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Introduction

Ultrafast optics have found numerous applications in the areas of fundamental
research as well as of medicine and industry. Application fields include micro-
machining, two-photon fluorescence microscopy and optical coherence tomography,
time-resolved spectroscopy in femtochemistry, optical frequency metrology, terahertz
generation, etc. Most of these applications utilize femtosecond to picosecond pulses
in the near infrared region (0.75 — 1.4 pm).

The most beneficial from the practical point of view would be to generate and
deliver ultrashort pulses in optical fibers. Generally, ultrashort pulses change their
spectral and temporal shapes during propagation in optical fibers due to the non-
linear and dispersive effects. These effects may be of orders of magnitude higher in
fibers compared to bulk media, because of the long interaction length of light with
matter. Under controlled circumstances, however, pulses can be transmitted over
long distances in fibers with low loss and negligible distortion. On the other hand,
some applications require strong nonlinearity. By their special structure, photonic
crystal fibers offer greatly enhanced design freedom compared to standard optical
fibers. They allow the control of the dispersion profile over a broad wavelength
range, and by the adjustment of the core size and medium, nonlinearity can be
varied on a wide scale, while maintaining single-mode propagation.

During my Ph.D. work, I was engaged in topics on the generation of ultrashort
pulses in fiber lasers, the propagation of such pulses in photonic crystal fibers and
the design of special purpose photonic crystal fibers. Some parts of these topics
included theoretical work with numerical simulations. However, most of the results
described in the theses are experimental, and the research was essentially motivated
by practical applications. An outline and premises of the theses are described in the
followings. The theses are also itemized in the Summary (Chapter 4.5).

Ultrashort pulses are originally generated by complicated setups including dye
lasers exploiting colliding pulse mode-locking or solid-state lasers. Due to the ad-
vances in optical fiber technology, considerable attention is drawn by light sources
that consist of fiber optical components, possibly in an all-fiber setup, for their
compactness. Passively mode-locked lasers are usually operated in the anomalous
dispersion regime. To overcome material dispersion of the optical elements, — i.e.,
the dispersion of standard silica fibers is normal below 1.3 pm, — dispersion com-
pensation is needed in the laser cavity. Previous attempts on the realization of fiber
lasers included dispersion compensation hy bulk optics (e.g. gratings) or dispersion-

managed optical fibers such as photonic crystal or higher-order mode fibers. In



contrast, lately it was shown that stable solutions of passively mode-locked lasers
can be found in the normal dispersion regime as well, which enables the elimination
of dispersion compensation in the cavity and further enhances the possible output
pulse energies. Our purpose was to develop a fiber laser producing femtosecond
pulses around 1 pm. During our work, we focused on the possibility of realization of
an all-fiber, “all-normal dispersion” ytterbium ring oscillator [T3]. The laser oper-
ational and pulse characteristics were investigated, which may contribute to better
understanding the pulse shaping mechanism of passively mode-locked fiber lasers
working in the normal dispersion regime.

Compression of chirped pulses by dispersion-compensation is possible by the use
of fiber integrated components. However, their use is often limited by the nonlinear
interaction of the relative high peak power of pulses with the silica core. A promising
route to avoid nonlinear spectral broadening in a dispersion compensating fiber, is
the application of hollow-core (Bragg) photonic crystal fibers, in which most of the
energy of the pulse is confined in air. It was found, however, that the silica struts
in realistic hollow-core fibers, holding the space between silica layers cause a loss
mechanism, called leaking modes. Our investigations on one-dimensional grazing
incidence dielectric multilayer structures showed that the leaking modes can be elim-
inated by appropriate design of the structure. Calculations by the one-dimensional
transfer matrix method used for the design of plane dielectric multilayer structures
were compared to the full-vectorial finite element method that simulated the ap-
propriate fiber structure |T1|. The qualitative agreement between the simulation
results showed that the one-dimensional model is capable of giving estimates for the
bandgap. It is thus an efficient complementary tool for designing Bragg photonic
crystal fibers, however, it does not eliminate the need for accurate calculations by
the finite element method.

Dispersion-compensation is not sufficient in compressing pulses below the Fourier
transform limit. For this purpose, spectral broadening is necessary which can be re-
alized by nonlinear phenomena in optical fibers. For relatively low peak powers,
the nonlinear spectral broadening can be achieved in photonic crystal fibers with
reduced core size. According to simulations of pulse propagation and optimization
of dispersion-compensation coefficients, experimental demonstration of pulse com-
pression is done on 24 fs pulses from a Ti:sapphire laser [T2].

The composition of ultrashort pulse generation, dispersion compensation and
pulse compression can be introduced in the above context, but in order to follow

the logic of the theoretical background, the sequence of the theses is different and



follows the concept of the Background (Chapter 1). Tn Chapter 1 the theory of
pulse propagation in optical fibers is reviewed by deriving the basic equations for
the transversal modes and the temporal behaviour in the fiber. Simulation methods
for the transversal modes are described in Section 1.3, and the proposed design
method of hollow-core photonic crystal fibers is further detailed based on the one-
dimensional analogy in Chapter 2. Modeling of the temporal behaviour in optical
fibers is done by numerically solving the so-called Nonlinear Schrédinger equation.
The experiment on pulse compression is carried out based on simulations of pulse
propagation in a highly nonlinear photonic crystal fiber. The results are shown in
Chapter 3. Simulation of pulse propagation is also done for fiber lasers. An overview
of these simulations is given in the Background chapter, to help the understanding
of the complex behavior of mode-locked fiber lasers. The experimental work on the

all-fiber, all-normal dispersion ytterbium ring oscillator is described in Chapter 4.



1 Background

In this chapter the basic concepts of pulse propagation in optical fibers
and fiber lasers are discussed. In Section 1.1, a summary of the Theory of
pulse propagation in optical fibers is given, based on [1|. In principle, the
solution of the Helmholtz equation leads to two important equations, one
of which determines the transversal mode distribution, the other one de-
termines longitudinal propagation of pulses. Simulations on fiber modes
by The finite element method |2, 3| and The transfer matriz method of
Bragg fibers |4] are further discussed in Section 1.3. Thesis 1 takes bene-
fit of such simulations in the design of leaking mode free photonic crystal
fibers. The other equation derived from the Helmholtz equation, called
the Nonlinear Schridinger equation, determines the spectral and tempo-
ral evolution of pulses propagating along the fiber. The most important
phenomena in the context of pulse propagation such as dispersion and
nonlinearities are discussed in more detail. In Section 1.2 an introduc-
tion to the different Types of photonic crystal fibers is given [5, 6], which
are extensively used tools for influencing dispersive and nonlinear effects
in a wide range. Photonic crystal fibers are in the focus of Thesis 1 and
2. The Nonlinear Schriédinger equation provides the basis of the simu-
lations for Thesis 2, and also for the Simulation of pulse propagation in
fiber lasers |7], in Section 1.4. This latter section is aimed to help the
understanding of the complex behavior of fiber lasers, corresponding to
Thesis 3. The last section in this chapter is a short review of the theory
of Autocorrelation measurements extensively used in our experimental

work for the characterization of the temporal pulse duration [8].



1.1 Theory of pulse propagation in optical fibers

From Maxwell’s equations one can obtain the wave equation that describes light
propagation in optical fibers [1]:
1 0’E ’P

VXVXE==G ~tge

(1.1)

where E is the electric field, ¢ is the speed of light in vacuum, pg is the vacuum
permeability and P is the induced electric polarization.

The response of any dielectric to light becomes nonlinear for intense electro-
magnetic fields. On a fundamental level, the origin of nonlinear response is related
to anharmonic motion of bound electrons under the influence of an applied field.
As a result, the total polarization P induced by electric dipoles is not linear in the

electric field, but satisfies the more general relation
P=c¢ (X(U "E+? :EE+X<3>5EEE+...>, (1.2)

where g is the vacuum permittivity and ) is the jth order susceptibility.

It is necessary to make several assumptions to solve the wave equation. First,
the nonlinear part of P is treated as a perturbation to the linear part. Secondly,
the fiber losses are regarded small, thus the dielectric constant, e(w) = 1+ x;, is
also treated in a perturbative manner. V x V x E is approximated with —V?E,
assuming VE = 0. It is also a simplification when the field is assumed to maintain its
polarization along the fiber length, so that a scalar approach is valid, although this
does not hold for birefringent media. Optical fibers are typically weakly birefringent,
and the polarization effects are usually neglected. Furthermore, the slowly varying
envelope approximation is adopted.

By separating the rapidly varying part of the electric field (Eq. 1.3) and using the
Fourier transformation E(r,w) = F(E(r,t)), the wave equation can be transformed
to the so-called Helmholtz equation (Eq. 1.4).

E = 1/2¢[E(r,t) exp(—iwpt) + c.c] (1.3)

V2E + (w)kiE =0, (1.4)

where € is the polarization unit vector, r is the space coordinate, ¢ is time, w is the
frequency, wy is the central frequency, c.c. denotes complex conjugate, ky = w/c,
and from the dielectric constant the linear and nonlinear refractive indices can be

deduced as e(w) = (n+An)2. The Helmholtz equation can be solved by the method



of separating the variables in the following form.
B(r,w) = Fla,y)A(z w) exp(iB2), (15)

where F(x,y) is the transverse modal distribution, fl(z,w) is a slowly varying func-
tion of z describing the spectral dependence and exp(iffyz) refers to longitudinal
propagation. (f3y is the wave number, z is the coordinate parallel to the fiber axis,
2 and y are the transverse coordinates.)

The Helmholtz equation leads to the following two equations for F(z,y) and

Az, w).

OF  O°F N
@JraT/ngk(w)ko*ﬁ |F =0, (1.6)
2iﬁog—f +(F-BHA = 0. (1.7)

The eigenvalue [9 of Eq. 1.6 includes the propagation constant, §(w), and its per-
turbation, AfS. [(w) can be expanded to a Taylor-series to describe the different
orders of dispersion, see Eq. 1.10. The perturbation term depends on the modal
distribution and the nonlinear refractive index, A3 = AB(An, F(x,y)).

After all, by using [9, the Fourier transformation of Eq. 1.7 leads to the propa-

gation equation for A(z, t), the so-called Nonlinear Schrodinger equation:

0A 2[5’2 PA g-a . i 5
=7 v+ = 1.
O b2 IR I ity + Lan)lAPA, (19
where
ToWo
y = . 1.9
! Ao (19)

The term including 7, the nonlinear parameter, is self-phase modulation with n,
denoting the nonlinear refractive index, A denoting the effective core area of the
fiber and | A|? representing the optical power. g and « are the gain and loss, respec-
tively, and «s is the parameter for two-photon absorption. The dispersion can be
expressed through the 3(w) propagation constants, so generally the terms propor-
tional to 5; and (5 can be completed with higher order terms of the expansion of
B(w) into it’s Taylor-series. The Nonlinear Schrodinger equation can be extended

by further nonlinear terms such as Raman scattering, self-steepening etc.

Dispersion

The Taylor-series of the §(w) propagation constant is the following:

B(w) = Bo+ Bi(w — wo) + %ﬂz(w —w)’ + éﬁg(m —wo)® 4 ... (1.10)



The dispersion parameters are defined according to this expansion, with the multipli-
cation of the distance (L). The first term gives an initial phase factor, &g = L, the
second is responsible for the group delay, GD= L, #; = 1/v, where v, is the group
velocity, the next term is responsible for the group delay dispersion, GDD= ;L or
group velocity dispersion (GVD), and the last one is for the third order dispersion,
TOD= (3L etc. Another way to take chromatic dispersion into account is through
the refractive indices n(w), which can be given as Sellmeier-equations for different
materials. As an example, see Fig. 1.1 (a) for the refractive index and the calculated
B2 =GDD/L function in the near infrared region.

Blw) =n(w)-

w

- (1.11)

In some fields of optics dispersion is introduced as derivatives with respect to

wavelength. The D parameter (usually given in [ps/nm/km| units) is defined as
follows:

b dB _ ek A

dX pe cd\?

If D is less than zero (GVD> 0), the medium is said to have normal dispersion.

(1.12)

Tf D is greater than zero (GVD< 0), the medium has anomalous dispersion. Tf
a light pulse is propagated through a normally dispersive medium, the higher fre-
quency components travel slower than the lower frequency components. The pulse
is said to be positively chirped, i.e. increasing in frequency with time and vice versa.
This causes a short pulse to spread in time, as it is plotted in Fig. 1.1 (b). Tt is
to be mentioned, that for a Fourier transform limited pulse, i.e., a pulse with zero
chirp, both positive and negative GVD have the same effect in case of a symmetrical
spectrum. And another important feature is that the broadening caused by a fix
amount of GDD on a shorter (Gaussian) pulse is more significant due to the relation
T = Tom, where 7T is the half-width of the chirped pulse, while Ty
is the half-width of the transform-limited pulse at 1/e intensity. The TOD leads
to further modulation of the pulse shape, as plotted on the same graph. There are
generally two sources of dispersion: material dispersion and waveguide dispersion.
Material dispersion comes from a frequency-dependent response of a medium to elec-
tromagnetic waves. For example, material dispersion leads to undesired chromatic
aberration in a lens or the separation of colors in a prism. Waveguide dispersion
occurs when the speed of a wave in a waveguide (such as an optical fiber) depends
on its frequency for geometric reasons, independent of any frequency dependence of
the materials from which it is constructed. More generally, waveguide dispersion can

occur for waves propagating through any inhomogeneous structure (e.g. a photonic
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Figure 1.1: (a) Refractive index and dispersion (8;) of fused silica, calculated from
the Sellmeier equation, and (b) the effect of dispersion (GDD, TOD) on a ~ 20 fs

transform-limited pulse.

crystal), whether or not the waves are confined to some region. In general, both
types of dispersion may be present, although they are not strictly additive [2].

Waveguide dispersion can be used to shift the zero-dispersion wavelength (1.3 pm,
see Fig. 1.1 (a)) of silica fibers. This can be done by appropriately changing
the cladding structure, especially by creating a photonic crystal structure in the
cladding, and thus significantly modifying the dispersion curve.

A similar effect to chromatic dispersion due to a somewhat different phenomenon
is modal dispersion, caused by a waveguide having multiple modes at a given fre-
quency, each with a different speed. A special case of this is polarization mode
dispersion, which comes from a superposition of two modes that travel at different

speeds due to random imperfections that break the symmetry of the waveguide.

