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Abstract

Thanks to the several successful applications, sparse signal representation has be-
come one of the most actively studied research areas in mathematics. However, in
the traditional sparse coding problem the dictionary used for representation is as-
sumed to be known. In spite of the popularity of sparsity and its recently emerging
structured sparse extension, interestingly, very few works focused on the learning
problem of dictionaries to these codes.

In the first part of the paper, we develop a dictionary learning method which is
(i) online, (ii) enables overlapping group structures with (iii) non-convex sparsity-
inducing regularization and (iv) handles the partially observable case. To the best of
our knowledge, current methods can exhibit two of these four desirable properties
at most. We also investigate several interesting special cases of our framework and
demonstrate its applicability in inpainting of natural signals, structured sparse non-
negative matrix factorization of faces and collaborative filtering. Complementing
the sparse direction we formulate a novel component-wise acting, ε-sparse coding
scheme in reproducing kernel Hilbert spaces and show its equivalence to a gen-
eralized class of support vector machines. Moreover, we embed support vector
machines to multilayer perceptrons and show that for this novel kernel based ap-
proximation approach the backprogation procedure of multilayer perceptrons can
be generalized.

In the second part of the paper, we focus on dictionary learning making use of
independent subspace assumption instead of structured sparsity. The corresponding
problem is called independent subspace analysis (ISA), or independent component
analysis (ICA) if all the hidden, independent sources are one-dimensional. One of
the most fundamental results of this research field is the ISA separation principle,
which states that the ISA problem can be solved by traditional ICA up to permu-
tation. This principle (i) forms the basis of the state-of-the-art ISA solvers and (ii)
enables one to estimate the unknown number and the dimensions of the sources
efficiently. We (i) extend the ISA problem to several new directions including the
controlled, the partially observed, the complex valued and the nonparametric case



and (ii) derive separation principle based solution techniques for the generalizations.
This solution approach (i) makes it possible to apply state-of-the-art algorithms for
the obtained subproblems (in the ISA example ICA and clustering) and (ii) handles
the case of unknown dimensional sources. Our extensive numerical experiments
demonstrate the robustness and efficiency of our approach.
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Chapter 1

Introduction

Sparse signal representation is among the most actively studied research areas in
mathematics. In the sparse coding framework one approximates the observations
with the linear combination of a few vectors (basis elements) from a fixed dictionary
[1, 2]. The general sparse coding problem, i.e., the �0-norm solution that searches
for the least number of basis elements, is NP-hard [3]. To overcome this difficulty,
a popular approach is to apply �p (0 < p ≤ 1) relaxations. The p = 1 special case,
the so-called Lasso problem [4], has become particularly popular since in this case
the relaxation leads to a convex problem.

The traditional form of sparse coding does not take into account any prior in-
formation about the structure of hidden representation (also called covariates, or
code). However, using structured sparsity [5–60], that is, forcing different kind
of structures (e.g., disjunct groups, trees, or more general overlapping group struc-
tures) on the sparse codes can lead to increased performances in several applica-
tions. Indeed, as it has been theoretically proved recently structured sparsity can
ease feature selection [5, 6], and makes possible robust compressed sensing with
substantially decreased observation number [7]. Many other real life applications
also confirm the benefits of structure sparsity, for example (i) automatic image an-
notation [8], (ii) group-structured feature selection for micro array data process-
ing [9–19, 43], (iii) multi-task learning problems (a.k.a. transfer learning, joint
covariate/subspace selection, multiple measurements vector model, simultaneous
sparse approximation) [20–27,47], (iv) fMRI (functional magnetic resonance imag-
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ing) analysis [42], (v) multiple kernel learning [22, 44–46, 48, 61], (vi) analysis of
soil diversity and forest diversity associations [28], (vii) handwriting, satellite and
natural image classification [29–31], (viii) facial expression discrimination [32] and
face recognition [33], (ix) graph labelling [34], (x) compressive imaging [35–38],
(xi) structure learning in graphical models [39,40], (xi) multi-view learning (human
pose estimation) [41], (xii) natural language processing [30].

All the above mentioned examples only consider the structured sparse coding
problem, where we assume that the dictionary is already given and available to
us. A more interesting (and challenging) problem is the combination of these two
tasks, i.e., learning the best structured dictionary and structured representation. This
is the structured dictionary learning (SDL) problem, for which one can find only
a few solutions in the literature [62–67]. Tree based group structure is assumed
in [62], and dictionary learning is accomplished by means of the so-called proximal
methods [68]. The efficiency of non-convex sparsity-inducing norms on the dictio-
nary has recently been demonstrated in structured sparse PCA (principal compo-
nent analysis) [63] in case of general group structures. General group-structured,
but convex sparsity-inducing regularizer is applied in [64] for the learning of the
dictionary by taking advantage of network flow algorithms. In [65], the authors
take partition (special group structure) on the hidden covariates and explicitly limit
the number of non-zero elements in each group in the dictionary learning problem.
Dictionary learning is carried out under the assumption of one-block sparsity for the
representation (special partition group structure with one active partition element)
in [67], however in contrast to the previous works the approach is blind, that is it
can handle missing observations. The cost function based on structure-inducing
regularization in [66] is a special case of [63]. However, as opposed to the previ-
ous works, in [66] the presented dictionary learning approach is online, allowing a
continuous flow of observations.

This novel SDL field is appealing for (i) transformation invariant feature ex-
traction [66], (ii) image denoising/inpainting [62, 64, 67], (iii) background subtrac-
tion [64], (iv) analysis of text corpora [62], and (v) face recognition [63].

We are interested in structured dictionary learning algorithms that possess the
following four properties:

• They can handle general, overlapping group structures.
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• The applied regularization can be non-convex and hence allow less restrictive
assumptions on the problem. Indeed, as it has been recently shown in the
sparse coding literature:

– by replacing the �1 norm with the �p (0 < p < 1) non-convex quasi-
norm, exact reconstruction of the sparse codes is possible with substan-
tially fewer measurements [69, 70].

– The �p based approach (i) provides recovery under weaker RIP (restric-
tive isometry property) conditions on the dictionary than the �1 tech-
nique, (ii) moreover it inherits the robust recovery property of the �1

method with respect to the noise and the compressibility of the code
[71, 72].

– Similar properties also hold for certain more general non-convex penal-
ties [73–76].

• We want online algorithms [66, 77, 78]:

– Online methods have the advantage over offline ones that they can pro-
cess more instances in the same amount of time [79], and in many cases
this can lead to increased performance.

– In large systems where the whole dataset does not fit into the memory,
online systems can be the only solutions.

– Online techniques are adaptive: for example in recommender systems
[80] when new users appear, we might not want to relearn the dictionary
from scratch; we simply want to modify it by the contributions of the
new users.

• We want an algorithm that can handle missing observations [67, 81]. Using a
collaborative filtering [80] example, users usually do not rate every item, and
thus some of the possible observations are missing.

Unfortunately, existing approaches in the literature can possess only two of our
four requirements at most. Our first goal (Section 2.1) is to formulate a general
structured dictionary learning approach, which is (i) online, (ii) enables overlap-
ping group structures with (iii) non-convex group-structure inducing regularization,
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and (iv) handles the partially observable case. We call this problem online group-
structured dictionary learning (OSDL).

Traditional sparse coding schemes work in the finite dimensional Euclidean
space. Interestingly, however the sparse coding approach can also be extended to a
more general domain, to reproducing kernel Hilbert spaces (RKHS) [82]. Moreover,
as it has been proved recently [83,84] certain variants of the sparse coding problems
in RKHSs are equivalent to one of the most successful, kernel based approximation
technique, the support vector machine (SVM) approach [85, 86]. Application of
kernels:

• makes it possible to generalize a wide variety of linear problems to the non-
linear domain thanks to the scalar product evaluation property of kernels, the
so-called ‘kernel trick’.

• provides a uniform framework for numerous well-known approximation schemes,
e.g., Fourier, polinomial, wavelet approximations.

• allows to define similarity measures for structured objects like strings, genes,
graphs or dynamical systems.

For a recent review on kernels and SVMs, see [87]. In that cited works [83, 84],
however the ε-insensitivity parameter of the SVMs—which only penalizes the de-
viations from the target value larger than ε, linearly—was transformed into ‘uni-
form’ sparsification, in the sense that ε was tranformed to the weight of the sparsity-
inducing regularization term. Our question was, whether it is possible to transform
the insensitivity ε into a component-wise acting, ε-sparse scheme. Our second goal
was to answer this kernel based sparse coding problem. We focus on this topic and
give positive answer to this novel sparse coding – kernel based function approxima-
tion equivalence in Section 2.2.

Beyond SVMs, multilayer perceptron (MLP) are among the most well-known
and successful approximation techniques. The basic idea of the MLP neural net-
work is to approximate the target function, which is given to us in the form of
input-output pairs, as a composition of ‘simple’ functions. In the traditional form of
MLPs one assumes at each layer of the network (that is for the functions constitut-
ing the composition) a linear function followed by a component-wise acting sigmoid
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function. The parameter tuning of MLP can be carried out by the backpropagation
technique. For an excellent review on neural networks and MLPs, see [88]. How-
ever, MLPs consider transformations only in the finite dimensional Euclidean space
at each hidden layer. Our third goal was to extend the scope of MLPs to the more
general RKHS construction. This novel kernel based approximation scheme, the
multilayer kerceptron network and the derivation of generalized backpropagation
rules will be in the focus of Section 2.3.

Till now (Chapter 2) we focused on different structured sparse dictionary learn-
ing problems, and the closely related sparse coding, kernel approximation schemes.
However, the dictionary learning task, (a.k.a. matrix factorization [89]) is a gen-
eral problem class that contains, e.g., (sparse) principal component analysis (PCA)
[90], independent component analysis (ICA) [91], independent subspace analysis
(ISA) [92]1, and (sparse) non-negative matrix factorization (NMF) [94–96], among
many others. In the second part the paper (Chapter 3) we are dealing with indepen-
dent subspace based dictionary learning, i.e., extensions of independent subspace
analysis.

One predecessor of ISA is the ICA task. Independent component analysis [97,
98] has received considerable attention in signal processing and pattern recognition,
e.g., in face representation and recognition [99,100], information theoretical image
matching [101], feature extraction of natural images [102], texture segmentation
[103], artifact separation in MEG (magneto-encephalography) recordings and the
exploration of hidden factors in financial data [104]. One may consider ICA as a
cocktail party problem: we have some speakers (sources) and some microphones
(sensors), which measure the mixed signals emitted by the sources. The task is to
estimate the original sources from the mixed observations only. For a recent review
about ICA, see [91, 105, 106].

Traditional ICA algorithms are one-dimensional in the sense that all sources
are assumed to be independent real valued random variables. Nonetheless, appli-
cations in which only certain groups of the hidden sources are independent may
be highly relevant in practice, because one cannot expect that all source compo-

1A preliminary work (without model definition) of ISA appeared in [93], where the authors
searched for fetal ECG (electro-cardiography) subspaces via ICA followed by assigning the esti-
mated ICA elements to different ‘subspaces’ based on domain expert knowledge.

5



nents are statistically independent. In this case, the independent sources can be
multidimensional. For instance, consider the generalization of the cocktail-party
problem, where independent groups of people are talking about independent topics
or more than one group of musicians are playing at the party. The separation task
requires an extension of ICA, which is called multidimensional ICA [92], indepen-
dent subspace analysis (ISA) [107], independent feature subspace analysis [108],
subspace ICA [109] or group ICA [110] in the literature. We will use the ISA ab-
breviation throughout this paper. The several successful applications and the large
number of different ISA algorithms show the importance of this field. Successful
applications of ISA in signal processing and pattern recognition include: (i) the pro-
cessing of EEG-fMRI (EEG, electro-encephalography) data [111–113] and natural
images [107, 114], (ii) gene expression analysis [115], (iii) learning of face view-
subspaces [116], (iv) ECG (electro-cardiography) analysis [92, 109, 110, 117–119],
(v) motion segmentation [120], (vi) single-channel source separation [121], (vii)
texture classification [122].

We are motivated by:

• a central result of the ICA research, the ISA separation principle.

• the continuously emerging applications using the relaxations of the traditional
ICA assumptions.

The ISA Separation Principle. One of the most exciting and fundamental
hypotheses of the ICA research is due to Jean-François Cardoso [92], who conjec-
tured that the ISA task can be solved by ICA up to permutation. In other words, it
is enough to cluster the ICA elements into statistically depedent groups/subspaces
to solve the ISA problem. This principle

• forms the basis of the state-of-the-art ISA solvers. While the extent of this
conjecture, the ISA separation principle is still an open issue, we have re-
cently shown sufficient conditions for this 10-year-old open question [123].

• enables one to estimate the unknown number and the dimensions of the sources
efficiently. Indeed, let us suppose that the dimension of the individual sub-
spaces in ISA it not known. The lack of such knowledge may cause serious
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computational burden as one should try all possible

D = d1 + . . . + dM (dm > 0, M ≤ D) (1.1)

dimension allocations (dm stands for estimation of the mth subspace dimen-
sion) for the individual subspaces, where D denotes the total source dimen-
sion. The number of these possibilities is given by the so-called partition
function f(D), i.e., the number of sets of positive integers that sum up to D.
The value of f(D) grows quickly with the argument, its asymptotic behavior
is described by the

f(D) ∼ eπ
√

2D/3

4D
√

3
, D → ∞ (1.2)

formula [124,125]. Making use of the ISA separation principle, however, one
can construct large scale ISA algorithms without the prior knowledge of the
subspace dimensions by clustering of the ICA elements on the basis of their
pairwise mutual information, see, e.g. [126].

• makes it possible to use mature algorithms for the solution of the obtained
subproblems, in the example, ICA and clustering methods.

ICA Extensions. Beyond the ISA direction, there exist numerous exciting di-
rections relaxing the traditional assumptions of ICA (one-dimensional sources, i.i.d.
sources in time, instantaneous mixture, complete observation), for example:

• Post nonlinear mixture: In this case the linear mixing assumption of ICA is
weakened to the composition of a linear and a coordinate-wise acting, so-
called post nonlinear (PNL) model. This is the PNL ICA problem [127]. The
direction has recently gained widespread attention, for a review see [128].

• Complex valued sources/mixing: In the complex ICA problem, the sources
and the mixing process are both realized in the complex domain. The complex-
valued computations (i) have been present from the ‘birth’ of ICA [98, 129],
(ii) show nice potentials in the analysis of biomedical signals (EEG, fMRI),
see e.g., [130–132].
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• Incomplete observations: In this case certain parts (coordinates/time instants)
of the mixture are not available for observation [133, 134].

• Temporal mixing (convolution): Another extension of the original ICA task is
the blind source deconvolution (BSD) problem. Such a problem emerges, for
example, at a cocktail party being held in an echoic room, and can be mod-
elled by a convolutive mixture relaxing the instantaneous mixing assump-
tion of ICA. For an excellent review on this direction and its applications,
see [135].

• Nonparametric dynamics: The general case of sources with unknown, non-
parametric dynamics is quite challenging, and very few works focused on this
direction [110, 136].

These promising ICA extensions may however often be quite restrictive:

• they usually handle only one type of extensions, e.g.,

– they allow temporal mixing (BSD), but only for one-dimensional in-
dependent sources. Similarly, the available methods for complex and
incompletely observable models are only capable of dealing with the
simplest ICA model.

– the current nonparametric techniques focus on

∗ the stationary case / constrained mixing case, and

∗ assume equal and known dimensional hidden independent sources.

• current approaches in the ICA problem family do not allow the application
of control/exogenous variables, or active learning of the dynamical systems.
The motivation for considering this combination is many-folded. ICA/ISA
based models search for hidden variables, but they do not include interaction
with environment, i.e., the possibility to apply exogenous variables. Control
assisted data mining is of particular interest for real world applications. ICA
and its extensions have already been successfully applied to certain biomed-
ical data analysis (EEG, ECG, fMRI) problems. The application of con-
trol variables in these problems may lead to a new generation of interaction
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paradigms. By taking another example, in financial applications, exogenous
indicator variables can play the role of control leading to new econometric
and financial prediction techniques.

These are the reasons that motivate us to (i) develop novel ISA extensions, ISA
based dictionary learning approaches (controlled, incompletely observable, com-
plex, convolutive, nonparametric), where (ii) the dimension of the hidden sources
may be not equal/known, and (iii) derive separation principle based solution tech-
niques for the problems. This is the goal of Chapter 3.

The paper is structured as follows: In Chapter 2 we focus on (structured) sparse
coding schemes, and related kernel based approximation methods. Our novel ISA
based dictionary learning approaches are presented in Chapter 3. The efficiency of
the structured sparse and ISA based methods are numerically illustrated in Chap-
ter 4 and Chapter 5, respectively. Conclusions are drawn in Chapter 6. Longer tech-
nical details and the abbrevations used in the paper are collected in Appendix A.
Abbreviations of the paper are listed in Appendix B, see Table B.1.

Notations. Vectors have bold faces (a), matrices are written by capital letters
(A). Polynomials and D1 × D2 sized polynomial matrices are denoted by R[z]

and R[z]D1×D2 , respectively. � stands for the real part, 	 for the imaginary part
of a complex number. The ith coordinate of vector a is ai, diag(a) denotes the
diagonal matrix formed from vector a. Pointwise product of vectors a,b ∈ Rd is
denoted by a ◦ b = [a1b1; . . . ; adbd]. b = [a1; . . . ; aK ] ∈ Rd1+...+dK denotes the
concatenation of vectors ak ∈ Rdk . A ⊗ B is the Kronecker product of matrices,
that is [aijB]. The uniquely existing Moore-Penrose generalized inverse of matrix
A ∈ R

D1×D2 is A− ∈ R
D2×D1 . For a set (number), | · | denotes the number of

elements in the set, (the absolute value of the number). For a ∈ Rd,A ∈ Rd×D and
for setO ⊆ {1, . . . , d}, aO ∈ R|O| denotes the coordinates of vector a inO, whereas
AO ∈ R|O|×D contains the rows of matrix A in O. AT is the transposed of matrix
A. A∗ is the adjoint of matrixA. I and 0 stand for the identity and the null matrices,
respectively. 1 denotes the vector of only 1s. OD = {A ∈ R

D×D : AAT = I}
denotes the orthogonal group. UD = {A ∈ CD×D : AA∗ = I} stands for the
unitary group. Operation max and relations ≥,≤ act component-wise on vectors.
The abbrevation l ≤ x1, . . . ,xN ≤ u stands for l ≤ x1 ≤ u, . . . , l ≤ xN ≤ u. For
positive numbers p, q, (i) (quasi-)norm �q of vector a ∈ Rd is ‖a‖q = (

∑d
i=1 |ai|q)

1

q ,
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(ii) �p,q-norm (a.k.a. group norm, mixed �q/�p norm) of the same vector is ‖a‖p,q =

‖[‖aP1
‖q, . . . , ‖aPK

‖q]‖p, where {Pi}K
i=1 is a partition of the set {1, . . . , d}. Sd

p =

{a ∈ R
d : ‖a‖p ≤ 1} is the unit sphere associated with �p in R

d. For any given
set system G, elements of vector a ∈ R|G| are denoted by aG, where G ∈ G, that is
a = (aG)G∈G. ΠC(x) = argminc∈C‖x − c‖2 denotes the orthogonal projection to
the closed and convex set C ⊆ Rd, where x ∈ Rd. Partial derivative of function g

with respect to variable x at point x0 is ∂g
∂x

(x0) and g′(x0) is the derivative of g at
x0. R

d
+ = {x ∈ R

d : xi ≥ 0 (∀i)} stands for the non-negative ortant in R
d. χ is

the characteristic function. The entropy of a random variable is denoted by H , E

is the expectation and I(·, . . . , ·) denotes the mutual information of its arguments.
N = {0, 1, . . .} stands for the natural numbers. R+ andN+ denote the set of positive
real and the positive natural numbers, respectively. For sets,× and \ stand for direct
product and difference, respectively. For i ≤ j integers, [i, j] is a shorthand for the
interval {i, i + 1, . . . , j}.
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Chapter 2

Theory – Group-Structured
Dictionary Learning

In this chapter we are dealing with the dictionary learning problem of group-structured
sparse codes (Section 2.1) and sparse coding – kernel based approximation equiva-
lences (Section 2.2). We also present a novel, kernel based approximation scheme
in Section 2.3, we embed support vector machines to multilayer perceptrons.

2.1 Online Group-Structured Dictionary Learning

In this section, we focus on the problem of online learning of group-structured
dictionaries. We define the online group-structured dictionary learning (OSDL)
task in Section 2.1.1. Section 2.1.2 is dedicated to our optimization scheme solving
the OSDL problem. Numerical examples illustrating the efficiency of our approach
are given in Chapter 4.

2.1.1 Problem Definition

We define the online group-structured dictionary learning (OSDL) task [137, 138]
as follows. Let the dimension of our observations be denoted by dx. Assume that
in each time instant (i = 1, 2, . . .) a set Oi ⊆ {1, . . . , dx} is given, that is, we
know which coordinates are observable at time i, and our observation is xOi

. We
aim to find a dictionary D ∈ Rdx×dα that can approximate the observations xOi
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well from the linear combination of its columns. We assume that the columns of D
belong to a closed, convex, and bounded set D = ×dα

i=1Di. To formulate the cost
of dictionary D, we first consider a fixed time instant i, observation xOi

, dictionary
D, and define the hidden representation αi associated to this triple (xOi

,D, Oi).
Representation αi is allowed to belong to a closed, convex set A ⊆ Rdα (αi ∈
A) with certain structural constraints. We express the structural constraint on αi

by making use of a given G group structure, which is a set system (also called
hypergraph) on {1, . . . , dα}. We also assume that a set of linear transformations
{AG ∈ RdG×dα}G∈G is given for us. We will use them as parameters to define
the structured regularization on the codes. Representation α belonging to a triple
(xO,D, O) is defined as the solution of the structured sparse coding task

l(xO,DO) = lA,κ,G,{AG}G∈G
,η(xO,DO) (2.1)

= min
α∈A

[
1

2
‖xO − DOα‖2

2 + κΩ(α)

]
, (2.2)

where l(xO,DO) denotes the loss, κ > 0, and

Ω(y) = ΩG,{AG}G∈G
,η(y) = ‖(‖AGy‖2)G∈G‖η (2.3)

is the group structure inducing regularizer associated to G and {AG}G∈G, and η ∈
(0, 2). Here, the first term of (2.2) is responsible for the quality of approximation
on the observed coordinates, and (2.3) performs regularization defined by the group
structure/hypergraph G and the {AG}G∈G linear transformations. The OSDL prob-
lem is defined as the minimization of the cost function:

min
D∈D

ft(D) :=
1∑t

j=1(j/t)
ρ

t∑
i=1

(
i

t

)ρ

l(xOi
,DOi

), (2.4)

that is, we aim to minimize the average loss of the dictionary, where ρ is a non-
negative forgetting rate. If ρ = 0, the classical average

ft(D) =
1

t

t∑
i=1

l(xOi
,DOi

) (2.5)

12



is obtained. When η ≤ 1, then for a code vector α, the regularizer Ω aims at elimi-
nating the AGα terms (G ∈ G) by making use of the sparsity-inducing property of
the ‖·‖η norm [63]. For Oi = {1, . . . , dx} (∀i), we get the fully observed OSDL
task.

