
Natural Language Processing of Large
Parallel Corpora

Dániel Varga

Ph.D. Dissertation

Supervisors:
András Kornai D.Sc., András Lukács Ph.D.

Eötvös Loránd University
Faculty of Informatics

Department of Information Systems

Ph.D. School of Computer Science
András Benczúr D.Sc.

Foundations and Methods of Informatics Ph.D Program
János Demetrovics D.Sc. MHAS

Budapest, 2012

Contents

Page

1 Introduction . 1

2 Mathematical preliminaries . 6

2.1 Supervised learning . 7

2.2 Maximum entropy modeling . 9

2.3 Sequence labeling . 15

3 Morphological Analysis . 22

3.1 The hunmorph annotation formalism 22

3.2 Tools - hunlex, hunmorph . 31

3.3 Resource built - morphdb.hu . 35

3.4 Applications . 37

4 Morphological Disambiguation . 40

4.1 Background . 41

4.2 Resource used - the Szeged Corpus . 42

4.3 Related work . 44

4.4 The hardness of the tagging task . 45

4.5 Our algorithms . 49

4.6 Evaluation . 52

4.7 Later work . 54

4.8 Resource built - the Szószablya corpus and lemmatized frequency dictio-

nary . 55

4.9 Applications . 58

i

ii

5 Named Entity Recognition . 67

5.1 Background . 68

5.2 Resources used . 69

5.3 Algorithm - hunner . 72

5.4 Evaluation . 77

5.5 Metonymy resolution . 79

5.6 Resources and applications . 80

6 Noun phrase chunking . 83

6.1 Background . 83

6.2 Resource used - the Szeged Treebank 85

6.3 Algorithm - hunchunk . 87

6.4 Evaluation . 88

6.5 Later work and applications . 90

7 Sentence Alignment . 92

7.1 Background . 92

7.2 Algorithm - hunalign . 95

7.3 Algorithm - partialAlign . 107

7.4 Resource built - the Hunglish Corpus 108

7.5 Resource built - the JRC-Acquis Corpus 115

7.6 Later work . 117

7.7 Applications . 118

8 The Hunglish bitext query system . 120

8.1 The huntools multilingual text processing framework 121

8.2 The Hunglish bitext query system . 126

Bibliography . 134

Chapter 1

Introduction

Computational Linguistics (CL) is collective work, and the systems that catch the imagi-

nation, from Google Translate (machine translation) to IBM’s Watson (question answering)

are the work of teams with hundreds of people. The reason for this is that human language

is tremendously complex, and even the major subsystems are too complex for the individual

researcher to grasp.

The reader expecting to see here an in-depth study of some carefully selected phenomenon

will be disappointed. Our primary goal is breadth (known in CL as coverage or recall), rather

than depth. We see our work as enabler of in-depth research of linguistic phenomena. First

we need to create corpora, and the automatic tools to analyze them, and only then can we

look at such phenomena in depth. This thesis describes work devoted to these and similar

low-level tasks. We firmly believe that modern linguistics can benefit tremendously from the

kind of infrastructure we set out to create.

That the low-level work has significant payoff in higher-level research will be seen from

our discussion of several studies (Szeredi 2009), (Prekopcsák 2008), (Miháltz & Pohl 2006),

some coauthored by the author (Pléh et al. 2011) where the key low-level computational

and data resources are true enablers, without which the study could not have gotten off the

ground. Further, the experience of the past two decades has shown that in-depth studies

where the data was collected manually, primarily by relying on the intuitions of the linguist,

are surprisingly fragile, in that new data that escaped the attention of the original authors

will almost always break the framework constructed on limited data. A typical example

would be pronunciation dictionaries such as (Kenyon & Knott 1953), where in actuality such

1

2

a small fraction of the pronunciation alternatives heard in connected speech are listed that

a speech recognition system strictly relying on this data would fail to recognize two thirds

of the words.

To avoid such pitfalls, CL adopted a highly statistical methodology. Various algorithms

attempting to solve the same problem are measured against each other based on their perfor-

mance on random test data, carefully controlling for factors such as access to known solutions

(known as training data). As we shall discuss in Chapter 2, statistical methods have pene-

trated the field far more deeply than statistics-based evaluation. In fact, most CL algorithms

used today are either purely statistical machine learners, or hybrids combining rule-based

and statistical components. In later chapters we will see examples of both, but we note here

in advance that ours is not a thesis in Machine Learning (ML) proper, in that the emphasis

is on actually working, fast, and scalable CL systems, rather than on their ML core. A key

consideration, very much necessitated by the collective nature of the work, was to create

Free/Libre Open Source Software that can be reused by other researchers without license,

patent, or copyright worries, as indeed we have relied extensively on free software and data

created by other teams.

Chapter 3, dealing with morphology, draws the line halfway across morphological analysis,

treating the inflectional and derivational parts of the problem separately. The reason is that

for most applications, ranging from information retrieval to machine translation, it is only the

inflectional affixes (which are productive, category-preserving, and which leave the meaning

of the stem intact) that need to be found, and derivational affixes (which are unsystematic,

and often change both category and meaning) are irrelevant.

Chapter 4 deals with the problem of morphological disambiguation. An analysis system

is by definition behaving correctly if it returns two analyses for fent corresponding to the

meanings ‘sharpened’ and ‘up’, but in a given context such as ollót fent ‘he sharpened scissors’

and fent nincs olló ‘there are no scissors up there’ one of the two must be selected, and the

systems we present in this chapter deal with this issue.

3

Chapter 5 addresses the identification of proper noun phrases or named entities. Since

much of our knowledge about the world is anchored to places, people, or organizations, finding

and correctly identifying parts of text that refer to named entities is key to understanding

natural language input. This task is called Named Entity Recognition (NER). NER has

its own disambiguation problems, like detecting and classifying metonymic readings such

as place-for-event ‘Vietnam was a national trauma.’. Section 5.5 discusses this subproblem

briefly, but the emphasis of the chapter is on our hunner named entity recognition system

for Hungarian.

Chapter 6 deals with the task of noun phrase chunking. High accuracy analysis of full

syntactic structure, assigning a parse tree or other structural description to a sentence, is

beyond the current state of the art. Fortunately, for many applications it is often sufficient to

detect NPs (noun phrases) in a sentence. NP chunking of the kind performed by the hunchunk

system is also a stepping stone toward full syntactic analysis, in part because analysis below

the NP level can be performed by standard tools such as Context Free Grammars (Abney

1991) and in part because by bracketing the NPs higher level analysis is greatly facilitated.

Chapter 7 deals with sentence alignment, a low-level task that is key not just to the

modern methods of machine translation but also to automated dictionary and thesaurus

building. Our hunalign system performing this task is distinguished from the alternatives

mainly by performing, in the critical range of interest, an order of magnitude faster, without

sacrificing accuracy. We present a long list of Hungarian and international corpus creation

efforts and other applications of our tools, detailing those where the author was a participant.

Finally, Chapter 8 deals with the hunglish bitext query system, which brings the ‘crowd-

sourcing’ paradigm to the problem of creating and validating CL data. Neither Chapter 2,

which presents the theoretical background in machine learning, nor this last chapter fits

entirely the presentation structure we use throughout the body of the thesis:

1. Definition of a natural language processing task.

2. Review of earlier work on this task.

4

hunmorph http://mokk.bme.hu/resources/hunmorph

morphdb.hu http://mokk.bme.hu/resources/morphdb-hu

huntoken http://mokk.bme.hu/resources/huntoken

hunpos http://code.google.com/p/hunpos/

webcorpus pipeline https://github.com/zseder/webcorpus

hunner, hunchunk https://github.com/recski/HunTag.git

hunalign http://mokk.bme.hu/resources/hunalign

Hunglish bitext query http://code.google.com/p/hunglish-webapp

Szószablya Webcorpus http://mokk.bme.hu/resources/webcorpus

Frequency Dictionaries http://hlt.sztaki.hu/resources/webcorpora.html

Hunglish Corpus http://mokk.bme.hu/resources/hunglishcorpus

JRC-Acquis Corpus http://langtech.jrc.it/JRC-Acquis.html

Szószablya dictionary service http://szotar.mokk.bme.hu/szoszablya

Hunglish bitext query service http://hunglish.hu

Table 1.1: Our tools and resources.

3. Description of the source and/or construction of our training data where our solution

is based on supervised learning.

4. Presentation of an algorithm for the task.

5. Evaluation of the algorithm on a test corpus, comparison of the results to the state-

of-the-art when possible.

6. Description of an automatically constructed corpus that we have built using the tool.

7. Presentation of our own applications based on this corpus.

8. Review of futher literature on existing applications of our tool and corpus.

On Table 1.1 we list the most important software tools, language resources and services

created with the author’s participation. (The author had minor to no role in the creation of

the first four items on the list, we provide them for the sake of completeness, as they are

important components of our language processing toolchain.)

5

If there is a central theme binding together this thesis it is the collaborative nature of

the CL undertaking, manifested not just in the free exchange of ideas, software, and data,

but also in the incremental development of methods.

The work was performed nearly always in teams, of which we single out the Budapest

Institute of Technology Media Research Centre (BME MOKK), which provided an ideal

research environment. My thanks go first to my two advisors. I am grateful to advisor

András Lukács for all his encouragement. Our discussions on machine learning have always

been illuminating to me. I would like to express my gratitude towards my advisor András

Kornai. If there are any good ideas in this dissertation, chances are they are his. Without

him, this thesis simply would not have been completed.

My thanks go to all my co-authors. I am especially grateful to co-author Gábor Rec-

ski, who provided invaluable help and insight. A large number of people helped me with

proof-reading. The usual disclaimer stating “all remaining errors are mine” is even more

important than usual, for two reasons: first, many of the listed have only seen early drafts

or partial versions. Second, I had to disregard many excellent suggestions and criticisms due

to the nearing deadline. The list includes Eszter Simon, Viktor Trón, Attila Zséder, Dávid

Nemeskey, Márton Makrai, Judit Ács, Katalin Pajkossy, Csaba Holman, Viktor Nagy, Péter

Torma, Daniel Burfoot, Jen Runds. I thank Heni, my wife, for all of her support and patience.

Chapter 2

Mathematical preliminaries

In this chapter we introduce the machine learning background and terminology necessary for

the rest of the thesis. What the chapter covers is standard material, so obviously there are

much more systematic and insightful introductions to the concepts discussed below (Bishop

2007), (Jurafsky & Martin 2008), (MacKay 2002), (Rabiner 1989), (Sutton & McCallum

2011). The first aim of the chapter is to introduce machine learning terminology used in the

thesis, in plain English, without much formalization that would obscure the main points. Our

second goal is to hint at the motivations behind these methods, more with the student of

(computational) linguistics than the student of machine learning in mind. Machine learning

experts will find the material of the chapter familiar, but we note that natural language

processing terminology differs slightly from that of other areas of machine learning.

The first half of the chapter introduces commonly used concepts in supervised learning

such as feature vectors, linear classifiers, loss functions, the maximum likelihood method,

and regularization. The text introduces these concepts ‘on the fly’, building up the prelimi-

naries gradually to introduce the modeling approach used throughout the thesis: regularized

maximum entropy learning.

The second half of the chapter deals with the task of sequence labeling. We introduce Hid-

den Markov Models, Maximum Entropy Markov Models, and we briefly mention Conditional

Random Fields. Many natural language processing tasks can be phrased as an instance of se-

quence labeling, and we will stay within this paradigm in the thesis when we give algorithms

for morphological disambiguation, named entity recognition, and noun phrase chunking.

6

7

2.1 Supervised learning

In machine learning terminology, supervised learning means learning some function based on

labeled data points (the training data or training corpus). The task of a supervised learning

method is to infer the function from the training data under some reasonable assumptions

about the form of the function, and then successfully predict the value of the function on

previously unseen data points. (We will call the second set evaluation data or test data.)

Supervised learning is to be contrasted with unsupervised learning. Here we have no

labeled training data, and the task of the unsupervised learning method is to find hidden

structure (regularities) within the data.1 Almost all results of the thesis employ supervised

learning techniques, so this is the approach we will discuss in this chapter. The only major

exception is our unsupervised hunalign sentence alignment algorithm which we will discuss

in Chapter 7.

The explicit assumption behind supervised learning is that if the training corpus is a

statistical sample of some probability distribution over the input data, then the learner

trained on the training corpus can be used to solve some task when given new data that

comes from the same probability distribution. The stronger assumption, often left implicit,

is that the learner will provide useful output for new input even when the new input comes

from a probability distribution that is different, but in some sense close to the distribution

of the training data. If our learning method is robust, focusing on general patterns rather

than peculiarities of the training data, then we have reason to hope, although no theoretical

guarantee, that a learner trained on a corpus of newswire text will degrade gracefully when

employed on a transcription of spoken discourse. We talk about overfitting when the learner

picks up regularities of the training corpus that are irrelevant or detrimental when it is

evaluated on previously unseen data.

1Often, the two methods are combined, as in semi-supervised learning, where a small amount of
(typically expensive to create) labeled training data is augmented with a larger amount of (cheap)
unlabeled data. This thesis does not employ semi-supervised techniques.

8

During supervised learning we allow the training data to be noisy, so we are not surprised

if it contains contradictory information about the value of the function on a given input.

In natural language processing, the data is often virtually noiseless in a strict technical

sense, meaning it is a result of mostly deterministic processes. But the noise tolerance of

the learning method helps us mitigate the information loss caused by the limitations of our

feature extraction (see below) and modeling.

From here, we will focus on classification, the case when the range of the function to be

learned is finite and known in advance. This is a valid assumption for most natural language

processing tasks. Depending on context, we will use two synonyms for the values of the

function to be learned: we will call them classes or labels.

2.1.1 Feature extraction

The training data is a set of points from the input domain, paired with their known labels.

Although the input domain can have any sort of exploitable structure in principle, below we

will mostly focus on the case of finite-dimensional vector spaces of real numbers. For a specific

application, we map the input domain to vectors in such a vector space. We will call this

step feature extraction, and we will call the coordinates of this vector space features. Note

that we allow the finite dimension of the vector space to be extremely large. For example,

in a morphological disambiguation task we might assign a coordinate to each word in the

training corpus, setting the value to 1 if the word appears at the token position we consider,

and 0 if it does not appear there. This results in very sparse vectors.

In most of our applications the coordinates are 0-1 valued (binary). If this is the case,

a sparse representation of a feature vector is the list of 1-valued features. We will identify

features with character strings. As a simple example, take some natural language processing

application where a feature vector is assigned to each token of the input text. If the cap

feature is set, this might mean that the given word is capitalized. Sometimes features are

9

defined in feature groups, for example we could use a distinct feature for each possible char-

acter trigram of the token. (For example we set the features tri:the tri:her tri:ere for

the a word (there.) We will sometimes abuse terminology slightly, and write feature when in

fact we mean a feature group.

2.1.2 Linear classifiers

We call a binary (two-class) classification method a linear classifier if its decision is based

on the sign of a linear function of its input features. That is, a linear classifier classifies into

two classes according to which side of a hyperplane the data point is at. Linear classifiers are

a surprisingly strong and versatile class of classifiers. Although they only deal with binary

classification, there are several well-known methods to get multi-class classification either

by generalizing specific binary classifiers, or by using them as building blocks. For a more

detailed treatment see (Bishop 2007).

Let us assume that we are provided with some training corpus of input-output pairs

(x(i), y(i)), i = 1, . . . , n, for the unknown binary (two-valued) function we need to learn,

where y(i) = ±1. There is no a priori unique method for us to choose a best linear clas-

sifier based on the training data. Indeed, there are several computationally tractable and

theoretically well-motivated possibilities to formalize this choice as an optimization prob-

lem. One notable choice we will not discuss here is support vector machines (SVMs), for an

introduction see (Burges 1998).

2.2 Maximum entropy modeling

In this section we will discuss the maximum entropy (maxent) method, the main building

block of most of our models throughout the thesis. One of the attractive properties of this

method is that there are two, seemingly very different formalizations of the learning task that

both lead to this method. The first formalization treats the question as a regression problem,

and solves it using the maximum likelihood method. This regression-based approach is called

10

multinomial logistic regression, and we discuss it in Subsection 2.2.1. The second formaliza-

tion treats the question as a constrained optimization problem, and relies on the principle

of maximum entropy, hence the name. This approach is introduced in Subsection 2.2.2. Our

treatment of both approaches is brief. The interested reader should consult e.g. (Pietra

et al. 1997).

The maximum entropy method actually solves a problem more general than classification:

It finds a probability function p(y|x) that takes a feature vector x and gives a probability

estimate that x belongs to class y. Given such a probability function, we can build a classifier

simply by picking the class with the highest probability. In Section 2.3 we will intruduce

some examples where probability functions – as opposed to pure classifiers – can be used as

building blocks of more complex machine learning methods.

Further on, x(i)j means the jth feature of data point i.

2.2.1 Logistic regression

In this subsection we will introduce logistic regression, a method that solves the binary

classification task by solving a regression on the probability function. All results in this

subsection could easily be generalized from the binary case to the multi-class case. This

generalization is called multinomial logistic regression. For the sake of simplicity and clarity

we only discuss the binary case below.

The subsection starts by introducing the specific parametric form in which we search

for our probability function. We then introduce the maximum likelihood method to turn

the search for a well-behaved probability function into an optimization problem. We end

the subsection by discussing Maximum A Posteriori estimation, a refinement introduced to

prevent overfitting.

Logistic regression belongs to the class of Generalized Linear Models, where we apply

some nonlinear transformation to the linear combination of features before fitting it to the

11

dependent variable. Here, the dependent variable is probability of class membership. Classi-

fication by choosing the class with the higher predicted probability leads to a linear classifier.

In the case of logistic regression, we transform the output of some linear function by

applying the logistic function 1
1+e−t , and interpret the output as a probability of class mem-

bership. Formally, we seek the probability of x being in class +1 in the form

1

1 + e−βx
,

where β is a linear function, mapping feature vectors to real numbers. The use of the logistic

function seems ad hoc. It is certainly not the only possible choice for this so-called inverse

link function. The only immediately obvious requirement for an inverse link function when

fitting probabilities is that it should be monotone increasing and converge to 0 and 1 in

the infinities. Indeed, several such inverse link functions are in use.2 Later we will highlight

some special properties of the logistic function that make it a natural choice among possible

inverse link functions. For now, we note one such property: the logistic function transforms

log-odds to probability.3 Thus βx can be interpreted as the logarithm of the odds of class

membership. This means that changing some feature xj by a constant results in a constant

multiplicative change in the predicted odds of class membership.

After defining a parametric form for the probability function, the next step is to specify

how to fit the regression to the training data (observations). In the simplest case, we can use

the maximum likelihood method. This means finding the model parameters that maximize

the probability of the observations, assuming that the observations are independent when

conditioned on the model. The joint probability of the conditionally independent training

data points takes the form of a product. Maximizing it is equivalent to maximizing the sum of

2For example, in the case of probit regression, the inverse link function is the cumulative distri-
bution function of the standard normal distribution. This has thinner tails, meaning that extreme
outlier data points have bigger influence on model parameters than in the case of logistic regression.

3The odds of a probability p event is p/(1 − p). The log-odds (also called logit) is simply the
logarithm of odds.

12

conditional log-probabilities of data points. With nothing but simple algebraic manipulations

it can be shown that this is equivalent to minimizing the so-called total loss function:

∑

i

κ(y(i)βx(i)),

where κ(t) = ln(e−t + 1) is the logistic loss function. Intuitively, κ is a penalty function,

and we are looking for a separating hyperplane β that minimizes the total penalty score over

the training data. κ is close to 0 for large positive values, meaning we do not penalize points

that fall on the ‘right’ side of the hyperplane. κ is close to the negative identity function for

large negative values, so for points on the ‘wrong’ side of the hyperplane we give a penalty

score that is approximately equal to the distance from the hyperplane. κ is positive near

zero, meaning that the hyperplane is slightly penalized when correctly-classified points are

too close to it. Compare this to the so-called hinge loss of Support Vector Machines: in that

case the loss function is max(0, 1− t), a good piece-wise linear approximation of κ. All three

above-mentioned properties of κ hold for hinge loss, too.

The total loss function is convex, so a local minimum is also global. The optimum can be

found with iterative optimization methods like L-BFGS (Zhu et al. 1997), stochastic gradient

descent (Bottou 2003), or trust region Newton methods (Lin et al. 2007).

It is instructing to compare logistic regression to the well-known Naive Bayes model. As

we already noted, the coordinates of β have the following interpretation: increasing coor-

dinate xj by 1 increases the estimation for the log-odds of class membership by βj. Both

for logistic regression and for Naive Bayes, increasing one of the variables by some constant

increases the estimated log-odds of class membership by a constant amount. In fact, the max-

imum likelihood logistic regression model gives identical results to the Naive Bayes model if

the Naive Bayes independence assumption is true. In this sense, logistic regression can be seen

as a generalization of the Naive Bayes method that can robustly deal with non-independent

features. Using a trivial example, if we accidentally add the same feature a second time to

13

our feature set, Naive Bayes double-counts the evidence, while logistic regression does not

change its probability estimations.

A slightly more complex method for fitting the regression model is Maximum A Posteriori

(MAP) estimation. In this case, we start from some simple prior probability distribution for

the model parameter vector β, update the distribution using Bayes’ Theorem after observing

the training data, and choose the β with the maximum likelihood. Intuitively, we combine

the suggestions of our training data with our prior knowledge of how β should look like. An

analytically very tractable case is the Gaussian prior, where we assume that the coordinates of

β are independent, normally distributed random variables with zero mean and fixed variance.

It can be shown that with this prior, MAP estimation simply means that we have to add a

quadratic regularization term ‖β‖2 to the already described total loss function. This extra

term punishes very large βj weights, which helps avoid overfitting, as it prevents the model

from becoming overconfident in the importance of specific features. Not only does the total

loss function remain convex after adding the regularization term, it will be strictly convex,

and thus have a unique optimum.

2.2.2 Entropy maximization

As we noted, the choice that we construct our probability function from a composition of a

linear function and the logistic function seems a bit ad hoc. Below we claim that this exact

functional form can be deduced from very general assumptions. In this subsection we do not

even rely on the fact that the classification is binary.

We start without any assumptions about the structure of the probability function p(y|x),

except the most obvious ones: probabilities should be nonnegative, and sum to 1 over classes

for each x. Next, we use the training corpus to assemble a set of linear constraints on the

probability function. Each feature-class pair (j, y) will correspond to one such constraint.

Before specifying the constraints, we define the Kronecker delta as δxy = 1 if x = y, and 0

otherwise. The constraints are

14

∑

i

p(y|x(i))x(i)j =
∑

i

δyy(i)x(i)j, for all j, y.

(Summation over all training samples.) fu,j(x, y) := δuyxj is called the indicator function

defined by (u, j). The constraint for a given (j, y) pair ensures that the expected value of the

indicator function on the training corpus is equal to the expected value of xj on the training

corpus when class probabilities are provided by p(y|x) instead of being observed directly.

Let us use a toy example of a classification task where we have to classify fish into two

classes ‘eel’ and ‘carp’ based on the values of features ‘length’ and ‘weight’. Let us assume

that the expected values of the indicator function feel,length is 1.5 meters on the training data.

(This is equivalent to saying that for the training data, the average length of eels multiplied

by the ratio of eels is 1.5 meters.) We then constrain our probability function p so that for

a randomly chosen fish x, E(p(eel|x)xlength) is 1.5 meters. Somewhat informally we can say

that the constraint guarantees that the aggregate behavior of the feature is the same for the

observed, actual ‘eel’ set and for the predicted ‘eel’ weighted set.

After we turned our set of features into a set of linear constraints on p(y|x), we still have

a vast class of feasible p(y|x) functions.4 The next question is how to choose one from these.

For this, we turn to the principle of maximum entropy. The principle of maximum entropy

postulates that when we have to choose a probability distribution out of a class of probability

distributions, we should choose the one with the maximal entropy. The justification for the

principle is that this particular choice minimizes the amount of prior information built into

the model, or as Ratnaparkhi phrased it, this model is “maximally noncommittal beyond

meeting the observed evidence”. For the distribution defined by our probability function

p(y|x), entropy is calculated as

4We know that the set of feasible functions is non-empty, because the trivially overfitting prob-
ability function that mechanically gives back the training classification for the training data points
obeys all our constraints.

15

H(p) = −E(
∑

y

p(y|x) log p(y|x)).

Here expectation is taken over the training corpus. It is easy to show that entropy is a con-

cave function, thus the linear constraints and the concave objective function together define

a concave optimization problem. It can be shown (Pietra et al. 1997) that this optimization

problem and the optimization problem introduced in the previous subsection (maximum

likelihood multinomial logistic regression estimation) are in a strong dual relationship with

each other, which implies that the optimal p(y|x) is the same for these two seemingly quite

different problems.5 Note that unlike logistic regression, the maximum entropy approach

did not start out with assuming a parametric form for p(y|x). The specific parametric form

was picked out from all the possible choices by the maximum entropy principle. This gives

a further justification for the choice of the specific general linear model used for logistic

regression.

2.3 Sequence labeling

In this section introduces three common approaches to the task of sequence labeling. Subsec-

tion 2.3.1 discusses Hidden Markov Models, Subsection 2.3.2 describes Maximum Entropy

Markov Models, and Subsection 2.3.3 briefly introduces Conditional Random Fields.

The task of sequence labeling can be defined as follows: The input is a sequence of

observations (we can assume that each observation is a feature vector), and the output is

a label assigned to each of the observations. We assume that the ordering of the sequence

carries information about the problem, so that we can incorporate information into our

models about correlations between labels, or correlations between labels and features of

other observations. Typically but not necessarily we want to model correlations between

5Technically, p(y|x) is a (not necessarily unique) optimum of the first function if it is a (not
necessarily unique) optimum of the second.

16

labels and nearby information. For example we want to increase the probability of a token

being a noun if the previous token turns out to be a determiner with high probability.

2.3.1 Hidden Markov Models

A standard class of models that can be used for supervised sequence labeling is Hidden

Markov Models (HMMs) (Rabiner & Juang 1986), (MacKay 2002). Below we will introduce

this class of models, and briefly describe the most important algorithms used when dealing

with them.

Here we will introduce Hidden Markov Models as a special case of a model class we

will call Hidden State Models (HSM). A HSM consists of two parts: a label sequence model

(often called a language model) and an emission model. The label sequence model assigns

probabilities to label sequences. Labels are called hidden states here, for reasons that will

soon become clear. The emission model determines the probability of a given observation,

conditioned on the fact that its label is already known. The label sequence model and the

emission model together determine a joint distribution on (label, observation) sequences.

This can be used to determine the label sequence with the largest likelihood, conditioned on

the observation sequence.

The labels are called hidden states. This terminology reflects the fact that we look at the

observations as if they were emitted by the labels. This approach is called the noisy channel

paradigm, although the noisy channel is more a metaphor than an actual case of Shannon’s

original noisy channel framework (Shannon 2001), as noise means any sort of generative

process here. To stay with the example of morphological disambiguation, the noisy channel

paradigm looks at the sentence as if it was the result of the following strange process: some

alien who talks in the language of morphological tag sequences utters such a tag sequence.

The tags come through a noisy phone line, where due to noise the tags are distorted to become

ordinary words (having the corresponding tags). The task of morphological disambiguation

now becomes a decoding task: we need to find out the most probable utterance of the alien,

17

conditioned on the sentence observed, our probabilistic model of the alien language, and

our probabilistic model of the line noise. The surprising power of this seemingly artificial

approach comes from several sources, but one very important source of this power is that

we have efficient algorithms to determine the most probable label sequence when the label

sequence model obeys a Markov or ‘memorylessness’ property we will introduce now.

A Markov chain is a stochastic process generating random sequences (walks) over a finite

set of states. It is determined by a probability matrix of transitions, where aij tells the

probability that we move to state j, conditioned on the fact that we are at state i. (We can

assume that the walk starts from state 0.) The crucial property of the Markov chain is that

it is memoryless, in the sense that if we take the probability distribution of the sequences

starting with a given prefix word, this distribution is identical to the probability distribution

of the sequences starting with the last element of this prefix word. If we look at the left of

this element as ‘past’, and the right of it as ‘future’, then the future is influenced by the

past only through the ‘present’. A Markov chain assigns probabilities to state sequences, so

it can be used as a label sequence model.

