
Combinatorial – Compositional
Representations

Viktor Gyenes

Ph.D. Dissertation

Eötvös Loránd University

Faculty of Informatics

Department of Information Systems

Supervisor: Prof. habil. András Lőrincz

Graduate School of Computer Science
János Demetrovics D.Sc.

Information Systems Program
András Benczúr D.Sc.

Budapest, 2011.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/286541976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Contents

1 Introduction 1

1.1 Organization of the Thesis . 4

1.2 Notations . 5

I Overview of Used Paradigms 6

2 Neural Network Models 7

2.1 Feedforward Networks . 7

2.1.1 Feedforward Networks with One Internal Layer 8

2.2 Recurrent Neural Networks . 9

2.2.1 Recurrent Networks with One Internal Layer 9

2.3 Reconstruction Networks . 10

2.3.1 Finding the Representation of an Input 10

2.3.2 Learning Basis Vectors . 15

2.4 Summary of Neural Network Models 15

3 Reinforcement Learning 16

3.1 Basic Concepts And Learning Methods 17

3.1.1 Markov Decision Processes . 17

3.1.2 Value Function Based Techniques 18

3.1.3 Explicit Policy Search . 23

3.2 Value Function Approximation . 24

3.2.1 General Approximation Method 25

3.2.2 Linear Function Approximation 26

iii

3.3 Summary of Reinforcement Learning 30

II Compositionality of Language and Thought 31

4 Compositional Language Games 32

4.1 Overview of Related Work . 33

4.2 The Instability of Co-learning . 35

4.2.1 A Simple Communication Scenario 35

4.2.2 Modeling Each Other . 37

4.2.3 Experimental Results . 38

4.3 Co-learning with Reconstruction Networks 40

4.3.1 Network Architecture . 41

4.3.2 Computer Simulations . 43

4.4 Summary of Compositional Language Games 48

III Compositionality in Reinforcement Learning 49

5 Reinforcement Learning with Echo State Networks 50

5.1 Overview of Related Methods . 50

5.2 Temporally Extended Linear Approximation 51

5.2.1 Theoretical Considerations . 52

5.2.2 Experimental Results . 55

5.3 Summary of Reinforcement Learning with ESNs 57

6 Factored Reinforcement Learning 58

6.1 Factored Markov Decision Processes 58

6.1.1 Overview of Related Work . 60

6.1.2 Features for Linear Function Approximation 61

6.2 Factorization and State Space Partitioning 64

6.2.1 Generalization to Continuous Variables 66

6.2.2 Insights to Factored Methods via Auxiliary MDPs 68

6.3 Theoretical Results . 73

iv

6.4 Computer Simulations . 77

6.4.1 A Prototypical Example: SysAdmin 77

6.4.2 A More Complex Example: FoodWorld 79

6.5 Summary of Factored Reinforcement Learning 86

IV Compositionality in Function Approximation 87

7 Function Approximation with Combination Features 88

7.1 From Regression Tree Building to Combination Feature Selection . . 88

7.1.1 Structure Learning in Factored Reinforcement Learning 89

7.1.2 Mapping Regression Trees to Neural Networks 90

7.1.3 Related Work on Neural Networks 96

7.2 Combination Feature Selection . 97

7.2.1 Orthogonal Combination Features 98

7.2.2 Incremental Implicit Feature Orthogonalization 109

7.2.3 Ordering and Pruning Features 112

7.2.4 Experimental Results . 118

7.3 Summary of Function Approximation with Combination Features . . 128

Discussion and Outlook 129

Bibliography 131

v

Acknowledgements

When I began studying computer science, I was not aware of all the diverse possibil-

ities that I could use such knowledge for. Later, when I was introduced to the field

of Artificial Intelligence, I immediately knew that this was the area that really inter-

ested me, although I did not clearly know the reason. Once, during a conversation

about my work with an old friend having nothing to do with computer science, he

unintentionally pointed out the reason for me: to create artificial intelligence, one

must understand natural intelligence first. Indeed, I realized that my work is about

modeling cognition, understanding ourselves, and that is why I like it so much.

I am most thankful to my advisor, András Lőrincz for offering an opportunity for

me as an undergraduate student to become a member of his research group and for

introducing me to research in general, and to interesting areas such as neural networks

and reinforcement learning which bear a major importance in this thesis. Thanks for

the diversity of topics that I encountered during our work together, as they helped

broaden my view and led to many new ideas connecting various fields of machine

learning. I am deeply indebted to all the former and present members of the research

group: Bálint Takács, Bálint Gábor, Barnabás Póczos, Zoltán Szabó, Zsolt Palotai,

György Hévizi, Gábor Szirtes, Melinda Kiszlinger, Katalin Lázár, Ákos Bontovics,

Márton Hajnal, Balázs Szendrő, Zoltán Bárdosi, Gyula Vörös, Balázs Pintér, Gábor

Matuz, and especially to István Szita for all the help with math. Thank you all for

the friendly atmosphere, the fruitful discussions and your readiness to help.

I am also very grateful to Csilla Farkas for the opportunity to spend time at the

University of Columbia, letting me gain insights to a different scientific culture.

I owe my parents thanks for supporting me during my studies and for providing

a background that let me delve into science.

vi

Chapter 1

Introduction

Having divided to conquer,

We must reunite to rule
M. Jackson: Some Complexities in

Computer-Based Systems and Their

Implications for System Development

Machine learning is one of the most rapidly growing areas of computer science,

with the ambitious goal of modeling human cognition. However, since it is a relatively

young field, many details are unexplained yet. Machine learning methods often em-

ploy distributed or compositional representations, meaning that the representations

of inputs or states are divided into components that capture important aspects. The

exact definition of these components varies from method to method; different tasks

require different building blocks. Some methods aim at finding relevant components

– also called features – to represent a given task and reason about it by reuniting the

building blocks once again.

Probably the most prominent example of compositionality is language; the ba-

sic components of language are words that can be combined in many ways to form

sentences. Compositionality in languages presumably reflects compositionality in our

way of thinking, our mental representations. Therefore, it is natural, that composi-

tional representations are utilized by many areas of computer science, from logic based

reasoning through machine learning to linguistic modeling. But why are they such a

natural and effective way of representation? What is it exactly that compositionality

1

can offer to machine learning and how can it be exploited? How can algorithms build

on compositional representations, and how can they learn such representations? How

do humans learn to represent a given task? For example, how does a chess player

learn where to focus its attention on the chessboard?

Often, when modeling human thinking on a higher level, rules of the form ‘if some

condition holds then it implies some action or utility’ are used. In such rules, the

condition is usually a conjunction of primitive assertions, while separate rules may

realize disjunctions of primitive assertions. One such rule in chess could be ‘if the

enemy can take one of my pieces and I cannot take a piece of his in return then it is

disadvantageous for me’.

The basic components used in this thesis to represent knowledge about a task are

analogous to such rules, building on combinations of state variables used to describe

the task. This work aims to investigate the properties and utility of such components

and representations built upon them.

The curse of dimensionality is one of the main difficulties in machine learning,

causing many problems to become combinatorial – the number of states in the problem

scales exponentially with the number of components (dimensions). This entails that

solution algorithms not utilizing compositionality will inherently become exponential,

which is unacceptably slow and resource intensive. However, since components are

exactly the cause of combinatoriality, it should be natural to utilize compositionality

to avoid the curse of dimensionality.

Combinatoriality versus Compositionality

Throughout this thesis, combinatoriality and compositionality mean two opposing,

yet strongly related concepts. By compositional, we usually think of something that

can be composed or inferred from its components. For example, the meaning of a

sentence can be more or less inferred from the meaning of the words contained in it,

although their order and exact grammatical relations may alter the precise meaning.

As another example, a linear function in mathematics is one that can be expressed as

the weighted sum of component functions. In both examples, a larger, more complex

unit can be decomposed into smaller, more simple ones.

2

On the other hand, combinatorial usually means that such a decomposition cannot

be done. For example, combinatorial optimization in mathematics deals with prob-

lems where states, formulated as combinations of variables, need to be evaluated and

it might happen that all possible combinations must be evaluated to find an optimum,

since slightly different combinations may have very different values associated.

However, as will be argued in this thesis, these two opposing concepts complement

each other nicely. Put simply, if we extract the inherent combinatoriality from a prob-

lem, what remains is compositional. In other words, combinatoriality in a problem

refers to context dependence and compositionality refers to context independence. The

name combinatoriality is used here to emphasize that it is based on variable combina-

tions. Returning to our example in language, if we learn what combinations of words

have special meaning (context dependent part), then we can infer the rest from the

meaning of the parts, that is, utilizing compositionality (context independent part).

The basic mathematical tool to formalize ideas will be the linear approximation of

functions over the Cartesian product of state variables, using variable combinations

as component functions. If we translate the above idea of extracting combinatoriality

from a task to this domain, we get: if we find out which combinations of state

variables have special values associated with, we may approximate the function as

the sum of values associated with these combinations – the extracted components.

This philosophy is reflected in the basic learning architecture and methods developed

in this thesis.

3

1.1 Organization of the Thesis

The thesis follows the line of thought sketched above. Starting from the proper-

ties of compositionality in languages, it investigates the utility of compositionality in

decision processes, resulting in a model building on combinatoriality and composition-

ality. Finally, algorithms are developed for the automatic extraction of the inherent

combinatoriality in problems.

Part I provides an overview of the paradigms used thought the thesis. Chapter

2 reviews various neural network models with emphasis on their structural similar-

ities in employing distributed representations. Chapter 3 provides an introduction

to reinforcement learning, a learning framework for modeling goal oriented behavior,

tailored towards methods utilizing function approximation.

Part II explores the usage of compositional representations in language devel-

opment. Chapter 4 argues that compositional representations favor compositional

languages when multiple learning agents develop a common lexicon. Advantages of

compositional representations from the viewpoint of co-learning are also explored.

Part III provides an introduction to factored reinforcement learning, a branch

of reinforcement learning that utilizes compositional representations. Temporal dif-

ference learning, a popular reinforcement learning method is investigated utilizing

function approximation. Chapter 5 deals with a recurrent neural network method

for reinforcement learning. In Chapter 6, factored reinforcement learning is cast as

a function approximation method utilizing features based on state variable combina-

tions, and the convergence of various methods is proven, including factored temporal

difference learning.

Part IV builds on the ideas and architectures from Part III. In Chapter 7, starting

from regression tree building methods to find relevant variable combinations, utilizing

a mapping to polynomial neural networks, algorithms are devised to generate variable-

combination based features for linear function approximation. The devised methods

are compared against regression tree methods in terms of the extracted features.

4

1.2 Notations

To avoid confusion, some notational conventions must be fixed. Scalars will be de-

noted by non-bold letters both from the English and Greek alphabets, for example a,

x, or α, δ. Vectors will be denoted by bold letters of the same alphabets, for example

u, v, while matrices will be denoted by bold capital letters, for example A, Φ.

Depending on the context, subscripts of vectors and matrices will be used in an

overloaded fashion to simplify local notation. For example vi may mean the ith

component of a vector or it may mean the ith instance in a set or sequence of vectors.

For matrices, Ai or Ai may mean the ith row or the ith column of the matrix as

needed. The local context will always clarify the actual notation. Ai,j will always

mean the entry in the ith row and jth column. Vectors and matrices may also be

indexed by an index set, for example AΓ, may mean those columns of the matrix A,

whose indices are contained in the index set Γ.

Sets or sequences of scalars or vectors will be denoted as {xi}n
i=1 meaning that the

elements of the set or sequence are indexed by i running from 1 to n. An infinite set

or sequence is denoted {xt}t=0,..., where t may index time steps.

Norms of vectors and matrices will be denoted as ‖A‖p, where the subscript p

identifies the exact Lp norm used. In this thesis, only values p = 1, 2,∞ are used,

p = 2 denoting the Eucledian norm, and p = ∞ denoting the max-norm (in case of

finite vectors). When the subscript p is omitted, the Eucledian norm is meant.

The interval notation [1..n] will be used to denote the integer range from 1 to n,

and i ∈ [1..n] will serve as a shorthand for i = 1, . . . , n.

5

Part I

Overview of Used Paradigms

This part overviews computational frameworks employed throughout this thesis.

These models serve as a starting point for the developments of the thesis; subsequent

chapters will refer to the models introduced here.

The first framework introduced is neural networks. Many function approximation

architectures can be cast as neural networks. Our main concern here is linear function

approximation on some nonlinear features.

Second, reinforcement learning, a framework for modeling decision making and

goal oriented behavior is introduced briefly. Special emphasis is put on reviewing

methods building on linear function approximation.

This overview is not meant to be a complete overview of known models or methods,

it only details models important for the upcoming chapters.

6

Chapter 2

Neural Network Models

Neural networks [90] [41] are important models in machine learning since they more or

less explicitly aim at modeling learning as the brain does it. They are often related to

feature extraction, that is, the formation of some representation. As this is the topic

of this thesis, I will review some models (feedforward, recurrent and reconstruction

networks) that bear similarities in this regard, and which will serve as baseline for

developing my methods.

2.1 Feedforward Networks

Feedforward networks are one of the most popular neural network models, that can

be used for function approximation, often identified as supervised learning, trained

with input-output pairs. Perceptrons [91] are the simplest, with no internal layer,

performing a simple linear transformation of the inputs, hence they can only learn

linear functions or linearly separable classification problems. Slightly more complex

feedforward networks are those with one (or more) internal layer. They may also be

thought of as a perceptron acting on some non-linear transformation of inputs. This

non-linear preprocessing (often called feature extraction) lends them the power of

universal approximation. There is a rich body of literature on training multilayered

feedforward networks, the most well known being the backpropagation algorithm for

multilayer perceptrons [90]. Approaches relevant from the viewpoint of this thesis

will be reviewed in the appropriate chapters.

7

2.1.1 Feedforward Networks with One Internal Layer

Let d be the dimension of inputs. Suppose that given are m input-output samples

{(xi, yi)}m
i=1, xi ∈ Rd, yi ∈ R. Furthermore, suppose that the inputs are transformed

to an n dimensional feature space. Let φ : Rd → Rn be the feature function, φ =

(φ1, . . . , φn), where the {φj(x)}n
j=1 denote the features for input x, each φj : Rd → R

being a non-linear function. The features can be summarized in a feature matrix Φ ∈
Rm×n, where Φij = φj(xi). The outputs are approximated as the linear combination

of features, y ≈ Φa, with coefficients a ∈ Rn. An appropriate set of output coefficients

is most often found by linear least squares fitting, as will be detailed in Section 2.3.1.

The resulting solution can be written as a = Φ+y, where Φ+ is the Moore-Penrose

pseudo inverse of Φ. There are various types of networks depending on the nature of

the feature function φ.

Multi-Layer Perceptrons [90] employ a linear transformation followed by component-

wise non-linearity:

φMLP
i (x) = σ(wT

i x) , (2.1)

where wi ∈ Rd and σ : R → R is a sigmoidal nonlinear function.

Radial Basis Function networks [76] employ Gaussian feature functions

φRBF
i (x) = exp(−βi‖x − ci‖2) , (2.2)

where the parameters ci ∈ Rn and βi ∈ R correspond to the center and radius of the

features repsectively.

Polynomial networks [54] define features as monomials of the input, for example

for d = 1 the features may be defined as

φPoly
i (x) = x(i−1) , (2.3)

and for d > 1, the features become multivariate monomials of some degrees of the

input variables. The actual degrees are the parameters of the feature functions.

It is known, that such an architecture is capable of approximating a function

arbitrarily, given that the number of features n is sufficiently large [51].

8

2.2 Recurrent Neural Networks

Recurrent networks add more complexity to feedforward networks by introducing

connections within a layer of units. Some models employ only a single interconnected

layer (e.g. Hopfield networks [90], Boltzmann machines [1]), others have internal

layers as well (e.g. Elman networks [27]). The model we are interested in adds re-

current connections to the internal layer of a feedforward network, making the features

become temporal as well. Such models are good candidates for time series prediction.

2.2.1 Recurrent Networks with One Internal Layer

Formally, the model becomes the following. Let {(xt, yt)}t=0,... xt ∈ Rd, yt ∈ R be a

series of input-output samples. Let our approximation in time t be defined as follows:

ut = σ(Fut−1 + Gxt) (2.4)

yt ≈ aTut , (2.5)

where ut ∈ Rn denotes the internal state of the network at time t, representing the

spatio-temporal features extracted from the inputs up to time t. Feature extraction

is realized through the linear transformations G ∈ Rd×n and F ∈ Rn×n transforming

the current input xt and the previous internal state ut−1, passing them through a

component-wise nonlinearity σ (typically a sigmoidal function). Outputs are approx-

imated as a linear mixture of the features. Note, that leaving out the recurrent term

Fut−1, reduces the model to the feedforward single layer perceptron (2.1).

Echo-State Networks

Echo-State Networks (ESN) [55] are recurrent neural networks employing the above

defined model. Their speciality lies in their training method. ESNs use a predefined

number of features (n) and random generated F and G matrices for feature extraction.

The output weights a are then trained by linear least-squares fitting. Note, that for a

set of m inputs, a feature matrix Φ ∈ Rm×n can be generated by populating the tth

row of Φ with ut. Then, the coefficients can be calculated as a = Φ+y. It has been

empirically found that these kind of networks can learn complex time-series provided

that the internal layer is sufficiently high [56].

9

2.3 Reconstruction Networks

Reconstruction networks use one of the simplest models for unsupervised learning.

This model is often used in signal processing to reconstruct an unknown signal (input

vector) from a set of basis vectors by means of linear combination [53] [66] [67].

Formally, let X ∈ Rd×m be a matrix containing m samples of dimension d as its

columns vectors. We wish to approximate each sample as the linear combination

of n basis vectors: X ≈ ΦA, where the columns of Φ ∈ Rd×n contain the n basis

vectors of dimension d, and the entries of A ∈ Rn×m are the coefficients of the

linear combinations. The basis vectors are also called features. The approximation

(reconstruction) of an individual sample x ∈ Rd then becomes x ≈ Φa, where the

basis coefficients a ∈ Rn is called the representation of x.

There are two main tasks associated with reconstruction networks. The first is to

find the representation of an input for a fixed set of basis vectors. The second is to

learn a set of basis vectors that can be used to represent a set of inputs according to

some criteria. In the following, these two tasks will be discussed more in detail.

2.3.1 Finding the Representation of an Input

Given an input x ∈ Rd, and a set of basis vectors Φ ∈ Rd×n, the task is to determine

coefficients a ∈ Rn such that x ≈ Φa. What solution is good depends on the specific

application, and thus there are several different methods to solve this task.

Least Squares Solution

The simplest objective to solve for a is to minimize the cost function

J(a) =
1

2
‖x − Φa‖2

2 , (2.6)

which means minimizing the sum of squared errors. Since J is a quadratic function

of a, it is convex, and hence it has a global optimum where the gradient of J with

respect to a becomes 0. It is easily seen that

∇J(a) = ΦT (Φa − x) = 0 (2.7)

ΦTΦa = ΦTx (2.8)

10

from which we get the so called pseudo inverse solution as

a = (ΦTΦ)−1ΦTx = Φ+x , (2.9)

if (ΦTΦ) is invertible (Φ is of full column rank), where Φ+ is the Moore-Penrose

pseudo-inverse of Φ. The vector equation (2.8) is called the normal equations related

to the system of equations x = Φa. The pseudo inverse also exists when Φ is not

of full rank, in this case there are infinitely many optimal solutions, and the pseudo-

inverse solution is defined to be the one with minimal Eucledian norm.

The least squares solution can also be calculated iteratively by gradient descent.

Let subscript k index the number of iterations. Then, starting from a0 = 0, let

gk = −∇J(ak) = ΦT (x − Φak), and let

ak+1 := ak + αkgk , (2.10)

where αk is a step size parameter, whose optimal value can be chosen analytically in

case of quadratic functions:

αk =
gT

k gk

gT
k ΦTΦgk

. (2.11)

The gradient solution is useful when the matrix Φ is too large to be inverted

explicitly. However, the convergence of the iteration can be quite slow. Conjugate

gradient method may be applied to speed up convergence.

Orthogonal Matching Pursuit and Orthogonal Least Squares

Another interesting solution technique is the Matching Pursuit algorithm [74] and its

orthogonal version [81]. This method aims at iteratively refining one coefficient in

order to most reduce the error of the reconstruction. Although Orthogonal Matching

Pursuit does not precisely achieve this aim, a related method, Orthogonal Least

Squares does.

The Matching Pursuit algorithm maintains a representation of the input x in the

form x = x̂k+ek, where x̂k = Φak is the kth approximation and ek = x−x̂k = x−Φak

is the corresponding residual (error). At each iteration the algorithm updates a basis

coefficient that is most correlated with the error, measured by their scalar product.

Algorithm 1 details Matching Pursuit. The index k is dropped for better legibility.

Φi denotes the ith column of Φ, and i also indexes the components of vectors.

11

Algorithm 1 : Matching Pursuit
input: Φ ∈ Rd×n, ‖Φi‖2 = 1 ∀i - feature matrix

x ∈ Rd - input to reconstruct
output: a ∈ Rn - basis coefficients
1: a := 0 - initialize coefficients
2: e := x - initialize error
3: for each iteration do
4: i := arg maxn

j=1 |〈Φj, e〉| - select basis most correlated with error
5: ai := ai + 〈Φi, e〉 - update basis coefficient
6: ei := ei − 〈Φi, e〉 - update error
7: end for

Although the coefficients converge to the least-squares solution, this convergence

can also be rather slow. The orthogonal version of the algorithm [81] improves this,

by implicitly orthogonalizing the bases and computing the optimal coefficients for the

selected set of basis vectors. Let Γk denote the index set of basis vectors selected

up to the kth iteration. The algorithm maintains G−1
k = (ΦT

Γk
ΦΓk

)−1 by updating

it incrementally using the block matrix inversion lemma as new basis vectors are

selected. This inverse Gramian is used to adjusts the coefficients of the previously

selected columns to yield the least-squares solution using the selected columns, as

shown in Algorithm 2. After n iterations, when all columns have been selected, the

algorithms terminates with the least squares solution.

Orthogonal Least Squares [19] (also known as forward regression, forward selec-

tion or stepwise regression) differs only slightly from Orthogonal Matching Pursuit

in how it selects the next basis vector [9] on line 5. In Orthogonal Least Squares, all

not-yet-selected basis vectors are orthogonalized to the selected ones before selection,

as opposed to Algorithm 2, in which only the newly selected basis vector is orthogo-

nalized to the previously selected ones after it has been selected. This modification

makes the algorithm select the basis vector that decreases the error most, as it re-

moves its correlation with previously selected ones, although this is achieved at the

cost of pre-orthogonalization in each step.

A more efficient implementation both for OMP and OLS is based on the in-

cremental QR decomposition of the feature matrix [9], utilizing the Gram-Schmidt

procedure. This solution will be used and detailed in Chapter 7.

12

Algorithm 2 : Orthogonal Matching Pursuit
input: Φ ∈ Rd×n, ‖Φi‖2 = 1 ∀i - feature matrix

x ∈ Rd - input to reconstruct
output: a ∈ Rn - basis coefficients
1: a := 0 - initialize coefficients
2: e := x - initialize error
3: Γ := ∅ - no bases selected initially
4: for each iteration k = 1, . . . , n do
5: i := arg maxj /∈Γ |〈Φj, e〉| - select basis most correlated with error
6: let b := (ΦT

ΓΦΓ)−1ΦT
ΓΦi and γ := Φi − ΦΓb - least squares estimate

7: ai := ‖γ‖−2 - set new basis coefficient
8: aj := aj + ‖γ‖−2bj ∀j ∈ Γ - adjust previous basis coefficients
9: e := e − Φa - update error

10: Γ := Γ ∪ i - update set of selected bases
11: update G−1

k = (ΦT
ΓΦΓ)−1 using b - matrix inversion lemma

12: end for

Sparse Representation by Cross-Entropy Method

In some applications, it is not only the sum of squared errors that should be mini-

mized, but also the vector of coefficients should bear some properties. For example,

sparse reconstruction with a possibly overcomplete basis (n > d) forces only a fraction

of the coefficients to be non-zero [67]. This may be achieved by augmenting the cost

function with a penalty term for the coefficients:

J̃(a) =
1

2
‖x − Φa‖2

2 + λ‖a‖1 , (2.12)

where λ > 0 is a tradeoff parameter between sparsity and the exactness of the recon-

struction. Although there exist efficient linear programming techniques to solve such

problems [15], I do not consider them here.

Instead, I deal with a special case when binary coefficients are required. In case

of binary coefficients, the task becomes that of combinatorial optimization: find the

combination of basis vectors (select a subset of the columns of Φ with coefficient 1)

that results in the least reconstruction error. Although there are many alternatives to

tackle combinatorial optimization problems, I will consider the Cross-Entropy method

[93], which is an elegant and generic technique to iteratively find the optimal solution

with high probability.

13

The Cross-Entropy method maintains a parameterized probability distribution,

from which it iteratively randomly generates solution samples, evaluates them ac-

cording to the cost function, and continuously updates the probability distribution

until convergence. The algorithm can be fit into the reconstruction network frame.

The multi-dimensional Bernoulli distribution can be used as the probability density

function for generating random samples of d-dimensional binary vectors. The cost

function is the reconstruction error. The original batch version of the Cross-Entropy

method generates a population of random samples, and chooses the best ρ (= 5)

percent, which is used to update the density function. The method can be modified

to make it incremental: the reconstruction error is modeled as a Gaussian variable

whose mean and standard deviation is approximated. The distribution is updated if

the error falls into the best ρ percent of the most recent samples. The incremental

method in Algorithm 3 finds a∗ = arg mina ‖ x − Φa ‖2
2 for binary coefficients a.

Algorithm 3 : Cross-Entropy reconstruction method
input: Φ ∈ Rd×n, x ∈ Rd - assume non-negative entries

α, β ∈ [0, 1] - update rates
ρ = 1.648 - 95% percentile of normal distribution

output: a∗ = arg mina ‖x − Φa‖2, a∗ ∈ {0, 1}n

1: μ := 0 - initialize mean error
2: σ2 := 0 - initialize standard deviation of errors
3: p := ΦT x

max(ΦT x)
- initial probability distribution

4: emin := ∞ - initial least error
5: repeat
6: generate random sample a from p

7: e :=‖ x − Φa ‖2
2 - calculate reconstruction error

8: μ := (1 − β)μ + βe - update mean error
9: σ2 := (1 − β)σ2 + β(μ − e)2 - update standard deviation of errors

10: if e < μ − ρσ2 then - error falls to the best 5%
11: p := (1 − α)p + αa - update probability distribution
12: end if
13: if e < emin then
14: emin := e - update current minimum
15: a∗ := a - update current best solution
16: end if
17: until convergence or a fixed number of iterations

14

2.3.2 Learning Basis Vectors

Learning the basis vectors Φ along with coefficients A for a given set of inputs X is

one of the most challenging tasks of machine learning, for which various approaches

exist. The most well known ones include Principal Component Analysis (PCA), Inde-

pendent Component Analysis (ICA) [53], Non-negative Matrix Factorization (NMF)

[66], sparse coding [67], low complexity coding [48], just to mention a few. Most

methods suppose that the number of features n is a-priory known, although some can

be used to estimate it, for example using only the first n principal components.

A straightforward method to learn Φ and A simultaneously would be the following.

For a fixed n, start from an arbitrary Φ0. In the kth iteration, compute Ak =

arg minA
1
2
‖X − ΦkA‖2

2. Then compute Φk+1 = arg minΦ
1
2
‖X − ΦAk‖2

2, that is,

alternate between least-squares updates of Φ and A. Even if this method would

converge, the resulting basis vectors might not be useful, since the representations

of the inputs X would not necessarily be sparse, or related to some structure in X.

Nonetheless, this example illustrates some sort of symmetry in the roles of features

and representation coefficients.

2.4 Summary of Neural Network Models

A structural similarity of all the above described models should be evident: they

employ linear least squares fitting on some nonlinear features. The nonlinear features

are usually generated in relatively simple ways, such as component-wise sigmoidal

transformations after a linear transformation, Gaussian basis functions or polynomial

bases. In case of reconstruction networks, the nonlinearity stems from the calculation

of representations by least squares fitting. It is also seen, that these moderately

complex architectures are capable of universal function approximation.

For these reasons, I have chosen this general architecture of linear least squares

fitting on nonlinear features to be my core model. It is this architecture that the motto

of the thesis refers to: the extraction of features divides the input space (partitions,

as seen later), which are then reunited by a sum weighted by the coefficients derived

from linear fitting to finally approximate the output.

15

Chapter 3

Reinforcement Learning

This chapter summarizes basic reinforcement learning methods that will be used

throughout this thesis. It is not meant to be a detailed summary of known methods;

instead, it focuses on value function based techniques and linear function approxima-

tion, which will be the starting point for methods developed in this thesis. Subsequent

chapters will build on this one when discussing the use of compositional representa-

tions in a goal oriented framework.

Reinforcement learning is a conceptually simple and mathematically well defined

framework for modeling goal oriented decision making problems. In reinforcement

learning, an agent is trained by providing positive and negative reinforcements that

tailor its behavior toward a goal. The agent repeatedly encounters states in which it

has to make decisions to choose actions that change its state. It receives rewards or

punishments for its actions, and aims to maximize its rewards on the long term.

In most popular reinforcement learning methods, the agent maintains a utility

function of states and actions that characterizes the long term utility of choosing

certain actions in certain states. Apart from simple, very small problems, the agent

needs to apply some form of function approximation to maintain the utility function.

This approximation should be based on relevant features of the states and actions to

become efficient. It is these goal related features that I aim to examine throughout

this thesis.

16

3.1 Basic Concepts And Learning Methods

Reinforcement learning [111] [8] is a form of sequential decision making with evaluative

feedback. Sequential decision making means that the agent must execute a sequence

of actions in order to reach its goal, and an action may influence the situation for a

later decision. By evaluative feedback we mean that after a decision, the agent receives

some feedback that tells how good the action was, but it is not told, what the correct

action would have been. These properties distinguish reinforcement learning from

other areas of artificial intelligence, like supervised learning, unsupervised learning or

planning. I will later discuss the relationship of reinforcement learning to supervised

learning as it plays an important role in this thesis.

A simple but powerful mathematical tool that models such decision making prob-

lems are Markov Decision Processes (MDPs). To remain mathematically tractable,

they make the simplifying assumption of Markovian decisions, meaning that decisions

do not depend on past states. In what follows, I will detail the properties and related

learning methods of MDPs. The formal framework presented in this section follows

the concepts and notations of [111].

3.1.1 Markov Decision Processes

A stationary, finite, discounted-reward MDP is characterized by a tuple (S,A, P, R, γ),

where S is the (finite) set of states the agent can be in, A is the (finite) set of actions

the agent can execute, P : S × A × S → [0, 1] is the transition probability model;

P (s, a, s′) is the probability that the agent arrives at state s′ when executing action

a in state s, R : S × A × S → R is the reward function; R(s, a, s′) being the reward

the agent receives after executing action a in state s and arriving to state s′, and

γ ∈ [0, 1] is the discount rate on future rewards.