Below we list a few special cases of the OSDL problem:

• Special cases for G:

– If |G| = dα and G = {{1}, {2}, . . . , {dα}}, then no dependence is as-
sumed between coordinates αi, and the problem reduces to the classical
task of learning ‘dictionaries with sparse codes’ [139].

– If |G| = dα and G = {desc1, . . . , descdα
}, where desci stands for the ith

node (αi) of a tree and its descendants, then we have a tree-structured,
hierarchical representation [62].

– If |G| = dα, and G = {NN1, . . . , NNdα
}, whereNNi denotes the neigh-

bors of the ith point (αi) in radius r on a grid, then we obtain a grid
representation [66].

– If G = {{1}, . . . , {dα}, {1, . . . , dα}}, then we have an elastic net repre-
sentation [140].

– G = {{[1, k]}k∈{1,...,dα−1}, {[k, dα]}k∈{2,...,dα}} intervals lead to a 1D
contiguous, nonzero representation. One can also generalize the con-
struction to higher dimensions [49].

– If G is a partition of {1, . . . , dα}, then non-overlapping group structure
is obtained. In this case, we are working with block-sparse (a.k.a. group
Lasso) representation [6].

• Special cases for {AG}G∈G:

– Let (V, E) be a given graph, where V and E denote the set of nodes and
edges, respectively. For each e = (i, j) ∈ E, we also introduce (wij,
vij) weight pairs. Now, if we set

Ω(y) =
∑

e=(i,j)∈E:i<j

wij |yi − vijyj|, (2.6)
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then we obtain the graph-guided fusion penalty [16]. The groupsG ∈ G

correspond to the (i, j) pairs, and in this case

AG = [wij ,−wijvij ] ∈ R
1×2. (2.7)

As a special case, for a chain graph we get the standard fused Lasso
penalty by setting the weights to one [141]:

Ω(y) = FL(y) =

dα−1∑
j=1

|yj+1 − yj|. (2.8)

– The fused Lasso penalty can be seen as a zero-order difference approach.
One can also take first order

Ω(y) =
dα−1∑
j=2

| − yj−1 + 2yj − yj+1| (2.9)

differences arriving to linear trend filtering (also called �1 trend filter-
ing) [142], or its higher order variants lead to polynomial filtering tech-
niques.

– By restricting the G group structure to have a single element (|G| = 1)
and η to 1, we obtain the

Ω(y) = ‖Ay‖1 (2.10)

generalized Lasso penalty [43, 59].

– Let ∇y ∈ R
d1×d2 denote the discrete differential of an image y ∈

Rd1×d2 at position (i, j) ∈ {1, . . . , d1} × {1, . . . , d2}:

(∇y)ij = [(∇y)1
ij; (∇y)2

ij], (2.11)
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where

(∇y)1
ij = (yi+1,j − yi,j)χ{i<d1}, (2.12)

(∇y)2
ij = (yi,j+1 − yi,j)χ{j<d2}. (2.13)

Using these notations, the total variation of y is defined as follows [143]:

Ω(y) = ‖y‖TV =

d1∑
i=1

d2∑
j=1

‖(∇y)ij‖2 . (2.14)

• Special cases for D, A:

– Di = Sdx

2 (∀i), A = Rdα : columns of dictionary D are constrained to
be in the Euclidean unit sphere.

– Di = Sdx

2 ∩ R
dx
+ (∀i), A = R

dα
+ : This is the structured non-negative

matrix factorization (NMF) problem.

– Di = Sdx

1 ∩R
dx
+ (∀i), A = R

dα
+ : This is the structured mixture-of-topics

problem.

– Beyond Rd, Sd
1 , Sd

2 , Sd
1 ∩Rd

+, and Sd
2 ∩Rd

+, several other constraints can
also be motivated for Di and A. In the above mentioned examples, the
group-norm, elastic net, and fused Lasso constraints have been applied
in a ‘soft’ manner, with the help of the Ω regularization. However, we
can enforce these constraints in a ‘hard’ way as well: During optimiza-
tion (Section 2.1.2), we can exploit the fact that the projection to the Di

and A constraint sets can be computed efficiently. Such constraint sets
include [77, 144, 145], e.g., the

∗ {c : ‖c‖p,q ≤ 1} group norms,
∗ {c : γ1 ‖c‖1 + γ2 ‖c‖2

2 ≤ 1} elastic net, and
∗ {c : γ1 ‖c‖1+γ2 ‖c‖2

2+γ3FL(c) ≤ 1} fused Lasso (γ1, γ2, γ3 > 0).

– When applying group norms for both the codesα and the dictionaryD,
we arrive at a double structured dictionary learning scheme.

In sum, the OSDL model provides a unified dictionary learning framework for

15



several actively studied structured sparse coding problems, naturally extends them
for incomplete observations, and allows non-convex regularization as well.

2.1.2 Optimization

We consider the optimization of cost function (2.4), which is equivalent to the joined
optimization of dictionary D and coefficients {αi}t

i=1:

arg min
D∈D,{αi∈A}t

i=1

ft(D, {αi}t
i=1), (2.15)

where

ft =
1∑t

j=1(j/t)
ρ

t∑
i=1

(
i

t

)ρ [
1

2
‖xOi

− DOi
αi‖2

2 + κΩ(αi)

]
. (2.16)

Assume that our samples xi are emitted from an i.i.d. source p(x), and we can
observe xOi

. We execute the online optimization of dictionary D (i.e., the mini-
mization of (2.16)) through alternations:

1. For the actual sample xOt
we optimize hidden representation αt belonging to

xOt
using our estimated dictionary Dt−1 and solving the minimization task

αt = argmin
α∈A

[
1

2
‖xOt

− (Dt−1)Ot
α‖2

2 + κΩ(α)

]
. (2.17)

2. We use hidden representations {αi}t
i=1 and updateDt−1 by means of quadratic

optimization
f̂t(Dt) = min

D∈D

ft(D, {αi}t
i=1). (2.18)

In the next subsections, we elaborate on the optimization of representation α in
(2.17) and the dictionary D in (2.18).

Representation update (α)

Objective function (2.17) is not convex in α. We use a variational method to find
a solution: (i) we rewrite the term Ω by introducing an auxiliary variable (z) that
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converts the expression to a quadratic one in α, and then (ii) we use an explicit
solution to z and continue by iteration. Namely, we use Lemma 3.1 of [63]: for any
y ∈ R

d and η ∈ (0, 2)

‖y‖η = min
z∈R

d
+

[
1

2

d∑
i=1

y2
j

zj
+

1

2
‖z‖β

]
, (2.19)

where β = η
2−η

, and it takes its minimum value at

z∗i = |yi|2−η‖y‖η−1
η . (2.20)

We apply this relation for the term Ω in (2.17) (see Eq. (2.3)), and have that

2Ω(α) = min
z=[(zG)G∈G ]∈R

|G|
+

[∑
G∈G

∥∥AGα
∥∥2

2

zG
+ ‖z‖β

]
(2.21)

= min
z∈R

|G|
+

[
αTHα + ‖z‖β

]
, (2.22)

where
H = H(z) =

∑
G∈G

(AG)TAG/zG. (2.23)

Inserting (2.22) into (2.17) we get the optimization task:

arg min
α∈A,z∈R

|G|
+

J(α, z) =
1

2
‖xOt

− (Dt−1)Ot
α‖2

2 + κ
1

2

(
αTHα + ‖z‖β

)
. (2.24)

One can solve the minimization of J(α, z) by alternations:

1. For given z: we can use least mean square solver for α when A = R
dα in

(2.24), and non-negative least square solver when A = R
dα
+ . For the general

case, the cost function J(α, z) is quadratic in α and is subject to convex
and closed constraints (α ∈ A). There are standard solvers for this case
[146, 147], too.

2. For given α: According to (2.19), the minimum z = (zG)G∈G can be found
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as
zG = ‖AGα‖2−η

2 ‖(‖AGα‖2)G∈G‖η−1
η . (2.25)

Note that for numerical stability smoothing, z = max(z, ε) (0 < ε � 1), is
suggested in practice.

Dictionary update (D)

We use block-coordinate descent (BCD) [147] for the optimization of (2.18). This
optimization is not influenced by the regularizer Ω(α), since it is independent of
D. Thus the task (2.18) is similar to the fully observable case [77], where for
Oi = {1, . . . , dx} (∀i) it has been shown that the BCD method can work without
storing all of the vectors xi, αi (i ≤ t). Instead, it is sufficient to keep certain
statistics that characterize f̂t, which can be updated online. This way, optimization
of f̂t in (2.18) becomes online, too. As it will be elaborated below, (i) certain
statistics describing f̂t can also be derived for the partially observed case, which (ii)
can be updated online with a single exception, and (iii) a good approximation exists
for that exception (see Chapter 4).

During the BCD optimization, columns of D are minimized sequentially: other
columns than the actually updated dj (i.e., di, i �= j) are kept fixed. The function
f̂t is quadratic in dj . During minimization we search for its minimum (denoted by
uj) and project the result to the constraint set Dj (dj ← ΠDj

(uj)). To find this uj,
we solve the equation ∂f̂t

∂dj
(uj) = 0, which leads (as we show it in Appendix A.1.1-

A.1.2) to the following linear equation system

Cj,tuj = bj,t − ej,t + Cj,tdj , (2.26)

18



where Cj,t ∈ Rdx×dx is a diagonal coefficient matrix, and

Cj,t =

t∑
i=1

(
i

t

)ρ

Δiα
2
i,j, (2.27)

Bt =

t∑
i=1

(
i

t

)ρ

Δixiα
T
i = [b1,t, . . . ,bdα,t], (2.28)

ej,t =

t∑
i=1

(
i

t

)ρ

ΔiDαiαi,j. (2.29)

HereΔi represents a diagonal matrix corresponding toOi (element j in the diagonal
is 1 if j ∈ Oi, and 0 otherwise). Cj,ts ∈ R

dx×dx and Bt ∈ R
dx×dα take the form of

Mt =

t∑
i=1

(
i

t

)ρ

Ni (2.30)

matrix series/statistics, and thus (as we detail it in Appendix A.1.1-A.1.2) they can
be updated as

Cj,t = γtCj,t−1 + Δtα
2
tj , Bt = γtBt−1 + Δtxtα

T
t , (2.31)

with initialization Cj,0 = 0, B0 = 0 for the case of ρ = 0, and with arbitrary
initialization for ρ > 0, where γt =

(
1 − 1

t

)ρ. For the fully observed case (Δi = I,
∀i), one can pull out D from ej,t ∈ Rdx , the remaining part is of the form Mt,
and thus it can be updated online giving rise to the update rules in [77], see Ap-
pendix A.1.1-A.1.2. In the general case this procedure cannot be applied (matrix
D changes during the BCD updates). According to our numerical experiences (see
Chapter 4) an efficient online approximation for ej,t is

ej,t = γtej,t−1 + ΔtDtαtαt,j , (2.32)

with the actual estimation for Dt and with initialization ej,0 = 0 (∀j). We note that

1. convergence is often speeded up if the updates of statistics

{{Cj,t}dα

j=1,Bt, {ej,t}dα

j=1} (2.33)
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are made in batches of R samples xOt,1
, . . . ,xOt,R

(in R-tuple mini-batches).
The pseudocode of the OSDL method with mini-batches is presented in Ta-
ble 2.1-2.3. Table 2.2 calculates the representation for a fixed dictionary, and
Table 2.3 learns the dictionary using fixed representations. Table 2.1 invokes
both of these subroutines.

2. The trick in the representation update was that the auxiliary variable z ‘re-
placed’ theΩ term with a quadratic one inα. One could use further g(α) reg-
ularizers augmenting Ω in (2.16) provided that the corresponding J(α, z) +

g(α) cost function (see Eq. (2.24)) can be efficiently optimized in α ∈ A.

2.2 Generalized Support VectorMachines and ε-Sparse
Representations

In this section we present an extension of sparse coding in RKHSs, and show its
equivalence to a generalized family of SVMs. The structure of the section is as
follows: we briefly summarize the basic properties that will be used throughout the
section of kernels with the associated notion of RKHSs and SVMs in Section 2.2.1
and Section 2.2.2, respectively. In Section 2.2.3 we present our equivalence result.

Let us assume that we are given {(xi, yi)}l
i=1 input-output sample pairs, where

xi ∈ X (input space) and yi ∈ R. Our goal is to approximate the x �→ y relation.
One can chose the approximating function from different function classes. In the
sequel, we will focus on approximations, where this function class is a so-called
reproducing kernel Hilbert space.

2.2.1 Reproducing Kernel Hilbert Space

Below, we briefly summarize the concepts of kernel, feature map, feature space,
reproducing kernel, reproducing kernel Hilbert space and Gram matrix.

Let X be non-empty set. Then a function k : X×X �→ R is called a kernel on X

if there exists a Hilbert space H and a map ϕ : X �→ H such that for all x,x′ ∈ X

we have
k(x,x′) = 〈ϕ(x), ϕ(x′)〉

H
. (2.34)
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Table 2.1: Pseudocode: Online Group-Structured Dictionary Learning.
Algorithm (Online Group-Structured Dictionary Learning)
Input of the algorithm

xt,r ∼ p(x), (observation: xOt,r
, observed positions: Ot,r),

T (number of mini-batches), R (size of the mini-batches),
G (group structure), ρ (≥ 0 forgetting factor),
κ (> 0 tradeoff-), η (∈ (0, 2) regularization constant),
{AG}G∈G (linear transformations), A (constraint set for α),
D0 (initial dictionary), D = ×dα

i=1Di (constraint set for D)
inner loop constants: ε (smoothing), Tα, TD (number of iterations).

Initialization
Cj,0 = 0 ∈ Rdx , ej,0 = 0 ∈ Rdx (j = 1, . . . , dα), B0 = 0 ∈ Rdx×dα .

Optimization
for t = 1 : T

Draw samples for mini-batch from p(x): {xOt,1
, . . . ,xOt,R

}.
Compute the {αt,1 . . . , αt,R} representations:

αt,r=Representation(xOt,r
, (Dt−1)Ot,r

, G, {AG}G∈G, κ, η, A, ε, Tα),
(r = 1, . . . , R).

Update the statistics of the cost function:
γt =

(
1 − 1

t

)ρ,
Cj,t = γtCj,t−1 + 1

R

∑R
r=1 Δt,rα

2
t,r,j, j = 1, . . . , dα,

Bt = γtBt−1 + 1
R

∑R
r=1 Δt,rxt,rα

T
t,r,

ej,t = γtej,t−1, j = 1, . . . , dα. %(part-1)
Compute Dt using BCD:

Dt=Dictionary({Cj,t}dα

j=1,Bt, {ej,t}dα

j=1, D, TD, {Ot,r}R
r=1, {αt,r}R

r=1).
Finish the update of {ej,t}dα

j=1-s: %(part-2)
ej,t = ej,t + 1

R

∑R
r=1 Δt,rDtαt,rαt,r,j, j = 1, . . . , dα.

end
Output of the algorithm

DT (learned dictionary).
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Table 2.2: Pseudocode for representation estimation using fixed dictionary.
Algorithm (Representation)
Input of the algorithm

x (observation), D = [d1, . . . ,ddα
] (dictionary), G (group structure),

{AG}G∈G (linear transformations), κ (tradeoff-), η (regularization constant),
A (constraint set for α), ε (smoothing), Tα (number of iterations).

Initialization
α ∈ Rdα .

Optimization
for t = 1 : Tα

Compute z: zG = max

(∥∥AGα
∥∥2−η

2

∥∥∥(∥∥AGα
∥∥

2

)
G∈G

∥∥∥η−1

η
, ε

)
, G ∈ G.

Compute α:
compute H: H =

∑
G∈G

(AG)TAG/zG,
α = argmin

α∈A

[‖x − Dα‖2
2 + καTHα

]
.

end
Output of the algorithm

α (estimated representation).

We call ϕ a feature map and H a feature space of k. Given a kernel neither the
feature map, nor the feature space are uniquely determined. However, one can
always construct a canonical feature space, namely the reproducing kernel Hilbert
space (RKHS) [82]. Let us now recall the basic theory of these spaces.

Let X be non-empty set, and H be a Hilbert space over X, i.e., a Hilbert space
which consists of functions mapping from X.

• The space H is called a RKHS over X if for all x ∈ X the Dirac functional
δx : H �→ R defined by δx(f) = f(x), f ∈ H, is continuous.

• A function k : X × X �→ R is called a reproducing kernel of H if we have
k(·,x) ∈ H for all x ∈ X and the reproducing property

f(x) = 〈f(·), k(·,x)〉
H

, (2.35)

holds for all x ∈ X and f ∈ H.

The reproducing kernels are kernels in the sense of (2.34) sinceϕ : X �→ H defined
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Table 2.3: Pseudocode for dictionary estimation using fixed representations.
Algorithm (Dictionary)
Input of the algorithm

{Cj}dα

j=1,B = [b1, . . . ,bdα
], {ej}dα

j=1 (statistics of the cost function),
D = ×dα

i=1Di (constraint set for D), TD (number of D iterations),
{Or}R

r=1(equivalent to {Δr}R
r=1),

{αr}R
r=1 (observed positions, estimated representations).

Initialization
D = [d1, . . . ,ddα

].
Optimization

for t = 1 : TD

for j = 1 : dα %update the jth column of D
Compute ‘{ej}dα

j=1’-s:
e

temp
j = ej + 1

R

∑R
r=1 ΔrDαrαr,j .

Compute uj solving the linear equation system:
Cjuj = bj − e

temp
j + Cjdj.

Project uj to the constraint set:
dj = ΠDj

(uj).
end

end
Output of the algorithm

D (estimated dictionary).

by ϕ(x) = k(·,x) is a feature map of k. A RKHS space can be uniquely identified
by its k reproducing kernel, hence in the sequel we will use the notationH = H(k).
The Gram matrix of k on the point set {x1, . . . ,xl} (xi ∈ X, ∀i) is defined as

G = [Gij]
l
i,j=1 = [k(xi,xj)]

l
i,j=1. (2.36)

An important property of RKHSs, is that the scalar products in the feature space
can be computed implicitly by means of the kernel. Indeed, let us suppose that
w ∈ H = H(k) has an expansion of the form

w =

N∑
j=1

αjϕ(zj), (2.37)
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Table 2.4: Kernel examples.
Name Kernel (k) Assumption
linear kernel k(x,y) = 〈x,y〉
RBFa kernel k(x,y) = e−

‖x−y‖‖2

2σ2

Mahanalobis kernel k(x,y) = e−(x−y)T Σ−1(x−y) Σ = diag (σ2
1, . . . , σ

2
d)

polynomial kernel k(x,y) = 〈x,y〉p p ∈ N+

complete polynomial kernel k(x,y) = (〈x,y〉 + c)p p ∈ N+, c ∈ R+

Dirichlet kernel k(x, y) =
sin((N+ 1

2)(x−y))
sin(x−y

2 )
N ∈ N

aRBF stands for radial basis function.

where αj ∈ R and zj ∈ X. Then

fw(x) = 〈w, ϕ(x)〉
H

=

〈
N∑

j=1

αjϕ(zj), ϕ(x)

〉
H

(2.38)

=
N∑

j=1

αj 〈ϕ(zj), ϕ(x)〉
H

=
N∑

j=1

αjk(zj,x), (2.39)

i.e., function fw can be evaluated by means of coefficients αj , samples zj and the
kernel k without explicit reference to representation ϕ(x). This technique is called
the kernel trick. In Table 2.4 we list some well-known kernels.

2.2.2 Support Vector Machine

Now, we present the concept of support vector machines (SVM). In the SVM
framework the approximating function for the {(xi, yi)}l

i=1 samples are based on
a H = H(k) RKHS, and takes the form

fw,b(x) = 〈w, ϕ(x)〉
H

+ b, (2.40)

Although this function fw,b is nonlinear as an X �→ R mapping, it is a linear func-
tion of the feature representation ϕ(x).For different choices of RKHS H, fw,b may
realize, e.g., polinomial, Fourier, or even infinite dimensional feature representa-
tions.

24



The cost function of the SVM regression is

H(w, b) = C

l∑
i=1

|yi − fw,b(xi)|ε +
1

2
‖w‖2

H
→ min

w∈H,b∈R

, (2.41)

where C > 0 and

|r|ε = {0, if |r| ≤ ε; |r| − ε otherwise} (2.42)

is the ε-insensitive cost. In (2.41), the first term is responsible for the quality of
approximation on the sample points {(xi, yi)}l

i=1 in ε-insensitive sense; the second
term corresponds to a regularization by the ‖w‖2

H
= 〈w,w〉

H
squared norm, and

C balances between the two terms.
Exploiting the special form of the SVM cost (2.41) and the representation the-

orem in RKHSs [148], the optimization can be executed and function fw,b can be
computed (even for infinite dimensional feature representations) by solving the dual
of (2.41), a quadratic programming (QP) problem, which takes the form [87]

1

2
(d∗ − d)T

G (d∗ − d) − (d∗ − d)T
y + (d∗ + d)T ε1 → min

d∗∈Rl,d∈Rl
, (2.43)

subject to

{
C1 ≥ d∗,d ≥ 0

(d∗ − d)T
1 = 0

}
,

where G = [Gij]
l
i,j=1 = [k(xi,xj)]

l
i,j=1 is the Gram matrix of the {xi}l

i=1 samples.