A Markov chain label sequence model together with some emission model is called a

Hidden Markov Model (HMM). Thanks to the Markov property, there are efficient algorithms

for answering many questions that one can ask about HMMs. First, it is trivial to calculate

the probability of an observation sequence conditioned on a known hidden state sequence:

P (O1, . . . , On|S1, . . . , Sn) = P (O1|S1) . . . P (On|Sn)

Second, it is trivial to calculate the unconditional probability of a state sequence:

P (S1, . . . , Sn) = P (S1)
n∏

i=2

P (Si|Si−1)

Sometimes we would like to calculate the unconditional probability of an observation

sequence. This is called the Evaluation Problem. For this, we need to sum over the set of all

hidden state sequences:

18

P (O1, . . . , On) =
∑

S1

· · ·
∑

Sn

P (O1, . . . , On; S1, . . . , Sn) =
∑

S1

· · ·
∑

Sn

n∏

i=1

P (Oi|Si)P (Si|Si−1)

(By convention, define P (S1|S0) to be P (S1).) The set of all hidden state sequences is

exponentially large. Fortunately the sum can be calculated efficiently by the so-called forward

algorithm. The algorithm is a straightforward application of dynamic programming. For each

position i and for each state S it recursively calculates the probability that two conditions

hold simultaneously: the first condition is that St = S. The second condition is that the first

t observations are O1, . . . , Ot.

Another useful task is to calculate the most probable hidden state sequence underlying

a known observation sequence:

arg max
(S1,...,Sn)

P (O1, . . . , On; S1, . . . , Sn)

This is called the Decoding problem, and this is our task e.g. if we want to find the most

probable morphological tag sequence for a given sentence within the noisy channel paradigm.

For this, we can use an algorithm very similar to the forward algorithm, called the Viterbi

algorithm. For each position i and each state S, the Viterbi algorithm recursively calculates

the probability that two conditions hold simultaneously: the first condition is that St = S.

The second condition is that S1, . . . , St is the most probable state sequence for observations

O1, . . . , Ot, assuming we do not have information about later observations.

An easy, but still very useful task is supervised learning of HMM model parameters: given

a hidden state sequence and corresponding observation sequence, find the model parameters

that maximize the joint probability of the sequences. What makes this task particularly easy

is that it decomposes into two tasks: the maximum likelihood state transition probabilities

are equal to the empirical state transition probabilities, and the state-observation pairs can

be used to train an emission model.6 Note that if the Markov property or the conditional

6Depending on the structure of the observed states, the emission model can be quite complex. For
example, in speech recognition applications a popular choice is a mixture of Gaussian distributions.

19

independence of emitted observations is violated, this can lead to badly biased maximum

likelihood models.

We often need state sequence models where the conditional probability of the current

state is a function of the last k states, not just the last single one. These are called kth-order

Markov chains. Theoretically they are easy to work with, because if we treat the vector of

the last k states as a single ‘big’ state, then the kth-order Markov chain becomes a regular

Markov chain. In practice, we need to use a more compact representation of higher order

Markov chains than this trivial one. HMMs of second order Markov chains are often called

trigram HMMs, referring to the fact that their language model can be represented by a

weighted set of trigrams.

2.3.2 Maximum Entropy Markov Models

HMMs are generative models in the sense that they can generate observation sequences. They

model the joint probability of all variables of the model, in contrast to discriminative models

that only aim to model the conditional probability of labels conditioned on the observations.

Generativeness is a useful feature for several machine learning tasks, but discriminative

models have advantages when solving the specific class of problems they are designed to

solve, because they do not ‘waste’ modeling effort (model degrees of freedom) on modeling

the distribution of input data.

Maximum Entropy Markov Models (MEMM) are designed to solve the same sequence

labeling problem as HMMs, but they are discriminative models: they only attempt to model

the behavior of the labels conditioned on the observations. MEMMs model the distribution

of a label based on current observations and previous label:

P (S1, . . . , Sn|O1, . . . , On) =
∏

t

P (St|St−1, Ot)

20

(Here each Ot is a feature vector, not just a single categorical variable.) A MEMM assumes

that the distribution of P (St|St−1, Ot) is independent of position in the sequence, and models

it with one separate maximum entropy model for each possible label St−1 of the earlier state.

MEMMs have the important limitation that they implicitly assume that labels are

marginally independent of later observations. This independence assumption is strongly

violated in most sequence labeling tasks. For some of the results presented in this thesis

(hunchunk, hunner), we will use a simplified version of Maximum Entropy Markov Mod-

eling. This version differs in two important aspects from a standard MEMM. First, the

maximum entropy model is allowed to depend on neighboring observations Ot−k, . . . , Ot+k,

for some small constant k. Second, we do not let it depend on the previous label St−1.

Rather, we model transition probabilities as conditionally independent from observations,

and learn them directly from the training corpus. We will introduce this model in more detail

in Subsection 5.3.3.

2.3.3 Conditional Random Fields

Conditional Random Fields (CRF) are a very general class of statistical modeling methods

(Sutton & McCallum 2011). We only mention them here briefly, as no results in this thesis

rely on CRF modeling.

For CRFs, the conditional dependencies between hidden variables can be represented by

undirected graphs. For any given hidden variable, the following two conditional distributions

are the same: 1. the distribution of the hidden variable conditioned on neighboring hidden

variables and all observable variables. 2. the distribution of the hidden variable conditioned

on all other hidden variables and all observable variables. Intuitively, other hidden variables

can influence the variable only through its immediate neighbors.

When CRFs are used for some sequence labeling task, the graph is often (although not

necessarily) a chain. In this special case called linear-chain CRF, the model can be seen as

21

an improved version of MEMMs, where the label of the present node need not be marginally

independent of later observations, as is the case for MEMMs.

CRFs can model more complex dependencies than either MEMMs or our models. They

achieve consistently higher scores on labeling tasks than MEMMs (Lafferty et al. 2001). They

are theoretically more sound than our models. Linear-chain CRFs have efficient training and

decoding algorithms. In spite of all these advantages, the results presented in the following

chapters do not employ CRF methods. The reason for this is that our preliminary exper-

iments suggested that the results we present can at best be only marginally improved by

switching to linear-chain CRFs, while training time is at least one order of magnitude higher

for CRFs than for our simpler models. As a result, this modeling approach is prohibitively

slow for the very extensive feature sets we rely on. The accuracy of some of the systems pre-

sented in the thesis could likely be improved by using more careful feature selection combined

with Conditional Random Field modeling.

Chapter 3

Morphological Analysis

In this chapter we introduce the task of morphological analysis. We describe the annota-

tion formalism and morphological analysis framework built by our research group. We then

present the Hungarian morphological resource that was built on these foundations. We start

the thesis with these results because morphological analysis (MA) – and the hunmorph an-

notation formalism in particular – is an essential building block for all of our tools that is

referred to in most chapters of the thesis.

This is the only chapter of the thesis where the author’s role in the work described is

mostly supportive. Most of the results are by other members of the author’s research group.

András Kornai and Péter Rebrus designed the hunmorph annotation formalism (Rebrus

et al. 2012). Viktor Trón created the hunlex/ocamorph toolset (Trón et al. 2005), building

on work by László Németh and others on the hunmorph analyzer (Németh 2002), (Németh

et al. 2004). The Hungarian morphological description morphdb.hu was built by a large

collaboration of authors (Trón et al. 2006). The role of the present author was mostly limited

to building test environments for these tools and resources, and spotting lexicon problems

by corpus-based semi-automatic methods.

3.1 The hunmorph annotation formalism

A morphological annotation formalism is a formal language that is suitable for encoding

lexical information about word forms. It can be seen as a serialization of some abstract

description of possible word structures. For a specific language, morphological annotation

is a (many to many) mapping between word forms and elements of this formal language.

22

23

In this section, we describe the hunmorph annotation formalism and its instantiation for

Hungarian.

In the following we briefly list the abbreviations used in this section. For more detail the

reader should consult e.g. (Crystal 1997).

• PLUR: plural

• CAS: case

• ACC: accusative case, őt ‘her’

• DAT: dative case, Péternek ‘to/for Péter’

• IMP: imperative mood, Dolgozd fel! ‘Process it!’

• SUBJUNC: subjunctive mood, Szeretném, hogy feldolgozd. ‘I’d like you to process it.’

• ANP: anaphoric possessive, Péteré ‘(something) belonging to Péter’

• FAM: familiar, Péterék ‘Péter’s group’

3.1.1 The general formalism

Hierarchical, asymmetrical

In the morphological theory behind the hunmorph formalism (Rebrus et al. 2012), the basic

data structure is a labeled tree. Such a labeled tree corresponds to an equivalence class with

regard to inflection. (In essence, such an equivalence class corresponds to a part of speech

category. For example, the class of nouns has its own tree.) The vertices of the tree correspond

to inflectional features. Importantly, hunmorph’s features are always binary. An annotation

corresponds to a rooted subtree of the tree. This means that a daughter feature can be

positive only if its parent feature is positive. The role of positive and negative features is

asymmetrical: The string serialization of this rooted subtree is built from the positive features

by bracketing. (The daughters of a given node are ordered in the full tree of features, to make

24

NOUN

PLUR

FAM

POSS

1 2 PLUR

ANP

PLUR

CAS

ACC DAT INS ...

Figure 3.1: The signature of the graph originating from the root node NOUN

the serialization unique.) In Figure 3.1 we can see a part of the feature tree for Hungarian

nouns. Some examples of annotation based on this are:

kutya ‘dog’

kutya/NOUN

kutyának ‘for/to the dog’

kutya/NOUN<CAS<DAT>>

kutyáink ‘our dogs’

kutya/NOUN<PLUR><POSS<1><PLUR>>

kutyáéi ‘those of the dog’ or ‘things belonging to the dog’

kutya/NOUN<ANP<PLUR>>

kutyáikéit ‘those of their dogs.ACC’

kutya/NOUN<PLUR><POSS<PLUR>><ANP<PLUR>><CAS<ACC>>

We can see that in this serialization the lemma is followed by a slash, then a specifi-

cation of a tree (NOUN in the above cases), then a description of a subtree (for example

<PLUR><POSS<1><PLUR>>). We will call the the part before the slash the lemma, the part

after the slash the inflectional tag. We will call the tree (the part between the slash and the

first <) the POS-tag.

25

Not segmentation-based

A natural idea when building a morphological formalism is to make it segmentation-based,

that is, to incorporate a correspondence between segments of the word form and features

of the morphological annotation. For example, embereknek ‘to people’ could be analyzed as

ember (NOUN) -ek (PLUR) -nek (DAT). The authors of hunmorph do not believe that it

is always feasible to have such a consistent correspondence between segments of a given

word form and features of the annotation, so hunmorph does not attempt to provide such a

correspondence. The authors give a list of examples that show that the segmentation-based

approach is not feasible in general. We do not reproduce their arguments here (see (Rebrus

et al. 2012)), but the main problem can be easily grasped through the following example: the

Hungarian morph -jaim though corresponds to more than one morphological property (1st

person, singular possessor, and plural possessed), these properties cannot be unambiguously

associated with separate parts of the morph. The same problem can be present for suppletive

(non-cognate inflected) forms, such as benneteket ‘you.PLUR.ACC’ or gyere ‘come.IMP’.

Another problem is grapheme-phoneme discrepancy. This is a less serious problem in

itself, however it complicates implementation and usage. As an example, hússzor ‘twenty

times’ is the inflected form of húsz ‘twenty’. The only well-behaved and theoretically well-

founded morph-based solution is to analyze it as húsz-szor, but this is not a segmentation of

the input character string.

It can be argued that this sort of morphological segmentation is not only infeasible, but

not even useful in most applications. One exception where a segmentation-based approach

actually has its benefits is speech recognition. There it is a justifiable simplification that leads

to more tractable models. We mention that our annotation framework was easy to extend in

order to provide segmentation information when such a need arose. The resulting segmen-

tation is theoretically not well-founded, and behaves inconsistently for some irregular word

classes, however when incorporated into a state-of-the-art morph-based speech recognition

system, it was able to improve its error rate nevertheless (Mihajlik et al. 2007).

26

Derivation

The above tree structure is intended to describe inflection, but is not directly suited to

describe derivation. A derivational suffix can be seen as a relation between two part of

speech classes, that is, a directed edge between the roots of two feature trees. (The two

trees might be identical.) The POS category of the resulting word is the output category of

the last derivational suffix, and the derived word can undergo further inflectional suffixing.

Inflected forms, however, cannot be subjected to derivation. In the annotation formalism,

the derivational suffix appears as an all-caps identifier in square brackets, and the name of

its output category is placed after that. Examples:

fax fax/NOUN ‘fax’

faxol fax/NOUN[ACT]/VERB ‘to send a fax’

faxolás fax/NOUN[ACT]/VERB[GERUND]/NOUN ‘faxing’

faxolástól fax/NOUN[ACT]/VERB[GERUND]/NOUN<CAS<ABL>> ‘because of faxing’

terjedő terjed/VERB[IMPERF_PART]/ADJ ‘growing’

székestül szék/NOUN[COM]/ADV ‘together with the chair’

sokszor sok/NUM[MULTIPL-ITER]/ADV ‘many times’

We call the part after the first slash the full morphological tag (as opposed to the part

after the last slash, which we already introduced earlier as the inflectional tag).

Compounding

In the hunmorph formalism, compounds are simply treated as the sum of their constituents,

with two important restrictions. First: only the last constituent is allowed to be inflected.

Second, it is allowed to have more than two constituents, but they are treated as a flat

structure, with the last constituent determining the output category of the compound. For

example, (vad+hús)+evő ‘eater of wild game meat’ and vad+(hús+evő) ‘wild eater of meat’

27

are not distinguished in the annotation. Preverb-verb constructions are treated as compound

words.

eladja el/PREV+ad/VERB<DEF> ‘she sells it’

vérfarkasok vér/NOUN+farkas/NOUN<PLUR> ‘werewolves’

sötétzöldje sötét/ADJ+zöld/ADJ<POSS> ‘its dark green’

zúzottkő zúz/VERB[PERF_PART]/ADJ+kő"/NOUN ‘crushed rock’

birsalmasajt birs/NOUN+alma/NOUN+sajt/NOUN ‘quince jelly’

3.1.2 The Hungarian instantiation

Part of speech categories

The valid POS categories ar listed in Table 3.1. Inflectable categories are: ADJ, NOUN,

NUM and VERB. The rest of the categories cannot be inflected.

Tag POS category
ADJ adjective
ADV adverb
ART article
CONJ conjunction
DET determiner
NOUN noun
NUM numeral
ONO onomatopoeic
POSTP postposition
PREP preposition
PREV preverb
PUNCT punctuation
UTT-INT utterance/interjection
VERB verb

Table 3.1: Part of speech categories of hunmorph

28

Inflection of nouns

We have already presented the feature tree for Hungarian nouns on Figure 3.1. The following

restrictions apply to the combination of the features:

• the ±CASE feature has to be continued by one of 16 cases,

• the features ±1 and ±2 exclude each other,

• if the ±PLUR feature of ±POSS is positive, then the ±FAM feature cannot be

positive,

• if the ±PLUR and the ±POSS feature are positive simultaneously, then the ±FAM

feature cannot be positive.

Inflection of verbs

The feature tree for Hungarian verbs can be seen on Figure 3.1.2. (The tree has been cut

into two parts for the sake of clarity.) In Hungarian IMP and SUBJUNC coincide at the

level of morphology, so hunmorph uses the SUBJUNC-IMP code. The following restrictions

apply to the combination of the features:

• only one of ±SUBJUNC − IMP and ±COND can be positive simultaneously,

• the feature ±PAST can only be positive if both ±SUBJUNC − IMP and ±COND

are negative,

• if the feature ±OBJ is positive than its daughter feature has to be positive as well,

• the feature ±INF can only combine with the feature ±PERSON ±PLUR and

±MODAL.

Examples:

29

lát ‘he sees’

lát/VERB

láttál ‘you saw’

lát/VERB<PAST><PERS<2>>

láthassátok ‘that you may see it’

lát/VERB<MODAL><SUBJUNC-IMP><PERS<2>><PLUR><DEF>

Inflection of pronouns

In Hungarian, a pronoun can substitute for any noun, adjective, numeral or adverb. The

inflection of pronouns, where applicable, conforms to the restrictions described above. This

enables us to avoid the use of ‘pronoun’ as a POS category, and to use instead those cate-

gories that the pronouns stand for. Personal pronouns are tagged as nouns in the hunmorph

formalism because they take part in the same inflectional phenomena as nouns – although

some of their paradigms are defective. They are distinguished by the PERS feature, however

they are subject to the restriction that their POSS feature must be negative. Pronouns play

the same syntactic role as the words they substitute for, so models that treat them similarly

can generalize better. Sometimes, however, the information whether a word is a pronoun or

not is still required, for example when writing grammars for noun phrases (Recski 2010). For

these cases, we deduce this information from the stem by a small table lookup.

ti ‘you.PL’

ti/NOUN<PERS<2>><PLUR>

titeket ‘you.PL.ACC’

ti/NOUN<PERS<2>><PLUR><CAS<ACC>>

Possessive pronouns are personal pronouns with a possessed feature, thus they carry the

ANP feature as well. Examples include:

30

tiétek ‘yours’

ti/NOUN<PERS<2>><PLUR><ANP>

tieteknek ‘to/for yours’

ti/NOUN<PERS<2>><PLUR><ANP><CAS<DAT>>

The anaphoric possessive can be repeated as shown in the following examples:

enyémé ‘that of my . . . ’

én/NOUN<PERS<1>><ANP<ANP>>

tieitekéi ‘things belonging to something that is yours.PLUR’

ti/NOUN<PERS<2>><PLUR><ANP<PLUR><ANP<PLUR>>>

3.1.3 Comparison with other formalisms

The main candidate as an alternative for the hunmorph formalism is the MSD (Morphosyn-

tactic Description) annotation scheme, originally proposed by (Erjavec & Monachini 1997).

The big advantage of MSD is that a large concerted effort took place to implement it for

many Eastern- and Central-European languages, and synchronize the annotation between

these languages as much as possible. (We note that originally MSD was designed for Slavic

languages only.) Like hunmorph, MSD does not deal with segmentation, and it serializes a

sort of attribute-value structure. Still, there are several important differences that justify our

research group’s effort to implement an alternative.

For MSD codes, the hierarchy of feature dependences is not made explicit, and is not

consistently reflected in the serialization. MSD codes are fixed length, and features are

identified with character positions. These design decisions make MSD codes harder to read

than hunmorph codes, especially for less inflected words. Some comparisons:

31

fiú Nc-sn-y--- NOUN

fiaitokéival Nc-pi-yp2p NOUN<PLUR><POSS<2><PLUR>><ANP<PLUR>><CAS<INS>>

ad Vmip3s---n------ VERB

adtátok Vmis2p---y------ VERB<PAST><PERS<2>><PLUR><DEF>

Moreover, MSD in its current form does not deal with derivation, and it is not immediately

clear how such a generalization could be designed.

The Szeged Corpus, arguably the most important Hungarian language resource was an-

notated using MSD.1 Thus, the need to convert between the two formalisms arose early.

Originally this was carried out by using ad hoc scripts, with minor information loss in both

directions. For a later version of the Szeged Corpus, a systematic harmonization effort took

place, resulting in an annotated treebank that can be presented in either of the formats

without information loss (Farkas et al. 2010).

3.2 Tools - hunlex, hunmorph

In this section we review the tools that do morphological analysis and related tasks. We

roughly follow the presentation of (Trón et al. 2005). The author of the thesis was a co-author

and minor contributor to this paper (working on semi-automatic corpus-based methods to

detect bugs in the morphological descriptions). The software presented there are the work of

László Németh (hunmorph), Viktor Trón (ocamorph, hunlex) and György Gyepesi (jmorph).

The task of a morphological analyzer is to provide all possible morphological analyses

for a given word form. This task is closely related to a set of other word-level language

processing tasks: Stemming, an important subtask of information retrieval (Halácsy 2006),

is only interested in the stem of the word form (or possible stems, in case of ambiguity).

The task of spell-checking is to decide whether a word has a valid morphological analysis.

Note that this means that a spell-checking algorithm can be stopped after finding the first

1We will introduce the Szeged Corpus in Section 4.2.

32

valid analysis, which is typically not the case for morphological analysis or stemming. Spell-

correction can be seen as providing the set of words that have valid analyses and, under

some suitable distance measure, are closest to the input word. (This measure is usually an

edit distance based on common misspelling patterns, for example missing accents, or letters

close to each other on a keyboard.)

3.2.1 The runtime layer

The codebase we reused for the task of building a morphological analyzer has a long history

in Unix-based text processing. Our hunspell/hunmorph codebase is a direct descendant of

the MySpell spell-checking library by Kevin Hedricks, which itself is based on the earlier

ISpell (Peterson 1980). The key operation supported by these algorithms is affix stripping.

Affix rules are specified in a resource called the aff file. Such an affix rule consists of a list of

conditions, a strip string, and an append string. For example, in the rule forming the plural

of body the strip string would be y, the append string ies. The rules are reverse applied to

complex input word forms. The result of the append and strip operations is then looked up in

a base lexicon resource called the dic file. The two files together contain all the information

needed to deal with a given language. We refer to this formalism and file format as aff/dic

files.

Lexical entries are all associated with sets of affix flags, and affix flags in turn are asso-

ciated to sets of affix rules. If the hypothesized base is found in the lexicon after the reverse

application of the affix rule, the algorithm checks whether the flags of the lexical item contain

the one that the affix rule is assigned to. In this sense, affix flags can be interpreted as lexical

features. At the core of an affix stripping implementation such as MySpell or hunmorph is a

fast indexing technique to check affixation conditions efficiently.

This simple table-lookup based mechanism does not scale well to languages with rich

morphology. For instance, in Hungarian, due to productive combinations of derivational and

33

inflectional affixation, a single base can yield up to a million word forms. To solve this prob-

lem, hunmorph extends the affix stripping technique to a multistep method: after stripping

an affix or cluster of affixes in step i, the resulting pseudo-stem can be further stripped in

step i + 1. Affixes are associated with flags similarly to stems. As a useful byproduct, by

cross-checking flags of prefixes on the suffix (as opposed to the stem only), simultaneous

prefixation and suffixation can be made interdependent, enabling the correct handling of

circumfixes like German participle ge+t or Hungarian superlative leg+bb.

Many languages use productive compounding extensively, therefore the treatment of this

phenomenon is indispensable for wide coverage. ISpell allows a flag to specify whether a

stem can appear in compound words. This limited solution leads to large classes of overgener-

ation, so hunspell/hunmorph generalizes it to deal with compound positions. A base or affix

can be specified to occur only as leftmost, rightmost or middle constituent, and they can be

marked to appear only in compounds. As an example of a problem that becomes tractable

with this generalization, we mention the case of the German common noun: although it is

capitalized in isolation, lowercase variants should be accepted when the noun is a compound

constituent. In the hunspell/hunmorph solution, lowercasing itself becomes a prefix, with

the compound flag enabled.

MySpell was not designed for morphological analysis, and one of our goals with the

hunspell/hunmorph fork of MySpell was to make morphological analysis possible. This

required eliminating from the codebase the assumption of halting after finding the first

correct analysis. More importantly, it required functionality to emit output during analysis.

Fortunately, this goal meshed nicely with the affix stripping algorithm. We extended the

aff formalism to allow an output channel. For this channel, an optional strip-and-append

operation can be given for each stripping rule and lexicon entry. Successively applying these

operations creates an output string. When spell-checking, this functionality is not used.

When stemming, only the output of lexicon entries is used. For full morphological analysis

the full output is used to construct a morphological annotation.

34

We note that for a complex morphological annotation formalism like the hunmorph code,

finding the emitted codes for each affix rule is not a trivial task, even when multistep affix

stripping makes the set of affix rules more manageable. We will see a proper solution for this

problem in the next subsection, where we introduce the hunlex morphological description

formalism.

Two alternative implementations of hunmorph arose. One is jmorph, a fast Java imple-

mentation by György Gyepesi. (This was used as a stemmer in the Java-based runtime of

our Hunglish bitext query system.) The other one is the OcaML implementation ocamorph

by Viktor Trón.

3.2.2 The offline layer

For languages with complex morphology, the aff/dic formalism is far from being optimal as

a description of morphology. Spell-checker resource developers for these languages typically

use ad hoc precompilation tools to create the aff/dic resources from an ad hoc internal rep-

resentation of the morphology of the language in question. The problem is further magnified

when analysis requires lexicographic information.

The offline layer of our morphological toolkit seeks to remedy this by offering a high-level

description language in which grammar developers can specify rule-based morphologies and

lexicons. The hunlex morphological grammar precompiler can process these descriptions,

generating aff/dic resources optimized for the runtime layer.

There are two kinds of rules employed by the grammar: morphosyntactically active rules

and filter rules.

A typical example of a morphosyntactically active rule is the addition of an affix morph to

a relative stem. These are grouped according to the morphosyntactic features they realize.

Such a group cover the allomorphic variants of an affix morpheme. Figure 3.3 shows the

ruleset for the Hungarian inessive case with its two allomorph rules -ban and -ben.

35

Filter rules describe morphophonological processes such as vowel shortening, and express

redundancies between features and phonological patterns. An example for such a redundancy

is the set of filter rules determining when a regular stem is lowering based on word form.

These rules enable this feature to be provided only in the lexicon for irregular stems. The

example on Figure 3.4 shows the rule describing that a word stem not marked in the lexicon

as lowering can be treated as non-lowering.

Hungarian contains a significant number of loan words and proper nouns. The choice of

affix allomorphs is regular given the pronunciation, but the pronunciation can not be deduced

from the word form. To treat this class of cases, hunlex allows the specification of a pronun-

ciation. (Voltaire /volter/, Voltaire-rel ‘with Voltaire’). The very general hunlex formalism

also allows specification of transformation rules for grapheme to phoneme conversion, but

currently the only places where this functionality is used are resolution of acronyms (http,

há-té-té-pé), and the transcription of numbers.

Several parameters can be specified when we use hunlex to create an aff/dic resource.

An important one is affix stripping recursion depth: hunlex can build a resource (although a

possibly unreasonably large one) even when multistep affix stripping is not used during the

runtime phase. More generally, the size of the aff/dic resource becomes smaller with higher

allowed recursion depth, leading to a kind of time-space tradeoff for the runtime layer.

3.3 Resource built - morphdb.hu

Using the hunlex morphological description, we have built a wide-coverage morphological

description for Hungarian called morphdb.hu. This resource can be compiled with the hunlex

tool to an aff/dic resource for the hunmorph morphological analysis tool. The analyzer emits

output conforming to the hunmorph morphological annotation formalism.

As we explained, the grammar contains filter rules that deduce features and stem vari-

ants successfully from the citation forms based on phonological and orthographic shape.

36

Thus, the dictionary entries only need to contain unpredictable irregularities, in the form of

morphophonological and morphosyntactic features.

morphdb.hu consists of a wide-coverage lexicon, and a grammar of Hungarian inflectional

and (productive) derivational morphology. The approximately 150k word lexicon is the result

of a supervised merge of three pre-existing publicly available Hungarian language resources.

The MagyarISpell dictionary is the spell-checking resource for hunspell. (For Hungarian

spell-checking, MagyarISpell is still the de facto standard. The main cause of this fork is that

the aff/dic created by hunlex automatically is larger than the manually built MagyarISpell

aff/dic, and resource size is an important consideration for many spell-checking applications.)

The MagyarISpell lexicon is the most up-to-date lexicon of present-day Hungarian, with more

than 80 thousand lexicon entries (Németh 2002), (Németh et al. 2004). A second source of

data was the Elekfi Dictionary of Hungarian inflections (Elekfi 1994). It contains about 66

thousand entries, classified into paradigm classes. The third source is a dictionary database

edited by András Kornai (Kornai 1986) containing 78 thousand entries. Morphological infor-

mation present in the three sources was transformed into morphophonological features used

by the morphdb.hu grammar. This task required its own separate semi-automatic methods

for each of the three sources.

After converting them into a common format, merging of the sources required the

filtering-out of multiple occurrences, provided they were non-contradictory. Contradictory

information was manually checked, revealing a significant number of errors and typos in all

of the sources. The amount of overlap in the three sources turned out to be about a quarter

of the overall size of the lexicon, with each of the three contributing at least 10 thousand

unique entries.

The resulting resource was evaluated on two different datasets. First of these is the word

set of the Szeged Corpus (Csendes et al. 2004), the language resource we used for many

natural language processing tasks being introduced in the following chapters. As we already

mentioned in the context of the hunmorph morphological annotation formalism, The Szeged

37

Corpus contains morphological information on its tokens, in the form of so-called MSD

codes. Having conversion scripts between MSD and hunmorph allowed us to automatically

spot discrepancies between the codes output by hunmorph/morphdb.hu versus the Szeged

Corpus annotations. After tuning our conversion scripts, the remaining discrepancies were

resolved, mostly by increasing the coverage of morphdb.hu, but sometimes by tuning the

Szeged Corpus annotations. The latest versions of morphdb.hu and Szeged Corpus are fully

compatible (Farkas et al. 2010).