At the beginning of the interaction with the environment, the agent is in state s0.

In time step t it is in state st, selects an action at and arrives to state st+1 depending

on the environment, and also receives a reward rt.

The decision function of the agent, called policy, maps a history of past states,

actions and rewards to actions. The simplifying assumption of Markov states, ensures

that state st summarizes all relevant information to make decision at; past information

17

is not required. Thus, a (deterministic) Markov policy maps states to actions. For

learning, however, it is useful to define policies stochastically, mapping states and

actions to probabilities of choosing them. Let π : S ×A → [0, 1] denote such a policy,

π(s, a) being the probability that the agent chooses action a in state s.

The goal of the agent is to act optimally with respect to some performance measure

derived from the rewards received. There are various possibilities to choose this

measure, the most popular being the expected discounted sum of future rewards:

Eπ

(∞∑
t=0

γtrt

)
. (3.1)

This measure is applicable for infinite decision making problems as well, and it also

takes future rewards into consideration, putting more emphasis on the near future.

Expectation must be considered since future rewards depend on the policy π, the

state transitions P and reward function R, but since the environment is usually fixed,

the subscripts P and R are omitted in Eπ.

3.1.2 Value Function Based Techniques

Value Functions and their Properties

Most popular reinforcement learning methods are based on defining a utility function

or value function for states and actions, reflecting the long term utility of being in a

state or choosing an action in a certain state. Based on Eq. (3.1), we may define

V π(s) := Eπ

(∞∑
t=0

γtrt

∣∣∣ s0 = s
)

, (3.2)

for all s ∈ S. This state value function expresses the expected value of the discounted

total reward collected when starting from state s. Note the dependence of the value

function on the policy. Similarly, an action value function expresses the long term

utility of choosing action a in state s. It can be defined as

Qπ(s, a) := Eπ

(∞∑
t=0

γtrt

∣∣∣ s0 = s, a0 = a
)

, (3.3)

for all s ∈ S and a ∈ A. These two functions are related to each other:

Qπ(s, a) =
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γV π(s)

)
(3.4)

V π(s) =
∑
a∈A

π(s, a)Qπ(s, a) (3.5)

18

An optimal policy π∗ is one that uniformly maximizes V π(s), i.e. V π∗
(s) ≥ V π(s)

for each policy π and state s.

Value functions satisfy the famous Bellman equations, which define the value of

states and actions recursively:

V π(s) =
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γV π(s′)

)
(3.6)

Qπ(s, a) =
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γ

∑
a′∈A

π(s′, a′)Qπ(s′, a′)
)

(3.7)

These equations form a system of linear equations, and it can be shown that they

have a unique solution.

Q functions render decision making very simple: the agent may choose the action

that has the largest utility in the current state. This means that if a good Q function

is known, the multi-step optimization problem reduces to a one-step optimization

problem. This is because the (action)-value function effectively summarizes future

rewards into a single value. Thus, an agent may choose its next action by maximizing

the Qπ function. This is called the greedy policy, with respect to Qπ. Of course, if

the agent choses a greedy action, it does not necessarily follow the policy π any more.

The greedy policy can be defined for arbitrary Q : S ×A → R function. Let

gQ(s) := arg max
a∈A

Q(s, a) , (3.8)

where ties are broken arbitrarily. Then, the (deterministic) greedy policy with respect

to Q can be defined as

πQ
greedy(s, a) =

⎧⎨
⎩ 1, if gQ(s) = a

0, otherwise

The policy improvement theorem (see [111] for details) states that the greedy policy

of π′ = πQπ

greedy is either better than π, i.e V π′
(s) ≥ V π(s) for all s ∈ S, or if equality

holds for all states then π itself is an optimal policy. This theorem is the basis for

proving the convergence of many value function based algorithms.

Let the optimal value function be defined as V ∗(s) = maxπ V π(s) for each s ∈ S,

and Q∗(s, a) = maxπ Qπ(s, a) for each s ∈ S and a ∈ A. The greedy policy with

respect to Q∗ will be an optimal policy, and its value function satisfies V ∗ ≡ V π∗ . As

19

a consequence,

V ∗(s) = max
a∈A

Q∗(s, a) (3.9)

Q∗(s, a) =
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γV ∗(s′)

)
(3.10)

for all s ∈ S and a ∈ A. Substituting into each other, we get the Bellman equations

for the optimal value functions:

V ∗(s) = max
a∈A

∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γV ∗(s′)

)
(3.11)

Q∗(s, a) =
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γ max

a′∈A
Q∗(s′, a′)

)
(3.12)

Although this system of equations is nonlinear, luckily, they have a unique solution.

Solution Methods

The first step towards solving MDPs based on value functions is policy evaluation,

that is, finding the state or action value function V π or Qπ of a policy. This may be

done by turning the Bellman equations into an iteration. For example, starting from

an arbitrary V0, let

Vk+1(s) :=
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γVk(s

′)
)

, (3.13)

for all s ∈ S, where k indexes iterations. It can be shown, that the iteration is a

contraction in maximum norm with contraction factor 0 < γ < 1, that is, starting

from two different value functions V0 and V ′
0 , we have ‖Vk+1−V ′

k+1‖∞ ≤ γ‖Vk −V ′
k‖∞

(see [111] or [8]). Such an iteration converges to a unique fixed point, which is V π, as

seen from the Bellman equations. An iteration for Qπ can be obtained analogously.

If we know the Q function of a policy π, we may take its greedy policy. By the

policy improvement theorem, this is always an improvement over π, except if π was an

optimal policy. This insight enables us to construct the following algorithm: starting

from an arbitrary policy π0, iteratively perform policy evaluation to calculate Qπk ,

and policy improvement by taking the greedy policy πk+1 = πQπk

greedy. This algorithm

is called policy iteration.

Theoretically, policy evaluation requires to converge infinitely long before a policy

improvement can be made. In practice, however, policy evaluation is stopped at some

20

point, and a policy improvement step is performed. An extreme case of this is when

only one cycle of policy evaluation is made before policy improvement. This form

of the iteration may also be derived by transforming the Bellman equations of the

optimal value function into an iteration:

Vk+1(s) = max
a∈A

∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γVk(s

′)
)

. (3.14)

This iteration is also a contraction in maximum norm, with contraction factor γ, thus

it also converges to its unique fixed point V ∗. This algorithm is called value iteration.

Similar formula can be derived for Q∗.

The methods discussed so far are synchronous, in that they update all states s ∈ S
at the same time, while asynchronous versions of policy and value iteration also ex-

ist. Furthermore, these methods suppose that the model of the MDP is known, i.e.

the functions P and R are given. When the model is not known, as in unknown

environments, sampling techniques must be applied. Monte Carlo sampling is a pop-

ular technique, but other methods are more applicable for tasks when an agent is in

interaction with the world. I discuss these techniques below.

The Bellman equations for V π can be written in an expected-value form:

V π(s) = Eπ,P

(
R(s, a, s′) + γV π(s′)

)
, (3.15)

where the expectation is taken with respect to the state transition model P and the

policy of the agent. A sampled version of policy evaluation can be performed as

follows. Starting from an arbitrary V0 : S → R, and initial state s0 for each time step

t the following steps are performed:

1. select an action at according to π(st, ·)

2. execute at, observe reward rt and next state st+1

3. update the value estimate of st:

Vt(st) := (1 − αt)Vt(st) + αt

(
rt + γVt(st+1)

)
, (3.16)

where αt is a step-size parameter. Leave the value estimate unchanged for all

other states: Vt+1(s) := Vt(s) for all s �= st.

21

This method is called Temporal Difference (TD) learning. The name is justified by

the fact that Eq. (3.16) can be rewritten in the form

Vt+1(st) := Vt(st) + αt

(
rt + γVt(st+1) − Vt(st)

)
, (3.17)

where the term
(
rt + γVt(st+1)− Vt(st)

)
is called the temporal difference (TD error)

as it is the difference of two estimates for V π in time steps t + 1 and t.

If the step sizes satisfy the Robbins-Monro conditions (
∑∞

t=0 αt(s) = ∞ and∑∞
t=0 α2

t (s) < ∞ for all s ∈ S, for example αt(s) ≈ 1
nt(s)

, where nt(s) is the number

of visits to state s up to time t), and all states are visited infinitely often, then the

iteration converges to V π. A similar algorithm can be derived for estimating Qπ.

TD learning can also be applied to learn the optimal value function directly. To

see this, the Bellman equations for Q∗ can be written in the expected-value form

Q∗(s, a) = EP

(
R(s, a, s′) + γ max

a′∈A
Q∗(s′, a′)

)
, (3.18)

where the expectation is taken with respect to the state transition model P . Using

this formula, we may transform the equation to an assignment analogously to policy

evaluation, by sampling the expected value. The Q-learning algorithm starts from an

arbitrary function Q0 : S × A → R and initial state s0, and in each time step t the

following steps are performed:

1. select an action at according to π(st, ·)

2. execute at, observe reward rt and next state st+1

3. update the value estimate of st and at:

Qt(st, at) := (1 − αt)Qt(st, at) + αt

(
rt + γ max

a′∈A
Qt(st+1, a

′)
)

, (3.19)

where αt is a step-size parameter. Leave the value estimate unchanged for all

other states: Qt+1(s, a) := Qt(s, a) if s �= st or a �= at.

One question arises, however: what policy should the agent follow? There is

no policy to evaluate, and it cannot follow π∗. It turns out that almost any policy

suffices, since the expected value depends only on the model. If the Robbins-Monro

conditions are satisfied, and all states are visited infinitely often, and in all states

22

all actions are chosen infinitely often, then Q-learning converges with probability 1.

Both conditions are fulfilled if the MDP is strongly ergodic and if πt(s, a) > 0 for all

s and a. This latter condition leads to the exploration/exploitation dilemma: on one

hand, πt(s, a) must be non-zero for all s and a, on the other hand, the agent wants to

greedify its policy, that is, assign zero probability to non-greedy actions. One possible

way to handle this, is to follow a so called ε-greedy policy, which selects the greedy

action with probability 1 − ε, and a random action with probability ε, and possibly

decreases the value of ε over time to make the policy greedy in the limit.

Another algorithm very similar to Q-learning is the so called SARSA algorithm,

which uses the actually selected next action at+1 instead of the greedy action in the

update step:

Qt(st, at) := (1 − αt)Qt(st, at) + αt

(
rt + γQt(st+1, at+1)

)
, (3.20)

making it an on-policy method, as opposed to the off-policy nature of Q-learning.

Further methods improve TD learning by incorporating a longer time scale for

temporal differences via another discounting parameter λ ∈ [0, 1], giving rise to the

name TD(λ). The method discussed above is also called TD(0), while λ = 1 corre-

sponds to Monte Carlo sampling. For further details, we refer the interested reader

to [111] or [8].

3.1.3 Explicit Policy Search

Another class of algorithms seeks optimal policies without the aid of value functions.

Therefore, the size of the state space is not a concern, the complexity of learning

depends solely on the size of the policy space. Naturally, there is a downside, too:

usually algorithms can only find a local optimum.

Policy gradient algorithms take a differentiable parametrization of the policy

space, and perform gradient descent optimization with respect to the parameters.

I do not discuss policy gradient methods here in detail, as they are not the topic of

this thesis, the interested reader is referred to [113] and [112].

23

3.2 Value Function Approximation

The algorithms discussed in section 3.1.2 all suppose that the value function is repre-

sented as a table, i.e. separate utility values are maintained for all states s ∈ S and

actions a ∈ A. For large state spaces, this technique is not tractable; not primarily

because of the storage requirements for the value function, but because of the slow

convergence of the algorithms: solution algorithms are at best polynomial in the size

of the state space.

This emphasizes the need for some form of function approximation, to reduce

the number of parameters to be learned and also the learning time. Function ap-

proximation is a widely used technique to learn value functions in large or infinite

domains. The value function V π or V ∗ (or alternatively, Qπ or Q∗) is approximated

by a member of some parametrized function family

V = {Vθ | θ ∈ Θ} .

Usually, we define the goodness of the approximation via the weighted squared error

Jπ(θ) =
∑
s∈S

pπ(s)(V π(s) − Vθ(s))
2 (3.21)

J∗(θ) =
∑
s∈S

p∗(s)(V ∗(s) − Vθ(s))
2, (3.22)

where pπ(s) and p∗(s) is the probability of state s according to the stationary distri-

bution of π and the optimal policy π∗ respectively (in the underlying Markov chain).

Note that if the agent follows policy π, then the distribution of the visited states is

exactly pπ, so J can be approximated by the sample average

Ĵπ(θ) =
1

T

T∑
t=0

(V π(st) − Vθ(st))
2. (3.23)

Note that a value function Vθ can have low approximation error, and still be ‘mis-

leading’ in the sense that the greedy policies of V π and Vθ are quite different. The

problem becomes more pronounced for the control case (when we seek an approxima-

tion for V ∗): the (possibly misleading) greedy policy has a role in the generation of

experience; furthermore, the weighting p(s) is always varying. Despite these difficul-

ties, the squared error criterion is used almost exclusively because of its simplicity.

24

This leads to the rise of several new difficulties when RL algorithms are augmented

with function approximation.

The most severe theoretical problem is that all the algorithms listed in section

3.1.2 may diverge when function approximation is used. Many researchers argue that

the main reason is that parameter updates are non-local: updating the value of a

state s can change the value of all states s′ ∈ S [12] [35] [101]. Therefore, what is an

improvement locally, may be a deterioration over the majority of states.

Another problem with function approximation may be that the family of functions

V may not be sufficient to represent the optimal value function (and thus, the optimal

policy). Let V̂ be the member of V that approximates V ∗ best; usually, V̂ �= V ∗. The

best result that we can hope for is achieving an error bounded by some function of

minθ∈Θ ‖V ∗ − Vθ‖. In general, it must be ensured that the function family V is rich

enough to contain a close approximation of the optimal value function.

3.2.1 General Approximation Method

A general approximation method (derived for example in [8]) is based on minimizing

the cost function (3.21) or (3.22). The algorithm proceeds in phases. It is initialized

with some initial parameter vector θ0 and corresponding value function Vθ0 . At the

kth phase, we select a subset Sk ⊂ S of representative states, and we compute

approximations of the value function from the representative states s ∈ Sk by letting

V̂k+1(s) :=
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γVθk

(s′)
)

(3.24)

for the approximation of the value function of a policy π, or

V̂k+1(s) := max
a∈A

∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γVθk

(s′)
)

(3.25)

for the approximation of the optimal value function. We then determine a new set of

parameters θk+1 by minimizing θ with respect to the quadratic cost criterion∑
s∈Sk

ω(s)
(
V̂k+1(s) − Vθ(s)

)2

, (3.26)

where ω(s) are some predefined positive weights. Omitting weights for simplicity, this

least squares problem can be solved for example by means of a gradient algorithm:

θt+1 := θt + αt

∑
s∈Sk

∇Vθt(s)
(
V̂k+1(s) − Vθt(s)

)
, (3.27)

25

where t = 0, 1, . . . indexes the gradient iteration, αt is an update rate, which may

change over time. The update may be performed incrementally for each representative

state s ∈ Sk as

θt+1 := θt + αt∇Vθt(s)
(
V̂k+1(s) − Vθt(s)

)
, (3.28)

or ultimately, we may stop distinguishing between phases, drop the index k and

replace the iteration with

θt+1 := θt + αt∇Vθt(s)
(∑

a∈A
π(s, a)

∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γVθt(s

′)
)
− Vθt(s)

)
(3.29)

for policy evaluation, or

θt+1 := θt + αt∇Vθ(s)
(
max
a∈A

∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γVθt(s

′)
)
− Vθt(s)

)
(3.30)

for value iteration. This iteration may be carried out at a sequence of states that

can be generated in a number of ways, for example, by simulating the system under

some policy and performing updates at the states visited. In this case, the sum in Eq.

(3.29) can be replaced by a single sample estimate, leading to the update equation

θt+1 := θt + αt∇Vθt(s)
(
R(s, a, s′) + γVθt(s

′) − Vθt(s)
)

, (3.31)

which has the same form as the update equation (3.17) used in the TD(0) algorithm.

For further details, the reader is referred to [8].

3.2.2 Linear Function Approximation

The simplest form of function approximation is a linear function of state features. Let

φ : S → Rn be a fixed function that maps states to feature vectors of n components

(features), and Θ = Rn. In this case, define

Vθ(s) := θT φ(s) . (3.32)

With linear function approximation, least squares optimization may be performed

explicitly, but the above described incremental method (3.31) also takes a simple

form since ∇Vθ(s) = φ(s). In the following, the explicit formulations are detailed.

26

Value Iteration

For better legibility, let us write exact value iteration with vector notation. Let

N = |S| be the number of states. The value function V can be represented as a

vector v ∈ RN . The state transition matrix for a given action a ∈ A can be written

as a matrix Pa ∈ RN×N , where Pa
s,s′ := P (s, a, s′). Define the reward vector ra for

action a by ra
s =

∑
s′∈S P (s, a, s′)R(s, a, s′). Then, value iteration Eq. (3.14) can be

written in the form:

vk+1 := max
a∈A

(ra + γPavk) , (3.33)

where the maximum is taken component-wise, and k indexes iterations. It is also con-

venient to introduce the Bellman operator T : RN → RN that maps value functions

to value functions as

T v := max
a∈A

(ra + γPav) . (3.34)

Then, exact value iteration can be expressed as

vk+1 := T vk . (3.35)

As it is was mentioned befone, T is a max-norm contraction with contraction factor

γ: for any v,u ∈ RN , ‖T v − T u‖∞ ≤ γ‖v − u‖∞. Consequently, by Banach’s fixed

point theorem, exact value iteration converges to a unique solution v∗ from any initial

vector v0, and the solution satisfies the Bellman equations (3.11).

Approximate value iteration with linear function approximation can be written

in a similar form. Note, that the feature function φ : S → Rn has n components:

φ = (φ1, . . . , φn), φi : S → R, i = 1, . . . , n. Let us define the feature matrix Φ ∈ RN×n

as Φs,i := φi(s). Let the feature weights be denoted by w ∈ Rn (instead of θ as

previously). Then the value function is approximated as v̂ ≈ Φw. We may substitute

vk = Φwk into the right hand side of (3.33), but we cannot do the same on the left

hand side of the assignment: in general, the right hand side is not contained in the

image space of Φ, so there is no such wk+1 that

Φwk+1 = max
a∈A

(ra + γPaΦwk) . (3.36)

We can put the iteration into work by projecting the right hand side back to w space:

let Ω : RN → Rn be a possibly non-linear mapping, and consider the iteration

wk+1 := Ω[max
a∈A

(ra + γPaΦwk)] (3.37)

27

with an arbitrary starting vector w0. It can be shown [115], that if Ω is such that

Π = ΦΩ is a non-expansion, i.e. for any v,u ∈ RN , ‖Πv−Πu‖∞ ≤ ‖v−u‖∞, then

there exists w∗ such that it is the fixed point of the iteration (3.37), and the iteration

converges to w∗ from any starting point. If Ω is a linear mapping (Ω ∈ Rn×N), then

the assumption above is equivalent to ‖Π||∞ ≤ 1.

The most popular back-projection operator Ω is the least squares projection op-

erator Ω2 = Φ+, the Moore-Penrose pseudo inverse of Φ. This operator minimizes

the L2 norm of the back-projection error: Ω2v := arg minw ‖Φw − v‖2
2. It is known

however, that ‖ΦΦ+||∞ � 1, and thus approximate value iteration is not conver-

gent in general with least squares back-projection [115]. Note, that it is true, that

ΦΦ+ is a non-expansion in L2 norm, but for approximate value iteration to be con-

vergent, L∞ norm is required. On the other hand, the L1 norm back-projection

operator, which minimizes the L1 norm of the back-projection error, defined as

Ω1v := arg minw ‖Φw−v‖1, results in a non-expansion, and thus approximate value

iteration becomes convergent [115]. The required L1 optimization task can be solved

by linear programming, for which efficient techniques exist in some cases [40].

Policy Evaluation

Let us introduce vector notation for policy evaluation as well. Let the reward vector

rπ ∈ RN be defined as rπ
s :=

∑
a∈A π(s, a)

∑
s′∈S P (s, a, s′)R(s, a, s′), and the tran-

sition matrix Pπ ∈ RN×N as Pπ
s,s′ :=

∑
a∈A π(s, a)P (s, a, s′). Then, the Bellman

equation (3.6) can be written as

vπ = rπ + γPπvπ , (3.38)

where vπ is the vectorial form of the value function corresponding to policy π. The

corresponding Bellman operator T π is defined by

T πv := rπ + γPπv . (3.39)

Similarly to value iteration, a back-projected form of the iteration can be defined as

wk+1 := Ω[rπ + γPπΦwk] . (3.40)

Interestingly, this iteration has favorable convergence properties when used with least

squares back-projection.

28

Let Dπ ∈ RN×N be a diagonal matrix with diagonal entries Dπ
s,s = pπ(s), where

pπ(s) is the steady state probability of state s according to policy π. Let ‖ · ‖Dπ be

the weighted quadratic norm defined by

‖v‖2
Dπ = vTDπv =

∑
s∈S

pπ(s)v2
s . (3.41)

It can be shown, that the operator T π is contraction with respect to the norm ‖ ·‖Dπ .

Furthermore, let ΩDπ be the back-projection operator which minimizes the weighted

quadratic norm of the back-projection error, ΩDπv := arg minw ‖Φw − v‖Dπ , which

can be expressed as ΩDπ = (ΦTDπΦ)−1ΦTDπ if Φ is of full rank, and ΩDπ =

(ΦTDπΦ)+ΦTDπ in general. (Note, that in case of uniform sampling, that is, if

D∗
s,s = 1

N
, ΩD∗ = (ΦTΦ)+ΦT = Φ+. Also note, that ΩDπ and ΩD∗ minimize (3.21)

and (3.22) respectively). It is easily seen that Π = ΦΩDπ is a non-expansion in

‖ · ‖Dπ norm, establishing the convergence of the iteration (3.40), since ΦΩDπT π is a

contraction in ‖ · ‖Dπ norm [117]. Furthermore, the following error bound holds for

the fixed point wπ of iteration (3.40) using ΩDπ :

‖Φwπ − vπ‖Dπ ≤ 1

1 − α
‖ΩDπvπ − vπ‖Dπ (3.42)

As temporal difference learning is a stochastic version of policy evaluation, its

convergence with linear function approximation is also established in case of on-policy

methods, that is, when the policy to be evaluated is used by the agent for action

selection [117]. In this case, the states are sampled with respect to pπ, resulting in

the back-projection operator ΩDπ . If the policy followed by the agent differs from

the one to be evaluated, then the back-projection operator is based on a different

weighted quadratic norm ‖ · ‖D′ , and ΦΩD′T π will not necessarily be a contraction.

Further convergence results are detailed next.

Convergence Issues

The borderline between convergence and non-convergence is quite well-explored. It

has been shown [117] that TD(λ) policy evaluation converges, if the evaluated policy

is applied for state sampling (i.e., on-policy learning is used). It has also been shown

[7] that if the evaluation is off-policy, then TD(λ) can diverge indeed, and an example

of this behavior is presented. As a consequence, Q-learning may also be divergent

29

[121], because it is an off-policy method. [3] and [117] show simple MDPs where pol-

icy evaluation with linear function approximation diverges. Gordon [36] shows that

Sarsa with linear function approximation can also diverge, and shows an example

where the algorithm ‘chatters’ between multiple solutions. Sutton argues [110] that

the divergence of TD methods is rather an exception than the rule, and shows exper-

iments on several test problems where TD(λ) with linear function approximation has

good performance, both for policy evaluation and learning of optimal control. On the

other hand, [12] shows similar versions of these test problems where function approxi-

mation diverges. Several researchers identify the main reason of divergence in the fact

that linear finction approximation can extrapolate values to unknown regions. These

extrapolated values can be utterly wrong, but they are used as a basis for subsequent

TD-approximations, and errors are exaggerated [12] [35] [101]. This may also explain

the discrepancy between the results of [110] and [12]: the former uses local features,

preventing bad values from propagating to distant states. Although, we know of no

formal justification of this claim, it underlines the importance of using appropriate

features for function approximation, a problem I pursue throughout this thesis.

3.3 Summary of Reinforcement Learning

Algorithms for reinforcement learning that are based on value functions expressing the

long term utility of states and actions were introduced. Temporal difference methods

for policy evaluation and control are well suited for learning in unknown environ-

ments. Approximation of value functions is essential for efficient learning methods;

the simplest approach being the use of linear function approximation. Care must

be taken however, since even linear function approximation may diverge, although

positive results also exist, the most important being the case of temporal difference

learning used with on-policy sampling. The choice of features also seems important.

In Chapter 6 I will explore policy evaluation and temporal difference learning using

features derived from the structure of the task at hand.

30

Part II

Compositionality of Language and

Thought

Human language is the faculty where the presence and benefits of compositional-

ity is probably most obvious; as we all use it to compose sentences and higher level

structures from words. Also, it has been one of the earliest fields where theories that

aim at modeling structure have been proposed. For this reason, I start my studies

about compositional representations from the viewpoint of language.

In my view, the compositionality inherent in language is not the property of lan-

guage itself. Instead, it reflects the compositionality present at a deeper level, the level

of thought. That is, languages have compositional structure because they are used

to convey thoughts between individuals, and since these thoughts have compositional

representation, it is reasonable to find that compositionality in language is required

for efficient information transfer.

This part is about modeling some aspects of language development, focusing on

its compositional nature, stemming from the compositionality of the representation of

‘thoughts’ being conveyed. By ‘thoughts’ here I refer to the internal states of agents

that are engaged in language development. The model builds on ideas of linguists

modeling language evolution, which are called language games, the topic of Chapter

4. The emphasis is more on the benefits of compositional representations, than on the

linguistic aspects. Hence, no specific knowledge of linguistics is required to understand

the upcoming discussions.

31

Chapter 4

Compositional Language Games

Language games [107] are simple models of the evolution of language. In these games,

multiple agents engage in a naming game, pat of which is the exchange of linguistic

elements, hereafter referred to as sentences. Sentences are built from words, which

are elements of a vocabulary or lexicon. One of the basic goals of the game is to start

from no a-priory agreed on words, and develop a common vocabulary, that all agents

use in the same meaning. How ‘meaning’ is defined by linguists is not important for

the purposes of this thesis, instead, I will use it in the following way. If the agents

use the same words to denote the same observations, then they associate the same

meaning to them, and thus they have come to an agreement.

Language evolution models may differ in how they model various aspects of the

agents. For example, some models only concentrate on the linguistic aspects [104],

some take sensory processing into account [120], while others incorporate decision

making aided by communication as well [16]. While it is best to take many aspects

into account, the investigation of individual aspects might as well be insightful.

In my work I use a rather abstract setting that enables me to concentrate on the

connection between compositionality of language and internal representation. Fur-

thermore, as I take this internal representation into account, a simple model of sensory

processing can be developed, focusing on how language might effect sensory process-

ing in the individuals. Also, I put emphasis on the (in)stability of co-learning in

agents, which is an inherent problem arising in multi-agent scenarios. Section 4.2

investigates this instability problem, while Section 4.3 proposes a solution.

32

4.1 Overview of Related Work

The emergence and evolution of communication has gained significant research atten-

tion in the past decade. Multi-agent simulations are popular to model the coordinated

development of natural languages. The development of a coordinated communication

system has the inherent property that multiple agents participate in it, which poses

extra difficulties for the algorithms aiming to model it.

When communication evolves, it should be the result of a negotiation process

between many parties. During this process, certain new items are invented by indi-

viduals and accepted and learned by the others. Who invents items and who accepts

them should neither be predefined nor one-sided. All agents take part in both of these

tasks, that is, they teach and learn simultaneously. To let the whole process converge

to a useful communication system, agents have to adapt to each other, not only to the

task to be learned; their learning depends on that of the others. The complexity of

the problem is that learning concerns hidden variables different for each agent while

learning is inherently coupled.

Most work done in the field of language emergence is motivated by modeling nat-

ural language evolution. Here, a broader view is considered: the optimization of

information transfer among the agents as a process of negotiation about a ‘language’.

This approach is more general and may be relevant for the encoding of information in

different kinds of distributed sensory and computational systems. One of the motiva-

tions of our work is to encapsulate the difficulties of parallel learning for agents that

have different conceptual representations. I model the agents with so called recon-

struction networks, and provide a neural implementation of what I call reconstruction

principle, and argue that it is efficient for making co-learning stable.

When modeling language evolution, it is a natural idea to involve knowledge

transfer from generation to generation, like in the Iterated Learning Model of Kirby

and colleagues [104] [61]: the new generation of language users learns the language

from the previous generation and then the old generation is replaced by the new one.

An interesting conclusion of the model is that the compositional nature of language

might be the result of the learning bottleneck imposed when language has to pass

from one generation to the other. Vogt [120] also builds on the Iterated Learning

33

Model and combines it with language games [107] [119] to model the emergence of

compositional languages when agents aim to communicate about their observations.

An interesting aspect of this work is that it deals with the conceptual representations

of the agents upon which they build their language, which is strongly related to the

symbol grounding problem [46], and also the compositional nature of language. Smith

[102] also considers the development of individual, distinct meaning structures and

examines its effect on the evolved language. All of these models apply learning from

generation to generation, and thus teachers are fixed. This way these models avoid

the problem of co-learning.

Cangelosi [16] uses artificial neural networks trained by a genetic algorithm to

develop a language in an agent system that aims to differentiate between edible and

poisonous food items and emphasizes that the evolution of language requires the

parallel evolution of the ability of language understanding and production. He also

considers the parallel development of input categorization and language. Hutchins

and Hazlehurst aim to invent a shared lexicon [52] utilizing feedforward connectionist

networks that model language learning agents.

The work of Oliphant and Batali [80] is very close to the one presented here

regarding the reconstruction principle. They model the development of a stable coor-

dinated communication system using a method that they call the ‘obverter’ procedure

in which agents observe each other and try to maximize their chances to communi-

cate successfully, instead of simply imitating the others. They provide mathematical

considerations about the convergence of their method. The underlying idea is very

similar to generative or reconstruction networks [6].

The architecture presented here can be seen as a neural network implementation

of the ‘obverter’ learner that also generalizes it for compositional internal representa-

tions and communication. Up to my best knowledge, no neural network approach has

incorporated this idea, only ‘imitator’ approaches exist. Central to our methodology

is the idea of Cangelosi that production and understanding must be maintained in

parallel. The framework enables the learners to have distinct conceptual represen-

tations. I investigate the properties of both compositional and non-compositional

(holistic) communication systems, treat the problem of co-learning, while restricting

the methods to local Hebbian learning for the individual systems.

34

4.2 The Instability of Co-learning

Stability of learning is an important issue in machine learning; the convergence prop-

erties of algorithms must be investigated even in case of one learning agent. In case

of multiple learning agents, where agents interact and so their learning depends on

that of the others, the issues of stability becomes more important. As a system of

agents gets more complex, it is less likely that ad-hoc learning methods converge

to a meaningful point. In this section, I analyze the issue of co-learning in case of

signal-meaning associations, i.e., when two or more agents co-develop the meaning of

signals never used before.