Nonlinearity

The nonlinear response of dielectric materials to the electric field is described by
Eq. 1.2. The linear susceptibility ") represents the dominant contribution to P,
and its effects are characterized by the refractive index n and the attenuation co-
efficient a. The second order susceptibility x® is responsible for such nonlinear
effects as second-harmonic and sum-frequency generation. However, for media with
inversion symmetry at the molecular level, such as SiO,, x® vanishes. As a re-
sult, silica fibers normally do not exhibit second-order nonlinear effects. The third
order susceptibility x® is responsible for phenomena such as nonlinear refraction,
third-harmonic generation, and four-wave mixing. To generate new frequencies by

the latter two effects the phase-matching condition has to be fulfilled. The most
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common nonlinear effect in optical fibers is thus the nonlinear refraction, i.e., the

intensity dependence of the refractive index. The refractive index is given as:
n(w, |E)?) = n(w) + nol, (1.13)

where I = 22| E|? is the optical intensity, and ny is the nonlinear refractive index,
related to the real part of the fourth-rank tensor x®) as ny = 3/(8n)R(x ). ny is
typically 2.2 — 3.4 x 1072° m?/W in silica fibers. It is to be noted, that the tensorial
nature of x® influences the polarization properties of the beams through nonlinear
birefringence. The intensity dependence of the refractive index leads to phenomena
such as self-phase modulation (SPM) and cross-phase modulation (XPM). SPM
refers to self-induced phase shift experienced by the optical field during propagation

in the nonlinear material, by

This phase shift leads to spectral broadening of ultrashort pulses, as shown in

Fig. 1.2. It is to be mentioned that nonlinear and dispersive effects might can-
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Figure 1.2: Effect of self-phase modulation proportional to the nonlinear phase shift.

cel out in a medium, this phenomenon results in the so-called solitons. These are
self-reinforcing waves that maintain their shape during propagation.

Although Eq. 1.7 is successful in explaining pulse propagation in most cases, it
has to be modified to include other nonlinear effects such as the inelastic scattering
processes of stimulated Raman and Brillouin scattering. These effects might have
an important role in highly nonlinear fibers for example in continuum generation.

For further reading on nonlinear phenomena in optical fibers, see [1].
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1.2 Types of photonic crystal fibers

Conventional optical fibers consist of a core surrounded by a cladding layer, typically
both made of glass, with the cross-section uniform along the fiber length. To confine
light in the core, the refractive index of the core (e.g. by doping with GeOs) must
be greater than that of the cladding. The waveguiding mechanism works until the
angle of incidence is smaller than the critical angle for total internal reflection. The
boundary between the core and cladding may either be abrupt, as in step-index
fibers, or gradual, as in graded-index fibers. Fibers which can only support a single
transversal mode are called single-mode fibers (SMF). Multi-mode fibers generally
have a larger core diameter, and are used for applications where high power should
be transmitted.

Photonic crystals are composed of periodic (dielectric) structures, of high and
low refractive indices, with a periodicity close to the visible wavelength region (0.1-
10 pm). In general, photonic crystal fibers (PCEs) or micro-structured fibers have
a two-dimensional (2D) photonic crystal structure in the cladding. Considering the
principle of propagation in the fiber there are two types of optical fibers.

In the first type, also known as indez-guiding fibers, the light confinement in the
core is based on total internal reflection, as in conventional optical fibers, see Fig. 1.3
(a). The difference of the core and cladding refractive indices, that determines single-
mode behavior!, can be changed by adding an array of microscopic air-channels into
the cladding running along the fiber length. If the air holes in the cladding are tiny
enough, the effective refractive index of the cladding differs from the core index very
slightly, which gives a small V-parameter even at reasonably high core diameters (see
middle picture in Fig. 1.3 (a) for the structure, and Fig. 1.4 (a) for the refractive
index profiles). Such large mode area (LMA) fibers support a single mode while
being able to transmit high power with reduced nonlinearity (note for the core area
dependence of v, Eq. 1.9). On the other hand, if the air/silica fraction is high in
the cladding, the index difference, and thus the numerical aperture gets high. The
numerical aperture determines the critical angle of incidence for coupling light into
the core of the fiber. In order to achieve high nonlinearity in the fiber, the core size
is reduced. For a fixed collimated beam diameter the focused spot size has to be

reduced, but this can only be done as a trade-off with the focus length of the lens,

!The so-called V-parameter determines the number of modes supported by the fiber. V =

koTcore \/2ore — M2aq- Where ko = 2/, A is the wavelength, 7eore is the core radius, neore is the
core and nciaq is the cladding refractive index, respectively. For a step-index fiber, the single-mode

condition is V' < 2.405 [1].
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i.e., increased numerical aperture. As a consequence, highly nonlinear (NL) fibers
are made of extremely small core sizes (of ~ 1 —2 pm diameter) and high air/silica
fraction for the cladding, to enable high coupling efficiency. The scheme of the cross-
section of such a fiber, and the refractive index profile can be seen in the bottom
picture in Fig. 1.3 (a), and in Fig. 1.4 (a), respectively. A photo of supercontinuum,
generated in a highly nonlinear PCF by a Ti:sapphire laser (@800 nm) is shown in
Fig. 1.5. The energy of the ~ 100 fs pulses was relatively low, a few nano-Joules, and
with this commercially available fiber it was possible to generate a broad spectrum
light in the visible. The hexagonal symmetry of the fiber can be observed on the far
field modal distribution.

The other type of photonic crystal fibers considering the principle of propagation
are photonic-bandgap fibers (PBFs). The confinement of light in the core is based on
the photonic bandgap (PBG) structure of the cladding, prohibiting propagation for
a given incident angle and wavelength range. This is similar to dielectric multilayer
structures, where layers have ~ A\/4 thickness and reflect ~ 100% of the light by
constructive interference, according to the Bragg condition. A special type of PBFs
is the Bragg PBF in which the cladding is formed by concentric rings of dielectric
layers. The waveguiding mechanism in PBFs is illustrated in Fig. 1.3 (b). In these
fibers the refractive index of the core can have any value, light can even be guided in
a hollow-core (HC). The refractive index profile of such a fiber is shown in Fig. 1.4

2 (neg) for the fundamental mode is below the

(b). The effective refractive index
core index, in case of HC fibers it is typically ~ 0.98, and it is dependent on the
angle of incidence and the wavelength. As a consequence, by changing the fiber
structure the dispersion profile can be modified, even up to the third order [J1].
Over the past decade PCFs have attracted increasing interest in many fields as
they offer greatly enhanced design freedom compared to standard optical fibers:
they allow precise control of the nonlinear coefficient and the dispersion profile over
a broad wavelength range. This gives rise to numerous applications, such as dis-
persion control and distortion-free delivery of ultrashort pulses by the elimination
of nonlinear distortion in LMA PCFs or HC PBFs. Furthermore, they also permit
studies of nonlinear pulse propagation in previously inaccessible parameter regimes.
Generally, PCFs are constructed by a similar method to other optical fibers: first,
a set of precision manufactured glass capillaries and rods are stacked into a macro-
scopic “preform” of the desired micro-structure. This preform stack is then fused

together and reduced in size by several orders of magnitude in a fiber-drawing tower.

2nes is related to the propagation constant (Eq. 1.10) as 3 = kones-
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Figure 1.3: Structure of different types of optical fibers according to the principle
of propagation. Confinement in the core might be based on total internal reflection

(a), and on the photonic bandgap structure of the cladding [9] (b).
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Figure 1.4: Index profile of fibers where the propagation is based on total internal

reflection (a), and on the photonic bandgap structure of the cladding (b).

In this way, hundreds of kilometers of fiber can be produced from a single preform

of ~ 1 m.
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Figure 1.5: Photo of a supercontinuum generated in the visible wavelength region
by our Ti:sapphire laser.

1.3 Simulation of fiber modes

Although some important properties of the guided modes in optical fibers can be
qualitatively understood with the use of analytical approaches, the quantitative
analysis of PCFs generally requires rigorous numerical methods [3]. Several power-
ful fully vectorial techniques have been recently adapted to simulations of light
propagation in various classes of PCFs, including the plane wave expansion, the
finite element method (FEM), the expansion in localized functions, the multipole
technique, the source model technique, the finite difference time-domain method
etc. One of the most widely used and successful approach is the FEM, which is
able to provide information on important parameters such as mode field intensity
profiles, the dispersion parameters, and various types of losses in good agreement
with measurement data.

A simplified tool for calculating fiber modes and the bandgap in Bragg fibers is
the transfer matrix method (TMM). This method is valid for fibers with cylindrical
symmetry. Comparison of TMM and FEM calculations were carried out as part of

an effort to find efficient and reliable simulations for fiber modes.
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1.3.1 The finite element method

The finite element method is a numerical technique for finding approximate solutions
of partial differential equations and integral equations.

To determine the transversal fiber modes of a PCF, the propagation constants
and the electric field distributions of the guided modes are calculated from the

following generalized eigenvalue equations:

—

Ey
E.

E.
E.

VJ_XVJ_ X—kéﬂ?(??) 0
0 0

1 v,
Vi A4 kEn(P)

2

)

(1.15)

where the eigenvector £ = [EZ,EZ] is the instantaneous electric field vector in the

PCF cross-section. The eigenvalue is the mode propagation constant, 3, and kg
is the wave number. It is assumed that the z and time dependence of all fields is
expli(wt — 52)].

The basic idea is to replace the infinite dimensional linear problem with a fi-
nite dimensional version. For this purpose one chooses a grid or mesh to discretize
the boundary value problem in a finite dimensional space, called elements, for the
appropriate geometric boundary conditions. The grid consists of triangles or curvi-
linear elements. After that, basis functions are chosen. After this step, we have
concrete formulae for a large but finite dimensional linear problem whose solution
will approximately solve the original boundary value problem. As the underlying
grid becomes finer and finer, the solution of the discrete problem will converge to
the solution of the original boundary value problem.

In order to find the eigenpairs of the above equation, an eigensolver such as the
Arnoldi method and for solving the linear system of equations a solver such as the
asymmetric multifrontal method can be used. Using the spline representation of the
fiber cross section as input data, a mesh for finite element calculations is generated
as seen in Fig. 1.6.

A typical mesh in [3] is composed of ~ 600000 triangular elements (depending
on the structure) and the convergence test on the fundamental mode shows that the

calculated value of the effective index is stable on the sixth decimal place.
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Figure 1.6: 2D mesh on a HC PBF for the FEM simulation (mesh is denser around
the object of interest) [3].

1.3.2 The transfer matrix method of Bragg fibers

During our investigations of fiber modes in PBFs, we made an effort to find sim-
pler and less time-consuming simulation methods compared to FEM. For fibers with
cylindrical symmetry, i.e. consisting of concentric rings of dielectric layers, an effec-
tive simulation method is discussed in [4], called transfer matrix method (TMM).
This method is able to calculate the transversal field distributions for a fixed
value. As a verification of reliability the results on the incident angle in a PBF with
cylindrical symmetry were compared by the two methods.

By considering cylindrical coordinates, the field components E, and Hg can be
expressed with E., and H, and Eg can be expressed with H.. The solution of the

Helmbholtz equation (Eq. 1.4) in homogeneous media for these components are:

E., = [AJ(kr)+ BY;(kr)]cos(I® + ¢) (1.16)
H, = [CJ(kr)+ DY(kr)]cos(1© + ), (1.17)

where k = m, and for the fundamental mode [ = 0. At the boundaries
the field components E., Fg, H. and Hg have to be continuous. The boundary
conditions lead to a matrix equation for the A, B,C, D parameters. Considering
TM mode, i.e., H, =0 in the core, A=1and B=C =D =0, as Yy(r =0) = —o0.
The A, B, C, D coefficients in the first cladding layer are calculated by the following
matrix product:
Ay
By
(&
Dy

= MY (kyre) M (Fyre) (1.18)

= el e
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Figure 1.7: Comparison of the TMM and FEM calculation results on a HC PBF.

The M matrices contain terms with J,(k;r), Y,(k;7), and their derivatives J!(k;r),
Y)(k;r), with ¢ = 1,2 and r = r. the boundary of the core. Similar matrix equations
hold for all of the cladding layers so the A;, B;, C;, D; coefficients are determined by
the M(k;r;) and M (k;;17;) matrices, where ¢ indexes the layer boundaries.

The drawback of this method is that to calculate the field distribution, it is nec-
essary to know k; (or equivalently the ©g angle of incidence)?. So the modes that are
realistically confined in the core can only be determined by the minimization of the
field intensity in the outer layer, that corresponds to energy loss of the propagating
mode.

In Fig. 1.7 calculation results were shown on the hollow-core Bragg photonic
bandgap fiber structure, which was used for the simulation in Chapter 2, in accor-
dance with Fig. 2.7. In the upper inset one can find the refractive index profile of
the Bragg fiber. The lower inset shows mode field intensity distributions calculated
at different wavelengths after the optimization of the angle of incidence for maximal
confinement in the core. It can be seen, that at 500 nm, the field is not zero in
the outer layer, thus the fiber is lossy. The main plot shows the obtained angle of
incidence as a function of wavelength, compared to results calculated by the FEM.
The loss of the fiber could be calculated from the ratio of the field leaking to the
outer layer to the part, that is confined by the cladding. However, as we found
the optimization complicated and the agreement with the results with FEM not

satisfying, we carried on with the simulations on fiber modes by the FEM.

3The propagation constant for the structure is 3 = n.k; sin ©g = n;k; sin©;_; for each layer.
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1.4 Simulation of pulse propagation in fiber lasers

Passively mode-locked fiber lasers represent a dissipative nonlinear system. Their
theoretical modeling is based on the Ginzburg-Landau equation (GLE) or extensions
like the Swift-Hohenberg equation, where the actions within the cavity are averaged
based in the assumption of small changes during one round-trip [10]. The solutions
are the stable attractors that depend on the system parameters (e.g. net-cavity
dispersion) rather than initial conditions. Beside the analytical research based on
the GLE, a numerical approach of following the pulse inside a cavity by transmitting
it through each element has been developed [7]. The numerical modeling of fiber
lasers based on a non-distributed model makes fewer assumptions, it allows large
pulse changes during one round-trip, and maintains the possibility of studying the
intra-cavity pulse evolution.

Fiber lasers consist of a gain fiber, a saturable absorber element (e.g. a saturable
absorber mirror) that is necessary for initiating pulse formation and mode-locking,
an output coupler introducing some loss, dispersion compensation (e.g. a grating
pair) and single-mode fiber pieces. These optical components affect the spectral
and temporal profile of the envelope function that propagates through them. For
simulating the pulse formation, an initial envelope function is evolved through the
different optical elements subsequently, in many round-trips, until the pulse shape
converges to a stable solution. The initial envelope function might be a GGaussian
or other type of pulse or a random field distribution, both generated by giving a
certain spectrum and adding an appropriate spectral phase.

The optical components are taken into account in the following way.

Single mode fibers and the gain fiber are described by the Nonlinear Schrodinger
equation (Eq. 1.8) and are numerically solved by the so-called Split-step Fourier
method [1].