A second set of words to check morphdb.hu against was the Szószablya Hungarian Web-

corpus built by a large-scale crawl of the Hungarian web. The creation of this resource will

be detailed in the next chapter. The morphological analyzer was constantly checked against

the set of most common word forms found in this corpus. In the end, after exclusion of the

words recognized by an English spell-checker, the 40,000 most common word forms found in

the corpus were checked against the morphological resource. In each case where hunmorph

could not provide an analysis, manual inspection revealed that the word form is indeed either

invalid or a rare proper noun.

3.4 Applications

A significant part of the material in the following chapters of the thesis can be considered

as applications of the tools described in this chapter. Below we highlight some of the more

interesting applications where the author of the thesis did not participate in the research.

An important application of the tools introduced above was the construction of a spell-

checked and morphologically analyzed webcrawl of the Hungarian web (Németh et al. 2004)

called the Hungarian Webcorpus. We postpone the introduction of this dataset until the

next chapter on automatic morphological disambiguation, as the corpus is more useful in its

morphologically disambiguated form (Kornai et al. 2006), and this later version is the one

we intend to highlight.

38

Péter Halácsy (Halácsy 2006) compared several versions of a Hungarian information-

retrieval system, all with the same off-the-shelf Lucene retrieval engine, but with several

competing solutions for stemming. The results show that hunmorph-based lemmatization can

significantly increase the precision of a retrieval system. In many cases, the system achieved

higher precision than systems that used a state-of-the-art retrieval engine, but relied on some

simpler form of rule-based stemming. It is worth pointing out that according to Halácsy’s

results, automatic morphological disambiguation, the topic of the next chapter, does not

increase the precision of a Hungarian information retrieval system.

We already mentioned a speech recognition application of the hunlex/ocamorph toolset

(Mihajlik et al. 2007). For highly inflective languages it is a natural idea to build language

models at the level of morphs instead of words as units. Usually this is achieved using an

unsupervised morph-learner that deduces a useful set of morphs from a large corpus, and can

segment unseen text into morphs based on this (Creutz et al. 2005). The advantage of this

approach is that the learner is not bound to linguistically motivated segmentation patterns,

and can directly optimize the complexity of the resulting language model, employing the

Minimum Description Length principle. This approach is so successful that resource-based

lemmatization and segmentation is rarely attempted when working on speech recognition

tasks. Indeed, when Mihajlik et al. (Mihajlik et al. 2007) built ocamorph/morphdb.hu into

their Hungarian speech recognition system, it was not competitive with the unsupervised

morph-learning method. But they managed to combine the two approaches by using the

Minimum Description Length principle to choose only from the set of possible segmentations

suggested by ocamorph. The resulting system slightly outperformed the unsupervised system

and significantly outperformed the word-based system.

39

VERB

MODAL SUBJUNC-IMP COND PAST INF

VERB

PLUR PERS

1

OBJ

2

2

DEF

Figure 3.2: The signature of the graphs originating from the root node V ERB

CAS_INE

IF: analytic lengthened cas_ine

TAG: <CAS<INE>>

, +ban IF: back

, +ben IF: front

;

Figure 3.3: The rules separated by commas refer to the allomorphs of the suffix, while the
whole rule (CAS INE) refers to the inessive case morpheme.

NOM_LOWERING_FILTER

FREE: false

FILTER: low non_low

OUT: NOM_KEEP_ALL_FEATURES

OUT: NOM_ACC_FILTER

, OUT: non_low

;

Figure 3.4: The lowering filter: example of associating a default feature.

Chapter 4

Morphological Disambiguation

In any morphologically complex language, morphological analysis will often return more than

one possible analysis for a given word. For many automatic text processing applications, we

need to decide which of these alternatives is the correct one. This morphological disambigua-

tion task is closely related to, but not identical with, part of speech (POS) tagging, a term

we reserve for finding the major parts of speech (noun, verb, etc).

The chapter starts with the description of the task of morphological disambiguation. We

then proceed to highlight some complications presented by morphologically rich languages

such as Hungarian, and present an analysis of the hardness of the task. Next we describe,

evaluate, and compare those systems that we designed to solve the task of morphological dis-

ambiguation for Hungarian. We then proceed to present our morphologically disambiguated

Hungarian webcorpus and frequency dictionary. Finally we highlight some of the applications

made possible by the availability of these datasets.

The main results of the chapter originally appeared in (Halácsy, Kornai & Varga 2005)

(in Hungarian) and (Kornai et al. 2006). The author of the thesis was an equal collabora-

tor with Péter Halácsy and András Kornai in the design and creation of the morphological

disambiguator systems presented (Halácsy, Kornai & Varga 2005). The creation of the mor-

phologically disambiguated Szószablya webcorpus and frequency dictionary was the result

of a larger collaboration (Kornai et al. 2006). The author contributed software tools to an

ongoing project to build webcorpora and frequency dictionaries for medium and small den-

sity languages. This work is documented in (Halácsy et al. 2008) and (Zséder et al. 2012).

The subsection on a psycholinguistics application is the result of a collaboration with Csaba

40

41

Pléh and co-workers (Pléh et al. 2011), where the author’s contribution was the construction

of the entropy models, and the statistical analysis of the empirical data.

4.1 Background

Morphological Analysis (MA) is a central task in processing languages with rich morphology

such as Hungarian: from spell-checking to machine translation there is hardly any practical

application that does not require some form of MA. Even with a perfect MA algorithm

that recognizes every word and never makes mistakes, one still has to deal with the fact

that several word forms in Hungarian are ambiguous and the correct analysis can only be

chosen on the basis of context. As an example, the Hungarian word ment can be analyzed as

either megy/VERB<PAST> ‘went’ or ment/VERB ‘saves’, and even has a third, archaic analysis

ment/ADJ ‘free of ’.

In this chapter we will focus on the task of morphological tagging and disambiguation.

Morphological disambiguation is the task of assigning a unique morphological analysis to

each token of a text.

A full morphological tag contains both POS information and morphological annotation: in

highly inflecting languages the latter can lead to tagsets of high cardinality (Tufiş et al. 2000).

Hungarian is particularly challenging in this regard – with the number of individual tags in

the thousands.1 As a result, the ratio of tokens that are not seen during training (unseen)

can be as much as four times higher than for English corpora of comparable size. Moreover,

the number of ambiguous tokens is high (reaching 50% in the Szeged Corpus according to

(Csendes et al. 2004)).

Fortunately, morphological disambiguation is easier to automate than its semantic ana-

logue, word sense disambiguation (Preiss & Stevenson 2004). As we will see in this chapter,

1The number of inflectional tags in our largest corpus (see Section 4.8.) is 2004. The number of
full morphological tags is above 20000, which is not surprising if we consider that derivations can
be combined almost without limits.

42

relatively simple statistical modeling of the local context of the word is sufficient for disam-

biguation with a precision acceptable for many applications.

We approach the problem through the subtask of assigning inflectional tags, and this

subtask will be the major focus of the chapter. All of the results will be presented for

Hungarian, a morphologically complex language, but our methodology and our tools are

language independent. (Later, related work by our co-authors led to state-of-the art results

for English (Halácsy et al. 2007), Swedish (Megyesi 2009) and other languages.)

4.2 Resource used - the Szeged Corpus

The Szeged Corpus is the largest manually annotated natural language corpus of Hungarian

(Csendes et al. 2004). It was created as a joint effort of the University of Szeged Department

of Informatics, MorphoLogic Ltd. Budapest, and the Research Institute for Linguistics at

the Hungarian Academy of Sciences. It consists of 1.2 million tokens from 145 thousand

different word forms, and an additional 225 thousand punctuation marks. Its material was

carefully selected to represent several different genres in a balanced fashion. It consists of

the following subcorpora:

• fiction: two Hungarian novels and the Hungarian translation of Orwell’s 1984.
e

187k

tokens.

• short essays of 14-16-year-old students.
e

223k tokens.

• newspaper articles: excerpts from three daily and one weekly paper.
e

187k tokens.

• computer-related texts: excerpts from a Windows 2001 manual and some issues of the

ComputerWorld, Számı́tástechnika magazines.
e

182k tokens.

• law: excerpts from legal texts on economic enterprises and authors’ rights.
e

222k tokens.

• short business news: from the archive of the Hungarian News Agency.
e

188k tokens.

43

The text was first run through the Humor syntactic analyzer (Prószéky & Tihanyi 1996)

that produces MSD codes. Ambiguities were then manually resolved by trained linguists,

incorporating over 124 person-months of manual work.

Our toolchain is centered around the hunmorph annotation formalism, so we created a

version of the corpus where MSD codes were automatically converted to hunmorph codes.2

The conversion step is not always straightforward, since the two systems differ in their use

of inflectional features (e.g. in the case of marginal case suffixes and in the treatment of

the familiar plural). The resulting tagset (both MSD and hunmorph) is very large compared

to morphologically less complex languages.3 In all we converted 1001 MSD codes to 744

hunmorph tags, which may appear to have simplified our task; however, the hunmorph tag

and stem allow for a 100% reconstruction of the MSD tag, which means that the merging of

tags does not cause any information loss. In other words: Using a static table, a hunmorph

tagging of given precision can be converted to an MSD tagging with equal or higher precision.

Sentences containing MSD-tags of the residual main categories (X, Z, O) were omitted

from the corpus. Although hunmorph recognizes a number of ‘X’ items, and hunspell, which

uses the same list of stems, can correct many items with label ‘Z’ (typos), Szeged Corpus does

not provide corrected codes (ground truth) for these elements, which makes the evaluation of

our system’s output impossible on such data. With regard to the open class of tags of main

category label ‘O’, our experience showed that these items are not always distinguishable

even by human annotators. In the end we kept 70,084 sentences of the 82,098 originally

present in the corpus.

Named entities are treated as a single unit in the Szeged Corpus, with a single MSD code.

Although the recognition of named entities (NER) would constitute a separate task, we kept

tokens containing space, which make up 1.37% of the corpus. These increase the number of

OOV words in our experiments.

2See Subsection 3.1.3 for a brief comparison of the MSD and hunmorph annotation formalisms.
3The Penn Treebank tagset (Mitchell et al. 1994), the most commonly used tagset for English

has 36 tags.

44

It is worth noting that the Szeged Corpus has since been annotated with syntactic infor-

mation at the sentence level. This improved version is called The Szeged Treebank (Csendes

et al. 2005), and we will discuss it in more detail in Chapter 6 when we introduce the task

of noun phrase chunking.

4.3 Related work

In this section we introduce earlier approaches to morphological disambiguation, and use this

opportunity to contrast our approach with these. Section 4.5 will provide a more detailed

description of our models.

In our approach, lemmatization and full morphological disambiguation is postponed to a

later rule-based postprocessing step after the inflectional tag was determined, as in (Erjavec

& Džeroski 2004). This differs from the method of (Hakkani-Tür et al. 2000), where all

syntactically relevant features (including the stem or lemma) of word forms are determined

in one pass.

In Hungarian there is rarely tag ambiguity at the derivational level, but lexicalization

is an important issue. The choice of stem depends so heavily on the type of linguistic

information that later processing will need that it cannot be resolved in full generality at

the morphosyntactic level.

To the best of our knowledge, before our work the highest precision rates for the task of

Hungarian inflectional tagging (more concretely and precisely MSD-tagging) were reported

by (Oravecz & Dienes 2002), with an accuracy of 98.11% on their corpus. They modified the

HMM-based TnT tagging system (Brants 2000) for the task: they used the Humor (Prószéky

& Tihanyi 1996) Hungarian morphological analyzer to tag the tokens not occurring in their

training corpus, and to restrict the set of possible tags to those that are compatible with the

output of the MA. (This strategy was already employed by (Hakkani-Tür et al. 2000, Hajič

et al. 2001) for other languages.)

45

Our system improves on this solution mainly by giving good probability estimates for the

tags of the words that are recognized by neither the training corpus nor the morphological

analyzer. For morphological analysis we used the hunmorph system with the morphdb.hu

language resource.

Our precision rates of 97.91% on 1984, 98.38% on the wholenews section4 and 98.17%

on the Szeged Corpus do not indicate a substantial improvement compared to the numbers

reported by (Oravecz & Dienes 2002). However, we still believe our system to be of better

practical use, because our algorithm is robust in handling coverage errors of MAs not adjusted

to the corpus at hand, thus enabling us to process larger and more heterogenous corpora

such as that created from the dynamically expanding Hungarian web. We note that after the

completion of this project we started and completed the task of making the Szeged Corpus

fully covered by our morphological analyzer (Farkas et al. 2010). This later work did not

taint the results published here that are based on a version of the MA not specifically tuned

to the Corpus.

4.4 The hardness of the tagging task

The difficulty of the morphological disambiguation task is usually measured by the ratio of

ambiguous word forms (Csendes et al. 2004) or the average number of possible analyses for

a token (Tufiş et al. 2000). If the lexicon offers alternative analyses, the token is taken as

ambiguous irrespective of the probability of the alternatives. These numbers, however, can

be quite misleading. If an external resource is used in the form of a morphological analyzer

(MA), this will almost always over-generate, yielding false ambiguity. But even if the MA

is tight, a considerable proportion of ambiguous tokens will come from legitimate but rare

analyses of frequent types (Church 1988). For example the word nem, can mean both ‘not’

and ‘gender’ in Hungarian, so both ADV and NOUN are valid analyses, but the adverbial reading

4The 280 thousand token corpus used by Oravecz et al. (Oravecz & Dienes 2002) is most com-
parable to the 350 thousand token subcorpus of the Szeged Corpus we call wholenews that consists
of the news and newsml (business short news) subcorpora.

46

is about five orders of magnitude more frequent than the noun reading, (12596 vs. 4 tokens

in the 1m word manually annotated Szeged Corpus (Csendes et al. 2004)).

In what follows, a distinction must be made between those items that are not found

in the training corpus (these we have called unseen tokens) and those that are not known

to the MA – we call these out of vocabulary (OOV). As we shall see, the key to the best

tagging architecture we found was to follow different strategies in the lemmatization and

morphological disambiguation of OOV and known (in-vocabulary) tokens.

A more relevant measure for the difficulty of the disambiguation task is the average

amount of information necessary for disambiguating a word form. If a word w has tag Ti

with probability P (Ti|w) (which can be approximated with C(Ti, w)/C(w), C being the

number of occurrences in a tagged corpus), then the tag-entropy of this word is H(w) =

−∑
i P (Ti|w) log P (Ti|w) and the difficulty of the entire tagging task is the weighted average

of these entropies based on word frequency
∑

w P (w)H(w). For the Szeged Corpus this is

approximately 0.1 bit/word (the exact value depends on the chosen tagset), far lower than

what one might predict from the ratio of ambiguous words: with half the words in the corpus

having two equally probable analyses, entropy could be as high as 0.5 bit/word.

In practice, no morphological analyzer is perfect and both word frequency and tag-entropy

can only be estimated. Of particular interest are methods that make these estimates without

analysis, directly from the corpus, as these correspond to algorithms that use only learning

and no MA. Such methods provide quite good solutions to the tagging task in themselves:

e.g. assigning the most frequently observed tag to each word and the most frequent tag

‘NOUN’ to unseen words will accomplish a precision rate of 92% on the Szeged Corpus (90%

train, 10% test, unshuffled tenfold cross-validation). (Oravecz & Dienes 2002) use the same

algorithm as baseline but report a precision of only 81.2%. The difference is due to the fact

that our training and test corpora are an order of magnitude larger, which reduces the ratio

of unseen words to 6.75% from the 17.13% found in their corpus.

47

(Oravecz & Dienes 2002) already notes that the richness of Hungarian morphology causes

the ratio of unseen words to be higher in a corpus of Hungarian than in one of English (for

270,830 tokens they report 17.13% and 4.5% respectively). Since the ratio of unseen words

strongly influence the efficiency of methods more complex than the baseline, there are three

methods we can choose from: (A) increasing the size of the training data to decrease this

ratio, (B) linking unseen words to seen words, or (C) improve our heuristics for unseen

words, e.g. by using MA. Our results will give some evidence on the relative influence of

these methods on precision.

 94

 94.5

 95

 95.5

 96

 96.5

 97

 97.5

 98

 98.5

 1 2 3 4 5 6 7 8 9

Ac
cu

ra
cy

Corpus size

WMA+T3
TnT

baseline

Figure 4.1: Learning curves of various algorithms on a mixed corpus

A good example of method (B) is the following modification of the baseline algorithm (a

similar one was suggested by (Horváth et al. 1999)):

(i) If w is in the training corpus, it is assigned tag T = argmaxP (Ti|w), otherwise

48

(ii) if the MA recognizes the word and provides a single tag, than that tag is assigned,

(iii) if the MA recognizes the word as ambiguous, then we choose from all possible tags Tw,i

the one most frequent in the training corpus, in all remaining cases

(iv) the word is assigned the tag NOUN

This algorithm accomplishes precision rates of 95.40% and 95.84% on Szeged Corpus and

1984 respectively, a performance that is comparable to that of transformation-based learning

systems ((Horváth et al. 1999), (Kuba et al. 2003), (Kuba et al. 2005)), but is inferior to

the 98.11% achieved using trigram HMMs ((Oravecz & Dienes 2002)) Since the method

achieves high precision for words already seen and the ratio of unseen words decreases with

the increase in corpus size, overall precision can be increased along with the size of the data,

as seen in Figure 4.1. (The unit on the x axis is 10% of total corpus size. A random 10% of

the corpus is held back for evaluation.)

A note about the corpus used for plotting Figure 4.1: the Szeged Corpus consists of

several sections which differ greatly from one another in both genre and difficulty. To prevent

systematic distortions caused by this, for these measurements we randomly shuffled the

sentences of the corpus before splitting it into training and test sections. Precision rates

measured on this shuffled corpus can not be compared to with our other numbers measured

using unshuffled tenfold cross-validation, since random shuffling greatly reduces the ratio

of unseen words in the test corpus. In this sense, our other published numbers are for a

harder task. We consider this task more realistic than the shuffled version, because in real-

life applications the input rarely comes from the exact same probability distribution as the

training data.

Figure 4.1 also demonstrates the effects of the morphological analyzer. The HMM-based

TnT that does not use any MA outperforms the simple MA-based model because it can

make use of the word’s context. If the trigram-model is extended so that it can fall back to

MA output in the case of unseen words (the solution employed by (Oravecz & Dienes 2002)),

49

precision will increase substantially. However, the figure also shows that the positive effect

of the MA will decrease with the increasing corpus size (and thus decreasing ratio of unseen

words).

As can be expected, the most prominent source of errors for morphological disambiguators

are words that are neither present in the training corpus, nor recognized by the MA (out of

vocabulary, OOV). These words constitute 2% of the test corpus. For a given corpus, OOV

can be arbitrarily decreased or even completely eliminated by expanding the stem-list of

the MA. But in the long run, dynamically growing corpora such as the Hungarian web will

exhibit OOV-s above 2%, since the vocabulary is constantly expanding, especially due to new

proper names. From this perspective, the approach of building MA from the corpus before

splitting it into train and test sections will simply eliminate the question of OOVs from the

experiments and therefore render the algorithms’ potential to achieve similar performance

on new, unseen corpora questionable.

4.5 Our algorithms

Method (B) discussed in the previous section uses morphological analysis to associate the

input with words already seen in the training data. Our architecture, however, is closer

to method (C): improving the heuristics for unseen words. This architecture goes beyond

the ambiguity classes obtained from the MA and provides an explicit estimate for tag-

probabilities.

Maximum entropy models were first used for POS-tagging by (Ratnaparkhi 1996). From

now we shall regard sentences as word sequences (w1, ..., wn), for which a sequence of tags

(t1, ..., tn) is available at the time of training.

Our first maximum entropy model is not a real sequential tagging model: it consists of

learning a probability function p(ti|wi−k, . . . , wi+k) that assigns probabilities to tags based

on local context wi−k, . . . , wi+k. The assumption behind the model is that p is independent

of token position i.

50

Our task is to turn a local context into a feature vector. Our model works with k = 1,

only looking into the previous, current, and next token when assigning a probability to some

tag for the current token. Here is the full list of features for our model:

1. the word form in lowercase

2. the ambiguity class obtained from the MA output

3. whether the token contains numbers or non-alphabetic characters

4. whether the token is all-uppercase or capitalized

5. for words longer than 5 characters, the last 2, 3 and 4 characters

6. lowercase form of the previous word in the sentence, if any

7. lowercase form of the next word in the sentence, if any

Some of these are individual binary features (e.g. whether or not the word is capitalized),

but most of them are feature groups. As we already noted in Section 2.1, a feature group

like the last three characters of the word is to be interpreted as a very large set of binary

features, one for each possible value for the three-character suffix. The training algorithm

only assigns weight to the features observed in the training corpus, that is, having value 1

on at least one data point. Thus, the number of features the training algorithm has to deal

with stays below some linear bound of the training corpus size.

The best way to convert the MA output to features is not immediately clear. The best results

were obtained by representing the set of candidates provided by the MA (the so-called

ambiguity class) with a single feature group. Suffix and form features are used primarily

to handle OOV words: in case a word is neither recognized by the MA, nor present in the

training corpus, the model makes use only of features describing the suffixes and neighboring

word forms.

51

The maxent model does not decide on any tag for a given token – it simply gives the

probability of each possible tag. By combining the maxent model and the MA we can build

a context-sensitive weighted morphological analyzer (WMA), which assigns to each word a

probability distribution of tags based on context in the following way:

1. If the MA recognizes the word, we allow tags in its output and normalize their proba-

bilities from the maxent model to 1. (In particular, if MA knows one analysis only, we

assign probability 1 to that.)

2. In case of an OOV word form we allow the three word forms that are most probable

according to the maxent model and normalize their probabilities to 1. (The number

three has been chosen arbitrarily to increase computational speed. Since the total

probability of the candidates discarded is typically very low, the precision of the system

will not increase by choosing larger values.)

A simple disambiguator based on the context-sensitive WMA can choose the most prob-

able tag given for each word. Below we will call this disambiguator MA+ME. Note that the

context-sensitive WMA can easily be turned into a context-free one by omitting features

representing the surface forms of neighboring words.

This simple MA+ME model does not directly utilize information available about the tag

probabilities of neighboring words. (Although it does utilize context information, in the form

of features of neighboring words.) To exploit this sort of contextual information, we created

two other models.

The first, called WMA+T3 is a variation of trigram HMM. It uses the tag probabilities

provided by the context-free WMA together with a tag trigram language model to assign

likelihoods to tag sequences. This system is quite similar in design to the one described by

(Oravecz & Dienes 2002). The main difference is that instead of relying on TnT’s suffix tree

algorithm, we use the maxent method to estimate tag probabilities for unseen words.

52

The Viterbi algorithm can be used to find the maximum likelihood tag sequence under

this model.

Our last model, called TMM for TnT+MA+ME gives another, arguably more ad hoc

solution to the problem of exploiting tag context dependence. It relies on the context-sensitive

WMA, trained with two more features in addition to the ones we already discussed: the tags

of the previous and next word. More formally, this means two binary features for each possible

tag, e.g. previous.NOUN and next.VERB<PAST>. In the training phase these are provided as

ground truth, and in the tagging phase these are predicted by the TnT tagger.

4.6 Evaluation

For evaluation, we used tenfold cross-validation. We did no random shuffling of the sentences

of the corpora, using consecutive blocks as test data. (Note that this means that the 10% test

corpora used during cross-validation is often quite different in genre and content from the

corresponding 90%, so the task is significantly harder than random tenfold cross-validation.)

On Table 4.1 we report precision rates for several subcorpora of the Szeged Corpus.

After size of subcorpus and percentage of OOVs in subcorpus, the table shows scores for all

six algorithms we described above. They are: Baseline (most probable tag for seen words,

NOUN for unseen words), BMA (modified version of baseline that makes use of MA), TnT

(Brandt’s tagger, not using MA), MA+ME (context-dependent maximum entropy model

augmented with MA features), WMA+T3 (the context-free version of the previous model

combined with a tag trigram language model), TMM (context-dependent maximum entropy

model augmented with MA and TnT features). We can see that the ranking of the systems

is completely independent from the chosen subcorpus.

The performance of the purely statistical TMM system is superior to all rule-learning

systems that we know of: (Kuba et al. 2005) reports precision rates of 96.52% and 98.26%

for the entire Szeged Corpus and its news section respectively. As (Kuba et al. 2003) notes,

53

Suborpus size OOV Baseline BMA TnT MA+ME WMA+T3 TMM
Literature 209785 5.79 86.20 95.46 96.02 97.37 97.63 97.83
Children’s 290167 1.62 90.17 96.34 96.97 97.73 97.80 98.01
Press 355311 9.98 82.68 94.36 97.32 97.93 98.14 98.38
IT 157969 8.43 86.06 94.44 97.02 97.53 97.91 98.11
Law 147766 4.97 91.41 96.89 98.44 98.76 98.96 99.04
Total 1161016 5.64 89.70 95.40 97.42 97.72 97.93 98.17

Table 4.1: Precision rates of our algorithms on various subcorpora.

simpler systems use rules that are easily manageable, understandable and manually extend-

able. These advantages are lost with the increase of precision, however, due to the sudden

increase in the number and complexity of rules necessary for performance comparable to

statistical systems. The process of using the corpus to build ideal MAs that recognize every

word is methodologically problematic, as this makes it impossible to run the system on new,

unseen text. For example, (Horváth et al. 1999) achieves a precision rate of 98.03% on 1984

on which our system performs 97.91% only. However, once we exchange our independent MA

with the morphological dictionary built from the corpus, we achieve 98.50% rate of precision

under the same conditions.

Our results show that purely statistical systems can be effectively combined with rule-

based MA. For Hungarian, this was first shown by (Oravecz & Dienes 2002). Our system’s

advantage over theirs is its robust treatment of OOV words. Our results are not fully compa-

rable, since the two systems have been evaluated on different corpora (though similar in size

and genre). The precision rate of 98.17% for the entire corpus is remarkable not only because

of the treatment of OOV words, but also because it is a result of unshuffled cross-validation

on a heterogenous corpus that is built up from documents of various genres. Our goal with

the creation of these systems was to enable the morphological analysis of corpora of greater

variability, such as those derived from the dynamically growing Hungarian web.

54

4.7 Later work

After the publication of these results, co-author Péter Halácsy created another high-precision

morphological disambiguator system (Halácsy et al. 2007). This is the component that solves

the task in our current text processing framework. The underlying tagger is called hunpos,

and the morphological disambiguator itself is called hundisambig.

hunpos does not use maximum entropy learning. Rather, it follows the architecture of

Brandt’s TnT (tag n-gram HMM, with the suffix guessing emission model for unseen words),

but with the ability to incorporate MA information, using the output of the MA to constrain

suffix guessing when meeting unseen words. The precision of this new algorithm is roughly

equal to the algorithm we described above: on the Szeged Corpus it achieves a 98.24%

precision versus the 98.17% precision we reported. It has two important advantages, though:

first, training is faster by two orders of magnitude, since building a suffix guessing model is

much less computationally expensive than building a maximum entropy model. Second, it has

much simpler architecture and a fewer number of software dependencies. As an improved,

open source reimplementation of TnT, it is frequently used for the task of POS-tagging

and disambiguation (e.g. (Megyesi 2009)), and is one of the standard building blocks (e.g.

(Fuschetto et al. 2009)) and baselines (e.g. (Silfverberg & Lindén 2011)) when creating new

POS-tagging systems and evaluating their precision.

For Hungarian, the Szeged Natural Language Processing Group created an open source

morphological tagger by adapting the Stanford Tagger (Toutanova et al. 2003). The adapted

tagger is part of the magyarlanc framework (Zsibrita et al. 2009) that builds on the UIMA

(Ferrucci & Lally 2004) framework. We are not aware of any published performance measures.

55

4.8 Resource built - the Szószablya corpus and lemmatized frequency dictio-

nary

Frequency dictionaries play an important role both in psycholinguistic experiment design

and in language technology. The section describes our freely available morphologically dis-

ambiguated webcorpus and frequency dictionary of Hungarian that is being used for both

purposes, and the language-independent techniques used for creating it.

The corpus gathered is based on 18m pages crawled. Its best quality stratum (see be-

low) consists of 589m words harvested from 1.22m pages. As a comparison, the Hungar-

ian National Corpus (http://corpus.nytud.hu/mnsz/index_eng.html) (Váradi 2002) has

187.6m words, the manually annotated Szeged Corpus (Csendes et al. 2004) has 1.2m words.

4.8.1 The data processing pipeline

Raw data, preprocessing The raw dataset comes from crawling the top-level domain,

e.g. .hu, .cz, .hr, .pl etc. Pages that contain no usable text are filtered out, and all text

is converted to a uniform character encoding.5

Identical texts are dropped by checksum comparison of page bodies (a method that

can handle near-identical pages, usually automatically generated, which differ only in their

headers, datelines, menus, etc.) For normalization we use hunnorm, which performs HTML

stripping and character conversion to produce uniform text files from web pages. It uses a

flex pipeline and relies on existing open source code for encoding conversion and file type

determination.

