 0.00125 0.00124 0.00124

1/4 0.00862 0.00859 0.00858 0.00859
1/8 0.00408 0.00405 0.00405 0.00405

0.75 1/16 0.00199 0.00197 0.00196 0.00195
1/32 0.00099 0.00097 0.00097 0.00096

1/4 0.00677 0.00675 0.00674 0.00674
1/8 0.00318 0.00316 0.00316 0.00316

1.00 1/16 0.00155 0.00153 0.00153 0.00152
1/32 0.00077 0.00076 0.00075 0.00075

Considering the rows, it can be seen that the error is independent of the choice of

the spatial parameter, thus the convergence is mesh independent. Picking up one of

the time levels t in the interval [0, T ] from the first column of Table 5.2, it is obvious

that halving the time parameter τ causes the halving of the errors, thus O(τ) accuracy

can be obtained in this procedure with respect to time.

Tab. 5.3: Number of DIN and inner PCG steps for 4 equations, tolerance level = 10
−8.

N = h−1 = 32
t = 0.00 t = 0.25 t = 0.50 t = 0.75

n ‖rh‖Sh
ninn n ‖rh‖Sh

ninn n ‖rh‖Sh
ninn n ‖rh‖Sh

ninn

0 0.34450858 1 0 0.27899503 1 0 0.21905425 1 0 0.17089308 1
1 0.10386448 2 1 0.08408514 2 1 0.06601429 2 1 0.05149946 2
2 0.00915977 2 2 0.00743173 2 2 0.00584812 2 2 0.00457164 2
3 0.00007365 4 3 0.00004867 5 3 0.00003060 5 3 0.00001933 5
4 0.00000045 5 4 0.00000024 5 4 0.00000012 5 4 0.00000006 4
5 0.00000000 - 5 0.00000000 - 5 0.00000000 - 5 0.00000000 -

In every time step consecutive DIN iterations have to be carried out until an ac-

ceptable residual error is reached, where in each step an auxiliary equation has to be
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solved using a PCG algorithm for the normalized equation. Thus in the nth DIN step

the residual error ‖rh‖Sh
was checked first, then a PCG was carried out ninn times.

The results for four equations can be seen in Table 5.3.

Tab. 5.4: Number of DIN and inner PCG steps for 10 equations, tolerance level = 10
−8.

N = h−1 = 32
t = 0.00 t = 0.25 t = 0.50 t = 0.75

n ‖rh‖Sh
ninn n ‖rh‖Sh

ninn n ‖rh‖Sh
ninn n ‖rh‖Sh

ninn

0 0.09482921 2 0 0.01575960 2 0 0.00260900 3 0 0.00043107 4
1 0.02841575 2 1 0.00472253 3 1 0.00078171 4 1 0.00012916 4
2 0.00254771 3 2 0.00042270 4 2 0.00006996 5 2 0.00001156 5
3 0.00000222 7 3 0.00000024 6 3 0.00000003 5 3 0.00000000 -
4 0.00000000 - 4 0.00000000 - 4 0.00000000 - - - -

Table 5.4 shows the results for a system of convection-diffusion consisting of 10

equations, where the system is derived from an air pollution model (cf. [68]), from

which the linearized system (4.37) is originated. The residual errors follow the same

pattern as for the smaller problem. Since no exact solution is available, only the

approximate solutions calculated in a pair of grids can be compared, when τ and τ/2

are used as time parameters. The results are shown in Table 5.5 which exhibit the

numerical convergence of the algorithm.

Tab. 5.5: Error estimation in τ for 10 equations.∥∥∥u(τ)
h − u

(τ/2)
h

∥∥∥
t τ N = 8 N = 16 N = 32 N = 64

1/4 5.6032e-03 5.5971e-03 5.5962e-03 5.6078e-03
0.25 1/8 2.9354e-03 2.9157e-03 2.9357e-03 2.9311e-03

1/16 1.3272e-03 1.3174e-03 1.3210e-03 1.3189e-03

1/4 1.5072e-03 1.4957e-03 1.4987e-03 1.4979e-03
0.50 1/8 3.9029e-04 3.8588e-04 3.8338e-04 3.8192e-04

1/16 8.9336e-05 8.7142e-05 8.6723e-05 8.6821e-04

1/4 3.0803e-04 3.0438e-04 3.0280e-04 3.0129e-04
0.75 1/8 3.9768e-05 3.8658e-05 3.8191e-05 3.7851e-05

1/16 4.5972e-06 4.3512e-06 4.2254e-06 4.1974e-06

1/4 5.7434e-05 5.6288e-05 5.5750e-05 5.5580e-05
1.00 1/8 3.7062e-06 3.5447e-06 3.4740e-06 3.4536e-06