I start with a theoretical analysis that reveals that even in the simplest case,

when two agents try to associate two different signals to two situations, learning can

be problematic. Section 4.3 will build on this analysis to come up with an architecture

aiming to resolve the problems encountered here. The technical details of the results

presented here are not closely related to compositionality, the main topic of the thesis,

and thus are not listed here. The interested reader is referred to [72].

4.2.1 A Simple Communication Scenario

Consider two agents, A and B. For the sake of simplicity, we assume that commu-

nication is one-directional: A may speak and B may listen to it. In each episode,

agent A may either be in state "1" or "2" (with equal probability), and has three

possible actions: communicate "X", communicate "Y", or not communicate. Commu-

nication has a cost of 1 > cA ≥ 0. Agent B may listen to the signal of A for a cost

of 1 > cB ≥ 0, and has to guess the state of A (reply "1" or "2"). They both receive

a reward of +1, if the guess is correct and a penalty of −1 if not. Since the cost of

communication is less than the reward obtainable by it, communication is desirable,

if the two agents are able to agree that saying "X" means one of the states and saying

"Y" means the other.

Phrasing the Problem as Reinforcement Learning

The above described problem can be phrased as a very simple reinforcement learn-

ing task. The states and actions of the agents have already been described. State

35

Figure 4.1: Outcomes and associated rewards for the two-state two-signal

communication scenario.

transitions do not occur, since an episode consists of only one action for both agents.

The policy of A can be described by the triple MA = (α, p1, p2), where α is the

probability that A will communicate something, and in state "1" it communicates "X"

or "Y" with probability p1 and (1−p1) respectively, and in state "2" it communicates

"X" or "Y" with probability p2 and (1−p2) respectively, given that it is communicating.

Similarly, the policy of B can be described by the triple MB = (β, qX , qY), where β is

the probability that B will listen to the signal, and when hearing "X" it guesses "1"

or "2" with probability qX and (1−qX) respectively, and when hearing "Y" it guesses

"1" or "2" with probability qY and (1 − qY) respectively, given that it listens. The

probabilities and rewards for the case when A talks and B listens are summarized in

Figure 4.1. If B does not listen, or A does not talk, then B guesses "1" or "2" with

probability 0.5.

It is easy to calculate, that if both of them communicate, the common part of their

expected reward is (p1 − p2)(qX − qY), and 0 if any of them is not communicating.

Thus, the expected rewards RA and RB for the two agents are

RA(MA, MB) = α · (−cA) + 2αβ(p1 − p2)(qX − qY) (4.1)

RB(MA, MB) = β · (−cB) + 2αβ(p1 − p2)(qX − qY) . (4.2)

36

Difficulties of Parallel Learning

We assumed that neither A nor B bind predefined meanings to signals, so initially

p1 � p2 and qX � qY . Let us investigate the learning process of agent A. If |qX−qY | <

ε (B cannot distinguish well between meanings), the cost term of A will be greater

than his reward term, so (i) he cannot tune p1 and p2 reliably (their gradient is small),

and (ii) he can minimize his losses by lowering α. The exact value of ε depends on

the cost of communication. Similarly, B will try to minimize β until A does not learn

to distinguish between concepts, and cannot reliably tune qX and qY .

As a result, during early trials, p1, p2, qX and qY can only change stochastically,

by random walk. As the cost of communication grows, so does ε, and the time needed

to exceed this limit by random walk grows exponentially. However, during this time,

α and β keep diminishing. So by the time A and B could (by chance) break the

symmetry, and learn the distinction of meanings, they will learn that communication

is not useful. We note that in the general case, knowing the other agent’s dynamics

(the parameter sets (p1, p2, α) and (qX , qY , β)) does not always help; e.g., if the reward

of one agent is not available to the other agent and vice versa, or if the rewards of the

agents depend on each other’s behaviors, as in our two-state example. To overcome

this difficulty agents may estimate the hidden rewards of the other. Arguments exist

that the development of language is strongly related to such a theory of mind [75].

Therefore, next we investigate how agents can model each other.

4.2.2 Modeling Each Other

In the framework of reinforcement learning, it is possible to treat the above problem;

agents should be able to model each other’s intentions, or goals. This is possible if the

values RA and RB are available to them. Then, the situation becomes different: agent

A can optimize MA for a fixed MB. Although agent A cannot modify the policy of

B, it can model, what would be rewarding for agent B. Furthermore, it may consider

the optimal combination of the MA and MB strategies.

A simple way to think ahead one step can be the following. Optimizing MA for a

37

fixed MB can be done by calculating the conditional strategy

MA|B(MB) = arg max
MA

RA(MA, MB) , (4.3)

that is, A can calculate, that if B followed MB, what would be the optimal choice for

itself (A). Let us call this one-step model. An agent may think two steps ahead as

well. If agent A uses the conditional one-step modeling strategy (4.3) about agent B,

then it might as well suppose that B does the same. That is, agent A might suppose

that the strategy of agent B is MB|A(MA) = arg maxMB
RB(MA, MB), similarly to

(4.3). Then, agent A can simply choose his optimal strategy as

M∗
A = arg max

MA

RA(MA, MB|A(MA)) . (4.4)

Let us call this two-step model. Along the lines of one and two-step modeling, a

game theoretic approach [88] could be used to model the learning process, similarly

to modeling evolution in general [103]. However, for our purposes, the above defined

simple models suffice, a more complex game theoretic model is not considered here.

It might be worth noting that this abstract problem phrasing goes beyond the

problem of communication; it is a general learning problem. If an agent does some-

thing and it is visible to the other agent, then it is an observation that is dependent

on the state of the first agent. If both agents are learning, then their learning becomes

coupled similar to this prototypical example of communication.

4.2.3 Experimental Results

The theoretical analysis of Section 4.2.1 has been tested by conducting numerical

experiments. As the policies of the agents are expressed in a simple parametric form,

and the reward and utility functions are identical, mainly non value function based

reinforcement learning methods were used, as the simplicity of the problem enabled

it. The used methods were the following: policy gradient methods of two types,

(i) using an explicit form of the gradient of the reward functions that can be easily

calculated analytically, (ii) numeric calculation of the gradient that can be done in a

general form; intention modeling of two types, namely (iii) one step and (iv) two step

modeling and finally (v) value function based SARSA learning. The exact details of

the algorithms used can be found in [72].

38

Various combinations of these methods were used for agent A and B. In the

experiments, the values α and β were initialized to 0.75 to give a fair amount of

chance for the agents at the beginning to utilize communication. The values p1, p2,

qX , qY were initialized randomly according to the uniform distribution in the range

[0.4, 0.6]. Figure 4.2 shows the rate of a successfully emerged communication as the

function of the communication cost.

Figure 4.2: Performance of the various methods as a function of the cost

of communication. Learning was considered successful if after a certain number of

steps, trials were 100% successful. Average of 1000 runs.

It can be seen, that when agents do not model each other, the chance that they

learn to communicate decreases as the cost of communication increases. The decrease

would most probably become even much steeper if the number of states and meanings

to be associated were large than 2 (as will be seen in Section 4.3). However, when

agents model each other, they are able to learn that communication is useful even

when the cost is high, with the peculiar exception when both agents use two-step

models. This has probably the following explanation: both agents suppose that the

other is using a one-step model, which is false, and their model becomes meaningless.

In this situation, in 50% of the cases the randomly generated initial parameters allow

39

to reach an agreement just by chance; in the other 50% no agreement is reached.

I have also investigated the time (number of communication episodes) needed to

reach an agreement (see [72]). The conclusion was that when both agents can model

the rewards of the other agent, then agreement about the signal-meaning association

is fast. This is so, because they ‘shortcut’ the slow tuning procedure of reinforcement

learning by modeling each other. If this shortcut is not applied, agreement can still

be reached, but only very slowly. When one of the agents thinks two steps ahead,

agreement is even faster. In this case, agreement is accomplished in 1 step after an

initial transient of 10 steps when the agents estimate each others’ parameters.

I have shown that the lack of modeling each other’s behavior can seriously limit co-

learning and the emergence of communication. However, there are several exceptions

to this simple observation. For example, if the policy of one of the agents is steady

(i.e., this agent is not learning), then this agent will act effectively as the teacher

and the adaptive agent can tune itself to the teacher. This setting is used by most

language emergence theories. The problem arises if the learning rates of the two

agents are about the same – the setting addressed here. The next section uses the

idea of reconstruction to model the other agent’s behavior, which is inherently present

in reconstruction networks presented in Section 2.3.

4.3 Co-learning with Reconstruction Networks

This section generalizes the previous one to compositional representations: instead of

having two states, the state of an agent is described by a set of binary variables. The

proposed network architecture and the related learning methods are discussed. The

general context of the learning is a signaling game, in which the networks observe

inputs and the learning task is to co-develop a language (agree on a set of signals) to

communicate the observations. This abstract setting helps investigate communication

related issues without being effected by other environmental factors, and gives freedom

to vary related parameters and test various settings. The results presented here have

been published in [44] and [45].

40

4.3.1 Network Architecture

The agents are modeled with three-layer neural networks, the architecture is depicted

in Figure 4.3: the input layer of the network receives the observation (x ∈ Rm),

which is processed and an internal representation (h ∈ {0, 1}n) is formed. This

transformation (G) represents the extraction of features, resulting in a Cartesian

product internal representation, whose components indicate the presence/absence of

features, assigning the inputs to multiple categories. This x → h transformation

is modeled as follows. Each element x of a finite set of inputs is assigned fixed

vectors G(x) ∈ [0, 1]n of real values as if indicating the degree of membership in

categories. The internal representation is then calculated as h := σ(G(x)), where

σ : [0, 1]n → {0, 1}n is the component-wise rounding function. This simple model

gives the possibility of adjusting feature extraction in the agents by tuning the G(x)

vectors themselves, that is, the degrees of category membership.

Two other transformations govern the communication related behavior of the net-

work. The network can generate an ‘utterance’ u from its internal representation by

means of transformation Q. We let u ∈ {0, 1}2n , so that the utterance may contain

combinatorially many signals. Furthermore, the network also has another transfor-

mation, W, that we call ‘parsing’ or ‘understanding an utterance’, since it yields some

internal representation based on an utterance.

W1Q1 generation

x

u

W2 parsingQ2

G2

h2

x

input

h1 internal representation

utterance

G1

[0 0 1 0 1 0 0 1]

input categorization

[0.0 0.4 0.9 0.1 1.0 0.3 0.6 0.9]u

agent A
1

agent A
2

Figure 4.3: Network architecture. Two agents, A1 and A2 are presented with the

same input (x), which is transformed (G) to internal representations (h) by assign-

ing inputs to multiple categories. One of the agents generates (Q) an utterance (u)

describing its internal representation, which is sent to the other for parsing (W).

In the studies presented here, two methods were compared for generation and

41

parsing. The first method performs linear transformations Q and W followed by

(clamping to [0, 1] and) rounding: u := σ(Qh), h := σ(Wu). The other method

implements the so called reconstruction principle. In this case, the network generates

an utterance u for a given internal representation h such that when it is parsed (by

the network itself) the resulting internal representation is closest to the original vector

h. That is, the network tries to reconstruct the internal representation (generate it

by means of a linear transformation, see Section 2.3) from its own utterance, and

chooses an utterance that reconstructs the internal representation best. The same

principle is used for parsing, except the roles are changed: given an utterance u, the

network chooses an internal state h, that when transformed back to an utterance,

yields an utterance closest to u. Below, this idea is formalized for the generation

of the best utterance u∗ from internal representation h, and for reconstructing the

representation h∗ via parsing utterance u, respectively:

u∗ = arg min
u

‖ h − σ(Wu) ‖2
2 (4.5)

h∗ = arg min
h

‖ u − σ(Qh) ‖2
2 (4.6)

The minimization tasks (4.5) and (4.6) are combinatorial optimization problems,

since the vectors h and u are restricted to have entries in {0, 1}. To solve these prob-

lems, the Cross-Entropy method introduced in Section 2.3.1 is used, as it is designed

for binary vectors. Note, that if the matrices Q and W become well tuned, then the

initial guess for the probability density function in the Cross-Entropy Algorithm 3

(line 3) becomes sharp, and the algorithm converges very quickly. In this case, the al-

gorithm essentially behaves as a simple feedforward linear transformation. However,

we found that the whole reconstruction algorithm is needed for proper training.

Network Training

The training of the matrices Q and W starts from random values in [0, 1] and is Heb-

bian with certain ‘quasi-supervised flavor’: networks are presented with (the same)

observations, from which they generate internal representations. One of the networks,

say agent A1 generates utterance u, which is then sent to the another agent. That is,

the output u is not supplied externally but generated by one of the networks. Then

each network has an internal representation-utterance pair and can use it to update

42

its transformation matrices. The update is Hebbian, it uses the negative gradient of

the squared reconstruction error. For agent Ai (i=1,2) we have:

ΔQi := ε (u − Qihi)h
T
i = ε eu

i h
T
i , (4.7)

ΔWi := ε (hi − Wiu)uT = ε eh
i u

T , (4.8)

where ε ∈ [0, 1] is some update factor, eh
i and eu

i denote the errors at the internal

representation and utterance level, respectively. Note that the vector u is the same

for each agent, but vector hi, the matrices Qi and Wi may be different.

Feature extraction can be tuned at the listener (agent A2 in the present example),

because internal representation h2 is available and its estimation h∗
2 can be computed

from the utterance u. Let us suppose that the input was x, then the update is

G2(x) ← θ
(
G2(x) + ε(h∗

2 − h2)
)

, (4.9)

where h2 = σ(G2(x)), and function θ clamps the values to [0,1]. This simple model

was used for adjusting feature extraction in illustrating how co-learning may effect

concept formation. The key fact is that an error term (h∗ − h) is available.

4.3.2 Computer Simulations

First, networks with the same internal representations (G1 = G2, and so h1 = h2)

are used, merely to investigate language emergence independently from differences in

internal representations. Next, the effect of different internal representations will be

investigated. The following experimental scenarios were studied:

• Non-compositional ‘languages’, where the utterances were forced to have only

one nonzero element versus compositional ‘languages’, where utterances are let

to have arbitrary combinations of nonzero entries. In the non-compositional

case, instead of rounding, the maximum valued component was set to 1, the

others were cleared to 0

• Generation and parsing methods using simple linear transformations Q and W

versus using the reconstruction algorithm (4.7) and (4.8)

• The size of the internal representation, and the number of agents were system-

atically varied to see how the learning scales with these factors

43

In each episode of learning, two random selected networks participated in com-

munication. An input was selected randomly, and one of the networks generated an

utterance to it, the other parsed it, and then both of them updated their transforma-

tions. To decide whether a consistent language had emerged, a performance matrix

was defined: the relative frequency of the usage of each signal for each input was cal-

culated from communication episodes. We say that a consistent language developed,

if all networks produced consistently the same signals for the same inputs. In the

non-compositional case, each state was required to be denoted by a different signal.

In the compositional case, we call a language consistent, if an utterance describing

an internal representation with certain features is composed of signals referring to

those features, and all the networks use the same combination of signals. It was also

recorded how often the parsing agent could reconstruct the same internal represen-

tation from the utterance it received as it generated from its observation (h∗ = h)

towards the end of a series of communication episodes; this is called the communica-

tion success rate, and is 100% for a consistent language.

Results

First it was tested how the compositional and non-compositional methods behave as

a function of the size of the internal state and the number of agents. The percentage

of the runs when the method converged to a consistent language was recorded, along

with the average number of learning episodes that agents needed to reach it. It was

found that if the reconstruction principle was applied, learning reached a consistent

state and 100% communication success in all of the cases, both for compositional

and for holistic languages. The number of episodes needed to reach an agreement is

shown in Figure 4.4. It can be seen that the compositional method needs orders of

magnitude smaller number of learning episodes as the state size and the agent count

increases. It has been observed that when compositional solution was allowed then

compositional language did develop in all of the cases.

The next aspect investigated was how the learning changes when the reconstruc-

tion principle was not applied. Surprisingly, in the non-compositional case, this

method was never sufficient to develop a consistent language. For the compositional

44

2 3 4 5 6 7 8
10

1

10
2

10
3

10
4

10
5

internal representation size

nu
m

be
r

of
 e

pi
so

de
s

holistic
compositional

(a) Varying state size

2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

agent count

nu
m

be
r

of
 e

pi
so

de
s

holistic
compositional

(b) Varying agent count

Figure 4.4: The effect of varying internal representation size and agent

number. (a) the y axis is logarithmic: slope is slow for compositional languages, but

it is exponential for holistic ones as a function of the size of the internal representation

(b) the y axis is linear, size of the internal representation is 4. Average of 100 runs.

case, Figure 4.5 shows the results: without the reconstruction principle both the ra-

tio of consistent languages and the communication success drops drastically with the

size of internal representation, and also with the agent count (not shown here). Fur-

thermore, the reconstruction principle also has an intriguing effect on the number of

signals used by the agents. Theoretically, an n-component state can be communicated

using the combination of n signals. This lower bound was reached with reconstruction,

but was significantly exceeded without it.

To see how learning behaves when agents have different internal representations,

feature sets (G transformations) were explicitly generated for a finite number of in-

puts. Differences between agents’ G transformations were systematically introduced.

In this case, totally consistent language can not develop, agents can not agree because

their categorization of the observations differ. Learning was run for a sufficiently large

number of episodes, and during the last 1000 episodes, the fraction of successful com-

munication episodes (the parsing network was able to reconstruct the same internal

state from the utterance as it developed from its input) was evaluated. As expected,

communication success rate drops as the discrepancies between internal representa-

tions increase. The drop is faster for the compositional case (Fig. 4.6(a)).

45

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

internal representation size

pe
rf

or
m

an
ce

 r
at

e

with reconstruction
w/o reconstruction:CL rate
w/o reconstruction:CS rate

(a) Learning performance

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

internal state size

si
gn

al
 c

ou
nt

with reconstruction
w/o reconstruction

(b) Number of signals used

Figure 4.5: Using and not using the reconstruction principle. CS: communi-

cation success, CL: consistent language. (a) sharp drop for larger representations and

(b) proliferation of developed signals without reconstruction. Result of 100 runs.

However, when feature values were adapted according to (4.9) then after some

communication tuning episodes, the language development converged for composi-

tional languages; in this case, successful communication (as well as consistent lan-

guage) developed in a broad range of not too large initial differences, while in the

non-compositional case, adjustment did not result in a significant change (Fig. 4.6(b)).

Discussion

It has been observed that at the beginning of the learning, the networks have synony-

mous signals for denoting components of the state. First they learn to understand

each others’ signals, and later they refine their dictionaries to single common signals

for any given component. When the reconstruction principle is not in effect, this ne-

gotiation is not successful and the number of signals often increases. However, when

reconstruction is utilized, negotiation is accomplished by adaptation to signals used

by the other parties.

The obverter learning procedure [80] applies the same idea as the reconstruction

principle. In [80] they prove that the best strategy for agents is to produce utterances

that maximize the chance of other agents understanding it. They argue that agents do

not have access to what others would understand, so it seems a good idea to produce

utterances that the agent itself would understand well. This idea is implemented in the

46

100 90 80 70 60 50 40 30 20 10 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

percent of equal representations

co
m

m
. s

uc
ce

ss
 r

at
e

compositional
holistic

(a) Without adjusting concept formation

100 90 80 70 60 50 40 30 20 10 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

percent of equal representations

co
m

m
. s

uc
ce

ss
 r

at
e

compositional
holistic

(b) Adjusting concept formation

Figure 4.6: The effect of differences in the internal representations. Size

of representation: 6. (a) drop of performance is more serious in the case of compo-

sitional languages. (b) learning becomes successful for compositional communication

with probability 1 if initial differences are not too large. Average of 10 runs.

reconstruction network. However, this method goes beyond the ideas described in [80],

because it can handle compositions, and it can work with individuals having distinct

conceptual representations. An inherent property of this model is that production and

understanding are dependent on each other and evolve simultaneously. The necessity

of such a property has been emphasized by Cangelosi [16].

In [60] Kirby argues that compositional languages emerge due to the learning

bottleneck effect of linguistic knowledge transfer from generation to generation. He

claims that compositional languages are favored because they are easier to pass to

the next generation since fewer observations are enough to learn them because of

their compressed nature. The above simulations indicate that there is another reason

why compositional languages are favored, namely that they are easier to agree upon.

Nonetheless, the reason is the same as that of Kirby; their compressed nature enables

faster negotiation, since only the signals referring to components (instead of their

combinations) need to be agreed on. Actually, it has been observed, that relatively

few categorization samples are enough to agree on a consistent language.

Smith [102] and Vogt [120] both use discrimination games, by which agents develop

a categorial representation of observations. When experimenting with the effect of

47

different representations, Smith comes to a conclusion that the overall success of com-

munication seems to be directly related to the amount of shared meaning structure in

the agents. This conjecture is strengthened by the above results, and is also present

in the conclusions of Cangelosi. However, [16] only deals with holistic communication

in a scenario where there is an evolutionary pressure for agents to develop similar in-

ternal representations. I have shown that holistic communication is more resistant to

representational differences. The underlying reason is probably the compactness and

generalizing capability of compositional communication: the misunderstanding of one

signal effects more communication episodes. To let successful communication emerge

even in the case of different internal representations, the representations themselves

were adjusted here. The adjustments were based on the differences between the rep-

resentations induced by the utterance and the one generated from the agent’s own

observation. In case of a compositional language, the utterance is a projection of how

the other agent categorizes the observation, and this information can be used to alter

an agent’s own categorization. This might turn out to be an important feature of

compositional languages, since holistic languages lack this information.

4.4 Summary of Compositional Language Games

Starting from a theoretical analysis of a prototypical two-state two-signal problem

revealing the necessity of agents modeling each other, a reconstruction network based

approach was developed for modeling the joint development of compositional signal

systems. Experimental evidence suggests that the reconstruction principle makes

co-learning stable and also results in a language with less ambiguity (synonymous

signals). Furthermore, advantages of compositional communication have been shown:

negotiation scales better with the size of the internal representation and the number

of agents, and it carries the potential to adjust the concept formation of individuals to

better match that of each other and make information transfer more efficient. Note,

that no other method has reported 100% learning success even for many agents.

48

Part III

Compositionality in Reinforcement

Learning

This part explores the use of compositionality in agent decision making in the

framework of reinforcement learning. The focus is on value function based methods,

as introduced in Chapter 3. The simplest model of compositionality is linear function

approximation, in which a function is composed as a linear combination of basis func-

tions; the value function is written as Vθ(s) = θT φ(s) for each state s (see (3.32)). A

way to interpret this is that utility values θ are assigned to features (instead of states)

and these are linearly combined by feature values φ(s) as coefficients.

Two such architectures are dealt with in this part within reinforcement learning.

Chapter 5 shows that Echo State Networks introduced in Section 2.2.1, which are

linear architectures on randomly generated spatio-temporal features, can be used for

learning in k-order Markov decision processes. Chapter 6 deals with factored MDPs,

in which the state space is the Cartesian product of state variables. It is shown, that

in such MDPs, a natural way arises to approximate the value function as a linear

function of features that are combinations of state variables. The convergence of

factored temporal difference learning is also established via previous general results

for function approximation, as summarized in Section 3.2.2. The results also provide

motivation for the subsequent part devoted to learning the appropriate features for

function approximation.

49

Chapter 5

Reinforcement Learning with Echo

State Networks

This chapter investigates a simple extension of linear function approximation in re-

inforcement learning. As introduced in Section 3, reinforcement learning builds on

Markov Decision Processes, in which the basic assumption is that the state is Marko-

vian, that is, the current state conveys all the necessary information for decision

making; no information about the past is required. This chapter extends this frame

to k-order Markov Decision Processes, in which the past k states may be required for

decision making, using Echo State Networks introduced in Section 2.2.1 to handle the

task of approximating the value function which may depend on past states as well.

5.1 Overview of Related Methods

Artificial neural networks have widely been used as function approximators in RL for

maintaining the value function of an agent [116], [8]. On the contrary, only limited

work has already been done using recurrent neural networks, probably because of

difficulties in training such networks. RNNs have the ability to retain state over

time, because of their recurrent connections, and they are promising candidates for

compactly storing moments of series of observations.

One of the first results with RNNs used for RL was achieved with Elman-style

recurrent networks [69]. An Elman network [27] differs from a multi-layer feedforward

50

neural network in that it has context units, which hold copies of the hidden unit

activations of the previous time step. Because the hidden unit activations are partly

determined by the context unit activations, the context units can, in principle, retain

information from many time steps ago. Elman networks have also been used for RL-

like tasks by Glickman et. al. [33]. They utilized an evolutionary algorithm to train

the connection weights of the networks.

Perhaps the most similar work to ours is the work of Bakker [4], [5], who used

two types of RNNs for RL tasks that require memory, focusing on tasks that are

not fully observable, and investigated tasks with long term dependencies between

events. He emphasizes the difficulty in discovering the correlation between a piece

of information and the moment at which that information becomes relevant. As a

solution, he introduced long short-term memory networks [4].

Various other recurrent neural network approaches have also been proposed. The

interested reader is referred to a detailed review of Schmidhuber [97], whose work in

the field precedes Bakker’s work considerably. However, it must be noted, that none

of these works provide convergence guarantees.

5.2 Temporally Extended Linear Approximation

In this section, Echos State Networks will be used to approximate the Q function

defined in Section 3.1.2 in reinforcement learning. Recall, that the Q function can

be updated using the SARSA update (3.20), and that the function Q(s, a) can be

approximated using |A| parameter vectors as

Q(s, a) ≈ θ(a)T φ(s) (5.1)

for all s ∈ S and a ∈ A, since |A| is usually small. Thus, for a linear approximation

architecture, the SARSA update at time step t takes the form

θ(at) := θ(at) + αtφ(st)
(
rt + γθ(at+1)

T φ(st+1) − θ(at)
T φ(st)

)
, (5.2)

which is a sampled form of gradient update to the parameters (Equation (3.31)), where

φ(st) is the gradient, θ(at)
T φ(st) is the current prediction, and rt + γθ(at+1)

T φ(st+1)

is the new target towards which the approximator is adjusted.

51

ESNs can be viewed as linear function approximators acting on an internal state

developed from a series of previous inputs, thus incorporating the past into the state

representation. The observation at time step t alone is not sufficient to choose an

optimal action, but the internal representation should be more adequate since it

is more likely to have the Markov property. Recall, that an Echo State Network

maintains a state ut = σ(Fut−1 + Gxt), where xt is the input to the network at time

step t, and F and G are random generated matrices of appropriate sizes and σ is a

sigmoidal component-wise nonlinearity (see Equation (2.4)). The network computes

its (possibly multidimensional) output as a linear mixture

yt := ATut , (5.3)

where the output matrix A is trained by linear least squares optimization.

Suppose, that we are dealing with a decision process that is not Markovian but

k-order Markovian for some k ∈ N. Note that a Markov process is a k-order Markov

process for k = 0. Let the states s ∈ S be described with features ψ(s) ∈ Rd. If

we input a sequence xt := ψ(st) of state features to an ESN, it will produce another

sequence of features as internal states φ(st) := ut ∈ RD, with matrices F ∈ RD×D

and G ∈ RD×d. These features as internal states incorporate information about past

states. Letting A ∈ R|A|×D, and identifying the ith column of A with the parameter

vector θ(ai) corresponding to the ith action ai, the approximated Q value of the ith

action in time step t is computed as Q(st, a
i) = [yt]i (see Equations (5.1) and (5.3)).

Furthermore, in this case, the update (5.2) corresponds to the stochastic gradient

update of the output matrix A, leading to the least squares solution. Therefore, we

have embedded Echo State Networks into reinforcement learning for linear function

approximation when the state is not Markovian and past information must be taken

into account. The resulting algorithm is termed ESN-SARSA. In what follows, we

analyze when this architecture leads to a convergent learning method.

5.2.1 Theoretical Considerations

The theoretical results listed in this section do not form part of the contributions of

this thesis, but are part of joint work with other authors, therefore are only listed in

an abbreviated form. Details can be found in [114].

52

Although proofs of convergence are available for many tabular RL algorithms, the

case of function approximators is somewhat more problematic, as discussed in Section

3.2.2: even in the simplest linear function approximator case, learning may diverge.

The use of neural networks seems even more difficult. Among the positive results for

linear approximation, Gordon had shown [37] that using the SARSA algorithm, the

value function converges to a bounded region. At the same time, he showed [36], that

using a linear function approximator with SARSA, the value function may oscillate,

and also gave a sufficient condition for the algorithm to converge.

Building on these results, we show that using an ESN as a nonlinear function

approximator with the SARSA algorithm, the value function also converges to a

bounded region, if the task to learn is an MDP. What is more, we also show that this

result holds for k-order MDPs, too. This extension is made available by the memory

present in the ESN representation.

Theorem 5.1 (Gordon). Assume that a finite MDP is given and SARSA learning

(5.2) is being used with a linear function approximator. If the learning rates satisfy the

Robbins-Monro conditions (αt > 0,
∑∞

t=0 αt = ∞,
∑∞

t=0 α2
t < ∞), then the parameter

vectors θ(a), a ∈ A converge to some bounded region with probability 1.

We note that the proof for finite MDPs can trivially be extended for a continuous

state space. Now, let us consider what the ESN-SARSA algorithm does: (1) the

observations xt are nonlinearly mapped to the continuous internal representation ut,

(2) on this representation a linear function approximator is trained using the SARSA

method. This means that if the process ut has the Markov property, Gordon’s theorem

can be applied.

Let us suppose that the input vectors xt only contain ±1 entries.

Definition 5.2 (k-step unambiguous ESN). Given is an ESN with initial state u0.

Let us suppose, that the input sequence x0, . . . ,xt results in an internal state u, and

the input sequence x′
0, . . . ,x

′
t′ results in an internal state u′. We say, that the ESN is

k-step unambiguous, if u = u′ implies that xt−i = x′
t′−i for all i = 0, . . . , k − 1.

Definition 5.3 (Unambiguous input matrix). The matrix G of size n×m is said to

be an unambiguous input matrix, if for any nonzero vector z ∈ {0,±1}m, Gz is also

nonzero.

53

Lemma 5.4. Let G be a matrix of size n×m (n > m), whose entries are uniform ran-

dom values from the set {0,±C}, C ∈ R. The probability that G is an unambiguous

input matrix, is at least 1 − (1/3)n−m.

The following lemma states that if the input weights are significantly greater than

the recurrent weights, then the x → u mapping is unambiguous.

Lemma 5.5. Let the entries of the G matrix of the ESN be randomly chosen uni-

formly from the set {0,±C}, where C >
√

n. Let the recurrent matrix F be a sparse

random matrix with ‖F‖ < 1. Then the ESN is 1-step unambiguous with probability

1 − (1/3)n−m.

Lemma 5.6. If the ESN is 1-step unambiguous, then it is k-step unambiguous for

all k ≥ 1.