2.2.3 Equivalence of Generalized Support Vector Machines and
ε-Sparse Coding

Having the notions of SVM and RKHS at hand, we are now able to focus on
sparse coding problems in RKHSs. Again, it is assumed that we are given l sam-
ples ({(xi, yi)}l

i=1). First, we focus on the noiseless case, i.e., it is assumed that
f(xi) = yi (∀i) for a suitable f ∈ H. In the noiseless case, [83] has recently
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formulated a sparse coding problem in RKHSs as the optimization problem

1

2

∥∥∥∥∥f(·) −
l∑

i=1

aik(·,xi)

∥∥∥∥∥
2

H

+ ε ‖a‖1 → min
a∈Rl

, (2.44)

where ε > 0. (2.44) is an extension of the Lasso problem [4]: the second ‖a‖1

induces sparsity. However, as opposed to the standard Lasso cost the first term
measures the approximation error on training sample making use of the ‖·‖2

H
RKHS

norm and not the standard Euclidean one. Let us further assume that 〈f, 1〉
H

= 01

and for the tradeoff parameter of SVM, C → ∞. Let us decompose the searched
coefficient a into its positive and negativ part, i.e.,

a = a+ − a−, (2.45)

where a+, a− ≥ 0 and a+ ◦ a− = 0. [83] proved that in this case, the (2.44) and
(2.43) problems are equivalent, in the sense, that the solution of (2.44), the (a+, a−)
pair is identitical to that of (d∗,d), the optimal solution of the dual SVM problem.
The equivalence of sparse coding and SVMs can also be extended to the noisy case
by considering a larger RKHS space encapsulating the noise process [84].

Both works [83, 84] however transform the insensitivity parameter (ε) into a
‘uniform’ sparsification, that is into the weight of the sparsity-inducing regulariza-
tion term (compare, e.g., (2.44) and (2.43)). Our question was, whether it is possible
to transform the insensitivity ε into component-wise sparsity-inducing regulariza-
tion. To address this problem, we first define the extended (c, e)-SVM and (p, s)-
sparse tasks, then the correspondence of these two problems enabling component-
wise ε-sparsity inducing is derived.

The (c, e)-SVM Task

Below, we introduce an extended SVM problem family. For notational simplicity,
instead of approximating in semi-parametric form (e.g., g + b, where g ∈ H), we
shall deal with the so-called non-parametric scheme (g ∈ H). This approach is also
well grounded by the representer theorem of kernel based approximations [148].

1 This restriction gives rise to constraint
∑

i ai = 0.
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The usual SVM task, (2.41) is modified as follows:

1. We approximate in the form fw(x) = 〈w, ϕ(x)〉
H
.

2. We shall use approximation errors and weights that may differ for each sam-
ple point.

Introducing vector e for the ε-insensitive costs and c for the weights, respectively,
the generalized problem is defined as:

l∑
i=1

ci |yi − fw(xi)|ei
+

1

2
‖w‖2

H
→ min

w∈H
, (c > 0, e ≥ 0). (2.46)

This problem is referred to as the (c, e)-SVM task. The original task of Eq. (2.41)
corresponds to the particular choice of (C1, ε1) and b = 0. Alike to the original
SVM problem, the (c, e)-SVM task also has its quadratic equivalent in the dual
space, which is as follows

1

2
(d∗ − d)T

G (d∗ − d) − (d∗ − d)T
y + (d∗ + d)T

e → min
d∗∈Rl,d∈Rl

, (2.47)

subject to { c ≥ d∗,d ≥ 0 },

where G denotes the Gram matrix of kernel k on the {xi}l
i=1 sample points. More-

over, the optimalw and the fw(x) regression function can be expressed making use
of the obtained (d,d∗) dual solution as

w =
l∑

i=1

(di − d∗
i )ϕ(xi), (2.48)

fw(x) =

〈
l∑

i=1

(di − d∗
i )ϕ(xi), ϕ(x)

〉
H

=
l∑

i=1

(di − d∗
i )k(x,xi). (2.49)

Let us notice that the optimal solution fw(·) can be expressed as the linear combina-
tion of k(·,xi)s. This is the form that is guaranteed by the representer theorem [148]
under mild conditions on the cost function–the coefficient are of course problem al-
ways problem specific.
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The (p, s)-Sparse Task

Below, we introduce an extended sparse coding scheme in RKHSs. Indeed, let us
consider the optimization problem

F (a) =
1

2

∥∥∥∥∥f(·) −
l∑

i=1

aik(·,xi)

∥∥∥∥∥
2

H

+

l∑
i=1

pi |ai|si
→ min

a∈Rl
, (p > 0, s ≥ 0)

(2.50)
whose goal is to approximate objective function f ∈ H = H(k) on the sample
points {xi, yi}l

i=1. This problem is referred to as the p-weighted and s-sparse task,
or the (p, s)-sparse task, for short. For the particular choice of (ε1, 0) we get back
the sparse representation form of Eq. (2.44).

Correspondence of the (c, e)-SVM and (p, s)-Sparse Problems

One can derive a correspondence between the (c, e)-SVM and (p, s)-sparse prob-
lems. Our result [149], which achieves component-wise ε-sparsity inducing, is sum-
marized in the following proposition:

Proposition 1. Let X denote a non-empty set, let k be a reproducing kernel on
X, and let us given samples {xi, yi}l

i=1, where xi ∈ X, yi ∈ R. Assume fur-
ther that the values of the RKHS target function f ∈ H = H(k) can be ob-
served in points xi (f(xi) = yi) and let fw(x) = 〈w, ϕ(x)〉

H
. Then the duals

of the (c, e)-SVM task [(2.46)] and that of the (p, s)-sparse task [(2.50)] can be
transformed into each other by the generalized inverse G− of the Gram matrix
G = [Gi,j]

l
i,j=1 = [k(xi,xj)]

l
i,j=1 via (d∗,d,G,y) ↔ (d+,d−,G−GG−,G−y) =

(d+,d−,G−,G−y). [For proof, see Appendix A.2.]

2.3 Multilayer Kerceptron

Now, we embed support vector machines to multilayer perceptrons. In Section 2.3.1
we briefly introduce multilayer perceptrons (MLP). We present our novel multilayer
kerceptron architecture in Section 2.3.2. In Section 2.3.3, we extend the backprop-
agation method of MLPs to multilayer kerceptrons.
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2.3.1 Multilayer Perceptron

Themultilayer perceptron (MLP) network [88] is a multilayer approximating scheme,
where each layer of the network performs the nonlinear mapping

x �→ g(Wx). (2.51)

These ‘simple’ mappings are the composition of linear transformationW, followed
by the differentiable, nonlinear mapping g. Typical choice for g is a coordinate-
wise acting sigmoid function. In the MLP task, the goal is to tune matrices W

of the network to approximate the sampled input-output mapping given by input-
output training pairs {x(t),d(t)}, where x(t) ∈ X = R

d1 , d(t) ∈ R
d2 . In an

adaptive approach, the MLP task is to continuously minimize the instantaneous
squared error function

ε2(t) = ‖d(t) − y(t)‖2
2 → min

W1,...,WL

, (2.52)

where y(t) ∈ R
d2 denotes the output of the network at time t, the estimation for

d(t). The optimization of (2.52) can be carried out by, e.g., making use of the
stochastic gradient descent technique. In the resulting optimization, the errors for a
given layer (Wl) are propagated back from the subsequent layer (Wl+1), this is the
well-known backpropagation algorithm.

2.3.2 The Multilayer Kerceptron Architecture

Now, we embed support vector machines to MLPs. To do so, first let us notice that
the mapping of a general MLP layer [(2.51)] can be written as

x �→ g

⎛
⎜⎜⎝
⎡
⎢⎢⎣

...
〈wi,x〉

...

⎤
⎥⎥⎦
⎞
⎟⎟⎠ , (2.53)
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Figure 2.1: The lth layer of the MLK, l = 1, 2, . . . L. The input (xl) of each layer
is the output of the preceding layer (yl−1). The external world is the 0th layer
providing input to the first layer of the MLK. Inputs xl to layer l are mapped by
features mapping ϕl undergo scalar product by the weights (wl

i) of the layer in
RKHS Hl = Hl(kl). The result is vector sl, which undergoes nonlinear processing
gl, with a differentiable function. The output of this nonlinear function is the input
to the next layer, layer xl+1. The output of the network is the output of the last layer.

where wT
i denotes the ith row of matrix W. Let us now replace the scalar product

terms 〈wi,x〉 with 〈wi, ϕ(x)〉
H
and define the general layer of the network as2

x �→ g

⎛
⎜⎜⎝
⎡
⎢⎢⎣

〈w1, ϕ(x)〉
H

...
〈wN , ϕ(x)〉

H

⎤
⎥⎥⎦
⎞
⎟⎟⎠ . (2.54)

A network made of such layers will be called multilayer kerceptron (MLK). For
an illustrion of the MLK network, see Fig. 2.1. In MLK, the input (xl) of each
layer is the output of the preceding layer (yl−1). The external world is the 0th layer
providing input to the first layer of the MLK. xl = yl−1 ∈ RN l

I , where N l
I is the

input dimension of the lth layer. Inputs xl to layer l are mapped by features ϕl

and are multiplied by the weights wl
i. This two-step process can be accomplished

implicitly by making use of kernel kl and the expansion property forwl
is. The result

is vector sl ∈ RN l
S , which undergoes nonlinear processing gl, where function gl is

differentiable. The output of this nonlinear function is the input to the next layer,
i.e., layer xl+1. The output of the last layer (layer L, the output of the network) will
be referred to as y. Given that yl = xl+1 ∈ RN l

o , the output dimension of layer l is
2 We assume that the sample space X is the finite dimensional Euclidean space.
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N l
o.

2.3.3 Backpropagation of Multilayer Kerceptrons

Below, we show that (i) the backpropagation method of MLPs can be extended to
MLKs and it (ii) be accomplished in dual space requiring kernel computations only.

We consider a slightly more general task, which incorporates regularizing terms:

c(t) = ε2(t) + r(t) −→ min
{Hl�wl

i: l=1,...,L; i=1,...,N l
S
}
, (2.55)

where

ε2(t) = ‖d(t) − y(t)‖2
2 , (2.56)

r(t) =
L∑

l=1

N l
S∑

i=1

λl
i

∥∥wl
i(t)
∥∥2

Hl (λl
i ≥ 0) (2.57)

are the approximation and the regularization terms of the cost function, respectively,
and y(t) denotes the output of the network for the tth input. Parameters λl

i control
the trade-off between approximation and regularization. For λl

i = 0 the best ap-
proximation is searched like in the MLP task [(2.52)]. With these notations at hand,
we can present our results [150] now.

Proposition 2 (explicit case). Let us suppose that the x �→ 〈
w, ϕl(x)

〉
Hl and the

gl functions are differentiable (l = 1, . . . , L). Then, backpropagation rule can be
derived for MLK with cost function (2.55).

Proposition 3 (implicit case). Assume that the following holds

1. Constraint on differentiability: Kernels kl are differentiable with respect to
both arguments and functions gl are also differentiable (l = 1, . . . , L).

2. Expansion property: The initial weights wl
i(1) of the network can be ex-
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pressed in the dual representation, i.e.,

Hl � wl
i(1) =

N l
i (1)∑

j=1

αl
i,j(1)ϕl(zl

i,j(1)) (l = 1, . . . , L; i = 1, . . . , N l
S).

(2.58)

Then backpropagation can be derived for MLK with cost function (2.55). This pro-
cedure preserves the expansion property (2.58), which then remains valid for the
tuned network. The algorithm is implicit in the sense that it can be realized in the
dual space, using kernel computations only.

The pseudo codes of the MLK backpropagation algorithms are provided in Ta-
ble 2.5 and Table 2.6, respectively. The MLK backpropagation can be envisioned
as follows (see Table 2.5 and 2.6 simultaneously):

1. backpropagated error δl(t) starts from δL(t) and is computed by a backward
recursion via the differential expression ∂[sl+1(t)]

∂[sl(t)]
.

2. expression ∂[sl+1(t)]
∂[sl(t)]

can be determined by means of feature mapping ϕl+1, or,
in an implicit fashion, through kernels kl+1.

3. two components play roles in the tuning of w-s:

(a) forgetting is accomplished by scaling the weights wl
i with multiplier

1 − 2μl
i(t)λ

l
i, where λl

i is the regularization coefficient.

(b) adaptation occurs through the backpropagated error. Weights at layer l

are tuned by feature space representation of xl(t), the actual input arriv-
ing at layer l. Tuning is weighted by the backpropagated error.

Derivations of these algorithms are provided in Appendix A.3.
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Table 2.5: Pseudocode of the explicit MLK backpropagation algorithm.
Inputs

sample points: {x(t),d(t)}t=1,...,T ,T
cost function: λl

i ≥ 0 (l = 1, . . . , L; i = 1, . . . , N l
S)

learning rates: μl
i(t) > 0 (l = 1, . . . , L; i = 1, . . . , N l

S; t = 1, . . . , T )
Network initialization

size: L (number of layers), N l
I , N l

S, N l
o (l = 1, . . . , L)

parameters: wl
i(1) (l = 1, . . . , L; i = 1, . . . , N l

S)
Start computation

Choose sample x(t)
Feedforward computation

xl(t) (l = 2, . . . , L + 1), sl(t) (l = 2, . . . , L)a

Backpropagation of error
l = L
while l ≥ 1

if (l = L)

δL(t) = 2 [y(t) − d(t)]T
(
gL
)′

(sL(t))
else

∂[sl+1(t)]
∂[sl(t)]

=

⎡
⎢⎢⎢⎢⎣

...
∂[〈wl+1

i (t),ϕl+1(u)〉
Hl+1]

∂[u]

∣∣∣∣
u=xl+1(t)

...

⎤
⎥⎥⎥⎥⎦
(
gl
)′

(sl(t))b

δl(t) = δl+1(t)∂[sl+1(t)]
∂[sl(t)]

end
Weight update

for all i: 1 ≤ i ≤ N l
S

wl
i(t + 1) = (1 − 2μl

i(t)λ
l
i)w

l
i(t) − μl

i(t)δ
l
i(t)ϕ

l(xl(t))
l = l − 1

End computation

a The output of the network, i.e., y(t) = xL+1(t) is also computed.
b Here: i = 1, . . . , N l+1

S
.
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Table 2.6: Pseudocode of the implicit MLK backpropagation algorithm.
Inputs

sample points: {x(t),d(t)}t=1,...,T ,T
cost function: λl

i ≥ 0 (l = 1, . . . , L; i = 1, . . . , N l
S)

learning rates: μl
i(t) > 0 (l = 1, . . . , L; i = 1, . . . , N l

S; t = 1, . . . , T )
Network initialization

size: L (number of layers), N l
I , N l

S, N l
o (l = 1, . . . , L)

parameters: wl
i(1)-expansions (l = 1, . . . , L; i = 1, . . . , N l

S)

coefficients: αl
i(1) ∈ RN l

i (1)

ancestors: zl
i,j(1), where j = 1, . . . , N l

i (1)
Start computation

Choose sample x(t)
Feedforward computation

xl(t) (l = 2, . . . , L + 1), sl(t) (l = 2, . . . , L)a

Backpropagation of error
l = L
while l ≥ 1

if (l = L)

δL(t) = 2 [y(t) − d(t)]T
(
gL
)′

(sL(t))
else

∂[sl+1(t)]
∂[sl(t)]

=

⎡
⎢⎢⎢⎢⎣

...
N l+1

i
(t)∑

j=1

αl+1
ij (t)[kl+1]′y(z

l+1
ij (t),xl+1(t))

...

⎤
⎥⎥⎥⎥⎦
(
gl
)′

(sl(t))b

δl(t) = δl+1(t)∂[sl+1(t)]
∂[sl(t)]

end
Weight update

for all i: 1 ≤ i ≤ N l
S

N l
i (t + 1) = N l

i (t) + 1
αl

i(t + 1) =
[(

1 − 2μl
i(t)λ

l
i

)
αl

i(t);−μl
i(t)δ

l
i(t)
]

zl
i,j(t + 1) = zl

i,j(t) (j = 1, . . . , N l
i (t))

zl
i,j(t + 1) = xl(t) (j = N l

i (t + 1))
l = l − 1

End computation

a The output of the network, i.e., y(t) = xL+1(t) is also computed.
b i = 1, . . . , N l+1

S
. Note also that (kl)′y denotes the derivative of kernel kl according to its second

argument.
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Chapter 3

Theory – Independent Subspace
Based Dictionary Learning

In this chapter we present our novel independent subspace based dictionary learn-
ing approaches. Contrary to Chapter 2, where the underlying assumption for the
hidden sources was sparsity and structured sparsity, here we are dealing with inde-
pedent non-Gaussian sources. In Section 3.1 we unify contolled dynamical systems
and independent subspace based dictionary learning. Section 3.2 is about the ex-
tension of the current ISA models to the partially observable case. In Section 3.3
and Section 3.4 we are dealing with complex and nonparametric generalizations, re-
spectively. Section 3.5 is devoted to the convolutive case. We note that the different
methods can be used in combinations, too. For all the introduced models, we derive
separation principle based solution. These separation principles make it possible to
estimate the models even in case of different, or unknown dimensional independent
source components. In Section 3.6 we present a novel random projection based,
parallel estimation technique for high dimensional information theoretical quanti-
ties. Numerical experiments demonstrating the efficiency of our methods are given
in Chapter 5.
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3.1 Controlled Models

The traditional ICA/ISA problem family can model hidden independent variables,
but does not allow/handle control variables. In this section we couple ISA based
dictionary learning methods with control variables. To emphasize the fact that we
are dealing with sources having dynamics, in the sequel, we will refer to such prob-
lems as independent process analysis (IPA)–instead of ISA.

In our approach will adapt the D-optimal identification of ARX (autoregres-
sive with exogenous input) dynamical systems, that we briefly summarize in Sec-
tion 3.1.1. Section 3.1.2 defines the problem domain, the ARX-IPA task. Our
solution technique for the ARX-IPA problem is derived in Section 3.1.3.

3.1.1 D-optimal Identification of ARX Models

We sketch the basic thoughts that lead to D-optimal identification of ARX models.
The dynamical system to be identified is fully observed and evolves according to
the ARX equation

st+1 =
Ls−1∑
i=0

Fist−i +
Lu−1∑
j=0

Bjut+1−j + et+1, (3.1)

where (i) s ∈ RDs , e ∈ RDe (Ds = De) represent the state of the system and the
noise, respectively, (ii) u ∈ R

Du represents the control variables, and (iii) polyno-
mial matrix (given by matrices Fi ∈ RDs×Ds and identity matrix I)

F[z] = I −
Ls−1∑
i=0

Fiz
i+1 ∈ R[z]Ds×Ds (3.2)

is stable, that is
det(F[z]) �= 0, (3.3)

for all z ∈ C, |z| ≤ 1. Our task is (i) the efficient estimation of parameters Θ =

[F0, . . . ,FLs−1,B0, . . . ,BLu−1] that determine the dynamics and (ii) noise e that
drives the process by the ‘optimal choice’ of control valuesu. Formally, D-optimality
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aims to maximize one of the two objectives

Jpar(ut+1) = I(Θ, st+1|st, st−1, . . . ,ut+1,ut, . . .), (3.4)

Jnoise(ut+1) = I(et+1, st+1|st, st−1, . . . ,ut+1,ut, . . .) (3.5)

for ut+1 ∈ U . In other words, we choose control value u from the achievable
domain U (e.g., from a box domain) such that it maximizes the mutual informa-
tion between the next observation and the parameters (or the driving noise) of the
system. It can be shown [151], that if (i) Θ has matrix Gaussian, (ii) e has Gaus-
sian, and the covariance matrix of e has inverted Wishart distributions, then in the
Bayesian setting, maximization of the J objectives can be reduced to the solution
of a quadratic programming task, priors of Θ and e remain in their supposed distri-
bution family and undergo simple updating. The considerations allow for control,
but assume full observability about the state variables. Now, we extend the method
to hidden variables in the ARX-IPA model of the next section.

3.1.2 The ARX-IPA Problem

In the ARX-IPA model we assume that state s of the system cannot be observed
directly, but its linear and unknown mixture (x) is available for observation [152]:

st+1 =
Ls−1∑
i=0

Fist−i +
Lu−1∑
j=0

Bjut+1−j + et+1, (3.6)

xt = Ast, (3.7)

where Ls and Lu denote the number of the Fi ∈ RDs×Ds , Bj ∈ RDs×Du matrices
in the corresponding sums. We assume

• for the em ∈ Rdm components of e = [e1; . . . ; eM ] ∈ RDs (Ds =
∑M

m=1 dm)
that at most one of them may be Gaussian, their temporal evolution is i.i.d.
(independent identically distributed), and I(e1; . . . ; eM) = 0, that is, they
satisfy the ISA assumptions.1

1By dm-dimensional em components, we mean that ems cannot be decomposed into smaller
dimensional independent parts. This property is called irreducibility in [153].
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• that the polynomial matrix F[z] = I−∑Ls−1
i=0 Fiz

i+1 is stable and the mixing
matrix A ∈ RDs×Ds is invertible. We note, that compared to Chapter 2, in
the presented ISA based models the mixing matrix A plays the role of the
dictionary.

The ARX-IPA task is to estimate the unknownmixingmatrixA, parameters {Fi}Ls−1
i=0 ,

{Bj}Lu−1
j=0 , s and e by means of observations x only.

In the special case of Ls = Lu = 0, that is

x = Ae (3.8)

we get back the traditional ISA problem, where the goal is estimate the mixing
matrix A and the hidden source e, and there is no control. If dm = 1 (∀m) also
holds in ISA, i.e., the independent em source components are one-dimensional, we
obtain the ICA problem.

3.1.3 Identification Method for ARX-IPA

Below, we solve the ARX-IPA model, i.e., we include the control variables in IPA.
We derive a separation principle based solution by transforming the estimation into
two subproblems: to that of a fully observed model (Section 3.1.1) and an ISA task.

One can apply the basis transformation rule of ARX processes and use (3.6) and
(3.7) repeatedly to get

xt+1 =

Ls−1∑
i=0

(AFiA
−1)xt−i +

Lu−1∑
j=0

(ABj)ut+1−j + (Aet+1). (3.9)

According to the d-dependent central limit theorem [154] the marginals of Aet+1

are approximately Gaussian and thus the parameters ({AFiA
−1}Ls−1

i=0 , {ABj}Lu−1
j=0 )

and the noise (Aet+1) of process x can be estimated by means of the D-optimality
principle that assumes a fully observed process. The estimation of Aet+1 can be
seen as the observation of an ISA problem because components em of e are inde-
pendent. ISA techniques can be used to identify A and then from the estimated
parameters of process x, the estimations of Fi and Bj follow.