The gain (g), used in the Nonlinear Schrédinger equation follows a phenomenolog-
ical description for the saturation of the population inversion:

9o
—__%_ 1.19
I T 1Y E/Ey (1.19)

go is the small signal gain (typically ~ 30 dB/m), E and E,, are the pulse energy
and the saturation energy, respectively. In the generation of ultrashort pulses the
bandwidth of the gain should be included. In Yb fibers it is usually described by
a parabolic frequency dependence around 1.03 pm, with 40 nm FWHM. Spectral
filtering by other elements may also be included in the model, similarly.

The dispersion compensation is implemented as a phase shift in Fourier space.
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According to the dispersion term in Eq. 1.8, Section 1.1, it can be written as
A(z,w) = A(0,w) - exp(if(w)z). The dispersion coefficients are included in F(w)
(see Eg. 1.10).

The saturable absorber (mirror) is modelled by a transmittance, T' (/reflectance,

R) given by the following equations.

1
T=1-R;, R=Runga+Rem - (1 - ————— . 1.20
! ! ( 1+]Pinst/Psat> ( )

The realistic finite response time of the absorber is neglected as it is assumed to be
much lower than the pulse duration. For low power signals, when the saturable ab-
sorber is unsaturated, it introduces loss i.e., the unsaturated loss, Rynsat. For pulses,
emerging from quantum noise, the loss is reduced, proportionally to Pyt /Psat. Pinst
and Py, are the instantaneous power of the pulse, and the saturation power, respec-
tively, with Py, = \A\Q. After several round-trips in the resonator with gain, the
pulse saturates the absorber. The transmission curve is maximal at the peak of the
pulse and introduces higher loss at the edges, resulting in pulse shaping known as
self-amplitude modulation.

Varying the simulation parameters leads to different pulse formation mecha-
nisms. Investigations in [7] show that by changing Eg,, and the net-cavity dispersion
(GDDyet) may result in different mode-locking regimes (see Section 4.2 for an expla-
nation on mode-locking regimes). For a lower value of Eg, and GDD,, the pulses
show the characteristics of the stretched-pulse regime. For higher values of both
parameters the resulting pulse has parabolic shape and parabolic spectral phase
(linear chirp, constant GVD) implying self-similar mode-locking.

The intra-cavity pulse evolution in the above regimes are shown in Fig. 1.8. The
horizontal axis represents small spatial segments of the cavity in which the temporal
shape of the pulse is characterized. The temporal intensity distributions are plotted
along the vertical axis encoded by colors (red shows high, blue shows low intensity).
For Eq, = 100 pJ, GDD,o; = —0.002 ps? the pulse width has two minimum points
during the roundtrip in the resonator, which is typical for stretched-pulse mode-
locking. In contrast, Eg = 400 pJ and GDD,e = 0.0045 ps? results in only one

minimum point, which is the case in similariton lasers.

1.5 Autocorrelation measurement

The most common technique for characterizing ultrashort laser pulses is the mea-
surement of the autocorrelation (AC) function. The autocorrelation measurement

is usually based on a nonlinear process such as second-harmonic generation. In
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Figure 1.8: Intra-cavity pulse evolution for (a) Egy = 100 pJ, GDD,¢; = —0.002 ps?,
typical for a stretched pulse laser (b) Eg, = 400 pJ and GDD,¢¢ = 0.0045 ps?, typical
for a similariton laser. Yb F, DC, and SMF denote Yb fiber, dispersion compensation
and single mode fibers, respectively, i.e. the components in the cavity. The saturable
absorber and the resonator losses are placed between the Yb F and DC, which can
be identified as an intensity reduction in the graph. (The results are in accordance
with [7].)

this case it is referred to as a second-order autocorrelation measurement [8|. In this
method the pulse is divided by a beam splitter and the two beams are sent through a
nonlinear crystal with variable delay () between the two beams. A second-harmonic
signal is generated in the crystal when the two pulses overlap. Measuring the second-
harmonic power as a function of time delay produces the AC trace. The width of
this trace is related to the pulse duration, however, the exact relationship depends
on the pulse shape.

The second-order interferometric autocorrelation function, recorded by a slow

detector is:

Ine(r) = [ T B + Bt — 7). (121)

o0
In the case of the phase being averaged over time, the signal recorded by a slow
detector is the second-order intensity autocorrelation function:
jo o}
Ine(7) :/ I(t) - I(t — 7)dt. (1.22)
—00

The peak to background ratio in the interferometric and the intensity autocorrela-

tions are 8:1 and 3:1, respectively.
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2 Design of leaking mode free hollow-core
photonic bandgap fibers

In this thesis a method for the proper design of photonic bandgap dielec-
tric structures used at grazing incidence is proposed [T1]. The theory is
based on the one-dimensional (1D) multilayer design (see Section 2.1).
Different designs of one-dimensional photonic bandgap dielectric struc-
tures are compared, and as a result, dielectric laser mirrors are suggested
to be used at grazing incidence (see Section 2.2). The model is extended
to two-dimensional (2D) photonic bandgap dielectric structures and ap-
plied to all-silica hollow-core Bragg photonic bandgap fibers (HC Bragg
PBFs). The principles of the elimination of leaking modes in realistic
HC Bragg PBFs are described in Section 2.3. The results are compared
to simulations done by the finite element method, that takes the realis-
tic 2D cross-sectional structure into account. The qualitative agreement
implies, that the 1D model is capable of giving estimates for the ideal

design of such fibers. The conclusion is drawn is Section 2.4.



2.1 Theory of one-dimensional multilayer design

The behavior of photonic bandgap structures can be understood by regarding the
partial waves reflected from the surfaces of the structure that add up to interfere
[11]. For this, two kinds of phase shifts are considered. One of them directly comes
from the wavelength (\) dependence of the refractive index (n) and can be calculated
as ®(\) = n(\) - L - 27 /), where L is the physical path length in the homogeneous
media. The other kind of phase shift is on reflection and transmission on the surface
of two media with different refractive indices. These are obtained by the Fresnel-
formulae for reflection (r) and transmission (¢) coefficients (see Equations (2.1-2.4))
where O;,,0,,0,; are the incident, reflection and transmission angles, respectively,
and P and S stand for the two polarizations. The phase shifts can be calculated as
the arc-tangent of the ratio of the imaginary and the real parts of the square root
of the Fresnel-coefficients (@, = arctan(%(‘/;)) and the same holds for ¢).

R(vr)
v el eaian .
= o Trsen(@) .
R Ty o
Considering the interface between air (n; = 1.0) and silica (ny ~ 1.45), the

reflection and transmission coefficients and phase changes are plotted as a function
of the incident angle in Figure 2.1.

One can see that when light is incident at small angles all the phase changes on
reflection as well as transmission are either ®,, = 0 or 7. The only distinct region is
when light propagates from the higher index region (ny) to the lower index one (n;)
and ©;, is high. One may assume that this is the case in PBGFs, where the incident
angle is typically above ~ 86°. In contrary, according to Snell’s law * the refracted
angle (of a medium with higher refractive index than that of the incidence medium)
never reaches the critical angle for total internal reflection (TIR) above which the
phases would rapidly change.

In order to investigate different types of multilayer structures the relative phase

shifts of the partial waves reflected from different penetration depths were calculated

4npsin(Oin) = n1sin(0;) = nasin(Os), where Bi,,0; and O, are the angles of refraction in
the ng = 1.0,n; = 1.45 and ny > 1.0 layers, respectively. The critical angle for TIR could only be
exceeded in a structure where ny > ng > ns.
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Figure 2.1: (a) Reflection and (c) transmission coefficients, (b) phase change on
reflection and (dg phase change on transmission at an interface. Black and red lines
refer to an interface where propagation is from the n; to the ny medium and blue
and magenta lines refer to the opposite direction. Furthermore, black and blue lines
refer to P polarization while red and magenta refer to S polarization.

along the reflected wavefront. These calculations were carried out on the structures
that mimic the 2D HC Bragg photonic bandgap fibers, see Section 2.3, Fig. 2.8. The
results give an insight of the origin of the different reflection bands for the slightly
differing multilayer structures.

A short review is given in the following section of a more complicated and ex-
tensively used description of the behavior of multilayer structures, that is used for
e.g. the calculation of the reflection band and dispersion profile of dielectric mir-
rors. The results of 1D simulations in Section 2.2 and 2.3 are calculated with this

method.

2.1.1 Simulation of dielectric multilayer structures

The simulation of dielectric multilayer structures is based on the theory of thin film
interference filters, to be read in [11].
First, a thin, plane parallel film covering a substrate is investigated, as shown in

Fig. 2.2. In this arrangement a number of beams will be produced by the successive
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Figure 2.2: Plane wave entering a thin film

reflections on the surfaces. Considering plane waves the boundary conditions lead
to the following relationship for the tangential components E, H of the electric (E)
and magnetic (H) waves. Starting from boundary “b” the waves at boundary “a”
can be expressed from the summation of waves propagating towards and backwards

from the substrate and by adding the appropriate phase factors.

E, cos ) i-sind/n £, (2.5)
= 5
H, 7-8ind - cos 0 H,

The phase factor accounting for the propagation in the thin film is:

2
0= TﬂdN cos O, (2.6)

and the following further quantities are used. 7, the optical admittance is intro-
duced to describe the relationship between E and H. For P waves the field vectors’
components parallel to the boundary are H, and £, and for the S waves they are £,
and H,. From the Maxwell-equations containing the curl of E and H the following
is deduced:

H, N

= e _N.%/cos6 2.7

p E,  cucos(©) fcos® (2.7)
HT

Ns = —=N-%-cosO (2.8)
E,

Y = (eo/po)"? = 2.6544 - 10778, (2.9)

where N = n — ik is the complex refractive index, ¢ is the speed of light in vacuum,
4 is the permeability, © is the refraction angle in the medium (here in the thin
film). % is the optical admittance of free space involving py and the permittivity,
o, in free space and we take the assumption that the relative permeability is unity

at optical frequencies (p, = pu/po ~ 1).
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For the later calculations on thin films it is useful to introduce Y = H,/E,,
the ratio of the electric and magnetic field components at surface of the (multi)layer
structure, and 1, = H,/ E}, as the modified admittance of the substrate and 7, denote

the modified admittance of the thin film layer thus write Eq. (2.5) in the form

_ [ cos 0 i-sind/m :| |: 1

1

Eq
Y

e Ey (2.10)
i-sind-m cos d 2

An assembly of layers can then be described by the product of successive matrices,

in an order starting from the substrate towards the incident medium.

il o om0 e

S| iesing, - n, oS 0, Im

B
C

where r = 1...q is the index of the layers, and m refers to the substrate layer. The
B
matrix product o is the characteristic matrix of the assembly and Y = B/C.

O, are determined by Snell’s law (Nysin ©g) = N, sin©,(\)) and ¢, are according
to Eq. (2.6) using the parameters of the appropriate layers.

The physical quantities that are calculated are e.g. the reflection, transmission,
(absorption), phase delay and by derivations the group delay dispersion ® as a func-

tion of wavelength (\) and possibly angle of incidence etc.

see Section 1.1 for the definition of GDD
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2.2 Analysis of one-dimensional structures
2.2.1 Motivation

Multilayer (ML) structures designed on the basis of the Bragg condition are exten-
sively used as high reflectors for neutrons and electromagnetic waves. While such
mirrors are usually designed for normal incidence for most of the electromagnetic
spectrum, for neutrons and X-rays they are designed to be used at grazing incidence
for the following reason. The refractive index difference between the alternating
layers in these wavelength regions is relatively low and it can be shown that high
reflectance in a meaningful bandwidth can only be obtained at a high value of an-
gle of incidence [11]. Typically multilayers are composed of Ni/Ti and Mo/Si and
they are used at 85 — 90° angle of incidence (1 — 5° and < 1° according to their
conventional notations) for neutrons and X-rays, respectively.

A technique to further increase the bandwidth of grazing incidence neutron and
X-ray mirrors is “chirping” i.e. properly varying the Bragg period of the multilayer
structure [12]. This method has also been successfully applied in the design of
ultrabroadband dielectric mirrors, — used at normal incidence — for broadly tunable
and ultrashort pulse femtosecond systems [13, 14].

Interestingly, grazing incidence quarter-wave dielectric mirrors have not been ap-
plied in the construction of laser resonators yet, despite the fact that the bandwidth
of such mirrors is considerably higher than for normal incidence ones (this refers
to S-polarized light only). The use of grazing incidence dielectric mirrors instead
of ultrabroadband chirped mirrors could be desirable in some applications because
of the following reasons: (i) grazing incidence dielectric mirrors require much lower
number of layers than chirped mirrors to reach the same reflectivity (this might be
advantageous in the near IR regime where the physical thickness of the layers is
relatively high) and (ii) periodic grazing incidence structures have a smooth group
delay dispersion (GDD) function, free from oscillations and (iii) periodic grazing in-
cidence mirrors exhibit much lower group delay upon reflection, consequently they
exhibit considerably lower absorption and scattering loss as well [15]. As a matter of
fact, the bandwidth of periodic grazing incidence dielectric mirrors is comparable to
that of normal incidence chirped mirrors built of the same dielectric layer materials.
However, besides the constrains on the cavity geometry a disadvantage of the former
could be that they do not provide considerable negative GDD upon reflection that

is preferred in mirror dispersion controlled laser systems [16].
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2.2.2 Design of grazing incidence dielectric mirrors

Periodic dielectric structures exhibit a photonic bandgap when the beams partially
reflected on the layer interfaces meet in phase upon reflection (Bragg condition). In
case of two valued periodic index profiles, the highest reflectivity and the highest
bandwidth is obtained when the alternating high (H) and low (L) index dielectric
layers have quarter-wave optical thicknesses [11, 15]. However, the full bandwidth
offered by broadband solid state gain media such as Ti:sapphire could not be utilized
until properly designed aperiodic dielectric mirrors known as chirped mirrors were
devised |13, 14, 16]. They provide a higher bandwidth compared to quarter-wave
dielectric mirrors, a smooth, engineerable dispersion profile with anomalous disper-
sion over most of the bandwidth, which allowed construction of mirror dispersion
controlled femtosecond pulse solid state laser oscillators delivering sub-10-fs pulses
directly at the laser output [16]. In all of these applications, the dielectric mirrors
were used at nearly normal incidence of light. In the followings we show that simi-
larly high bandwidth and a smooth dispersion profile can be obtained when periodic
dielectric mirrors are used for grazing incidence of light.

Generally, at oblique incidence, there are two facts that have to be considered
at the design stage: first, the optical thickness of the layers have to be corrected by
the cosine of the angle of refraction in the given layer, which practically introduces
a blue shift of the reflection band, secondly, the refractive index difference between
the layers and the polarization of the electromagnetic wave (S- or P-polarization)
determine the useful bandwidth of quarter-wave high reflectors.