Sentence segmentation, tokenization Next we detect sentence boundaries and tokens

by the huntoken module, a rule based tokenizer written in flex which is similar in concept

and design to the rule system described by (Mikheev 2002). It employs 25 regular-expression

rules, and relies on an approximately 150-word list of common abbreviations. Evaluated

5In the case of the original Szószablya Corpus we describe here, this uniform encoding is ISO
Latin-2. See Subsection 4.8.3 for the description of our latest pipeline, which is Unicode-based.

56

against the Szeged Corpus, huntoken’s sentence boundaries are incorrect in 1064 cases out

of the 86094 sentences, yielding an error rate of 1.3% which is significantly better than the

simple regex [.!?] baseline of 6083 (7.0%).

Stratification The hunspell spell checker is used to stratify pages by recognition error

rates. For each page we measure the proportion of unrecognized (either incorrectly spelled or

out of the vocabulary of the spell-checker) words. To filter out non-Hungarian (non-Czech,

non-Croatian, non-Polish, etc.) documents, the threshold is set at 40%. If we lower the

threshold to 8%, we also filter out flat native texts that employ Latin (7-bit) characters to

denote their accented (8 bit) variants (these are still quite common due to the ubiquity of US

keyboards). Finally, below the 4% threshold, webpages typically contain fewer typos than

average printed documents, making the results comparable to older frequency counts based

on traditional (printed) materials. Table 4.2 shows the effect of stratification on the size of

the resulting corpus.

t (%) 100 40 8 4
pages (m) 3.493 3.125 1.918 1.221
tokens (m) 1486 1310 928 589
types (m) 19.1 15.4 10.9 7.2
hapaxes (m) 11.5 8.9 6.3 4.2

Table 4.2: Stratified corpus size

Lemmatization To turn a given stratum of the corpus into a frequency dictionary, one

needs to collect the word forms into lemmas. This is done at the sentence level, as this is

the level where hunpos can utilize context to resolve inflectional ambiguities. Analyses are

computed by our ocamorph morphological analyzer. The choice between alternative mor-

phological analyses is resolved using the output of the hundisambig morphological disam-

biguator. (hundisambig is just a thin wrapper around hunpos that delegates the work of

finding inflectional tags to hunpos.) When the word has at least one valid analysis according

to ocamorph, hundisambig chooses from the tags compatible with the output of ocamorph.

57

When there are several analyses that match the output of the tagger, hundisambig chooses

the one with the least number of identified morphemes. (The rare case of ties is broken lexi-

cographically.) The result of this is that during lemmatization inflectional tags are removed

but derivational affixes are removed only if the derived word is not present in the dictionary.

This is a good heuristic to deal with lexicalization.6 Words outside the vocabulary of the

MA are not lemmatized at all. (ocamorph has built-in morphological guessing functionality,

but this feature currently wastly overgenerates analyses, so we do not rely on it.)

About 3% of the tokens was OOV for our morphological analyzer. (The reader should

keep in mind that the corpus consists of documents with a below-4% OOV ratio with respect

to hunspell.) The remaining tokens fall in 195k lemmas.

4.8.2 How to present the data?

Summary frequency dictionaries can be published without complications, but the publication

of harvested webcorpora brings up many questions related to copyright. We address such

questions below.

Clearly, the availability of large-range gigaword corpora is in the best interest of all work-

ers in language technology, and equally clearly, only open (freely downloadable) materials

allow for replicability of experiments. While it is possible to exploit search engine queries for

various NLP tasks (Lapata & Keller 2004), for applications which use corpora as unsuper-

vised training material downloadable base data is essential (Kilgarriff 2007).

Our research group decided against “cover your behind” approaches such as publishing

only URLs. First, URLs age very rapidly: in any given year more than 10% become stale (Cho

& Garcia-Molina 2000), which makes any experiment conducted on such a basis effectively

irreproducible. Second, by presenting a quality-filtered and characterset-normalized corpus

the collectors actually perform a service to those who are less interested in such mundane

6The heuristic is unable to resolve the difference between the lexicalizated irtás irtás/NOUN
‘glade’ and the non-lexicalized irtás irt/VERB[GERUND]/NOUN ‘the process of destroying something’,
or more precisely, it always resolves it as the former.

58

issues. If everybody has to start their work from the ground up, many projects will exhaust

their funding resources and allotted time before anything interesting could be done with the

data. In contrast, the Free and Open Source Software (FOSS) model actively encourages

researchers to reuse data.

It is important to emphasize that we do not advocate piracy: to the contrary, it is our

intended policy to comply with removal requests from copyright holders, analogous to Google

cache removal requests. Finally, even with copyrighted material, there are easy methods for

preserving interesting linguistic data (say unigram and bigram models) without violating the

interests of businesses involved in selling the running texts.

4.8.3 Later work

At the time of writing, our research team is in the process of creating an updated ver-

sion of the Szószablya Webcorpus and frequency dictionary. As we document it in (Halácsy

et al. 2008) and (Zséder et al. 2012), the data processing pipeline has been completely

rewritten for this task, mainly to increase processing speed, but also with improved data

quality in mind. (In particular, the document-level duplum selection algorithm was refined

by the present author.) We have already used our pipeline to create and publish webcorpora

and (morphologically non-disambiguated) frequency dictionaries for the following fifteen lan-

guages: Catalan, Czech, Croatian, Danish, Dutch, Finnish, Lithuanian, Norwegian, Polish,

Portuguese, Romanian, Serbian, Slovak, Spanish, Swedish, with more planned. The data are

made available at http://hlt.sztaki.hu/resources/webcorpora.html, and the source

code of the text processing pipeline at https://github.com/zseder/webcorpus.

4.9 Applications

4.9.1 The Szószablya web-based frequency dictionary

The automatically annotated frequency dictionary has a web-based interface at the URL

http://szotar.mokk.bme.hu/szoszablya. The interface was implemented by András Sza-

59

lai (unpublished). It is a tool frequently used by Hungarian linguists (Magyar & Szentgyörgyi

2011), (Rácz & Szeredi 2009), (Szeredi 2009) and psycholinguists (Racsmány et al. 2012),

(Lukács et al. 2007).

To construct the application, the frequency dictionary was directly turned into an SQL

database, after being augmented with two more fields: syllable count and CV skeleton. (The

CV (consonant-vowel) skeleton of a word is the pattern of consonants and vowels. Examples:

the CV skeleton of hatvány ‘power’ is cvccvc, the CV skeleton of számı́tógépeśıtésének ‘of

its computerization’ is cvcvcvcvcvcvcvcvcvc.) The extra fields are automatically calculated

from the original ones by heuristics that work reliably for words obeying Hungarian spelling

rules. The query language for the interface is just a thin wrapper around SQL query access

to the tables of this database, and queries are directly translated to SQL before execution,

making the query language quite versatile. The result of the query can be ordered by any of

the fields. Some examples:

• lemma="nyúl" pos!="VERB" - non-verb occurrences of the lemma nyúl ‘rabbit’. (C.f.

nyúl ‘to reach for’).

• word~".*ku[^s].*" pos=NOUN - nouns containing the character bigram ku, not con-

tinued by the character s.

• syllable_count>=3 syllable_count<=5 pos=VERB - verbs with syllable count be-

tween 3 and 5.

• cv_skeleton~"cc.*" pos!=NUM - words starting with two consonants, which are not

numbers.

• analysis="NOUN<PLUR>" - plural nouns.

• lemmafreq>1000000 freq<1000 - rare words which have a frequent lemma.

60

4.9.2 Gating and prefix entropy

In this subsection we describe an application of the Szószablya frequency dictionary in the

field of psycholinguistics. This is part of a joint work with Csaba Pléh, Judit Fazekas, Kornél

Németh, and Klára Várhelyi (Fazekas et al. 2012), (Pléh et al. 2011). The experimental

setup is based on the so-called gating paradigm (Grosjean 1980), where the participant has

to recognize words from hearing fragments of them, and she hears more of the word in each

successive trial.

The frequency dictionary is used to calculate entropy values for word prefixes, giving a

continuous generalization and refinement of the notion that a given word prefix has a unique

continuation among word stems. We show that positions with large changes in the entropy

value correspond to an increased probability that the given position is the place of successful

recognition.

Gating

Gating is a traditional method to look for the temporal structure of word recognition. Since

it was introduced by Grosjean a generation ago, it was used to show effects of frequency,

word length, stress pattern, competing words, lexical uniqueness, morphological structure

and sentential contexts (for a review see (Grosjean 1980)).

During a gating experiment, the participant has to recognize words from hearing starting

segments of them, and she hears more of the word in each successive trial. In each turn, she

has to provide a guess for the full word, and a confidence level in her guess.

Based on a written corpus or lexicon, we can talk about the uniqueness point of a given

word in the corpus. This is the shortest prefix of the word that has a unique continuation

in the corpus. (Namely, the given word.) There are two details to be dealt with: First, the

definition is not really useful if the corpus contains inflected words, so we only work with

simple words and their frequencies. Second, we do not want orthography to interfere, so we

61

work with phonematized data. For our purposes, we defined early uniqueness point to be

earlier than 4th phoneme.

Material

60 words were chosen for the experiments. All items were disyllabic simple nouns. 30 of them

were frequent, 30 rare, and within each group 15 were used with an early uniqueness point

like japán, and with a late uniqueness point like cinke. Selection was based on a manual

lookup of the lemmatized Szószablya corpus, uniqueness point was calculated on a prefix

tree built on the set of non-inflected words of the corpus.

In the first gating study gates with 90, 120, 210, 300, 390 ms were used. Subjects were

presented with the gates, and they had to write down their responses.

A group of 51 healthy students with ages ranging from 18 to 25 years (31 female (20,41

year; SD=0,98; 20 male (21,11 year; SD=1,4)) of the Budapest University of Technology and

Economics participated in this experiment as volunteers. Every subject had normal hearing.

They were tested individually and they all gave informed consent before the experiment and

received partial credit for participating. None of the subjects had any prior experience with

the experimental task.

Procedure

A within-subject design was used in the experiment. Every participant heard all of the word

fragments with consecutively longer gates but the order of the words was randomized. After

every sound segment participants had to find out what the word was and then type the

total word on the computer keyboard. After typing, at every guessing they needed to assign

the certainty of the answer (1 - absolutely unsure, 2 – rather unsure, 3 – rather sure, 4 –

absolutely sure). If the answer was correct –irrespective of the gate time and the confidence

judgment, the program presented the first fragment of the next word.

62

Measuring entropy

Our earlier experiments demonstrated that the earliness of the uniqueness point is a good

predictor for the point of recognition. With the entropy measures defined below we wanted

to give more robust generalizations of the intuitive notion of uniqueness point.

To achieve this, we worked with the Szószablya lemmatized frequency dictionary of Hun-

garian. For the gating experiments, we worked with the non-inflected words of the corpus.

(We repeated the following evaluations with the corpus restricted to two-syllable words, but

this practically did not affect our findings.)

Each of the audio segments the subjects had to work with were manually transcribed.

These transcripts are called ‘prefixes’ in the following. As an example here are the transcribed

prefixes for the word ablak :

90ms:a 120ms:a 210ms:ab 300ms:abla 390ms:abla

Several metrics were defined over prefixes. They all measure how a word prefix constrains

the set of possible continuations. The first two were only used as a baseline, and as our figures

will show, their power to predict the recognition points are weaker than the entropy-based

measures.

prefixtypeoccurrenceslog - This metric is simply the number of word forms in the

corpus starting with the given prefix. This is a very skewed variable, so we take its base 2

logarithm as a normalization.

prefixfreqlog – This is the number of tokens in our corpus starting with the given prefix.

One can consider this the weighted version of the former, weighted by word frequencies. We

work with the logarithm of this quantity.

entropy - Entropy of the corpus, conditioned on the given prefix. Informally, this means

the expected number of questions we need in a “20 Questions” game, if we must guess a

randomly chosen word with the given prefix. (Randomly chosen according to the frequency

distribution of the corpus.). More formally, the entropy of the observed corpus W conditioned

on the prefix x is,

63

H(W |x) =
∑

w∈W

p(w|x) log2 p(w|x),

where p(w|x) is the probability of observing the word w in the corpus, conditioned on

the fact that w starts with the prefix x. (By convention, 0 log2 0 = 0.) Typically, although

not necessarily the entropy monotonically decreases when calculated for longer and longer

prefixes of a given word.

entropychange - The fourth metric is the decrease in entropy when compared to the

previous gate. This is defined as H(W |y) − H(W |x), where x is the prefix at the current

gate, and y is the prefix at the previous gate. The value is not defined for the first gate.

Note that except for the first two gates, the entropy change is measured over a fix 90ms time

interval.

Results

For each event of successful recognition, the prefix at the recognition point was paired with

the prefix at the immediately preceding gate (we call this one-before-recognition point).

Figure 4.2 shows the means of the various prefix metrics, for both the recognition points

(green) and one-before-recognition points (blue). The data for each gate were aggregated

(the x axis of the graphs).

On Figure 4.3 we can see the entropy for gates after (green) versus before (blue) recogni-

tion. The four graphs control for word frequency and uniqueness point. Left-right corresponds

to frequent-rare, top-bottom corresponds to early-late uniqueness.

Applying the Mann-Whitney-Wilcoxon test, we verified that the means for the recognition

points differ from the means for one-before-recognition points at a high significance level.

This is true for both entropy and entropychange. We note that this result is the least

obvious for the entropychange measure, as it is a highly non-monotonous function of prefix-

length. Intuitively, this means that the recognition point follows a sudden drop of the entropy

value, which is the hypothesis we started from. On the other hand, the confidence of the

64

Figure 4.2: The various uniqueness metrics for recognition (green) and one-before-recognition
(blue) points, averaged between items and subjects.

65

Figure 4.3: The entropy for gates after (green) versus before (blue) recognition. The four
graphs control for word frequency and uniqueness point. Left-right corresponds to frequent-
rare, top-bottom corresponds to early-late uniqueness.

66

subject in her prediction (standardized on a per-subject level) has no statistically significant

correlation with the entropy change of the gate.

To falsify the hypothesis that entropy has effect only through frequency and earliness of

uniqueness point, we controlled for these two binary variables. Figure 4.3 shows that entropy

has significant correlation with recognition rate, even when we control for frequency and

uniqueness point. We interpret this as showing that entropy is a refinement of the naive

notion of uniqueness. This result is in line with the model of Moscoso, Kostic, and Baayen

(Moscoso del Prado Mart́ın et al. 2004). Namely, what is treated traditionally as a uniqueness

point in gating research is actually a drop in entropy. Entropy based measures proved to be

better here than mere frequency.

Entropy values of the word items

As an item based post hoc test of the relevance of frequency and uniqueness a two way

analysis of variance was performed over the entropy values, with frequency and uniqueness

point as the two factors. Both factors were significant. For frequency F (1.56) = 19.213,

p < 0, 001. Rare items had a much lower entropy at the fourth letter than frequent ones

(0.844 vs 1.782). At the same time, the selection variable of late versus early decision point

also had a significant effect (F (1.56) = 27.478, p < 0.001). The early uniqueness point

items had a much lower entropy (0.752) at the fourth letter than late decision point items

(1.874). This can be taken as a post hoc support of our classification. Comparison of the eta

squares as an estimate of variance explained shows that decision point had a stronger effect

(0.329) than frequency (0.255), While there was a significant interaction, its impact is very

weak in variance explained (0.09). These estimates have to be carefully interpreted. They

certainly reinforce our selection of items, but one has to bear in mind that the items were

hand-picked.

Chapter 5

Named Entity Recognition

In the analysis of natural language text a key step is named entity recognition, that is,

finding all complex noun phrases that denote persons, organizations, locations, and other

entities designated by a name. In this chapter we introduce the hunner open source language-

independent named entity recognition system, and present results for Hungarian.

In Section 5.1 we introduce the task of Named Entity Recognition. In Section 5.2 we

describe the training corpus and other language resources used by our system. In Section 5.3

we detail the architecture and implementation of our system, and present the methodology

and the results of our evaluations. In Section 5.6 we give an example of a toy data mining

application built on our system.

The creation of the hunner system was joint work with Eszter Simon and originally

appeared in (Varga & Simon 2006) and (Varga & Simon 2007). The author of the thesis is

responsible for the design of the machine learning architecture, the software implementation,

and the evaluation framework. Feature engineering and data collection was shared between

the two original authors. The software was later reimplemented in a joint work with Gábor

Recski (Recski & Varga 2009) (in Hungarian). The result of this reimplementation is the so-

called huntag tool that is capable of named entity recognition and various chunking tasks,

depending on the resources it is provided with. (We will still refer to it as hunner when it

works with a named entity model.) The accuracy scores presented in this chapter refer to

the huntag implementation, which did not significantly change the scores. The author was

an equal collaborator in the work presented in Section 5.5, originally appearing in (Farkas

67

68

et al. 2007). The author had no significant role in the creation of the data mining example

presented in Section 5.6.

5.1 Background

In the machine analysis of natural language documents we often seek to answer questions

in terms similar to those posed by humans: who is this document about, where is the action

taking place, how much money is involved, and so on. By named entity recognition (NER)

we mean an algorithm that takes natural language text (typically, in document-sized chunks

rather than word by word or sentence by sentence) as input, and identifies all persons, lo-

cations, organizations and similar entities that are designated by a name. The name can

be a single word such as Budapest or a complex phrase such as Budapesti Műszaki és Gaz-

daságtudományi Egyetem Média Oktató és Kutató Központ. Even when the eventual goal

is more remote (e.g. machine translation, information extraction, or information retrieval),

NER is a useful intermediate stage of processing.

The trivial algorithm that identifies capitalized phrases as named entities works well for

English, Hungarian, and many other languages that capitalize proper names, but of course it

fails for languages like German where capitalization conventions are different, for languages

like Arabic or Chinese that do not have separate upper- and lowercase, and for text that lacks

casing (e.g. the output of speech recognition). Also, because the trivial algorithm is prone

to false positives sentence-initially and to false negatives in text written in anything but the

most carefully edited prose, it is important to develop methods that are less error-prone.

The NER task, as posed by the MUC-6, MUC-7 (Chinchor 1998) and CoNLL-2003 (Tjong

Kim Sang & De Meulder 2003) competitions, is to identify disjoint chunks of the input token

sequence as named entities and to annotate these chunks with a small set of named entity

categories such as PERson, ORGanization, LOCation, and MISC (all other named entities).

The evaluation of an automatic NER algorithm is through comparing its output to a manual

69

annotation. Typically, the algorithm itself learns its parameters from a manually annotated

corpus through supervised learning.

For major languages, a large amount of papers were published on NER algorithms. Almost

every currently known supervised machine learning technique was used. Some examples:

BBN IdentiFinder (Miller et al. 1998), and Zhou and Su (Zhou & Su 2002) apply Hidden

Markov Modeling. Borthwick (Borthwick et al. 1998) (Borthwick 1999), and Chieu and Ng

(Chieu & Ng 2003) apply maximum entropy modeling. Sekine et al. (Sekine et al. 1998)

use decision trees. There are not too many language-dependent components of these and

other similar systems. Still, for Hungarian, we are only aware of one quantitative study of a

NER system, which is based on machine learning methods: Szarvas et al. (Szarvas, Farkas

& Kocsor 2006) published results on their NER system based on C4.5 decision trees with

Boosting. Their system achieved state-of-the-art accuracy for English, and for Hungarian it

reached a CoNLL F-score of 94.77% on the Szeged NER Corpus (Szarvas, Farkas, Felföldi,

Kocsor & Csirik 2006). (See Subsection 5.4.1 for the definition of CoNLL F-score.)

5.2 Resources used

5.2.1 The Szeged NER Corpus

For the training and evaluation of our system, we used the Szeged NER Corpus (Szarvas,

Farkas, Felföldi, Kocsor & Csirik 2006). At the time of the experiments, this was the only

named entity annotated Hungarian corpus large enough for supervised learning. More re-

cently the Szeged research group created another corpus, the co-called Criminal NE corpus

consisting of articles from the magazine HVG that are related to the topic of criminal of-

fenses. (http://www.inf.u-szeged.hu/rgai/nlp?lang=en&page=corpus_ne) We have not

experimented with this corpus yet, and we are not aware of published measurements on this

corpus by others.

The Szeged NER Corpus is a more than 220 thousand token subset of the Szeged Corpus

(Csendes et al. 2004), manually annotated for named entities. A distinct characteristic of

70

class token # phrase #
non-NE 200067
PER 1921 982
ORG 20433 10533
LOC 1501 1294
MISC 2041 1662
all 225963

Table 5.1: Number of tokens and phrases in the Szeged NER corpus

the Szeged NER text is its thematic homogeneity: it only contains various subgenres of busi-

ness news. This means that organization names are very highly represented. This category

dominates the others in frequency, see Table 5.1.

The annotation of the corpus follows the tagset and annotation conventions of CoNLL

(Tjong Kim Sang & De Meulder 2003). This means that we used the following tagset: person

names (PER), organization names (ORG), location names (LOC) and miscellaneous other named

entities (MISC). In the Szeged NER Corpus, the MISC category mostly contains brand names

and financial acronyms.

An example sentence from the corpus: ,,[Sam DiPiazza]PER , a [PWC]ORG vezérigazgatója

szerint az [EU]ORG által már kötelezővé tett úgynevezett [GAS]MISC az eddiginél nagy-

obb betekintést ad az adott cég pénzügyeibe.” (According to [Sam DiPiazza]PER , chief

executive of [PWC]ORG , the so-called [GAS]MISC , already enforced by the [EU]ORG ,

gives more insights into the finances of any given firm.)

5.2.2 Gazetteers

Though ‘gazetteer’ originally means geographical directory, in the context of the NER task

the phrase is simply used as a list of names. We assembled various gazetteers to be incorpo-

rated into our system.

71

• Hungarian and common non-Hungarian last names (105418)

• Hungarian and common non-Hungarian first names (7080)

• Hungarian nicknames (2034)

• names of Hungarian cities (23840)

• country names in Hungarian (325)

• Hungarian street names (15826)

• Hungarian organization names (12595)

• international organization names (2351)

• suffixes for company names (34)

• suffixes for street names (65)

• financial acronyms (13)

In the first seven cases, our sources were an aggregated version of a Hungarian phone

book, and web databases. The lists of Hungarian organization names and street names

were cleaned of suffixes using automatic methods. The common suffixes (e.g. Inc., Ltd. for

organizations, Street, Sq. for places, or in Hungarian ‘Kft.’, ‘Rt.’, ‘utca’, ‘tér’, respectively)

were extracted, and moved into separate lists. The international organization list was kindly

provided to us by György Szarvas and Richárd Farkas.

There was only one case when analyzing the development corpus led to the inclusion of

a new gazetteer: the list of financial acronyms. The development corpus contained several

stock market index names (e.g. DAX, Libor, Nasdaq), which were sometimes marked as ORG

instead of MISC by the algorithm. To solve this problem, we extracted such stock market

terms from a web-based financial knowledge base. We note that using this lexicon did not

improve the performance on the test corpus, and even decreased it slightly. The reason for

72

this is that most of these terms occurred in the development part of the corpus, i.e. the split

between the test and the development corpus was not a random one (see Sub-subsection 5.4.1

for more details).

The gazetteers incorporated into our final system (except for the list of financial terms)

were finalized before the inspection of the train and development corpora. During the tuning

of the system to the development corpus, we have found serious cases of over- and undergen-

eration in the gazetteers. Since correcting these errors did not improve accuracy significantly,

we reverted to the original, uncorrected, automatically collected versions of the gazetteers,

especially as this results in a cleaner methodology (less manual labor).

Similarly to the source code of the system, we have published the gazetteers under a free

document license.

5.3 Algorithm - hunner

As we have briefly mentioned in Subsection 2.3.2, we used a version of Maximum Entropy

Markov Modeling as our supervised machine learning approach. Our system roughly follows

the architecture described by (Borthwick 1999) and (Chieu & Ng 2003), incorporating some

ideas introduced by (Klein et al. 2003).

5.3.1 Feature extraction

When building a supervised machine learning system, a major step is feature extraction,

that is, collecting information from the raw data that can be relevant for the classification

task. In the case of the NER task an obvious approach to feature extraction is to collect

such information from the neighborhood of the inspected token. Some possible examples of

features are capitalization, part-of-speech, or occurrence in some lexicon. The task of the

supervised machine learning algorithm is then to find in this large amount of information

regularities that are relevant to the classification task.

73

We exploit the fact that as far as CPU time and memory consumption are concerned,

the maximum entropy method is capable of dealing with millions of features. Most of our

features deal with very easily computable syntactic properties of tokens. On the other hand,

we exploited the fact that we have the hundisambig morphological disambiguator at our

disposal.

The feature set was composed manually. Below is the complete list of the features used

by our system:

1. Is some neighborhood of the token contained in a gazetteer? If yes, is the token at

beginning, ending or middle position of the phrase? (To deal with morphology, when

determining the matching of multi-word phrases, we treated the last word of the phrase

differently: matching on a suitably chosen prefix was enough. This corresponds to the

way Hungarian multi-word phrases are inflected.)

2. Sentence start, sentence end position.

3. Boolean valued syntactic properties of the word form: upper case, all upper case, con-

tains capitalized letter after non-capitalized (e.g. iPad), is a number, contains a number,

contains a dash, contains a period.

4. String valued syntactic properties of the word form: The capitalization/hyphenation

pattern of the word: For example, the capitalization pattern of iPad-del is xXxx-xxx.

The shortened cap/hyp pattern of the word, consolidating identical runs of symbols.

For the iPad-del example this is xXx-x.

5. String-valued surface properties of the word form: the word form itself, the five-letter

prefix, and most notably all consecutive three-letter character sequences (trigrams) of

the word form. Note that we use gazetteers crafted beforehand, but in practice, these

features have an effect similar to gazetteers directly extracted from the train corpus. A

similar application of character n-grams for named entity recognition was first proposed

by Klein et al. (Klein et al. 2003).

74

6. Information provided by the hundisambig morphological disambiguator: part-of-speech

(NOUN, ART, NUM, ADJ, VERB, etc.). The lemma of the token. Is the word form

recognized by hundisambig? Is the identified lemma differently capitalized than the

token itself? What morphosyntactic features are provided by hundisambig?

7. Inflectional tag sequences: the concatenation of inflectional tags assigned by hundisambig

to the tokens in a radius of 2 around the inspected token.

Example: The Gyula token, in a sentence starting position gets the following features:

1. Built-in Boolean features: sentencestart caps.

2. Character n-gram features: tri.Gyu tri.yul tri.ula prefix.Gyula.

3. Gazetteer features: firstname.lone city.lone familyname.lone corp.start.

(.lone here means that the gazetteer contains the token itself, as opposed to the

case of corp.start, which means that the corp gazetteer contains a phrase starting

with this token.)

4. Morphological features: postag.noun lemma.Gyula.

The system collects these data for each individual token of a sentence. To incorporate

context, we simply add the features of neighboring tokens, recording the relative positions of

the tokens. For example, if a token gets the feature caps.pre2, it means that the token two

positions before is capitalized. A parameter of our system is the size of the context window

for a given feature. For simplicity’s sake, we did not optimize this parameter for each feature

separately. According to our experiments, in the case of character trigrams and prefixes,

using context radius 2 (that is, a 5-token interval) leads to optimal results. In the case of

the rest of the features, context radius 5 (11 tokens) was used.

75

5.3.2 Tag sets

The NER task in its original form deals with the classification of unknown contiguous to-

ken sequences, and it is not immediately obvious how to phrase this as a token classifi-

cation task. Roughly following (Chieu & Ng 2003), we chose the following solution: every

token must be classified into one of 17 different classes: { 0, LOC.single, LOC.start,

LOC.middle, LOC.end, ORG.single, ..., MISC.end }. There are two major advantages

of this approach: First, the machine learner can more easily recognize correlations that are

specific to the start or end of the NE. Second, the tag set has implicit built-in consistency

requirements: e.g. *.start can not follow *.middle. These consistency requirements can be

fully learned by the tag language model.

5.3.3 Sequence labeling

The techniques described above allowed us to phrase the NER problem as a sequence la-

beling problem. As we already mentioned in Subsection 2.3.2, we solve this problem using

a simplified version of Maximum Entropy Markov Modeling. In this subsection we describe

this approach.

Let p(i, u) denote the probability that the word in position i receives the label u. We

assume that the value of p(i, u) depends solely on the features of the words in the context

wi−k . . . wi+k. Hence p(i, u) can be estimated by p̂(i, u) supplied by a maximum entropy model

trained on these features.

Let t(i, u, v) stand for the conditional probability that the word in position i receives

label u providing that the word in position i − 1 received the label v. We assume that this

probability is independent of i and estimate it by t̂(u, v), the conditional relative frequency

directly observed in the training corpus.

During labeling, the system has to find the most likely label sequence for a given sentence.