Note:

38



1. In the above described ARX-IPA technique, the D-optimal ARX procedure is
an online estimation for the innovation ε = Ae, the input of the ISA method.
To the best of our knowledge, there is no existing online ISA method in the
literature. However, having such a procedure, one can easily integrate it into
the presented approach to get a fully online ARX-IPA estimation scheme.

2. Similar ideas can be used for the estimation of an ARMAX-IPA [155], or post
nonlinear model [156]. In the ARMAX-IPA model, the state equation (3.6) is
generalized to Le ≥ 0, i.e.,

st+1 =

Ls−1∑
i=0

Fist−i +

Lu−1∑
j=0

Bjut+1−j + et+1 +

Le−1∑
k=0

Hket−k. (3.10)

In this case, we assume additionally that the polynomial matrix H[z] =

I +
∑Le

k=1 Hkz
k ∈ R[z]Ds×Ds is stable.2 In the PNL ARX-IPA model, the

observation equation (3.7) is generalized to

xt = f(Ast), (3.11)

where f is an unknown, but component-wise acting invertible mapping.

3.2 Incompletely Observable Models

The goal of this section is to search for independent multidimensional processes
subject to missing and mixed observations. In spite of the popularity of ICA and
its numerous successful applications, the case of missing observation has been con-
sidered only for the simplest ICA model in the literature [133, 134]. In this section
we extend the solution to (i) multidimensional sources (ISA) and (ii) ease the i.i.d.
constraint; we consider AR independent process analysis (AR-IPA problem).

2Note that this requirement is automatically fullfilled for Le = 0, whenH[z] = I.
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3.2.1 The AR-IPA Model with Missing Observations

We define the AR-IPA model for missing observations (mAR-IPA) [157, 158]. Let
us assume that we can only partially (at certain coordinates/time instants) observe
(y) the mixture (x) of independent AR sources, that is

st+1 =

Ls−1∑
l=0

Flst−l + et+1, xt = Ast, yt = Mt(xt), (3.12)

where

• the driving noises, or the innovations em ∈ Rdm (e = [e1; . . . ; eM ] ∈ RD) of
the hidden source s ∈ RD (D =

∑M
m=1 dm) are independent, at least one of

them is Gaussian, and i.i.d. in time, i.e., they satisfy the ISA assumptions.

• the unknown mixing matrix A ∈ RD×D is invertible,

• the AR dynamics F[z] = I −∑Ls−1
l=0 Flz

l+1 ∈ R[z]D×D is stable and

• the Mt ‘mask mappings’ represent the coordinates and the time indices of the
non-missing observations.

Our task is the estimation of the hidden source s and the mixing matrix A (or its
inverse W) from observation y. For the special choice of Mt = identity (∀t), the
AR-IPA problem [159] is obtained. If Ls = 0 also hold, we get the ISA task.

3.2.2 Identification Method for mAR-IPA

The mAR-IPA identification can be accomplished as follows. The xt is an invertible
linear transformation of the hidden AR process s and thus xt is also an AR process
with innovationAet+1:

xt+1 =

Ls−1∑
l=0

AFlA
−1xt−l + Aet+1. (3.13)

According to the d-dependent central limit theorem [154], the marginals of variable
Ae are approximately Gaussian, so one carry out the estimation by
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1. identifying the partially observed AR process yt, and then by

2. estimating the independent components em from the estimated innovation by
means of ISA.

3.3 Complex Models

Current methods in the ICA literature are only capable of coping with one-dimensional
complex indepedent sources, i.e., with the simplest ICA model. In this section by
extending the independent subspace analysis model to complex variables, we make
it possible the tackle problems with multidimensinal independent sources. First we
summarize a few basic concepts for complex random variables (Section 3.3.1). In
Section 3.3.2 the complex ISA model is introduced. In Section 3.3.3 we show, that
under certain non-Gaussian assumptions the solution of the complex ISA problem
can be reduced to the solution of a real ISA problem.

3.3.1 Complex Random Variables

Below we summarize a few basic concept of complex random variables, define two
mappings that will be useful in the next section and note that an excellent review on
this topic can be found in [160].

A complex random variable v ∈ CL is defined as a random variable of the form
v = vR + ivI ∈ CL, where the real and imaginary parts of v, i.e., vR ∈ RL and
vI ∈ RL are real vector random variables. Let us define the ϕv : CL �→ R2L,
ϕM : CL1×L2 �→ R2L1×2L2 mappings as

ϕv(v) = v ⊗
[

�(·)
	(·)

]
, ϕM(M) = M ⊗

[
�(·) −	(·)
	(·) �(·)

]
, (3.14)

where � stands for the real part, 	 for the imaginary part, subscript ‘v’ (‘M’) for
vector (matrix) and⊗ is the Kronecker product. Known properties of mappings ϕv,
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ϕM are as follows [161]:

det[ϕM(M)] = | det(M)|2 (M ∈ C
L×L), (3.15)

ϕM(M1M2) = ϕM(M1)ϕM(M2) (M1 ∈ C
L1×L2,M2 ∈ C

L2×L3),

(3.16)

ϕv(Mv) = ϕM(M)ϕv(v) (M ∈ C
L1×L2 ,v ∈ C

L2), (3.17)

ϕM(M1 + M2) = ϕM(M1) + ϕM(M2) (M1,M2 ∈ C
L1×L2), (3.18)

ϕM(cM) = cϕM(M) (M ∈ C
L1×L2 , c ∈ R). (3.19)

In words: (3.15) describes transformation of determinant, while (3.16), (3.17),
(3.18) and (3.19) expresses preservation of operation for matrix-matrix multipli-
cation, matrix-vector multiplication, matrix addition, real scalar-matrix multiplica-
tion, respectively.

Independence of complex random variables vm ∈ Cdm (m = 1, . . . , M) is
defined as the independence of variables ϕv(vm), i.e,

I(ϕv(v1), . . . , ϕv(vM)) = 0, (3.20)

where I stands for the mutual information and ϕv(vm) ∈ R2dm (∀m). The entropy
of a complex independent variable v ∈ Cd is defined as

H(v) = H(ϕv(v)). (3.21)

3.3.2 Complex Independent Subspace Analysis

By the definition of independence for complex random variables detailed above, the
complex valued ISA task [162] can be defined alike to the real case [(3.8)] as

x = Ae, (3.22)

where A ∈ C
D×D is an unknown invertible mixing matrix, the hidden source e

is i.i.d. in time t and the em ∈ Cdm components of e = [e1; . . . ; eM ] ∈ CD

(D =
∑M

m=1 dm) are independent, i.e., I(ϕv(e1), . . . , ϕv(eM)) = 0. The goal is to
estimate the mixing matrix A (or its inverse) and the hidden source e by making
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use of the observations x only.

3.3.3 Identification Method for Complex ISA

Now, we show that one can reduce the solution of the complex ISA model to a real
ISA problem in case of certain a ‘non-Gaussian’ assumption. Namely, let us in
addition assume in the complex ISA model that at most one of the random variable
ϕv(e

m) ∈ R2dm is Gaussian. Now, applying transformation ϕv to the complex
ISA equation (Eq. (3.22)) and making use of the operation preserving properties of
transformations ϕv, ϕM [see (3.17)], one gets:

ϕv(x) = ϕM(A)ϕv(e). (3.23)

Given that (i) the independence of em ∈ Cdm is equivalent to that of ϕv(e
m) ∈ R2d,

and (ii) the existence of the inverse of ϕM(A) is inherited from A [see (3.15)],
we end up with a real valued ISA task with observation ϕv(x) and M pieces of
2dm-dimensional hidden components ϕv(e

m). The consideration can also be ex-
tended to the non-i.i.d. case, for further details, see [163].

3.4 Nonparametric Models

The general ISA problem of separating sources with nonparametric dynamics has
been hardly touched in the literature yet [110, 136]. [136] focused on the separa-
tion of stationary and ergodic source components of known and equal dimensions
in case of constrained mixing matrices. [110] was dealing with wide sense station-
ary sources that (i) are supposed to be block-decorrelated for all time-shifts and (ii)
have equal and known dimensional source components. The goal of this section
is to extend ISA to the case of (i) nonparametric, asymptotically stationary source
dynamics and (ii) unknown source component dimensions. Particularly, (i) we ad-
dress the problem of ISA with nonparametric, asymptotically stationary dynamics,
(ii) beyond this extension we also treat the case of unknown and possibly different
source component dimensions, (iii) we allow the temporal evolution of the sources
to be coupled; it is sufficient that their driving noises are independent and (iv) we
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propose a simple estimation scheme by reducing the solution of the problem to
kernel regression and ISA.

The structure of this section is as follows: Section 3.4.1 formulates the problem
set-up. In Section 3.4.2 we describe our identification method.

3.4.1 Functional Autoregressive Independent Process Analysis

In this section we formally define the problem set-up [164]. In our framework we
use functional autoregressive (fAR) processes to model nonparametric stochastic
time series. Our goal is to develop dual estimationmethods, i.e., to estimate both the
system parameters and the hidden states for the functional autoregressive indepen-
dent process analysis (fAR-IPA) model, which is defined as follows. Assume that
the observation (x) is a linear mixture (A) of the hidden source (s), which evolves
according to an unknown fAR dynamics (f) with independent driving noises (e).
Formally,

st = f(st−1, . . . , st−Ls
) + et, (3.24)

xt = Ast, (3.25)

where the unknown mixing matrix A ∈ RD×D is invertible, Ls is the order of
the process and the em ∈ Rdm components of e =

[
e1; . . . ; eM

] ∈ RD (D =∑M
m=1 dm) satisfy the ISA assumptions. The goal of the fAR-IPA problem is to

estimate (i) the mixing matrix A (or it inverse W = A−1) and (ii) the original
source st by using observations xt only.

We list a few interesting special cases:

• If we knew the parametric form of f , and if it were linear, then the problem
would be the AR-IPA task [159].

• If we assume that the dynamics of the hidden layer is zero-order AR (Ls = 0),
then the problem reduces to the original ISA problem [92].
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3.4.2 Identification Method for fAR-IPA

We consider the dual estimation of the system described in (3.24)–(3.25). In what
follows, we will propose a separation technique with which we can reduce the fAR-
IPA estimation problem ((3.24)–(3.25)) to a functional AR process identification
and an ISA problem. To obtain strongly consistent fAR estimation, the Nadaraya-
Watson kernel regression technique is invoked.

More formally, the estimation of the fAR-IPA problem (3.24)-(3.25) can be ac-
complished as follows. The observation process x is invertible linear transformation
of the hidden fAR source process st and thus it is also fAR process with innovation
Aet

xt = Ast = Af(st−1, . . . , st−Ls
) + Aet (3.26)

= Af(A−1xt−1, . . . ,A
−1xt−Ls

) + Aet = g(xt−1, . . . ,xt−Ls
) + nt, (3.27)

where function

g(u1, . . . ,uLs
) = Af(A−1u1, . . . ,A

−1uLs
) (3.28)

describes the temporal evolution of xt, and

nt = Aet (3.29)

stands for the driving noise of the observation. Making use of this form, the fAR-
IPA estimation can be carried out by fAR fit to observation xt followed by ISA on
n̂t, the estimated innovation of xt.

Note that Eq. (3.27) can be considered as a nonparametric regression problem;
we have

ut = [xt−1, . . . ,xt−Ls
], vt = xt (t = 1, . . . , T ) (3.30)

samples from the unknown relation

vt = g(ut) + nt, (3.31)

where u, v, and n are the explanatory-, response variables and noise, respectively,
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and g is the unknown conditional mean or regression function. Nonparametric tech-
niques can be applied to estimate the unknown mean function

g(U) = E(V|U), (3.32)

e.g., by carrying out kernel density estimation for random variables (u,v) and u,
where E stands for expectation. The resulting Nadaraya-Watson estimator (i) takes
the simple form

ĝ0(u) =

∑T
t=1 vtK

(
u−ut

h

)
∑T

t=1 K
(

u−ut

h

) , (3.33)

where K and h > 0 denotes the applied kernel (a non-negative real-valued func-
tion that integrates to one) and bandwith, respectively. It can be used to provide
a strongly consistent estimation of the regression function g for stationary xt pro-
cesses [165]. It has been shown recently [166] that for first order and only asymp-
totically stationary fAR processes, under mild regularity conditions, one can get
strongly constistent estimation for the innovation nt by applying the recursive ver-
sion of the Nadaraya-Watson estimator

ĝ(u) =

∑T
t=1 tβDvtK(tβ(u − ut))∑T

t=1 tβDK(tβ(u− ut))
, (3.34)

where the bandwith is parameterized by β ∈ (0, 1/D).

3.5 Convolutive Models

In this section we address the blind subspace deconvolution (BSSD) problem; an
the extension of both the blind source deconvolution and the independent subspace
analysis tasks. One can think of the BSSD problem as a cocktail party with groups,
held in an echoic room. For the undercomplete case, where we have ‘more micro-
phones than sources’, it has been shown recently that the problem can be reduced
to ISA by means of temporal concatenation [123]. However, the associated ISA
problem can easily become ‘high dimensional’. The dimensionality problem can
be circumvented by applying a linear predictive approximation (LPA) based reduc-
tion [167]. Here, we show that it is possible to extend the LPA idea to the complete
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BSSD task, where the number of ‘microphones’ equals to the number of ‘sources’.3

In the undercomplete case, the LPA based solution was based on the observation
that the polynomial matrix describing the temporal convolution had, under rather
general conditions4, a polynomial matrix left inverse. In the complete case such an
inverse doesn’t exist in general. However, provided that the convolution can be rep-
resented by an infinite order autoregressive process, one can construct an efficient
estimation method for the hidden components via an asymptotically consistent LPA
procedure. This thought is used here to extend the technique of [167] to the com-
plete case.

The section is structured as follows: in Section 3.5.1 we define the complete
blind subspace deconvolution problem, we detail our solution technique in Sec-
tion 3.5.2.

3.5.1 Complete Blind Subspace Deconvolution

Here, we define the BSSD task [123]. Assume that we haveM hidden, independent,
multidimensional components (random variables). Suppose also that only their

xt =

Le∑
l=0

Hlet−l (3.35)

convolutive mixture is available for observation, where xt ∈ RDx and et is the
concatenation of the components em

t ∈ Rdm , that is et = [e1
t ; . . . ; e

M
t ] ∈ RDe

(De =
∑M

m=1 dm). By describing the convolution using the the polynomial matrix
H[z] =

∑Le

l=0 Hlz
l ∈ R[z]Dx×De , one may write Eq. (3.35) compactly as

x = H[z]e. (3.36)

We assume that the components em fullfill the ISA assumptions. The goal of the
BSSD problem is to estimate the original source et by using observations xt only.
WhileDx > De is the undercomplete case , Dx = De is the complete one. The case

3The overcomplete BSSD task is challenging and as of yet no general solution is known.
4If the coefficients of the undercomplete polynomial matrix are drawn from a non-degenerate

continuous distribution, such an inverse exists with probability one [168].
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Le = 0 corresponds to the ISA task, and if dm = 1 (∀m) also holds, then the ICA
task is recovered. In the BSD task dm = 1 (∀m) and Le is a non-negative integer.

Contrary to previous works [123, 167] focusing on the undercomplete BSSD
problem, here [169] we address the complete task (D = Dx = De). In the complete
BSSD problem we assume that the polynomial matrix H[z] is stable.

3.5.2 Identification Method for Complete BSSD

Below, we derive our separation principle based solution method for the complete
BSSD problem.

The invertibility of H[z] implies that the observation process x can be repre-
sented as an infinite order autoregressive (AR) process [170]:

xt =

∞∑
j=1

Fjxt−j + F0et. (3.37)

By applying a finite order LPA approximation (fitting an AR process to x), the inno-
vation processF0et can be estimated. The innovation can be seen as the observation
of an ISA problem because components of e are independent: ISA techniques can
be used to identify components em. Choosing the order of the fitted AR process
to x as p = o(T

1

3 )
T→∞−−−→ ∞, where T denotes the number of samples, guarantees

that the AR approximation for the MA (moving average) model is asymptotically
consistent [171].

3.6 Information Theoretical Estimations via Random
Projections

The estimation of relevant information theoretical quantities, such as entropy, mu-
tual information, and various divergences is computationally expensive in high di-
mensions. However, consistent estimation of these quantities is possible by nearest
neighbor (NN) methods (see, e.g., [172]) that use the pairwise distances of sam-
ple points. Although search for nearest neighbors can also be expensive in high
dimensions [173], low dimensional approximate isometric embedding of points of
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high dimensional Euclidean space can be addressed by the Johnson-Lindenstrauss
Lemma [174] and the related random projection (RP) methods [175, 176]. The RP
approach proved to be successful, e.g., in classification, clustering, search for ap-
proximate NN (ANN), dimension estimation of manifolds, estimation of mixture
of Gaussian models, compressions, data stream computation (see, e.g., [177]). We
note that the RP approach is also related to compressed sensing [178].

In this section [179] we show a novel application of the RP technique: we es-
timate information theoretical quantities using the ANN-preserving properties of
the RP technique. We present our RP based approach through the ISA problem.
The ISA task can be viewed as the minimization of the mutual information between
the estimated components, or equivalently as the minimization of the sum of Shan-
non’s multidimensional differential entropies of the estimated components on the
orthogonal group [180]:

J(W) =

M∑
m=1

H (ym) → min
W∈OD

, (3.38)

where
y = Wx, y =

[
y1; . . . ;yM

]
, ym ∈ R

dm (3.39)

and dms are given. Estimation of cost function J however involves multidimen-
sional entropy estimation, which is computationally expensive in high dimensions,
but can be executed by NN methods consistently [172]. It has been shown in [181]
(in the field of image registration with high dimensional features) that the computa-
tional load can be decreased somewhat by

• dividing the samples into groups and then

• computing the averages of the group estimates.

We will combine this parallelizable ensemble approach with the ANN-preserving
properties of RPs and get drastic savings. We suggest the following entropy estima-
tion method5, for each estimated ISA component v := ŷm

ISA:
5The idea can be used for a number of information theoretical quantities, provided that they can

be estimated by means of pairwise Euclidean distances of the samples.
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• divide the T samples {v(1), . . . ,v(T )} intoN groups indexed by sets I1, . . . , IN

so that each group contains K samples,

• for all fixed groups take the random projection of v as

vn,RP(t) := Rnv(t) (t ∈ In; n = 1, . . . , N ;Rn ∈ R
d′m×dm), (3.40)

• average the estimated entropies of the RP-ed groups to get the estimation

Ĥ(v) =
1

N

N∑
n=1

Ĥ(vn,RP). (3.41)

Our particular choice for Rn can be found in Section 5.3.6.
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Chapter 4

Numerical Experiments –
Group-Structured Dictionary
Learning

In this chapter we demonstrate the efficiency of structured codes. For illustration
purposes we chose the online group-structured dictionary learning approach. The
efficiency of the method is presented in 3 different applications: inpainting of natu-
ral images (Section 4.1), structured non-negative matrix factorization of faces (Sec-
tion 4.2) and collaborative filtering (Section 4.3).

4.1 Inpainting of Natural Images

We studied the following issues on natural images:

1. Is structured dictionary D beneficial for inpainting of patches of natural im-
ages, and how does it compare to the dictionary of classical sparse represen-
tation? During learning of D, training samples xi were fully observed (i.e.,
Δi = I).

2. In this inpainting problem of image patches, we also studied the case when
the training samples xi were partially observed (Δi �= I).
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(a) (b)

Figure 4.1: Illustration of the used natural image dataset. (a): 12 images of similar
kind were used to select patches for the trainingXtr, validationXval, and testXtest

sets. (b): test image used for the illustration of full image inpainting.

3. We also show results for inpainting of full images using a dictionary learned
from partially observed (Δi �= I) patches.

In our numerical experiments we used Di = Sdx

2 (∀i), A = Rdα without addi-
tional weighing (AG = I, ∀G ∈ G). Group structure G of vector α was realized on
a 16 × 16 torus (dα = 256) with |G| = dα applying r = 0, 1, 2, or 3 neighbors to
define G. For r = 0 (G = {{1}, . . . , {dα}}) the classical sparse representation is
recovered. Our test database was the ICA natural image database.1 We chose 12 of
the 13 images of the dataset to study the first two questions above (see Fig. 4.1(a)),
and used the 13th picture for studying the third question (Fig. 4.1(b)). For each of
the 12 images, we sampled 131, 072 = 217 pieces of 8 × 8 disjunct image patches
randomly (without replacement). This patch set was divided to a training set Xtr

made of 65, 536 pieces, and to a validation (Xval) and test ( Xtest) set with set sizes
32, 768. Each patch was normalized to zero average and unit �2-norm.

In the first experiment xis were fully observed (Δi = I) and thus the update of
their statistics was precise. This is called the BCD case in the figures. MatrixDwas
learned on the set Xtr, columns dj were initialized by using a uniform distribution
on the surface of the �2-sphere. Pixels of the x patches in the validation and test
sets were removed with probability pval

test. For a given noise-free image patch x,
let xO denote its observed version, where O stands for the indices of the available
coordinates. The task was the inpainting of the missing pixels of x by means of
the pixels present ( xO) and by the learned matrix D. After removing the rows
of D corresponding to missing pixels of x, the resulting DO and xO were used
to estimate α. The final estimation of x was x̂ = Dα. According to preliminary

1See http://www.cis.hut.fi/projects/ica/data/images/.
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experiments, learning rate ρ and mini-batch sizeRwere set to 32 and 64 respectively
(the estimation was robust as a function of ρ and R). In the updates of z and α

(2.24) only minor changes were experienced after 2-3 iterations, thus the number of
iterations Tα was set to 5. Concerning the other parameters, we used η = 0.5, and
κ ∈ {2−19, 2−18, . . . , 2−10}. The ε smoothing parameter was 10−5, and the iteration
number for the update of D was TD = 5. Values of pval

test were chosen from set
{0.3, 0.5, 0.7, 0.9}, so for the case of pval

test = 0.9, only 10% of the pixels of x were
observed. For each fixed neighborhood size r and parameter pval

test, κ was chosen
as the minimum of mean squared error (MSE) using D trained on patch set Xtr

and evaluated on Xval. Having found this optimal κ on the validation set, we used
its value to compute the MSE on Xtest. Then we changed the roles of Xval and
Xtest, that is, validated on Xtest, and tested on Xval. This procedure was repeated
for four random initializations (D0) and different corruptions (Xval, Xtest). The
average MSE values (multiplied by 100) and their standard deviations for different
neighbor sizes r and corruption rates pval

test are summarized in Table 4.1. This table
shows that (i) the inpainting error grows with the corruption rate pval

test, (ii) compared
to sparse representation (r = 0) small neighborhood size r = 1 gives rise to similar
results, r = 2 is better and r = 3 seems to be the best for all cases with 13 − 19%

improvement in precision for MSE. Learned and average quality dictionariesD can
be seen in Fig. 4.2 (r = 0 no structure, r = 2, 3 with torus structure). Based on this
experiment we can conclude that the structured algorithm gives rise to better results
than ordinary sparse representations.