In order to compare the optical performance of different multilayer designs, we
have calculated the reflectivity, the group delay, and the GDD as a function of
wavelength of the following structures. A periodic multilayer structure of 24 periods
of layer pairs (with ng = 2.315 and np = 1.45 refractive indices) was designed
for normal incidence light obeying the quarter-wave condition, for A\g = 790 nm
central wavelength (see Fig. 2.3 (a)), resulting in a ~ 230 nm wide bandgap. A
similar structure was chirped and optimized in Ref. [13] in order to broaden the
bandgap and smooth the dispersion function of the chirped structure. This resulted
in an extended reflection band ranging from 660 to 1060 nm (R> 99%) and a
monotonous group delay vs wavelength function with some oscillations in the GDD
(see Fig. 2.3 (b)). Another periodic ML structure with similar parameters is designed
for grazing incidence (80°) S-polarized light. In this case the bandgap extends over
the 660 to 1000 nm wavelength range with a smooth dispersion profile changing sign
in the middle of the bandgap (see Fig. 2.3 (c)).

29



Normal incidence, periodic ML structure

GDD (fs?) 50
1|
50
i 1 40
5 o8t 0 =
o £
2 - 50 <
5 Fi 30 >
Q 06} 700 800 900 &
o @
5 Wavelength (nm)| bl
3 {20 S
g 04 o
g (0]
02 110
0 L i L h 0
600 700 800 900 1000 1100 1200
Wavelength (nm)
(a)
Normal incidence, chirped ML structure
T 7 50
1
40
E 0.9
S - £
S o8 30 >
o 2/ @©
S GDD (fs?) <
§ o7 2
= 20 3
2 <)
& 0.6 0]
10
05 600 700 800 9001000
Wavelength (nm)
04 ELE E . . . . . 0
600 700 800 900 1000 1100 1200
Wavelength (nm)
Grazing incidence, periodic ML structure
50
1|
1 40
= 091
< GDD (fs%) P
8 2
£ 08 ] -~
g ©g
o [)
S 07 ©
= i 120 3
% 06 600 700 800 9001000 5
o ‘Wavelength (nm)
4 10
05
04t

i ey . 0
600 700 800 900 1000 1100 1200
Wavelength (nm)
()

Figure 2.3: (a) Reflectivity and group delay as a function of wavelength for a periodic
multilayer structure designed for normal incidence, (b) for a chirped ML structure
designed for normal incidence and (c¢) for a periodic ML structure designed for
grazing incidence, S-polarization. Group delay dispersion vs wavelength functions
are shown in the insets.
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2.2.3 Applications

The above discussions show that periodic grazing incidence mirrors could be an
alternative of chirped mirrors in broadband or broadly tunable ultrafast lasers. For
example, femtosecond pulse optical parametric oscillators could be based on such
mirrors in a ring oscillator arrangement [17]. In this case it is necessary that mirrors
are designed for a certain angle of incidence that add up to 360°. For instance,
the above described 80° mirrors would require an 18-mirror setup. Another possible
application of grazing incidence dielectric mirrors could be their use in ring oscillators
based on the micro-disk analogy [18].

It has to be pointed out, that the advantage of considering grazing incidence
periodic mirrors as an alternative of normal incidence chirped mirrors is not only
their low and smooth dispersion profile but also the ease of their design and manu-

facturing.
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Figure 2.4: Scanning electron microscope image of the cross-section of a hollow-core
Bragg photonic bandgap fiber |21].

2.3 Design of HC Bragg PBFs
2.3.1 Introduction

Another field of optics where grazing incidence dielectric structures are used is that
of photonic bandgap fibers, especially all-silica hollow-core photonic bandgap fibers,
in which the light is guided in air in order to avoid nonlinear effects [19, 20]. These
fibers exhibit anomalous dispersion in most of the bandgap that makes them an
attractive candidate for dispersion compensation in all-fiber setups. In the present
work, our primary goal was to solve the problem of the so-called “leaking modes”
that could be responsible for resonant losses in HC PBFs, namely in HC all-silica
Bragg PBFs [21]. These fibers can be considered as Bragg fibers [4] because of
their nearly cylindrical symmetry that contains concentric layers of silica and air.
Deviation from the ideal structure is caused by the silica struts that are necessary
to set the spacing between the silica layers, see Fig. 2.4. Attempts to eliminate
leaking modes have — to our knowledge — only been done by numerical models,
investigating the effects of different structural parameters by manual optimization
[22]. until now.

We found that two kinds of loss mechanisms can be distinguished for HC Bragg
PBFs. While leaking modes are due to the high standing wave field in the air spacer
layers and can be removed by correct design of the structure (see optimization
e.g. [22]), “surface modes” still appear in the silica struts due to symmetry concerns
and can only be described by complicated full-vectorial models [23, 24]. We realised

that leaking modes originate in the index rising effect of the silica struts, that in-
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crease the effective refractive index of the air cladding regions above unity, and this
few percent change calls for considerable modification of the optimal layer thickness
values. By proper design, however, the mode anti-crossing events (that cause leak-
ing loss and segment the bandgap to many smaller ones) can be avoided and thus

structures exhibiting an ultrabroad bandgap can be constructed.

2.3.2 Analysis of leaking modes in HC Bragg PBFs

As an approximation, photonic bandgap fibers can be regarded as 2D dielectric
high reflectors, in which light propagates at grazing incidence. The critical angle of
incidence, G, can be derived from the real part (R) of the effective refractive index
ne(A) of the fiber structure using Eq. (2.12). We must note that the critical angle
of incidence is the lowest value of incident angle for which the light is guided. A
PBF designed for this value of angle of incidence will result in a bandgap shifted
towards the longer wavelengths compared to the case when the design is optimized
for the mean value of the incident angle. This fact explains the wavelength mismatch
between the 1D and FEM calculations shown in the last section (see Fig. 2.9 (a)
and (b)).

O¢ = arcsin(R(neg)). (2.12)

Similarly to standard quarter-wave dielectric high reflectors, in order to obtain
resonance free, i.e. leaking mode free designs physical thicknesses (PT;) of the
cladding layers (i) should meet the A/4 condition designed for oblique angle of
incidence and A central wavelength:

_ )\0 1

2 A R — 2.13
4 n; cos(0©;) (213)

where n; are the refractive indices of the different layers and ©; are the refraction
angles, which values are calculated by Snell’s law.

During investigations on HC Bragg PBFs, we found that the effect of this equa-
tion is striking. HC Bragg PBFs consist of silica and air layers serving as the high
and low index layers, respectively. To set the spacing between the silica layers, silica
struts (support bridges) are added. As we realized, the few percent change in the
refractive index caused by the support bridges in the air layers dramatically changes
physical layer thickness of the corresponding air layer that meets the quarter-wave
condition. As our following simulation results show, neglecting this slight modifi-

cation of the effective refractive index results in interface-mode anti-crossing events
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which segment the bandgap to many smaller ones and dramatically reduce the us-
able bandwidth. However, choosing the physical layer thicknesses properly, we can
easily eliminate these leaking modes. In our simulations, the index-rising effect of
the support bridges (thickness ~ 50 nm to design a physically realizable fiber) was
first estimated to be ~ 0.02, resulting in a low index layer (ny) of 1.02. Tt has to be
mentioned that this value is just an upper estimate for the index rising effect, that
we considered, practically ny, = 1.005 was calculated on the basis of geometrical sil-
ica fraction in the air spacer layer as discussed in Section 2.3.4. The physics behind
the sensitivity to n;, and the angle of incidence in terms of refraction angle and thus
physical thickness of a quarter-wave layer that has a refractive index very close to
unity is similar to the mirage effect at grazing incidence of light |25].

First of all, we investigate the effect of the silica struts on the physical thickness
values of the air spacer layers using Eq. (2.13) as the function of the “effective
refractive index” of the low index layer, that is slightly higher than 1 (see Fig. 2.5 (a)).
In case of infinitely thin silica struts (n;, = 1.0), the spacing between the concentric
fused silica rings has to be set to 3.6 pm in order to meet the quarter-wave condition
at our desired central wavelength (1 pm) of the bandgap. It has to be pointed out
that this thickness value also depends on the angle of incidence. We have chosen this
parameter to be 86° for our calculations according to our FEM simulation results (see
later). Since the effective index of dielectric waveguides such as our HC Bragg PBFs
slightly varies with the wavelength (dispersion), the angle of incidence should be
recalculated at each wavelength. We found, however, that this effect does not affect
considerably the width of the bandgap, and it does not result in new leaking modes
harming the bandgap. For ny, &~ 1.02, the spacing between the fused silica rings has
to be reduced considerably: the optimal spacing resulting in the widest bandgap
at around 1 pm is ~ 1.2 pm (note for the modification of the refraction angle in
this cladding layer). Evidently, neglecting the small index rising effect of the fused
silica struts during the design of such structures results in higher order bandgaps
or leaking modes at around the center of the bandgap. Increase in the thickness of
support bridges calls for further reduction in the spacing of the fused silica rings,
but this change is not so dramatic when the thickness is higher (n;, > 1.02).

Another striking effect of the support bridges is demonstrated in the same figure
(Fig. 2.5 (a), right axis): in spite of the minor modification in the effective refractive
index of the air spacer layers (from n;, = 1.0 to ny, = 1.02), the available maximum
bandwidth (Aw) is considerably reduced from > 1.7 fs~! to 1.2 fs~1 at around 1 nm,

when the physical thickness values of the air spacer layers are properly set to meet
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Figure 2.5: (a) Computed physical thickness of the low index layer (PTL) as a
function of the layer index (ny) when meeting the A/4 condition at an angle of
incidence Oy = 86°, and computed bandwidth (Aw) of the bandgap as a function
of ny, when ng = 1.45 (P polarized light). (b) Computed modification factor of
the 1optical thickness of different refractive index layers as a function of the incident
angle.

the quarter-wave condition requirement. This is in agreement with the results in
Section 2.2.

In case of hollow-core fibers the modification factor of the optical thickness (OT)
by the cosine of the angle of incidence (1/cos(©r,)) is shown in Fig. 2.5 (b). As
the angle of incidence increases, the optical thickness fulfilling the quarter-wave
condition gets higher. However, this effect gets extremely high as the refractive
index of the low index layer approaches 1 (note for the logarithmic scale in the
figure) which is the case of support bridges used in HC Bragg PBFs, and analogous
to the appearance of mirages close to the horizon.

Our present investigations suggest that in order to preserve high bandwidth of
hollow-core all-silica Bragg fibers, designs comprising a small number of very thin
fused silica struts should be preferred. In the following studies, we use 12 pieces of
support bridges in the spacer layers and their thickness is chosen to be 50 nm which

is realistic to be manufactured.

2.3.3 One-dimensional simulations of HC Bragg PBFs

Our aim was to design a structure consisting of 3 silica-air layers which support
band-gap guidance around 1 pm without the leaking modes. It is known that the
leaking modes appear in the band-gap due to the support bridges in the air layers
which cause a small refractive index increase. That leads to phase changes by the
increased optical path length in the air layers. Until now attemps on solving this

problem were by changing layer thicknesses in small steps creating transmission



maps calculated by FEM which is very time-consuming and ineffective in designing
HC fibers.

Our structure consists of a 6 pm core and alternating layers of silica with thick-
ness d; and of air with thickness L;, i = 1,2,3 (see Figure 2.6). The physical
thicknesses of the layers should be chosen according to the relevant phaseshifts.
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Figure 2.6: Structure of the cladding
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2.3.4 Results of the one- and two-dimensional simulations of HC Bragg
PBFs

In our numerical examples, designs comprising 3 silica-air layer pairs are presented

(see Fig. 2.7 (a), and Fig. 2.7 (b) for a 1D equivalent and the 2D fiber structure,

respectively) which support bandgap guidance around 1 pm.

In order to estimate the index rising effect of the silica struts reasonably we
applied an approximate formula (Eq. (2.15)) for the air layer thicknesses instead of
Eq. (2.13) that takes the silica filling fraction of the given layers into account.

The formula can be deduced by considering that for grazing incidence, ©, and
©; have large values, o = 7/2 — © is small and thus cos(a) = /1 —sin’(a) ~
1 —sin?(a)/2. From Snell’s law we obtain the following:

sin q; = M (2.14)
n;

For the index difference in layer i we might substitute n; — 1 = SFF; - (ny — 1)
where n is the refractive index of silica and SFF; is the silica filling fraction of layer
i according to its cross-sectional geometrical fraction. The approximate formula for
the physical layer thicknesses obtained from Eq. (2.13), Eq. (2.14) and cos(©;) =

sin(a;) is:
'R 1

PT; = — )
4 \/ni \/cos? Oy + 2SFF; - (n, — 1)

(2.15)
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Figure 2.7: (a) Refractive index (n) profile of the 1D equivalent of the fiber, with
respect to the distance from the center of the fiber (r). The obtained effective
refractive index of the cladding structure is shown with a light blue line. (b) Cross-
section of the HC Bragg PBF used in our FEM simulations.

where it is to be pointed out that both quantities in the square root in the last
denominator are small values causing the main modification on the layer thickness.

After an initial guess for the refractive indices of air layers (n;, = 1.02), the ©;
values and thus the corresponding fiber structure (PT;) are calculated. From the
obtained structure the silica filling fractions of the air spacer layers are calculated
which values are further used to calculate the physical thicknesses of the layers by
Eq. (2.15). After a few steps of iterating the PT,; and SFF; values we obtain a fiber
structure that exhibits an even wider bandgap than that of the initial guess.