Definition 5.7 (Induced ESN decision process). Given is the following decision pro-

cess, denoted by M: X is the finite state space, A is the finite action space, X ∗

denotes the space of series made of elements of X , R : X × A → R is the reward

function, P : X ∗×A×X → [0, 1] is the transition probability function, that gives the

probabilities of the next states based on the trajectory of states travelled so far and the

action applied.

The ESN-decision process induced by the decision process M is the following: for

any u ∈ Rn define the sequence set

S(u) = {ξ = (x0, . . . ,xt) | ESN input ξ results in internal state u}.

Let U ⊂ Rn such that for all u ∈ U : S(u) �= ∅ be the state space of the induced

decision process, and let A be the action space. If the probabilities P (ξ, a, ·) are all

equal for all ξ ∈ S(u) for all u ∈ U and a ∈ A then the induced decision process

is said to be well defined. In this case the state transition and reward functions

P̃ : U ×A× U → [0, 1] and R̃ : U ×A → R are defined as

P̃ (u, a,u′) :=

⎧⎨
⎩ P (ξ, a,x), if ∃ x : u′ = σ(Fu + Gx)

0, otherwise.

R̃(u, a) :=
1

|S(u)|
∑

(x0,...,xt)∈S(u)

R(xt, a) .

54

The previous lemmas imply the main theorem:

Theorem 5.8. Given is a k-step unambiguous ESN, and given is an M = (X ,A, P, R)

k-order MDP. Then the decision process induced by the ESN is well defined, further-

more, the decision process is an MDP, on which the value function sequence generated

by the ESN-SARSA algorithm converges to a bounded region with probability 1.

Note, that the theorem gives the important result that the ESN-SARSA algorithm

is convergent to a region (that is, the algorithm cannot diverge) for any k. This is

because it only states that the algorithm is convergent, it does not tell anything about

the speed of convergence and how good the resulting value function will be. As k

is increased, the effect of earlier steps decreases exponentially, which means that the

temporal resolution of the approximation about the far past will become poorer.

5.2.2 Experimental Results

There are several benchmark tasks to test RL algorithms for partially observed envi-

ronments. These tasks typically require some amount of memory. I have tested the

ESN-RL architecture on some of these tasks.

The first problem was described by Littman et al. [58]. You stand in front of

two doors: behind one door is a tiger and behind the other is a vast reward. You

may open either door, receiving a large penalty if you chose the one with the tiger

and a large reward if you chose the other. You have the additional option of simply

listening. If the tiger is on the left, then with probability 1 ≥ p > 0.5 you will hear

the tiger on your left and with probability (1− p) you will hear it on your right; and

vice versa when the tiger is on your right. If you listen, you will pay a small penalty.

The question is: how long should you stand and listen before you choose a door?

By varying the value of p the difficulty of the task varies; as p decreases, the task

gets more difficult, more listening is needed to safely determine the position of the

tiger (note, that at p = 0.5, one can not do better than to guess randomly). Figure

5.1(a) shows our results on the tiger problem. It can be seen, that as p increases,

the ESN learns that less listening is needed, and its performance also increases up

to 1, when the task becomes deterministic. In this case, the ESN learns to answer

after 1 round of listening. The number of listens learned by the ESN is similar to the

55

results reported in [58]. At p = 0.85, their system learned to listen until it hears two

more roars from one side then the other. This is comparable to the ESN’s result of

listening 2.37 times on average.

The second problem was a simple 4x3 maze example proposed by Russell and

Norvig [94]. The maze has an obstacle in the middle, and has two special states, one

that gives a reward of +1, and another one that gives a penalty of −1. The actions,

moving N, S, E, W, have the expected result 80% of the time, and transition in a

direction perpendicular to the intended with a 10% probability for each direction.

Observation is limited to two wall detectors that can detect whether there is wall to

the left and right. The task is to find the +1 state repeatedly and avoid the −1 state,

starting from random positions. As Figure 5.1(b) shows, the ESN was also able to

learn this navigation problem. It must be noted that adding the agent’s own previous

action to the observations in the next time step increased the stability of the ESN,

which might be because of the heavy partially observable nature of the task, probably

being compensated by considering the previous moves.

0.75 0.8 0.85 0.9 0.95 1
0.85

0.9

0.95

1

p (roar probability)

pe
rf

or
m

an
ce

0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

3

3.5

p (roar probability)

nu
m

be
r

of
 li

st
en

in
gs

(a) Tiger problem

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

number of episodes

average number of steps
performance percentage

(b) 4x3 maze problem

Figure 5.1: (a) Results on the tiger problem. Left: performance, right: number of

listens required to determine the right door to open as the function of roar probability.

(b) An example run on the 4x3 maze problem. Performance reaches 90%, the

average number of steps goes down to 5; shortest paths to the goal were found.

I also tested the architecture on a T-maze problem well suited to test the state

retaining properties in memory required tasks [4]. At the beginning of a T-shaped

maze, the agent is shown a sign indicating whether it should turn left or right at

the end. By varying the length of the T-shape, an algorithm can be tested how long

56

it is able to retain previous observations. Whether the ESN approach was able to

learn the task seemed to depend on the randomly generated G and F matrices. With

proper matrices, the agent easily learned the task. The matrices are thought to be

proper, if due to the random connections, the activation resulting from observing the

sign is maintained long enough to effect the decision at the end. The larger the k in

the Markov process, the less probable that the random matrices will be proper. For

k < 10, almost 100% of the matrices were proper; training was always successful. As

k was increased, this percentage slowly fell, and reached 0 at k = 25, being around

50% at k = 20.

5.3 Summary of Reinforcement Learning with ESNs

Artificial neural networks are popular function approximators, and recurrent neural

networks are spreading to be used in tasks which require memory, since they naturally

retain information about previous states. I have shown, that Echo State Networks

can be easily incorporated into reinforcement learning in k-order MDPs. The SARSA

algorithm used with an ESN as Q-function approximator was shown to converge to a

bounded region with increasing probability as the size of the internal representation of

the ESN is increased. This is because a larger reservoir is more probable to contain the

right spatio-temporal features required for the approximation. Experimental evidence

shows that the memory capacity of ESNs can be utilized well to learn in scenarios

when past observations must be remembered for making proper decisions later.

57

Chapter 6

Factored Reinforcement Learning

This chapter investigates a more rigid framework for compositional reinforcement

learning, called factored RL, building on factored MDPs, as detailed in Section 6.1.

Factored RL enables us to use function approximation with features naturally arising

from the structure of the task. Section 6.2 details these structural aspects, and casts

factored RL as a task with linear function approximation on features that are variable

combinations. The convergence of factored temporal difference learning as a policy

evaluation method is also established. Finally, Section 6.4 shows simulation results,

including a multi-agent system.

6.1 Factored Markov Decision Processes

Factored Markov Decision Processes are based on Cartesian product state spaces. Let

the state space X be expressed as the product of d state variables:

X = X1 × · · · × Xd (6.1)

States are denoted x ∈ X , and individual variable instantiations are denoted xi ∈ Xi,

i ∈ {1, . . . , d}. Variables Xi may take arbitrary but finite number of values, denoted

by |Xi|. Note, that continuous valued variables may also be fit into this frame by

discretizing and substituting with a discrete variable taking as many possible values

as the number of (disjoint) intervals used in the discretization. The actual value of

the new discrete variable becomes the index of the interval that the continuous value

58

falls into. Alternatively, fuzzy intervals may be used to treat continuous variables in

a better way, as shown later in Section 6.2.1.

Such a factored state space enables the transition model and the reward model

of an MDP to be defined in a more compact manner than that of an MDP with

states having no internal structure. The following definition introduces compactly

representable functions on Cartesian product state spaces.

Definition 6.1 (Local scope function). Let X = X1×· · ·×Xd be a Cartesian product

state space. Let I ⊂ {1, . . . , d} be an index subset. Let the subset of variables {Xi |
i ∈ I} be denoted by X [I], and their corresponding instantiation by x[I]. A function

f : X [I] → R is called a local scope function on X if f only depends on a small

subset I of variables (relative to the total number of variables). The subset I is called

the scope of the function.

The transition probability from one state to another can be obtained as the prod-

uct of several simpler factors, by providing the transition probabilities for each vari-

able Xi separately, depending on the previous values of itself and the other variables.

In most cases, however, the next value of a variable does not depend on all of the

variables; only on a few. Suppose that for each variable Xi there exist sets of indices

Γi such that the value of Xi in the next time step depends only on the values of the

variables X [Γi] and the action a taken. To emphasize this dependence in the prob-

abilities P (x, a, x′), the notation of conditional probability in probability theory will

be used: P (x, a, x′) ≡ P (x′ | x, a). Then we can write the transition probabilities in

a factored form:

P (x′ | x, a) =
d∏

i=1

Pi(x
′
i | x[Γi], a) (6.2)

for each x, x′ ∈ X , a ∈ A, where each factor is a local-scope function

Pi : X [Γi] ×A×Xi → [0, 1] for all i ∈ {1, . . . , d}. (6.3)

Assuming that the number of variables in each scope is small, these functions can be

stored in small tables. These tables are essentially conditional probability tables of a

dynamic Bayesian network (see e.g., [11]).

The reward model of the factored MDP also assumes a more compact form pro-

vided that the reward function depends only on (the combination) of a few variables

59

in the state space. Formally, the reward function is the sum of local-scope functions:

R(x, a) =
r∑

j=1

Rj(x[Ij], a) , (6.4)

with arbitrary (but preferably small) index sets Ij, and local-scope functions

Rj : X [Ij] ×A → R for all j ∈ {1, . . . , r}. (6.5)

The functions Rj might also be represented as small tables. If the maximum size

of the appearing local scopes is bounded by some constant and independent of the

number of variables d, then the description length of the factored MDP is polynomial

in the number of variables d.

To sum up, using the notation {·i}n
1 to denote a set with index i running from 1

to n, and {Ii : fi} to denote a set of local scope functions fi with scopes Ii, a factored

Markov decision process is characterized by the parameters

(
{Xi}d

1 , A, {Γi : Pi}d
1 , {Ij : Rj}r

1 , γ
)

, (6.6)

describing the state and action space, the transition and reward functions and the

discount rate, similarly to traditional (non-factored) MDPs. It is furthermore sup-

posed, that the factored MDPs dealt with herein are finite state and ergodic, that is,

all states can be reached from all initial states.

6.1.1 Overview of Related Work

The idea of representing a large MDP using a factored model was first proposed by

Koller and Parr [62]. More recently, the framework (and some of the algorithms)

was extended to factored MDPs with hybrid continuous-discrete variables [65] and

factored partially observable MDPs [95]. Furthermore, the framework has also been

applied to structured MDPs with alternative representations, e.g., relational MDPs

[38] and first-order MDPs [96].

The exact solution of factored MDPs is usually infeasible if the size of the state

space is large. There are two major branches of algorithms for solving factored MDPs:

the first one approximates the value functions as decision trees, the other one makes

use of linear programming.

60

Decision trees (or equivalently, decision lists) provide a way to represent the agent’s

policy compactly. Algorithms to evaluate and improve such policies, according to

the policy iteration scheme have been worked out in the literature [62] [10] [11].

Unfortunately, the size of the policies may grow exponentially even with a decision

tree representation [11] [68].

The exact Bellman equations (3.6) can be transformed to an equivalent linear pro-

gram with |X | variables {V (x) : x ∈ X} and |X | · |A| constraints. In the approximate

linear programming approach, the value function is approximated as a linear combi-

nation of basis functions (see, (6.7) below), resulting in an approximate LP with m

variables {wj : 1 ≤ j ≤ m} and |X | · |A| constraints. Both the objective function and

the constraints can be written in compact forms, exploiting the local-scope property

of the appearing functions.

Markov decision processes were first formulated as LP tasks by Schweitzer [98].

The approximate LP form is a work of Farias [29]. Guestrin [40] shows that the

maximum of local-scope functions can be computed by rephrasing the task as a non-

serial dynamic programming task and eliminating variables one by one. Therefore, the

approximate LP can be transformed to an equivalent, more compact linear program.

The gain may be exponential, but this is not necessary in all cases. Furthermore, the

cost of the transformation may scale exponentially [22]. Primal-dual approximation

technique to the linear program is applied by Dolgov [25], and improved results on

several problems are reported.

The approximate policy iteration algorithm [62] [40] also uses an approximate

LP reformulation, but it is based on the policy-evaluation Bellman equation (3.11).

Policy-evaluation equations are, however, linear and do not contain the maximum

operator, so there is no need for a second, costly transformation step. On the other

hand, the algorithm needs an explicit decision tree representation of the policy.

6.1.2 Features for Linear Function Approximation

The optimal value function can be represented as a table of size
∏d

i=1 |Xi|, one table

entry for each state. To represent it more efficiently, we may rewrite it as the sum

of local-scope functions with small domains. Unfortunately, in the general case, no

61

exact factored form exists [40], however, we can still approximate the function by

means of local scope functions:

V̂ (x) =
m∑

j=1

Vj(x[Jj]) , (6.7)

with index sets Jj and m local scope functions

Vj : X[Jj] → R for all j ∈ {1, . . . , m}. (6.8)

Obtaining the Index Sets for the Value Function

One question is, how can we provide index sets Jj that are relevant for the approx-

imation of the value function. If the local scopes Γi and Ij for the transition model

and the reward model are known (which might be easy to define manually having

sufficient knowledge about the task and the variables involved), we may use the fol-

lowing reasoning to deduce scopes for the value function. The value function is the

long-term expected discounted version of the reward function (whose index sets Ij

are known). If we want to come up with an index set Jj of a local scope value func-

tion Vj which reflects long term values one step before reaching rewarding states, we

need to examine which variables influence the variables in the set Ij. We can go on

with this recursively to find ancestors of the variables in the set Ij, and iteratively

determine the sets of variables that predict values on the long term. This process is

called back-projection through the transition model [40].

Linear Form of the Value Function

Interestingly, the form (6.7) can be easily rewritten to linear function approximator

form, however, this form seems to be neglected in the literature. In the following I

will consider such a notation.

As noted previously, a local scope function Vj of scope X [Jj] can be represented

as a table of size
∏

i∈Jj
|Xi| by assigning separate utility values for all possible com-

binations of the values of variables in Jj. Put it differently, each index set Jj implies∏
i∈Jj

|Xi| many binary features, that correspond to all possible combinations of the

values of variables in Jj. Each feature is a conjunction of variable-value assignments.

In the following, I provide a precise definition of such features.

62

First, let us define combination index, which denotes a combination of variable

value assignments. Recall, that variable Xi can take |Xi| values. To simplify notation,

without loss of generality, assume that the possible values are 1, . . . , |Xi|.

Definition 6.2 (Combination index). Let I ⊂ {1, . . . , d} be an arbitrary index set.

The integer vector k ∈ N|I| is a combination index for the index set I if for all

j = 1, . . . , |I|: 1 ≤ kj ≤ |XIj
|, that is, kj denotes a value taken by variable XIj

.

Furthermore, let CI denote the set of possible combination indices for the index

set I: CI := {k ∈ N|I| | k is a combination index for I }. Note that |CI | =
∏

i∈I |Xi|,
since CI enumerates all possible combinations of variable value indices for the variables

in index set I.

Definition 6.3 (Combination feature). Let I ⊂ {1, . . . , d} be an arbitrary index set,

and let k = (k1, . . . ,k|I|) be a combination index for I. Let x ∈ X be an arbitrary

state. Then the binary feature

φk(x) ≡ φk1,...,k|I|(x) := δ
(|I|∧

j=1

XIj
= kj

)

is a combination feature of state x with combination index k, where δ is the Kronecker

function, returning 1 if its argument is true and 0 otherwise.

Using these features, we may write the local scope value function Vj in a linear

form. Let vk denote the value corresponding to the combination denoted by the

combination index k. Then

Vj(x) =
∑

k∈CJj

vkφk(x) . (6.9)

The total number of binary features resulting from all index sets Jj then equals

n =
∑m

j=1

∏
i∈Jj

|Xi|, and the approximation of the value function can be written as

V̂ (x) =
m∑

j=1

∑
k∈CJj

vkφk(x) . (6.10)

To simplify notation, we reindex the features with regular integer indices running

from 1 to n, furthermore, we call the corresponding values vk as feature weights from

now on and denote them by w:

V̂ (x) =
n∑

i=1

wiφi(x) = wT φ(x) , (6.11)

63

where the latter form uses vector notation equivalent to (3.32), with w = (w1, . . . , wn)

and φ = (φ1, . . . , φn). Note, that if the index sets Jj are small, then n is relatively

small compared to the total number of states |X | =
∏d

i=1 |Xi|.
Also note the duality of combinatoriality and compositionality in this representa-

tion as mentioned in Section 1. The features themselves are responsible for extracting

the inherent combinatoriality from the function V to be approximated, while the lin-

ear nature of the overall approximation is responsible for composing these parts to

form the final approximation.

6.2 Factorization and State Space Partitioning

This section sheds a different light on combination features and investigates them

in relation to state space partitioning, or equivalently, state aggregation. Using this

insight, in Section 6.2.2 I will also relate value approximation based factored rein-

forcement learning to exact learning algorithms in an auxiliary MDP.

State aggregation is a straightforward way to achieve some basic generalization

and a moderately compact representation in value function approximation based rein-

forcement learning [92]. The simplest way of state aggregation is to partition the set

of states into disjoint subsets, and then approximate the value function by a piecewise

constant function, which is constant across the aggregate subsets, meaning all states

in a subset have the same value. This expresses the idea that states in a subset are

similar regarding their long term utility.

However, this kind of state aggregation is not general enough, because it considers

a strict state similarity: states are considered either similar or not by falling into the

same subset or not. We may relax this condition and introduce partial similarity of

states, to express that two states share some aspects of similarity; they are similar

according to some criterion. To achieve this, we may generalize the idea of partitioning

states into disjoint subsets to have multiple disjoint partitions of the set of states.

Definition 6.4 (Multi-fold partition). Let S be a set of states. Let M ∈ N, and let

P1(S), . . . ,PM(S) be M different disjoint partitions of the set S. These M partitions

of S together is called an M-fold partition of S. The cardinality of the partitions need

64

not be equal. As a consequence, each state s ∈ S is contained in exactly M subsets,

each subset taken from a different partition.

Each partition may be related to one criterion of similarity among states. Thus,

two states can be considered similar according to one criterion, and different according

to another. Assuming that states that are similar according to a criterion have a partly

similar value, it seems reasonable to suppose that the value of a state is expressed as

the sum of those partial values related to criterions. Thus, the value of a state may

be approximated as a sum of local functions related to each criterion by which we

consider states similar in some aspect.

This idea is naturally contained in factored MDPs, that aim to approximate the

value function as a sum V̂ (x) =
∑m

j=1 Vj(x) of local scope functions. Each local scope

function Vj naturally induces a disjoint partition of the states, since it considers two

states equal, if and only if they differ only in the variables that it does not depend on.

Definition 6.5 (Induced partition). Let X = X1 × · · · × Xd be a Cartesian product

state space, let I ⊂ {1, . . . , d} be a local scope and let I := {1, . . . , d} \ I. Let x ≡ y

if and only if x[I] = y[I], that is, x and y only differ in variables in I. Since it is a

property of equivalence relations that they define a partition over states, the index set

I defines a partition of the state space X , which is called the partition induced by the

index set I, denoted as PI(X).

Let f : X [I] → R be a local scope function with scope I. The partition induced

by the local scope function f is the partition induced by its scope I. Let x ∈ X and

y ∈ X be such, that x[I] = y[I]. Then, clearly f(x) = f(y).

Thus, an approximation of state values as the sum of m local scope functions

naturally implies an m-fold partition of the states.

Combination features defined above are strongly related to subsets in induced

partitions. The following corollary states this relation formally.

Corollary 6.6 (Combination features and induced partitions). Let I ⊂ {1, . . . , d} be

an index set. Let PI(X) = {Z1, . . . ,ZKI
} be its induced partition. Let CI be the set of

combination indices for the index set I. Then, there is a one-to-one mapping between

the combination indices in CI and the subsets Zi of the partition. Hence, the number

of subsets in the partition is KI = |CI | =
∏

i∈I |Xi|.

65

Proof. As a straightforward consequence of the definitions of combination indices and

induced partitions, a combination index k = (k1, . . . ,k|I|) defines an equivalence class

Zk = {x ∈ X | xi1 = k1, . . . , xi|I| = k|I|}. Thus, there are as many equivalence classes

as combination indices.

As a consequence, combination features for an index set I are essentially member-

ship indicators for the subsets of the partition induced by the index set I. In total,

the m-fold partition implies n subsets {Zi | i = 1, . . . , n}, as can be seen from the

formulas (6.10) and (6.11). Another consequence is that if the value function V is

approximated as the sum of m local scope functions, which implies an m fold parti-

tion of the state space, then the feature vector φ(x) ∈ {0, 1}n of any state x ∈ X will

contain exactly m ones (all other entries will be zeros), since each state is contained

in m subsets; corresponding features take value 1, the others take 0.

6.2.1 Generalization to Continuous Variables

The subset membership interpretation of features may be generalized to continuous

variables via fuzzy membership values. First, let us generalize state variables for the

continuous case.

As noted earlier, continuous valued state variables may be fit into the Cartesian

state space model via discretization. We may consider the following representation.

Let Y = [a, b] ⊂ R be a continuous variable. Suppose that we divide the interval [a, b]

to some sub-intervals, whose cardinality will be denoted |Y| − 1, as: a = y1 < y2 <

. . . < y|Y|−1 < y|Y| = b. The {yi ∈ R | i = 1, . . . , |Y|} are called basis points. Let

linear spline fuzzy membership functions assign probabilities Pi(y) to basis points yi

for each value y ∈ [a, b] as follows:

Pi(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y−yi−1

yi−yi−1
if yi−1 ≤ y ≤ yi

yi+1−y
yi+1−yi

if yi ≤ y ≤ yi+1

0 otherwise

(6.12)

Note, that
∑|Y|

i=1 Pi(y) = 1 for any y ∈ [a, b], and at most two of the probabilities Pi(y)

are nonzero, at the borders of the interval for which y ∈ [yi, yi+1]. This representation

of continuous variables, hereafter referred to as fuzzy state variable, can be regarded

66

as a generalization of an |Y|-valued discrete variable, since a discrete variable can be

described using a membership function taking value 1 if y = yi and 0 otherwise.

Combination indices for fuzzy state variables can be defined the same way as in

case of discrete variables, with reference to basis points instead of the discrete values.

Now, we are ready to generalize combination features to fuzzy state variables. This

can be done by multiplying probabilities assigned to basis points, instead of taking

the conjunction of variable value assignments.

Definition 6.7 (Product feature). Let X = X1×· · ·×Xd be a Cartesian product state

space with fuzzy state variables Xi, i = 1, . . . , d. Let I ⊂ {1, . . . , d} be an arbitrary

index set, and let k = (k1, . . . ,k|I|) be a combination index for I. Let x ∈ X be an

arbitrary state. Then the continuous feature

φk(x) ≡ φk1,...,k|I|(x) :=

|I|∏
j=1

Pkj
(xIj

)

is a product feature of state x with combination index k, where Pkj
(xIj

) denotes the

probability assigned to the kjth basis point of variable XIj
for value xIj

. The value of

a product feature is in [0, 1], since it is the product of probabilities.

Note, that this definition is a generalization of combination features, since in case

of discrete variables the above product is equal to the conjunction of binary variables

used in Definition 6.3 of combination features.

The following lemma shows that product features of a local scope function can be

interpreted as fuzzy membership values in subsets of the induced partition.

Lemma 6.8 (Product features and induced partitions). Let I ⊂ {1, . . . , d} be an

index set. Let PI(X) = {Z1, . . . ,ZKI
} be its induced partition. Let CI be the set of

combination indices for the index set I. Then, for any x ∈ X , the product features

{φk(x) | k ∈ CI} can be interpreted as probability values P (Zk) := φk(x) assigned to

the subsets of the induced partition, since∑
k∈CI

P (Zk) = 1 .

Proof. Substituting the definition of product features we have

∑
k∈CI

P (Zk) =
∑
k∈CI

φk(x) =
∑
k∈CI

|I|∏
j=1

Pkj
(xIj

)

67

Many of the features φk(x) in the above sum are 0, since many probabilities Pkj
(xIj

)

are 0, making the product 0. Let CI,x denote the set of those combination indices, for

which φk(x) �= 0. As noted above, for each j ∈ [1..|I|], there are at most two Pkj
(xIj

)

that are not zero, thus |CI,x| ≤ 2|I|. If those two nonzero probabilities are denoted

pj,1 and pj,2, where pj,1 + pj,2 = 1, then the above expression can be rearranged as

∑
k∈CI

|I|∏
j=1

Pkj
(xIj

) =
∑

k∈CI,x

|I|∏
j=1

Pkj
(xIj

) =

|I|∏
j=1

(
pj,1 + pj,2

)
=

|I|∏
j=1

1 = 1 ,

completing the proof.

As a consequence, the property of discrete feature vectors φ(x) containing exactly

m ones generalizes to the property that
∑m

j=1

∑
k∈CJj

φk(x) =
∑m

j=1 1 = m. That is,

feature vectors are normalized in L1 norm, which may be utilized by algorithms.

6.2.2 Insights to Factored Methods via Auxiliary MDPs

The convergence properties of simple (1-fold) state aggregation based methods have

been analyzed through their relation to an auxiliary MDP (see [92] and references

therein, and also Section 6.7 in [8]). We may use the same idea to analyze methods

based on multi-fold state aggregation, thus including factored MDPs. A strongly

related concept is soft state aggregation analyzed in [100], of which multi-fold state

aggregation is a special case. The upcoming derivations are based on Section 6.7

(Value Iteration with State Aggregation) of [8], which is not repeated here, since they

follow from the more general derivation for multi-fold partitions. Also note, that the

derivations are detailed for policy evaluation, but they can be carried out for value

iteration by substituting the appropriate formulas, as will be noted below.

Let us consider the fully incremental policy evaluation method (3.29) (or (3.30)

in case of value iteration) for linear function approximation, where the parameters θ

are now denoted w ∈ Rn and by substituting Vθ(s) = wT φ(s) and ∇Vθ(s) = φ(s):

w := w + αφ(s)
(∑

a∈A
π(s, a)

∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γwT φ(s′)

)
−wT φ(s)

)
(6.13)

The time index t is omitted here for better legibility. In this section, we will denote

the states with s ∈ S as in case of non-factored MDPs, to emphasize the viewpoint

of states being aggregated instead of the state space being factored.

68

In case of factored MDPs, the features φ(s) of a state s ∈ S are combination

features related to subsets in the induced partitions of the state space. To gain more

insight about the working of the algorithm, we construct an auxiliary MDP, in which

exact solution algorithms are related to approximate solution algorithms in factored

MDPs. We introduce two type of states:

1. the states s ∈ S of the original problem

2. an additional n states, denoted by z1, . . . , zn; each zk is viewed as an aggregate

state representing the subset Zk of the state space

The dynamics of the auxiliary system are as follows:

(a) Whenever at a state zk, there are no decisions to be made, and a zero-reward

transition to state s ∈ Zk takes place with probability ψπ(s | zk) defined below.

(b) Whenever the state is some s ∈ S and an action a ∈ A is selected, the next

state is zk with probability P (s, a, zk) =
∑

s′∈S P (s, a, s′)φ(zk | s′) in which case

a reward equal to R(s, a) =
∑

s′∈S P (s, a, s′)R(s, a, s′) is received.

The probabilities φ(zk | s) represent the choice between the subsets in which state

s is contained;
∑n

k=1 φ(zk | s) = 1. The notation φ is slightly overloaded here, since

such probabilities can be obtained by setting with φ(zk | s) = 1
m

φk(s), since the

vectors φ(s) sum to m as noted earlier. Applying Bayes’s rule, we have

ψπ(s | zk) =
φ(zk | s)pπ(s)∑

s′∈S φ(zk | s′)pπ(s′)
=

φ(zk | s)pπ(s)

pπ(zk)
, (6.14)

where pπ(s) denotes the probability of s according to the stationary distribution of

policy π in the original MDP, and let pπ(zk) :=
∑

s′∈S φ(zk | s′)pπ(s′). In case of

value iteration there is no policy to be followed, and the uniform distribution is used

to sample states: p∗(s) = 1
|S| , p∗(zk) = 1

|S|
∑

s′∈S φ(zk | s′) and

ψ∗(s | zk) =
φ(zk | s)∑

s′∈S φ(zk | s′)
. (6.15)

If we use W π(zk) and V π(s) to denote the long term utility of the two types of

states in the auxiliary problem, Bellman’s equation takes the form

69

W π(zk) =
∑
s∈Zk

ψπ(s | zk)V
π(s)

V π(s) =
∑
a∈A

π(s, a)
n∑

l=1

P (s, a, zl)
(
R(s, a) + γW π(zl)

)

=
∑
a∈A

π(s, a)
(
R(s, a) + γ

n∑
l=1

P (s, a, zl)W
π(zl)

)

=
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γ

n∑
l=1

φ(zl | s′)W π(zl)
)
.

Using the second equation to eliminate V π(s) from the first, we obtain

W π(zk) =
∑
s∈S

ψπ(s|zk)
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γ

n∑
l=1

φ(zl|s′)W π(zl)
)

(6.16)

Using ψ∗(s|zk) and replacing
∑

a∈A π(s, a) with maxa∈A, we may define W ∗(zk) and

V ∗(s) analogously. This equation may be transformed to a form closer to (6.13). To

simplify further derivations, let (for non-necessarily optimal utility values W (zl))

U(s) :=
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γ

n∑
l=1

φ(zl | s′)W (zl)
)

.

Note that the summation over all s ∈ S in Eq. (6.16) amounts to taking expectation,

with respect to probabilities ψπ(s | zk). The Robbins-Monro stochastic approximation

algorithm based on Equation (6.16), in which this expectation is replaced by a single

sample s drawn according to the probabilities ψπ(s | zk) is given by

W (zk) := (1 − αk)W (zk) + αU(s) (6.17)

= W (zk) + αk

(
U(s) − W (zk)

)
. (6.18)

If we identify wk with W (zk) and substitute φ(zk | s) with φk(s), we have an update

similar to (6.13). The factor 1
m

can be omitted when substituting φk(s), since it would

only introduce a constant scaling to the weights w. Equivalently to sampling with

probabilities ψπ(s | zk), the update of wk can be multiplied by φk(s) ∝ φ(zk | s), and

states can be sampled with probabilities pπ(s), as seen from (6.14):

wk := wk + αkφk(s)
(∑

a∈A
π(s, a)

∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γwT φ(s′)

)
−wk

)
(6.19)

70

This update differs from (6.13) only in that wk is used instead of wT φ(s) in the differ-

ence, and is an alternative update for linear function approximation, as both methods

reduce to exact policy iteration when the number of parameters n equals the number

of states. Interestingly, this alternative update seems not to be used in the traditional

RL literature, however in the context of approximate solution heuristics for Partially

Observable Markov Decision Processes using Q-learning with linear approximation

applied to vector valued belief states, it is known as replicated Q-learning, while the

update (6.13) is known as linear Q-learning [70]. For this reason, the update (6.19)

will be called replicated policy evaluation. A similar update can be derived for value

iteration, which will be called replicated value iteration:

wk := wk + αkφk(s)
(
max
a∈A

∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γwT φ(s′)

)
− wk

)
(6.20)

We have therefore succeeded in describing these ‘replicated’ methods as stochastic

approximation algorithms that attempt to solve exactly the auxiliary problem, which

can be used to establish their convergence, as detailed later.