In the second experiment, the size of the neighborhood was fixed, set to r = 3.
We learned dictionary D on partially observed patches (Δi �= I). The probability
ptr of missing any pixel from the observations in the training set assumed values
from the set {0, 0.1, 0.3, 0.5, 0.7, 0.9}. In this case, we updated e using the ap-
proximation Eq. (2.32), hence we call this method approximate-BCD (or BCDA,
for short). The other experimental details were identical to the previous case (i.e.,
when Δi = I). Results and statistics for MSE are provided for a smaller (0.3) and
for a larger (0.7) value of pval

test in Table 4.2 for different probability values ptr. We
found that increasing ptr up to ptr = 0.7MSE values grow slowly. Note that we kept
the number of samples xi at 65, 536 identical to the previous case (Δi = I), and
thus by increasing ptr the effective number of observations/coordinates decreases.
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Table 4.1: BCD: 100× the MSE average (± std) as a function of neighbors (r = 0:
sparse representation, no structure) for different pval

test corruption rates.
pval

test = 0.3 pval
test = 0.5

r = 0 0.65 (±0.002) 0.83 (±0.003)
r = 1 0.60 (±0.005; +6.78%) 0.85 (±0.017; −2.25%)
r = 2 0.59 (±0.005; +10.39%) 0.81 (±0.008; +2.67%)
r = 3 0.56 (±0.002; +16.38%) 0.71 (±0.002; +16.01%)

pval
test = 0.7 pval

test = 0.9
r = 0 1.10 (±0.002) 1.49 (±0.006)
r = 1 1.10 (±0.029; +0.27%) 1.45 (±0.004; +2.96%)
r = 2 1.12 (±0.029; −1.09%) 1.46 (±0.029; +2.51%)
r = 3 0.93 (±0.001; +18.93%) 1.31 (±0.002; +13.87%)

Table 4.2: BCDA (r = 3): 100× the MSE average (± std) for different for different
pval

test and ptr corruption rates.
ptr = 0 ptr = 0.1 ptr = 0.3

pval
test = 0.3 0.55 (±0.003) 0.56 (±0.001) 0.57 (±0.003)

pval
test = 0.7 0.91 (±0.002) 0.91 (±0.002) 0.91 (±0.002)

ptr = 0.5 ptr = 0.7 ptr = 0.9
pval

test = 0.3 0.59 (±0.001) 0.61 (±0.002) 0.71 (±0.007)
pval

test = 0.7 0.92 (±0.003) 0.93 (±0.002) 0.96 (±0.003)
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(a) (b) (c)

Figure 4.2: Illustration of the online learned group-structured D dictionaries with
the BCD technique and MSE closest to the average (see Table 4.1) and pval

test = 0.7.
(a): r = 0, (b): r = 2, (c): r = 3.

(a) (b) (c)

Figure 4.3: Illustration of the online learned group-structuredD dictionaries for the
BCDA technique with MSE closest to the average (see Table 4.2) and pval

test = 0.7.
(a): ptr = 0, (b): ptr = 0.1, (c): ptr = 0.5.

Learned average quality dictionaries D are shown in Fig. 4.3 for pval
test = 0.7. Note

that the MSE values are still relatively small for missing pixel probability ptr = 0.9

(100×MSE maximum is about 0.96), thus our proposed method is still efficient in
this case. Reconstruction with value 0.92 (100×MSE) is shown in Fig. 4.4.

In our third illustration we show full image inpainting using dictionary D

learned with ptr = 0.5 and using the 13th image (X) shown in Fig. 4.1(b). We
executed inpainting consecutively on all 8 × 8 patches of image X and for each
pixel of image X, we averaged all estimations x̂i from all 8 × 8 patches that con-
tained the pixel. Results are shown in Fig. 4.4 for pval

test = 0.3 and 0.7 values. We
also provide the PSNR (peak signal-to-noise ratio) values of our estimations. This
measure for vectors u,v ∈ Rd (i.e., for vectors formed from the pixels of the image)
is defined as

PSNR(u,v) = 10 log10

[
(max(maxi |ui|, maxj |vj|))2

1
d
‖u− v‖2

2

]
, (4.1)
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(a) (b)

(c) (d)

Figure 4.4: Inpainting illustration using the online learned group-structured D dic-
tionaries for the BCDA technique with MSE closest to the average (see Table 4.2)
and ptr = 0.5. (a): measured, (b): estimated, PSNR = 36 dB. (a)-(b): pval

test = 0.3.
(c)-(d): the same as (a)-(b), but with pval

test = 0.7, in (d) PSNR = 29 dB.

where the higher value is the better. Acceptable values in wireless transmission
(lossy image and video compression) are around 20 − 25 dB (30 dB). By means of
D and for missing probability pval

test = 0.3 we achieved 36 dB PSNR, whereas for
missing probability pval

test = 0.7we still have 29 dB PSNR, underlining the efficiency
of our method.

4.2 Online Structured Non-negative Matrix Factor-
ization on Faces

It has been shown on the CBCL database that dictionary vectors (di) of the offline
NMF method can be interpreted as face components [94]. However, to the best of
our knowledge, there is no existing NMF algorithm as of yet, which could handle
general G group structures in an online fashion. Our OSDLmethod is able to do that,
can also cope with only partially observed inputs, and can be extended with non-
convex sparsity-inducing norms. We illustrate our approach on the color FERET2

dataset: we set Di = Sdx

2 ∩ R
dx
+ (∀i), A = R

dα
+ , Δi = I and η = 0.5. We selected

1, 736 facial pictures from the dataset. Using affine transformations we positioned
2See http://face.nist.gov/colorferet/.
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Figure 4.5: Illustration of the online learned structured NMF dictionary. Upper left
corner: training samples.

the noses and eyes to the same pixel coordinates, reduced the image sizes to 140 ×
120, and set their l2 norms to be one. These images were the observations for our
ODSL method (xi, dx = 49, 140 = 140×120×3 minus some masking). The group
structure Gwas chosen to be hierarchical; we applied a full, 8-level binary tree. Each
node with its corresponding descendants formed the sets of G ∈ G (dα = 255).
According to our experiments, the learned dictionary D was influenced mostly by
the constant κ, and similarly to Section 4.1, it proved to be quite insensitive to the
value of the learning factor ρ, and to the size of the mini-batches (R). Fig. 4.5
shows a few elements from the online estimated structured NMF dictionary (using
κ = 2−10.5, ρ = 32, R = 8, AG = I (∀G ∈ G), Tα = 5, TD = 5 and ε =

10−5). We can observe that the proposed algorithm is able to naturally develop
and hierarchically organize the elements of the dictionary: towards the leaves the
learned filters reveal more and more details. We can also notice that the colors are
separated as well. This example demonstrates that our method can be used for large
problems where the dimension of the observations is about 50, 000.

57



4.3 Collaborative Filtering

The proliferation of online services and the thriving electronic commerce over-
whelms us with alternatives in our daily lives. To handle this information overload
and to help users in efficient decision making, recommender systems (RS) have
been designed. The goal of RSs is to recommend personalized items for online
users when they need to choose among several items. Typical problems include rec-
ommendations for which movie to watch, which jokes/books/news to read, which
hotel to stay at, or which songs to listen to.

One of the most popular approaches in the field of recommender systems is col-
laborative filtering (CF). The underlying idea of CF is very simple: Users generally
express their tastes in an explicit way by rating the items. CF tries to estimate the
users’ preferences based on the ratings they have already made on items and based
on the ratings of other, similar users. For a recent review on recommender systems
and collaborative filtering, see e.g., [80].

Novel advances on CF show that dictionary learning based approaches can be
efficient for making predictions about users’ preferences [182]. The dictionary
learning based approach assumes that (i) there is a latent, unstructured feature space
(hidden representation) behind the users’ ratings, and (ii) a rating of an item is equal
to the product of the item and the user’s feature. To increase the generalization ca-
pability, usually �2 regularization is introduced both for the dictionary and for the
users’ representation.

Here, we extend the application domain of structured dictionary learning in the
direction of collaborative filtering. With respect to CF, further constraints appear
for structured dictonary learning since (i) online learning is desired and (ii) missing
information is typical. There are good reasons for them: novel items/users may
appear and user preferences may change over time. Adaptation to users also mo-
tivate online methods. Furthermore, users can evaluate only a small portion of the
available items, which leads to incomplete observations, missing rating values.

To do so, we formulate the CF task as an OSDL optimization problem in Sec-
tion 4.3.1. According to the CF literature, oftentimes neighbor-based corrections
improve the precision of the estimation. We also use this technique (Section 4.3.2)
to improve the OSDL estimations. Numerical results are presented in Section 4.3.3.
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4.3.1 Collaborative Filtering as Structured Dictionary Learning

Below, the CF task is transformed into an OSDL problem. Consider the tth user’s
known ratings as OSDL observations xOt

. Let the optimized group-structured dic-
tionary on these observations be D. Now, assume that we have a test user and
his/her ratings, i.e., xO ∈ R|O|. The task is to estimate x{1,...,dx}\O, that is, the miss-
ing coordinates of x (the missing ratings of the user) that can be accomplished as
follows:

1. Remove the rows of the non-observed {1, . . . , dx}\O coordinates from D.
The obtained |O| × dα sized matrix DO and xO can be used to estimate α by
solving the structured sparse coding problem (2.2).

2. Using the estimated representation α, estimate x as

x̂ = Dα. (4.2)

4.3.2 Neighbor Based Correction

According to the CF literature, neighbor based correction schemes may further im-
prove the precision of the estimations [80]. This neighbor correction approach

• relies on the assumption that similar items (e.g., jokes/movies) are rated sim-
ilarly and

• it can be adapted to OSDL-based CF estimation in a natural fashion.

Here, we detail the idea. Let us assume that the similarities sij ∈ R (i, j ∈
{1, . . . , dx}) between individual items are given. We shall provide similarity forms
in Section 4.3.3. Let dkαt ∈ R be the OSDL estimation for the rating of the kth

non-observed item of the tth user (k �∈ Ot), where dk ∈ R
1×dα is the kth row of

matrix D ∈ Rdx×dα , and αt ∈ Rdα is computed according to Section 4.3.1.
Let the prediction error on the observable item neighbors (j) of the kth item of

the tth user (j ∈ Ot\{k}) be djαt − xjt ∈ R. These prediction errors can be used
for the correction of the OSDL estimation (dkαt) by taking into account the sij
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similarities:

x̂kt = dkαt + γ1

[∑
j∈Ot\{k}

skj(djαt − xjt)∑
j∈Ot\{k}

skj

]
, or (4.3)

x̂kt = γ0(dkαt) + γ1

[∑
j∈Ot\{k}

skj(djαt − xjt)∑
j∈Ot\{k}

skj

]
, (4.4)

where k �∈ Ot. Here, (4.3) is analogous to the form of [182], (4.4) is a simple
modification: it modulates the first term with a separate γ0 weight.

4.3.3 Numerical Results

This section is structured as follows: We have chosen the Jester dataset for the
illustration of the OSDL based CF approach. It is a standard benchmark for CF.
This is what we introduce first. Then we present our preferred item similarities.
The performance measure used to evaluate the CF based estimation follows. The
final part of this section is about our numerical experiences.

The Jester Dataset

The dataset [183] contains 4, 136, 360 ratings from 73, 421 users to 100 jokes on a
continuous [−10, 10] range. The worst and best possible gradings are−10 and+10,
respectively. A fixed 10 element subset of the jokes is called gauge set and it was
evaluated by all users. Two third of the users have rated at least 36 jokes, and the
remaining ones have rated between 15 and 35 jokes. The average number of user
ratings per joke is 46.

Item Similarities

In the neighbor correction step (4.3) or (4.4) we need the sij values representing the
similarities of the ith and jth items. We define this value as the similarity of the ith
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and jth rows (di and dj) of the optimized OSDL dictionary D [182]:

S1 : sij = sij(di,dj) =

(
max(0, 〈di,dj〉)
‖di‖2 ‖dj‖2

)β

, or (4.5)

S2 : sij = sij(di,dj) =

(
‖di − dj‖2

2

‖di‖2 ‖dj‖2

)−β

, (4.6)

where β > 0 is the parameter of the similarity measure. Quantities sij are non-
negative; if the value of sij is close to zero (large) then the ith and jth items are very
different (very similar).

Performance Measure

In our numerical experiments we used the RMSE (root mean square error) mea-
sure for the evaluation of the quality of the estimation, since RMSE is one of most
popular measures in the CF literature. The RMSE measure is the average squared
difference of the true and the estimated rating values:

RMSE =

√
1

|S|
∑

(i,t)∈S

(xit − x̂it)2, (4.7)

where S denotes either the validation or the test set.

Evaluation

Here we illustrate the efficiency of the OSDL-based CF estimation on the Jester
database using the RMSE performance measure. To the best of our knowledge, the
top results on this database are RMSE = 4.1123 [184] and RMSE = 4.1229 [182].
Both works are from the same authors. The method in the first paper is called item
neigbor and it makes use of only neighbor information. In [182], the authors used
a bridge regression based unstructured dictionary learning model—with a neighbor
correction scheme—, they optimized the dictionary by gradient descent and set dα

to 100. These are our performance baselines.
To study the capability of the OSDL approach in CF, we focused on the follow-

ing issues:
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• Is structured dictionary D beneficial for prediction purposes, and how does it
compare to the dictionary of classical (unstructured) sparse dictionary?

• How does the OSDL parameters and the similarity/neighbor correction ap-
plied affect the efficiency of the prediction?

• How do different group structures G fit to the CF task?

In our numerical studies we chose the Euclidean unit sphere for Di = Sdx

2 (∀i),
and A = Rdα , and no additional weighting was applied (dG = χG, ∀G ∈ G, where
χ is the indicator function). We set η of the group-structured regularizer Ω to 0.5.
Group structure G of vector α was realized on

• a d × d toroid (dα = d2) with |G| = dα applying r ≥ 0 neighbors to define
G. For r = 0 (G = {{1}, . . . , {dα}}) the classical sparse representation based
dictionary is recovered.

• a hierarchy with a complete binary tree structure. In this case:

– |G| = dα, and group G of αi contains the ith node and its descendants
on the tree, and

– the size of the tree is determined by the number of levels l. The dimen-
sion of the hidden representation is then dα = 2l − 1.

The size R of mini-batches was set either to 8, or to 16 and the forgetting rate
ρ was chosen from set {0, 1

64
, 1

32
, 1

16
, 1

8
, 1

4
, 1

2
, 1}. The κ weight of structure induc-

ing regularizer Ω was chosen from the set { 1
2−1 ,

1
20 ,

1
21 ,

1
22 ,

1
24 ,

1
26 , . . . ,

1
214 }. We

studied similarities S1, S2 [see (4.5)-(4.6)] with both neighbor correction schemes
[(4.3)-(4.4)]. In what follows, corrections based on (4.3) and (4.4) will be called
S0

1 , S0
2 and S1, S2, respectively. Similarity parameter β was chosen from the set

{0.2, 1, 1.8, 2.6, . . . , 14.6}. In the BCD step of the optimization of D, Tα = 5 itera-
tions were applied. In the α optimization step, we used TD = 5 iterations, whereas
smoothing parameter ε was 10−5.

We used a 90%−10% random split for the observable ratings in our experiments,
similarly to [182]:

• training set (90%) was further divided into 2 parts:
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– we chose the 80% observation set {Ot} randomly, and optimized D

according to the corresponding xOt
observations,

– we used the remaining 10% for validation, that is for choosing the opti-
mal OSDL parameters (r or l, κ, ρ), BCD optimization parameter (R),
neighbor correction (S1, S2, S0

1 , S0
2), similarity parameter (β), and cor-

rection weights (γis in (4.3) or (4.4)).

• we used the remaining 10% of the data for testing.

The optimal parameters were estimated on the validation set, and then used on the
test set. The resulting RMSE score was the performance of the estimation.

Toroid Group Structure. In this section we provide results using toroid group
structure. We set d = 10. The size of the toroid was 10×10, and thus the dimension
of the representation was dα = 100.

In the first experimentwe study how the size of neighborhood (r) affects the re-
sults. This parameter corresponds to the ‘smoothness’ imposed on the group struc-
ture: when r = 0, then there is no relation between the dj columns in D (no struc-
ture). As we increase r, the dj feature vectors will be more and more aligned in a
smooth way. To this end, we set the neighborhood size to r = 0 (no structure), and
then increased it to 1, 2, 3, 4, and 5. For each (κ, ρ, β), we calculated the RMSE
of our estimation, and then for each fixed (κ, ρ) pair, we minimized these RMSE
values in β. The resulting validation and test surfaces are shown in Fig. 4.6. For
the best (κ, ρ) pair, we also present the RMSE values as a function of β (Fig. 4.7).
In this illustration we used S0

1 neighbor correction and R = 8 mini-batch size. We
note that we got similar results using R = 16 too. Our results can be summarized
as follows.

• For a fixed neighborhood parameter r, we have that:

– The validation and test surfaces are very similar (see Fig. 4.6(e)-(f)). It
implies that the validation surfaces are good indicators for the test errors.
For the best r, κ and ρ parameters, we can observe that the validation
and test curves (as functions of β) are very similar. This is demonstrated
in Fig. 4.7, where we used r = 4 neighborhood size and S0

1 neighbor
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correction. We can also notice that (i) both curves have only one local
minimum, and (ii) these minimum points are close to each other.

– The quality of the estimation depends mostly on the κ regularization
parameter. As we increase r, the best κ value is decreasing.

– The estimation is robust to the different choices of forgetting factors (see
Fig. 4.6(a)-(e)). In other words, this parameter ρ can help in fine-tuning
the results.

• Structured dictionaries (r > 0) are advantageous over those methods that
do not impose structure on the dictionary elements (r = 0). For S0

1 and S0
2

neighbor corrections, we summarize the RMSE results in Table 4.3. Based
on this table we can conclude that in the studied parameter domain

– the estimation is robust to the selection of the mini-batch size (R). We
got the best results using R = 8. Similarly to the role of parameter ρ,
adjusting R can be used for fine-tuning.

– the S0
1 neighbor correction lead to the smallest RMSE value.

– When we increase r up to r = 4, the results improve. However, for
r = 5, the RMSE values do not improve anymore; they are about the
same that we have using r = 4.

– The smallest RMSE we could achieve was 4.0774, and the best known
result so far was RMSE = 4.1123 [184]. This proves the efficiency of
our OSDL based collaborative filtering algorithm.

– We note that our RMSE result seems to be significantly better than the
that of the competitors: we repeated this experiment 5 more times with
different randomly selected training, test, and validation sets, and our
RMSE results have never been worse than 4.08.

In the second experiment we studied how the different neighbor corrections
(S1, S2, S0

1 , S0
2 ) affect the performance of the proposed algorithm. To this end, we

set the neighborhood parameter to r = 4 because it proved to be optimal in the
previous experiment. Our results are summarized in Table 4.4. From these results
we can observe that
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Figure 4.6: Validation surfaces [(a)-(e)] and test surfaces (f) as a function of forget-
ting factor (ρ) and regularization (κ). For a fixed (κ, ρ) parameter pair, the surfaces
show the best RMSE values optimized in the β similarity parameter. The group
structure (G) is toroid. The applied neighbor correction was S0

1 . (a): r = 0 (no
structure). (b): r = 1. (c): r = 2. (d): r = 3. (e)-(f): r = 4, on the same scale.
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Figure 4.7: Validation and test curves for toroid group structure using the optimal
neighborhood size r = 4, regularization weight κ = 1

210 , forgetting factor ρ = 1
25 ,

mini-batch size R = 8, and similarity parameter β = 3.4. The applied neighbor
correction was S0

1 .

Table 4.3: Performance (RMSE) of the OSDL prediction using toroid group struc-
ture (G) with different neighbor sizes r (r = 0: unstructured case). First-second
row: mini-batch size R = 8, third-fourth row: R = 16. Odd rows: S0

1 , even
rows: S0

2 neighbor correction. For fixedR, the best performance is highlighted with
boldface typesetting.

r = 0 r = 1 r = 2 r = 3 r = 4

R = 8 S0
1 4.1594 4.1326 4.1274 4.0792 4.0774

S0
2 4.1765 4.1496 4.1374 4.0815 4.0802

R = 16 S0
1 4.1611 4.1321 4.1255 4.0804 4.0777

S0
2 4.1797 4.1487 4.1367 4.0826 4.0802

• our method is robust to the selection of correction methods. Similarly to the ρ

and R parameters, the neighbor correction parameter can help in fine-tuning
the results.

• The introduction of γ0 in (4.4) with the application of S0
1 and S0

2 instead of S1

and S2 proved to be advantageous in the neighbor correction phase.

• For the studied CF problem, the S0
1 neighbor correction method (withR = 8)

lead to the smallest RMSE value, 4.0774.

• TheR ∈ {8, 16} setting yielded us similarly good results. Even withR = 16,
the RMSE value was 4.0777.
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Table 4.4: Performance (RMSE) of the OSDL prediction for different neighbor cor-
rections using toroid group structure (G). Columns: applied neighbor corrections.
Rows: mini-batch size R = 8 and 16. The neighbor size was set to r = 4. For fixed
R, the best performance is highlighted with boldface typesetting.

S1 S2 S0
1 S0

2

R = 8 4.0805 4.0844 4.0774 4.0802
R = 16 4.0809 4.0843 4.0777 4.0802

Hierarchical Group Structure. In this section we provide results using hierar-
chical α representation. The group structure G was chosen to represent a complete
binary tree.