1D simulation results are shown in Fig. 2.8 and the reflection curves, correspond-
ing to the transmission of the fiber are summarized in 2.9 (a). The ideal design in
which the support bridges in the air spacer layers — and thus the index-rising effect
— are neglected exhibits a very wide bandgap. The reflection and dispersion are
shown in Fig. 2.8 (a) (and the transmission of such idealistic fiber is plotted with
black dashed line in Fig. 2.9). Here, ny, = 1.00, PT, = \o/4/ cos(0g) = 3.584 pm,
ng = 1.45, PTy = Xo/4/nu/cos(©n) = 0.237 pm, Oy = 86° (corresponding to
Negp = 0.9976, using Eq. (2.12)). The relative phases in different positions of
the phasefront contributing to the partial waves reflected from the different sur-
faces are calculated at three different wavelength values. At the central wavelength
the partial waves are exactly in phase and at other wavelength values the relative
phaseshift between them is a constant, as it is expected. The relative phase shifts
are plotted in Fig. 2.8 (b). When the small index-rising effect of silica struts is
taken into account but the spacer thickness is not corrected for it (n;, = 1.02 and
PTp = 3.584 pm), leaking modes destroy the bandgap. It is to be noted that

from the practical point of view the problem is only partially caused by the narrow
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Figure 2.8: Computed reflection and corresponding group-delay dispersion as a func-
tion of wavelength for photonic bandgap structures of the following designs: (a)
ny = 1.00 and PTy, = \,/4/ cos(0p) = 3.584 pm exhibiting a very wide band-gap,
(¢) ny = 1.02 and dy, = 3.584 pm with the leaking modes destroying the band-gap,
(e) np = 1.02 and d;, = X,/4/1.02/cos(©,) = 1.175 pm restoring the band-gap
to some degree. (b),(d) and (f) are the relative phases in different positions of a
wavefront contributing to the partial waves reflected from the different surfaces at
three different wavelength values, see Fig. 2.6.

bandgap. The other problem is the dispersion curve which is extremely varying
even inside of the reduced bandgap regions. This can be observed in Fig. 2.8 (c)
(blue dotted line in Fig. 2.9). The origin of the resonances lies in the relative phase
shifts, shown in Fig. 2.8 (d). There is a small variation in the phases at 1 pm, and
it becomes extremely large as moving to further frequencies (at 0.8 pm the varia-

tion is significantly higher than at 1.2 pm). This is the reason why these curves
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are plotted with the wavelength axis equidistant in frequency values. The corrected
quarter-wave design (n;, = 1.02 and PT, = A¢/4/1.02/ cos(©y,) = 1.175 pm) ex-
hibits a broad bandgap free of leaking modes (see Fig. 2.8 (e), and red solid line
in Fig. 2.9), however, the bandwidth is reduced compared to the ideal case, in
agreement with Fig. 2.5 (a). The phase relation is restored as well (see Fig. 2.8
(f)) to similar characteristics as it was to be seen in Fig. 2.8 (a). Furthermore,
the approximate quarter-wave design with iteration parameters for the structure
(n1 = 1.006,np, = 1.005,np3 = 1.0042, PT,, = 1.922 pm, PT}, = 2.051 pm,
PT{; = 2.159 pm) further broadens the bandgap implying the necessity for estimat-

ing ny; appropriately (green line in Fig. 2.9, “iterated structure”).
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Figure 2.9: (a) 1D computation results for transmission of the multilayer structure
(corresponding to the loss of the fiber) as a function of wavelength for structures
of the following designs: n;, = 1.00 and PT}, = 3.58 pm ideal structure without
silica struts (black dashed line), n;, = 1.02 and PTy, = 3.58 pm leaking modes
(blue dotted line), ny, = 1.02 and PT}, = 1.18 pm corrected /4 structure (red solid
line), ny; = 1.006,1.005,1.004 and PTy; = 1.92,2.05,2.16 pm, respectively: iterated
chirped structure (green solid line) and (b) corresponding FEM results including the
homogenized iterated chirped structure with n.s; values instead of the silica struts
(light blue narrow dash dotted line). Points in the graph marked with circles refer
to different mode field distributions shown in Fig. 2.10.

Corresponding FEM calculation results are shown in Fig. 2.9 (b). The FEM
simulation was carried out on a fiber structure consisting of a 6 pm core (R), 3
alternating layers of silica and air (with layer thickness d and L, respectively), and
12 silica struts of 50 nm thickness (t) in each air layer (see Fig. 2.7 (b)) except for
the ideal case when silica struts are neglected (dashed line). The properly designed
structure (red solid line) is free of “leaking modes” (compare to blue dotted line),
however some perturbation due to still existing “surface modes” can be observed. The

iterated structure (green dotted line), that normally further broadens the bandgap
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has — in our case — significant surface modes that segment the bandgap to narrower
transmission windows. The comparison with the same iterated structure but of
cylindrical symmetry is shown by a narrow dash dotted blue line in which the air
spacer layers with silica struts are replaced by the corresponding n.g,; values. This
comparison shows that the 1D simulation results are in agreement with the 2D FEM
results in case of fibers with cylindrical symmetry, and that the significant loss peaks
in this case are due to surface modes caused by the symmetry breaking in contrast
to leaking modes that are due to the incorrect design. The difference between the
two loss mechanisms can also be observed on the mode distributions calculated
by FEM. For comparison, typical mode distributions are shown in Fig. 2.10 for the
fundamental mode (a), the leaking mode with increased field between the silica layers
(b), and the surface mode with the field concentrating in the silica struts (c). The
fundamental mode was calculated at 1000 nm wavelength on the iterated structure,
corresponding to the green curve in Fig. 2.9, the leaking mode was calculated at
1150 nm, on the “leaking structure”, corresponding to the blue curve in Fig. 2.9 and
the surface mode was calculated at 838 nm, on the iterated structure corresponding
to the green curve, as well.

It is to be mentioned that the correct homogenization of the silica struts should
be done according to the volume average of the £|E|? for the fundamental mode. The
effective refractive indices of the low index layers would be in this case ny; = 1.0146,
nps = 1.0115 and ny3 = 1.0123 (corresponding to Fig. 2.10 (a)). The elevated indices
compared to the ones calculated from the silica filling factors are due to the fact
that the electromagnetic field has an inhomogeneous distribution, and it is slightly

concentrated around the silica struts.

¥ [pm]
¥ [um]

Figure 2.10: Mode distributions of the (a) fundamental mode (corresponding to
point 1 in Fig. 2.9 (b)), (b) leaking mode (corresponding to point 2 in Fig. 2.9 (b))
and (c) surface mode (corresponding to point 3 in Fig. 2.9 (b), green line)
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2.4 Conclusion

We have investigated amplitude and phase behavior on reflection of PB dielectric
structures used at grazing incidence of light. Results on the 1D structures show
that such designs could be advantageous in laser systems where high reflectivity and
nearly uniform dispersion is required over a wide wavelength range. For instance,
grazing incidence dielectric mirrors can be well applied for broadband feedback in
ultrabroadband or broadly tunable ultrashort pulse lasers and optical parametric
oscillators.

Based on the 1D model, we have extended our investigations to 2D PB structures
such as PBFs. During our studies we found that the time consuming FEM and the
simple 1D thin-film analysis provide similar results when the input parameters (such
as angle of incidence) for the latter method are properly chosen. The most important
consequences of our simulations are obtained for HC Bragg PBFs: we found that
a few percent modification of the refractive index (< 2%) due to silica support
bridges may cause dramatic change in the usable width of the bandgap in these
fibers. Therefore, during the design an accurate “average” refractive index has to
be taken into account for the cladding layers of HC Bragg PBFs in order to meet
the well known quarter-wave condition. When this condition is satisfied, HC Bragg
PBFs can provide a relatively wide and leaking mode free bandgap with anomalous
dispersion over most of the bandgap. Due to their engineerable dispersion, we regard
them as promising tools for broadband intra- or extra-cavity dispersion control in
femtosecond pulse fiber lasers and amplifiers [26]. Finally, we note that the design
procedure described in this chapter can be applied for giving estimate solutions in

the design of all kinds of photonic bandgap fibers, as well.
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3 Pulse compression by the use of a highly
nonlinear photonic crystal fiber

In this chapter compression of sub-nanojoule laser pulses using the spec-
tral broadening in a commercially available, highly nonlinear photonic
crystal fiber (PCF) is discussed. A two-fold compression of nearly trans-
form limited, 24 fs seed pulses of a Ti:sapphire oscillator is experimen-
tally demonstrated [T2|. The motivation is given in Section 3.1. It is
followed hy some theoretical considerations in Section 3.2, that assist
to the Nonlinear Schrodinger-equation, introduced as the fundamental
equation determining pulse propagation in optical fibers, described in
Section 1.1. The experiment and its results are described in Section 3.3,

and the conclusion is drawn in Section 3.4.



3.1 Motivation

Pulse compression of optical pulses down to 5 fs were demonstrated in a wide variety
of experimental arrangements using standard single mode optical fiber [27] or gas-
filled hollow-core fiber as a nonlinear medium [28|. The common feature of previous
studies in this time domain is that they require laser pulses at energy levels well above
10 nJ, i.e. pulse energies that are difficult to obtain directly from a femtosecond
pulse laser oscillator. As a result of recent development of small core diameter,
single mode photonic crystal fibers, tenfold pulse compression was demonstrated in
a few experiments [29, 30| at nJ or sub-nJ pulse energies. These resulted in typical
compressed pulse durations of 20 to 35 fs. Recently, the possibility of compressing
supercontinuum generated in a 5 mm long micro-structured fiber was also reported
[31]. In this latter experiment, 2.7 nJ, 15 fs transform limited pulses obtained from a
low repetition rate Ti:sapphire oscillator were compressed to 5.5 fs using an adaptive
compression technique based on spectral-phase interferometry for direct electric field
reconstruction (SPIDER).

In |T2], it was theoretically shown that it is possible to obtain compressed sub
6 fs pulses using nanojoule or sub-nanojoule seed pulses around 800 nm by utilizing
only a small-core area PCF and prism-pair / chirped mirror compressors. In a
previous study [29], it was shown that the compressed pulse duration was primarily
limited by the maximum available wavelength difference between the laser central
wavelength (750 nm) and the zero dispersion wavelength (767 nm) of the PCF
sample. Novel PCFs with red-shifted zero dispersion wavelengths, however, can
improve both the quality and the duration of the compressed pulses when the input
and output chirp compensation parameters are chosen properly. It is worth pointing
out that 1 nJ seed pulse energies with the required pulse durations can be obtained
easily from low pump threshold, mode-locked Ti:sapphire laser oscillators pumped
by only 1.2 W at 532 nm [32].

In the experiment described below (Section 3.3) the pulse energy is < 1 nJ, which
does not result in considerable spectral broadening in standard single mode-fibers.
Nonlinear spectral broadening is achieved in a small core area PCF which allows the
reduction of pulse duration. The proper input and output chirp compensation was
simulated and optimized by Z. Véarallyay based on the theory to be read in Section
3.2.
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3.2 Theory

The pulse propagation through PCFs is described by the Nonlinear Schrédinger-
equation, Eq. (1.8), Section 1.1. The input pulses used in the simulation exhibit a
sech? spectral intensity function and sech? temporal intensity envelope function that
is typical for femtosecond solid state laser oscillators. We used a highly nonlinear
PCF (type “2.2 Nonlinear PCF”, Crystal Fibre [33], see Fig. 3.1 for the cross-section)
with 2.2 pm core diameter to induce spectral broadening of the pulse. The dispersion
data of the PCF, required for the simulations were provided by the manufacturer in

a limited spectral range, so it was further approximated by a Taylor-expansion:
T F .
D()) =D0+S()\—/\0)+§(A—/\O)2+g(/\—/\0)3. (3.1)

In Eq. (3.1), Ao is the central wavelength of the seed pulse, Dy is the dispersion at the
central wavelength, S is the dispersion-slope, T is the third-order dispersion ¢ and F
is the fourth-order dispersion, with the corresponding values of Dy = —27.15 - 106
s/m?, S= 0.51772 - 10 s/m3, T= —3.277854 - 10° s/m*, F= 1.642713 - 10'¢ s/m?,
respectively.

We found that the compression level strongly depends on the initial chirp of the
pulse injected into the fiber for pulses that have transform-limited durations in the
sub-100 fs regime. This is in agreement with previous studies [29, T2.1|. Providing
a small linear pre-chirp results in less efficient spectral broadening, thus the pulse
duration becomes slightly longer. However, this may result in lower distortion during
propagation in the fiber as the distortion is due to the strong third-order dispersion
(TOD., or here ~S) of the PCF. The spectral broadening can be controlled at a
certain energy level in this way, and thus frequency components can be avoided that

may harm the quality of the compressed pulses.

3.3 Experiment and results

Our Tizsapphire laser oscillator (FemtoRose 20 MDC [34]) operated at 797 nm with
~24 nm bandwidth, and delivered 24 fs sech? pulses at a repetition rate of 76 MHz.
A PCF piece of length of 22 mm was the shortest that could be cut with our
fiber cleaver, although the optimal length predicted by the simulation was shorter.
Accordingly, the input pulse energy had to be reduced in order to get spectral shapes
similar to what can be obtained with a 6 mm long PCF used in the simulations.

The experimental setup is shown in Fig. 3.2. After the laser a Faraday isolator

SNote for the difference of the expansion of the propagation constant into a Taylor-series with
respect to frequency in Section 1.1, Eq. 1.10. Here, the dispersion coefficients are defined according
to the expansion with respect to wavelength.
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Figure 3.2: Experimental setup. An SF10 prism pair in combination with chirped
mirrors are used for pre-compression of a 24 fs pulse with central wavelength of
797 nm. The spectrally broadened pulse exiting the PCF is compressed by a fused
silica (FS) prism pair / chirped mirror compressor resulting in a two-fold temporal
compression.
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Figure 3.3: (a) Measured and computed spectra with the retrieved compressed pulse
shape in the inset. (b) Corresponding autocorrelation traces. Input pulse parameters
for the calculation: By, = 0.6 nJ, FWHM = 24 fs, GDD;, = 400 fs>, TOD;, =
—6000 fs*, Lpcp = 22 mm. Output dispersion compensation parameters: GDDgyy =
—320 fs2, TODgy = —2000 fs.

was installed to avoid feedback from the fiber. In order to provide the optimal
pre-chirp parameters, a pre-compressor was built in which the positive dispersion
introduced by the isolator (GDD a 2700 fs?) had to be compensated as well. The
pre-compressor comprised an SF10 prism pair introducing negative GDD and TOD
and a pair of chirped mirrors that compensated the TOD by introducing negative
GDD but positive TOD. By this arrangement we could set the second order pre-chirp
(GDDyy,) between 100 fs? and 400 fs? and the third order to TOD;, ~ —6000 fs®.
After fitting the simulation results to the measured spectra, see Fig. 3.3 (a), the
parameters for dispersion compensation at the output of the fiber were estimated.
We obtained two-fold compression for the 24 fs pulses with GDDgy = —400 fs? to
—200 fs> and TODyy = —1500 fs? to —2500 fs*. The dispersion compensation was
carried out by a fused silica prism pair. The measured and computed autocorrelation
traces are shown in Fig. 3.3 (b). The inset of Fig. 3.3 (a) shows the retrieved temporal

pulse shape by the simulation, with an FWHM pulse duration of 12 fs.



3.4 Conclusion

We have demonstrated that it is feasible to compress the initially transform limited
pulses by a non-dynamic compression technique, using a commercially available
photonic crystal fiber and a cost effective, low pump threshold (Pyymp, ~ 1.2 W)
Ti:sapphire laser with ~ 1 nJ pulse energy. Experimentally, the initially ~ 24 fs
pulses were compressed to ~ 12 fs pulse duration in a 22 mm fiber piece, that was
the shortest piece of fiber we could cut. Theoretically it was shown, that by the
optimization of input and output chirp parameters, high quality, sub-6 fs pulses
could be generated by using an even shorter fiber piece. Further reduction of the
compressed pulse duration at such energy levels is possible by application of new
PCFs with red-shifted zero-dispersion wavelengths and lower third-order dispersion

values.
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4 Design of a passively mode-locked all-fiber,
all-normal dispersion ytterbium ring oscilla-
tor

In this chapter the development of a passively mode-locked all-fiber yt-
terbium ring oscillator is reported [T3]. The laser characteristics were
investigated and compared in specific positions of the resonator, in or-
der to characterize the pulse shaping mechanism and obtain the optimal
position for the output port for different applications. It was found that
the laser operates in the “all-normal dispersion” mode-locking regime,
and the pulse-shaping is based on nonlinear polarization evolution in
the fiber sections together with spectral and temporal filtering by a po-
larizing element. The oscillator produces relatively high quality pulses,

externally compressible to as short as 195 fs.