Let us now return to the update (6.13). In the auxiliary MDP, we get the corre-

sponding update of an aggregate state zk by weighted averaging across the updates

of all l for which s ∈ Zl with weights φ(zl | s) and multiplying by φ(zk | s) :

W (zk) := W (zk) + αkφ(zk | s)
n∑

l=1

φ(zl | s)
(
U(s) − W (zl)

)
(6.21)

= W (zk) + αkφ(zk | s)
(
U(s) −

n∑
l=1

φ(zl | s)W (zl)
)

(6.22)

Note, that in this update, the sampling is based on the states s ∈ S, which are

sampled with probability pπ(s). The term φ(zk | s) can be incorporated into the

sampling probability, thus the algorithm may be seen as updates:

W (zk) = W (zk) + αk

(
U(s) −

n∑
l=1

φ(zl | s)W (zl)
)

(6.23)

= (1 − αk)W (zk) + αk

(
U(s) + W (zk) −

n∑
l=1

φ(zl | s)W (zl)
)

(6.24)

sampled with probability proportional to φ(zk | s)pπ(s). For these quantities to

be sampling probabilities, they must be normalized to sum to 1, so the sampling

71

probabilities become (reversing the change of sampling before (6.19))

φ(zk | s)pπ(s)∑
s′∈S φ(zk | s′)pπ(s′)

= ψπ(s | zk) , (6.25)

as seen from (6.14). Thus, the operator associated with this update is

W π(zk) =
∑
s∈S

ψπ(s | zk)
(
V π(s) + W π(zk) −

n∑
l=1

φ(zl | s)W π(zl)
)

= W π(zk) +
∑
s∈S

ψπ(s | zk)
(
V π(s) −

n∑
l=1

φ(zl | s)W π(zl)
)

,

which can be rearranged to have

∑
s∈S

ψπ(s | zk)V
π(s) =

∑
s∈S

ψπ(s | zk)
n∑

l=1

φ(zl | s)W π(zl) . (6.26)

By defining the stochastic matrices Ψπ ∈ Rn×N by Ψπ
k,s = ψπ(s | zk) and Φ ∈ RN×n

by Φs,k = φ(zk | s), the above equation can be written using vector notation as

ΨπΦwπ = Ψπvπ . (6.27)

Let Dπ ∈ RN×N be the diagonal matrix containing the probabilities pπ(s) as be-

fore, and let Cπ ∈ Rn×n be the diagonal matrix containing the probabilities pπ(zk).

Recognizing that Ψπ = (Cπ)−1ΦTDπ, we have

(Cπ)−1ΦTDπΦwπ = (Cπ)−1ΦTDπvπ

ΦTDπΦwπ = ΦTDπvπ

wπ = (ΦTDπΦ)+ΦTDπvπ = ΩDπvπ

where (ΦTDπΦ)+ is used since Φ is not of full rank in general in case of combination

features. Not surprisingly, we have recovered the general result that incremental

approximate policy evaluation with linear approximation performs an update that is

the sampled version of approximate policy evaluation with weighted quadratic norm

back-projection ΩDπ introduced in Section (3.2.2). Note, that this result is not new,

as it has been known for linear function approximation in general, independent of

factored MDPs. However, in my opinion, in factored MDPs the above derivation is

more insightful than previous ones, and is also valid for continuous state variables

with fuzzy representation, introduced in Section 6.2.1. Also note, that in case of

value iteration, when uniform state sampling is used, D∗
s,s = 1

N
, and the recovered

back-projection operator is Ω2 = Φ+: w∗ = Φ+v∗ (see Section (3.2.2)).

72

6.3 Theoretical Results

This section lists the theoretical results that are consequences of the derivations in

the previous sections. We begin by establishing the convergence of the incremental

replicated policy evaluation method and value iteration in factored MDPs.

Lemma 6.9 (Bellman operator of replicated policy evaluation). The Bellman opera-

tor related to the replicated policy evaluation update (6.19) is a max-norm contraction

with contraction factor γ.

Proof. The Bellman equation (6.16) can be written in the form W π = ΨπT πΦW π.

Let T ′ := ΨπT πΦ, where T π is the regular Bellman operator of policy π defined by

(3.39). Since Ψπ and Φ are stochastic matrices, all row sums are 1, hence they are

non-expansions in max-norm. Thus, operator T ′ is contraction in max-norm with

contraction factor γ, since T π is a max-norm contraction with the same factor.

Lemma 6.10 (Bellman operator of replicated value iteration). The Bellman operator

related to the replicated value iteration update (6.20) is a max-norm contraction with

contraction factor γ.

Proof. The proof is identical to that of Lemma 6.9, with the substitution of Ψπ

with Ψ∗ and T π with T defined by (3.34), which is also known to be a max-norm

contraction with contraction factor γ.

Let us make the usual assumption in stochastic approximation, that the step sizes

αt(k) satisfy the so called Robbins-Monro conditions for all k ∈ {1, . . . , n}:
∞∑

t=1

αt(k) = ∞ ,
∞∑

t=1

α2
t (k) < ∞ , (6.28)

where t indexes time steps. Note that in update formulas, the index t is omitted and

k is used as a subscript, resulting in the simpler form αk for legibility. To prove the

convergence of replicated methods, we will need the following proposition of [8].

Proposition 6.11 (Proposition 4.4 of [8]). Let t index time and let rt ∈ Rn be a

sequence generated by the iteration

rt+1(k) = (1 − αt(k))rt(k) + αt(k)
(
(Hrt)k + ωt(k)

)
,

73

where rt(k) denotes the kth component of rt and ωt(k) is a random noise term. Denote

by Ft the history of the algorithm until time t defined as

Ft = {r0(k), . . . , rt(k), ω0(k), . . . , ωt(k), α0(k), . . . , αt(k), k = 1, . . . , n}

Assume, that the step sizes αt(k) satisfy the Robbins-Monro conditions, and the noise

terms ωt(k) satisfy

E[ωt(k) | Ft] = 0 ∀t, k (zero mean)

E[ω2
t (k) | Ft] ≤ a + b‖rt‖2 ∀t, k (bounded variance)

for some norm ‖ · ‖ on Rn and appropriate constants a, b ∈ R. Suppose furthermore,

that the mapping H is a max-norm contraction1.

Then, rt converges to r∗, the fixed point of H, with probability 1.

Theorem 6.12 (Convergence of replicated policy evaluation in factored MDPs).

Consider the algorithm described by Equation (6.19). Suppose, that all states are

sampled with positive probability, and that step sizes satisfy conditions (6.28). Then,

the vector w converges with probability 1 to the unique solution of the system (6.16).

Proof. We have seen that the Bellman operator of Lemma 6.9 is max-norm contrac-

tion. To apply Proposition 6.11, the noise term (slightly abusing the notation wt to

denote the weight vector in the tth iteration)

ωt(k) = φk(s)
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γwT

t φ(s′)
)

−
∑
s∈S

ψπ(s | zk)
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γwT

t φ(s′)
)

resulting from the Robbins-Monro stochastic approximation must satisfy the above

conditions, where expectation is taken with respect to the state sampling probabilities

pπ(s). It is easy to see that E[ωt(k) | Ft] = 0, since φ(zk | s)pπ(s) ∝ ψπ(s | zk), and

the expectation of the first term equals the second in the noise term. Furthermore,

E[ω2
t (k) | Ft] ≤ 4(Rmax + ‖wt‖∞)2 ≤ 4(R2

max + 2Rmax) + (2Rmax + 1)‖wt‖2
∞ ,

where Rmax ≥ |R(s, a, s′)| ∀s, a, s′, and we have used that γwT
t φ(s′) ≤ ‖wt‖∞ and

that ‖wt‖∞ ≤ (1 + ‖wt‖2
∞).

1The original proposition is stated more generally for weighted maximum norm pseudo-

contractions, for which the max-norm contraction is a special case.

74

Corollary 6.13 (Convergence of replicated TD learning in factored MDPs). Consider

the algorithm described by the update (k indexes components of vector w here)

wk := wk + αkφk(s)
(
R(s, a, s′) + γwT φ(s′) − wk

)
.

Suppose, that all states are sampled with positive probability according to the policy

being evaluated, and that the step sizes satisfy conditions (6.28). Then, the vector w

converges with probability 1 to the unique solution of the system (6.16).

Proof. The proof follows from Theorem 6.12, as the TD update is a further sampled

version of incremental policy evaluation with respect to the policy π and the transition

probabilities P of the MDP. The noise term becomes (again abusing the notation wt)

ωt(k) = φk(s)
(
R(s, a, s′) + γwT

t φ(s′)
)

−
∑
s∈S

ψπ(s | zk)
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γwT

t φ(s′)
)

,

and expectation must be taken with respect to state sampling probabilities pπ, policy

π and transition probabilities P , furthermore the required conditions on the noise

term are satisfied similarly to Theorem 6.12.

Theorem 6.14 (Convergence of replicated value iteration in factored MDPs). Con-

sider the algorithm described by Equation (6.20). Suppose, that all states are sampled

with positive probability, and that the step sizes satisfy conditions (6.28). Then, the

vector w converges with probability 1 to the unique solution of the Bellman equations

related to update (6.20).

Proof. The proof is identical to that of Theorem 6.12, building on Lemma 6.10 instead

of Lemma 6.9.

Now, we move on to establish the convergence of (incremental) approximate policy

evaluation in factored MDPs.

Theorem 6.15 (Convergence of policy evaluation in factored MDPs). Let the value

function of a factored MDP be approximated as a sum of m local scope functions:

V̂ (x) =
∑m

j=1 Vj(x[Ij]). Suppose, that all states are sampled with positive probability,

and that the step sizes satisfy conditions (6.28). Then, approximate policy evaluation

converges to a unique solution. Furthermore, the incremental update (6.13) converges

to the same solution with probability 1, and the error bound (3.42) applies.

75

Proof. As seen in Section (6.1.2), the approximation to the value function can be

expressed in a linear form V̂ (x) = wT φ(x) utilizing combination features. Then, the

general results of Section (3.2.2) about function approximation with linear architec-

ture can be used to establish convergence of the non-incremental method based on

the Bellman equations

w = ΩDπT πΦw .

In this case, the operator ΦΩDπT π is a contraction in ‖·‖Dπ norm. The convergence of

the incremental update (6.13) follows from the fact that the related back-projection

operator is the weighted quadratic-norm back-projection ΩDπ , as seen in Section

6.2.2. Details related to the effect of sampling follow from the more general result

for TD learning (which is equivalent to even further sampling), as seen in the next

theorem.

Theorem 6.16 (Convergence of TD learning in factored MDPs). Suppose, we are

dealing with an ergodic Markov decision process with a finite state space, and that the

step sizes satisfy conditions (6.28). Then, the temporal difference learning update

wk := wk + αkφk(s)
(
R(s, a, s′) + γwT φ(s′) − wT φ(s)

)

in factored MDPs converges to a unique solution with probability 1. Furthermore, the

error bound (3.42) applies.

Proof. The theorem follows from the convergence of temporal difference learning with

linear function approximation in case of on-policy sampling [117] (Section 3.2.2).

It must also be noted, that value iteration may diverge in factored MDPs, since

the related Bellman operator T is a contraction in max norm, not in quadratic norm,

as the corresponding back-projection operator Ω2 = Φ+ would be.

Also, note that from the practical point of view, the simulation based TD meth-

ods described in Corollaries 6.13 and 6.16 are of higher interest, since they do not

require the evaluation of expressions using exponentially many states (in the number

of variables). Although they do require that all states are sampled with positive prob-

ability, theoretical considerations exist that subsampling only a polynomial number

of states in factored MDPs (using value iteration) can result in good approximations

76

with high probability [115]. Unfortunately, this result cannot be simply transferred

to policy evaluation because of the difference in norms; the maximum norm used in

value iteration seems to have more favorable properties than the quadratic norm when

bounding sampling errors. Nonetheless, it is suspected, that similar sampling results

can be proven for policy evaluation methods as well, using other proof techniques.

Finally, we note that the convergence of SARSA learning in factored MDPs follows

from the general results of Gordon for linear function approximation. Note, that

factored TD learning can also be applied to directly approximate the Q function,

instead of the V function by updating a distinct weight vector wa for each a ∈ A.

Theorem 6.17 (Convergence of SARSA learning in factored MDPs). Suppose, that

all states are sampled with positive probability, and that the step sizes satisfy conditions

(6.28). Then, the SARSA update for the tuple (s, a, r, s′, a′)

wa
k := wa

k + αkφk(s)
(
R(s, a, s′) + γφ(s′)Twa′ − φ(s)Twa

)
in factored MDPs converges to a bounded region with probability 1.

Proof. The theorem follows from the general result of Gordon (Theorem 5.1) for linear

function approximation.

6.4 Computer Simulations

This section provides empirical evidence for the applicability of temporal difference

learning in factored MDPs. Two tasks were investigated: a task called SysAdmin,

which is a prototypical artificial task for testing algorithms in factored MDPs, and a

more realistic example of a learning agent in a food-world, an environment devised

as part of an EC FET project.

6.4.1 A Prototypical Example: SysAdmin

A prototypical task in factored reinforcement learning is the so called SysAdmin

task [40] [39] [23]. A system administrator takes care of a number (d) of computers

connected into a network of some topology (for example uni- or bidirectional ring,

star, ring of rings, ring and star, grid, etc.). Each computer can be in two states,

77

running or failed. Each computer might fail with some probability in each time

step, and a failed computer increases the failure probability of its neighbors. A system

administrator might reboot one computer in each step, setting it to a running state

with high probability. The task is to learn a rebooting strategy to maximize the

number of running computers in each time step.

The task can be realized as a factored MDP as follows. The state space can be

described by d binary variables, one for each computer. There are d + 1 actions; one

for rebooting each computer, and doing nothing. The scopes of the local transition

functions depend on the topology of the network; the state of each computer in the

next time step depends its current state and the state of its immediate neighbors. The

reward function has r = d components, each consisting of a single variable for each

computer. Finally, the value function can be approximated with m = d components,

with scopes containing the immediate neighbors of each computer (including itself).

The discount factor is 0.99. In the following experiments the failure probability is

1/(4d), and each failed neighbor increases this probability with an additional 1/(4d).

The reboot probability is set to 0.95, and ring and star topologies are used.

Tabular and factored methods are compared both for Q function learning and V

function plus model learning (incremental averaging P and R, see Algorithm 4 in

the next section for details). As Q functions implicitly incorporate the reward and

transition models, separating the learning of the functions P , R and V can also be

thought of as factorization, and its effect is also examined. Hereafter, V function

learning with model learning will be called explicit model learning, while Q function

learning will be called implicit model learning.

Results for the SysAdmin task in the literature are mainly for linear programming

based methods such as factored value iteration and policy iteration, hence learning

speed is usually measured in running time. Since temporal difference learning is a

fully incremental simulation based method, its learning speed can be measured in the

number of samples required to reach a certain performance. The following evaluation

strategy is used here. Learning is split to episodes of 1000 steps, where each episode is

started with all computers running. This periodic restarting is required because if at

the beginning of the learning, the system administrator lets a number of computers

fail, soon all computers will fail, because the probability of failures increases, and

78

even if the administrator could learn a perfect strategy, it would may not be able to

reboot all computers as fast as they fail, since it can only reboot one computer in a

time step, but meanwhile more than one may fail.

Figure 6.1 shows factored methods versus tabular ones both with and without

explicit model learning. The plots show the number of episodes required to reach

85% performance as a function of the number of computers d, where performance is

measured as the average number of running computers in the last 100 time steps of

an episode. As can be seen, tabular methods scale exponentially, while factored ones

scale polynomially with d. Factored methods can easily handle 20 computers, a state

space of size 220. Furthermore, explicit model learning is faster in both cases.

4 12 20
0

500

1000

1500

2000

2500

3000

3500

4000
Tabular
Factored

(a) No explicit model learning

4 12 20
0

50

100

150

200

250

300

350

400
Tabular
Factored

(b) Explicit model learning

Figure 6.1: Scaling with the number of computers. Number of episodes required

to reach 85% performance (average of 30 runs). Scaling is exponential for tabular, but

polynomial for factored methods (insets show logarithmic scale). Explicit model learn-

ing is faster in both cases by an order of magnitude (note the difference in the scales).

6.4.2 A More Complex Example: FoodWorld

The experiments reported in this section were performed in an environment, which

is part of an EC FET project, called ‘New Ties’ 2, a platform for multi-agent sim-

ulations to model social phenomena. In the present simulations only single agents

are considered in order to evaluate learning mechanisms, but the factored technique

enables to address multi-agent scenarios efficiently: agents may treat other agents as

additional factors. The results listed here have also been published in [43].
2http://www.new-ties.eu

79

The Scenario

The environment is based on a rectangular grid world that contains two groups of

food items at the far ends of the world. The task of the agent is to learn to consume

food appropriately to survive: keep its energy level between two thresholds Emin and

Emax, that is, avoid being hungry, but also avoid being too much full. In addition,

the so called metabolism of the agent is such that it is better to consume both kind

of food items, that is, if the agent consumes only one kind of food, then its energy

does not increase after a while. Also, the task can be augmented with punishments

for being far away from home, where ‘home’ of the agent is its starting position in

the grid world. Denoting by d(s) the distance of the agent from home in state s,

by E(s) the energy of the agent in state s, and ΔE(s, s′) := E(s′) − E(s), in total,

the reward function of the agent on a state transition (s, a, s′) can be described as

R(s, a, s′) = RE(s, s′) + RD(s), where RD(s) = −0.1 d(s) and

RE(s, s′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(s′) − Emin if E(s′) ≤ Emin ,

ΔE(s, s′) if Emin ≤ E(s′) ≤ Emax ,

Emax − E(s′) if Emax ≤ E(s′) .

The agent is only able to observe the world partially, i.e. it has a cone of sight in

front of it with a limited range. The agent can move on an 8-neighborhood grid; it is

able to turn left or right 45 degrees, and move forward. It has a cone of sight of 90

degrees in front of itself. It has a ‘bag’ of limited capacity, into which it may collect

food items, and later consume the food from the bag. The primitive observations of

the agent are food items in its cone of sight, its own level of energy and the number

of food items in its bag of each type. The primitive actions are ‘turning left/right’,

‘moving forward’, ‘picking up food to the bag’, and ‘eating food from the bag’.

Agent Architecture

Since reinforcement learning in a heavily partially observable environment is very

difficult in general and because the Markovian assumption on the state description

is not met, the agent was augmented with high level variables and actions in order

to transform the task and improve its Markov property. Note, that there are formal

approaches to tackle the problem of partial observability that aim to transform the

80

series of observations automatically into a Markovian state description via belief states

(see, e.g., [82] and the references therein), we did not choose to utilize them in the

present study since we wished to separate the factored MDP approach in a demanding

scenario from the demands of partial observability. Also, the ESN approach presented

in Chapter 5 is not straightforward to apply here, the underlying process is not a k-

order Markov process for some reasonable k, and more complex methods are required

to produce a Markovian state description from observations.

Predefined high level (continuous) variables are calculated from the history of

observations and form the variables of the state space of the factored MDP. The

history of observations is stored using so called long term memory maps, for example

one containing entries about where the agent has seen food items of a certain type

in the past. Also, high level action macros were manually programmed as a series of

primitive actions to facilitate navigation at a higher level of abstraction.

Figure 6.2 shows the agent architecture that makes use of high level variables and

actions, and the factored architecture for value function approximation, while table

6.1 enumerates the high level variables and action macros used. In most cases the

macros are related to variables; they can be used by the agent to alter the values of

the variables, thus they are shown side by side in the table.

A sketch of the functioning of the agent architecture is shown in Algorithm 4.

In the core of the algorithm is temporal difference learning (essentially Q-learning)

with function approximation. The agent also performs state transition and reward

model learning. φV and φR denote the features for the value and reward functions

respectively. To make the description complete, the scopes of the local scope functions

must be provided. For the transition probabilities, this means providing the variables

each state variable depends on, considering its next value when executing an action.

For most variables, its next value depended only on its own previous value and the

action taken, except for the energy level, which depended on itself, and the food

history features as well. The reward function had factors depending on the energy

level and the distance from home. The value function, which expresses long term

cumulated rewards, had factors depending on the energy level, the number of food

items in the bag, food consumption history, and the distance from home.

81

Figure 6.2: Agent architecture. Observations are summarized in long term memory

maps, from which high level variables are generated, forming the state space of the

factored MDP. The transition (P) reward (R) and value (V) functions are composed of

local scope functions. Action macro selection is accomplished utilizing these functions.

Variable Intervals Notes Action macro

energy level 5
lowest and highest
intervals are to be

avoided

eat food
(for each food type)

number of food
items in the bag

0 - 3 for each food type
collect food

(for each food type)

consumption
history of food

items
5

the fraction of food of
type t consumed in
the past few steps

(for each food type)

wait for a few time
steps

distance to the
nearest food

item
5 for each food type

explore:
move in a random

direction and amount
distance from

home
5 return home

Table 6.1: High level variables and action macros used. With these variables,
size of the state space is 5 × 42 × 52 × 52 × 5 = 250, 000.

82

Algorithm 4 : Agent life cycle. The agent performs temporal difference learning
with linear function approximation and (factored) model learning.
input: {Xi}d

1, A - state variables and actions
{Γi}d

1 , {Ii}r
1, {Ji}m

1 - local function scopes of factored MDP
1: for each time step t do
2: update long term memory maps from observations, generate current state xt

3: observe reward rt for previous state transition
4: update value approximation parameters wt according the TD update:

wt+1 = wt + αt φV (xt)[rt + γwT
t φV (xt) − wT

t φV (xt−1)]

5: update transition probabilities based on frequency counts from the observed
state transition xt−1 → xt upon action at−1

6: update reward function approximation parameters ut (with rate βt):
ut+1 = ut + βt φR(xt−1, xt)[r − R(xt−1, xt)]

7: choose next action:
at = arg maxa

∑
x′ P (xt, a, x′)[R(xt, x

′) + γV (x′)]

8: t ← t + 1

9: end for

Simulation Results

In the following experiments, tabular and factored methods are compared both with

and without explicit model learning. To show the learning process of the various meth-

ods, a learning curve was calculated by moving averaging the indicator of whether the

energy of the agent was between the two thresholds. This learning curve should tend

to 1, provided that the agent learns to keep its energy between the two thresholds in a

stable manner. The experiments compare energy curves, learning curves and scaling

with state space size. In the initial experiments, the ‘distance from home’ feature and

the ‘return home’ action was disabled for simplification, further experiments examine

the effect of enabling them.

Figure 6.3 shows learning curves for the various methods (average of 100 runs).

Learning is faster with explicit model learning both for tabular and factored repre-

sentations. Figure 6.4 shows how the various methods scale with the increase of the

state space size, accomplished by increasing the number of discretization intervals for

state variables. The bars show the number of steps (in macro actions) required to

reach 90% performance. Note, that in some cases a larger number of discretization

83

intervals may result in easier learning as it suits the task better, hence in some cases,

a larger number of states results in faster learning, as seen in Figure 6.4.

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Explicit model
No explicit model x20

(a) Tabular models

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Explicit model
No explicit model

(b) Factored models

Figure 6.3: Averaged learning curves. Learning is faster with model learning both

for tabular and factored representations (note the difference in the number of steps).

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Tabular
Factored

(a) No explicit model learning

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Tabular
Factored

(b) Explicit model learning

Figure 6.4: Scaling with state space size accomplished by increasing variable

discretization. Bars show the number of steps required to reach 90% performance.

The corresponding state space sizes from left to right are: 2 916, 5 184, 9 216, 16 384,

20 480, 32 000, 50 000. Factored methods are not only faster by orders of magnitude,

but are also less effected by the increase in the state space size. Explicit model learning

is superior in all cases (note the difference in the scales).

Factored methods are both faster by orders of magnitude (only about 500 steps

required with model learning), and are also less effected by the increase. Again, it can

be seen that explicit model learning is superior in all cases. Another evidence to this

fact is the comparison of typical energy curves for factored learning with and without

84

explicit model learning, depicted in Figure 6.5. As can be seen, with explicit model

learning, the energy of the agent stabilizes much faster around a medium value.

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) No explicit model learning

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Explicit model learning

Figure 6.5: Typical energy curves for factored learning. The energy stabilizes

much faster with explicit model learning (Emin = 0.2, Emax = 0.8).

To see how the factored method behaves in a slightly more complex setting, the

‘distance from home’ feature and the ‘return home’ action was enabled, and the agent

also got punished based on its distance from home, to encourage it to stay near home,

if possible. Note, that in this setting the agent had to optimize multiple criteria acting

in opposite directions: to survive, it needs to get far from home, in order to collect

food, while at the same time it should spend as little time far from home as possible.

We examined the distribution of the agent’s distance from home and concluded

that it successfully learns to spend its time near home whereas it spent equal time

at the two food areas when the feature was not enabled. In Figure 6.6(a) it can be

seen, that if the agent is not punished for being far from home, it spends much time

at the two ends of the world, which correspond to being close to home (one end of

the world with one of the food sources) and being far from home (the other end of

the world with the other food source), and it spends medium amount of time in the

area between the two ends. On the other hand, if it gets punished for being far from

home, it spends much time near home, and it spends much less time at the other end

of the world (6.6(b)). Although the agent must occasionally visit the other end of

the world in order to obtain the other kind of food, it can also be seen that the time

spent in the middle of the world also gets shorter.

85

 0 max

(a) Locations without ‘home’

 0 max

(b) Locations with ‘home’

Figure 6.6: Locations of the agent, shown by distance from home. The agent

should occasionally leave home to collect both kind of food items. It learns to spend

less time at the far end and with ‘traveling’ if it is penalized for being further away.

6.5 Summary of Factored Reinforcement Learning

This chapter provided both theoretical and empirical evidence of the advantages of

factorization in reinforcement learning. On the theoretical side, the convergence of

factored incremental methods, including simulation based temporal difference learn-

ing, has been proven by viewing them as linear approximation techniques utilizing

combination features and relating them to state aggregation.

The simulation results show the applicability of factored temporal difference learn-

ing in simple scenarios with large and possibly continuous state spaces. In the pro-

posed architecture for realistic tasks, the Markov property of the state description is

ensured by keeping track of the past observations of the learning agent and gener-

ating state variables that incorporate the past as well. As the number of the state

variables grow, traditional tabular methods become intractable (learning time scales

exponentially), but factored methods scale well (seemingly polynomially) because of

their generalization properties. It is suspected, that a formal proof of polynomial

convergence may be provided for incremental policy evaluation similarly to the case

of value iteration. Also, it seems that separating model learning from value function

learning is beneficial in terms of learning speed.

86

Part IV

Compositionality in Function

Approximation

Although this part is inspired by function approximation in factored reinforcement

learning, it abstracts away from the framework of reinforcement learning and inves-

tigates function approximation in Cartesian product state spaces as a more general

task. In factored reinforcement learning, there are three functions that may be ap-

proximated: the reward function, the state transition function and the value function.

The reward and state transition functions are part of the model, and can often be

given exactly as a sum of local scope functions with small scopes. That is, they can

be exactly expressed as a linear architecture using a relatively small number of com-

bination features. The value function usually cannot be expressed in such a form (at

least not with small local function scopes), although it may be approximated as such.

Using local scope functions for the transition model amounts to expressing it as a

dynamic Bayesian network, and learning the scopes of the transition model is equiva-

lent to structure learning in such networks, for which known methods exist based on

regression tree building. This line of thought leads to regression in general; the se-

lection of relevant features for function approximation. Chapter 7 develops a feature

generation method along these lines, resulting in polynomial approximation in case

of continuous state variables, where the required monomials are generated, evaluated

and pruned incrementally. The resulting algorithm is compared against regression

trees from the viewpoint of the features generated, showing the utility of combination

features in function approximation in general.

87

Chapter 7

Function Approximation with

Combination Features

As the methods in this chapter are inspired by structure learning in factored rein-

forcement learning, they are rooted in methods used for such tasks. Using local scope

functions for state transition models in factored reinforcement learning are equivalent

to simple dynamic Bayesian networks. Structure learning in such Bayesian networks

is mainly based on decision/regression tree building methods. I derive the feature

generation framework for linear function approximation using combination features

from regression tree building. Later, the framework is reshaped to a form that resem-

bles more to forward regression. In both algorithms, features are selected in a greedy

manner in decreasing order of their gain in reducing the mean squared error.

7.1 From Regression Tree Building to Combination

Feature Selection

Recall, that the transition model (6.2) in factored Markov decision processes is written

P (x′ | x, a) =
d∏

i=1

Pi(x
′
i | x[Γi], a)

for all x, x′ ∈ X , a ∈ A. That is, the total probability of a state is computed as

the product of the probabilities of state variables, and the probability of each state

variable depends on the values of its ‘parent’ variables in the previous time step. One

88

may think of this as a Bayesian network with two identical tiers of variables for two

consecutive time steps. Variables in time step t depend only on variables in time step

t − 1, and this dependence is expressed by the scopes Γi. Thus, the functions Pi can

be represented as conditional probability tables, and if the scopes Γi are small, then

the tables will be small. Such Bayesian networks, where variables are organized into

tiers corresponding to time steps, are called Dynamic Bayesian networks (see [32] for

an introduction or [77] for a thorough overview).

7.1.1 Structure Learning in Factored Reinforcement Learning

Bayesian networks [47] have a wide literature, with two broad topics: inference and

structure learning. Inference in our case is simple, since there are no complex cyclic

dependencies among the variables; one can easily calculate the probability of a next

state using (6.2), which requires looking up a few values in the appropriate conditional

probability tables and multiplying them. The more interesting topic is structure

learning, which corresponds to the automatic generation of function scopes Γi.

Structure learning in Bayesian networks and for regression in general must face

the problem of selecting the relevant variables and expressing the dependence of the

target variable in a compact manner. Basic methods for selecting relevant variables

employ information theoretical measures such as correlation and mutual information

[42] [108]. Recall, that once the parent variable indices Γ are given, the dependence

can be expressed as a table of size
∏

i∈Γ |Xi|.

However, this representation is not compact enough, many variable combinations

in the table may have the same value. To exploit regularities, conditional probability

tables are often represented as regression trees [13] or algebraic decision diagrams

[2]. Besides a more compact representation, they have the advantage that the tree

structure can be learned: fundamental algorithms exist for decision and regression

tree learning [13] [85] [87] [86], even in an incremental manner [118] [59] [84]. Also,

note, that regression tree structure learning automatically selects the variables that

a function depends on, that is, automatically learns the scope of the function.