If p̂(i, u) only depended on wi (no context, just the current word), then the likelihood of a

76

label sequence could be written as a product thanks to conditional independence, and would

be proportional to

∏

i

p̂(i, ui)t̂(i, ui, ui−1)

P (ui)
.

The argmax of this formula (that is, the best labeling) can be easily found by the Viterbi

algorithm. This model is in fact a variant of the ‘observations in states instead of transitions’

version of Maximum Entropy Markov Models, as suggested by (McCallum et al. 2000). Our

model can be described as a theoretically unfounded simple modification of the model: we

do let p̂(i, u) depend on a nontrivial wi−k . . . wi+k (k > 0) context, and use the above formula

as an approximation of the true likelihood.

The optimum radius k of the context window was found to be 3 for these experiments.

We experimented with tuning the radius parameter individually for each feature group, but

the F-score gains did not justify the increased number of free model parameters.

We note that illegal transitions (e.g. ORG.start after LOC.start) are never observed in

the training corpus, so transition probabilities for them are learned to be equal to zero. Unlike

in the case of morphological disambiguation, the language of tagsets is quite information-

poor in the case of NER, so improving the bigram tag model to a trigram model did not

improve the performance of the system.

A tunable parameter of the model is language model weight (sometimes called fudge

factor in speech recognition). This is a constant positive exponent applied to the transition

probabilities before combining them with the emission probabilities. Setting the language

model weight below 1 means that we give lower credence to the evidence obtained by the

transition model than to the evidence obtained by the emission model. Experimenting with

the language model weight yielded optimal values close to 1, so we used the ‘un-fudged’ value

of 1 to reduce the number of manually tuned parameters of our model.

77

5.3.4 Implementation

We have chosen Zhang Le’s (Le 2011) maximum entropy learner library in our implementa-

tion. This implementation uses the L-BFGS algorithm (Zhu et al. 1997) for model parameter

optimization. On our data sets, the L-BFGS iterative learning algorithm starts to converge

after approximately 100 iterations. The accuracy of the model wildly fluctuates before this

iteration number is reached. Our published numbers are based on 300 iterations. On the

other hand, because of the relatively high (approx. 1 hour) running time of 300 iterations,

some of our elementary feature engineering decisions were based on measurements with lower

(30 or 100) iterations. This may have led to suboptimal decisions. We used a Gaussian prior

of 1.0 for the model parameters. (Generally, the exact choice of prior only weakly influences

accuracy. The value was optimized on the development corpus, chosen from exponents of

10.) Measurements on the development corpus show that overfitting is not a problem when

we stay within the Szeged NER domain.

We note that using prefixes, character trigrams and wide context windows led to a very

high total number of features. On the 200,000 token corpus, 1.9 million different kinds of

features occur, for a total of 29.5 million feature instances. The maximum entropy approach

is capable of dealing with such a high number of features without the feature selection phase

needed by some other machine learning methods.

5.4 Evaluation

5.4.1 Methodology

To measure the accuracy of a machine learning algorithm, its output has to be compared

to a gold standard test dataset. One standard method to quantify the similarity between

two named entity labelings is the CoNLL F-score. According to this, a gold standard named

entity is correctly labeled if the automatic labeling gives the same start- and end-position,

78

NE- devel test Szarvas Szarvas
type et al devel et al test
LOC 92.06 96.36 95.07
MISC 93.58 85.12 85.96
ORG 97.62 96.20 95.84
PER 97.44 94.94 94.67
Global 96.35 95.06 96.20 94.77

Table 5.2: Results

and the same named entity class. Based on this, precision and recall values can be calculated

for the corpus, and the F-score is, as usual, the harmonic mean of these two values.

We started the early development of our system with an ad hoc train-test split of the

Szeged NER Corpus. But it quickly became apparent that if we intend our results to be

comparable to the only existing quantitative study on Hungarian named entity recognition,

then we will have to switch to the train-development-test split used by (Szarvas, Farkas &

Kocsor 2006). Szarvas et al. were kind to provide this split, and from this point, we followed

standard methodology: We optimized the parameters of the system guided by the F-score

on the development corpus, and only measured the F-score on the test corpus once, when

this optimization was finished.

5.4.2 Results

The system described above reached an F-score of 96.35 on the development corpus, and

95.06 on the test corpus. This is a minor improvement on the numbers published by (Szarvas,

Farkas & Kocsor 2006) (see Table 5.2). But we have to note that the (Szarvas, Farkas &

Kocsor 2006) system was optimized in parallel for English and Hungarian. Our system needs

further work to give state-of-the-art results for several languages.

We measured the effect of each major subsets of the features. As we noted, the global F-

score of the system was 95.06 on the test corpus. Removing just the built-in Boolean features

79

(caps, dash, shortpattern etc.) decreased this score to 80.40. Removing just the character

n-gram features decreased the score to 93.79. Removing the morphological disambiguation-

based features decreased the score to 93.03. The gazetteer features had significantly less

effect: removing these decreased the score to 94.80. Note that these last two sets of features

were exactly the ones that required external resources. Removing both of them led to a

resourceless system without seriously affecting the score: the resourceless system had an F-

score of 92.87. If we remove all features that makes it possible for the system to implicitly

or explicitly learn gazetteers (word forms, character n-grams, lemmata) performance drops

to 87.92.

5.5 Metonymy resolution

In this section we briefly mention our joint result (Farkas et al. 2007) on another named

entity classification task: metonymy resolution (Markert & Nissim 2007). Metonymy means

using one term, or one specific sense of a term, to refer to another, related term or sense.

The metonymy resolution task requires classifying potential metonymies into semantic cat-

egories such as place-for-event ‘Vietnam was a national trauma.’, organization-for-product,

organization-for-place ‘Woman crashes her BMW into KFC’.

As part of the ACL SemEval-2007 Workshop, a competition took place comparing par-

ticipating systems on the task of metonymy resolution of named entities. There were six in-

dependently scored subtasks of the task, three focusing on locations, three on organizations,

with three granularity levels of the output tagset for both. Among the participating systems,

our system achieved the best score on all of the six subtasks (Markert & Nissim 2007). On one

hand, this result required some relatively elaborate feature extraction. On the other hand,

the acquired features were fed directly into an unmodified maximum entropy learner, show-

ing that this classic method is capable of achieving state-of-the-art results given a sufficiently

informative set of features.

80

5.6 Resources and applications

András Solymosi (Solymosi 2007) (in Hungarian) ran the hunner tool on the Origo Corpus,

a large corpus consisting of news items published between 2000 and 2006 by origo.hu,

Hungary’s largest online news portal. The size of the corpus is
e

73.8 million tokens in
e

3.7

million sentences,
e

240,000 news items. The resulting annotated news corpus is made available

in a searchable form indexed by person names at http://solymosi.hu/origo/.

Based on this named entity-annotated corpus, (Prekopcsák 2008) created a visualization

of the co-occurrence graph of person names. (See Figures 5.1 and 5.2.) A novel idea employed

in this analysis is that political affiliation of Hungarian public figures is quantitatively esti-

mated using a PageRank-like algorithm. The algorithm assigns a real number to each node

of the graph (visualized by coloring of nodes on the figures). The leader of the left-wing and

right-wing political block is assigned -1 and +1 respectively, and the other nodes’ scores are

calculated by an iterative force-directed process that minimizes the difference between the

score of a node and the average score of its neighbors. Manual inspection showed that affil-

iation of political figures was identified with nontrivial precision, and public figures outside

the political sphere received a neutral score.

81

Figure 5.1: Celebgraph: a visualization of frequently mentioned Hungarian public figures
based on collocation in the Origo NER Corpus.

82

Figure 5.2: Celebgraph: Zooming in on Hungarian politicians.

Chapter 6

Noun phrase chunking

In the following chapter we describe a supervised Noun Phrase (NP) chunker for Hungarian.

First we give a brief overview of the notion of chunks in natural language processing and

describe the considerations behind the creation of the training data. Then we proceed to

give a description of the chunker, and summarize the results obtained.

The results of this chapter are joint work with Gábor Recski, originally presented in

(Recski & Varga 2009) and (Recski & Varga 2012) (in Hungarian).

6.1 Background

(Abney 1991) describes chunks as disjoint parts of a sentence which are relevant both for

language comprehension (citing (Gee & Grosjean 1983)) and sentence prosody. He defines

chunks as units that consist of “a single content word surrounded by a constellation of func-

tion words” and claims that the internal structure of chunks can be represented by context

free languages.

Abney reviews earlier definitions of chunks which called for a separate chunk for each

content word in a sentence and revises it to overcome some difficulties raised by, for example,

embedded adjectives. He claims a new chunk in a sentence begins after every content word

except for those which are followed by another that has been selected by a preceding item.

An example of the implementation of this definition is given by Abney and repeated in

Figure 6.1.

This definition overcomes difficulties such as that of a noun preceded by an adjective

(which occurs in Hungarian as well) yet it relies on a theoretical framework which makes use

83

84

Figure 6.1: English chunk example.

of the notion of syntactic selection (we shall soon see, however, that Abney is by no means

the only author suggesting a definition of NP chunks grounded in a procedural syntactic

framework).

NP chunkers have been developed for various languages, most of them for English. One

of the most ground-breaking efforts was that of (Ramshaw & Marcus 1995), who developed

a learning algorithm which was trained on a data set derived algorithmically from a treebank

and based primarily on Part-Of-Speech (POS) tags of the target data; NP chunkers have

followed these conventions ever since. The article also reviews some previous approaches to

the question of what to include in an NP chunk. Voutilainen (Voutilainen 1993) introduces

a method for identifying NPs which do not themselves contain other NPs with the help of

an extended set of POS-tags which automatically mark premodifiers of an NP as part of the

chunk. Another approach is that of (Bourigault 1992), who created French NP chunks in two

phases: first generating what he called “maximal length noun phrases” and then extracting

from them so-called terminological units. One of the earliest results in NP chunking is that

of (Church 1988) who inserted NP brackets into the POS-tagged Brown Corpus, yet he fails

to provide details on how the training data was prepared, noting only that “the training

85

material was parsed into noun phrases by laborious semi-automatic methods”. Ramshaw and

Marcus later reveal that Church’s parser is incapable of handling several types of complex

NPs, e.g. those that contain two coordinated noun phrases. It would be a mistake, however,

to compare results of the above works to each other or to those of our own since each of

them refer to a slightly different and often inadequately documented task.

We define maximal NP chunks as all NPs in the syntactic tree which are not dominated

by some higher level NP. It is an immediate consequence of this definition that the set of

maximal NP chunks is indeed a chunking, that is, the chunks are disjoint. We will use the

term base NP for NPs that do not contain another NP. Base NPs also constitute a chunking.

In this chapter we will almost exclusively deal with maximal NP chunks, therefore unless

otherwise noted, we will take the term NP chunk to mean maximal NP chunks.

For Hungarian, the first measurements on the NP chunking task are due to (Váradi 2003).

He used a rule-based system, manually constructing a so-called cascaded regular grammar.

The paper reports an F-score of 58.78% on a small (100 sentence, 2537 token) test corpus.

To the best of our knowledge, (Hócza 2004) was the first to publish results on supervised

Hungarian NP chunking. This system learns noun phrase tree patterns described by regular

expressions from the training corpus. For evaluation a corpus similar but not identical to

ours was used. (See next section for more details.) Using ten-fold cross-validation the paper

reports an F-score of 83%.

6.2 Resource used - the Szeged Treebank

To train and test a Hungarian NP chunker system, we needed some manually annotated

dataset. For this, we turned to the Szeged Treebank (Csendes et al. 2005). As we briefly

mentioned in Section 4.2, the Szeged Treebank adds manually built syntactic information

to the Szeged Corpus, a corpus of 1.2 million tokens in 82,000 sentences. The following

86

enumeration of syntactic tags used by the Treebank is taken directly from (Csendes et al.

2005):1

• ADJP: adjectival phrases

• ADVP: adverbial phrases, adverbial adjectives, postpositional personal pronouns

• c: punctuation marks

• C0: conjunctions

• CP: clauses (also for marking sentences)

• INF : infinitives

• NEG: negation

• NP: noun phrases (groups with noun or predicative adjective or inflected personal

pronouns as head)

• PA : adverbial participles

• PP: postpositional phrases

• PREVERB: preverbs

• V : verb

• XP: any circumstantial or parenthetic clause that is not a direct part of the sentence

The creation of the Treebank was carried out in two phases under two separate projects.

In the first phase (Szeged Treebank 1.0), manual NP and CP chunking took place. In the

second phase (Szeged Treebank 2.0), this was refined to a full syntactic parse, with corrections

when necessary. As we will discuss, the resource we train and test our system on will be a

1For definitions of the terms, see e.g. (Crystal 1997).

87

Figure 6.2: Sample sentence tree.

‘flattened’ version of the Szeged Treebank 2.0 syntactic trees, not the chunk annotation of the

original Szeged Treebank 1.0. In contrast, the (Hócza 2004) system mentioned the previous

section was trained and evaluated on Szeged Treebank 1.0 data.

Since our definition of NP chunks yields phrases of various length and complexity, we

defined a measure of complexity for each NP by assigning it a number that shows how many

lower-level NPs it dominates. The chunking task will not involve identifying the level of an

NP but the presence of this information in the training corpus may aid the machine learning

task.

6.3 Algorithm - hunchunk

6.3.1 Creating a labeling task

To solve the chunking task, we first turned it into a sequence labeling task. We marked each

member of an NP with a label that indicates whether it occupies the first (B-N x), last

(E-N x) or any other position (I-N x) in the chunk or whether it constitutes an NP of its

own (1-N x). Here N x denotes the level of the NP. Words outside of NPs were labeled O.

Therefore the sentence analyzed in the treebank as in Figure 6.2 will be labeled as in Ta-

ble 6.1.

88

word label
A B-N 1
földrengés E-N 1
nemcsak O
a B-N 2
Márvány-tenger I-N 2
menti I-N 2
térséget E-N 2
rázta O
meg O

Table 6.1: The labeling corresponding to the tree on Figure 6.2.

6.3.2 Feature extraction

Next we proceeded to extract features from our corpus. The features of a word included

its form, character trigrams and all pieces of morphological information available in the

treebank. When labeling raw text, these latter features can be provided by the morphological

disambiguator hundisambig, whose own errors, as we shall see, will only cause a slight

decrease in performance.

6.3.3 The model

We used the same simplified MEMM sequence labeling model as the one we used for named

entity recognition in the previous chapter. The optimum radius k of the context window was

found to be 5, and the language model weight was set to the default value of 1.

6.4 Evaluation

6.4.1 Methodology

For the training task we used a corpus of 1 million tokens and tested the algorithm on

another 100 000 tokens. We evaluated the output along the guidelines of (Tjong Kim Sang

89

Precision Recall F-score
baseline 60.24 60.50 60.37
hunchunk 87.16 84.99 86.06
hundisambig & hunchunk 86.19 84.20 85.18

Table 6.2: Evaluation of our maximal NP-chunker, with gold standard morphological disam-
biguation, and with one provided by hundisambig.

& Buchholz 2000): Precision and recall figures were calculated based on comparing the

identified versus the actual set of NPs.

Note that the chunker is trained on a corpus with information about the level of NPs.

This means that the chunker can provide such information for unseen data. For the purposes

of the evaluation, this information was discarded.

Our baseline method was assigning a most probable label to each word based on its

part-of-speech tag. Using just two labels – ‘I-NP’ for words within an NP and ‘O’ for words

outside of them – we reached a baseline F-score of only 51.03%. Tweaking the system only

slightly, however, – by introducing a third label, ‘B-NP’, to mark words that are at the start

of an NP – increased the F-score of the baseline system to 60.37%.

6.4.2 Results

The results obtained are shown in Table 6.2. The last row shows the performance of the

chunker when the morphological information is obtained from hundisambig instead of the

manually annotated Szeged Treebank.

(Miháltz 2011) evaluated hunchunk together with two rule-based NP-chunkers: a rule-

based NP-chunker system for Hungarian (Váradi & Gábor 2004), and the Hungarian syn-

tactic parser used by the MetaMorpho machine translation system (Prószéky et al. 2004).

We note that the methodology is heavily biased towards hunchunk, as the test corpus is

90

Precision Recall F-score
hunchunk 78.67 84.99 81.71
MetaMorpho 54.39 61.52 57.73
NooJ 37.57 59.28 45.99

Table 6.3: Comparison with two Hungarian rule-based maximal NP-chunkers, taken from
(Miháltz 2011).

based on a subset of the Szeged Corpus, albeit a subset disjoint from our training corpus.

As Table 6.3 shows, hunchunk achieves higher scores than the rule-based systems.

As we already noted, (Hócza 2004) reports an F-score of 83% with a rule-learner algorithm

on a corpus similar to ours, using tenfold cross-validation. Although our corpora are not

completely comparable, we also performed tenfold cross-validation on our corpus, achieving

an F-score of 89.30% (precision 89.75%, recall 88.86%).

6.5 Later work and applications

Co-author Gábor Recski extended the above results in various ways (Recski 2010). First, by

training and evaluating the hunchunk system on base NPs. Base NP chunking is an easier

task than maximal NP chunking, which is reflected in the fact that the base NP chunker

achieved an F-score of 94.75%. (For comparison, the maximal NP chunker achieves an F-

score of 86.06% on the maximal NP chunking task, when the test sets for the two tasks were

created from the same test treebank.)

Recski also implemented the context-free grammar of Hungarian base NPs written by

András Kornai (Kornai 1985, Kornai 1989). The rule-based system was not competitive with

statistical systems in itself, achieving an F-score of 89.36% on the base NP chunking task.

But when its output was presented to the statistical system as an extra feature, this increased

91

the accuracy of the statistical system, leading to a state-of-the-art F-score of 95.48% for the

base NP chunking task.

(Recski et al. 2010) presented a system aligning maximal NPs for Hungarian-English. The

system relies on hunchunk for the chunking task, and uses various heuristics to propagate

GIZA++ (Och & Ney 2003) word alignments to the NP level.

Chapter 7

Sentence Alignment

Modern methods of machine translation and automated dictionary- and thesaurus build-

ing take as their input parallel corpora which contain the same material in two languages.

Sentence alignment, finding which sentence in the source language corresponds to which sen-

tence in the target language is a low-level task that is key to preparing the data for machine

translation and related tasks. In this chapter we introduce and evaluate the hunalign sen-

tence alignment algorithm, its partialAlign companion, and document the construction of

several parallel corpora that were sentence aligned with these tools.

The design, implementation, and evaluation of hunalign and partialAlign are the work

of the present author. The creation of the corpora was a collaborative effort in each case. In

the case of the Hunglish Corpus (Varga et al. 2005), the majority of work was done by the

author, from data cleaning to packaging. In the case of the JRC-Acquis Corpus (Steinberger

et al. 2006), the author was responsible for the automatic sentence alignment of sentence-

segmented data.1

7.1 Background

A parallel text is defined as some text together with its translation to another language.

(Sometimes translations to several languages are considered. We follow the majority of the

current literature and focus on the bilingual case, reducing the multilingual case to working

1Work on hunalign and the original Hunglish Corpus was part of the Hunglish project, an
ITEM grant supported by the the Hungarian Ministry of Informatics and Communication. Work on
Hunglish Corpus 2.0 was supported by the CLARIN project at the Research Institute for Linguistics
at the Hungarian Academy of Sciences.

92

93

with many language pairs.) One document and its translation is called a bitext. A collection of

bitexts is called a parallel corpus. Parallel corpora are very important resources in modern

natural language processing. For example, the parallel corpus is the main or sometimes

even sole language resource used when building a current statistical machine translation

system (Koehn 2010).

Usually, the original is called source text, and the translation is called target text. We

will not focus on this distinction below, as the algorithms we will use can not and need not

treat source and target texts differently.

If two documents can be considered translations of each other, normally there are corre-

spondences between units of the two documents, at various levels of text units. The manual

or automatic identification of these correspondences is called alignment. Alignment tasks

include paragraph alignment, sentence alignment, phrase alignment and so on, depending

on which kind of unit we are focusing on. Obviously, translations are never perfectly literal,

and the differing grammars and idiom-sets of the two languages make it impossible to have

perfect one-to-one correspondence between units, especially at the finer granularity levels.

Even if we allow many-to-one or even many-to-many correspondences, the correspondence

will be incomplete at the phrase and word levels. In practice, we can find artifacts damaging

the correspondence even at the coarsest granularities. While building a large parallel corpus

of novels, we observed prefaces by the translator, footnotes, and even drastic simplifications

for a younger audience by the translator.

Gale and Church in their seminal paper (Gale & Church 1991) call a correspondence

between parts of the two texts an alignment if it is monotone with respect to word (sen-

tence, paragraph, etc.) order. More recent literature uses the term alignment even if the

correspondence is not monotone. In this chapter we will focus on the task of finding corre-

sponding parts at the sentence level. At this level, the assumption of monotonicity is a very

good approximation, as translators seldom change sentence order. We will work with this

assumption, so calling the task sentence alignment is justified even according to Gale and

94

Church’s terminology. In this chapter, the term ‘alignment’ is always used in the stricter

sense. The simplifying assumption of monotonicity is very fruitful for algorithmic reasons:

if we find a corresponding sentence pair in the bitext, then the pair splits the task into two

smaller, completely independent subproblems: finding the alignment above the sentence pair,

and finding the alignment below them. Problems amenable to this sort of divide-and-conquer

can generally be solved using dynamic programming, and this is what our hunalign sentence

aligner employs.

There are two main sources of the fact that correspondences are not always one-to-one:

first, during translation sentences can coalesce, and sentences can split into two or more

sentences. Second, sometimes a sentence or block of sentences is simply not translated (dele-

tion), or is inserted into the translation (insertion). Relying on the monotonicity assumption,

the alignment of a text can be represented by what we call a ladder, i.e. an array of pairs

of sentence boundaries: rung (i, j) is present in the ladder if and only if the first i sentences

of the source text correspond to the first j sentences of the target text. The ‘space between

two consecutive rungs’ is typically one-to-one, that is (i, j) is followed by (i + 1, j + 1).

Coalescing and merging sentences can be interpreted naturally in this formalism. The case

of deleted or inserted sentences is a bit more complex: obviously, a single deleted sentence

corresponds to consecutive rungs (i, j) and (i + 1, j), but we note that this correspondence

is not unique if the two sides are not in valid correspondence.2 So the above formalism is

insufficient to properly handle the case when two blocks of sentences are not in valid corre-

spondence with each other. Most sentence alignment algorithms do not attempt to handle

this case, or only handle it implicitly. To deal with this case, an algorithm needs to out-

put confidence scores for the holes between consecutive rungs. Let us take the example of

a 5000-sentence book starting with a 100 sentence foreword on both sides, but with com-

pletely different forewords for the two languages. Let us call a ladder proper if it does not split

blocks of non-corresponding sentences into more parts. The proper ladder in this case would

2A bitext consisting of a single incorrectly translated sentence can be described by either the
ladder [(0, 0), (0, 1), (1, 1)] or the ladder [(0, 0), (1, 0), (1, 1)].

95

be (0, 0), (100, 100), (101, 101), . . . , (5000, 5000), with a low confidence score assigned to the

first hole. (In the example above, a ladder starting with (0, 0), (40, 30), (100, 100) would be

improper.) We define the sentence alignment task as finding a proper ladder with the highest

possible granularity, with low confidence score assigned to holes where the two blocks are

non-corresponding.

7.2 Algorithm - hunalign

In this section we describe our hunalign sentence aligner algorithm and implementation,

and provide evaluations of its accuracy and run-time performance.

7.2.1 The algorithm

There are three main approaches to the problem of corpus alignment at the sentence level:

length-based (Brown et al. 1991, Gale & Church 1991), dictionary- or translation based

(Moore 2002, Chen 1993, Melamed 2000), and partial similarity-based (Simard et al. 1998).

This last method in itself may work well for Indo-European languages (probably better

between English and Romanian than English and Slovenian), but for Hungarian the lack

of etymological relation suggests that the number of cognates will be low. Even where the

cognate relationship is clear, as in computer/kompjúter, strike/sztrájk etc., the differences in

orthography make it hard to gain traction by this method. Therefore, we chose to concentrate

on the dictionary and length-based methods, and designed a hybrid algorithm, hunalign,

that amalgamates the two.

For the description of the algorithm, let us first assume that we have a bilingual lexicon

at our disposal. (Later we will see how to get rid of this assumption without any serious

decrease of accuracy.) In the first step of the alignment algorithm, the bilingual lexicon is

used to create a crude translation of the source text by converting each word token into the

dictionary translation that has the highest frequency in the target corpus, or to itself in case

of lookup failure.

96

This pseudo target language text is then compared against the actual target text on

a sentence by sentence basis. The similarity score between a source and a target sentence

consists of two major components: token-based and length-based. The dominant term of the

token-based score is the number of shared words in the two sentences, normalized with the

larger token count of the two sentences. A separate reward term is added if the proportion

of shared numerical tokens is sufficiently high in the two sentences. (This term is especially

useful for the alignment of legal texts).

For the length-based component, the character counts of the original texts are incre-

mented by one, and the score is the ratio of of the two numbers. We can compare this with

the Gale-Church solution of modeling target sentence length as a multiple of source target

length plus Gaussian noise. (In the original Gale-Church algorithm, the variance of the noise

is learned from paragraph lengths, which means that the algorithm requires paragraph seg-

mented input to work. In its most widely used Vanilla implementation, the variance of the

noise is hardwired.) We found that our simpler formula is faster to calculate and more robust

to outliers.

The relative weight of the components was set so as to maximize precision on the

Hungarian–English training corpus, but seems a sensible choice for other languages as well.

Paragraph boundary markers are treated as sentences with special scoring: the similarity of

two paragraph-boundaries is a high constant, the similarity of a paragraph-boundary to a

real sentence is minus infinity, so as to make paragraph boundaries pair up.

The similarity score is calculated for every sentence pair around the diagonal of the

alignment matrix (at least a 500-sentence neighborhood is calculated or all sentences closer

than 10% of the longer text). This is justified by the observation that the beginning and

the end of the texts are considered aligned and that the sentence ratio in the parallel text

represents the average one-to-many assignment ratio of alignment segments, from which no

significant deviations are expected. We find that 10% is high enough to produce reassuringly

high recall figures even in the case of faulty parallelism such as long surplus chapters.

97

Once the similarity matrix is obtained for the relevant sentence pairs, the optimal align-

ment trail is selected by dynamic programming, going through the matrix with various

penalties assigned to skipping and coalescing sentences. The score of skipping (1-to-0 and

0-to-1 correspondence) is a fixed parameter, learned on our training corpus. The score of

coalescing (1-to-2 and 2-to-1 correspondence) is the length-based score of the concatenation

of the two sentences plus the worse of the two token-based scores. For performance rea-

sons, the dynamic programming algorithm does not take into account the possibility of more

than two sentences matching one sentence. After the optimal alignment path is found, a

post-processing step iteratively coalesces a neighboring pair of one-to-many and zero-to-one

segments wherever the resulting new segment has a better character-length ratio than the

starting one. With this method, any one-to-many segment can be discovered.

The hybrid algorithm presented above remains completely meaningful even in the total

absence of a dictionary. In this case, the crude translation will be just the source language

text, and sentence-level similarity falls back to surface identity of words.

After this first phase a simple dictionary can be bootstrapped on the initial alignment.

From this alignment, the second phase of the algorithm collects one-to-one alignments with

a score above a fixed threshold. Based only on all one-to-one segments, co-occurrences of

every source-target token pair are calculated. These, when normalized with the maximum of

the two tokens’ frequency yield an association measure. Word pairs with association higher

than 0.5 are are used as a dictionary. The dictionary can then be used in a second round of

alignment, in addition to the originally provided dictionary resource if there was one, or in

a completely unsupervised fashion when such a resource was not available.3

3For the dictionary-building step, we also implemented several variants of the competitive linking
algorithm fist proposed by Melamed (Melamed 1998). These led to higher quality lexicons collected,
but according to our measurements, this did not translate to improvements in sentence alignment
in the third phase, so for performance reasons we used the simplest technique.

98

7.2.2 Related work - the BSA algorithm

Our algorithm is similar in spirit to Moore’s BSA (Moore 2002) in that they both combine

the length-based method with some kind of translation-based similarity. In what follows we

discuss how the BSA algorithm differs from ours.

BSA also has three phases. First, an initial alignment is computed based only on sentence

length similarity. Next, an IBM ‘Model I’ translation model (Brown et al. 1993) is trained on

a set of likely matching sentence pairs based on the first phase. Finally, similarity is calculated

using this translation model, combined with sentence length similarity. The output alignment

is calculated using this complex similarity score. Computation of similarity using Model I is

rather slow, so only alignments close to the initially found alignment are considered, thus

restricting the search space drastically.