In Section 4.1 and 4.2 the motivation and an overview of mode-locked
fiber lasers are given based on literature [35, 36, 37]. Theory described in

Section 1.4 and the references are aimed to help further understanding.



4.1 Motivation

Generation of ultrashort laser pulses is conventionally done by solid-state mode-
locked lasers utilizing bulk optics including the gain materials (e.g. Ti:sapphire,
Nd-glass), laser mirrors etc. These lasers require stable laboratory-like environment
with reduced variance in temperature and vibrations, and 1-2 m of space on an
optical table. They are usually highly power consuming, and also require precise
adjustment for the maintenance of stable mode-locked operation.

In the past few years passively mode-locked fiber lasers have gained high inter-
est because of their potentially compact, environmentally stable and alignment-free
design combined with high quality spatial mode-field distribution. The key advance
in the development of fiber lasers was the discovery of rare-earth doped fibers as
the laser gain media because of their high saturation fluence, broad gain bandwidth,
and the excellent heat dissipation. The high saturation fluence allows very effi-
cient pumping — which might reach 80%, — and the broad gain bandwidth supports
ultrashort pulses, as short as 30 fs in the case of ytterbium.

The development of fiber lasers has initially been driven by applications in
telecommunication and by scientific investigations by nonlinear microscopy. The
doping material of the gain fiber in these lasers is erbium (Er), emitting at 1.55 pm
wavelength, and neodymium (Nd), operating around 1 pm, respectively. Recently,
ytterbium (Yb) has attracted much attention as a gain medium around 1 pm because
it offers many advantageous spectroscopic properties, including high quantum effi-
ciency, absence of ground-state and excited-state absorptions, long upper-state life-
time, and broad gain spectrum. Furthermore, Yb can be directly optically pumped
at 915 and 980 nm by laser diodes. As a result, Yb-doped fibers are likely to super-
sede fibers with other doping materials emitting around 1 pm.

Furthermore, with the technological development of high power diode lasers and
of double clad large mode area fiber amplifiers, high average power fiber lasers give
a comparable performance to classical solid-state lasers, even though, in terms of
reliability and long term stability the latter are still preferred in comparison with
fiber lasers.

Our motivation was to create a compact and easily alignable, environmentally
stable fiber source at 1 pm, that produces ~ 300 fs pulses, capable of practical
application. Expectations included high signal-to-noise (S/N) ratio, possibly un-
modulated spectrum for reasonable amplification, and the fiber optical components

being commercially available.
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4.2 Overview of passively mode-locked ytterbium fiber lasers

The pulse formation process in passively mode-locked fiber lasers is complex, and
is rather difficult to explain in general. As an introduction, the Modes of operation
in a fiber laser are described in context with pulse formation. Different modes of
operation could be observed in our fiber laser by changing the state of polarization
at some point in the resonator. Measurement results are demonstrated in Section
4.2.1 to show the characteristics of the different modes.

Several mechanisms can be distinguished that lead to the formation of stable
pulse trains. The mechanisms correspond to different parameter ranges, such as
net-cavity dispersion or nonlinearity, and they determine the evolving pulse charac-
teristics. These Mode-locking regimes of fiber lasers are briefly overviewed in Section
4.2.2. After that, the principles of Mode-locking by nonlinear polarization rotation
(NPR) are described in more detail in Section 4.2.3, as this is an important phe-
nomenon, contributing to the mode-locking mechanism in our fiber laser. Finally,
premise and some considerations of the Construction of mode-locked fiber lasers are
discussed in Section 4.2.4 which gave the direction of the development of our setup.

The initiation of pulse formation in fiber lasers is provided by temporal fluctua-
tions induced by spontaneous emission in the doped fiber. Fluctuations are filtered
by a saturable absorber (e.g. a Bragg-reflector or NPR with a polarizer) and the sig-
nal is enhanced by gain during multiple round-trips in the laser cavity. This process
continues until an intense pulse (or intense multiple pulses) capable of saturating
the absorber is formed, otherwise no stable solutions emerge. The pulse is stabi-
lized when the parameters affecting its evolution are in balance, and the temporal
and spectral shapes are exactly reproduced after one round-trip in the resonator.
Spectral broadening is determined by gain and nonlinearity in the fiber and it is
compensated by spectral filtering by some kind of a filter or the limited bandwidth
of gain. In some cases, i.e., in soliton lasers, spectral broadening induced by positive
nonlinear phaseshift is compensated by anomalous dispersion. The temporal evolu-
tion is influenced by dispersion and filtering”. It has to be noted, that the effect of
dispersion is dependent on the spectral width. For highly chirped pulses, filtering
by a spectral filter and self-amplitude modulation by the saturable absorber might

act on both of the temporal and spectral profiles.

Teither temporal filtering by a saturable absorber, on the basis of self-amplitude modulation,
or through spectral filtering of the chirped pulse



4.2.1 Modes of operation in a fiber laser

Lasers operate simultaneously in a large number of longitudinal modes falling within
the gain bandwidth. The frequency spacing among the modes is given by Av =
¢/ Leay, where Le,, is the optical length of the cavity. If all modes operate indepen-
dently of each other, with no definite phase relationship among them, the interfer-
ence terms in the total intensity |F(¢)|? average out to zero. This is the situation in
multi-mode continuous wave (cw) lasers.

Mode-locking occurs when phases of various longitudinal modes are synchronized
such that the phase difference between any two neighboring modes is locked to a
constant value. Locking of such phase relations enables a periodic variation in the
laser output which is stable over time, and with a periodicity given by the round-trip
time of the cavity. A stable pulse train captured by a photo-detector is shown in
Fig. 4.1 (a). If sufficiently many longitudinal modes are locked together with only
small phase differences between the individual modes, it results in a short pulse which
may have a significantly larger peak power than the average power of the laser. The
origin of mode-locking is best understood in the time domain. A laser in steady-state
is a feedback system, where the gain per round-trip is balanced by the losses. If a
nonlinear element is inserted in the cavity, which introduces a higher loss at lower
powers, the laser may favor a superposition of longitudinal modes corresponding to a
short pulse with high peak power. This nonlinear element is referred to as a saturable
absorber. However, a further requirement for obtaining stable mode-locking is that
the pulse reproduces itself after one round-trip (within a total phaseshift on all the
longitudinal modes). The phase relations between different modes are affected by
dispersion, gain bandwidth, nonlinear phase shifts etc. Although an infinite number
of different pulses could be constructed as different superpositions of longitudinal
modes, usually only a single pulse ® is a stable solution of the cavity, and thus the
output pulse characteristics can be designed and controlled by changing the physical
parameters of the comprising laser elements.

Another mechanism used for the generation of short, typically ns duration (and
low repetition rate) optical pulses is Q-switching. Tt is achieved by inserting some
type of a variable attenuator inside the laser resonator. This might be for exam-
ple an output coupler that couples light out of the resonator periodically in time
(e.g. electro- or acousto-optic modulator). When the attenuator is functioning, the
light exiting the gain medium does not circulate, and lasing cannot begin. This

attenuation inside the cavity corresponds to a decrease in the quality factor (Q-

8determined by the lowest loss



factor) of the optical resonator. A high Q-factor corresponds to low resonator losses
per round-trip, and vice versa. When Q-switching is present simultaneously in a
mode-locked laser, however, it leads to a disturbed mode of operation, where the
mode-locked pulses are modulated on a long, ns to s timescale. The oscilloscope
signal of a typical pulse train can be seen in Fig. 4.1 (b). We refer to this mode of
operation as Q-switched mode-locking, to distinguish it from cw mode-locking, where

no additional Q-switching is present.

(a)

Figure 4.1: Oscilloscope signals for different modes of operation in our oscillator:
(a) ew mode-locking, (b) Q-switched mode-locked state, and (c¢) noise-like pulses.
The width of the horizontal scale is 1.5 ps.

Lately, another mode of operation was discovered in the field of fiber lasers.
Noise-like pulses with a broadband spectrum and a short coherence length were
first published to have been generated by an erbium-doped fiber laser |38|. The
noise-like behavior was observed in the amplitude as well as in the phase of the
pulses. The oscilloscope signal of the pulse train can be seen in Fig. 4.1 (¢), showing
random variation of the amplitude. A theoretical model indicates that this behavior
can be explained by the internal birefringence of the laser cavity combined with a
nonlinear transmission element and the gain response of the fiber amplifier. For
noise-like pulses, the phase distortion caused by the fiber dispersion is relatively
weak compared to the initial noise of the pulses and therefore has only a small
effect on the coherence. This property is important for optical measurements where
coherence plays a fundamental role, such as in autocorrelation measurements. The
typical AC function for noise-like pulses has a narrow peak sitting on a wide shoulder,
as seen in Fig. 4.2, in comparison with cw mode-locked pulses. The ratio between
the peak intensity and the shoulder level of the autocorrelation trace is ~ 2 : 1,
indicating that the power of the noise-like part of the pulse intensity is similar to
the average pulse power. The peak has a duration of the coherence time, while
the wide shoulder is not much affected by the chirp of the pulse, as it should be in

mode-locked operation. For this reason, the most reliable measurement, whether a



pulse is noise-like or not, is by comparing the autocorrelation functions of a pulse
significantly chirped and dechirped, i.e., if the pulse is not compressible, it means,
it is noise-like. The inset of Fig. 4.2 shows the compressed pulses after dispersion
compensation by a grating pair, by an amount of negative GVD estimated from the
spectral and temporal width.

In fiber lasers mode-locked with NPR, it is usually possible to switch between the
modes of operation by adjusting the polarization controllers. As observed in |38],
for noise-like operation the polarization controllers are set at midrange between

maximal and minimal transmissivity of the polarizers for low-power signals.

0.45 ps
14.8 pl
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Figure 4.2: Intensity autocorrelation traces for highly chirped cw mode-locked (red),
and noise-like pulses (black line). The inset shows the autocorrelation traces after
dispersion compensation, by an amount of anomalous dispersion estimated from the
spectral and temporal bandwidth. These measurements were carried out on one of
our setups similar to the one described in Section 4.3.
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Figure 4.3: (a) RF spectrum and (b) optical spectrum showing the differences in
the modes of operation in our ~ 40 MHz laser: ¢cw mode-locking (red), noisy and
Q-switched mode-locked state (magenta, blue), noise-like pulses (black line) and cw
operation (black dashed line).



The easiest way to observe the different modes of operation is by examining of
the radio-frequency (RF) spectrum of the laser (as it is shown in Fig. 4.3 (a)). For
cw mode-locking the RF spectrum is a narrow peak at the fundamental repetition
rate of the oscillator, and at further harmonics (not shown on this scale). The
level of the background is proportional to the power in cw operation. When the
polarization controllers are not well adjusted, the noise broadens the peak in the
spectrum, leading to noisy and to Q-switched mode-locking at higher noise level. At
a certain polarization state, the mode of operation suddenly changes to noise-like
operation with side peaks or significant shoulders in the RF spectrum.

In Fig. 4.3 (b) the corresponding optical spectra measured on the PBS output of
our laser (see Section 4.4) is plotted. These spectra also show significant difference

when varying the modes of operation in the laser.

4.2.2 Mode-locking regimes

Most femtosecond lasers have segments of normal and anomalous GVD, so the cavity
consists of a dispersion map. Intra-cavity propagation dynamics is typically charac-
terized by the net-cavity dispersion and by the dispersion map (see Fig. 4.4). For

fiber lasers the following regimes are known [39, 7, 40, 41]:

Without Dispersion Map:
Salit: ANDi
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With Dispersion Map: . A .
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< - >
Anomalous GVD Normal GVD

Figure 4.4: Schematics of the main mode-locking regimes of fiber lasers according
to the net-cavity dispersion and the existence of a dispersion map [39)].

Soliton regime Soliton mode-locking is mainly present at negative (anomalous)
net-cavity dispersion which compensates for the positive fiber nonlinearity. The
temporal as well as spectral shape of a fundamental soliton is secant-hyperbolic

(intensity ~ sech?) with spectral sidebands ?, (see Fig. 4.5 (a)) and little chirp. This

9Because of the output coupler the soliton energy varies periodically, determined by the cavity
length. This creates a nonlinear-index grating which affects soliton properties through Bragg
diffraction. The energy lost by the soliton is transformed into dispersive waves, with certain
frequencies, which can be resonantly enhanced, causing the sidebands of the soliton spectrum. [42]



regime is well-known for Er-doped fiber lasers [43], where the fiber itself provides

anomalous dispersion. The output energies of such lasers are limited to ~ 0.1 nJ.
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Figure 4.5: (a) Sech spectrum with sidebands, typical for soliton lasers. Mode-
locking in this case was done by NPR. Inset shows the autocorrelation trace of the
output pulses, close to the transform-limit. [43] (b) An Yb stretched-pulse laser
(DM soliton) spectrum, and AC trace of the chirped output pulse in the inset. Note
for the semi-log scale of the spectrum [46]

DM soliton regime Pulse formation and pulse evolution become more complex
when the cavity is constructed with segments of large positive and negative dis-
persion fibers (/components). Such lasers have breathing solutions, i.e., the pulse
duration varies, possibly an order of magnitude during one round-trip in the cavity.
This efficiently reduces nonlinearity compared to soliton lasers and helps to avoid
saturation of the mode-locking mechanism (saturable absorber) [44]. This regime is
known as stretched-pulse mode-locking and the pulses as dispersion-managed (DM)
solitons. It is shown that stable pulses can be formed with this technique when the
net-cavity dispersion is close to zero, with net anomalous as well as net normal GVD
[45].

A typical spectrum and AC function can be seen in Fig. 4.5 (b). The temporal
pulse evolution in the cavity is shown in Fig. 1.8 in Section 1.4, in comparison with
a similariton laser. The pulse energy in stretched-pulse lasers can be an order of

magnitude higher than in a soliton lasers.