In the context of factored reinforcement learning, as overviewed in Section 6.1.1,

there exist techniques using decision trees [10][11] [23] as well as decision diagrams

89

[50] [49] [106] and rule based approaches [40] to represent structured functions and

exploit them during learning, when this structure (the local function scopes) is a-

priory known. Some of these techniques are applicable even when the structure is

not known in advance and must be learned as well [24], while some simple structure

learning approaches even have theoretical guarantees [109]. Note, that most of the

listed structure learning approaches may be used to learn the structure of not only

the transition function, but that of the reward and value functions as well.

The approach taken here is closely related to rule based representations. Rules

are of the form if condition c holds then it has value v, where the condition is a con-

junction of variable value assignments, that is, a combination feature, whose weight

is v. In [40] it is argued that rules have the advantage over decision trees or diagrams

that they are capable of representing context sensitivity and additivity of values as

well, since they need not be mutually exclusive like the branches of a tree. Hence, the

approach taken here – linear approximation utilizing combination features – bears the

same advantages. Note, that context sensitivity and additivity are exactly what I call

combinatoriality and compositionality throughout this thesis, whose complementing

roles have been discussed in the introduction. Another advantage of the linear ap-

proximation form over the tree form is that it seamlessly integrates to (incremental)

reinforcement learning methods, as seen in Chapter 6.

As linear approximation can be cast in a neural network frame, the next sec-

tion discusses how structure learning techniques for decision trees can be mapped to

structure learning in neural networks utilizing combination features.

7.1.2 Mapping Regression Trees to Neural Networks

Regression trees are similar to the more widely known decision trees, but are de-

signed to approximate real valued functions instead of categorization. Trees exploit

regularities in the function to be approximated and avoid enumerating all possible

input-variable combinations, as a conditional probability table would, for example.

Figure 7.1 shows an example regression tree using d = 2 (discrete) variables X1 and

X2, with |X1| = 3 and |X2| = 2. For simplicity, we assume that the variables can take

on values 1, . . . , |Xi|. The numbers in the leaf nodes represent the predicted output

90

Figure 7.1: Mapping a regression tree to a neural network. Each value of each

variable is mapped to an input unit. Each leaf node in the tree is mapped to an internal

unit in the neural network having incoming connections from input units corresponding

to variable values present in the path to the leaf node. The feature (x1 = 2∧x2 = 2) is

highlighted in both representations. Output weights in the neural network are written

into the squares of the internal units to emphasize the mapping.

values associated with the leaf node.

It can be easily seen, that regression trees can be mapped to linear function

approximation architecture utilizing combination features, or equivalently, to neural

networks with one internal layer. Each path that leads to a leaf node in the tree

encodes a combination feature: it is the conjunction of value assignments for variables

that occur on the path to the leaf. In neural network terminology, each value of each

input variable is represented by a binary input unit, and a combination unit in the

internal layer is connected to those values that it combines. As conjunctions of binary

variables can also be computed as the product of the binary values, internal units can

compute their activation by multiplying the values at their incoming connections,

resulting in product features, a generalization of combination features for continuous

values as seen in Definition 6.7. Note, that in case of binary inputs, exactly one

internal unit will be activated with an activation of 1, all other activations will be 0.

The network has one output unit, which sums the activations of the internal units

weighted by their output weights, which are equal to the regression values in the

corresponding leaf nodes in the regression tree.

One advantage of the linear architecture, is that generalization to continuous input

variables is easily seen. Suppose, that each Xi is continuous, but is represented in

a fuzzy manner, as introduced in Section 6.2.1. Then, product features provide the

91

continuous analogue to the leaf nodes in the regression tree. Figure 7.2 (left) shows

the network in the previous example using a fuzzy representation. Note, that if all

possible basis point combinations were used as features, then the resulting architecture

would perform multilinear interpolation on a d dimensional grid determined by the

basis points (recall that linear spline fuzzy membership functions are used).

The disadvantage of the fuzzy representation of continuous variables is that it

requires basis points to be determined, on which the approximation may depend.

Luckily, the need for this discretization step can be eliminated. If the original contin-

uous values are used instead of the fuzzy representation and we also let a feature unit

multiply an input variable with itself, that is, compute its powers, as depicted in Fig-

ure 7.2 (right), we arrive at multivariate polynomial approximation. A multivariate

polynomial has exactly such a representation: various powers of input variables are

multiplied and the value of the polynomial is a weighted sum, the weights being the

coefficients of the polynomial. The universal approximation capability of this archi-

tecture is justified by the Stone-Weierstrass approximation theorem: any continuous

function can be arbitrarily approximated by polynomials of sufficient degree.

Figure 7.2: (left) An example fuzzy network. The probabilities assigned to

the basis points are input to the network. The hidden units multiply their inputs

to calculate their activations. The output unit computes a weighted sum of hidden

activations. (right) An example polynomial network. Inputs to the network are

continuous values of the input variables (supposed to be normalized to [−1, 1] or [0, 1]).

Hidden units compute products of input variables, where an input variable may be

multiplied with itself as well. Input-to-hidden weights express input variable powers to

be computed. The output unit computes a weighted sum.

92

Mapping Structure Learning

The greatest question of linear function approximation is what features are required

to appropriately approximate a function, but at the same time are not too numerous,

keeping computational constraints in mind. The advantage of the above derivation of

the linear architecture based on combination features is that regression tree building

methods can be used as a starting point to devise methods that learn the structure

of the network: the appropriate internal units, that is, the appropriate features.

The general frame of tree building methods for categorial input variables is as

follows (see ID3 [85] C4.5 [87] and M5 [86] for fundamental algorithms). Starting

from an empty tree, input variables are iteratively selected to split a branch of the

tree. In each step, a leaf node is tested to be split. During such a test, the leaf node

is temporarily split along a variable that is not yet contained in the path leading to

the leaf. Then, for each variable added temporarily, the information gain is mea-

sured, which tells how beneficial it is to split along that variable. The split with the

highest information gain (if any) is kept and made permanent. For decision tasks,

the information gain is defined as the decrease in the entropy of the predicted out-

put, conditioned on the input variables. For the regression task, the information gain

is defined as the decrease in the mean squared error of the prediction. Note, that

in a tree, each input matches exactly one leaf node, that is, the tree partitions the

state space to disjoint sets. Then, predicted output values for each leaf node can be

determined by averaging the output values of the samples falling to the node.

Algorithm 5 summarizes the above described general regression tree building

method. Let a leaf node N of the tree T be identified by the set of input vari-

ables along the path to the node. Let X ∈ N denote that a variable is contained

along the path to node N . Let NX
i := N ∧ (X = i) denote a new leaf node which

is a child of node N generated by adding the condition that variable X takes its ith

value. Let yN denote the output values of samples falling to node N , let yN denote

their average, and θ(N) denote the predicted output at node N . Let mse(N) denote

the mean squared error measured at the samples matching the conditions of node N ,

and mse(N1, . . . ,Nk) is defined similarly for a set of nodes (sample sets are disjoint).

The tree T will be identified by the set of its nodes for simplicity of notation.

93

Algorithm 5 : General frame for regression tree building
input: X1, . . . ,Xd - input variables

(x1, y1), . . . , (xm, ym) - input-output samples
output: T - the decision tree built
1: T := ∅ - start from empty tree
2: for each leaf node N ∈ T do
3: for each variable X /∈ N do
4: NX

1 := N ∧ (X = 1); . . . ;NX
|X | := N ∧ (X = |X |) - list candidates

5: θ(NX
1) := yNX

1
; . . . ; θ(NX

|X |) := yNX
|X|

- calculate parameters
6: gain(X) := mse(N) − mse(NX

1 , . . . ,NX
|X |) - measure gain

7: end for
8: X∗ := arg maxX /∈N{gain(X)} - select variable with highest gain
9: if gain(X∗) > 0 then

10: T := T ∪ {NX∗
1 , . . . ,NX∗

|X∗|} - extend tree with new leaf nodes
11: end if
12: end for

This general frame provides us with ideas for the generation of combination fea-

tures. At each iteration, a combination feature may be selected for extension, which

means generating combination features of higher complexity, by adding further vari-

ables to the combination. Then, the gain of these newly generated features may be

measured, and the best ones can be kept.

Besides generalization to continuous input variables, the linear architecture based

on combination features provides us with another possibility of generalization. As

noted above, the tree structure of features generates a disjoint partition of the state

space. However, in Section 6.2 we have introduced multi-fold partitions and analyzed

their relation to local scope functions. A tree structure is unable to express a multi-

fold partition; it would require a forest. This limit of trees stems from the property

of the tree building algorithm that only leaf nodes are extended with new variables.

Luckily, the analogy using the linear architecture with combination features enables

the correction of this flaw, since it does not sort features into a tree structure; any

combination feature can be extended. Note, that this argument for linear architec-

tures utilizing combination features is the same as the argument of [40] for rule based

architectures over decision trees, as discussed in Section 7.1.1.

Unfortunately, these modifications complicate the above algorithm. The non-

94

disjointness of features makes the calculation of parameters θ and the definition of

the corresponding mean squared errors and gains more complicated, since the non-

disjointness introduces dependence among the features. From the linear architecture,

it can be seen that the parameters θ are mapped to the output weights w, and can be

calculated by linear least squares fitting for a given set of features. As will be seen in

the next section, the dependence among features can be handled by orthogonalization.

Discrete and continuous variables can be handled together through product fea-

tures that may contain powers of the same variable, resulting in polynomial approx-

imation. Combination features can be regarded as product features with maximal

power of 1 for each variable. Also, note that a discrete variable X can be replaced by

|X | binary variables of the form δ(X = i), i ∈ {1, . . . , |X |}, and continuous varaibles

can be rescaled to have values in [0, 1]. This generalization enables the use of a uni-

form notation for the extension of a feature: increasing the complexity of a feature

to generate new features is achieved by increasing the power of an input variable.

The above notion of splitting a combination feature by adding a new variable to the

conjunction is equal to increasing the new variable’s power from 0 to 1. From now on,

the name combination feature will be used in the more general sense, also indicating

features of continuous variables.

Algorithm 6 outlines a general frame for generating combination features for linear

function approximation. Increasing the power of variable X in feature φ is denoted

by φX . Input variables are supposed to be either binary or continuous in [0, 1]. The

set of features generated is denoted by Φ and the corresponding feature matrix for a

batch of input-output samples by Φ. The mean squared error using features Φ and

weights w is denoted mse(Φ,w). Refinements and technical details of the concrete

implementation will be the topic of Section 7.2.

Finally, another aspect in which the above algorithm differs from tree building

must be noted. Since the features are not independent in the sense that they do

not generate a disjoint partition of the space, as for tree nodes, it may happen that

features generated at the beginning become irrelevant (or less relevant) as new features

are added. Keeping computational aspects in mind, it is preferred to output as few

features as possible. This underlines the need for ordering and pruning features based

on their significance, a point also dealt with in Section 7.2.

95

Algorithm 6 : General frame for combination feature selection
input: X1, . . . ,Xd - input variables

(x1, y1), . . . , (xm, ym) - input-output samples
output: Φ - the set of features generated

w - feature weights
1: Φ := ∅, w := ∅ - start from empty set
2: repeat
3: for each feature φ ∈ Φ do
4: for each variable X do
5: if φX /∈ Φ then - feature not generated yet
6: Φ̃ := Φ ∪ φX - temporarily add candidate
7: w̃ := Φ̃+y - calculate feature weights
8: gain(φX) := mse(Φ,w) − mse(Φ̃, w̃) - measure gain
9: end if

10: end for
11: end for
12: φX∗ := arg maxφ∈Φ,X{gain(φX)} - select new feature with highest gain
13: if gain(φX∗) > 0 then
14: Φ := Φ ∪ φX∗ - add new feature
15: w := Φ+y - calculate feature weights
16: end if
17: until gain(φX∗) > 0

7.1.3 Related Work on Neural Networks

Growing neural network architectures have already been proposed in the literature

[26] [28], that iteratively generate hidden units to decrease the mean squared error,

although not focusing on the combinatorial structure of the target function. LO-

COCODE [48] aims to reduce the complexity of coding, and may result in factorial

codes if the target function is structured. Some network models also employ fuzzy

input units [18] [31], as well as multiplicative hidden units [89] [57] [105] [71], mainly

not focusing on feature selection, except [14]. Among polynomial networks, the most

notable for feature selection is the combinatorial Group Method of Data Handling

[73] [79] [54], which aims at selecting an optimal set of monomials for polynomial

regression. It has also been applied to extract rules in the field of data mining [30].

96

7.2 Combination Feature Selection

This section details the technical difficulties and methods for performing linear func-

tion approximation using combination features. Difficulties arise from the fact that

the features are generated and selected incrementally during approximation.

Two-fold Incrementality

The algorithm derived from regression tree building in the previous section provides a

method for generating combination (polynomial) features. However, we may aim for

two-fold incrementality in the task which poses some difficulties for linear least squares

fitting. On one hand, features are generated incrementally, making the calculation

of feature weights more complicated, since we wish to avoid recalculating the whole

least-squares fit w = Φ+y when a candidate feature is generated and evaluated. On

the other hand, we may also aim for incrementality as the inputs are received; we wish

to be able to update the approximation as a new input sample arrives. Incrementality

in the features is required if we wish to generate them as needed for the approximation

of a given function, while incrementality in the samples is useful if we wish to use the

method for incremental learning, such as TD learning in reinforcement learning.

To illustrate this twofold incrementality, recall, that the fitting task consist of

finding coefficients for which y ≈ Φw, which is solved by the pseudo-inverse solution

w = Φ+y. Incrementality in the input samples means that the feature matrix Φ is

received row by row. On the other hand, incrementality in the features means that the

feature matrix Φ is generated column by column. To be able to take incrementality in

both aspects into account, we have to look for more involved methods in the solution

of linear systems. This section is devoted to exploring such methods.

Recall, that the pseudo-inverse solution is derived from the normal equations

ΦTΦw = ΦTy , (7.1)

where G = ΦTΦ is called the Gram matrix (or Gramian) of the linear system of

equations. The Gramian plays a crucial role in the system as it describes the correla-

tion between features. If the features were uncorrelated, i.e. G ∝ I, then the solution

97

would reduce to

w ∝ ΦTy , (7.2)

which is a very simple formula that can be calculated incrementally both in the rows

and in the columns of Φ.

In some cases, combination features result in such orthonormal bases, and Section

7.2.1 explores their utility, since the resulting algorithm is very simple. For a general

solution, we might want to look for methods to transform the features Φ ∈ Rm×n

to features Q ∈ Rm×n such that QTQ = In, which amounts to whitening or orthog-

onalization, and can be performed by a linear transformation: Q = ΦW for some

W ∈ Rn×n. As we will see, this line of thought leads to known matrix decomposition

techniques, explored in Section 7.2.2.

7.2.1 Orthogonal Combination Features

The general framework for combination feature selection (Algorithm 6) uses polyno-

mial features. A well known method to enhance polynomial approximation is to use

orthogonal polynomials, as detailed in the next section.

Orthogonal Polynomial Features

Orthogonality of polynomials is defined via scalar product of continuous functions,

with optional weight functions involved. The unweighted scalar product of two real

valued functions f and g on interval [a, b] ⊂ R is
∫ b

a
f(x)g(x)dx. This kind of scalar

product induces the so called L2 norm on continuous functions. Two functions are

orthogonal if their scalar product is 0.

The set of orthogonal polynomials with respect to the unweighted L2 norm are

the Legendre polynomials. Denoting by Ln(x) the Legendre polynomial of order n,

for the interval [0, 1], they can be defined by an explicit formula as

Ln(x) = (−1)n

n∑
k=0

(
n

k

)(
n + k

k

)
(−x)k , (7.3)

and they can also be defined recursively for n > 1 by

Ln(x) =
2n − 1

n
L1(x)Ln−1(x) − n − 1

n
Ln−2(x) , (7.4)

98

and letting L0(x) = 1 and L1(x) = 2x − 1 (in agreement with the explicit formula).

It can be shown, that ∫ 1

0

Ln(x)Lk(x)dx =
1

2n + 1
δnk

where δnk = 1 if n = k and 0 otherwise. Thus, the polynomials

L̃n(x) =
√

2n + 1 Ln(x)

are orthonormal. From now on, we use Ln to denote the orthonormal Legendre

polynomial of degree n instead of L̃n to simplify notation. Define the feature matrix

of a single variable x by Φij = Lj−1(xi), j ∈ [1..n + 1], i ∈ [1..m]. Let Φk and Φk

denote the kth column, and kth row of the feature matrix, respectively. Then

1

m
(Φk)TΦl =

1

m

m∑
i=1

Lk−1(xi)Ll−1(xi) −→
∫ 1

0

Lk−1(x)Ll−1(x)dx = δkl. (7.5)

as m → ∞ if the samples xi are sampled uniformly from [0, 1]. That is, 1
m
ΦTΦ → In+1

as m → ∞. In this case, the pseudo-inverse solution can be approximated by

w = (ΦTΦ)−1ΦTy ≈ 1

m
ΦTy . (7.6)

This solution can also be computed exactly by the incremental averaging update

wk = wk−1 +
1

k
(ΦT

k yk − wk−1) (7.7)

upon obtaining the kth sample (xk, yk), starting from w0 = 0 (k indexes iterations).

Features obtained from evaluating the Legendre polynomials will be called Leg-

endre features. Legendre polynomials can be generalized to multiple variables by

multiplying the corresponding univariate Legendre polynomials. For example, for

two variables x and z, we have Ln,k(x, z) := Ln(x)Lk(z). It can easily be checked

that the orthogonality of these polynomials are preserved∫ 1

0

∫ 1

0

Ln,k(x, z)Ln′,k′(x, z)dxdz =

∫ 1

0

Ln(x)Ln′(x)dx

∫ 1

0

Lk(z)Lk′(z)dz = δnn′δkk′ .

(7.8)

More generally, for x ∈ Rd, let n ∈ Nd denote a vector of powers, ni denoting

the power corresponding to variable xi. Then, we define the d-variate Legendre

polynomial of degrees n as Ln(x) =
∏d

i=1 Lni
(xi).

99

Unfortunately, this method can only be applied if the function to be approximated

is sampled uniformly over its domain (otherwise (7.5) and (7.6) does not hold and

(7.7) cannot be applied), which is not the case in several applications. However,

in cases when the uniform sampling condition holds, we can construct an effective

approximation method, including feature selection.

In the neural network analogy derived from regression tree building, one may

start from a network representing a constant polynomial and add terms in order of

increasing degree. In case of possible degree increasing in d dimensions, to calculate

the reduction in mean squared error, one would have to evaluate d + 1 models, one

before adding a new feature, and d ones after adding d candidate features.

Orthogonal features have an interesting property in this respect as well. The main

advantage of the forms (7.6) and (7.7) is that the components of the parameter vector

w become independent: the ith component wi can be calculated using only the ith

column Φi of the feature matrix: wi = 1
m

(Φi)Ty. Thus, to increase the degree of

the model in one dimension, we only need to add and update one new parameter

corresponding to the candidate feature. Furthermore, we can easily assess whether

adding the candidate feature results in a decrease in the mean squared error: if it

does not (the function does not depend on the candidate feature), then the coefficient

of the new feature will converge to 0. The averaging form (7.7) enables us to use

Chebyshev’s inequality to determine the probability that a coefficient converges to a

non-zero value.

Chebyshev’s inequality applied to the convergence of averages, tells us about the

probability that an empirical average μm of m (independent) samples with variance

σ2 differs from the true average μ more than a prescribed threshold ε:

P (|μm − μ| ≥ ε) ≤ σ2

mε2
.

Then, we can express the probability that μ is closer to μm than |μm| and hence is

not 0 by

P (|μm − μ| < |μm|) = 1 − P (|μm − μ| ≥ |μm|) ≥ 1 − σ2

mμ2
m

.

Applying this to the above wi after m samples, we get

P (wi � 0) ≥ 1 − σ2
i

mw2
i

, (7.9)

100

where σi is the estimated variance of wi, which can also be updated incrementally.

To form a practical decision criterion, we may choose a threshold δ close to 1, and if

1− σ2
i

mw2
i

> δ, we may declare the coefficient wi as nonzero. Such features will hereafter

be called significant. We may derive new candidate features from significant ones by

increasing the degrees of variables.

In summary, the approximation algorithm incorporating feature selection is as

follows. Starting from a constant feature, we continuously update the output weights

w using (7.6) or (7.7). When we realize that the weight of a unit i converges to

a non-zero value, we add d new candidate features by increasing the degree of each

variable in unit i, and go on with updating the weights of the new features as well. Of

course, more sophisticated heuristics may be devised to enumerate candidate features

derived from ones evaluated as significant. Algorithm 7 summarizes this method.

Algorithm 7 : Orthogonal combination feature selection
input: X1, . . . ,Xd - input variables

(x1, y1), . . . , (xm, ym) - input-output samples
δ - significance threshold

output: Φ, w - features and corresponding weights
1: Φ := {1} - start from constant feature
2: for each feature φ ∈ Φ do
3: for each variable X do
4: if φX /∈ Φ then - feature not generated yet
5: wφX := 1

m
ΦT

φX y - calculate feature weight

6: if 1 −
σ2

φX
mw2

φX
> δ then - feature is significant

7: Φ := Φ ∪ φX - add new feature
8: end if
9: end if

10: end for
11: end for

To illustrate the above described method for selecting features and to evaluate

the incremental polynomial regression algorithm, series of experiments were devised

using peaked surfaces as target functions. The peaked surfaces were generated as

linear superpositions of multivariate Gaussian functions. Such functions are easy to

random generate in any dimension, which is amenable for large scale testing. For

101

illustration purposes, two dimensional examples are used here.

Figure 7.3 shows an example surface generated using the peaks function of MATLAB,

along with its approximation using Legendre features up to degree 9 in both variables,

amounting to 100 features. The resulting error surface is also shown. The approxi-

mation was generated using 10000 uniform samples and the averaging method (7.7).

(a) Original Surface (b) Approximated Surface (c) Error Surface

Figure 7.3: Polynomial approximation of the two dimensional function

f(x, y) = 3(1−x)2e−x2−(y+1)2 −10(1
5x−x3 − y5)e−x2−y2 − 1

3e−(x+1)2−y2 , shown on the

left, its approximation in the middle, and the error on the right (MSE = 0.19).

Figure 7.4(a) shows the magnitudes of the resulting coefficients of Legendre fea-

tures. The top-left corner corresponds to the feature of degree 0 in both variables

(constant), and the degrees grow in the two variables from left to right and from top

to bottom. It can be seen that features of lower degree tend to have more significant

coefficients. Figure 7.4(b) shows the effect of pruning features based on significance:

mainly features of lower degree are kept.

Figure 7.4(b) helps us understand how the proposed heuristic of increasing variable

degrees along all dimensions can generate relevant features. In this example, after

assessing the relevance of the feature of degrees (0, 0), we may add features of degree

(1, 0) and (0, 1) as candidates and test their significance. If they evaluate to be

nonzero, we add further features of degrees (1, 1), (2, 0) or (0, 2), and so on. That

is, we generate the diagram in Figure 7.4(b) starting from the top left corner, until

new significant features are found. Figure 7.4(c) shows the result of this incremental

feature generation procedure.

In further experiments, the averaging method (7.7) was tested on random gen-

erated peaked functions using incremental feature generation based on significance.

102

(a) Original coefficients (b) Pruned coefficients (c) Incremental coeffs.

Figure 7.4: Magnitude of feature coefficients. (a) Original values. (b) After

pruning based on significance. (c) Incremental generation of features starting from

degrees (0, 0) and proposing candidates by increasing degree in both dimensions.

To evaluate the robustness of the algorithm, it was tested against zero mean random

noise with high variance, and insignificant input dimensions; the input to the approx-

imator was 6 dimensional, but the function depended only on two a-priory unknown

dimensions, requiring the approximator to ‘find’ the relevant ones, by generating

features combining only the relevant two variables. It was found that the method

generated good approximations (mean squared error decreased sufficiently) both for

noiseless and noisy cases, and with irrelevant dimensions it was able to identify the

two relevant ones. It was also successfully tested for up to 5 relevant dimensions.

Univariate Legendre polynomials can be derived by performing Gram-Schmidt

orthogonalization on the polynomials 1, x, x2, . . . in that order. It is important to

note, that the weights of resulting orthogonal features depend on this order, since

the orthogonalization procedure removes the correlation of each feature with its pre-

decessors in the ordering. It is not guaranteed that this ordering gives the best one

in the sense that features of lower order decrease the mean squared error the most.

This important point will also be considered in the more general methods of Section

7.2.2. Another drawback of orthogonal polynomials, is that features loose their inter-

pretation as combination features; higher order Legendre polynomials are themselves

sums of many lower order monomials.

Gram-Schmidt orthogonalization can also be used to produce orthogonal features

in case of discrete variables, discussed in the next section.

103

Discrete Orthogonal Combination Features

The idea of using ‘orthogonal polynomials’ can be applied to discrete variables as well.

As mentioned before, in case of discrete variables, powers higher than 1 are meaning-

less. Furthermore, ‘uniform sampling’ of the state space required for orthogonality

implies that all variable combinations are legal inputs.

First, let us investigate binary variables only. Naturally, a state space of n variables

will have m = 2n distinct states. Let us start with an example feature set for a

state space with two binary variables X1 and X2. The state space will have 4 states

denoted as 00, 01, 10, 11, where the 0s and 1s denote the values of the variables. Let

the predicate X1 denote that x1 = 1 and the predicate ¬X1 denote x1 = 0. Then,

we may enumerate the following features, corresponding to sets of variables ∅, {X1},
{X2} and {X1,X2} to be combined, where the empty set of variables to be combined

corresponds to the constant feature:

∅ X1 ¬X1 X2 ¬X2 X1 ∧ X2 X1 ∧ ¬X2 ¬X1 ∧ X2 ¬X1 ∧ ¬X2

00 1 0 1 0 1 0 0 0 1

01 1 0 1 1 0 0 0 1 0

10 1 1 0 0 1 0 1 0 0

11 1 1 0 1 0 1 0 0 0

Thus, we can write the feature matrix as:

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 0 0 1

1 0 1 1 0 0 0 1 0

1 1 0 0 1 0 1 0 0

1 1 0 1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

This matrix has rank at most 4 (actually, exactly 4), thus the features must be

redundant. Indeed, we see that we had 4 sets of variables to be combined, and one

might suspect that one feature for each set would be enough. If we apply Gram-

Schmidt orthogonalization to Φ, and leave out the all-zero columns that result from

linear dependencies among the columns of Φ, we get after scaling by 2 =
√

4:

104

Φ⊥ =

⎛
⎜⎜⎜⎜⎜⎜⎝

+1 −1 −1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 +1 +1 +1

⎞
⎟⎟⎟⎟⎟⎟⎠

Note, that because of the scaling by 2, we have ΦT
⊥Φ⊥ = 4 · I4, just as it was in the

case of the Legendre feature matrix. Interestingly, we may derive this matrix from

the Legendre polynomials. Note, that the second and third columns of the matrix

are just the {−1, +1} representations of the variables X1 and X2 in the corresponding

states (instead of using {0, 1} values). The Legendre polynomials may also be defined

over the interval [−1, +1], in which case, the zero and first order polynomials are 1

and x. Thus, we get the first column by substituting into the zero order polynomial,

and the second and third columns by substituting the {−1, +1} value of X1 and X2

in the given states into the first order polynomial x. And as we did in the case of

multivariate polynomials, we get the fourth column by multiplying the first order

polynomials of X1 and X2, corresponding to the set of the variables {X1,X2}: it can

be seen that the fourth column is the product of the second and the third.

The above feature matrix Φ⊥ can also be derived using the Kronecker product of

an elementary matrix corresponding to the orthogonalized representation of a single

binary variable: Ψ2 :=

⎛
⎝ +1 −1

+1 +1

⎞
⎠, where the subscript denotes that the feature

matrix corresponds to a binary variable. The first column corresponds to the constant

feature, and the second column to the {−1, +1} representation of the binary variable.

For two matrices A ∈ Rm×n and B ∈ Rp×q the Kronecker product A⊗B is the mp×nq

block matrix

A ⊗ B =

⎛
⎜⎜⎜⎝

A1,1B . . . A1,nB
...

Am,1B . . . Am,nB

⎞
⎟⎟⎟⎠

It can be seen, that the Kronecker product corresponds to taking all possible products

(combinations) of the entries of the two matrices. The above matrix for two binary

variables can be expressed as Φ⊥ = Ψ2 ⊗ Ψ2.

This derivation generalizes to more than two variables. With n binary variables,

105

the number of combinations, in which we combine k variables is
(

n
k

)
, and we can

combine 0, 1 . . . n variables. Thus, the total number of possible variable combinations

is
∑n

k=0

(
n
k

)
= 2n. The corresponding feature matrix can be expressed as the nth

Kronecker power of Ψ2, denoted Ψ⊗n
2 .

It can be proven, that the resulting feature matrix is orthonormal for arbitrary

number of variables n. The following lemma states that the Kronecker product of

two orthonormal matrices is also orthonormal.

Lemma 7.1. Let A ∈ Rm×n and B ∈ Rp×q be orthogonal matrices. Then A ⊗ B is

also orthogonal. If A and B are orthonormal, then A ⊗ B is also orthonormal.

Proof. The mixed product property of matrices for ordinary matrix product and Kro-

necker product states that (A ⊗ B)(C ⊗ D) = AC ⊗ BD. Applying this, we have

(A⊗B)(A⊗B) = AA⊗BB, where AA and BB are diagonal matrices since A and

B are orthogonal. From the definition of the Kronecker product, it can be seen that

the Kronecker product of diagonal matrices is also diagonal. Thus, (A⊗B)(A⊗B)

is diagonal, hence A⊗B is orthogonal. Orthonormality of A⊗B easily follows if A

and B are orthonormal; the entries in the diagonal will all be the same.

Corollary 7.2. The feature matrix Ψ⊗n
2 corresponding to n binary variables is or-

thonormal.

Proof. Since Ψ2 is orthonormal, the proof follows by applying Lemma 7.1 inductively

on n.

The above result can be generalized to arbitrary valued discrete variables. The

elementary feature matrix corresponding to a k-valued variable can be derived. In-

cluding the constant feature, the {0, 1} valued features would be

Φk =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 · · · 0

1 0 1 · · · 0
...

...
...

1 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

106

from which we get Ψk ∈ Rk×k by Gram-Schmidt orthonormalization, (leaving out the

all-zero column):

Ψk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
k

√
k−1√

k
0 0 · · · 0

1√
k

−
√

k−1

(k−1)
√

k

√
k−2√
k−1

0 · · · 0

1√
k

−
√

k−1

(k−1)
√

k
−

√
k−2

(k−2)
√

k−1

√
k−3√
k−2

· · · 0
...

...
...

...
1√
k

−
√

k−1

(k−1)
√

k
−

√
k−2

(k−2)
√

k−1
−

√
k−3

(k−3)
√

k−2
· · · 1√

2

1√
k

−
√

k−1

(k−1)
√

k
−

√
k−2

(k−2)
√

k−1
−

√
k−3

(k−3)
√

k−2
· · · − 1√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The validity of this explicit formula is not detailed here, but can easily be checked by

applying the Gram-Schmidt procedure to Φk. The feature matrix for the Cartesian

product of arbitrary variables can be expressed using the Kronecker product of the

elementary matrices corresponding to the variables. The resulting feature matrix will

be square of size
∏d

i=1 |Xi|, and will be orthonormal by Lemma 7.1.