In our third experimentwe study how the number of levels (l) of the tree affects
the results. To this end, we set the number of levels to l = 3, 4, 5, and 6. Since
dα, the dimension of the hidden representation α, equals to 2l − 1, these l values
give rise to dimensions dα = 7, 15, 31, and 63. Validation and test surfaces are
provided in Fig. 4.8(a)-(c) and (e)-(f), respectively. The surfaces show for each
(κ, ρ) pair, the minimum RMSE values taken in the similarity parameter β. For the
best (κ, ρ) parameter pair, the dependence of RMSE on β is presented in Fig. 4.8(d).
In this illustration we used S0

1 neighbor correction, and the mini-batch size was set
to R = 8. Our results are summarized below. We note that we obtained similar
results with mini-batch size R = 16.

• For fixed number of levels l, similarly to the toroid group structure (where the
size r of the neighborhood was fixed),

– validation and test surfaces are very similar, see Fig. 4.8(b)-(c). Valida-
tion and test curves as a function of β behave alike, see Fig. 4.8(d).

– the precision of the estimation depends mostly on the regularization pa-
rameter κ; forgetting factor ρ enables fine-tuning.

• The obtained RMSE values are summarized in Table 4.5 for S0
1 and S0

2 neigh-
bor corrections. According to the table, the quality of estimation is about the
same for mini-batch size R = 8 and R = 16; the R = 8 based estimation
seems somewhat more precise. Considering the neighbor correction schemes
S0

1 and S0
2 , S0

1 provided better predictions.
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Table 4.5: Performance (RMSE) of the OSDL prediction for different number of
levels (l) using binary tree structure (G). First-second row: mini-batch size R = 8,
third-fourth row: R = 16. Odd rows: S0

1 , even rows: S0
2 neighbor correction. For

fixed R, the best performance is highlighted with boldface typesetting.
l = 3 l = 4 l = 5 l = 6

R = 8 S0
1 4.1572 4.1220 4.1241 4.1374

S0
2 4.1669 4.1285 4.1298 4.1362

R = 16 S0
1 4.1578 4.1261 4.1249 4.1373

S0
2 4.1638 4.1332 4.1303 4.1383

• As a function of the number of levels, we got the best result for l = 4, RMSE
= 4.1220; RMSE values decrease until l = 4 and then increase for l > 4.

• Our best obtained RMSE value is 4.1220; it was achieved for dimension only
dα = 15. We note that this small dimensional, hierarchical group structure
based result is also better than that of [182] with RMSE = 4.1229, which
makes use of unstructured dictionaries with dα = 100. The result is also
competitive with the RMSE = 4.1123 value of [184].

In our fourth experiment we investigate how the different neighbor corrections
(S1, S2, S0

1 , S0
2) affect the precision of the estimations. We fixed the number of

levels to l = 4, since it proved to be the optimal choice in our previous experiment.
Our results are summarized in Table 4.6. We found that

• the estimation is robust to the choice of neighbor corrections,

• it is worth including weight γ0 [see (4.4)] to improve the precision of predic-
tion, that is, to apply correction S0

1 and S0
2 instead of S1 and S2, respectively.

• the studied R ∈ {8, 16} mini-batch sizes provided similarly good results.

• for the studied CF problem the best RMSE value was achieved using S0
1

neighbor correction and mini-batch size R = 8.
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Figure 4.8: Validation surfaces [(a)-(b), (e)-(f)] and test surfaces (c) as a function
of forgetting factor (ρ) and regularization (κ). (d): validation and test curve using
the optimal number of levels l = 4, regularization weight κ = 1

22 , forgetting factor
ρ = 0, mini-bach size R = 8, similarity parameter β = 1.8. Group structure (G):
complete binary tree. Neighbor correction: S0

1 . (a)-(c),(e)-(f): for fixed (κ, ρ) pa-
rameter pair, the surfaces show the best RMSE values optimized in the β similarity
parameter. (a): l = 3. (b)-(c): l = 4, on the same scale. (e): l = 5. (f): l = 6.69



Table 4.6: Performance (RMSE) of the OSDL prediction for different neighbor
corrections using binary tree structure (G). Rows: mini-batch size R = 8 and
16. Columns: neighbor corrections. Neighbor size: r = 4. For fixed R, the best
performance is highlighted with boldface typesetting.

S1 S2 S0
1 S0

2

R = 8 4.1255 4.1338 4.1220 4.1285
R = 16 4.1296 4.1378 4.1261 4.1332
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Chapter 5

Numerical Experiments – Indepedent
Subspace Based Dictionary Learning

In this chapter we illustrate the efficiency of the proposed IPA estimation methods
(Chapter 3). Test databases are described in Section 5.1. To evaluate the solutions,
we use the performance measure given in Section 5.2. Our numerical results are
presented in Section 5.3.

5.1 Test Datasets

We conducted experiments using the following datasets to assess the efficiency,
robustness and limits of our methods:

ABC, 3D-geom: In the ABC database, the distribution of the hidden sources em

were uniform on 2-dimensional images (dm = 2) of the English alphabet.
The number of components can be M = 26. For illustration, see Fig. 5.1(b).

In the 3D-geom test ems were random variables uniformly distributed on 3-
dimensional geometric forms (dm = 3, M = 6), see Fig. 5.1(a).

celebrities, smiley: The celebrities and smiley test has 2-dimensional source com-
ponents (dm = 2) generated from cartoons of celebrities (M = 10) and 6 ba-
sic facial expressions (M = 6), respectively.1 Sources em were generated by

1See http://www.smileyworld.com.
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sampling 2-dimensional coordinates proportional to the corresponding pixel
intensities. In other words, 2-dimensional images were considered as density
functions. For illustration, see Fig. 5.1(c)-(d).

d-geom, d-spherical: In the d-geom dataset ems were random variables uniformly
distributed on dm-dimensional geometric forms. Geometrical forms were
chosen as follows. We used: (i) the surface of the unit ball, (ii) the straight
lines that connect the opposing corners of the unit cube, (iii) the broken line
between dm+1 points 0 → e1 → e1+e2 → . . . → e1+. . .+edm

(where ei is
the i canonical basis vector in R

dm , i.e., all of its coordinates are zero except
the ith, which is 1), and (iv) the skeleton of the unit square. Thus, the number
of components M was equal to 4, and the dimension of the components (dm)
can be scaled and different. For illustration, see Fig. 5.1(f).

In the d-spherical test hidden sources em were spherical random variables
[185]. Since spherical variables assume the form v = ρu, where u is uni-
formly distributed on the dm-dimensional unit sphere, and ρ is a non-negative
scalar random variable independent of u, they can be given by means of ρ.
We chose 3 pieces of stochatistic representations ρ: ρ was uniform on [0, 1],
exponential with parameter μ = 1 and lognormal with parameters μ = 0,

σ = 1. For illustration, see Fig. 5.1(g). In this case, the number of compo-
nent was M = 3, and the dimension of the source components (dm) can be
varied.

ikeda: In the ikeda test, the hidden sm
t = [sm

t,1, s
m
t,2] ∈ R2 sources realized the ikeda

map

sm
t+1,1 = 1 + λm[sm

t,1 cos(wm
t ) − sm

t,2 sin(wm
t )], (5.1)

sm
t+1,2 = λm[sm

t,1 sin(wm
t ) + sm

t,2 cos(wm
t )], (5.2)

where λm is a parameter of the dynamical system and

wm
t = 0.4 − 6

1 + (sm
t,1)

2 + (sm
t,2)

2
. (5.3)

M = 2 was chosen with initial points s1
1 = [20; 20], s2

1 = [−100; 30] and
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parameters λ1 = 0.9994, λ2 = 0.998, see Fig. 5.1(e) for illustration.

all-k-independent: In the all-k-independent database, the dm-dimensional hidden
components v := em were created as follows: coordinates vi (i = 1, . . . , k)

were independent uniform random variables on the set {0,. . . ,k-1}, whereas
vk+1 was set to mod(v1 + . . . + vk, k). In this construction, every k-element
subset of {v1, . . . , vk+1} is made of independent variables and dm = k + 1.

Beatles: Our Beatles test is a non-i.i.d. example. Here, hidden sources are stereo
Beatles songs.2 8 kHz sampled portions of two songs (A Hard Day’s Night,
Can’t Buy Me Love) made the hidden sms. Thus, the dimension of the com-
ponents dm was 2, the number of the componentsM was 2, and the dimension
of the hidden source D was 4.

5.2 Performance Measure, the Amari-index

Below, we present the performance index that was used to measure the quality of
the estimations.

First, we focus on the ISA problem. Identification of the ISA model is ambigu-
ous. However, the ambiguities of the model are simple: hidden components can be
determined up to permutation of the subspaces and up to invertible linear transfor-
mations within the subspaces [153, 186]. Thus, in the ideal case, the product of the
estimated ISA demixing matrix ŴISA and the ISA mixing matrix A, i.e., matrix

G = ŴISAA (5.4)

is a block-permutation matrix (also called block-scaling matrix [110]). This prop-
erty can also be measured for source components with different dimensions by a
simple extension [164] of the Amari-index [187], that we present below. Namely,
assume that we have a weight matrix V ∈ RM×M made of positive matrix ele-
ments. Loosely speaking, we shrink the di × dj blocks of matrix G according to
the weights of matrix V and apply the traditional Amari-index for the matrix we

2See http://rock.mididb.com/beatles/.
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(a) (b)

(c)

(d) (e)

(f) (g)

Figure 5.1: Illustration of the 3D-geom (a), ABC (b), celebrities (c), smiley (d),
ikeda (e), d-geom (f) and d-spherical (g) datasets.

obtain. Formally, one can (i) assume without loss of generality that the component
dimensions and their estimations are ordered in increasing order (d1 ≤ . . . ≤ dM ,
d̂1 ≤ . . . ≤ d̂M ), (ii) decomposeG into di×dj blocks (G = [Gij ]i,j=1,...,M ) and de-
fine gij as the sum of the absolute values of the elements of the matrixGij ∈ R

di×dj ,
weighted with Vij :

gij = Vij

di∑
k=1

dj∑
l=1

| (Gij
)

k,l
|. (5.5)

Then the Amari-index with parametersV can be adapted to the ISA task of possibly
different component dimensions as follows

rV(G) :=
1

2M(M − 1)

[
M∑
i=1

(∑M
j=1 gij

maxj gij
− 1

)
+

M∑
j=1

(∑M
i=1 gij

maxi gij
− 1

)]
. (5.6)
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One can see that 0 ≤ rV(G) ≤ 1 for any matrix G, and rV(G) = 0 if and only if
G is block-permutation matrix with di×dj sized blocks. rV(G) = 1 is in the worst
case, i.e, when all the gij elements are equal. Let us note that this novel measure
(5.6) is invariant, e.g., for multiplication with a positive constant: rcV = rV (∀c >

0). Weight matrix V can be uniform (Vij = 1), or one can use weighing according
to the size of the subspaces: Vij = 1/(didj). We will use the shorthand r(·) for the
first variant, if not stated otherwise.

Similarly, for the problems presented in Chapter 3, one can estimate the hid-
den source components only up to the ISA ambiguities. Thus, having the mixing
matrixA at hand, the performance of the estimations can be measured by the block-
permutation property of matrix G = ŴISAA, where ŴISA denotes the estimated
demixing matrix of the derived ISA subproblems. In case of the

• complex ISA problem, we measure the block-permutation property of G =

ŴISAϕM(A) using the associated component dimensions over the real do-
main, i.e., 2 × dm (m = 1, . . . , M).

• BSSD problem, where the mixing is described by a convolution instead of
x = As, we choseG as the linear transformation that optimally approximates
the relation s �→ ŝ, where ŝ denotes the estimated hidden source.

5.3 Numerical Results

Here, we illustrate the efficiency of the proposed IPA estimation techniques. In
Section 5.3.1, Section 5.3.2, Section 5.3.3, Section 5.3.4 and Section 5.3.5 we are
dealing with the ARX-IPA, mAR-IPA, complex ISA, fAR-IPA and complete BSSD
problem, respectively. Numerical results demonstrating the efficiency of random
projection based entropy estimations are given in Section 5.3.6.

In our numerical experiments, the ISA subtask was solved according to the ISA
separation theorem [92,123]: we grouped/clustered the computed ICA components.
One may apply different clustering methods—beyond the exhaustive search, which
becomes rapidly prohibitive as the dimension of the problem is increasing—e.g.,

Greedy search: We exchange two estimated ICA components belonging to differ-
ent subspaces, if the exchange decreases the value of the ISA cost as long as
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such pairs exist.

Global search: One may apply global permutation search methods of higher com-
putational burden. The cross-entropy solution suggested for the traveling
salesman problem (TSP) [188] can, for example, be adapted to our case [189].
In the TSP problem, a permutation of cities is searched for and the objective
is to minimize the cost of the travel. We are also searching for a permutation,
but now the travel cost is replaced by the ISA cost function.

Spectral clustering: An efficient method with good scaling properties has been put
forth in [126,190] for searching the permutation group for the ISA separation
theorem (see, Table 5.1). This approach builds upon the fact that the mutual
information between different ISA subspaces em is zero due the assumption
of independence. The method assumes that coordinates of em that fall into
the same subspace can be paired by using the mutual information between the
coordinates only.

The mutual information of the computed ICA elements can be efficiently es-
timated, e.g., by the generalized variance [162], the kernel canonical corre-
lation analysis (KCCA) method [191], or the robustness of the estimation
against noise can be improved further by applying copula methods [192].
One may carry out the clustering step, e.g., by spectral clustering methods;
such a technique is the NCut method [193]. Spectral clustering methods scale
well since a single machine can handle a million observations (in our case
estimated ICA elements) within several minutes [194].

Finally, it may be worth noting that one can construct examples that do not
satisfy the conditions detailed in Table 5.1. The all-k-independent construc-
tion belongs to this family.

In our experiments the ICA components were estimated by the well-known fastICA
algorithm [195]. The performance of our methods are also summarized by notched
boxed plots, which show the quartiles (Q1, Q2, Q3), depict the outliers, i.e., those
that fall outside of interval [Q1 − 1.5(Q3 −Q1), Q3 +1.5(Q3 −Q1)] by circles, and
whiskers represent the largest and smallest non-outlier data points.
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Table 5.1: Approximation that scales well for the permutation search task in the
ISA separation theorem.
Construct an undirected graph with nodes corresponding to ICA coordi-
nates and edge weights (similarities) defined by the pairwise statistical de-
pendencies, i.e., the mutual information of the estimated ICA elements:
S = [Î(êICA,i, êICA,j)]

D
i,j=1. Cluster the ICA elements, i.e., the nodes using

similarity matrix S.

5.3.1 ARX-IPA Experiments

Here, we illustrate the efficiency of the proposed ARX-IPA estimation technique
(Section 3.1) [152]; results on databases 3D-geom (dm = 3, M = 6, Ds = 3 × 6 =

18), ABC (dm = 2, M = 10, Ds = 2 × 10 = 20) and celebrities (dm = 2,
M = 10, Ds = 2 × 10 = 20) are provided.3 For each individual parameter,
the performance of 20 random runs were averaged. Our parameters are: T , the
sample number of observations xt, Ls, the order of dynamics of the AR part, Lu,
the temporal memory of the effect of the control applied, δu, the upper limit of the
magnitude of the control (U := {u : maxi |ui| ≤ δu}), and λ, parameter of the
stable F[z]. ‘Random run’ means random choice of quantities F[z], Bjs, A and e.
In each simulation A was a random orthogonal matrix4, sample number T varied
between 1, 000 and 100, 000, we optimized Jpars and Jnoise on intervals [1, T/2]

and [T/2 + 1, T ], respectively (see footnote 3), the dimension of the control was
equal to the dimension of s (Du = Ds), the ISA task was solved by using the
JFD (joint f-decorrelation; generalized variance dependence, greedy permutation
search) method [162], the elements of matrices Bj were generated independently
from standard normal distributions, and stable the F[z] was generated as follows

F[z] =

Ls−1∏
i=0

(I− λOiz) (|λ| < 1, λ ∈ R), (5.7)

3We note that the InfoMax objectives Jpar and Jnoise look forward only by one-step, so the
method is greedy. The objective could be extended to include long-term cumulated contributions,
but the solution is not yet known for this task. According to experiences, estimation of noise e

can proceed by using Jpar first for a some iterations and then use Jnoise to compute the control
values [151].

4In our studied ISA based problems, one can assume without loss of generality that theAmixing
matrix belongs to the orthogonal family, this corresponds to a simple normalizing assumption.
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where matrices Oi ∈ RDs×Ds were random orthogonal (Oi ∈ ODs).
We sum up our experiences about the ARX-IPA method here:

1. Dependence on δu: We studied the effect of the magnitude of control (δu)
on the precision of the estimation for ‘small’ Ls, Lu (Ls, Lu ≤ 3) values and
for λ = 0.95. We found that for a range of not too large control values δu

the estimation is precise (Fig. 5.2(a)) and the error follows a power law in
the number of samples: r(T ) ∝ T−c (c > 0) is a straight line on log-log
scale. Similar results were found for all three databases in all experiments
(Fig. 5.2(b)). Figure 5.3 illustrates the results of the estimations. In the rest of
the studies we fixed the maximum of the control magnitude to δu = 0.2 and
show the results of the 3D-geom database.

2. Dependence on Lu: Increasing the temporal memory of the effect of the con-
trol applied (Lu = 3, 5, 10, 20, 50) precise estimation was found even for
Lu = 50. The estimation errors are shown in Fig. 5.4(a).

3. Dependencies on Ls and λ: We found that the order of the dynamics of the
AR process (Ls) can be increased provided that λ in Eq. (5.7) is decreased:
For Lu = 1 and for Ls = 5, 10, 20, 50, the estimation is precise up to values
approximately equal to λ = 0.85 − 0.9, 0.65 − 0.7, 0.45 − 0.5, 0.25 − 0.3,
respectively. Results are depicted in Fig. 5.4(b).

For further illustration concerning the ARMAX-IPA and PNL ARX-IPA mod-
els, see [155, 156].

5.3.2 mAR-IPA Experiments

Here, we illustrate the efficiency of the proposed mAR-IPA estimation technique
(Section 3.2) [157, 158]; results on databases ABC (dm = 2, M = 3, D = 2 × 3 =

6), 3D-geom (dm = 3, M = 2, D = 3 × 2 = 6) and Beatles (dm = 2, M = 2,
D = 2 × 2 = 4) are provided. For each individual parameter, the performance of
10 random runs (A, F[z], e) were averaged. Our parameters are: T , the sample
number of observations yt, Ls, the order of the AR process, p, the probability of
missing observation in Mt (xt,is, the coordinates of process xt, were not observed
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Figure 5.2: ARX-IPA problem, estimation error (Amari-index) as a function of
sample number on log-log scale for different control magnitudes (a), and databases
(b).

(a) (b) (c)

Figure 5.3: ARX-IPA problem, illustration for the 3D-geom database (Ls = Lu =
3, δu = 0.2, λ = 0.95, T = 50, 000), for an estimation with average estimation
error (100 × Amari-index = 0.55%). (a): observed signal xt. (b) Hinton-diagram
of G: the product of the estimated demixing matrix and the mixing matrix of the
derived ISA task (= approximately block-permutation matrix with 3 × 3 blocks).
(c): estimated components–recovered up to the ISA ambiguities.
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Figure 5.4: ARX-IPA problem, estimation error (Amari-index) as a function of (a)
temporal memory of control Lu, and (b) order of the AR process Ls.

with probability p, independently), and λ, the (contraction) parameter of the stable
polynomial matrix F[z]. It is expected that if the roots of F[z] are close to the unit
circle then our estimation will deteriorate. We investigated this by generating the
polynomial matrix F[z] as

F[z] =

Ls−1∏
i=0

(I− λOiz) (|λ| < 1, λ ∈ R), (5.8)

where matrices Oi ∈ RD×D were random orthogonal (Oi ∈ OD) and the λ →
1 limit was studied. Mixing matrix A was a random orthogonal matrix. AR fit
subject to missing observations was accomplished by means of (i) the maximum
likelihood (ML) principle [196], (ii) the subspace technique [197], and (iii) in a
Bayesian framework using normal-inverted Wishart (shortly NIW) conjugate prior
and filling in the next missing data using the maximum-a-posteriori estimation of
the parameters [198]. The dependency of the estimated ICA elements elements was
estimated by means of the KCCA method [191]. The performance of the method is
summarized by notched boxed plots.

The Ls order of the AR process was 1 and 2 for the ABC and the 3D-geom
tasks, respectively, contraction parameter λwas varied between values 0.1 and 0.99,
the probability of missing observations took different values (p = 0.01, 0.1, 0.15,
0.2), and sample number T was set to 1, 000, 2, 000, and 5, 000. According to our
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experiences, the methods are efficient on both tasks. The most precise method isML
followed by the subspacemethod and the NIW technique (see Fig. 5.5(a)). Running
time of the algorithms is the opposite and the ML technique is computation time
demanding (see Fig. 5.5(b)). Considering the ratio of missing observations – in the
parameter range we studied – theML, the subspace and the NIW method can handle
parameter p up to 0.2−0.3 (see Fig. 5.5(c)-(d)), p = 0.15−0.2, and p = 0.1−0.15,
respectively. Figure 5.5(c)-(d) demonstrate that the ML method works robustly for
the contraction parameter λ and provides reasonable estimations for values around
1. Figure 5.5(e)-(j) illustrate the ML component estimations for different p values.

Because of the high computation demands of the ML technique, the perfor-
mances of the subspace and NIW methods were studied on the Beatles test. Accord-
ing to the Schwarz’s Bayesian criterion we used the crude Ls = 10 AR estimation.
Results for sample number T = 30, 000 are summarized in Fig. 5.6. According
to the figure, the methods give reasonable estimations up to p = 0.1 − 0.15. In
accord with our previous experiences, the subspace method is more precise, but it
is somewhat slower.