‘Wave-breaking free regime During pulse formation in the normal dispersion

regime, SPM and normal GVD chirps the pulse. Excessive nonlinear phase shift

Ut
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accumulated by the pulse as it traverses the cavity generally leads to optical wave-
breaking, limiting the pulse energy, unless the pulses are reshaped resulting in a self-
consistent propagation. In the reshaping mechanism (self-)amplitude modulation
(e.g. by a saturable absorber) plays an important role.!? Self-amplitude modulation
can be realized by a nonlinear filter, that shapes the spectral or temporal profile of
the pulse. For instance, gain dispersion '! shapes the temporal profile of the chirped
pulses by cutting off the wings of the spectrum. The resulting pulses are highly-
chirped, and can be produced without dispersion compensation. It has to be noted,
that more generally, amplitude modulation can be realized by a linear spectral filter,
that acts in a similar way on chirped pulses as gain dispersion. With the access of
the wave-breaking free mode-locking regime, output energies in access of 1 nJ were
obtained. Notable subregimes are the self-similar laser and the so-called chirped
pulse oscillator (CPO), described below. For further energy scaling, large-mode
area fibers can be used. The highest pulse energy of 265 nJ generated directly by
a femtosecond fiber laser was produced by using a large-mode area photonic crystal
fiber [47].

Self-similar regime Pulse propagation in high-gain optical fiber amplifiers with
normal dispersion has been studied by self-similarity analysis of the Nonlinear Schro-
dinger equation with gain. For an amplifier with a constant distributed gain, an
exact asymptotic solution has been found that corresponds to a linearly chirped
parabolic pulse that propagates self-similarly in the amplifier, subject to simple
scaling rules [48]. The extension of this scheme to fiber lasers leads to a new regime
of operation of mode-locked fiber lasers, known as self-similar or similariton regime.
A typical spectrum can be seen in Fig. 4.6 (a) showing the parabolic shape on a
semi-logarithmic scale. The pulses are always positively chirped inside the laser,
with the temporal duration varying from ~ 3 to ~ 50 times the transform limit, and
they can be dechirped outside the laser close to the transform-limit due to the linear
chirp. Strong temporal breathing arises from the dispersion map and nonlinear pulse
evolution (see Fig. 1.8 in Section 1.4 for the temporal pulse evolution in the cavity
in comparison with a stretched-pulse laser). So far, pulse energies as high as 14 nJ

have been generated by an Yb similariton fiber laser [49].

0The importance of the absorber is in contrast with the stretched-pulse regime, where self-
amplitude modulation of the mode-locking mechanism is only needed for the initialization and
stabilization of the inherently stable pulses.

" The finite gain bandwidth is usually taken into account as parabolic frequency dependence of
gain.



Chirped pulse oscillator Chirped pulse oscillators (CPOs) are originally used
to refer to bulk solid-state lasers, such as Ti:sapphire. The feature that all CPOs
have in common is the weak temporal breathing due to the weak dispersion map,
which contrasts with the fiber lasers with clear pulse evolution [50]. In fiber lasers
this scheme is applied by providing additional positive dispersion with negligible
nonlinearity |51].

The resulting pulses generated by a CPO are highly chirped and have typically

a spectrum with steep edges and flat top, as seen in Fig. 4.6 (b).
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Figure 4.6: (a) Measured parabolic spectrum of a similariton on a semi-logarithmic
scale with the AC function in the inset [52], and (b) the corresponding results
measured on a CPO output |51]

All-normal dispersion regime Regarding the so-called all-normal dispersion
regime (ANDI) as a single operating region, distinct from the self-similar and CPO
regimes, and embedded in the wave-breaking free regime is controversial. Pulse
shaping in ANDI lasers is based — besides positive GVD and SPM — on spectral
filtering serving as self-amplitude modulation, by cutting off the temporal wings of
the highly chirped pulses.'?

Recently, a systematic investigation of a fiber laser utilizing a spectral filter was
done by changing several parameters of the system. These parameters were the
spectral bandwidth (AQ), net-cavity dispersion (GDD,;) and the nonlinear phase
shift (®ynr). The schematic of the setup on which the investigations were carried out
can be seen in Fig. 4.7 and a plot of spectra and AC traces measured at different

nonlinear phase shifts, are shown in Fig. 4.8. By increasing ®yy,, the spectral shape

12Tn this sense, the difference to other regions in the wave-breaking free regime lies in the usage
of a spectral filter directly, and not in realizing a distinct pulse shaping mechanism.



gradually changes from a parabolic shape to a broad and modulated shape. However,
investigations on the temporal evolution suggest that the pulse propagation in the
case of parabolic spectrum is similar to the CPO, as it exhibits very low temporal
breathing. On the other hand, in the case of the broader spectrum with fringes, the
temporal breathing ratio is ~ 4 and the spectrum changes significantly as well. The
temporal evolution in this case is qualitatively the same as that of the similariton
laser. Furthermore, the same trends can be observed with reducing the net-cavity
dispersion and reducing the spectral filter bandwidth, i.e., increasing the 'strength

of spectral filtering’, as with the increase of ®yp:
Dy~ 1/AQ ~ 1/GDDypey (4.1)

This is in accordance with the following principles. Higher GDD, causes higher
temporal stretching which reduces ®yp, through lower peak intensities. On the
other hand, a certain value of GVD causes less temporal stretching on pulses with

a narrower bandwidth, thus increases ®y,.

Gain-guided-soliton regime Further mode-locking regimes are discovered / can
be distinguished. For example, solitary pulses, with a sech? shape are demonstrated
to be generated by a fiber laser operating entirely in the normal dispersion regime
[53].

4.2.3 Mode-locking by nonlinear polarization rotation

Fiber lasers can be mode-locked by using nonlinear birefringence to induce intensity-
dependent changes in the state of polarization when orthogonally polarized compo-
nents of a single pulse propagate in the fiber. A polarizer placed between two
polarization controllers (PCs) acts as the mode-locking element. The PC placed
after the polarizer changes the polarization state from linear to elliptical.'* The
polarization state evolves nonlinearly during propagation because of the different
SPM- and XPM-induced phase shifts imposed on the two orthogonally polarized
components. The state of polarization is nonuniform across the pulse because of
the intensity dependence of the nonlinear phase shift. The second PC is adjusted
in a way, that the polarization is linear in the central part of the pulse. Conse-
quently, the polarizer lets the central intense part of the pulse pass but filters the
low-intensity pulse wings. The net result is that the pulse is slightly shortened after
one round-trip inside the ring cavity, an effect identical to that produced by a fast

saturable absorber (e.g. Kerr-effect mode-locking [54]).

13This might occur due to linear birefringence in the fiber as well.
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Figure 4.7: Experimental setup of an ANDi laser; PBS: polarizing beam splitter,
QWP: quarter-wave plate, SMF: single-mode fiber, WDM: wavelength division mul-
tiplexer, HWP: half-wave plate [39].
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Figure 4.8: Output spectra with different nonlinear phase shifts ®ny, ~ 17, ~ 37, ~
47, ~ 8, respectively. Bottom row: corresponding experimental dechirped interfer-
ometric AC functions [39].

4.2.4 Construction of mode-locked fiber lasers

Although a wide variety of fiber optic components are commercially available, they
are not as reliable, and their parameters are not as easily controllable, as that of
bulk elements. This fact raises difficulties in the development and control of all-fiber
oscillators.

Fiber lasers around 1 pm are usually constructed with some kind of intra-cavity
dispersion compensation to (at least partially) overcome the normal dispersion pro-
vided by silica fibers. Free space optics, such as gratings [49] and prisms [46], and
lately photonic crystal fibers [55], higher-order mode fibers [56] or chirped fiber

Bragg gratings |57] have been implemented as intra-cavity dispersion compensating



elements. However, for the ease of construction and use, and cost-effectiveness, it is
desirable to design fiber oscillators without any dispersion compensation.

The pulse dynamics in dispersion-compensation free fiber lasers is dominated
by the interplay between gain, self-phase modulation, dispersion and self-amplitude
modulation acting as a filtering effect. Filtering with a 10 nm bandwidth spectral
filter in an ANDi laser has lead to stable mode-locking of 3 n.J pulses dechirped to
as short as 170 fs [41]. However, this setup employed free-space optics and such
impressive results could not be reproduced by all-fiber configurations. Previous all-
fiber oscillators produced picosecond pulses, owing to the strong spectral filtering
|58], and in another approach ps pulses were generated by the pulse-shaping of the
nonlinearity of a semiconductor saturable absorber mirror |59].

Lately, an all-fiber similariton fiber laser was reported, producing 0.8 n.J pulses,
that were externally compressible to 627 fs, which is close to the transform-limit of
the corresponding spectrum of 4.2 nm FWHM [52|. This laser had a unidirectional
cavity, utilizing a fiber coupled saturable Bragg reflector in a bidirectional part via
a polarizing beam splitter (PBS), hence we refer to it as a o-shaped resonator. In
our concept, we aimed to develop an all-fiber oscillator with the possibly simplest
arrangement, and avoid multiple filtering — here, by the PBS —, that might lead to
excessive narrowing of the output spectrum.

Very recently, an all-fiber normal dispersion ring laser was demonstrated [60]. It
included a ~ 15 nm bandwidth fiber filter, and a saturable absorber based on carbon
nanotubes. The laser generated 1.5 ps, 3 nJ pulses that were compressible to 250 fs
duration. However, the pedestals of the compressed pulses contained significant part
of the energy because of the modulation of the spectrum.

Our purpose was to create an all-fiber, all-normal dispersion ring oscillator. The
pulse-shaping in our arrangement is based on NPR and a polarizing element utilized
for spectral and temporal filtering. Thus, the necessity for a fixed bandwidth spectral
filter was eliminated as we aimed to avoid this element for the ease of design. It is
also to be noted that the application of a fiber integrated bandwidth filter was not
implemented until very recently |60]. The pulse characteristics were investigated at
different positions in the oscillator in order to understand the pulse-shaping in more

detail and also to find the optimal position of output for further applications.
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4.3 Experimental setup

During our early experiments on mode-locked fiber lasers we have tried many con-
figurations utilizing bulk optics which were changed to fiber integrated elements
step-by-step. Some of these elements appeared only very recently and their perfor-
mance is sometimes not reliable and/or could not be fully characterized. This refers
to polarization changes for light propagating through the components, phase shifts
and spectral transmittance. As we are not able to explain all of the results of the
earlier experiments I will confine the description to the following setup.

The ring oscillator consists of the following fibers and fiber optic components, as
shown in Fig. 4.9. A highly doped ytterbium fiber (YbF) is used as the gain media,
backward pumped by a 980 nm laser diode via a 980/1030 nm wavelength-division
multiplexer (WDM). To investigate the pulse characteristics right behind the gain
fiber, a 90/10 splitter (OCy) is placed between the WDM and the YbF. The WDM
is followed by the semiconductor saturable absorber (SA) that is a commercially
available absorber designed for use at around 1020 nm (Batop GmbH, SA-1020-40)
and is responsible for the initiation and stabilization of mode-locking. A 10% output
port (OCj3) is included after the SA. The single-mode fiber (SMF) pigtails between
the YbF and the SA are ~ 1.9 m, and the fiber section between the SA and the
following PBS is ~ 2 m. The length of these fiber sections is critical in the pulse-
shaping mechanism that is based on the spectral broadening in the YbF and the
nonlinear polarization evolution (NPE) in the SMF section [40]. The variation of
the polarization state along the spectrum leads to a strong spectral filtering by the
PBS. The PBS is followed by a splitter (OC;) and an isolator (ISO) realizing the
unidirectional cavity. Fiber polarization controllers (PCy, PCy) are applied on the
fiber sections close to the PBS on both sides of it, but the mode-locked operation
can be maintained when removing either of them. However, initiation of the mode-
locking and adjustment of the desired mode of operation can be easily achieved by

rotating the different paddles of the PCs.
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oc PBS output

Figure 4.9: Experimental setup (PBS: polarizing beam splitter; PC: polarization
controller; 90/10: 90/10 splitter; OC: output coupler; ISO: isolator; YbF: Yh-doped
fiber; WDM: wavelength division multiplexer; SA: saturable absorber).

4.4 Experimental results

The above described oscillator produces stable mode-locking with low noise (accord-
ing to the radio-frequency (RF) spectrum, shown in Fig. 4.10 (a)), and a repetition
rate of 27.7 MHz. Besides the initiation of mode-locking the paddles of the PCs are
responsible for various effects on the mode of operation. By adjusting the side (\/4)
paddles the operation can be shifted from noise-like pulses [38] to noisy, Q-switched
or cw mode-locking. These can be identified by observing the RF spectra and the
autocorrelation functions, and some change on the optical spectrum can be observed
as well. RF and optical spectra are shown in Fig. 4.3, Section 4.2.1, measured at
a similar setup, with ~ 40 MHz repetition rate. The adjustment of PCy leads to
wavelength tuning of more than 15 nm, as it can be seen in Fig. 4.10 (b). Further-
more the output coupling ratio of the PBS is most sensitive to the state of the third
(A/4) paddle of PC;. Under some circumstances the spectral width can be increased
by increasing the output coupling ratio as well as by increasing the pump power.

The laser operates in the all-normal dispersion regime, where gain, self-phase
modulation and dispersion is balanced by spectral (and temporal) filtering. As the
output characteristics are extremely sensitive to the settings of the polarization con-
trollers we might conclude that the nonlinear polarization rotation (NPR) together
with the polarizer (PBS) has a crucial role in the filtering.

To observe the effect of the NPR we characterized the polarization state of the
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Figure 4.10: (a) The RF spectrum of the laser (f,: central frequency). (b) Tunability,
measured at OC;.

laser along the spectrum at OC3. This was carried out by measuring the spectra after
a polarizer at the output as a function of the polarizer angle. Some of the measured
spectra are shown in Fig. 4.11 (a) and the evaluated polarization states at different
wavelengths are plotted in Fig. 4.12.' For stable pulse evolution spectral filtering
is required which can be achieved using a PBS. When the polarization is set linear
in the middle of the pulse, the PBS affects only the sides of the spectrum. Because
of the linear chirping '® this filtering leads to temporal pulse-shaping as well. The
polarization at the lower wavelength edge of the spectrum is rather circular. This
effect is observable at different states of the PCs as well. It is possibly connected
to the saturation of the NPR at the tail of the pulse. The polarization at OCj is

measured to be almost linear and constant along the spectrum.
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Figure 4.11: (a) Spectra measured at different polarizer angles at OCjs, and (b)
spectra measured at the different output ports.

"The evaluation of the polarization state for a given spectral component is based on plotting
the relative intensity values vs. polarization angles in polar coordinates.

5Linear chirping is demonstrated by our autocorrelation measurements after external compres-
sion of the pulses, described later in this section.
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In order to investigate the laser dynamics the spectral and temporal character-
istics of the pulses are measured. The spectra from OC; to OC3 show asymmet-
ric broadening with an increasing peak at the long wavelength edge, as plotted in
Fig. 4.11 (b), possibly due to the higher gain at the leading edge of the propagating
chirped pulse. The spectrum at OCj is split into the OC; and the PBS output
spectra according to the polarization state (see the 180° and the 90° polarizer angle
spectra in Fig. 4.11 (a) for comparison) resulting in a strong modulation of the PBS

output spectrum.
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Figure 4.12: Polarization states at different wavelengths, measured at OC; and
0OCj3, respectively. Note that the relative phases of the evaluated polarization states
measured at OC3 compared to the polarization states measured at OC; are not ap-
propriately aligned. The relative phase depends on the linear birefringence induced
by bending of the fibers etc.