Our simpler method using a dictionary-based crude translation model instead of a full

IBM translation model has the very important advantage that it can exploit a bilingual

lexicon (if one is available) and tune it according to frequencies in the target corpus, or

even enhance it with extra local dictionary bootstrapped from an initial phase. BSA offers

no such way to tune a preexisting language model. This limitation is a real one when the

corpus, unlike the news and Hansard corpora more familiar to those working on high density

languages, is composed of very short and heterogeneous pieces. In such cases, as in web

corpora, movie captions, or heterogeneous legal texts, average-based models are actually

not close to any specific text, so Moore’s workaround of building language models based on

10,000 sentence subcorpora has little traction.

On top of this, our translation similarity score is very fast to calculate, so the dictionary-

based method can be used already in the first phase where a much bigger search space can

be traversed. If the lexicon resource is good enough for the text, this first phase already gives

excellent alignment results.

Maximizing alignment recall in the presence of noisy sentence segmentation is an impor-

tant issue, particularly as language density generally correlates with the sophistication of

99

NLP tools, and thus lower density implies poorer sentence boundary detection. From this

perspective, the focus of BSA on one-to-one alignments is less than optimal, since exclud-

ing one-to-many and many-to-many alignments may result in losing substantial amounts of

aligned material if the two languages have different sentence structuring conventions.

While speed is often considered a mundane issue, hunalign, written in C++, is signifi-

cantly faster than BSA (written in Perl), and the increase in speed can be leveraged in many

ways during the building of a parallel corpus with tens of thousands of documents. First,

rapid alignment allows for more efficient filtering of texts with low confidence alignments,

which usually point to faulty parallelism such as mixed order of chapters (as we encountered

in Arabian Nights and many other anthologies), missing appendices, extensive extra editorial

headers (typical of Project Gutenberg), comments, different prefaces in the source texts etc.

Once detected automatically, most cases of faulty parallelism can be repaired and the texts

realigned. Second, debugging and fine-tuning lower-level text processing steps (such as the

sentence segmentation and tokenization steps) may require several runs of alignment in order

to monitor the impact of certain changes on the quality of alignment. This makes speed an

important issue. Interestingly, runtime complexity of BSA seems to be very sensitive to the

faults in parallelism. Adding a 300 word surplus preface to one side of 1984 but not the other

slows down this program by a factor of five, while it has no detectable impact on hunalign.

(See more about this in Subsection 7.2.4.)

Finally, BSA, while open source and clearly licensed for research, is not free software. In

particular, parallel corpora aligned with it can not be made freely available for commercial

purposes. Since we wanted to make sure that the corpora we build with our tools are available

for any purpose, including commercial use, BSA was not a viable choice for us.

100

7.2.3 Evaluating accuracy

In this section we describe our attempts to assess the quality of our parallel corpus by eval-

uating the accuracy of the sentence aligner on texts for which manually produced alignment

is available. We also compare our algorithm to BSA.

Evaluation shows hunalign has high precision: generally it aligns incorrectly at most

a handful of sentences. As measured by Moore’s method of counting only on one-to-one

sentence-pairs, precision and recall figures in the high nineties are common. But these fig-

ures are overly optimistic because they hide one-to-many and many-to-many errors, which

actually outnumber the one-to-one errors. In 1984, for example, 285 of the 6732 English

sentences or about 4.3% do not map on a unique Hungarian, and 716 or 10.6% do not map

on a unique Romanian sentence – similar proportions are found in other alignments, both

manual and automatic.

To take these errors into account, we used a slightly different figure of merit, defined as

follows. The alignment trail of a text can be represented by a ladder, i.e. an array of pairs

of sentence boundaries: rung (i, j) is present in the ladder if and only if the first i sentences

on the left correspond to the first j sentences on the right. Precision and recall values are

calculated by comparing the predicted and actual rungs of the ladder: we will refer to this as

the complete rung count as opposed to the one-to-one count. In general, complete rung figures

of merit tend to be lower than one-to-one figures of merit, since the task of getting them

right is more ambitious: it is precisely around the one-to-many and many-to-one segments

of the text that the alignment algorithms tend to stumble.

Table 7.1 presents precision and recall figures based on all the rungs of the entire ladder

against the manual alignment of the Hungarian version of Orwell’s 1984 (Dimitrova et al.

1998).

If length-based scoring is switched off and we only run the first phase without a dictionary,

the system reduces to a purely identity based method we denote by id. This will still often

produce positive results since proper nouns and numerals will “translate” to themselves.

101

condition precision recall
id 34.30 34.56
id+swr 74.57 75.24
len 97.58 97.55
len+id 97.65 97.42
len+id+swr 97.93 97.80
dic 97.30 97.08
len+dic-stem 98.86 98.88
len+dic 99.34 99.34
len+boot 99.12 99.18

Table 7.1: Accuracy of the sentence-level aligner under various conditions

With no other steps taken, on 1984 id yields 34.30% precision at 34.56% recall. By the

simple expedient of stop-word removal, swr, the numbers improve dramatically, to 74.57%

precision at 75.24% recall. This is due to the existence of short strings which happen to

have very high frequency in both languages (the two predominant false cognates in the

Hungarian-English case were a ‘the’ and is ‘too’).

Using the length-based heuristic len instead of the identity heuristic is better, yielding

97.58% precision at 97.55% recall. Combining this with the identity method does not yield

significant improvement (97.65% precision at 97.55% recall). If, on top of this, we also perform

stop-word removal, both precision (97.93%) and recall (97.80) improve.

Given the availability of a large Hungarian-English dictionary created by Attila Vonyó

(Halácsy, Kornai, Németh, Sass, Varga, Váradi & Vonyó 2005) (in Hungarian), we also

established a baseline for a version of the algorithm that makes use of this resource. Since

the aligner does not deal with multiword tokens, entries such as Nemzeti Bank ‘National

Bank’ are eliminated, reducing the dictionary from about 250k to about 120k records. In

order to harmonize the dictionary entries with the lemmas of the stemmer, the dictionary

is also stemmed with the same tool as the texts. Using this dictionary (denoted by dic in

102

the Table) without the length-based correction results in slightly worse performance than

identity and length combined with stop-word removal.

If the translation-method with the Vonyó dictionary is combined with the length-based

method (len+dic), we obtain the highest scores 99.34% precision at 99.34% recall on rungs

(99.41% precision and 99.40% recall on one-to-one sentence-pairs). In order to test the impact

of stemming we let the algorithm run on the non-stemmed text with a non-stemmed dic-

tionary (len+dic-stem). This established that stemming has indeed a substantial beneficial

effect, although without it we still get better results than any of the non-hybrid cases.

Given that the dictionary-free length-based alignment is comparable to the one obtained

with a large dictionary, it is natural to ask how the algorithm would perform with only

the bootstrapped dictionary. With no initial dictionary but using this automatically boot-

strapped dictionary in the second alignment pass, the algorithm yielded results (len+boot),

which are, for all intents and purposes, just as good as the ones obtained from combining the

length-based method with our large existing bilingual dictionary (len+dic). This is shown in

the last two lines of Table 7.1.

To summarize our results so far, the pure sentence length-based method does as well in

the absence of a dictionary as the pure matching-based method does with a large dictionary.

Combining the two is ideal, but this route is not available for the many medium density

languages for which bilingual dictionaries are not freely available. However, a core dictio-

nary can automatically be created based on the dictionary-free alignment, and using this

bootstrapped dictionary in combination with length-based alignment in the second pass is

just as good as using a human-built dictionary for this purpose. In other words, the lack of

a high-quality bilingual dictionary is no impediment to aligning the parallel corpus at the

sentence level.

While we believe that an evaluation based on all the rungs of the ladder gives a more

realistic measure of alignment accuracy, for the sake of correct comparison with BSA, we

present some results using the one-to-one alignments metric. Table 7.2 summarizes results on

103

task
hunalign BSA

prec rec prec rec
1984-HE-S 99.22 99.24 99.42 98.56
1984-HE-U 98.88 99.05 99.24 97.39
1984-RE-U 97.10 97.98 97.55 96.14
CoG-HE-S 97.03 98.44 96.45 97.53

Table 7.2: Comparison of hunalign and BSA algorithm on three texts. Accuracy scores are
based on one-to-one alignments only.

Orwell’s 1984 for Hungarian–English (1984-HE-S, stemmed and 1984-HE-U, unstemmed),

Romanian–English (1984-RE-U, unstemmed), as well as on Steinbeck’s Cup of Gold for

Hungarian–English (CoG-HE-S, 80k words, stemmed) using hunalign (with bootstrapped

dictionary, no further tuning and omitting paragraph information) and BSA (with the default

values).

In order to be able to compare the Hungarian and Romanian results for 1984, we provide

the Hungarian case for the unstemmed 1984. One can see that both algorithms show a drop of

precision. This makes it clear that the drop in quality from Hungarian–English to Romanian–

English can not be attributed to the fact that we tuned our system on the Hungarian case.

As mentioned earlier, the Romanian translation has 716 non-one-to-one segments compared

to the Hungarian translation’s 285. Given both algorithm’s preference to globally diagonal

and locally one-to-one alignments, this difference in one-to-one alignments is likely to render

the Romanian–English alignment a harder task.

In order to sensibly compare our results with that of BSA, paragraph information was

not exploited. Our huntoken sentence tokenizer is able to identify paragraph boundaries

which are then used by the aligner. Experiments showed that paragraph information can

104

substantially improve alignment scores: measured on the Hungarian–English alignment of

Steinbeck’s ‘Cup of Gold’, the number of incorrect alignments drop from 148 to 115.4

After the publication of our results, (Krynicki 2006) compared three aligners for Polish-

English text for several corpora and lemmatization setting, finding that BSA often outper-

formed hunalign and GMA (Melamed 1998) in precision, but hunalign always outperformed

the other two aligners in F-scores. (Here F-score was measured on the set of one-to-one

correspondences.)

7.2.4 Evaluating execution time

Very recently a paper compared speed and memory consumption of various aligners (Toral

et al. 2012). Arguably such an endeavor has limited utility without corresponding compar-

isons in accuracy, as most such tools have tunable parameters that can lead to a broad range

of accuracy-precision trade-offs. Nevertheless it is meaningful to ask performance numbers

about the ‘stock’, unmodified setup of the tools on some standard dataset.5 The numbers

reported by (Toral et al. 2012) differed from our own measurements by a non-negligible

amount. For example, on 5000 sentence documents the paper reports hunalign to be ap-

proximately 5 times faster than BSA, while our ad hoc measurements on the Hunglish Corpus

(see next section) suggested an execution time ratio above 10. The sources of this discrepancy

turned out to be related to the ‘incremental widening optimization’ employed by BSA: the

algorithm first tries to find the optimal path in a very narrow band around the diagonal of

the similarity matrix. If the path found touches the boundary of the band, then the path is

suspect. In this case, the band is widened and the similarity values and path are recalculated.

This process is repeated until a satisfying path is found. The advantage of this optimization

4Although paragraph identification itself contains errors, improvement may be due to the fact
that paragraphs, however faulty, are consistent in terms of alignment.

5Or in the case of hunalign, the ‘usual’ setup as opposed to the ‘stock’ setup: By default,
hunalign does not use the three-phase realignment procedure, only a single phase, but users of
hunalign typically employ realignment. This approximately triples running time and memory con-
sumption. In this subsection we will report performance numbers for the setup with realignment.

105

is that under good circumstances, similarity values only have to be calculated in a narrow

band. The disadvantage is that under bad circumstances, the first (shorter) iterations of this

process are increasing execution time without adding any benefit.

One source of the discrepancy between our measured execution times and those of (Toral

et al. 2012) is that the authors of the paper made a decision that arguably led to a major

methodological problem: they used already perfectly aligned text as input. The input bicor-

pus was built by taking bisentences from the aligned Spanish-English EUROPARL corpus

(Koehn 2005), and merging them into a bitext. This meant that the alignments to be found

consisted of 1-to-1 matchings only. (Not counting the small number of cases where the auto-

matic aligner used to build the EUROPARL corpus made a mistake.) The optimal path was

thus very close to the diagonal, and the BSA algorithm successfully terminated even before

the first round of incremental widening.

To quantify the bias caused by this methodological problem, we created a comparable cor-

pus with more realistic characteristics. We used the unaligned Spanish-English EUROPARL

corpus for this. Our subcorpus has two, non-independent parts. One consists of 100 randomly

chosen documents, each containing approximately 5000 sentences on the Spanish side. The

second is a pairing of the above documents, to get 50 documents, each containing approxi-

mately 10000 sentences. (This pairing step was necessary because the EUROPARL corpus

does not contain documents significantly larger than 5000 sentences.)

Figure 7.1 shows a scatterplot of execution times by hunalign and BSA on this corpus.

The x axis shows sentence counts on the Spanish side. (The English sentence counts are

similar.) The y axis shows execution times in seconds. Dots correspond to documents: red

dots to hunalign results, blue dots to BSA results. The ratio of average execution times

is 6.67 for the
e

5000-sentence subcorpus and 5.79 for the
e

10000-sentence subcorpus. The

distribution of execution times for BSA is highly skewed, reflecting the strong dependence

on the number of incremental widening rounds. This suggests reporting median numbers

106

Figure 7.1: Comparing execution times of BSA and hunalign on
e

5000 and
e

10000 sentence
documents from the unaligned EUROPARL corpus. Execution times shown on a logarithmic
scale.

in addition to averages: the ratio of median execution times is 6.12 for the
e

5000-sentence

subcorpus and 5.05 for the
e

10000-sentence subcorpus.

The execution time ratios reported above are still quite far from the aforementioned values

measured on the Hunglish Corpus (between 5 and 15). The main cause of this remaining

discrepancy can be seen on Table 7.3. The Table shows the percentage of the different

rung types output by BSA, calculated on the
e

5000-sentence EUROPARL and Hunglish

subcorpora. The rung types in BSA terminology are match (1-1), contract (2-1), expand

(1-2), delete (1-0), and insert (0-1). Although the ratio of merging and splitting sentences

107

Rung type EUROPARL Hunglish
match 91.45 75.75
contract 3.77 3.00
expand 2.10 1.57
delete 1.25 8.88
insert 1.43 10.79

Table 7.3: Percentage of rung types, as determined by BSA.

is similar for the EUROPARL and Hunglish corpora, the number of deleted and inserted

sentences differs greatly. The reason for this is that unlike the very uniform EUROPARL

texts, the Hunglish texts typically include parts such as title page, copyright page, table of

contents, foreword, and footnotes. The content of these (and whether they are present at all)

can be very different between the two sides of the bitext.

7.3 Algorithm - partialAlign

As we noted, hunalign’s running time and memory consumption becomes quite high above

the 20000 sentences per language range. There are documents larger than that, for example

J.K. Rowling’s “Harry Potter and the Goblet of Fire” consists of approx. 21000 sentences. To

overcome this limitation, we have created a companion software for hunalign. partialAlign

takes a large bidocument and splits it into pieces more manageable for hunalign. It is

designed to be especially convenient to use in tandem with hunalign, but we note that it

works just as well when coupled with some other sentence aligner.

partialAlign works by finding words that occur exactly twice in the bidocument, once

on the left and once on the right side. A typical example of such a word is a chapter number,

other number, or a proper name. A typical literary text in our Corpus (see next section)

contains one such correspondence per every 200 sentences on average. (Most non-literary

108

texts contain much more numberings and named entity hapaxes, so for example the
e

11000-

sentence EU Constitution contains 497 correspondences.)

After collecting all correspondences, the algorithm uses dynamic programming to find

the longest possible chain of correspondences that does not contain crossings. (A crossing is

an incompatible pair of correspondences that can not be refined into an alignment.) We call

such a chain a ladder.

False positive correspondences are relatively rare. (Indirect evidence for this claim is that

for a typical text in our Corpus, more than 90% of the correspondences are included in the

longest ladder.) The high frequency of the correspondences means that the no-crossing re-

striction quite severely constrains the set of possible ladders. The above two considerations

imply that a false positive correspondence is excluded from the longest ladder with high

probability, thanks to the nearby true positive correspondences that override its false evi-

dence. On Figure 7.2 we can see the scatterplot of correspondences on concatenated works of

J.K. Rowling (
e

55000 sentences for each language). The algorithm finds 127 correspondences,

and drops 6 of these.

In the final stage of processing, the algorithm throws away rungs of the ladder to approxi-

mately obey the user-provided constraint on chunk size. Again, thanks to the high frequency

of correspondences, this approximation is typically good.

Unlike hunalign, the running time of partialAlign is negligible. Splitting the above

e

55000-sentence corpus into
e

5000-sized chunks took 2 seconds on our computer.

7.4 Resource built - the Hunglish Corpus

In this section we describe the creation of a 115 million token Hungarian-English parallel

corpus we call the Hunglish Corpus as a case study for building parallel corpora for medium

density languages. We will refer to two different versions of the corpus in the text: the original,

60 million token Version 1.0 of the corpus was documented in (Varga et al. 2005). For the

creation of Hunglish Corpus Version 2.0 the data processing pipeline was fully rebuilt under

109

Figure 7.2: Scatterplot of correspondences for Rowling subcorpus.

the huntools multilingual text processing framework. (See Chapter 8 for a description of

the framework.) This code consolidation did not affect major functionality, but added minor

features such as automatic language checking and character encoding correction.

110

7.4.1 Collecting the data

Starting with Resnik (Resnik 1998), mining the web for parallel corpora has emerged as a

major technique, and between English and another high density language, such as Chinese,

the results are very encouraging (Chen & Nie 2000, Resnik & Smith 2003). Web pages are

undoubtedly valuable for a diversity of styles and contents that is greater than what could

be expected from any single source. However, when no highly bilingual domain (like .hk for

Chinese or .ca for French) exists, or when the other language is much lower density, the

actual number of automatically detectable parallel pages is considerably smaller: for example,

(Resnik & Smith 2003) find less than 2,000 English-Arabic parallel pages for a total of 2.3m

words.

For medium density languages parallel web pages turn out to be a surprisingly minor

source of parallel texts. Even in cases where the population and the economy is sizable,

and a significant monolingual corpus can be collected by crawling, mechanically detectable

parallel or bilingual web pages exist only in surprisingly small numbers. For example our 1.5

billion word corpus of Hungarian (Halácsy et al. 2004) with 3.5 million unique pages, yielded

only 270,000 words (535 pages), and a 200m word corpus of Slovenian (202,000 pages) yielded

only 13,000 words (42 pages) using URL parallelism as the primary matching criterion (Chen

& Nie 2000). No doubt the numbers achieved by this pilot project could be improved with

larger crawls and more refined URL matching, but they are not promising when one intends

to employ this approach for the corpus building task for medium density languages.

A recent successful effort to employ the web-based method to build a large-scale French-

English corpus illustrates our point (Giga-FrEn, unpublished): this corpus is based on crawl-

ing the Canadian, French and EU top level domains, and finding matching URLs. The effort

resulted in a parallel corpus of approximately 1.25b tokens in 22.5m bisentences. Of these

bisentences 64,000 contained the word France, and 1,872,000 contained the word Canada,

clearly showing the bias towards the bilingual domain.

111

Therefore, one needs to resort to other sources, many of them impossible to find by

mechanical URL comparison, and often not even accessible without going through dedicated

query interfaces. We discuss the nature of these resources using Hungarian as our primary

example.

Literary texts The Hungarian National Library maintains a large public domain digital

archive ‘Hungarian Electronic Library’ (http://mek.oszk.hu/indexeng.phtml) with many

classical texts. Comparison with the Project Gutenberg archives at http://gutenberg.

org yielded well over a hundred parallel texts by authors ranging from Jane Austen to

Tolstoy. Equally importantly, many works still under copyright were collected from online

book collections. While we can not publish most of these texts in either language, we publish

the aligned sentence pairs alphabetically sorted. This “shuffling” somewhat limits usability

inasmuch as higher than sentence-level text layout becomes inaccessible, but at the same time

makes it prohibitively hard to reconstruct the original texts and contravene the copyright.

Since shuffling nips copyright issues in the bud, it simplifies the complex task of disseminating

aligned corpora considerably. For version 2.0 of the corpus, the size of the modern literature

subcorpus was increased approximately fourfold, from 450k bisentences to 1670k bisentences.

International Law From the Universal Declaration of Human Rights to the Geneva Con-

vention many important legal documents have been translated to hundreds of languages and

dialects. Those working on the languages of the European Union have long availed them-

selves of the CELEX database. For version 2.0 of the corpus, we added CELEX material

that became available since the creation of the original corpus. This increased the size of the

subcorpus by
e

40%.

Movie captioning The thriving semi-underground community of amateur subtitle trans-

lators often release subtitles even before a picture is distributed in their country. To the the

best of our knowledge our research group was the first to exploit this valuable data as a

112

source of parallel text. (More recently, the OPUS project (Tiedemann 2009) created a large

multilingual parallel corpus based on such data.) We provide this subcorpus after shuffling,

just like the modern literature subcorpus.

Software internationalization Multilingual software documentation is increasingly be-

coming available, particularly for open source packages such as KDE, Gnome, OpenOffice,

Mozilla, the GNU tools, etc (Tiedemann & Nygaard 2004).

Bilingual magazines Both frequent flyer magazines and national business magazines are

often published with English articles in parallel. Many magazines from Scientific American

to National Geographic have editions in other languages, and in many countries there exist

magazines with complete mirror translations (for instance, Diplomacy and Trade Magazine

publishes every article both in Hungarian and English).

There is no denying that the identification of such resources, negotiating for their release,

downloading, format conversion, and character-set normalization remain labor-intensive

steps, with good opportunities for automation only at the final stages. But such an effort

leverages exactly the strengths of medium density languages: the existence of a joint cultural

heritage, of national institutions dedicated to the preservation and fostering of culture, of

multinational movements (particularly open source) and multinational corporations with

a notable national presence, and of a rising tide of global business and cultural practices.

Altogether, the effort pays off by yielding a corpus that is orders of magnitude larger, and

covering a much wider range of jargons, styles, and genres, than what could be expected

from parallel web pages alone. Table 7.4 summarizes the different types of texts and their

sizes in Hunglish Corpus version 2.0. Size and token number are to be interpreted as sum of

values for Hungarian and English.

113

source docs size (MB) tokens (M) bisentences (k)
Modern literature 278 217 37.1 1670
Classical literature 83 100 17.2 652
Movie subtitles 437 19 3.2 343
Software docs 9 9 1.2 135
Legal text 20378 399 56.6 1351
Total 21185 744 115.3 4151

Table 7.4: Distribution of text types in Hunglish Corpus version 2.0

7.4.2 Preparing the corpus

After some elementary format-detection and conversion routines such as catdoc and

pdftotext which are standard in the open source world, we have a corpus of raw text

consisting of assumed parallel documents. While the texts themselves were collected and

converted predominantly manually, the aligned bicorpus is derived by entirely automatic

methods.

After the texts are in raw format, automatic language- and character encoding detection

makes sure that the bitexts are correct. For manually collected text these steps are nothing

more than a sanity check, but as we will see in the next chapter, the same pipeline is

incorporated into our online bitext query service, where document pairs uploaded by our

anonymous end users can not be expected to be always well-formed and matching.

The next steps in the pipeline are sentence and paragraph boundary detection and word

tokenization, performed by our huntoken tool. huntoken has rule-sets available for both

Hungarian and English. After this stage, bitexts are dropped if sentence- or character counts

differ too much between languages.

For languages with more complex morphology such as Hungarian, it makes sense to

conflate by stemming morphological variants of a lexeme before the texts are passed to the

aligner. We used hunmorph both for Hungarian and English. (For performance reasons, we

114

simply choose the shortest possible stem instead of doing a full morphological disambiguation

by hundisambig. This does not seem to affect accuracy measurably.)

The most important ingredient of the pipeline is of course automatic sentence alignment

which we carried out using the hunalign tool, described in detail in the previous sections.

For the Hungarian-English language pair we could rely on our large bilingual lexicon, but

as we noted, hunalign can work without a lexicon resource, with only a minimal hit in

performance. After the alignment ladders are created, they are converted to text based on

the untokenized, unstemmed data.

The data is provided in two simple formats: bisentence files consist of tab-separated,

matching sentence pairs. For this, low quality bisentences are thrown away based on various

simple heuristics such as: too few alphabetic characters. Too long repeating pattern. Some

patterns that are characteristic of OCR problems in subtitle text. Because of quality filter-

ing, the full reconstruction of the raw texts is impossible from the bisentence files. Where

copyright considerations made it necessary, the lines of bisentences files were shuffled (sorted

alphabetically). When copyright is not an issue, we also provide complete alignments that

preserve the whole of both input texts with ordering, including those segments that were not

in one-to-one correspondence.

In the past ten years, much has been written on bringing modern language technology to

bear on low density languages. At the same time, the bulk of commercial research and product

development, understandably, concentrated on high density languages. To a surprising extent

this left the medium density languages, spoken by over half of humanity, under-researched.

In (Varga et al. 2005) we attempted to address this issue by proposing a methodology that

does not shy away from manual labor as far as the data collection step is concerned. We found

that in the case of Hungarian, harvesting web pages and automatically detecting parallels

turns out to yield only a meager slice of the available data. Instead, we proposed several

other sources of parallel texts based on our experience with creating a 115 million word

Hungarian–English parallel corpus.

115

Our solution to issues regarding copyright was ‘shuffling’ the bisentences of the af-

fected subcorpora. This approach was vindicated by the fact that the Hunglish Corpus

was published by the Linguistic Data Consortium as part of their Corpus Catalog. (http:

//www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2008T01)

7.5 Resource built - the JRC-Acquis Corpus

This Section describes the JRC-Acquis Corpus (Steinberger et al. 2006), available at http:

//langtech.jrc.ec.europa.eu/JRC-Acquis.html. JRC-Acquis is a large multilingual par-

allel text corpus built by an international team of language technologists. The author con-

tributed to the creation of the parallel corpus by adapting and applying the hunalign tech-

nology to build sentence alignments for all possible language pairs.

The Corpus is one of the most important resources of multilingual natural language

processing. Its main use is probably as training data for statistical machine translation

systems such as (Turchi et al. 2009), but it was used in experiments in many fields such as

cross-language information retrieval (Talvensaari 2008), (Potthast et al. 2008), multilingual

sentiment analysis (Bautin et al. 2008), and cross-language plagiarism detection (Potthast

et al. 2011).

JRC-Acquis is created from the so-called Acquis Communautaire, the total body of Eu-

ropean Union law applicable in the the EU Member States. The Acquis Communautaire is

offically tranlated to 22 languages: Bulgarian, Czech, Danish, German, Greek, English, Span-

ish, Estonian, Finnish, French, Hungarian, Italian, Lithuanian, Latvian, Maltese, Dutch, Pol-

ish, Portuguese, Romanian, Slovak, Slovene and Swedish. The JRC-Acquis data is extracted

from these translations. As seen on Table 7.5, the number of documents in JRC-Acquis varies

across languages, as some of the translations are missing.

As detailed above, hunalign works in three phases for each document pair it encoun-

ters: alignment, dictionary building, realignment. Because of the extreme number of small

documents to be processed, we had to slightly adapt the implementation of hunalign for

116

Language Doc # Token # Char #
bg 11384 16140819 104522671
cs 21438 22843279 148972981
da 23624 31459627 213468135
de 23541 32059892 232748675
el 23184 36453749 239583543
en 23545 34588383 210692059
es 23573 38926161 238016756
et 23541 24621625 192700704
fi 23284 24883012 212178964
fr 23627 39100499 234758290
hu 22801 28602380 213804614
it 23472 35764670 230677013
lt 23379 26937773 199438258
lv 22906 27592514 196452051
mt 10545 20926909 128906748
nl 23564 35265161 231963539
pl 23478 29713003 214464026
pt 23505 37221668 227499418
ro 19211 30832212 182631277
sk 21943 26792637 179920434
sl 20642 27702305 178651767
sv 20243 29433037 199004401
Total 463,792 636,216,050 4,288,962,348

Table 7.5: Corpus sizes for JRC-Acquis.

117

the task at hand, without deviating from this basic outline. For a fixed choice of language

pair, the modified implementation runs in three phases. First, it builds alignments for each

document pair. The one-to-one segments found in this first round of alignment are randomly

sampled (10,000 sentence pairs in the case of the Acquis corpus) to feed the automatic

lexicon-building. In the third phase alignment is re-run, this time also considering similarity

information based on the automatically constructed bilingual lexicon, one for each language

pair.

We already noted that number tokens are treated specially by hunalign: similarity of the

sets of number tokens in the two sentences is considered. This special treatment is especially

useful for legal texts: in the Acquis corpus, 6.5 percent of the tokens are numbers.

We mention that the original authors of JRC-Acquis processed the corpus using the so-

called Vanilla aligner. Vanilla is an implementation of the Gale-Church algorithm (Gale

& Church 1991), thus it only considers sentence length information. The author of the

thesis joined the collaboration after the need arose to process the data with a more modern

approach. The original Vanilla alignments are also provided with the data. In a manual

evaluation of a small sample subcorpus, (Kaalep & Veskis 2007) finds that the hunalign

suggestion is always the correct one when the hunalign and Vanilla alignments differ. Unlike

Vanilla, hunalign does not emit 2-2 segments, but it can deal with the splitting of a sentence

into more than two sentences.