5.3.3 Complex ISA Experiments

Here, we illustrate the efficiency of the presented complex ISA method (Section 3.3)
[163]. We provide empirical results on the d-spherical dataset (M = 3). In our
experiments, the em ∈ Cdm complex source components were defined by the 2dm-
dimensional d-spherical construction making use of the ϕv bijection. By the tech-
nique described in Section 3.3 the complex ISA problem was mapped to a real
valued ISA problem. Then, the KCCA technique [191] was applied to estimate the
dependence of the estimated ICA elements. The dimension of the complex com-
ponents (dm) were unknown to the algorithm, the clustering of the computed ICA
coordinates and the estimation of the component dimensions were accomplished by
the NCut [193] spectral clustering technique.

For all parameter values, the average performances upon 10 random initializa-
tions of e and A were taken. Our parameters included T , the sample number of
observations xt, and dms, the dimensions of the components.5 The mixing matrix

5In the Amari-index the possible non-equality of the component dimensions (dm) were also taken
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Figure 5.5: mAR-IPA problem, illustration of the estimations on the 3D-geom and
ABC datasets. (a), (b): Amari-index and elapsed time, respectively as a function of
the probability of missing observation (p) for the 3D-geom dataset on log-log scale
and for AR order Ls = 1 and sample number T = 5, 000. (c)-(d): Amari-index
for the ML method for p = 0.2 and for p = 0.3 as a function of the AR order for
the ABC test. (e)-(j): illustration of the estimation for the ML method: Ls = 1,
T = 5, 000, λ = 0.9; (e) observation before mapping Mt (x). (g): estimated
components (êm) with average Amari-index for p = 0.01. (f): Hinton-diagram of
matrixG for (g)–it is approximately a block-permutation matrix with 2× 2 blocks.
(h)-(j): like (g), but for p = 0.1, p = 0.2, and p = 0.3, respectively.
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Figure 5.6: mAR-IPA problem, illustration of the subspace and the NIW methods
for the Beatles dataset for sample number T = 30, 000 and AR order Ls = 10. (a):
Amari-index as a function of the rate of missing observations p on log-log scale,
(b): elapsed time.

A was chosen uniformly from the unitary group UD (D =
∑M

m=1 dm).6 The sample
number of observations xt changed as 2, 000 ≤ T ≤ 50, 000.

In the first experiment the (complex) dimension of the hidden sources were
equal, and varied as k × [1; 1; 1] where k was chosen from the set {2, 3, . . . , 12}.
We investigated the estimation error as a function of the sample number. Our re-
sults for the obtained average Amari-indices are summarized in Fig. 5.7(a). The
figure demonstrates that the algorithm was able to estimate the hidden components
with high precision. Moreover, as it can be seen the estimation errors are approxi-
mately linear as a function of the sample number, that is the Amari-index decreases
according to power law r(T ) ∝ T−c (c > 0). The estimated source components
are illustrated by Hinton-diagrams, see Fig. 5.7(c). Exact numerical values for the
estimation errors can be found in Table 5.2.

In our second experiment the (complex) dimension of the sources could be
different and took the values k × [1; 1; 2], where k was the element of the set
{2, 3, . . . , 12}. The obtained performance values are plotted in Fig. 5.7(b). As it can
be seen, (i) the method is able to uncover the hidden source components with high

into account through the Vij = 1/(2di2dj) construction, see Section 5.2. Here, the ‘2di’ and ‘2dj’
terms correspond to the associated real valued problem dimensions.

6Similarly to the real ISA problem, where the mixing matrixA can be supposed to be ortogonal,
here the unitary property of the mixing matrix A can be assumed without loss of generality.
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Table 5.2: 100× Amari-index (that is, in percentage) for the complex ISA problem
on the ‘k × [1; 1; 1]’ test: average ± standard deviation. Number of samples: T =
50, 000.

k = 2 k = 4 k = 6

0.55% (±0.08%) 0.70% (±0.04%) 0.83% (±0.03%)

k = 8 k = 10 k = 12
0.96% (±0.04%) 1.07% (±0.03%) 1.18% (±0.02%)

Table 5.3: 100× Amari-index (that is, in percentage) for the complex ISA problem
on the ‘k × [1; 1; 2]’ test: average ± standard deviation. Number of samples: T =
50, 000.

k = 2 k = 4 k = 6

0.56% (±0.04%) 0.82% (±0.03%) 0.97% (±0.02%)

k = 8 k = 10 k = 12
1.13% (±0.02%) 1.24% (±0.02%) 1.37% (±0.03%)

precision and the Amari-indices again follow a power law decay. Hinton-diagram of
the estimated sources with average Amari-index are presented in Fig. 5.7(d). Exact
numerical values for the Amari-indices are given in Table 5.3.

These results show the efficiency of our complex ISA method.

5.3.4 fAR-IPA Experiments

Now we illustrate the efficiency of the fAR-IPA algorithm [164] presented in Sec-
tion 3.4. We provide empirical results on the smiley (dm = 2, M = 6, D = 2× 6 =

12), d-geom (d1 = 2, d2 = d3 = 3, d4 = 4, M = 4, D = 2 + 3 + 3 + 4 = 12), and
ikeda datasets (dm = 2,M = 2,D = 2×2 = 4). For illustration purposes, we chose
fAR order Ls = 1 and used the recursive Nadaraya-Watson (3.34) for functional AR
estimation with the Gaussian kernel. The KCCA technique [191] was applied to es-
timate the dependence of the computed ICA elements. The clustering was carried
out by greedy optimization for tasks when the component dimensions were known
(smiley, ikeda datasets). We also studied the case when these component dimen-
sions were unknown (d-geom dataset); in this case we used the NCut [193] spectral
technique to cluster the estimated ICA components into ISA subspaces. Mixing
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Figure 5.7: Illustration of the complex ISA estimations. (a)-(b): the average Amari-
indices are plotted as a function of the sample number on log-log scale. (a): the
hidden source dimensions are equal, k × [1; 1; 1]. (b): the hidden source dimension
can be different, k × [1; 1; 2]. (c): Hinton-diagram of matrix G with Amari-index
closest to the average performance for the ‘k × [1; 1; 1]’ problem with k = 12 and
sample number T = 50, 000. The G matrix is approximately block-permutation
matrix with (2 × 12) × (2 × 12) sized blocks. (d): the same as (c), but for the
different dimensional k × [1; 1; 2] case with k = 12. For exact performance values,
see Table 5.2 and Table 5.3.
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Figure 5.8: fAR-IPA problem, illustration of the estimations on the smiley dataset.
(a): Amari-index as a function of the sample number, for M = 2. (b): observed
signal xt, the first two 2-dimensional projections when M = 6. (c): estimated
components (êm) with average (closest to the median) Amari-index for M = 6,
βc = 1

32
, T = 100, 000. (d): Hinton-diagram of matrix G.

matrix A was random orthogonal. For dataset smiley and d-geom, f was the com-
position of a random F matrix with entries distributed uniformly on interval [0, 1]

and the noninvertible sine function, f(u) = sin(Fu). For each individual param-
eter, the performance of 10 random runs were averaged. Our parameters included
T , the sample number of observations xt, and bandwith β ∈ (0, 1/D) to study the
robustness of the kernel regression approach. β was reparameterized as β = βc

D
and

βc was chosen from the set {1
2
, 1

4
, 1

8
, 1

16
, 1

32
, 1

64
}. The performance of the method is

summarized by notched boxed plots.
For the smiley dataset, Fig. 5.8 demonstrates that the algorithm was able to esti-

mate the hidden components with high precision. Fig. 5.8(a) shows the Amari-index
as a function of the sample number, for M = 2 (D = 4). The estimation error is
plotted on log scale for different bandwith parameters. Fig. 5.8(c-d) indicate that
the problem with M = 6 components (D = 12) is still amenable to our method
when the sample size is large enough (T = 100, 000). Fig. 5.8(c) shows the esti-
mated subspaces, and Fig. 5.8(d) presents the Hinton-diagram. It is approximately
a block-permutation matrix with 2 × 2 blocks indicating that the algorithm could
successfully estimate the hidden subspaces.

Our experiences concerning the d-geom dataset are summarized in Fig. 5.9.
In contrast to the previous experiment, here the dimensions of the hidden com-
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Figure 5.9: fAR-IPA problem, illustration of the estimations on the d-geom dataset.
(a) Amari-index on log scale as a function of the sample number for different band-
with parameters on the d-geom dataset (with component dimensions: d1 = 2,
d2 = d3 = 3, d4 = 4). (b): Hinton-diagram of G with average (closest to the
median) Amari-index for dataset d-geom, βc = 1

32
, T = 150, 000–it is approxi-

mately a block-permutation matrix with one 2 × 2, two 3 × 3 and one 4 × 4 sized
block. .

ponents were different and unknown to the algorithm. As it can be seen from
Fig. 5.9(a), our method provides precise estimations on this dataset for sample size
T = 100, 000 − 150, 000. The Hinton-diagram of matrix G with average (clos-
est to the median) Amari-index is depicted in Fig. 5.9(b). Again, this is close to a
block-permutation matrix indicating that the proposed method was able to estimate
the hidden subspaces.

We ran experiments on the ikeda dataset too. Fig. 5.10(a) illustrates that if
we simply use a standard autoregressive approximation method (AR-IPA) [159],
then we cannot find the proper subspaces. Nevertheless, the Amari-index values
of Fig. 5.10(a) show that the functional AR-IPA approach was able to estimate the
hidden subspaces for sample number T ≥ 10, 000. The figure also shows that
the estimation is precise for a wide range of bandwith parameters. The Hinton-
diagram of matrix G with average (closest to the median) Amari-index is depicted
in Fig. 5.10(c). This is a block diagonal matrix, which demonstrates that our method
was able to separate the mixed subspaces. The estimated hidden sources (with
average Amari-index) are illustrated in Fig. 5.10(d).

Our model (Eq. (3.24)-(3.25)) belongs to the family of state space models.
Though the dynamics of the hidden variables st is nonlinear, one might wonder
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Figure 5.10: Illustration of the estimations on the ikeda dataset. (a): Amari-index as
a function of the sample number for different bandwith parameters, for AR-IPA and
the proposed fAR-IPA approach. (b): Observation, xt. (c): Hinton-diagram of G

with average (closest to the median) Amari-index. (d): Estimated subspaces using
the fAR-IPA method (βc = 1

2
, T = 20, 000).
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whether with a standard linear dynamical system (LDS) based identification method
we could identify the parameter A and the driving noise et. The following exper-
iment demonstrates that this is not the case; while our method is efficiently able
to cope with this problem, the LDS based identification leads to very poor re-
sults. For this purpose we treated the observations xt as if they had been generated
by an LDS with unknown parameters. We estimated its parameters with the EM
method [199,200], and then using these estimated parameters we applied a Kalman
smoother [201] to estimate the hidden dynamical layer st and the driving noise et.
After this estimation we post-processed the estimated noise êt with ISA. We per-
formed these estimations on the smiley and d-geom datasets. Using 10 independent
experiments, the EM-LDS based estimators led to r = 0.56 and r = 0.48 Amari-
indices (minima of the Q2 medians), respectively. These results are very poor; the
EM-LDS based method was not able to identify the noise components. On the con-
trary, the proposed fAR-IPA method successfully estimated the noise components
and provided r = 0.0041 and r = 0.0055 Amari-indices (Fig. 5.8, Fig. 5.9).

5.3.5 Complete BSSD Experiments

Now we illustrate the efficiency of the complete BSSD method presented in Sec-
tion 3.5. Results on databases smiley (dm = 2, M = 6, D = 2× 6 = 12), 3D-geom
(dm = 3, M = 4, D = 3 × 4 = 12) and Beatles (dm = 2, M = 2, D = 2 × 2 = 4)
are provided here. For each individual parameter, the performance of 20 random
runs were averaged. Our parameters are: T , the sample number of observations xt,
Le, the parameter of the length of the convolution (the length of the convolution is
Le + 1), and λ, parameter of the stable H[z]. It is expected that if the roots of H[z]

are close to the unit circle then our estimation will deteriorate, because the stabil-
ity of H[z] comes to question. We investigated this by generating the polynomial
matrix H[z] as follows:

H[z] =

[
Le∏
l=0

(I − λOiz)

]
H0 (|λ| < 1, λ ∈ R), (5.9)

where matrices H0 and Oi ∈ RD×D were random orthogonal (Oi ∈ OD) and the
λ → 1 limit was studied. ‘Random run’ means random choice of quantities H[z]
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and e. The AR fit to observation xt was performed by the method detailed in [202].
To study how the o(T 1/3) AR order (see Section 3.5.2) is exploited, the order of the
estimated AR process was limited from above by pmax(T ) = 2�T 1

3
− 1

1000 �, and we
used the Schwarz’s Bayesian criterion to determine the optimal popt order from the
interval [1, pmax(T )]. The ISA subtask on the estimated innovation was carried out
by the JFD method [162].

First we studied the Amari-index as a function of the sample size. For the smiley
and 3D-geom databases the sample number T varied between 1, 000 and 20, 000.
The length of convolution varied as Le = 1, 2, 5, 10. The λ parameter of H[z] was
chosen as 0.4, 0.6, 0.7, 0.8, 0.85, 0.9. Results are shown in Fig. 5.11(a)-(b). The
estimation errors indicate that for Le = 10 and about λ = 0.85 the estimation is still
efficient, see Fig. 5.12 for an illustration of the estimated source components. The
Amari-indices follow the power law r(T ) ∝ T−c (c > 0). The power law decline
is manifested by straight line on log-log scale. The slopes of these straight lines
are very close to each other. Numerical values for the estimation errors are given in
Table 5.4. The estimated optimal AR orders are provided in Fig. 5.11(c). The figure
demonstrates that as λ → 1 the maximal possible order pmax(T ) is more and more
exploited.

On the Beatles database the λ parameter was increased to 0.9, and the sample
number T varied between 1, 000 and 100, 000. Results are presented in Fig. 5.11(d).
According to the figure, for Le = 1, 2, 5 the error of estimation drops for sample
number T = 10, 000 − 20, 000, and for Le = 10 the ‘power law’ decline of the
Amari-index, which was apparent on the smiley and the 3D-geom databases, also
appears. Numerical values for the estimation errors are given in Table 5.4. On the
Beatles test, the maximal possible AR order pmax(T ) was fully exploited on the
examined parameter domain.

5.3.6 ISA via Random Projections

Now we demonstrate the efficiency of the random projection based entropy esti-
mation presented in Section 3.6 [179] on indepedent subspace analysis. Results on
databases d-spherical, d-geom and all-k-independent are provided here. The exper-
imental studies focused on the following issues:
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Figure 5.11: Complete BSSD problem, precision of the estimations and the esti-
mated optimal AR orders. The plots are on log-log scale. (a), (b): on the smiley
(3D-geom) database the Amari-index as a function of the sample number for differ-
ent λ → 1 parameter values of H[z] and convolution lengths, respectively. In (a):
Le = 10, in (b): λ = 0.85. (c): on the smiley (3D-geom) database the estimated AR
order as a function of the sample number with Le = 10 for different λ values. (d):
the same as (b), but for the Beatles dataset with λ = 0.9. For graphical illustration,
see Fig. 5.12. For numerical values, see Table 5.4.

Table 5.4: Complete BSSD problem, Amari-index in percentages on the smiley, 3D-
geom (λ = 0.85, T = 20, 000) and the Beatles dataset (λ = 0.9, T = 100, 000) for
different convolution lengths: mean± standard deviation. For other sample num-
bers, see Fig. 5.11.

Le = 1 Le = 2 Le = 5 Le = 10

smiley 0.99% (±0.11%) 1.04% (±0.09%) 1.22% (±0.15%) 1.69% (±0.26%)
3D-geom 0.42% (±0.06%) 0.54% (±0.05%) 0.88% (±0.14%) 1.15% (±0.24%)
Beatles 0.72% (±0.12%) 0.75% (±0.11%) 0.90% (±0.23%) 6.64% (±7.49%)
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Figure 5.12: Complete BSSD problem, illustration of the estimations on the 3D-
geom [(a),(b),(e)-(i)] and smiley [(c),(d),(j)-(n)] datasets. Number of samples: T =
20, 000. Length of the convolution: Le = 10. In the first row: λ = 0.4. (a),
(c): observed convolved signal xt. (b), (d): Hinton-diagram of G, ideally a block-
permutation matrix with 2 × 2 and 3 × 3 sized blocks, respectively. (e)-(i), (j)-(n):
estimated components êm, recovered up to the ISA ambiguities from left to right for
λ = 0.4, 0.6, 0.7, 0.8, 0.85. All the plotted estimations have average Amari-indices,
see Fig. 5.11(a).
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1. What dimensional reduction can be achieved in the entropy estimation of the
ISA problem by means of random projections?

2. What speed-up can be gained with the RP dimension reduction?

3. What are the advantages of our RP based approach in global optimization?

In our experiments the number of components was minimal (M = 2). For each
individual parameter, the performance of 50 random runs were averaged. Our pa-
rameters included T , the sample number of observations xt and d, the dimension of
the components (d = d1 = d2). We also studied different estimations of the ISA
cost function: we used the RADICAL (robust, accurate, direct ICA algorithm) pro-
cedure7 [203] and the NN method [180] for entropy estimation and KCCA [204]
for mutual information estimation. The reduced dimension d′ in RP and the op-
timization method (greedy, global (CE), NCut [126]) of the ISA cost were also
varied in different tests. Random run means random choice of quantities A and e.
The size of the randomly projected groups was set to |In| = 2, 000, except for the
case d = 50, when it was 5, 000. RP was realized by the database-friendly pro-
jection technique, i.e., the rn,ij coordinates of Rn were drawn independently from
distribution P (rn,ij = ±1) = 1/2, but more general constructions could also be
used [175, 176].

In the first study we were interested in the limits of the RP dimension reduction.
We increased dimension d of the subspaces for the d-spherical and the d-geom
databases (d = 2, 10, 20, 50) and studied the extreme case, the RP dimension d′ was
set to 1. Results are summarized in Fig. 5.13(a)-(b) with quartiles (Q1, Q2, Q3). We
found that the estimation error decreases with sample number according to a power
law [r(T ) ∝ T−c (c > 0)] and the estimation works up to about d = 50. For
the d = 50 case we present notched boxed plots (Fig. 5.13(c)). According to the
figure, the error of estimation drops for sample number T = 100, 000 for both types
of datasets: for databases 50-geom and 50-spherical, respectively, we have 5 and 9

outliers from 50 random runs and thus with probability 90% and 82%, the estimation
is accurate. As for question two, we compared the efficiency (Q1, Q2, Q3) of our

7We chose RADICAL, because it is consistent, asymptotically efficient, converges rapidly, and
it is computationally efficient. By RADICAL, we mean the spacing based entropy estimation part
of the algorithm.

93



method for d = 20 with the NN methods by RP-ing into d′ = 1 and d′ = 5

dimensions. Results are shown in Fig. 5.13(e)-(f).8 The figure demonstrates that
for database 20-geom performances are similar, but for database 20-spherical our
method has smaller standard deviation for T = 20, 000. At the same time our
method offers 8 to 30 times speed-up at T = 100, 000 for serial implementations.
Figure 5.14 presents the components estimated by our method for dimensions d = 2

and d = 50, respectively. With regard to our third question, the ISA problem can
often be solved by grouping the estimated ICA coordinates based on their mutual
information. However, this method, as illustrated by (Q1, Q2, Q3) in Fig. 5.13(d),
does not work for our all-4-independent database. Inserting the RP based technique
into global optimization procedure, we get accurate estimation for this case, too.
CE optimization was used here. Results are presented in Fig. 5.13(d).

8We note that for d = 20 and without dimension reduction the NN methods are very slow for the
ISA tasks.
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Figure 5.13: Performance of the RP method in ISA. Notations: ‘RPd′ - method
of cost estimation (method of optimization if not greedy)’. (a), (b): accuracy of
the estimation versus the number of samples for the d-spherical and the d-geom
databases on log-log scale. (c): notched boxed plots for d = 50, (d): Performance
comparison on the all-4-independent database between the RP method using global
optimization and the NCut based grouping of the estimated ICA coordinates using
the pairwise mutual information graph (on log-log scale). (e)-(f): Accuracy and
computation time comparisons with the NN based method for the 20-spherical and
the 20-geom databases (on log-log scale).
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(d) (e)

Figure 5.14: RP based ISA, estimated components and Hinton-diagrams. Number
of samples: T = 100, 000. Databases 2-geom: (a)-(c), 50-spherical: (d), 50-geom:
(e). (a): observed signals xt, (b): Hinton-diagram of G: the product of the mix-
ing matrix of the ISA task and the estimated demixing matrix is approximately a
block-permutation matrix with 2 × 2 sized blocks, (c): estimated components êm,
recovered up to the ISA ambiguities, (d)-(e): Hinton-diagrams of the 50-spherical
and the 50-geom tests, respectively. Hinton-diagrams have average Amari-indices:
for (b) 0.2%, for (d) 1%, for (e) 12%.
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Chapter 6

Conclusions

In this thesis we addressed the dictionary learning problem in case of two different
assumptions on the hidden sources: (i) group sparsity and (ii) independent sub-
spaces (ISA, independent subspace analysis).

In the former case, we proposed a new dictionary learning method, which (i) is
online, (ii) enables overlapping group structures on the hidden representation/dictionary,
(iii) applies non-convex, sparsity inducing regularization, and (iv) can handle the
partially observable case, too. We reduced the formulated online group-structured
dictionary learning (OSDL) problem to convex subtasks, and using a block-coordinate
descent approach and a variational method we derived online update rules for the
statistics of the cost of the dictionary. The efficiency of our algorithm was demon-
strated by several numerical experiments. We have shown that in the inpainting
problem of natural images the proposed OSDL method can perform better than the
traditional sparse methods. We have shown that our approach can be used for the
online structured NMF problem, too, and it is able to hierarchically organize the el-
ements of the dictionary. We have also dealt with collaborative filtering (CF) based
recommender systems. Our extensive numerical experiments showed that struc-
tured dictionaries have several advantages over the state-of-the-art CF methods:
more precise estimation can be obtained, and smaller dimensional feature repre-
sentation can be sufficient by applying group-structured dictionaries. Moreover, the
estimation behaves robustly as a function of the OSDL parameters and the applied
group structure.
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We derived novel kernel based function approximation techniques and kernel
– sparsity equivalences. In particular, we generalized a variant of sparse cod-
ing scheme to reproducing kernel Hilbert spaces (RKHS) with component-wise,
ε-sparse properties and proved that the obtained problem can be transformed to a
generalized family of support vector machine (SVM) problem. We also showed
that SVMs can be embedded into multilayer perceptrons (MLP) and for the ob-
tained multilayer kerceptron architecture the backprogation procedure of MLPs can
be generalized.