1/16 2.1499e-07 1.9754e-07 1.9221e-07 1.8993e-07



SUMMARY

The numerical solution of linear elliptic partial differential equations consists of

two main steps: discretization and iteration, where generally some conjugate gradient

method is used for solving the finite element discretization of the problem. However,

when for elliptic problems the discretization parameter tends to zero, the required num-

ber of iterations for a prescribed tolerance tends to infinity. The remedy is suitable

preconditioning, which can rely on Hilbert space theory. The subject of this thesis is

the investigation and numerical realization of the existing theory of operator precondi-

tioning, and the extension of the theoretical results to cases that have not been covered

before. Operator preconditioning means that the preconditioning process takes place

on the operator level, that is, we look for a suitable preconditioning operator for the

operator equation – based on the theory of equivalent operators – and then we use

its discretization as a preconditioner for the discrete system. In this thesis we have

primarily dealt with symmetric preconditioners. The main results are the following.

In Chapter 3 we have first investigated the theoretical results for convection-diffu-

sion equations with homogeneous mixed boundary conditions. We have shown that

the numerical computations provide better results than the theoretical estimate. The

convergence rate has remained valid even in cases that are not covered by the theory.

Then we have extended the theory to the nonhomogeneous case using operator pairs

and we have obtained an analogous mesh independent convergence result as in the ho-

mogeneous case. We have derived a similar convergence estimate in the finite difference

case for a special model problem.

In Chapter 4 we have extended the mesh independent superlinear convergence re-

sults from equations to systems. An important advantage of the proposed precon-

ditioning method for systems is that one can define decoupled preconditioners, thus

parallelization of the auxiliary systems is available. We have developed and imple-

mented an efficient parallel algorithm for decoupled symmetric preconditioners.

In Chapter 5 we have discussed some related problems where the considered pre-

conditioning approach can be used. We have shown that the use of nonsymmetric pre-

conditioners is more advantageous for singularly perturbed problems than symmetric

preconditioning. The application of the results of the preceding chapters to nonlinear

elliptic and parabolic problems closes the dissertation.



MAGYAR NYELVŰ ÖSSZEFOGLALÁS

Lineáris elliptikus parciális differenciálegyenletek numerikus megoldásának két fő

lépése a diszkretizáció és iteráció. Az esetek nagyrészében egy végeselem-módszerrel

kapott nagyméretű lineáris algebrai egyenletrendszert oldunk meg iterációs eljárás-

sal, például valamilyen konjugált gradiens-módszerrel. A rácsfelosztás finomításával

azonban egy adott pontossághoz szükséges iterációk száma végtelenhez tart. A prob-

léma megoldása a prekondicionálásnak nevezett eljárás, amely Hilbert-terek operá-

torainak elméletére is támaszkodik. A dolgozat tárgya az operátor-prekondicionálás

néhány ismert eredményének vizsgálata és numerikus megvalósítása, továbbá az elmélet

kiterjesztése eddig még nem tárgyalt esetekre. Itt a prekondicionálás operátorszinten

történik, vagyis az adott elliptikus operátoregyenlethez keresünk egy másik alkalmas

elliptikus operátort, amelynek a diszkretizáltját használjuk prekondicionáló mátrixként

a diszkrét egyenlethez. Ebben a dolgozatban elsősorban szimmetrikus prekondicionáló

operátorokkal foglalkoztunk. A témában elért fő eredmények a következők.

A 3. fejezetben elliptikus konvekció-diffúzió egyenleteket vizsgáltunk homogén har-

madfajú peremfeltétel mellett. Megmutattuk, hogy a numerikus számítások jobb ered-

ményeket adnak, mint az elméleti becslések, sőt, a konvergencia gyorsasága az elmélet

által le nem fedett esetekben is érvényben maradt. Ezt követően operátor-párok al-

kalmazásával kiterjesztettük az elméletet az inhomogén peremfeltétel esetére. Végül

hasonló konvergenciabecslést bizonyítottunk véges differenciás diszkretizáció esetén egy

speciális modellfeladatra.

A 4. fejezetben kiterjesztettük az egyenletekre elért rácsfüggetlen szuperlineáris

konvergenciaeredményeket rendszerekre. A vizsgált prekondicionáló eljárás különösen

előnyös tulajdonsága, hogy széteső szimmetrikus prekondicionáló operátor használata

esetén a keletkező segédfeladatok kezelése egymástól független egyenletek megoldását

jelenti, amely jól párhuzamosítható. A fejezet végén bemutattunk és alkalmaztunk egy

ilyen prekondicionáló operátortípusra kifejlesztett párhuzamos algoritmust.

Az 5. fejezetben néhány olyan problémát érintettünk röviden, ahol az eddig tárgyalt

eljárások felhasználhatók. Megmutattuk, hogy szingulárisan perturbált feladatokra a

nemszimmetrikus prekondicionáló operátorok jóval hatékonyabbak, mint a szimmetri-

kusak. Zárásként az előző fejezetek eredményeit alkalmaztuk nemlineáris elliptikus,

illetve parabolikus feladatokra.
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