As a consequence, the columns of the feature matrix form a complete orthonormal

basis in the input space. It follows, that any function f : X → R can be decomposed

according to this basis as w = ΦTy, and so y = Φw.

Although in the general case, the resulting feature matrix is not as nice as the

feature matrix for binary variables, which only contains {−1, +1} entries after scaling

by
√

2n, it has the advantage that any entry of the resulting Kronecker product matrix

can be written explicitly, as the product of the appropriate entries of the elementary

matrices, that is, the actual Gram-Schmidt orthogonalization need not be performed

for the product features. This property is very useful when the feature matrix is

used in incremental methods, such as feature selection. In what follows, a practical

example from factored reinforcement learning is shown.

Orthogonal decomposition along combination features may be applied for the

reward and value function of the SysAdmin task described in Section 6.4.1. It is

important to note, that all variable combinations are legal and possible to reach from

any initial state. This makes the state space become of size 2n, which is required for

the orthogonality of the feature matrix. For a small number of computers, the state

space is small enough that the exact value function can be calculated by traditional

tabular value iteration. We may then decompose the calculated value function along

107

combination features.

Figure 7.5 shows the results of the decomposition for the SysAdmin task of 5 com-

puters in a ring topology. The reward function can be decomposed exactly using only

the constant feature and single variable combinations (7.5(a)). The reconstruction of

the value function requires all combinations, however, combinations of one and two

variables have the largest weights (7.5(b)). Figure 7.5(c) shows the decrease in the

mean squared error of the approximation of the value function as more and more

features are used for the reconstruction. Features are added in order decreasing by

weight magnitude (in this case, low complexity features first).

0 10 20 30
0

0.5

1

1.5

2

2.5

 {
}

 {
1}

 {
2}

 {
3}

 {
4}

 {
5}

(a) Feature weights for R

0 10 20 30
0

5

10

15

20

 {
}

 {
1}

 {
2}

 {
1,

2} {
3}

 {
1,

3}
 {

2,
3} {
4}

 {
1,

4}
 {

2,
4}

 {
3,

4} {
5}

 {
1,

5}
 {

2,
5}

 {
3,

5}

 {
4,

5}

(b) Feature weights for V

0 10 20 30
0

2

4

6

8

(c) Mean squared error for V

Figure 7.5: Orthogonal decomposition of reward (R) and value function (V)

for the SysAdmin task of size 5 in ring topology. (a) absolute feature weights

for the reward function, (b) absolute feature weights for value function, (c) decrease in

the mean squared error for the value function as features are added in order decreasing

by weight magnitude. Bar labels show the corresponding variable combinations.

A drawback of orthogonal decomposition techniques, both in case of continuous

and discrete variables, is that they are limited to special cases when the domain of

the function is the whole input space and it is sampled uniformly, as noted earlier.

Unfortunately, in most cases, not all variable combinations form legal states, and the

uniform sampling criterion is not met in case of policy evaluation methods like TD

learning. Another problem is that features change their interpretation because of or-

thogonalization, for example, in case of binary variables, {0, 1} features have different

meaning than {−1, +1} features; the former concentrates only on the presence of a

combination, while the latter also on its absence. For these reasons, more general

feature selection algorithms are sought in Section 7.2.2.

108

7.2.2 Incremental Implicit Feature Orthogonalization

This section refers to various matrix decomposition and computation techniques. The

details of these techniques can be found in the classic book of Golub and Van Loan

on the field of matrix computations [34].

The most popular and straightforward way of orthogonalization is the Gram-

Schmidt procedure, that can be used to orthogonalize the feature matrix Φ column

by column. At the same time, the Gram-Schmidt procedure is a way of computing

the so called QR decomposition of a matrix. Any matrix A ∈ Rm×n of full column

rank can be written in the form A = QR, where Q ∈ Rm×n is orthonormal and

R ∈ Rn×n is upper triangular [34]. Thus, Q = AR−1. Applying this to Φ we get

Q = ΦR−1 where QTQ = In and the whitening matrix is W = R−1. It must be

noted, that whitening can also be computed by principal component analysis (PCA)

or singular value decomposition (SVD), even by incremental methods for finding a

whitening matrix [17], however, these methods are not considered here, since they are

not appropriate for feature generation purposes pursued here.

Let us examine the effect of the QR decomposition on the Gramian:

G = (QR)T (QR) = RTQTQR = RTR , (7.10)

which equals the Cholesky decomposition of G, since R is upper triangular. The

Cholesky decomposition exists for symmetric, positive definite matrices, and it is

known that if Φ is of full column rank, than G is symmetric and positive definite

[34]. With R at hand, the normal equations reduce to

RTRw = ΦTy . (7.11)

This form has various advantages. First, lower and upper triangular systems can be

solved efficiently by forward and backward substitution respectively [34]. Thus (7.11)

can be solved in two steps: (i) solve the lower triangular system RTz = ΦTy for z by

forward substitution, then (ii) solve the upper triangular system Rw = z for w by

backward-substitution. Second, R can be updated incrementally both when a row or

a column is added to Φ, as will be seen later. Third, note that the although (7.11)

is based on orthogonalization of features, the orthogonalized feature matrix Q needs

not be computed explicitly, hence the term implicit orthogonalization.

109

Let me delve into the details of the Cholesky decomposition and forward and

backward substitutions, since they will be referenced later on. For a given symmetric

positive definite matrix A ∈ Rn×n, the entries in its upper triangular Cholesky factor

R ∈ Rn×n, for which A = RTR, can be written explicitly as

Ri,j =
1

Ri,i

(
Ai,j −

i−1∑
k=1

Rk,iRk,j

)
, ∀j > i (7.12)

Ri,i =

√√√√Ai,i −
i−1∑
k=1

R2
k,i , (7.13)

where the expression under the square root is always positive if A is positive defi-

nite. It can be seen, that the Cholesky factor can be calculated column by column,

since the calculation of an entry requires other entries to the left and above and the

corresponding entry of A to be known.

The solution of the lower triangular system Lx = b for x ∈ Rn with lower trian-

gular L ∈ Rn×n and b ∈ Rn is as follows (forward substitution):

xi =
bi −

∑i−1
j=1 Li,jxj

Li,i

for i = 1, . . . , n (7.14)

Note, that the order in which the entries of x are calculated is facilitated by the lower

triangular nature of L.

The solution of the upper triangular system Rx = b for x ∈ Rn with upper

triangular R ∈ Rn×n and b ∈ Rn is as follows (backward substitution):

xi =
bi −

∑n
j=i+1 Ri,jxj

Ri,i

for i = n, . . . , 1 (7.15)

Note the reverse order in which the entries of x are calculated, which is now facilitated

by the upper triangular nature of R.

Forward and backward substitutions break down if the diagonals of the triangular

matrices contain zeros, which happens if they are not of full rank (not invertible). In

this case, the system is underdetermined and has infinitely many optimal solutions

in the least-squares sense. We may repair the substitution process by letting xi = 0

if Li,i = 0 or Ri,i = 0, which will be a reasonable choice in our case as seen later.

Also note, that forward and backward substitutions take O(n2) operations to

calculate, as opposed to the O(n3) cost of a regular matrix inversion. Also, the

calculation of one column in the Cholesky factor takes O(n2) operations.

110

Triangularization by Givens Rotations

The Cholesky factor of a symmetric positive definite matrix can also be found through

triangularization. One particular method for matrix triangularization is to use Givens

rotations to zero out subdiagonal entries. Givens rotations are simple orthogonal

transformations that can be used to zero out a given entry in a matrix [34]. They

can be understood as plane rotations which rotate a given two dimensional vector to

a multiple of a unit vector. In general, a Givens rotation matrix in the (i, j) plane

with angle θ ∈ R is as follows:

Γ(i, j, θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0 . . . 0 . . . 0
...

...
...

0 . . . cos(θ) . . . sin(θ) . . . 0
...

...
...

0 . . . − sin(θ) . . . cos(θ) . . . 0
...

...
...

0 . . . 0 . . . 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

that is, it is the identity matrix with substitutions Γi,i = Γj,j = cos(θ), Γi,j = sin(θ)

and Γj,i = − sin(θ).

How can we determine an appropriate Givens rotation to zero out an entry in the

matrix? When a Givens matrix Γ multiplies another matrix A from left, only rows i

and j of matrix A are effected. Thus we may restrict our attention to the following

problem: given a and b, find c = cos(θ), s = sin(θ) such that⎡
⎣ c s

−s c

⎤
⎦
⎡
⎣ a

b

⎤
⎦ =

⎡
⎣ r

0

⎤
⎦

Explicit calculation of θ is not necessary, instead we may set r =
√

a2 + b2, c = a
r
,

s = b
r
. In order to zero out the (i, j) entry of a matrix A, set a = Aj,j, b = Ai,j.

Triangularization of a matrix may start from the lower left corner and proceed up

and to the right with zeroing its entries. This ordering will preserve the previously

introduced zeros, and thus result in an upper triangular form. The Givens matrices

used in this process may be multiplied together to result in an orthogonal matrix,

which will actually become the Q matrix in the QR decomposition (see [34] for further

details). Note, that applying a Givens rotation requires O(n) operations.

111

Updating Matrix Decompositions

Givens rotations can be used to update an existing matrix factorization. There are

three types of updates we are interested in here: (i) rank-1 updates to the matrix

being decomposed (corresponds to adding a new sample, i.e. row to A), (ii) adding

a new column to the matrix decomposition (corresponds to adding a new feature,

i.e. column to A) and (iii) reordering the columns of the matrix being decomposed

(reorder features to evaluate their importance).

Rank-1 update to a symmetric positive definite matrix G = ATA means setting

G̃ = G + aTa, resulting from adding a new row a ∈ R1×n to the matrix A. In

this case, the known Cholesky decomposition of G can be updated as follows. Form

the matrix
[
aT | RT

]
and transform it to lower triangular form by zeroing out its

above diagonal entries with appropriate Givens rotations, resulting in the matrix[
R̃T | 0

]
=
[
aT | RT

]
ΓT , where the orthogonal matrix ΓT = ΓT

1 · · ·ΓT
n is the sequence

of Givens rotations. For the resulting matrix, we have (see [34])

R̃T R̃ =
[
R̃T | 0

]
·

⎡
⎣ R̃

0

⎤
⎦ =

[
aT | RT

]
ΓTΓ

⎡
⎣ a

R

⎤
⎦ = RTR + aTa (7.16)

Note, that n Givens rotations must be performed, resulting in O(n2) operations for

the update.

Adding a new column is easy as the Cholesky factorization is computed column-

wise, at the cost of O(n2) operations per column, as noted above. Reordering the

columns in the decomposition of G can be done by swapping columns of R and

restoring its upper triangular property, by zeroing out the subdiagonal entries that

became non-zero by applying appropriate Givens rotations, resulting in an O(n2)

operation.

This agenda of update operations of O(n2) cost makes it possible to implement

the solution (7.11) efficiently while incrementally generating, reordering and pruning

features. The next section discusses the ordering an pruning of features.

7.2.3 Ordering and Pruning Features

When selecting features incrementally, the order in which they are selected does

matter, since features may correlate with each other. Because of this correlation, the

112

gain of a feature depends on the features previously selected; a feature may be largely

correlated with the output, but it may introduce little gain when selected after other

features that it correlates with. Thus, finding a good ordering of features based on

their gain seems rational for selecting a good subset of features that approximate the

function well.

Let us imagine the feature selection problem when all combination features are

known a-priory (recall that we are aiming for the case in which this does not hold, i.e.

features are generated and selected incrementally). In this case, the n features can be

organized into a large matrix Φ ∈ Rm×n for a set of m samples. The task is to select a

subset Γ ⊂ {1, . . . , n} of features for which y ≈ ΦΓwΓ. As mentioned in section 2.3.1,

Orthogonal Matching Pursuit (OMP) [81] and Orthogonal Least Squares (OLS) [19]

are particular methods for solving y ≈ Φw by selecting columns of Φ incrementally,

and they can be implemented efficiently by means of QR decomposition [9] using

techniques introduced in Section 7.2.2. Both methods are greedy in the sense that they

select the next column that correlates with the residual most. OLS (or equivalently,

stepwise regression) has been used for selecting features in Radial Basis Function

networks [20], and also in a reduced polynomial model network [99].

Greedy methods are known to perform very well in some contexts. For example, it

is known, that greedy optimization on submodular set functions is guaranteed to find

a (1−1/e) optimal solution [78]. Informally, an increasing set function is submodular,

if adding a new element to a smaller set yields larger increase in the function than

adding the same element to a larger subset.

Definition 7.3 (Submodular function). The non-decreasing set function f : S → R

is said to be submodular if for all A ⊆ B ⊂ S and s ∈ S \ B

f(A ∪ s) − f(A) ≥ f(B ∪ s) − f(B) .

Recently it has been shown [63] [64], that the OMP cost function is submodular

in some cases, and similar results appeared for forward selection (OLS) as well [21],

although most interesting examples do not satisfy the necessary conditions. In the

context of feature selection, submodularity means that adding a new feature to a

smaller subset would yield a larger gain in the approximation than adding the same

feature to a larger subset. This property may be violated by so called suppressed

113

features, that are themselves not much correlated with the output, but become largely

correlated when combined with other features, called suppressor features [21]. In

this case, adding a suppressor feature to a larger subset containing a suppressed

feature would result in higher gain, then adding the suppressor to a smaller subset

not containing the suppressed feature. Then, the greedy selection of features may

result in an arbitrarily bad subset, because it would not select the suppressed and

the suppressor features one by one, although they would be very useful together.

However, the fact that we are dealing with combination features may alleviate this

problem. Suppressors are exactly about combinations of features that are together

better than the ones that they are combined from. We have supposed that features

for all possible variable combinations have been enumerated in Φ. Intuitively, in

this case, the above mentioned problem with greedy selection would be less severe:

the greedy method could select the combination corresponding to the suppressor and

the suppressed feature. For this reason, the order in which OMP or OLS select

combination features is considered a good ordering of features, and will be used

hereafter. In case when not all combination features are known in advance, but are

generated incrementally, it is possible to reorder the generated features according to

the order in which OLS would have selected them, had they been known a-priory, as

will be shown in the next sections.

Gain of a Feature

Suppose, that k < n columns ΦΓk
have already been selected, where Γk ⊂ {1, . . . , n}.

For this subset of columns let its QR decomposition be ΦΓk
= QΓk

RΓk
. Let Γk =

{1, . . . , n} \ Γk. OMP would select the next column i ∈ Γk for which |ΦT
i ek| is

maximal, where ek = y − ΦΓk
wΓk

is the least squares residual using ΦΓk
. Similarly,

OLS first orthogonalizes all Φi, i ∈ Γk to ΦΓk
, resulting in Φ̃i, and then selects i for

which |Φ̃T
i ek| is maximal. This quantity can be rewritten as

Φ̃T
i ek = Φ̃T

i (y − ΦΓk
wΓk

) = Φ̃T
i y − Φ̃T

i ΦΓk
wΓk

= Φ̃T
i y , (7.17)

since Φ̃T
i ΦΓk

= 0, because Φ̃i has been orthogonalized with respect to ΦΓk
. Φ̃T

i y can

be calculated by adding Φ̃i as the (k + 1)th column to QΓk
forming QΓk+1

and let

Φ̃T
i y = [QT

Γk+1
y]k+1 = [(RT

Γk+1
)−1ΦT

Γk+1
y]k+1 . (7.18)

114

In practice, the above formula can be evaluated by calculating the (k + 1)th column

in R by Cholesky decomposition, and using forward-substitution with RT . That is,

if the order of features is fixed, the vector g ∈ Rn of gains is calculated as

g = (RT)−1ΦTy . (7.19)

Ordering Features

For a set of selected features, suppose that they have been orthogonalized in some

order, i.e. R has been calculated. Fix the first k features in the order. In this case,

for any feature i > k we may calculate what its gain according to OLS would be, had

it been selected in the (k + 1)th place in the order, by swapping the ith column to

the kth place. Even better, we may calculate the gain without actually performing

the column swap! Using this idea, starting from a set of features in arbitrary order,

we may reorder them into the order that OLS would have chosen them. Such an

ordering will be called OLS ordering hereafter.

To perform the ordering, we must first find the feature that OLS would select

first, then find the one that OLS would select second, given that the first is fixed,

and so on. For this, we must keep track of the possible gains of all features not

yet selected had they been selected next. Since the gains can actually be calculated

using forward substitution with R from ΦTy, we need to implement this forward

substitution incrementally in parallel for all features not yet selected. To perform this

parallel gain computation, first realize, that had any column i > k of the Cholesky

matrix been swapped to the kth place, the first (k−1) entries in the column would be

the same, and these are exactly those quantities used in forward substitution when

calculating the kth component. This enables calculating the gain of features as if

they had been selected kth, without actually swapping them to the kth position. To

be more precise, using the formula (7.14) of forward substitution and equation (7.13)

of Cholesky decomposition, calculate the quantities

gk =
ΦT

k y −∑k−1
j=1 RT

k,jgj

RT
k,i

=
ΦT

k y −∑k−1
j=1 Rj,kgj√

ΦT
k Φk −

∑k−1
j=1 R2

j,k

, (7.20)

which can be done incrementally using only Rj,k for j < k by updating the sums in

the nominator and the denominator separately, as shown in Algorithm 8.

115

Algorithm 8 : Reorder features according to OLS ordering
input: R ∈ Rn×n - Cholesky matrix

Φ ∈ Rm×n - feature matrix
output: R, Φ - reordered matrices

g ∈ Rn - feature gains
1: for k = 1, . . . , n do
2: nom(k) := ΦT

k y - init nominators
3: den(k) := ΦT

k Φk - init denominators
4: end for
5: for k = 1, . . . , n do
6: i := arg maxn

j=k | nom(j)√
den(j)

| - select feature with maximal gain

7: if i �= k then
8: Ri ↔ Rk - swap columns of Cholesky matrix
9: Φi ↔ Φk - swap columns of feature matrix

10: nom(i) ↔ nom(k) - swap nominators
11: den(i) ↔ den(k) - denominators
12: end if
13: gk := nom(k)√

den(k)
- set gain of selected feature

14: for j = k + 1, . . . , n do
15: nom(j) := nom(j) − Rk,jgk - update nominators
16: den(j) := den(j) − R2

k,j - update denominators
17: end for
18: end for

Pruning Features

The gain of features can also be used to prune insignificant ones after reordering.

Recall that the gain of the kth feature is gk = [(RT)−1ΦTy]k = Φ̃T
k y. Since the Φ̃i

are normalized, Φ̃T
k y is proportional to the cosine of the angle between Φ̃k and y, and

hence Φ̃T
k y

‖y‖ ∈ [0, 1]. Thus, we may choose a small δ ∈ (0, 1) and declare the kth feature

significant if gk = Φ̃T
k y > δ‖y‖, and insignificant otherwise; such features may be

pruned away. This way, the parameter δ practically controls the desired accuracy of

the approximation relative to the overall norm ‖y‖ of the function, and its value can

be set intuitively, it does not depend on the approximated function. Note, that the

significance of a feature depends on its position in the OLS ordering, a significant

feature may become insignificant if selected later in the order, and vice versa.

116

Putting it all Together

The methods described in the previous sections enable us to incrementally generate,

reorder and prune features. The proposed algorithm will be termed incremental OLS

based combination feature selection, and is detailed in Algorithm 9. Generating new

candidates from a feature by increasing complexity is called extension of the feature.

Let rφ denote the column of the Cholesky matrix corresponding to a feature φ.

Algorithm 9 : Incremental OLS based combination feature selection
input: X1, . . . ,Xd - input variables

(x1, y1), . . . , (xm, ym) - input-output samples
δ ∈ (0, 1) - significance threshold

output: Φ, w ∈ R|Φ| - features and corresponding weights
1: Φ := {1} - start from constant feature
2: R := r1 - init Cholesky matrix
3: extended(1) := false - constant feature not extended yet
4: repeat
5: φ := arg min

|Φ|
i=1{φi | extended(φi) = false} - take first not extended

6: for each variable X do
7: if φX /∈ Φ then - feature not generated yet
8: Φ := Φ ∪ φX ; Φ :=

[
Φ | ΦφX

]
- add new feature

9: R :=
[
R | rφX

]
- add column to Cholesky matrix

10: extended(φX) := false - new feature not yet extended
11: end if
12: end for
13: extended(φ) := true - feature is now extended
14: {R,Φ,g} := reorderOLS(R,Φ) - reorder features
15: for each feature φ ∈ Φ do
16: if |gφ| < δ‖y‖ then - gain is too small
17: Φ := Φ \ φ ; Φ := Φ \ Φφ - remove feature
18: R := R \ Rφ - remove column from Cholesky matrix
19: end if
20: end for
21: until ∃ φ ∈ Φ : extended(φ) = false
22: w := (RTR)−1ΦTy = R−1g

117

In a typical iteration a set of candidate features are generated, reordered according

to the OLS ordering and their significance is calculated. Significant features are kept,

while insignificant ones are pruned, and the iteration continues until new significant

candidates can be generated by increasing the complexity of the significant features.

The reordering of features has great importance because of the incrementality in fea-

ture generation. Since we generate features by increasing complexity, it may happen

that important features that would have been selected among the first ones by OLS

are generated later in the iteration. Reordering enables to treat these features as if

they had been available at the beginning, which is important, because moving an

important feature among the first ones may decrease the significance of other not

so important features that were generated earlier. This decrease in their significance

enables them to be pruned, and the number of features actually maintained by the ap-

proximation to be kept low. This way, the approximation architecture is continuously

being restructured, always aiming toward a small subset of expressive features.

7.2.4 Experimental Results

In this section, Algorithm 9 is used to solve two problems that could not be handled

with orthogonal combination features, because the required criterion of uniform sam-

pling cannot be satisfied in the continuous case, or in the discrete case, not all variable

combinations are legal. Furthermore, the peaks problem that was handled with or-

thogonal polynomial features is solved again to show the advantages of Algorithm 9

over orthogonal features.

The Game of Tic-Tac-Toe

The first example is a discrete one, the reward and value functions of the game of Tic-

Tac-Toe. The well known game is played on a 3×3 board where the two players have

to place either × or � in each cell, and the player having 3 of his symbols in one row,

column or diagonal wins. Therefore, the game state can be described for example by

27 binary variables: for each of the 9 cells, 3 binary variables indicate whether the cell

contains an ×, an �, or is empty. It is easily seen that not all variable combinations

constitute legal states of the game. First, no two binary variable corresponding to

118

the same cell may have value 1 at the same time; exactly one of them must be 1 in

any state (note that this fact stems from our strategy of describing the 3 states of a

cell with 3 binary variables). Second, the rules of the game do not allow for example

all cells to be filled with ×, since player � also has to make moves.

The reward function from the viewpoint of one player (say ×) can be defined as

follows. In each state in which × wins, the reward is +1, in states in which � wins,

the reward is −1, and in all other legal states the reward is 0. Note, that this reward

function can almost exactly be decomposed to the sum of values corresponding to

combinations of 3 binary variables, that indicate 3 ×s (+1 value) or �s (−1 value)

in a row, column or diagonal. The only exception is the case when a player manages

to gather two intersecting sequences of 3 symbols for example one in a row and one

in a column. In this case the reward is not +2 or −2, thus the exact decomposition

must be compensated with further combinations of higher complexity (5 symbols).

The results of Algorithm 9 for the reward function on 8725 valid states of Tic-

Tac-Toe can be seen in Table 7.1, where the visual representation of the best features

(the first ones in the OLS ordering) are shown. It can be seen, as expected, that the

most relevant features are the ones corresponding to the combinations of 3 symbols

of the same kind in a row, column or diagonal. If only these features were used to

approximate the reward function, the error would be on the order of 10−5. How-

ever, the algorithm also finds many of the combinations of higher complexity, with

which a mean squared error of order 10−20 is achieved, which means almost perfect

approximation, the imperfection is probably due to roundoff errors.

The same algorithm was run on the value function of Tic-Tac-Toe pre-calculated

with value iteration, when player × starts the game (5890 valid states). In this case,

it is known that there exists a non-losing strategy for ×, which starts by placing an ×
to the middle cell. This feature is found as most important by the algorithm, as seen

in Table 7.2. Besides finding all relevant 3-combinations in this case as well, it also

finds various combinations describing states relevant on the long term, for example

two of the same symbols in a row or column.

The features extracted by Algorithm 9 were compared to features generated by

regression tree building, because Algorithm 9 was derived from it. Regression tree

building was performed with the method available in the Regression Analysis toolbox

119

� � �
×

×
×

×
×

×

���
���

���
���

×
×
×

×
×
×

×
×
× � � �

� � �

� � � × × ×
× × ×

× × ×

�� � ��
��� � �

� � ���
� ��� �

�� � ��
��� � �

� � ���
�� �� �

� �� ��
�� � ��

�� � ��
��� � �

� � ���
� � �� × ×� ×

��� � �
× × ×� ×

×

× × ×
×
×

× × ×
× �
× � �

× × ×
×

×

×
× ×

× ×

× ×
×

× ×

× � ×
× ×
× � �

� ×
× × ×
× � �

×
×

× × ×

×
× × ×

×

×
×

× × ×

×
× × ×

×

× �
× × ×
× � �

×
×

× × ×

×
×
× × ×

� ×
× � ×
× � �

· � ×
× � ×
× � �

Table 7.1: Tic-Tac-Toe reward function features extracted by Algorithm 9

(δ = 0.001). The first 16 features correspond to 3-combinations in a row, column or di-

agonal, while the rest corresponds to 5-combinations (two 3-combinations intersecting).

The last two (and some further ones; 76 features found altogether) do not correspond

to ‘meaningful’ combinations, and are probably the result of roundoff errors.

120

×
×
×
×

×
×
×

× × ×

× × ×

×
×

×

×
×

×
× × ×

×
×
×

� � �
���

���

� � �
� � � ���

��� � � � �
� � ×

�
×�

�
× � · �

×

· ×

×

×

×
× ·

×

·

·

× �
�

·
·

·

·

�

× × � � �
×

�
�

·

�
�

·

� ×��
��

×

× � �
� �

×

×
·
×

× · ×
× �

×

×�
×

�
·� � · � · × ×

Table 7.2: Tic-Tac-Toe value function features extracted by Algorithm 9

(δ = 0.01), when player × starts the game. The first few features correspond to 3-

combinations in a row, column or diagonal, while the rest corresponds to combinations

leading to important states with respect to long term evaluation, for example two of

the same symbols in a row or column. The symbol · denotes that the designated cell

should be empty for the given combination to be true.

121

of MATLAB using default settings. Random half of the valid states was used for training,

the other half for evaluation. Comparisons were also made with regression trees

pruned according to an optimal pruning scheme using 10-fold cross validation.

The main objective was to compare the extracted features in terms of (i) decreasing

mean squared error as they are added to the linear function approximator in order of

importance and (ii) how much they are related to the structure of the task. Recall,

that in regression trees, each path to a leaf node can be converted to a combination

feature. The order of importance for features is the OLS ordering. Combination

features generated by regression tree building are orthogonal, since the tree partitions

the input space. Thus, an ordering equivalent to OLS ordering can be obtained by

sorting features according to the angle between feature vectors and the function.

The results can be seen in Figure 7.6, showing that Algorithm 9 extracts features

that decrease error much better and faster, which is probably because it utilizes non-

orthogonal, additive approximation architecture. Pruning the resulting regression

tree greatly decreases the number of features but increases the mean squared error

quite much in case of the value function.

The features resulting from regression tree building for the reward function are

shown in Table 7.3. Since regression trees automatically include negated variables as

well, the symbols × and � mean that the designated symbols should not be present.

Only a few features correspond to (noisy) 3-combinations, as opposed to Table 7.1.

(a) Reward function (b) Value function

Figure 7.6: Comparison of features generated by Algorithm 9 and regression

tree building. Plots show decrease in mean squared error as the function of the

number of features, added to the linear architecture in order of importance.

122

×
×

×

�
× �

×
×

× ×

�
×� � �

�
×� �

× × ×
×

× × ×
× ×
×

� �
× × �� �

× ×
×

× �
� × �
× ×� �

× ×
× ×
×

×
× × ×

×

× × ×
× ×
×

× ×
×

× ×

× � �
× �

×

×
×

× � ×

× �� × ×� �
× ×
× ×
× ×

× �� × ×� � �
×

× ×
× ×

� �
×� �

�� ×� � �
× ×

× ×
× ×

× × �� × ×� �
� ×
× × ×

× ×

� �
×� � �

� �� × ×� �
� × ×

× ×
× ×

� �� × ×� �
� × �

× ×� �
× ×
×

× × ×

· � ×
× �� � �

× ×
× ×
× ×

· � ·� × �� � �
· � ·� × �� � �

× ×� × ×
× ×

· � ·� ×� � �
× ×� × �� � �

×� × �� � � � × �� � �
� �

× �� �
� � ×� ×� � �

× ×� × ×� � �
×� × ×� � �

×� × ×� � � � × �� � �
× �� ×� � �

· ×
× × ×� × ×

× �
× �

×

×� ×� � �
· × ×
× × ×

× ×

×� ×� � �
× � �� × �� � ×

× �
×� ×

× � �� × �� � ×

× � ×� ×
× ×

× � ×� ×
× ×

· × ×
× × ×

× ×

× ×
× ×

× ×

× � ×� ×
× ×

Table 7.3: Tic-Tac-Toe reward function features extracted by regression

tree building. Some features correspond to ‘noisy’ 3-combinations in a row, column

or diagonal; however most features do not correspond to ‘meaningful’ combinations.

Stroke-out symbols × and � mean that the designated symbols should not be present.

123

Time Series Prediction

The continuous example is the prediction of time series. The value of a time series

may depend on its previous values, and we do not know in advance how long a history

might be needed to achieve good prediction. Thus, this task seems a good candidate

to evaluate the feature selection properties of the algorithm on a high dimensional

example: all past values of the function are possible inputs, and the algorithm should

select which combinations are needed; the input space is the Cartesian product of the

past samples (of undefined length). In this case, we cannot utilize Legendre features,

since even if we sample the time series uniformly, those samples will not be uniform

in the input space of the approximator.

For testing, the Mackey-Glass 17 and Mackey-Glass 30 time series were chosen, as

they are typical benchmark in time series prediction [56] [83]. The MG-30 time series

is considered harder to predict since it exhibits chaotic behavior. Data sets of 1500

samples for both the MG-17 and MG-30 time series are available on the internet1.

The first 500 samples were used for training, the rest 1000 samples for testing.