For a given language pair and the whole JRC-Acquis Corpus, the running time of each

of the three phases of the hunalign algorithm was about ten minutes on a fast personal

computer. This made it perfectly feasible to run the algorithm on all 231 language pairs of

the corpus. We note that after incremental changes to the corpus, it was not necessary to

re-run the first two phases.

7.6 Later work

This section reviews some of the results reported since the release of hunalign.

118

(Abdul Rauf et al. 2012) compares the performance of sentence alignment systems by

training statistical machine translation (SMT) systems on their output, and evaluating the

performance of the resulting SMT systems according to three popular evaluation metrics. For

each of the three evaluations of the French-English SMT system, hunalign was ‘statistically

tied for first place’, that is, its score was within one standard deviation of the best score.

(Yu et al. 2012) reports on a sentence alignment system tuned for literary works. They

use hunalign with default settings (without the dictionary building and realignment phases)

as a baseline, and report a significant improvement in precision on their corpora.

(Tóth et al. 2008) created a Hungarian-English sentence aligner system by incorporating

into the similarity score the output of a named entity recognition system for both languages.

They tuned and evaluated the system on their own gold standard Hungarian-English parallel

corpus. The system achieved significantly higher precision than hunalign (93.41% versus

89.93%), but mostly at the expense of recall: the F-scores were 93.70% for hunalign, and

93.98% for the named entity recognition-based system.

7.7 Applications

hunalign is widely used by the multilingual natural language processing community. It was

used to create four of the largest five public multilingual parallel corpora we are aware of:

(i) the aforementioned JRC-Acquis corpus (Steinberger et al. 2006); (ii) OPUS (Tiedemann

2009); (iii) Parasol (Waldenfels 2011); and (iv) InterCorp (Rosen & Vavř́ın 2012). The ex-

ception is (v) EUROPARL (Koehn 2005) which was aligned with the earlier Vanilla aligner,

but in subsequent work (Koehn 2010) himself recommends the use of hunalign.

hunalign was integrated into several software tools as a component. The two most no-

table are probably UPlug and LF Aligner.

UPlug (Tiedemann 2002) is a framework for parallel text processing. It comes with a

graphical user interface to manually correct alignments at various levels. Most notably, UPlug

119

was used to create the OPUS parallel corpus (Tiedemann 2009) relying on its hunalign plug-

in for the task of sentence alignment.

Bisentence databases (translation memories) are important resources of computer as-

sisted translation systems. Somewhat surprisingly, these expensive software systems rarely

incorporate automatic alignment functionality. András Farkas created LF Aligner http:

//sourceforge.net/projects/aligner/, a convenient GUI wrapper around hunalign and

partialAlign, tailored to professional translators who would like to create their own trans-

lation memories without having to learn script programming. It is used by thousands of

translators worldwide. LF Aligner supports several common document formats as input,

and several common translation memory formats as output. It provides built-in bilingual

lexicons for many language pairs to increase alignment accuracy. LF Aligner can build mul-

tilingual translation memories by repeatedly calling hunalign for a pivot language versus all

the other languages, and iteratively merging compatible bisentences into the multisentence

set.

The Hunglish Corpus has been used as training data for machine translation (Hócza &

Kocsor 2006), and in a word-sense disambiguation experiment (Miháltz & Pohl 2006). It was

also employed as part of the training data in the ‘2008 ACL Workshop on Statistical Machine

Translation’ (Callison-Burch et al. 2008) and ‘2009 EACL Workshop on Statistical Machine

Translation’ http://www.statmt.org/wmt09/translation-task.html shared tasks.

The following chapter on bitext querying will introduce a full-scale web-based application

for end users that builds on all results of this chapter.

Chapter 8

The Hunglish bitext query system

This chapter starts with documenting the huntools multilingual text processing framework.

huntools is a lightweight text processing framework that was created to integrate the various

tools presented in previous chapters. We present a list of text processing pipelines we created

in the framework.

Next we introduce the Hunglish bitext query service. The goal of this web-based system is

two-fold: first, it is a tool for human translators that helps them find translations of phrases

in context. Second, thanks to its crowdsourcing functionality, one important ‘side effect’ of

this usage is the semi-manual collection and manual evaluation of corpus data. Our system

is a full reimplementation of the bitext query system originally created by Péter Halácsy.

The main new features of the reimplementation are related to crowdsourcing functionality:

the capability to add bidocuments to a running service, and the chance for users to vote on

bisentence quality. Duplicate filtering was also added.

This chapter differs from the previous ones in several respects. It does not follow the their

structure, focusing on the components of a single end-user application, and it mostly deals

with implementation and software design issues rather than algorithmic questions.

The offline component is the result of joint work with Attila Zséder (Recski et al. 2009).

The architecture of the software is the design of the present author. The implementation

of the framework is the work of Attila Zséder. Plugging the hun� tools and other language

processing utilities into this framework was the work of the present author. The online

component is joint work with Péter Gergő Barna, previously unpublished. The architecture

120

121

of the software is the result of joint work, implementation is largely the work of Péter Gergő

Barna.

8.1 The huntools multilingual text processing framework

There are several natural language processing toolkits in existence, some of them widely used.

Some of the more important examples are the Java-based GATE (General Architecture for

Text Engineering) (Cunningham et al. 1997) and the Python-based NLTK (Natural Lan-

guage Toolkit) (Bird 2006). Two other notable toolkits are the Java-based UIMA (Ferrucci

& Lally 2004) and OpenNLP frameworks. All of these systems provide their own standard

mechanisms to facilitate communication among their components. When a research group

decides to build its own text processing framework instead of using one of the above, this

decision requires strong justification. Below we give such a justification, explaining the design

principles behind our framework.

Given the Unix background of our research group, we have a large amount of accumulated

expertise in writing short text processing tools based on standard Unix tools such as sed,

grep, awk and others. We intended to make use of this expertise. This constrained the design

of the framework in two important ways:

First, textual data travels in a trivial tabulator-separated text representation. The lim-

itations of this very simple file structure do not interfere with the applications we had in

mind. For example, we did not intend to carry information about detailed document struc-

ture, formatting, and typesetting. (If we want to add such a feature in the future, stand-off

annotation will be the method to achieve this without having to reorganize the pipeline to

work with some recursive data representation such as XML.) A large advantage of tabulator-

separated data is that character escaping is never required: the new line and the tabulator

characters are the only reserved symbols, and they are not allowed inside fields. (Compare

this with the Comma-Separated Values file format, which is quite hard to write a complete

parser for.)

122

The second constraint is that the framework has to be able to spawn any kind of sub-

processes as components. Contrast this with toolkits like UIMA and GATE, that in practice

force the component developer to work in limited list of programming languages. (Java and

C++, in the case of UIMA.)

After these considerations, one good candidate for a non-intrusive driver component

for our framework was zymake (Breck 2008), a framework for organizing experiments that

shares the philosophy of the popular Unix tool make. We decided against this and similar

tools because we had some features in mind (like daemonization, see below) that would have

been hard to implement under these. Creating huntools took only about a person-week of

effort, a fact we feel justifies succumbing to the not-invented-here syndrome.

8.1.1 Conventions, implementation details

The input, intermediate results and output of a run are stored in a trivial standardized file

structure. The results of step x for language l for an input with identifier id can be found

in file l/x/id.l.x. (For example, hu/sen/12.hu.sen contains sentence-segmented Hungar-

ian data, and align/qf/12.align.qf contains quality-filtered bilingual parallel data.) The

reason for the redundancy in the full file path is that this makes it possible to move files

without losing information contained in the path.

The tasks to be completed for the data are specified in two driver files: the state graph file

and the commands file. The state graph file specifies the workflow as a directed acyclic graph

of commands. A command takes one or more data files as input, and outputs a previously non-

existing data file. The command file describes the Unix process corresponding to commands.

An example part of a state graph file:

sentence alignment using hunalign.

input is tokenized text, output is a ladder file.

(a ladder is a list of pairs of sentence indices)

hu/tok, en/tok -> align/ladder : align

use the (non-tokenized) sentences and the ladder

123

to reconstruct bisentences.

align/ladder, hu/filtersen, en/filtersen -> align/text: align2text

quality filter. throws away low quality bisentences.

align/text -> align/qf : qf

An example part of a command file:

aligner_dic=%(resources_dir)s/hunalign/hu-en.stem.dic

align_cmd: %(binaries_dir)s/hunalign %(aligner_dic)s

qf_cmd: bash %(scripts_dir)s/qualityfilter.sh |\

python %(scripts_dir)s/enoughalpha.py

By convention, if there is one input file, then the Unix command is executed as a pipe

mapping input to output. If there are several input files, they will be appended as the last

command line arguments of the Unix command.

The core of this very lightweight framework that interprets driver files and spawns and

logs Unix processes in the required order is just about 200 lines of Python code. A minor ad-

ditional source of complexity is a set of extra features that make large batch runs significantly

faster:

• Parallelization: The system is capable of harnessing the power of a computer cluster.

The members of the cluster must mount the same file system. The basic unit of par-

allelization is the document. That is, for a single document, only one machine of the

cluster receives load. This limitation greatly simplifies the framework, but is only a

minor slowing factor, because the state graph is typically very sequential in nature, so

the processing of a single document is an inherently sequential task.

• Daemonization: The supervised, machine-learning based taggers and chunkers we em-

ploy usually load a large model file at startup. (Sometimes this is larger than 100MB,

as in the case of some hunner versions.) If we run such a tagger as a pipe for many

124

small data files separately, then most of the runtime will consist of the same initializa-

tion step again and again. To avoid this, we can run such a tool in a so-called daemon

mode, where it starts up only once, and then waits for data to arrive on Unix sockets.

The framework hides from the user most of the necessary administration, making it

easy to set up tools in this fashion. Note that this functionality is also required when

using the tool as part of some (typically web-based) service.

8.1.2 Pipelines

During our work, our research team often builds pipelines in the form of driver files for the

framework. The three most notable of these is briefly described below. It is trivial to chain

these one after another into a single large pipeline working from native document formats to

factored Statistical Machine Translation models. But this is seldom useful for research tasks,

and more often they are used individually.

The hunglish pipeline starts from bilingual document pairs in standard document formats,

and extracts bisentences from them. The pipeline was used to create Version 2.0 of the

Hunglish Corpus. (Version 1.0 was created with a more or less ad hoc collection of scripts.)

As we will see in the next section, the pipeline is also a part of the Hunglish web-based

application, where it is responsible for the capability to expand the bisentence database with

data from uploaded document pairs. The pipeline consists of the following tasks:

• raw conversion: Turn doc, pdf, html, srt (subtitles), txt (unformatted ISO Latin- and

Unicode text) into unformatted Unicode text.

• sen: Sentence-segment and paragraph-segment text.

• meta: Collect metadata (language detection, encoding detection, character- and sen-

tence counts).

125

• filtersen: Based on metadata, drop data if it is incompatible with target. (Say, it is

not in the required language, or there is a discrepancy between sentence- or character

counts.)

• tok: Tokenize text.

• stem: Stem text.

• align: Align two tokenized and stemmed document pairs. The result is a ‘ladder’ rep-

resenting correspondences between sentence ids.

• ladder to text: Collect the sentence pairs for the non-stemmed, non-tokenized text,

based on the ladder.

• quality filter: Throw away low quality bisentences based on various simple heuristics.

• bimeta: Collect metadata about alignment quality.

The analysis pipeline starts with a single-language tokenized document, and adds mor-

phological, named entity and NP chunk information. It is in principle language-independent,

but requires language resources for morphology and for supervised learning, so currently

it can only be used for Hungarian and English language data. It can be chained after the

hunglish pipeline if required.

• morph: Morphological analysis.

• pos: Morphological tagging.

• disambig: Morphological disambiguation.

• ner: Named entity recognition.

• chunk: noun phrase chunking.

126

The third, giza pipeline uses the GIZA++ translation model builder (Och & Ney 2003)

and the Moses Statistical Machine Translation framework (Koehn et al. 2007) to build word

alignments, SMT models and automatically acquired dictionaries. It can be chained after

the analysis pipeline, so it can exploit morphology and tags provided by the former pipeline,

using factored language models.

• to giza: Converting parallel, tagged text to the standard file format of GIZA++.

• model: Build an IBM Model 5 from the data.

• word align: Build a word alignment with the model.

• moses: Use the translation and language models for actual translation of monolingual

text.

• bi-np: Heuristically build an NP-chunk alignment based on the GIZA++ model and

the NP chunkings.

For historical reasons, the analysis and giza pipelines have an important limitation:

they work on one-byte Latin (ISO-8859-1 and ISO-8859-2) encoded text rather than UTF-

8. This limitation is inherited from ocamorph. The hunglish pipeline is Unicode-based, or

more exactly, stemming is the only place where it does character conversion. Note that the

stemmed text is discarded after the alignment ladder is found, so the pipeline does not drop

UTF-8 characters during processing.

8.2 The Hunglish bitext query system

The Hunglish bitext query system is a web-based service that makes it possible for users

to search in a large collection of bisentences. Its intended audience is translators, helping

them find translations of phrases in context. The system is augmented with crowdsourcing

functionality: first, users can vote on the accuracy of translations, thus improving the quality

127

of the parallel corpus.1 Second, users can upload their own document pairs from which the

system extracts a set of bisentences. Taken together, these two features let us build a semi-

manually collected and manually evaluated bisentence corpus.

The system consists of two major components, an offline (asynchronous) and an online

(synchronous) component. The offline component takes a pair of documents as input, ex-

tracts a set of bisentences from them, and adds this set to an index. The core of the offline

component is the hunglish pipeline of the huntools framework. The online component an-

swers user search queries on the index of bisentences. The two systems are integrated into a

web-based application that is capable of answering search requests even while simultaneously

adding new user-supplied bitexts to its database. Downvoted bisentences almost immediately

drop to a lower position on the result list.

8.2.1 Architecture

The design of the bitext system is based on the producer-consumer design architecture.

Below we describe the way our application employs this pattern. The abstract description

is easier to follow if we keeps in mind that in the application, there are two kinds of work

items: bidocuments and bisentences. Typical examples of workers are duplicate filtering and

indexing.

The producer-consumer design is based on the notions of workers and work items. At all

times, items have a unique state that describes which one of the workers (if any) needs to

process them. Each worker can poll the database for items that it should work on, at any

given time. If such a query gives a nonzero number of results, the worker “grabs” some or all

of the items, and processes them. As a result, it might modify the items in the database, and

change their state to processed (possibly unsuccessfully processed). Such a processed item

can become input for a next worker. Some of the actions have side effects. (A typical example

1Translations can be faulty for several reasons: errors made by the sentence aligner, errors made
by the human translator, or translations that are correct in a broader context but incorrect in
isolation.

128

Figure 8.1: State transition graph of bisentences.

of a side effect is the addition of a bisentence to the index. In this case, the only non-side effect

of the corresponding action is the changing of the bisentence state from waiting-for-index to

added-to-index.)

The relationships between workers and items can be described by the state graph on

Figure 8.1. An important property of our state graph is that the large scale functionality

of the system does not depend on the order in which the workers grab the work items.

Processes denoted by the arcs of manual edit, upvote/downvote and mark for erasure are

triggered by the users. Duplicate filter, index, reindex, erase from index on the other hand

are all scheduled to run regularly. (They are also triggered by other processes, but that is

only for the purpose of making the application more responsive to user input.)

129

For each of the workers, we can tune the frequency of waking up and polling for new

input, and tune the amount of items it is allowed to grab at once. The optimal settings

depend on performance- and user experience considerations.

8.2.2 Indexing and retrieval

After the huntools pipeline transforms an uploaded document into a set of bisentences,

these bisentences enter into the database of work items. As the state transition graph on

Figure 8.1 shows, the first step is duplicate detection: bisentences that are already part of

the index should not be added for a second time. Duplicate detection is based on a hash of

bisentences stripped of punctuation.

We implemented two different duplicate filtering algorithms with different scaling prop-

erties. Both of them are working components of the system. For a small amount of newly

arrived bisentences, their hashes are individually checked against the hash field of the table

of bisentences, leading to a slow algorithm with zero overhead. For a large batch of new

data, we sort the full table of (old and new) bisentences by hash, and mark newly arrived

duplicates during a linear pass through the sorted data. The run-time of this algorithm does

not directly depend on the amount of new data, but scales by O(n log n) in the amount of old

and new data. (For our current setup, adding even a single bisentence by this ‘large batch’

method would take 6 minutes, compared to the 7ms for the ‘small batch’ method.)

For text indexing and retrieval we rely on the Lucene information retrieval engine

(Hatcher et al. 2010). Lucene supports ranking retrieval results using a vector-space model

(Manning & Schütze 1999).

Indexed bisentences and search queries both pass through a lemmatization phase. This

functionality is provided by jmorph, which can work with any hunspell language resource,

so lemmatization can be implemented for a large number of languages. Unlemmatized text

is also preserved, and exact matches are preferred over lemma matches.

130

One feature of our system that is inherited from the underlying Lucene feature set is that

we can ‘boost’ bisentences, that is, we can specify certain that bisentences deserve a higher

(or lower) position on the query result list than others. This is used to implement the voting

functionality. A second use of this feature in our system is that bisentences from documents

uploaded by operators get more prominent positions on query result lists than bisentences

from documents uploaded by end users.

8.2.3 The Hunglish query interface

Users of the Hunglish bitext query system can set any number of space-separated query

phrases on the source or target language side, or even both sides at once. The queries are

translated by the system to complex Lucene queries that refer to one or more of four fields:

the lemmatized/unlemmatized source/target language fields.

The syntax of these query phrases is easiest to describe through a series of examples:

• The simplest example of a query phrases is a word: the Hungarian side ellopták query

results in bisentences with this Hungarian word in their Hungarian sentence. Other

inflected forms (ellopnám, ellopott) are also returned as results, but are ranked lower

than the exactly matching version.

• To prohibit results with other inflected forms, the term should be surrounded with the

< > parentheses. So <ellopták> will not give results with only, say, ellopott in them.

This is called an exact match query.

• One can search for multi-word search terms. The three equivalent ways of doing this

are:

– Quotation: ”back to normal”

– Dashes: back-to-normal

– Dots: back.to.normal

131

Figure 8.2: A screenshot from the Hunglish bitext query system.

132

• One can mix the exact match syntax with multi-word search terms, but mixing paren-

theses and quotation signs (<”back to normal”>) is not allowed. So the exact match

versions of the previous examples would look like this: <back to normal>, <back-to-

normal>, <back.to.normal>.

• Any query phrase is allowed to have one of the following two modifiers as prefixes.

Space is not allowed between the modifier and its modifyee.

– The Prohibited modifier (minus sign) negates the query phrase. So, for example

Hungarian: fél English: -scared returns bisentences where there is a word in the

Hungarian sentence which stems the same as “fél”, but there is no word in the

English sentence which stems the same as “scared”. The Prohibited modifier can

be combined with exact match syntax and multi-word search terms.

– The Required modifier (plus sign) requires that the term after the ‘+’ symbol

exist somewhere in the sentence. Without any modifier the phrase is optional. So,

for example English buy into return bisentences where the words buy OR into but

the query +buy +into returns only bisentences with the two words in it.

8.2.4 Usage

We set up a webservice running our system for the Hungarian-English language pair at

http://hunglish.hu. We added a subset of the Hunglish Corpus,2 a total of 2.4 million

bisentences in 1000 documents. We also added the approximately 250,000 items of the Vonyó

bilingual lexicon. We use the aforementioned boosting fuctionality to make these items more

visible than regular bisentences.

We note that the hunglish pipeline has a variation that is stripped of all language-

dependence without any major impact on accuracy, and the jmorph lemmatizer can use

any hunspell resource. This means that setting the service up for some specific language

2The top 1000 bidocuments of the Corpus, when ordered by bisentence count.

133

pair is simple task. We verified this claim by setting a test system up for the Greek-Slovak

language pair based on JRC-Acquis data.

The service, still in beta at the time of writing, and without a polished user interface,

already achieved significant web presence. It serves 150,000 search queries monthly to 10,000

visitors. Visitors reported 2,000 erroneous alignments in the Hunglish Corpus, and uploaded

37 new document pairs yielding 17,000 new parallel sentences.

Bibliography

Abdul Rauf, S., Fishel, M., Lambert, P., Noubours, S. & Sennrich, R. (2012), Extrinsic eval-

uation of sentence alignment systems, in ‘LREC Workshop on Creating Cross-language

Resources for Disconnected Languages and Styles (CREDISLAS)’, Istanbul (Turkey).

Abney, S. P. (1991), Parsing by chunks, in ‘Principle-Based Parsing’, Kluwer Academic

Publishers, pp. 257–278.

Bautin, M., Vijayarenu, L. & Skiena, S. (2008), International sentiment analysis for news

and blogs, in ‘Proceedings of the International Conference on Weblogs and Social Media

(ICWSM)’.

Bird, S. (2006), NLTK: the natural language toolkit, in ‘Proceedings of the COLING/ACL

on Interactive presentation sessions’, COLING-ACL ’06, Association for Computational

Linguistics, Stroudsburg, PA, USA, pp. 69–72.

Bishop, C. M. (2007), Pattern Recognition and Machine Learning (Information Science and

Statistics), Springer.

Borthwick, A. E. (1999), A maximum entropy approach to named entity recognition, PhD

thesis, New York University, New York, NY, USA. AAI9945252.

Borthwick, A., Sterling, J., Agichtein, E. & Grishman, R. (1998), NYU: Description of the

MENE named entity system as used in MUC-7, in ‘Proceedings of the Seventh Message

Understanding Conference (MUC-7)’.

Bottou, L. (2003), Stochastic Learning, in ‘Advanced Lectures on Machine Learning’03’,

pp. 146–168.

134

135

Bourigault, D. (1992), Surface grammatical analysis for the extraction of terminological noun

phrases, in ‘Proceedings of the 14th conference on Computational linguistics - Volume

3’, COLING ’92, Association for Computational Linguistics, Stroudsburg, PA, USA,

pp. 977–981.

Brants, T. (2000), TnT – a statistical part-of-speech tagger, in ‘Proceedings of the Sixth

Applied Natural Language Processing Conference (ANLP-2000)’, Seattle, WA.

Breck, E. (2008), zymake: a computational workflow system for machine learning and natural

language processing, in ‘Software Engineering, Testing, and Quality Assurance for Natu-

ral Language Processing’, SETQA-NLP ’08, Association for Computational Linguistics,

Stroudsburg, PA, USA, pp. 5–13.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D. & Mercer, R. L. (1993), ‘The mathemat-

ics of statistical machine translation: parameter estimation’, Computational Linguistics

19(2), 263–311.

Brown, P., Lai, J. & Mercer, R. (1991), Aligning sentences in parallel corpora, in ‘Proceedings

of ACL29’, pp. 169–176.

Burges, C. J. C. (1998), ‘A Tutorial on Support Vector Machines for Pattern Recognition’,

Data Min. Knowl. Discov. 2(2), 121–167.

Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C. & Schroeder, J. (2008), Further meta-

evaluation of machine translation, in ‘Proceedings of the Third Workshop on Statistical

Machine Translation’, StatMT ’08, Association for Computational Linguistics, Strouds-

burg, PA, USA, pp. 70–106.

Chen, J. & Nie, J.-Y. (2000), Automatic construction of parallel english-chinese corpus for

cross-language information retrieval, in ‘Proceedings of the sixth conference on Applied

natural language processing’, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, pp. 21–28.

136

Chen, S. F. (1993), Aligning sentences in bilingual corpora using lexical information, in

‘Proceedings of the 31st conference on Association for Computational Linguistics’, As-

sociation for Computational Linguistics, Morristown, NJ, USA, pp. 9–16.

Chieu, H. L. & Ng, H. T. (2003), Named entity recognition with a maximum entropy ap-

proach, in ‘Proceedings of the seventh conference on Natural language learning at HLT-

NAACL 2003 - Volume 4’, CONLL ’03, Association for Computational Linguistics,

Stroudsburg, PA, USA, pp. 160–163.

Chinchor, N. A. (1998), Proceedings of the Seventh Message Understanding Confer-

ence (MUC-7) named entity task definition, in ‘Proceedings of the Seventh Mes-

sage Understanding Conference (MUC-7)’, Fairfax, VA, p. 21 pages. version 3.5,

http://www.itl.nist.gov/iaui/894.02/related projects/muc/.

Cho, J. & Garcia-Molina, H. (2000), The evolution of the web and implications for an

incremental crawler, in ‘VLDB ’00: Proceedings of the 26th International Conference

on Very Large Data Bases’, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, pp. 200–209.

Church, K. W. (1988), A stochastic parts program and noun phrase parser for unrestricted

text, in ‘Proceedings of the second conference on Applied natural language processing’,

Association for Computational Linguistics, Morristown, NJ, USA, pp. 136–143.

Creutz, M., Lagus, K., Lindén, K. & Virpioja, S. (2005), Morfessor and hutmegs: Unsu-

pervised morpheme segmentation for highlyinflecting and compounding languages, in

‘In Proceedings of the Second Baltic Conference on Human Language Technologies’,

pp. 107–112.

Crystal, D. (1997), A Dictionary of Linguistics and Phonetics, 4th edn, Blackwell, Oxford,

UK.

137

Csendes, D., Csirik, J. & Gyimóthy, T. (2004), The Szeged Corpus: A POS tagged and syn-

tactically annotated Hungarian natural language corpus, in ‘Text, Speech and Dialogue:

7th International Conference, TSD’, pp. 41–47.

Csendes, D., Csirik, J., Gyimóthy, T. & Kocsor, A. (2005), The Szeged Treebank, in ‘Pro-

ceedings of the 8th international conference on Text, Speech and Dialogue’, TSD’05,

Springer-Verlag, Berlin, Heidelberg, pp. 123–131.

Cunningham, H., Humphreys, K., Gaizauskas, R. J. & Wilks, Y. (1997), GATE - a general

architecture for text engineering, in ‘ANLP’, pp. 29–30.

Dimitrova, L., Erjavec, T., Ide, N., Kaalep, H. J., Petkevic, V. & Tufiş, D. (1998), Multext-

east: Parallel and comparable corpora and lexicons for six central and eastern european

languages, in C. Boitet & P. Whitelock, eds, ‘Proceedings of the Thirty-Sixth Annual

Meeting of the Association for Computational Linguistics and Seventeenth Interna-

tional Conference on Computational Linguistics’, Morgan Kaufmann Publishers, San

Francisco, California, pp. 315–319.

Elekfi, L. (1994), Magyar ragozási szótár, MTA Nyelvtudományi Intézet, Budapest.

Erjavec, T. & Džeroski, S. (2004), ‘Machine learning of morphosyntactic structure: Lemma-

tizing unknown Slovene words.’, Applied Artificial Intelligence 18(1), 17–41.

Erjavec, T. & Monachini, M. (1997), Specifications and notation for lexicon encoding, Tech-

nical report, Copernicus Project 106 MULTEXT-East.

Farkas, R., Simon, E., Szarvas, G. & Varga, D. (2007), GYDER: Maxent metonymy reso-

lution, in ‘Proceedings of the Fourth International Workshop on Semantic Evaluations

(SemEval-2007)’, Association for Computational Linguistics, Prague, Czech Republic,

pp. 161–164.

138

Farkas, R., Szeredi, D., Varga, D. & Vincze, V. (2010), MSD-KR harmonizáció a Szeged

Treebank 2.5-ben, in ‘VII. Magyar Számı́tógépes Nyelvészeti Konferencia’, pp. 349–

353.

Fazekas, J., Németh, K., Varga, D., Várhelyi, K. & Pléh, C. (2012), Entropy measures and

predictive recognition as mirrored in gating and lexical decision over multimorphemic

Hungarian noun forms, in ‘Proceedings of the 15th International Morphology Meeting’,

Vienna, Austria.

Ferrucci, D. & Lally, A. (2004), ‘UIMA: an architectural approach to unstructured informa-

tion processing in the corporate research environment’, Nat. Lang. Eng. 10(3-4), 327–

348.

Fuschetto, A., Tamberi, F., Simi, M. & Vecchi, E. M. (2009), Experiments in tagger com-

bination: arbitrating, guessing, correcting, suggesting, in ‘Proc. of Workshop Evalita

2009’.

Gale, W. A. & Church, K. W. (1991), A program for aligning sentences in bilingual corpora,

in ‘Meeting of the Association for Computational Linguistics’, pp. 177–184.

Gee, J. P. & Grosjean, F. (1983), ‘Performance structures: A psycholinguistic and linguistic

appraisal’, Cognitive Psychology 15(4), 411 – 458.