The temporal shape of the pulses is characterized by the autocorrelation func-
tions. The width of the autocorrelation functions (ATxc) measured at the laser
outputs are 10-15 ps and have Gaussian shape except for the one at the PBS output
(which looks like the sum of three Gaussians). The output pulses are compressed by
a grating pair external to the resonator close to the Fourier-transform limit, implying
a nearly linear chirp. The autocorrelation functions are shown in Fig. 4.13, plotted
with red filled curves. The corresponding spectra are in the insets. Although there is
some uncompensated positive third order dispersion, mainly the modulation in the
spectra is responsible for the pedestals in the autocorrelation traces. This was veri-
fied by comparing the calculated autocorrelation functions of the transform-limited
pulse with the chirped and externally compressed pulses, both corresponding to
the measured spectra. The calculated autocorrelation functions of the compressed

pulses (taking the second and third order dispersion of the cavity and the grating
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pair into account) are plotted with black lines and the amplitude of the pedestals is
similar in the case of transform-limited pulses as well. The pulse widths (AT )
are estimated from the calculation of the compressed pulses. The shortest pulses
are measured at the PBS output, however the quality is poor due to the spectral
modulation. Tt can be seen, that from OC; towards the PBS output the spectral
width increases and the compressed pulses get narrower as it is expected. Pulses
with the highest quality i.e. lowest ratio of power in the pedestals are measured at
0C;.
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Figure 4.13: Measured (red filled curves) and fitted (black lines) autocorrelation
functions at the OC;, OCy, OC3, and PBS outputs after external compression by a
grating pair. AT ¢ is the width of the measured autocorrelation trace, AT}y is the
estimated pulse width according to the calculations. Insets show the corresponding
spectra and spectral widths.

In order to obtain a more practical laser the resonator was modified by removing
the output couplers (OC;53) and the PBS was used as a single output port (see
Fig. 4.14 (a)). In this case ~ 0.2 nJ pulses were measured at the output at ~450 mW
pumping power. The pulses were compressible to ~ 195 fs, with a lower ratio of the
energy being in the pedestals as it can be observed in Fig. 4.14 (b). The laser had
similar characteristics to the above investigated one. The difference is due to the



lower resonator loss resulting in lower threshold for cw mode-locking and due to a
shorter resonator length (f, = 42.6 MHz) with weaker NPR. The latter results in
a lower contrast in the modulation of the spectrum measured at the PBS leading
to higher pulse quality. It is to mention, that the repetition rate can be further
increased with this setup.

For most applications amplification of the laser output is necessary. To achieve
high pulse quality amplification of a source with unmodulated spectrum would be
ideal with further compression. For this reason OC; should be maintained as the
main output with high pulse quality, unmodulated (parabolic-like) spectrum and
linear polarization. Higher pulse energy can be obtained by increasing the output

coupling ratio. The PBS output can be used for monitoring.
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Figure 4.14: (a) Experimental setup of a modified oscillator with a single output
(PBS rejection port) and (b) measured (red filled curves) and fitted (black lines)
autocorrelation functions with the spectrum in the inset.

4.5 Conclusion

We have demonstrated an all-fiber Yb ring oscillator without any intra-cavity dis-
persion compensation. Four output ports have been characterized and compared.
The broadest spectrum was measured at the PBS rejection port but it was strongly
modulated. Other spectra at the 90/10 splitter outputs had more parabolic-like
shape. The autocorrelation widths at all outputs are ~ 10 — 15 ps and the pulses
can be compressed close to the Fourier-transform limit by a grating pair. The short-
est compressed pulses are 210 fs, and the RF spectrum as well as the pulse train
observed on an oscilloscope showed stable cw mode-locking with a high S/N ratio.

Furthermore, a shorter oscillator was presented to show similar characteristics. The
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oscillator with a single PBS rejection port generated pulses compressible to as short

as 195 fs with a relatively high pulse quality.
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Summary

Waveguidance of light by optical fibers can be described by the Helmholtz equation.
With several considerations and assumptions that hold for ultrashort pulses in op-
tical fibers, two important equations can be deduced, one of which determines the
transversal mode distribution, the other one determines longitudinal propagation
of pulses. By the simulations of fiber modes, the design of optical fibers can be
supported. The other equation derived from the Helmholtz equation, is the Non-
linear Schrédinger equation, which determines the spectral and temporal evolution
of pulses propagating along the fiber. The most important phenomena in the con-
text of pulse propagation are dispersion and nonlinearities. Photonic crystal fibers
(PCFs) offer a wide range of design parameters, which enable precise control of the
nonlinear coefficient and the dispersion profile. This feature gives rise to numer-
ous applications, such as dispersion control and distortion-free delivery of ultrashort
pulses by the elimination of nonlinearity in PCFs. On the other hand, it may also
provide advantages for nonlinear phenomena by the application of small-core area
PCFs.

During my Ph.D. work, I was dealing with the generation of ultrashort pulses in
fiber lasers, the propagation of such pulses in photonic crystal fibers and the design
of special purpose photonic crystal fibers. Parts of these topics included theoretical
work with numerical simulations. However, most of the results described in the
theses are experimental, and the research was essentially motivated by practical

applications. The theses are itemized as follows.

Thesis 1 We have proposed a method for the proper design of photonic bandgap
dielectric structures used at grazing incidence [T1]. The theory is based on the
one-dimensional multilayer design, that I applied to one- and two-dimensional struc-
tures. I have compared plane photonic bandgap dielectric mirrors of different design
principles and suggested plane dielectric mirrors to be used in grazing incidence as
laser mirrors. Based on one-dimensional results, we extended the model to two-
dimensional photonic bandgap dielectric structures and applied to all-silica hollow-
core Bragg photonic bandgap fibers. I investigated the principles of the elimination
of leaking modes in realistic hollow-core Bragg photonic bandgap fibers. 1 found
leaking mode free structures and we compared the results to simulations done by
the full-vectorial finite element method, taking the appropriate fiber structure into
account. Results show that the one-dimensional model is capable of giving estimates

for the design of leaking mode free hollow-core Bragg photonic bandgap fibers and
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thus represents an effective complementary tool to simulations done by complicated

and time-consuming full-wave solvers.

Thesis 2 Pulse compression below the Fourier transform limit can be realized by
nonlinear spectral broadening. For sub-nanojoule pulse energies, this is achieved
in a photonic crystal fiber with reduced core size. According to simulations of
pulse propagation and optimization of the pre-chirp and subsequent dispersion-
compensation coefficients, I have experimentally demonstrated two-fold pulse com-
pression on nearly transform limited 24 fs pulses from a Ti:sapphire laser around
800 nm [T2].

Thesis 3 We have developed a passively mode-locked, all-fiber, all-normal disper-
sion ytterbium ring oscillator, working at 1.03 pm. The laser produces picosecond
pulses, that can be dechirped by an external grating pair to ~ 200 fs pulse durations
[T3]. The pulse-shaping in the oscillator is based on nonlinear polarization evolution
in the fiber sections together with spectral and temporal filtering by a polarizing ele-
ment. We have investigated the laser characteristics as an aim to better understand
the theory of mode-locking in fiber oscillators, operating in the normal dispersion

regime.
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Abbreviations and notations

1D one dimensional
2D two dimensional
AC autocorrelation

ANDi all-normal dispersion

I3 propagation constant
CPO chirped pulse oscillator
c speed of light in vacuum
cw continous wave

GDD group delay dispersion
GDD,e¢  net cavity GDD

GVD group velocity dispersion

E electric field envelope, see Eq. 1.3
E electric field vector

E pulse energy

€0 vacuum permittivity
FEM finite element method

fs femtosecond (1071 s)
FWHM full width at half maximum
Dy, nonlinear phase shift
HC hollow-core

ISO isolator

i imaginary part

ko wave number

X susceptibility

L physical path length
LMA large mode area

A wavelength

Ao central wavelength

ML multilayer

140 vacuum permeability

n refractive index

Neff effective refractive index
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nr,
NL
NPE
NPR
ocC

PBG
PBF
PBS
PC
PCF
PT

RF
SA
SEM
SFF
SMF
SPM
S/N

t

TIR
Ti:sapphire
TMM
TOD
O
WDM
XPM
Yb

z

w

AQ

refractive index of the high index layer
refractive index of the low index layer
nonlinear

nonlinear polarization evolution
nonlinear polarization rotation
output coupler

induced electric polarization
photonic bandgap

photonic bandgap fiber
polarizing beam splitter
polarization controller

photonic crystal fiber

physical thickness

radius

spatial coordinate

real part

radio-frequency (spectrum)
saturable absorber

scanning electron microscope
silica filling fraction
(step-index) single mode fiber
self-phase modulation
signal-to-noise (ratio)

time

total internal reflection
titanium-sapphire

transfer matrix method

third order dispersion

angle of incidence

wavelength division multiplexer
cross-phase modulation
ytterbium

coordinate parallel to the fiber axis
angular frequency

spectral bandwidth
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Conclusion

During my Ph.D. work, I was dealing with topics on the generation of ultrashort
pulses in fiber lasers, the propagation of such pulses in photonic crystal fibers and
the design of hollow-core photonic crystal fibers. Some part of the these topics
included theoretical work, but as the research was essentially motivated by practical
applications, most of the results described in the theses are experimental.

Ultrashort pulses are originally generated by dye or solid-state lasers. Due to the
advances in optical fiber technology, considerable attention has been drawn by fiber
lasers, for their compactness. In contrast to traditional passively mode-locked lasers,
recently it was shown, that stable solutions can be found in the case of net normal
cavity dispersion. Such systems eliminate the need for dispersion compensation in
the cavity and enhance the possible output pulse energies. We developed an all-fiber
ytterbium laser producing picosecond pulses, that are compressible to ~200-400 fs
external to the cavity [T3|. The laser operated in the “all-normal dispersion” regime,
around 1.03 pm.

Compression of chirped pulses by dispersion-compensation is possible by the use
of fiber integrated components. However, their use is often limited by the nonlinear
interaction of the relatively high peak power of pulses with the silica core. A promis-
ing route to avoid nonlinearity is the application of hollow-core (Bragg) photonic
crystal fibers, in which most of the energy of the pulse is confined in air. It was
found, however, that the silica struts in realistic hollow-core fibers, holding the space
between silica layers cause a loss mechanism, called leaking modes. Our investiga-
tions on one-dimensional grazing incidence dielectric multilayer structures showed,
that the leaking modes can be eliminated by appropriate design of the structure.
One-dimensional calculations were compared to the finite element method that sim-
ulated the appropriate fiber structure [T1]. The qualitative agreement between the
simulation results showed that the one-dimensional model is capable of giving esti-
mates for the bandgap, and thus it is a useful complementary tool in the design of
such fibers.

Dispersion-compensation is not sufficient for compressing pulses below the Fourier
transform limit. For this purpose, spectral broadening is necessary, which can be
realized by nonlinear phenomena in optical fibers. For relatively low peak powers,
the nonlinear spectral broadening can be achieved in photonic crystal fibers with
reduced core size. According to our simulations of pulse propagation and optimiza-
tion of dispersion-compensation coefficients, we experimentally demonstrated pulse

compression on nearly transform-limited 24 fs pulses from a Ti:sapphire laser [T2].



Osszefoglalas

Doktori munkam sorén ultrardvid impulzusok elGallitasaval, fotonikus kristaly szél-
ban valo terjedésével és légmagos fotonikus kristaly szélak tervezésével foglalkoz-
tam. Ezeknek a témaknak egy része elméleti munka, de mivel a kutatast gyakorlati
alkalmazasok motivaltak, az eredmények nagyobb része kisérleti munkan alapul.

Ultrarévid impulzusokat hagyoményosan szilardtest lézerekkel allitanak els. Az
optikai szalak teriiletén elért technologiai fejlédés hatasara azonban egyre nagyobhb
az igény és lehetdség arra, hogy ezeket szaloptikai lézerek valtsak fel. A hagyomanyos
passzivan modusszinkronizalt 1ézerekkel ellentétben kimutattak, hogy a rezonator
Ossz-diszperziojat tekintve a normal diszperzids tartomanyban is kialakulhat stabil
impulzus vonulat. Ilyen rendszerekben elkeriilhetd a rezonatoron beliili diszperzio-
kompenzalas, tovabba a lehetséges impulzus energia is nagyobb. Kifejlesztettiink egy
teljesen szalintegralt itterbium lézert, amely pikoszekundumos impulzusokat general
|T3|. Ezek a rezonatoron kiviil ~200-400 fs-ra kompresszalhatok. A lézer az tgyne-
vezett “teljesen normal diszperzios” tartomanyban miikodik, 1.03 pm hullamhosszon.

“Csorpolt” impulzusok diszperzio-kompenzaléassal valo dsszenyomasa megoldhato
szaloptikai komponensekkel. Ezeknek a hasznalatat azonban limitéalja az impulzusok
relative magas csicsintenzitasanak nemlinedris klecsonhatésa az iivegszal magjaval.
Egyik lehetéség a nemlinearités elkeriilésére a legmagos (Bragg) fotonikus kristaly
szalak hasznélata, melyekben az impulzus energidjanak nagy része a levegé maghan
koncentralodik. Ilyen szalaknal problémét jelent az iivegrétegek kozotti tavtarto
iivegrudacskék jelenléte, ugyanis ezek egy veszteségi mechanizmus, az ugynevezett
“szivargd modusok” okozoi. Egy dimenzios sirlodo beesésre tervezett dielektrikum
rétegszerkezeteken vald vizsgalatainkkal kimutattuk, hogy a szivargd modusok a
szerkezet megfelel6 megtervezésével megsziintetheték [T1]. Szamitasainkat osszeha-
sonlitottuk a véges-elem maodszerrel, mely a tényleges szerkezetet vette figyelembe.
A kvalitativ egyezés igazolta, hogy az egy dimenziés modell alkalmas a “bandgap”
becslésére, és ezaltal a szerkezet megtervezésében hatékony segitséget nytjt.

A diszperzio-kompenzalas az impulzusok Fourier transzforméacios hataron tuli
kompressziojat nem teszi lehetGvé. Ilyen célbol az impulzus spektruméanak kiszéle-
sitésére van sziikség, amely példaul az optikai szalakban elGidézhetd nemlinearitas
révén valosithato meg. Alacsony cstcsteljesitmény esetén ez elérhets kis magat-
mérGji fotonikus kristaly szalakban. Az impulzus terjedésre vonatkozo6 szimulacio-
nak és optimalizaconak megfelelGen, kisérletileg megvalositottuk a titan-zafir lézer

kozel transzformacio-limitalt 24 fs-os impulzusainak kompressziojat [T2].