The main concern of testing was one-step prediction. However, multi-step predic-

tion was also investigated, in which prediction was applied recursively on the predicted

values. For practical reasons, the maximal history length was limited to 10, rendering

the input space 10 dimensional. Running Algorithm 9 resulted in around 25 signif-

icant features; Figure 7.7 shows the results. The generated features were products

of very low powers of past variables (not shown here). It can be seen that one-step

prediction is very accurate (7.7(b) and 7.7(e)), as well as recursive prediction for a

few tens of steps, however it starts diverging later (7.7(c) and 7.7(f)). Nonetheless,

the character of the prediction remains similar to that of the time series.

The extracted features has been compared against regression trees using the same

methodology as in the case of Tic-Tac-Toe (7.7(a) and 7.7(d)). In case of continuous

input variables, regression trees do not extract polynomial features as Algorithm 9,

instead partition the state space by calculating thresholds for split variables. Again,

the polynomial features selected by Algorithm 9 clearly outperform those generated

by regression trees: much lower errors are reached with much fewer features.

1The data used here was downloaded from http://www.bme.ogi.edu/~ericwan/data.html

124

(a) Mean squared error

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(b) One-step prediction

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(c) Recursive prediction

(d) Mean squared error

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(e) One-step prediction

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(f) Recursive prediction

Figure 7.7: Prediction of MG-17 (a-c) and MG-30 (d-f) time series using

Algorithm 9 (δ = 0.005). (a,d) Decrease in mean squared error for one-step prediction

as features are added in order of importance. (b,e) and (c,f) One-step and recursive

prediction, respectively. Solid lines show the predictions, dashed lines show the original

time series. Trained on 500, tested on 1000 samples, first 100 of test shown here.

Incrementality in the Samples

As mentioned in Section 7.2, there can be a two-fold incrementality in the function

approximation task. Section 7.2.3 concentrated on incrementality in the features,

however, as noted in Section 7.2.2, the normal equations can also be solved incre-

mentally in the samples for a fixed set of features, via rank-1 updates (7.16) to the

Cholesky factor R. After any number of updates, the features can be reordered to

the OLS ordering using Algorithm 8. Note, that Algorithm 8 uses the feature matrix

Φ only in the initialization step to calculate the quantities c := ΦT
i y and n := ΦT

i Φi

for each feature i ∈ [1..n], where the vectors Φi are the columns of the feature matrix.

The quantities c and n roughly correspond to feature-output ‘correlations’ and fea-

ture norms respectively, and can be updated incrementally as the rows of the feature

matrix become available from the samples. Algorithm 10 details the incremental eval-

uation of a fixed set of features, which effectively calculates w = Φ+y in a stable, fully

125

incremental manner, including reordering and pruning of features. Let Φi := Φ(xi)

now denote the feature vector for sample xi (now the ith row of the feature matrix),

furthermore, let � denote component-wise multiplication of vectors.

Algorithm 10 : Sample-incremental evaluation of a fixed set of features
input: Φ - set of features

(x1, y1), . . . , (xm, ym) - input-output samples
δ ∈ (0, 1) - significance threshold

output: w ∈ R|Φ| - feature weights
1: R := 0 ∈ R|Φ|×|Φ| - initialize Cholesky factor
2: c := 0 ∈ Rm - initialize feature-output correlations
3: n := 0 ∈ Rm - initialize feature norms
4: for i = 1, . . . , m do
5: Φi := Φ(xi) - generate features for input
6: R := rank-1-update(R,Φi) - cf. Eq. (7.16)
7: c := c + yiΦi - update feature-output correlations
8: n := n + Φi � Φi - update feature norms
9: {R,g} := reorderOLS(R, c,n) - reorder features

10: end for
11: for φ ∈ Φ do
12: if |gφ| < δ‖y‖ then
13: R := R \ Rφ ; g := g \ gφ - prune features
14: end if
15: end for
16: w := R−1g - backward substitution

Algorithm 10 was tested on peaked functions used in Section 7.2.1. Figure 7.8

shows the result for the same function as in Figures 7.3 and 7.4. The algorithm was

run with 100 features (both variables up to degree 9), and only 14 relevant features

were kept (7.8(b)), resulting in a means squared error of order 10−4 (7.8(a)). The

result that the algorithm was able to achieve very low approximation error with very

few features selected, compared to the results of orthogonal feature selection using

Legendre features (Algorithm 7, see Figures 7.3 and 7.4) stems from the fact that

the features are orthogonalized in the OLS order determined by the function to be

approximated, as opposed to the fixed order of Legendre polynomials. Also note, that

most of the features selected by Algorithm 10 are of fairly low degree.

126

Again, the selected features has been compared to regression trees in terms of

decreasing mean squared error (7.8(a)). Similarly to time series prediction, features

extracted by Algorithm 10 clearly outperform those generated by regression trees.

(a) Mean squared error (b) Feature coefficients

Figure 7.8: Prediction of the peaks function using Algorithm 10 (δ = 0.01).

(a) Decrease in mean squared error as features are added in order of importance. (b)

Absolute feature coefficients; most relevant features are of low degree. Trained on 500,

evaluated on 1000 random samples.

A fully incremental algorithm for function approximation would combine Algo-

rithm 9 and 10 to become incremental both in generating the features and incorpo-

rating new samples. However, the full integration of the two aspects of incrementality

would require updating the Cholesky matrix incrementally both in the rows and in

the columns. This could be achieved for example by performing rank-1 updates as

samples arrive, and appending all-zero columns for new candidate features and letting

those be updated as well by upcoming samples. However, this update would distort

the Cholesky factor, as features added earlier in the process would be updated by

more samples, than the ones added later. Unfortunately, this distortion cannot even

be balanced by normalizing the columns of the Cholesky matrix with the number

of samples, because as easily seen, such a naive scaling would result in an improper

scaling effect on the Gramian G = RTR, and thus on the overall solution. For this

reason, the full integration of the two algorithms remains an open issue.

A note must be made about the numerical stability of Algorithm 9 and 10. Matrix

transformations based on Givens rotations are known to have very good numerical

stability, whereas Cholesky factorization may suffer from the accumulation of numeric

127

errors [34]. For this reason, Algorithm 9 may become unstable when the number of

features kept (and thus the size of the Cholesky matrix) becomes very high (happened

above a couple hundred features in the experiments). This may be alleviated by using

a higher value for δ, forcing the algorithm to maintain less features, or setting an

explicit threshold on the number of best features kept. On the other hand, Algorithm

10 is very stable (since it does not use Cholesky updates), and works even in cases

of highly correlated or linearly dependent features, even when some methods for

pseudo-inverse calculations fail. For example, the task solved in Figure 7.8 could not

be solved by the linear fitting operator of MATLAB, due to the ill-conditioned Gramian

matrix resulting from high degree polynomial features. However, Algorithm 10 based

on rank-1 updates to the Cholesky factor had no difficulty. This argument also urges

the need to integrate sample incrementality into Algorithm 9 possibly eliminating the

unstable explicit Cholesky factorization.

7.3 Summary of Function Approximation with Com-

bination Features

In this chapter, algorithms for function approximation were derived from regression

tree generation, inspired by structure learning in factored reinforcement learning.

The introduced algorithms can be viewed as neural network training methods that

incrementally generate the internal layer of a neural network, populating it with

combination features. The incrementality is achieved by benefiting from the nature

of combination features: new candidate features can be generated from previous

significant ones by combining them together.

The first of the devised algorithms (Algorithm 7) operate with orthogonal com-

bination features, and is applicable in special cases when the state space is sampled

uniformly (Legendre features in the continuous case) or when all variable combina-

tions are legal inputs (in the discrete case). It has been shown in the discrete case,

that when all variable combinations are legal inputs, an orthogonal feature matrix

can be explicitly constructed as the Kronecker product of elementary matrices cor-

responding to state variables. The functioning of the algorithm was demonstrated

128

on peaked surfaces and the reward and value functions of the SysAdmin task. A

drawback of the algorithm, besides being limited to special cases, is that the meaning

of features is altered when orthogonal ones are used.

A more generally applicable feature selection algorithm (Algorithm 9) was devised

by implicitly orthogonalizing generated features by utilizing the Cholesky decomposi-

tion of the Gramian of the feature matrix, arriving at an incremental form of stepwise

regression. In this incremental form, not all features are known a-priory, but are

generated incrementally by combination, and they are reordered and pruned utilizing

efficient updates to the Cholesky factor by Givens rotations.

The resulting algorithm was tested on the reward and value functions of the game

of Tic-Tac-Toe and on time series prediction, and it has been compared against re-

gression tree building. It has been demonstrated, that Algorithm 9 is capable of

generating features closely related to the structure of the function, and results in very

accurate approximations using a small number of features. In this respect, it clearly

outperforms regression trees.

Finally, a sample-incremental version of the algorithm was also devised (Algorithm

10) when the features are a-priory known, based on rank-1 updates to the Cholesky

factor, also utilizing Givens rotations. The numerical stability of this approach en-

ables the incremental solution of ill conditioned problems that could not even be

solved by traditional pseudo-inverse calculations.

An interesting property of Algorithm 9 needs to be noted. An inevitable property

of combination feature generation is that features are not found in order of their

importance; it would be computationally intractable, since it would require all pos-

sible combination features to be tested. Thus, it happens from time to time that a

new important feature is found in the later stages of the algorithm and features are

reordered due to Algorithm 8. The insertion of a new important feature effects the

gain of all features following it in the ordering, and may cause some features become

more important, and others less important and pruned. In this sense, the ‘knowledge’

represented by the set of features is restructured from time to time: the same outputs

become the result of different (usually more compact) feature subsets. A similar phe-

nomenon might be happening in the brain, when a learner realizes that his conceptual

knowledge about a field has suddenly changed, deepened and condensed.

129

Discussion and Outlook

Throughout this thesis, I have examined the use of compositional representations and

combination features in various areas separately. These areas, linguistic behavior,

decision making and feature extraction can be seen as moving from the surface of

agent modeling deeper towards the core of the learning mechanisms of an agent.

Naturally, the next steps of research would include the integration of the com-

ponents devised here. Both the compositional language development model and the

feature extraction process could be integrated into factored reinforcement learning,

however, none of these steps seems trivial.

Although Section 4.2.1 phrased a simple non-compositional communication sce-

nario as a limited reinforcement learning task (no long time scales involved), phrasing

a prototypical compositional language development task as factored reinforcement

learning hides some difficulties. As we have seen, care must be taken when multiple

agents learn together. When multiple agents are involved, the dependence of their

learning processes on each other introduces hidden, unobservable variables into rein-

forcement learning, rendering the task as partially observable reinforcement learning.

In such cases, the state description of the agent does not contain all the required

information to make the right decisions. Although frameworks exist to tackle such

problems, learning becomes intractable very fast, and approximation heuristics must

be applied even for moderately large problems (see [82] [70] and references therein).

Furthermore, it is mostly supposed, that the agent can act in a way that it makes

its state contain the necessary information, for example by executing information

gathering actions or remembering past observations. In tasks that require communi-

cation, it is exactly communication that would gather information, but its also the

development of a common language that would require information about the other

130

agent. This kind of circularity makes the co-learning task very difficult; it would

require a joint development approach in partially observable reinforcement learning

to co-develop information gathering actions.

We have seen that reinforcement learning with function approximation can be

problematic even when the features are known; for example value iteration may di-

verge with linear function approximation, although temporal difference learning for

policy evaluation converges. This makes the integration of feature extraction more

difficult, because one would start experimenting with a non-incremental method, and

not the fully incremental temporal difference learning, since incrementality in feature

extraction introduces further complications, as I have discussed in Section 7.2.4.

The ESN approach to reinforcement learning could also be further integrated into

the factored framework. Although the ESN itself employs a distributed representa-

tion, furthermore it can handle partially observable tasks that require remembering

past observations, it does not build on combination features, and the structure of the

matrices generating the internal representation (features) is also fixed. How to inte-

grate these two approaches is not straightforward; for example, ESNs can handle time

series on their own, however, as I have shown in Section 7.2.4, combination features

can also be used for such purposes, without explicitly using recurrent connections,

although variable combinations built from past observations may as well be regarded

as ‘implicit recurrency’.

Finally, a note about the nature of combination features must be made. It has

been noted in Section 3.2.2 that the convergence of reinforcement learning methods

with function approximation might depend on the locality of the features used; local

features prevent bad initial values from propagating to many states. On the other

hand, if features are too much local, it prevents fast generalization. Combination

features might be interesting in this respect, as their locality depends on their com-

plexity (the number of variables involved): the more complex a feature is, the more

local it becomes. Low complexity features generalize well, while higher complexity

features become local, enabling focus on small portions of the state space.

131

Bibliography

[1] D. Ackley, G. Hinton, and T. Sejnowski. A learning algorithm for Boltzmann

machines. Cognitive Science, 9:147–169, 1985.

[2] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and F. Somenzi.

Algebraic decision diagrams and their applications. In Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design, pages 188–

191, 1993.

[3] L. Baird. Residual algorithms: Reinforcement learning with function approxi-

mation. In Proceedings of the 12th International Conference on Machine Learn-

ing, pages 30–37, 1995.

[4] P. Bakker. Reinforcement learning with long short-term memory. In Advances

in Neural Information Processing Systems, volume 14, pages 1475–1482, 2002.

[5] P. Bakker. The State of Mind - Reinforcement Learning with Recurrent Neural

Networks. PhD thesis, Universiteit Leiden, 2004.

[6] D. Ballard, G. Hinton, and T. Sejnowski. Parallel visual computation. Nature,

306(5938):21–26, 1983.

[7] D. Bertsekas. A counterexample to temporal differences learning. Neural Com-

putation, 7(2):270–279, 1995.

[8] D. Bertsekas and J. Tsitsiklis. Neuro-dynamic programming. Massachusetts

Institute of Technology, 1996.

132

[9] T. Blumensath and M. Davies. On the difference between orthogonal matching

pursuit and orthogonal least squares. Technical report, University of Southamp-

ton, 2007.

[10] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in policy

construction. In Proceedings of the 14th International Joint Conference on

Artificial Intelligence, pages 1104–1111, 1995.

[11] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming

with factored representations. Artificial Intelligence, 121(1-2):49–107, 2000.

[12] J. Boyan and A. Moore. Generalization in reinforcement learning: Safely ap-

proximating the value function. In Advances in Neural Information Processing

Systems, volume 7, pages 369–376, 1995.

[13] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression

Trees. Chapman & Hall, New York, NY, 1984.

[14] I. Buciu, N. Nikolaidis, and I. Pitas. Nonnegative matrix factorization in poly-

nomial feature space. IEEE Transactions on Neural Networks, 19(6):1090–1100,

2008.

[15] E. Candes and T. Tao. Near optimal signal recovery from random projec-

tions: Universal encoding strategies? IEEE transactions on information theory,

52(12):5406–5425, 2006.

[16] A. Cangelosi and D. Parisi. The emergence of a language in an evolving popu-

lation of neural networks. Connection Science, 10(2):83–97, 1998.

[17] J.-F. Cardoso and B. Laheld. Equivariant adaptive source separation. IEEE

Transactions on Signal Processing, 44:3017–3030, 1996.

[18] G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds, and D. Rosen. Fuzzy

ARTMAP: A neural network architecture for incremental supervised learning

of analog multidimensional maps. IEEE Transactions on Neural Networks,

3(5):698–713, 2002.

133

[19] S. Chen, S. Billings, and W. Luo. Orthogonal least squares methods and their

application to non-linear system identification. International Journal of Con-

trol, 50:1873–1896, 1989.

[20] S. Chen, C. Cowan, and P. Grant. Orthogonal least squares learning algorithm

for radial basis function networks. IEEE Transactions on Neural Networks,

2(2):302–309, 1991.

[21] A. Das and D. Kempe. Algorithms for subset selection in linear regression. In

Proceedings of the 40th annual ACM symposium on Theory of computing, pages

45–54, 2008.

[22] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial

Intelligence, 113(1-2):41–85, 1999.

[23] T. Degris, O. Sigaud, and P.-H. Wuillemin. Exploiting additive structure in

factored MDPs for reinforcement learning. Recent Advances in Reinforcement

Learning: 8th European Workshop, pages 15–26, 2008.

[24] T. Degris, O. Sigaud, and P.-H. Wuillemini. Learning the structure of factored

Markov decision processes in reinforcement learning problems. In Proceedings

of the 23rd international conference on Machine learning, pages 257–264, 2006.

[25] D. Dolgov and E. Durfee. Symmetric approximate linear programming for fac-

tored MDPs with application to constrained problems. Annals of Mathematics

and Artificial Intelligence, 47:273–293, 2006.

[26] D. Elizondo, R. Birkenhead, M. Góngora, E. Taillard, and P. Luyima. Analysis

and test of efficient methods for building recursive deterministic perceptron

neural networks. Neural Networks, 20(10):1095–1108, 2007.

[27] J. Elman. Finding structure in time. Cognitive Science, 14:179–211, 1990.

[28] S. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In

Advances in Neural Information Processing Systems, volume 2, pages 524–532,

1990.

134

[29] D. De Farias and B. Van Roy. Approximate dynamic programming via linear

programming. In Advances in Neural Information Processing Systems, vol-

ume 14, pages 689–695, 2001.

[30] K. Fujimoto and S. Nakabayashi. Applying GMDH algorithm to extract rules

from examples. Systems Analysis Modelling Simulation, 43(10):1311–1319,

2003.

[31] B. Gabrys and A. Bargiela. General fuzzy min-max neural network for clustering

and classification. IEEE Transactions on Neural Networks, 11(3):769–783, 2000.

[32] Z. Ghahramani. Learning dynamic Bayesian networks. Lecture Notes in Com-

puter Science, 1387:168–197, 1998.

[33] M. Glickman and K. Sycara. Evolution of goal-directed behavior from lim-

ited information in a complex environment. In Proceedings of the Genetic and

Evolutionary Computation Conference, volume 8, pages 1281–1288, 1999.

[34] G. Golub and C. Van Loan. Matrix computations. Johns Hopkins University

Press, Baltimore, MD, USA, 1996.

[35] G. Gordon. Stable function approximation in dynamic programming. In Pro-

ceedings of the 12th International Conference on Machine Learning, pages 261–

268, 1995.

[36] G. Gordon. Chattering in SARSA(λ). Technical report, Carnegie Mellon Uni-

versity, Learning Lab, 1996.

[37] G. Gordon. Reinforcement learning with function approximation converges to

a region. In Advances in Neural Information Processing Systems, volume 13,

pages 1040–1046, 2001.

[38] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing plans to

new environments in relational MDPs. In Proceedings of the 18th International

Joint Conference on Artificial Intelligence, pages 1003–1010, 2003.

135

[39] C. Guestrin, D. Koller, and R. Parr. Max-norm projections for factored MDPs.

In Proceedings of the 17th international joint conference on Artificial intelli-

gence, pages 673–680, 2001.

[40] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solution algo-

rithms for factored MDPs. Journal of Artificial Intelligence Research, 19:399–

468, 2002.

[41] K. Gurney. An introduction to neural networks. University College London

Press, 1997.

[42] I. Guyon. An introduction to variable and feature selection. Journal of Machine

Learning Research, 3:1157–1182, 2003.

[43] V. Gyenes, Á. Bontovics, and A. Lőrincz. Factored temporal difference learning

in the New Ties environment. Acta Cybernetica, 18:651–668, 2008.

[44] V. Gyenes and A. Lőrincz. Co-learning and the development of communica-

tion. In Proceedings of the 17th International Conference on Artificial Neural

Networks, volume 4668 of Lecture Notes in Computer Science I, pages 827–837,

2007.

[45] V. Gyenes and A. Lőrincz. Language development among co-learning agents.

In Proceedings of 6th International Conference on Development and Learning,

pages 294 – 299, 2007.

[46] S. Harnad. The symbol grounding problem. Physica D, 42:335–346, 1990.

[47] D. Heckerman. A tutorial on learning with Bayesian networks. In Learning in

graphical models, pages 301–354, Cambridge, MA, USA, 1999. MIT Press.

[48] S. Hochreiter and J. Schmidhuber. Feature extraction through LOCOCODE.

Neural Computation, 11:679–714, 1999.

[49] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning us-

ing decision diagrams. In In Proceedings of the 15th Conference on Uncertainty

in Artificial Intelligence, pages 279–288, 1999.

136

[50] J. Hoey, R. St-Aubin, A. Hu, and C. Boutillier. Optimal and approximate

stochastic planning using decision diagrams. Technical report, University of

British Columbia, 2000.

[51] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks

are universal approximators. Neural Networks, 2(5):359–366, 1989.

[52] E. Hutchins and B. Hazlehurst. How to invent a lexicon: the development of

shared symbols in interaction. In Artificial Societies, pages 157–189. University

College London Press, London, 1995.

[53] A. Hyvärinen and E. Oja. Independent component analysis: A tutorial. Neural

Networks, 13(4-5):411–430, 2000.

[54] A. Ivakhnenko, G. Ivakhnenko, and J.-A. Müller. Self-organization of neu-

ral networks with active neurons. Pattern Recognition and Image Analysis,

4(2):185–196, 1994.

[55] H. Jaeger. Tutorial on training recurrent neural networks, covering BPTT,

RTRL, EKF and the ‘echo state network’ approach. Technical report, German

National Research Center for Information Technology, 2002.

[56] H. Jaeger and H. Haas. Harnessing nonlinearity: predicting chaotic systems and

saving energy in wireless telecommunication. Science, 304(5667):78–80, 2004.

[57] J. Jang. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans-

actions on Systems, Man and Cybernetics, 23(3):665–685, 2002.

[58] L. Kaelbling, A. Cassandra, and M. Littman. Acting optimally in partially

observable stochastic domains. In Proceedings of the 12th National Conference

on Artificial Intelligence, volume 2, 1994.

[59] D. Kalles and T. Morris. Efficient incremental induction of decision trees. Ma-

chine Learning, 24(3):231–242, 1996.

[60] S. Kirby. Learning, bottlenecks and infinity: a working model of the evolution of

syntactic communication. In Proceedings of the AISB Symposium on Imitation

in Animals and Artifacts, pages 121–129, 1999.

137

[61] S. Kirby and J. Hurford. The emergence of linguistic structure: An overview of

the iterated learning model. In Simulating the Evolution of Language, chapter 6,

pages 121–148. Springer-Verlag, London, 2002.

[62] D. Koller and R. Parr. Policy iteration for factored MDPs. In Proceedings of the

16th Conference on Uncertainty in Artificial Intelligence, pages 326–334, 2000.

[63] A. Krause and V. Cevher. Greedy dictionary selection for sparse representation.

In Advances in Neural Information Processing Systems, volume 23, 2009.

[64] A. Krause and V. Cevher. Submodular dictionary selection for sparse rep-

resentation. In Proceedings of the 27th International Conference on Machine

Learning, 2010.

[65] B. Kveton, M. Hauskrecht, and C. Guestrin. Solving factored MDPs with hybrid

state and action variables. Journal of Artificial Intelligence Research, 27:153–

201, 2006.

[66] D. Lee and S. Seung. Algorithms for non-negative matrix factorization. In

Advances in Neural Information Processing Systems, volume 13, pages 556–

562, 2000.

[67] M. Lewicki and T. Sejnowski. Learning overcomplete representations. Neural

Computation, 12(2):337–365, 2000.

[68] P. Liberatore. The size of MDP factored policies. In Proceedings of the 18th

National Conference on Artificial Intelligence, pages 267–272, 2002.

[69] L.-J. Lin and T. Mitchell. Memory approaches to reinforcement learning in

non-Markovian domains. Technical report, Carnegie Mellon University, 1992.

[70] M. Littman, A. Cassandra, and L. Kaelbling. Learning policies for partially

observable environments: Scaling up. In Proceedings of the 12th International

Conference on Machine Learning, pages 362–370, 1995.

[71] C.-L. Liu and H. Sako. Class-specific feature polynomial classifier for pattern

classification and its application to handwritten numeral recognition. Pattern

Recognition, 39(4):669–681, 2006.

138

[72] A. Lőrincz, V. Gyenes, M. Kiszlinger, and I. Szita. Mind model seems necessary

for the emergence of communication. Neural Information Processing - Letters

and Reviews, 11:109–121, 2007.

[73] H. Madala and A. Ivakhnenko. Inductive Learning Algorithms for Complex

Systems Modeling. CRC Press, Inc., 1994.

[74] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries.

IEEE Transactions on Signal Processing, 41(12):3397–3415, 1993.

[75] B. Malle. The relation between language and theory of mind in development

and evolution. In The evolution of language from pre-language, chapter 10,

pages 265–284. John Benjamins, Amsterdam, 2002.

[76] J. Moody and C. Darken. Fast learning in networks of locally-tuned processing

units. Neural Computation, 1(2):281–294, 1989.

[77] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learn-

ing. PhD thesis, University of California, Berkeley, 2002.

[78] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for

maximizing submodular set functions I. Mathematical Programming, 14(1):265–

294, 1978.

[79] S.-K. Oh and W. Pedrycz. The design of self-organizing polynomial neural

networks. Information Sciences - Informatics and Computer Science, 141(3-

4):237–258, 2002.

[80] M. Oliphant and J. Batali. Learning and the emergence of coordinated commu-

nication. The newsletter of the Center for Research in Language, 11(1):1–46,

1997.

[81] Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal matching pursuit:

Recursive function approximation with applications to wavelet decomposition.

In Proceedings of the 27th Annual Asilomar Conference on Signals, Systems,

and Computers, pages 40–44, 1993.

139

[82] J. Pineau, G. Gordon, and S. Thrun. Anytime point-based approximations for

large POMDPs. Journal of Artificial Intelligence Research, 27:335–380, 2006.

[83] M. Plutowski, G. Cottrell, and H. White. Learning Mackey-Glass from 25 exam-

ples, plus or minus 2. In Advances in Neural Information Processing Systems,

volume 6, pages 1135–1142, 1993.

[84] D. Potts and C. Sammut. Incremental learning of linear model trees. Machine

Learning, 61:5–48, 2005.

[85] J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[86] J. Quinlan. Learning with continuous classes. In Proceedings of the Australian

Joint Conference on Artificial Intelligence, pages 343–348, 1992.

[87] J. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1993.

[88] E. Rasmusen. Games and Information: An Introduction to Game Theory.

Blackwell, Oxford, 2001.

[89] I. Rivals and L. Personnaz. MLPs (mono layer polynomials and multi layer

perceptrons) for nonlinear modeling. Journal of Machine Learning Research,

3:1383–1398, 2003.

[90] R. Rojas. Neural Networks - A Systematic Introduction. Springer-Verlag, Berlin,

1996.

[91] F. Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6):386–408, 1958.

[92] B. Van Roy. Performance loss bounds for approximate value iteration with state

aggregation. Mathematics of Operations Research, 31(2):234–244, 2006.

[93] R. Rubinstein and D. Kroese. The Cross-Entropy Method. Springer-Verlag,

New York, 2004.

[94] S. Russell and P. Norvig. Artificial Intelligence: a Modern Approach. Prentice-

Hall, Englewood Cliffs, New Jersey, 1994.

140

[95] B. Sallans. Reinforcement Learning for Factored Markov Decision Processes.

PhD thesis, University of Toronto, 2002.

[96] S. Sanner and C. Boutilier. Approximate linear programming for first-order

MDPs. In Proceedings of the 21st Annual Conference on Uncertainty in Artifi-

cial Intelligence, pages 509–517, 2005.

[97] J. Schmidhuber. Making the world differentiable. Technical report, Institut für

Informatik, Technische Universität München, 1990.

[98] P. Schweitzer and A. Seidmann. Generalized polynomial approximations in

Markovian decision processes. Journal of Mathematical Analysis and Applica-

tions, 110(6):568–582, 1985.

[99] T. Shanableh and K. Assaleh. Feature modeling using polynomial classifiers

and stepwise regression. Neurocomputing, 73(10-12):1752–1759, 2010.

[100] S. Singh, T. Jaakkola, and M. Jordan. Reinforcement learning with soft state

aggregation. In Advances in Neural Information Processing Systems, volume 7,

pages 361–368, 1995.

[101] W. Smart and L. Kaelbling. Practical reinforcement learning in continuous

spaces. In Proceedings of the 17th International Conference of Machine Learn-

ing, pages 903–910, 2000.

[102] A. Smith. Establishing communication systems without explicit meaning trans-

mission. In Proceedings of the 6th European Conference on Advances in Artificial

Life, pages 381–390, 2001.

[103] J. Maynard Smith. Evolution and the Theory of Games. Cambridge University

Press, Cambridge, 1982.

[104] K. Smith, S. Kirby, and H. Brighton. Iterated learning: a framework for the

emergence of language. Artificial Life, 9(4):371–386, 2003.

[105] D. Srinivasan, V. Sharma, and K. Toh. Reduced multivariate polynomial-based

neural network for automated traffic incident detection. Neural Networks, 21(2-

3):484 – 492, 2008.

141

[106] R. St-Aubin, J. Hoey, and C. Boutilier. APRICODD: Approximate policy

construction using decision diagrams. In Advances in Neural Information Pro-

cessing Systems, volume 13, pages 1089–1095, 2000.

[107] L. Steels. Grounding symbols through evolutionary language games. In Simu-

lating the Evolution of Language, chapter 10, pages 211–226. Springer Verlag,

2002.

[108] H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar. Ranking a random fea-

ture for variable and feature selection. Journal of Machine Learning Research,

3:1399–1414, 2003.

[109] A. Strehl, C. Diuk, and M. Littman. Efficient structure learning in factored-

state MDPs. In Proceedings of the 22nd national conference on Artificial Intel-

ligence, pages 645–650, 2007.

[110] R. Sutton. Generalization in reinforcement learning: Successful examples using

sparse coarse coding. In Advances in Neural Information Processing Systems,

volume 8, pages 1038–1044, 1996.

[111] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA, 1998.

[112] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods

for reinforcement learning with function approximation. In Advances in Neural

Information Processing Systems, volume 12, pages 1057–1063, 2000.

[113] R. Sutton, S. Singh, and D. McAllester. Comparing policy-gradient algorithms.

IEEE Transactions on Systems, Man, and Cybernetics, 1983.

[114] I. Szita, V. Gyenes, and A. Lőrincz. Reinforcement learning with echo state

networks. In Proceedings of the 16th International Conference on Artificial

Neural Networks, volume 4131 of Lecture Notes in Computer Science II, pages

830–839, 2006.

[115] I. Szita and A. Lőrincz. Factored value iteration converges. Acta Cybernetica,

18(4):615–635, 2008.

142

[116] G. Tesauro and T. Sejnowski. A parallel network that learns to play backgam-

mon. Artificial Intelligence, 39:357–390, 1989.

[117] J. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with

function approximation. IEEE Transactions on Automatic Control, 42(5):674–

690, 1997.

[118] P. Utgoff. Incremental induction of decision trees. Machine Learning, 4(2):161–

186, 1989.

[119] P. Vogt. Iterated learning and grounding: From holistic to compositional lan-

guages. In Proceedings of Language Evolution and Computation Workshop,

pages 76–86, 2003.

[120] P. Vogt. The emergence of compositional structures in perceptually grounded

language games. Artificial Intelligence, 167(1-2):206–242, 2005.

[121] C. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge University,

Cambridge, UK, 1989.

143