Grosjean, F. (1980), ‘Spoken word-recognition processes and the gating paradigm’, Percep-

tion and Psychophysics 28, 267–283.

Hajič, J., Krbec, P., Oliva, K., Květoň, P. & Petkevič, V. (2001), Serial combination of rules

and statistics: A case study in Czech tagging, in ‘Proceedings of the 39th Association

of Computational Linguistics Conference’, Toulouse, France, pp. 260–267.

Hakkani-Tür, D. Z., Oflazer, K. & Tür, G. (2000), Statistical morphological disambiguation

for agglutinative languages, in ‘Proceedings of the 18th conference on Computational

139

linguistics’, Association for Computational Linguistics, Morristown, NJ, USA, pp. 285–

291.

Halácsy, P. (2006), ‘Benefits of deep NLP-based lemmatization for information retrieval’,

Working Notes for the CLEF 2006 Workshop.

Halácsy, P., Kornai, A., Németh, L., Rung, A., Szakadát, I. & Trón, V. (2004), Creating

open language resources for Hungarian, in ‘Proceedings of Language Resources and

Evaluation Conference (LREC04)’, European Language Resources Association.

Halácsy, P., Kornai, A., Németh, L., Sass, B., Varga, D., Váradi, T. & Vonyó, A. (2005),

A Hunglish korpusz és szótár, in ‘III. Magyar Számı́tógépes Nyelvészeti Konferencia.

Szeged’.

Halácsy, P., Kornai, A., Németh, P. & Varga, D. (2008), Parallel creation of gigaword cor-

pora for medium density languages - an interim report, in ‘Proceedings of the Sixth

International Conference on Language Resources and Evaluation (LREC’08)’, Euro-

pean Language Resources Association (ELRA), Marrakech, Morocco.

Halácsy, P., Kornai, A. & Oravecz, C. (2007), Hunpos: an open source trigram tagger, in

‘Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demon-

stration Sessions’, ACL ’07, Association for Computational Linguistics, Stroudsburg,

PA, USA, pp. 209–212.

Halácsy, P., Kornai, A. & Varga, D. (2005), Morfológiai egyértelműśıtés maximum entrópia

módszerrel (morphological disambiguation with the maxent method), in ‘Proc. 3rd Hun-

garian Computational Linguistics Conf.’, Szegedi Tudományegyetem.

Hatcher, E., Gospodnetic, O. & McCandless, M. (2010), Lucene in Action, 2nd revised edition

edn, Manning.

Hócza, A. (2004), ‘Noun phrase recognition with tree patterns’, Acta Cybern. 16(4), 611–623.

140

Hócza, A. & Kocsor, A. (2006), Hungarian-English machine translation using genpar, in

‘Proceedings of the 9th international conference on Text, Speech and Dialogue’, TSD’06,

Springer-Verlag, Berlin, Heidelberg, pp. 87–94.

Horváth, T., Alexin, Z., Gyimóthy, T. & Wrobel, S. (1999), Application of different learning

methods to Hungarian part-of-speech tagging., in ‘ILP’, pp. 128–139.

Jurafsky, D. & Martin, J. H. (2008), Speech and Language Processing (2nd Edition) (Prentice

Hall Series in Artificial Intelligence), 2 edn, Prentice Hall.

Kaalep, H.-J. & Veskis, K. (2007), Comparing parallel corpora and evaluating their quality,

in ‘Proceedings of MT Summit XI’, pp. 275–279.

Kenyon, J. & Knott, T. (1953), A pronouncing dictionary of American English, A Merriam-

Webster, Merriam.

Kilgarriff, A. (2007), ‘Googleology is bad science’, Comput. Linguist. 33(1), 147–151.

Klein, D., Smarr, J., Nguyen, H. & Manning, C. D. (2003), Named entity recognition with

character-level models, in ‘Proceedings of the seventh conference on Natural language

learning at HLT-NAACL 2003 - Volume 4’, CONLL ’03, Association for Computational

Linguistics, Stroudsburg, PA, USA, pp. 180–183.

Koehn, P. (2005), Europarl: A Parallel Corpus for Statistical Machine Translation, in ‘Con-

ference Proceedings: the tenth Machine Translation Summit’, AAMT, AAMT, Phuket,

Thailand, pp. 79–86.

Koehn, P. (2010), Statistical Machine Translation, Cambridge University Press.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B.,

Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A. & Herbst, E. (2007),

Moses: open source toolkit for statistical machine translation, in ‘Proceedings of the 45th

141

Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions’, ACL

’07, Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 177–180.

Kornai, A. (1985), ‘The internal structure of Noun Phrases’, Approaches to Hungarian 1, 79–

92.

Kornai, A. (1986), ‘Szótári adatbázis az akadémiai nagyszámı́tógépen (A dictionary database

of Hungarian)’, Hungarian Academy of Sciences Institute of Linguistics Working Papers

II, 65–79.

Kornai, A. (1989), ‘A főnévi csoport egyeztetése [Agreement in noun phrases]’, Általános

Nyelvészeti Tanulmányok pp. 183–211.

Kornai, A., Halácsy, P., Nagy, V., Oravecz, C., Trón, V. & Varga, D. (2006), Web-based

frequency dictionaries for medium density languages, in ‘Proceedings of the EACL 2006

Workshop on Web as a Corpus’.

Krynicki, G. (2006), Compilation, Annotation and Alignment of a Polish-English Parallel

Corpus, PhD thesis, Poznan University.

Kuba, A., Bakota, T., Hócza, A. & Oravecz, C. (2003), A magyar nyelv néhány szófaji

elemzőjének összevetése, in Z. Alexin & D. Csendes, eds, ‘Magyar Számı́tógépes

Nyelvészeti Konferencia’, Szegedi Tudományegyetem, Informatikai Tanszékcsoport,

Szegedi Tudományegyetem, pp. 16–22.

Kuba, A., Felföldi, L. & Kocsor, A. (2005), Pos tagger combinations on Hungarian text, in

‘2nd International Joint Conference on Natural Language Processing, IJCNLP’.

Lafferty, J., McCallum, A. & Pereira, F. (2001), Conditional random fields: Probabilistic

models for segmenting and labeling sequence data, in ‘Proceedings of the 18th Inter-

national Conference on Machine Learning’, Morgan Kaufmann, San Francisco, CA,

pp. 282–289.

142

Lapata, M. & Keller, F. (2004), The web as a baseline: Evaluating the performance of

unsupervised web-based models for a range of NLP tasks, in S. Dumais, D. Marcu &

S. Roukos, eds, ‘HLT-NAACL 2004: Main Proceedings’, Association for Computational

Linguistics, Boston, Massachusetts, USA, pp. 121–128.

Le, Z. (2011), ‘Maximum Entropy Modeling Toolkit for Python and C++’.

URL: http: // homepages. inf. ed. ac. uk/ lzhang10/ maxent_ toolkit. html

Lin, C.-J., Weng, R. C. & Keerthi, S. S. (2007), Trust region Newton method for large-scale

logistic regression, in ‘Proceedings of the 24th International Conference on Machine

Learning (ICML)’.

Lukács, A., Pléh, C. & Racsmány, M. (2007), ‘Spatial language in Williams syndrome: evi-

dence for a special interaction?’, Journal of Child Language 34(2):311-43.

MacKay, D. J. C. (2002), Information Theory, Inference & Learning Algorithms, Cambridge

University Press, New York, NY, USA.

Magyar, L. & Szentgyörgyi, S. (2011), Vowel zero alternations in Hungarian nominal in-

flectional and derivational paradigms: An analogy-based statistical approach, in ‘4th

Syntax, Phonology and Language Analysis Conference, Budapest’.

Manning, C. & Schütze, H. (1999), Foundations of Statistical Natural Language Processing,

The MIT Press, Cambridge, MA.

Markert, K. & Nissim, M. (2007), SemEval-2007 Task 08: Metonymy resolution at SemEval-

2007, in ‘Proceedings of the Fourth International Workshop on Semantic Evaluations

(SemEval-2007)’, Association for Computational Linguistics, Prague, Czech Republic,

pp. 36–41.

McCallum, A., Freitag, D. & Pereira, F. (2000), Maximum entropy Markov models for in-

formation extraction and segmentation, in ‘Proceedings of the 17th International Con-

ference on Machine Learning’, Morgan Kaufmann, San Francisco, CA, pp. 591–598.

143

Megyesi, B. (2009), The Open Source Tagger HunPoS for Swedish., in ‘Proceedings of the

17th Nordic Conference on Computational Linguistics (NODALIDA)’.

Melamed, I. D. (1998), Empirical methods for exploiting parallel texts, PhD thesis, University

of Pennsylvania, Philadelphia, PA, USA. AAI9829948.

Melamed, I. D. (2000), ‘Models of translational equivalence among words’, Computational

Linguistics 26(2), 221–249.

Mihajlik, P., Fegyó, T., Németh, B., Tüske, Z. & Trón, V. (2007), Towards automatic tran-

scription of large spoken archives in agglutinating languages hungarian ASR for the

MALACH project, in V. Matoušek & P. Mautner, eds, ‘Text, Speech and Dialogue’,

Vol. 4629 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 342–

349. 10.1007/978-3-540-74628-7 45.

Miháltz, M. (2011), Magyar NP-felismerők összehasonĺıtása, in ‘VIII. Magyar Számı́tógépes

Nyelvészeti Konferencia. Szeged’, pp. 333–335.

Miháltz, M. & Pohl, G. (2006), Exploiting Parallel Corpora for Supervised Word-Sense

Disambiguation in English-Hungarian Machine Translation, in ‘Proceedings of the 5th

International Conference on Language Resources and Evaluation (LREC’2006)’, Genoa,

Italy.

Mikheev, A. (2002), ‘Periods, capitalized words, etc.’, Computational Linguistics 28(3), 289–

318.

Miller, S., Crystal, M., Fox, H., Ramshaw, L., Schwartz, R., Stone, R., Weischedel, R. &

Group, T. A. (1998), Algorithms that learn to extract information BBN: Description of

the Sift system as used for MUC-7, in ‘Proceedings of MUC-7’.

Mitchell, P. M., Santorini, B. & Marcinkiewicz, M. A. (1994), Building a large annotated

corpus of English, in S. Armstrong, ed., ‘Using Large Corpora’, A Bradford Book, The

MIT Press, pp. 273–290.

144

Moore, R. C. (2002), Fast and accurate sentence alignment of bilingual corpora, in ‘Proc 5th

AMTA Conf: Machine Translation: From Research to Real Users’, Springer, Langhorne,

PA, pp. 135–244.

Moscoso del Prado Mart́ın, F., Kostic, A. & Baayen, R. H. (2004), ‘Putting the bits to-

gether: An information theoretical perspective on morphological processing’, Cognition

12/2004; 94(1):1-18.

Németh, L. (2002), Magyar Ispell – Válasz a Helyes-e?-re, in ‘IV. GNU/Linux szakmai

konferencia’, Linux-felhasználók Magyarországi Egyesülete, pp. 99–107.

Németh, L., Trón, V., Halácsy, P., Kornai, A., Rung, A. & Szakadát, I. (2004), Leveraging the

open-source ispell codebase for minority language analysis, in ‘Proceedings of SALTMIL

2004’, European Language Resources Association.

Och, F. J. & Ney, H. (2003), ‘A systematic comparison of various statistical alignment

models’, Comput. Linguist. 29(1), 19–51.

Oravecz, Cs. & Dienes, P. (2002), Efficient stochastic part-of-speech tagging for Hungar-

ian, in ‘Proceedings of the Third International Conference on Language Resources and

Evaluation (LREC2002)’, pp. 710–717.

Peterson, J. L. (1980), Computer programs for spelling correction: an experiment in program

design, Vol. 96 of Lecture Notes in Computer Science, Springer.

Pietra, S. D., Pietra, V. D. & Lafferty, J. (1997), ‘Inducing features of random fields’, IEEE

Tr. on Pattern Analysis and Machine Intelligence 19(4).

Pléh, C., Németh, K., Fazekas, J. & Varga, D. (2011), Entropy measures and predictive

recognition as mirrored in gating and lexical decision over multimorphemic Hungarian

noun forms, in ‘QMMMD Workshop, University of California, San Diego (Jan. 15-16)’.

145

Potthast, M., Barrón-Cedeño, A., Stein, B. & Rosso, P. (2011), ‘Cross-language plagiarism

detection’, Lang. Resour. Eval. 45(1), 45–62.

Potthast, M., Stein, B. & Anderka, M. (2008), A Wikipedia-based multilingual retrieval

model, in ‘Proceedings of the IR research, 30th European conference on Advances in

information retrieval’, ECIR’08, Springer-Verlag, Berlin, Heidelberg, pp. 522–530.

Preiss, J. & Stevenson, M. (2004), ‘Introduction to the special issue on word sense disam-

biguation’, Computer Speech & Language 18(3), 201–207.

Prekopcsák, Z. (2008), http://www.kitchenbudapest.hu/projects/celebgraph, Techni-

cal report, Kitchen Budapest Media Lab.

Prószéky, G. & Tihanyi, L. (1996), Humor – a Morphological System for Corpus Analysis,

in ‘Proceedings of the first TELRI Seminar in Tihany’, Budapest, pp. 149–158.

Prószéky, G., Tihanyi, L. & Ugray, G. (2004), Moose: a robust high-performance parser

and generator, in ‘Proceedings of the 9th Workshop of the European Association for

Machine Translation’, La Valletta, Malta, p. 138–142.

Rabiner, L. & Juang, B. H. (1986), ‘An introduction to Hidden Markov Models’, IEEE ASSP

Magazine pp. 4–15.

Rabiner, R. L. (1989), A tutorial on Hidden Markov Models and selected applications in

speech recognition, in ‘Proc. IEEE’, Vol. 77, pp. 257–286.

Racsmány, M., Conway, M., Keresztes, A. & Krajcsi, A. (2012), ‘Inhibition and interference

in the think/no-think task’, Memory and Cognition 40(2):168-76.

Rácz, P. & Szeredi, D. (2009), Testing usage-based predictions on Hungarian vowel reduction,

in ‘17th Manchester Phonology Meeting, Manchester, UK’.

Ramshaw, L. A. & Marcus, M. P. (1995), Text chunking using transformation-based learning,

in ‘Proceedings of the Third ACL Workshop on Very Large Corpora’.

146

Ratnaparkhi, A. (1996), A maximum entropy model for part-of-speech tagging, in ‘Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing’,

University of Pennsylvania, pp. 133–142.

Rebrus, P., Kornai, A. & Varga, D. (2012), ‘Egy általános célú morfológiai annotáció’,

Általános Nyelvészeti Tanulmányok . to appear.

Recski, G. (2010), NP-chunking in Hungarian, Master’s thesis, Eötvös Loránd University,

Theoretical Linguistics.

Recski, G., Rung, A., Zséder, A. & Kornai, A. (2010), NP Alignment in Bilingual Cor-

pora, in N. C. C. Chair), K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis,

M. Rosner & D. Tapias, eds, ‘Proceedings of the Seventh International Conference on

Language Resources and Evaluation (LREC’10)’, European Language Resources Asso-

ciation (ELRA), Valletta, Malta.

Recski, G. & Varga, D. (2009), ‘A Hungarian NP-chunker’, The Odd Yearbook .

Recski, G. & Varga, D. (2012), ‘Magyar főnévi csoportok azonośıtása’, Általános Nyelvészeti

Tanulmányok . to appear.

Recski, G., Varga, D., Zséder, A. & Kornai, A. (2009), Főnévi csoportok azonośıtása magyar-

angol párhuzamos korpuszban, in ‘VI. Magyar Számı́tógépes Nyelvészeti Konferencia’,

Szegedi Tudományegyetem.

Resnik, P. (1998), Parallel strands: A preliminary investigation into mining the web for

bilingual text, in D. Farwell, L. Gerber & E. Hovy, eds, ‘Machine Translation and the

Information Soup: Third Conference of the Association for Machine Translation in the

Americas’, Springer, Langhorne, PA.

Resnik, P. & Smith, N. (2003), ‘The web as a parallel corpus’, Computational Linguistics

29(3), 349–380.

147

Rosen, A. & Vavř́ın, M. (2012), Building a multilingual parallel corpus for human users,

in N. Calzolari, K. Choukri, T. Declerck, M. U. Doğan, B. Maegaard, J. Mariani,

J. Odijk & S. Piperidis, eds, ‘Proceedings of the Eight International Conference on

Language Resources and Evaluation (LREC’12)’, European Language Resources Asso-

ciation (ELRA), Istanbul, Turkey.

Sekine, S., Grishman, R. & Shinou, H. (1998), A decision tree method for finding and clas-

sifying names in Japanese texts, in ‘Proceedings of the Sixth Workshop on Very Large

Corpora’, Vol. 14(4):365-393.

Shannon, C. E. (2001), ‘A mathematical theory of communication’, SIGMOBILE Mob. Com-

put. Commun. Rev. 5(1), 3–55.

Silfverberg, M. & Lindén, K. (2011), Combining statistical models for pos tagging using finite-

state calculus, in ‘Proc. of the 18th Nordic Conference of Computational Linguistics

NODALIDA 2011’.

Simard, Michel & Plamondon, P. (1998), Bilingual sentence alignment: Balancing robustness

and accuracy, in ‘Machine Translation’, Vol. Volume 13, no. 1, pp. 59–80.

Solymosi, A. (2007), Tulajdonnév-felismerés, személynevek azonośıtása magyar nyelvű

szövegben, Master’s thesis, Budapest University of Technology and Economics.

Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufiş, D. & Varga, D.

(2006), The JRC-Acquis: A multilingual aligned parallel corpus with 20+ languages, in

‘Proceedings of the 5th International Conference on Language Resources and Evaluation

(LREC’2006)’, Genoa, Italy.

Sutton, C. & McCallum, A. (2011), ‘An Introduction to Conditional Random Fields’, Foun-

dations and Trends in Machine Learning . To appear.

148

Szarvas, G., Farkas, R., Felföldi, L., Kocsor, A. & Csirik, J. (2006), A highly accurate Named

Entity corpus for Hungarian, in ‘Proceedings of International Conference on Language

Resources and Evaluation’.

Szarvas, G., Farkas, R. & Kocsor, A. (2006), A multilingual named entity recognition system

using boosting and C4.5 decision tree learning algorithms, in ‘Proceedings of the 9th

international conference on Discovery Science’, DS’06, Springer-Verlag, Berlin, Heidel-

berg, pp. 267–278.

Szeredi, D. (2009), Functional phonological analysis of the Hungarian vowel system, Master’s

thesis, Eötvös Loránd University, Theoretical Linguistics.

Talvensaari, T. (2008), Comparable Corpora in Cross-language Information Retrieval, Julka-

isusarja A, University of Tampere, Department of Computer Sciences.

Tiedemann, J. (2002), Uplug - a modular corpus tool for parallel corpora, in L. Borin,

ed., ‘Parallel Corpora, Parallel Worlds’, Rodopi, Amsterdam, New York, pp. 181–197.

Proceedings of the Symposium on Parallel Corpora, Department of Linguistics, Uppsala

University, Sweden, 1999.

Tiedemann, J. (2009), News from OPUS – A Collection of Multilingual Parallel Corpora with

Tools and Interfaces, in N. Nicolov, G. Angelova & R. Mitkov, eds, ‘Recent Advances

in Natural Language Processing V’, Vol. 309 of Current Issues in Linguistic Theory,

John Benjamins, Amsterdam & Philadelphia, pp. 227–248.

Tiedemann, J. & Nygaard, L. (2004), The opus corpus - parallel and free, in ‘Proceedings of

LREC’04’, Vol. IV, Lisbon, pp. 1183–1186.

Tjong Kim Sang, E. F. & Buchholz, S. (2000), Introduction to the conll-2000 shared task:

chunking, in ‘Proceedings of the 2nd workshop on Learning language in logic and the

4th conference on Computational natural language learning - Volume 7’, ConLL ’00,

Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 127–132.

149

Tjong Kim Sang, E. F. & De Meulder, F. (2003), Introduction to the CoNLL-2003 shared

task: language-independent named entity recognition, in ‘Proceedings of the seventh

conference on Natural language learning at HLT-NAACL 2003 - Volume 4’, CONLL

’03, Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 142–147.

Toral, A., Poch, M., Thurmair, G. & Pecina, P. (2012), Efficiency-based evaluation of align-

ers for industrial applications, in ‘Proceedings of the 15th Annual Conference of the

European Associtation for Machine Translation’, European Association for Machine

Translation, Trento, Italy.

Tóth, K., Farkas, R. & Kocsor, A. (2008), ‘Sentence alignment of hungarian-english parallel

corpora using a hybrid algorithm’, Acta Cybern. 18(3), 463–478.

Toutanova, K., Klein, D., Manning, C. & Singer, Y. (2003), Feature-rich part-of-speech

tagging with a cyclic dependency network, in ‘Proceedings of HLT-NAACL’, pp. 252–

259.

Trón, V., Gyepesi, G., Halácsy, P., Kornai, A., Németh, L. & Varga, D. (2005), Hunmorph:

open source word analysis, in ‘Proceedings of the ACL 2005 Workshop on Software’.

Trón, V., Halácsy, P., Rebrus, P., Rung, A., Vajda, P. & Simon, E. (2006), Morphdb.hu:

Hungarian lexical database and morphological grammar, in ‘Proceedings of LREC 2006’,

pp. 1670–1673.

Tufiş, D., Dienes, P., Oravecz, C. & Váradi, T. (2000), Principled hidden tagset design for

tiered tagging of Hungarian, in ‘Proceedings of the Second International Conference on

Language Resources and Evaluation’.

Turchi, M., Flaounas, I., Ali, O., Bie, T., Snowsill, T. & Cristianini, N. (2009), Found in

Translation, in ‘Proceedings of the European Conference on Machine Learning and

Knowledge Discovery in Databases: Part II’, ECML PKDD ’09, Springer-Verlag, Berlin,

Heidelberg, pp. 746–749.

150

Váradi, T. (2002), The Hungarian National Corpus, in ‘Proceedings of the Third Interna-

tional Conference on Language Resources and Evaluation’, Las Palmas, pp. 385–389.

Váradi, T. (2003), Shallow parsing of hungarian business news, in ‘Proceedings of Workshop

on Shallow Processing of Large Corpora, March 27 (SProLaC03)’, Lancaster, UK.

Váradi, T. & Gábor, K. (2004), A magyar intex fejlesztéséről, in Z. Alexin & D. Csendes, eds,

‘II. Magyar Számı́tógépes Nyelvészeti Konferencia’, Szegedi Tudományegyetem, Szeged,

pp. 3–10.

Varga, D., Németh, L., Halácsy, P., Kornai, A., Trón, V. & Nagy, V. (2005), Parallel cor-

pora for medium density languages, in ‘Proceedings of the Recent Advances in Natural

Language Processing 2005 Conference’, Borovets. Bulgaria, pp. 590–596.

Varga, D. & Simon, E. (2006), Magyar nyelvű tulajdonnév-felismerés maximum entrópia

módszerrel, in Z. Alexin & D. Csendes, eds, ‘IV. Magyar Számı́tógépes Nyelvészeti

Konferencia’, Szegedi Tudományegyetem, Szeged, pp. 32–38.

Varga, D. & Simon, E. (2007), ‘Hungarian named entity recognition with a maximum entropy

approach’, Acta Cybern. 18(2), 293–301.

Voutilainen, A. (1993), Nptool, a detector of english noun phrases, in ‘Proceedings of the

Workshop on Very Large Corpora’, pp. 48–57.

Waldenfels, R. v. (2011), Recent Developments in Parasol: Breadth for Depth and Xslt Based

Web Concordancing with Cwb, in ‘Proceedings of Slovko 2011, Modra, Slovakia, 20–21

October 2011’, pp. 156–162.

Yu, Q., Max, A. & Yvon, F. (2012), Aligning Bilingual Literary Works: a Pilot Study, in

‘Proceedings of the NAACL-HLT 2012 Workshop on Computational Linguistics for

Literature’, ACL, Montréal, Canada, pp. 36–44.

151

Zhou, G. & Su, J. (2002), Named entity recognition using an HMM-based chunk tagger, in

‘Proceedings of the 40th Annual Meeting on Association for Computational Linguistics’,

ACL ’02, Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 473–

480.

Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J. (1997), ‘Algorithm 778: L-BFGS-B: Fortran

subroutines for large-scale bound-constrained optimization’, ACM Trans. Math. Softw.

23(4), 550–560.

Zséder, A., Recski, G., Varga, D. & Kornai, A. (2012), Rapid creation of large-scale corpora

and frequency dictionaries, in ‘Proceedings of the Eight International Conference on

Language Resources and Evaluation (LREC’12)’, European Language Resources Asso-

ciation (ELRA), Istanbul, Turkey.

Zsibrita, J., Nagy, I. & Farkas, R. (2009), Magyar nyelvi elemző modulok az UIMA keretrend-

szerhez, in ‘VI. Magyar Számı́tógépes Nyelvészeti Konferencia. Szeged’, pp. 394–395.

Summary

The results presented in this thesis fall in three major categories: (1) Natural language

processing (NLP) software components. (2) Language resources created by the software,

typically (but not always) for Hungarian. (3) Any further research uses the software and the

LRs have been put to.

The first three chapters cover no new material. Chapter 4 presents a class of systems solv-

ing the task of morphological disambiguation for Hungarian. Our results show that purely

statistical systems can be effectively combined with rule-based morphological analysis, with

a robust treatment of out of vocabulary words. We then present our morphologically disam-

biguated Hungarian webcorpus and frequency dictionary, and a list of applications in diverse

fields. Chapter 5 presents a state-of-the-art Hungarian named entity recognition system em-

ploying maximum entropy modeling with a large feature set relying heavily on character

n-gram based features. We highlight some applications of our system. Chapter 6 presents

a state-of-the-art noun phrase chunking system for Hungarian. Chapter 7 presents our al-

gorithms solving the task of sentence alignment. They are distinguished from alternatives

mainly by performing, in the critical range of interest, an order of magnitude faster, without

sacrificing accuracy. We present a long list of Hungarian and international corpus creation

efforts and other applications of our tools, detailing those where the author was a partici-

pant. Chapter 8 documents a framework that integrates all our aforementioned NLP tools,

and proceeds to present our bitext query service based on this framework. The service is a

web-based ‘crowdsourcing’ application with two interconnected goals: first, it is a tool for

human translators for finding translations of phrases in context. Second, it is a vehicle for

the semi-manual collection and fully manual validation of parallel corpus data.

152

Összefoglaló

A disszertációban ismertetett eredmények három csoportba sorolhatók: (1) Nyelvtechnológiai

szoftvereszközök. (2) Nyelvi erőforrások (korpuszok), amelyeket a fenti eszközök

felhasználásával előálĺıtottunk, magyar és más nyelvekre. (3) Kutatási eredmények, amelyek

ezen eszközök és nyelvi erőforrások kiaknázására épülnek.

Az első három fejezet nem tartalmaz új eredményeket. A 4. Fejezetben olyan eszközöket

mutatunk be, amelyek magyar nyelvre magas pontossággal oldják meg a morfológiai

egyértelműśıtés feladatát. Eredményeink megmutatják, hogy statisztikai alapú rendszerek

eredményesen kombinálhatók szabályalapú morfológiai elemzéssel, a szótáron ḱıvüli szavak

robusztus kezelése mellett. Ezután bemutatjuk morfológiailag egyértelműśıtett magyar

webkorpuszunkat és gyakorisági szótárunkat, és ezek alkalmazásait több tudományterületen.

Az 5. Fejezetben bemutatjuk magyar nyelvű tulajdonnév-felismerő rendszerünket, amely

maximum entrópia tanulást alkalmaz nagyméretű jegyhalmazokon. A 6. Fejezetben

bemutatjuk state-of-the-art főnévi csoport azonośıtó rendszerünket. A 7. Fejezetben

bemutatjuk mondat- párhuzamośıtó rendszerünket, amelyet elsősorban nagyobb feldolgozási

sebessége emel ki a hasonló rendszerek sorából. Ezután nagyszámú magyar és nemzetközi

korpuszéṕıtési projektet és egyéb alkalmazást tekintünk át, amelyek rendszerünkre épültek,

és részletesen is bemutatjuk azokat, amelyekben a szerző közreműködőként részt vett.

A 8. Fejezetben elsőként többnyelvű adatok gépi feldolgozását végző keretrendszerünket

mutatjuk be, amely integrálja a korábbi fejezetek eredményeit. Ezután bemutatjuk erre

épülő párhuzamos szöveg kereső rendszerünket, amely egy web-alapú ‘crowdsourcing’

alkalmazás, két, egymással összefonódó céllal: egyrészt a ford́ıtók munkáját megkönnýıtő

(ford́ıtástámogató) eszköz, másrészt lehetőséget ad párhuzamos korpuszok félig automatizált

éṕıtésére és teljesen manuális validálására.

153