We extended the ISA problem to several domains. Our work was motivated by a
central result, a 10-year-old unresolved hypothesis of the ICA (independent compo-
nent analysis) research, the ISA separation principle. This principle (i) enables one
to solve the ISA problem via traditional ICA up to permutation, (ii) has been rig-
orously proven for certain distribution types recently (sufficient conditions are now
known for the principle), (iii) forms the basis of the state-of-the-art ISA solvers,
(iv) makes it possible to estimate the unknown number and the dimensions of the
sources efficiently.

We generalized the ISA problem to numerous new directions including the con-
trolled, the partially observed, the complex valued and the nonparametric case. We
derived separation principle based solution techniques for the formulated problems.
This approach makes it possible to (i) apply state-of-the-art algorithms for the ob-
tained subproblems (ICA, spectral clustering, D-optimal identification, kernel re-
gression, etc.) and (ii) tackle the case of unknown source component dimensions
efficiently. We extended the Amari-index performance measure to different dimen-
sional components. Our extensive numerical illustrations demonstrated the robust-
ness and attractive scaling properties of the approach. The novel models may also
lead to a new generation of control assisted data mining applications, interaction
paradigms, biomedical, econometric and financial prediction approaches.
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Appendix A

Proofs

A.1 Online Group-Structured Dictionary Learning

In this section we focus on the OSDL problem. We will derive the update equa-
tions for the statistics describing the minimum point of f̂t (Section A.1.2). During
the derivation we will need an auxiliary lemma concerning the behavior of certain
matrix series. We will introduce this lemma in Section A.1.1.

A.1.1 The Forgetting Factor in Matrix Recursions

Let Nt ∈ RL1×L2 (t = 1, 2, . . .) be a given matrix series, and let γt =
(
1 − 1

t

)ρ,
ρ ≥ 0. Define the following matrix series with the help of these quantities:

Mt = γtMt−1 + Nt ∈ R
L1×L2 (t = 1, 2, . . .), (A.1)

M′
t =

t∑
i=1

(
i

t

)ρ

Ni ∈ R
L1×L2 (t = 1, 2, . . .). (A.2)

Lemma 1. If ρ = 0, thenMt = M0 + M′
t (∀t ≥ 1). When ρ > 0, thenMt = M′

t

(∀t ≥ 1).

Proof.

1. Case ρ = 0: Since γt = 1 (∀t ≥ 1), thusMt = M0 +
∑t

i=1 Ni. We also have
that

(
i
t

)0
= 1 (∀i ≥ 1), and therefore M′

t =
∑t

i=1 Ni, which completes the
proof.
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2. Case ρ > 0: The proof proceeds by induction.

• t = 1: In this case γ1 = 0, M1 = 0 × M0 + N1 = N1 and M′
1 = N1,

which proves that M1 = M′
1.

• t > 1: Using the definitions of Mt and M
′

t, and exploiting the fact that
Mt−1 = M

′

t−1 by induction, after some calculation we have that:

Mt = γtMt−1 + Nt =

(
1 − 1

t

)ρ
[

t−1∑
i=1

(
i

t − 1

)ρ

Ni

]
+ Nt (A.3)

=

(
t − 1

t

)ρ
[

t−1∑
i=1

(
i

t − 1

)ρ

Ni

]
+

(
t

t

)ρ

Nt (A.4)

=
t∑

i=1

(
i

t

)ρ

Ni = M′
t. (A.5)

A.1.2 Online Update Equations for the Minimum Point of f̂t

Our goals are (i) to find the minimum of

f̂t(D) =
1∑t

j=1(j/t)
ρ

t∑
i=1

(
i

t

)ρ [
1

2
‖xOi

− DOi
αi‖2

2 + κΩ(αi)

]
(A.6)

in dj while the other column vectors of D (di (i �= j)) are being fixed, and (ii) to
derive online update rules for the statistics of f̂t describing this minimum point. f̂t

is quadratic in dj , hence in order to find its minimum, we simply have to solve the
following equation:

∂f̂t

∂dj
(uj) = 0, (A.7)

where uj denotes the optimal solution. We can treat the Ω, and the 1Pt
j=1(j/t)ρ terms

in (A.6) as constants, since they do not depend on dj . Let D−j denote the slightly
modified version of matrix D; its jth column is set to zero. Similarly, let αi,−j
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denote the vector αi where its jth coordinate is set to zero. Now, we have that

0 =
∂f̂t

∂dj
=

∂

∂dj

[
t∑

i=1

(
i

t

)ρ

‖Δi(xi − Dαi)‖2
2

]
(A.8)

=
∂

∂dj

[
t∑

i=1

(
i

t

)ρ

‖Δi[(xi −D−jαi,−j) − djαi,j]‖2
2

]
(A.9)

=
∂

∂dj

[
t∑

i=1

(
i

t

)ρ

‖(Δiαi,j)dj − Δi(xi −D−jαi,−j)‖2
2

]
(A.10)

= 2

t∑
i=1

(
i

t

)ρ

Δiαi,j [(Δiαi,j)dj − Δi(xi − D−jαi,−j)] (A.11)

= 2

t∑
i=1

(
i

t

)ρ

Δiα
2
i,jdj − 2

t∑
i=1

(
i

t

)ρ

Δiαi,j(xi − D−jαi,−j), (A.12)

where we used the facts that

xOi
−DOi

αi = Δi(xi −Dαi), (A.13)

∂ ‖Ay − b‖2
2

∂y
= 2AT (Ay − b), (A.14)

Δi = ΔT
i = (Δi)

2. (A.15)
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After rearranging the terms in (A.12), we have that
(

t∑
i=1

(
i

t

)ρ

Δiα
2
i,j

)
uj = (A.16)

=

t∑
i=1

(
i

t

)ρ

Δiαi,j(xi − D−jαi,−j) (A.17)

=
t∑

i=1

(
i

t

)ρ

Δixiαi,j −
t∑

i=1

(
i

t

)ρ

ΔiD−jαi,−jαi,j (A.18)

=
t∑

i=1

(
i

t

)ρ

Δixiαi,j −
t∑

i=1

(
i

t

)ρ

Δi(D−jαi,−j + djαi,j − djαi,j)αi,j (A.19)

=

t∑
i=1

(
i

t

)ρ

Δixiαi,j −
t∑

i=1

(
i

t

)ρ

ΔiDαiαi,j +

(
t∑

i=1

(
i

t

)ρ

Δiα
2
i,j

)
dj .

(A.20)

We note that (A.18) is a system of linear equations, and its solution uj does not
depend on dj . We have introduced the ‘djαij − djαij’ term only for one purpose;
it can help us with deriving the recursive updates for uj in a simple form. Define
the following quantities

Cj,t =

t∑
i=1

(
i

t

)ρ

Δiα
2
i,j ∈ R

dx×dx (j = 1, . . . , dα), (A.21)

Bt =
t∑

i=1

(
i

t

)ρ

Δixiα
T
i = [b1,t, . . . ,bdα,t] ∈ R

dx×dα, (A.22)

ej,t =
t∑

i=1

(
i

t

)ρ

ΔiDαiαi,j ∈ R
dx (j = 1, . . . , dα). (A.23)

Here (i)Cj,ts are diagonal matrices and (ii) the update rule ofBt contains the quan-
tity Δixi, which is xOi

extended by zeros at the non-observable ({1, . . . , dx} \ Oi)
coordinates. By using these notations and (A.20), we obtain that uj satisfies the
following equation:

Cj,tuj = bj,t − ej,t + Cj,tdj . (A.24)
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Now, according to Lemma 1, we can see that (i) when ρ = 0 andCj,0 = 0,B0 = 0,
or (ii) ρ > 0 and Cj,0, B0 are arbitrary, then the Cj,t and Bt quantities can be
updated online with the following recursions:

Cj,t = γtCj,t−1 + Δtα
2
t,j , (A.25)

Bt = γtBt−1 + Δtxtα
T
t , (A.26)

where γt =
(
1 − 1

t

)ρ. We use the following online approximation for ej,t:

ej,t = γtej,t−1 + ΔtDαtαt,j , (A.27)

with initialization ej,0 = 0 (∀j), and D is the actual estimation for the dictionary.
This choice seems to be efficient according to our numerical experiences.

Note. In the fully observable special case (i.e., whenΔi = I, ∀i) the (A.21)-(A.23)
equations have the following simpler form:

Cj,t = I

t∑
i=1

(
i

t

)ρ

α2
i,j, (A.28)

Bt =

t∑
i=1

(
i

t

)ρ

xiα
T
i , (A.29)

ej,t =

t∑
i=1

(
i

t

)ρ

Dαiαi,j = D

t∑
i=1

(
i

t

)ρ

αiαi,j. (A.30)

Define the following term:

At =

t∑
i=1

(
i

t

)ρ

αiα
T
i ∈ R

dα×dα , (A.31)

and let aj,t denote the jth column ofAt. Now, (A.30) can be rewritten as

ej,t = Daj,t, (A.32)

103



and thus (A.24) has the following simpler form:

(At)j,juj = bj,t − Daj,t + (At)j,jdj. (A.33)

Here (·)j,j stands for the (j, j)th entry of its argument. By applying again Lemma 1
for (A.31), we have that when (i) ρ = 0 and A0 = 0, or (ii) ρ > 0 and A0 is
arbitrary, then At can be updated online with the following recursion:

At = γtAt−1 + αtα
T
t . (A.34)

We also note that in the fully observable case (A.26) reduces to

Bt = γtBt−1 + xtα
T
t , (A.35)

and thus [77] is indeed a special case of our model:

• We calculate uj by (A.33).

• To optimize f̂t, it is enough to keep track ofAt andBt instead of {Cj,t}dα

j=1,Bt, {ej,t}dα

j=1.

• The quantitiesAt and Bt can be updated online by (A.34) and (A.35).

A.2 Correspondence of the (c, e)-SVMand (p, s)-Sparse
Problems

In this section we give the proof of Proposition 1.
We will use the fact that the Moore-Penrose generalized inverse of a matrix

G ∈ Rn×m, G− ∈ Rm×n uniquely exists and it has the properties:

GG−,G−G : symmetric matrices (A.36)

GG−G = G (A.37)

G−GG− = G−. (A.38)

We modify Eq. (2.50) using the assumption that f(xi) = yi (i = 1, . . . , l).
Exploiting that for the norm ‖·‖2

H
= 〈·, ·〉

H
holds, and that scalar products are
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bilinear we obtain

F (a) =
1

2
‖f‖2

H
−

l∑
i=1

ai 〈f(·), k(·,xi)〉H (A.39)

+
1

2

l∑
i,j=1

aiaj 〈k(·,xi), k(·,xj)〉H +

l∑
i=1

pi |ai|si
.

According to the reproducing property of the kernel, and our f(xi) = yi (i =

1, . . . , l) assumption, one can see that

〈f(·), k(·,xi)〉H = f(xi) = yi, (A.40)

〈k(·,xi), k(·,xj)〉H = k(xi,xj) = Gij. (A.41)

By dropping the first term of F (a), which is independent of a, we get that the
minimization of F (a) is equivalent to

1

2
aTGa − yTa +

l∑
i=1

pi |ai|si
→ min

a∈Rl
, (A.42)

whereG = [Gij ] = [k(xi,xj)] is the Grammatrix of the {xi} samples. By rewriting
the si-insensitive terms introducing slack variables, and introducing the notation
s = [s1; . . . ; sl], the optimization problem (A.42) is equivalent to

min
a,s+,s−

[
1

2
aT Ga− yTa + pT

(
s+ + s−

)]
, (A.43)

subject to

⎧⎪⎨
⎪⎩

a ≤ s + s+

−a ≤ s + s−

0 ≤ s+, s−

⎫⎪⎬
⎪⎭ .

Now we take the dual of this problem using the Lagrangian approach

max
d+,d−,q+,q−≥0

L(d+,d−,q+,q−) = (A.44)

=
1

2
aT Ga− yTa+pT

(
s+ + s−

)− (q+)T s+ − (q−)T s−

−(d+)T (s + s+ − a) − (d−)T (s + s− + a).
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At the optimum, the derivatives of Langrangian L taken by the primal variables
disappear, that is

0 =
∂L

∂a
= aT G − yT + (d+ − d−)T , (A.45)

0 =
∂L

∂s+
= pT − (d+)T − (q+)T , (A.46)

0 =
∂L

∂s−
= pT − (d−)T − (q−)T . (A.47)

Reordering and transposing (A.45), we have

aT G =
(
y − (d+ − d−)

)T
, (A.48)

Ga =
(
y − (d+ − d−)

)
, (A.49)

where the symmetric property of Gram matrixG was also exploited. Using (A.48),
we can substitute expression

(
y − (d+ − d−)

)T
a = aT Ga (A.50)

to L. One can also replace matrix G of the Lagrangian by GG−G according to
(A.37), and then insert the expressions for aT G andGa using (A.48) and (A.49) to
obtain

aTGa = aT (GG−G)a = (aT G)G−(Ga) (A.51)

=
(
y − (d+ − d−)

)T
G−
(
y − (d+ − d−)

)
. (A.52)

Using expressions (A.46) and (A.47) in the Lagrangian L, the variables q+,q−

disappear, but their non-negativity conditions, with (A.46) and (A.47) give rise to
constraints p ≥ d+ and p ≥ d− for variables d+ and d−. We can also change
the minimization of Lagrangian L to maximization by changing the sign. Taken
together, we have that our optimization task is that of

min
p≥d+,d−≥0

[
1

2
(y − (d+ − d−))TG−(y − (d+ − d−)) + (d+ + d−)T s

]
. (A.53)

The terms of the quadratic expression can be expanded and reordered. Upon drop-
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ping terms not containing variables d+ or d−, and making use of the symmetric
property of G− inherited from G, one obtains that the optimization problem is

min
p≥d+,d−≥0

[
1

2
(d+ − d−)TG−(d+ − d−) − (d+ − d−)TG−y + (d+ + d−)T s

]
.

(A.54)
Now, comparing the obtained result with (2.47), we can see that one can transform
the dual of the (p, s)-sparse task to that of the (c, e)-SVM task according to the
relation the (d∗,d,G,y) ↔ (d+,d−,G−,G−y) = (d+,d−,G−GG−,G−y). At
the last equality, the (A.38) property of the generalized inverse was used. This is
what we wanted to prove. �

A.3 Backpropagation for Multilayer Kerceptrons

In the sequel, we derive propagation rule for the multilayer kerceptron network. We
carry out the derivation for steepest descent optimization. The cost function is has
two terms: c(t) = ε2(t) + r(t). In Section A.3.1 we focus on the derivative of
the ε2(t) approximation term. In Section A.3.2, we are dealing with the regulariza-
tion part. The obtained results are embedded into steepest descent optimization in
Section A.3.3.

A.3.1 Derivative of the Approximation Term

In this section we derive the derivative of the ε2(t) approximation term. First, we
list basic relations, involved by theMLK structure. For the case of better readability,
below, index t is dropped [precise form: xl = xl(t), yl = yl(t), sl = sl(t),wl

i =

wl
i(t)].
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xl = yl−1 ∈ R
N l

I (l = 1, . . . , L + 1), (A.55)

xl+1 = gl(sl) (l = 1, . . . , L), (A.56)

sl =

⎡
⎢⎢⎢⎢⎢⎣

〈
wl

1, ϕ
l(xl)

〉
Hl

...〈
wl

i, ϕ
l(xl)

〉
Hl

...

⎤
⎥⎥⎥⎥⎥⎦ (l = 1, . . . , L; i = 1, . . . , N l

S) (A.57)

=

⎡
⎢⎢⎢⎢⎢⎣

〈
wl

1, ϕ
l(gl−1(sl−1))

〉
Hl

...〈
wl

i, ϕ
l(gl−1(sl−1))

〉
Hl

...

⎤
⎥⎥⎥⎥⎥⎦ (l = 2, . . . , L; i = 1, . . . , N l

S), (A.58)

sl+1 =

⎡
⎢⎢⎢⎢⎢⎣

〈
wl+1

1 , ϕl+1(gl(sl))
〉

Hl+1

...〈
wl+1

i , ϕl+1(gl(sl))
〉

Hl+1

...

⎤
⎥⎥⎥⎥⎥⎦ (l = 1, . . . , L − 1; i = 1, . . . , N l+1

S ).

(A.59)

Our goal is to compute the quantity ∂[ε2(t)]

∂[wl
i
(t)]
, which according to the chain rule

and the definition of sl(t) takes the form

∂[ε2(t)]

∂[wl
i(t)]

=
∂[ε2(t)]

∂[sl
i(t)]

∂[sl
i(t)]

∂[wl
i(t)]

= δl
i(t)ϕ

l(xl(t)) (l = 1, . . . , L; i = 1, . . . , N l
S),

(A.60)
where δl

i(t) is the ith coordinate of the backpropagated error of layer l defined as

δl(t) =
∂[ε2(t)]

∂[sl(t)]
(l = 1, . . . , L). (A.61)

Let us notice that the derivative (A.60) can be expressed by using quantity δl
i(t)

and by the feature representation of the input xl(t) arriving to the lth layer, i.e., by
ϕl(xl(t)).

Making use of the chain rule again and the definition of δl+1(t), the backpropa-

108



gated error satisfies the relation

δl(t) =
∂[ε2(t)]

∂[sl(t)]
=

∂[ε2(t)]

∂[sl+1(t)]

∂[sl+1(t)]

∂[sl(t)]
= δl+1(t)

∂[sl+1(t)]

∂[sl(t)]
(l = 1, . . . , L − 1).

(A.62)
One can compute this recursion for the backpropagated error, and thus the re-

quired derivative (A.60), provided that (i) δL(t) and (ii) ∂[ε2(t)]
∂[sl(t)]

are available. In the
sequel, we focus on the computation of these two quantities.

The δL(t) quantity can be computed as follows:

δL(t) =
∂[ε2(t)]

∂[sL(t)]
=

∂
[∥∥d(t) − gL(sL(t))

∥∥2

2

]
∂[sL(t)]

(A.63)

= 2
[
gL
(
sL(t)

)− d(t)
]T (

gL
)′ (

sL(t)
)

(A.64)

= 2 [y(t) − d(t)]T
(
gL
)′

(sL(t)). (A.65)

Here we used the chain rule, the equation

∂[‖d− y‖2
2]

∂y
= 2(y − d)T , (A.66)

and inserted the relation
y(t) = gL

(
sL(t)

)
, (A.67)

imposed by the MLK architecture.
To compute

∂[sl+1(t)]

∂[sl(t)]
(l = 1, . . . , L − 1) (A.68)

(A.59) is made use of. It is sufficient to consider terms of the form

∂[〈w, ϕ(g(s))〉
H

]

∂[s]
(A.69)

and then to ‘compile’ the full derivative from them. The value of (A.69) can com-
puted by means of the following lemma.

Lemma 2. Let w ∈ H = H(k) be a point in the RKHS H. Let us assume the
followings:
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1. Explicit case: the x �→ 〈w, ϕ(x)〉
H
and the function g are differentiable.

2. Implicit case:

• Let kernel k be differentiable w.r.t. both arguments and let k′
y denote the

derivative of the kernel according to its second argument.

• We also assume that w is within the image space of the feature space
representation of a finite number of points zi. That is

w ∈ Im (ϕ(z1), ϕ(z2), . . . , ϕ(zN)) ⊆ H. (A.70)

Let this expansion be w =
N∑

j=1

αjϕ(zj), where αj ∈ R.

Then we have two cases:

1. Explicit case:

∂[〈w, ϕ(g(s))〉
H

]

∂[s]
=

∂ [〈w, ϕ(u)〉
H

]

∂[u]

∣∣∣∣
u=g(s)

g′(s). (A.71)

2. Implicit case:

∂[〈w, ϕ(g(s))〉
H

]

d[s]
=

N∑
j=1

αjk
′
y(zj, g(s))g′(s). (A.72)

Proof.

1. Explicit case: the statement follows from the chain rule.
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2. Implicit case:

∂[〈w, ϕ(g(s))〉
H

]

∂[s]
=

∂
[〈∑

j αjϕ(zj), ϕ(g(s))
〉

H

]
∂[s]

(A.73)

=
∂
[∑

j αj 〈ϕ(zj), ϕ(g(s))〉
H

]
∂[s]

(A.74)

=
∂
[∑

j αjk (zj, g(s))
]

∂[s]
(A.75)

=
∑

j

αjk
′
y(zj, g(s))g′(s). (A.76)

In the first equation the expansion of w and the linear property of the scalar
product was exploited. Then, the relation (2.34) between the feature mapping
and the kernel was applied. The last step follows from the chain rule.

Let us turn back to the computation of Eq. (A.68):

1. Explicit case: According to Lemma 2 we have

∂[sl+1(t)]

∂[sl(t)]
=

⎡
⎢⎢⎢⎢⎣

...
∂[〈wl+1

i (t),ϕl+1(u)〉
Hl+1]

∂[u]

∣∣∣∣
u=gl(sl(t))

(
gl
)′

(sl(t))

...

⎤
⎥⎥⎥⎥⎦ (A.77)

=

⎡
⎢⎢⎢⎢⎣

...
∂[〈wl+1

i (t),ϕl+1(u)〉
Hl+1]

∂[u]

∣∣∣∣
u=xl+1(t)

...

⎤
⎥⎥⎥⎥⎦
(
gl
)′

(sl(t)) (A.78)

(l = 1, . . . , L − 1; i = 1, . . . , N l+1
S ).

In the second equation (i) we used identity (A.56) and (ii) pulled out the term(
gl
)′ (

sl(t)
)
according to the matrix multiplication rules.

2. Implicit case: For terms wl+1
i (t) we have the expansion property expressed
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by Eq. (2.58). This was our starting assumption. In subsection A.3.3, we shall
see that this feature is ‘inherited’ from time (t) to time (t + 1). Thus,

wl+1
i (t) =

N l+1
i (t)∑
j=1

αl+1
ij (t)ϕl+1(zl+1

ij (t)) (l = 1, . . . , L − 1; i = 1, . . . , N l+1
S )

(A.79)
and the derivative (A.68), we need, takes the form

∂[sl+1(t)]

∂[sl(t)]
=

⎡
⎢⎢⎢⎢⎣

...
N l+1

i (t)∑
j=1

αl+1
ij (t)[kl+1]′y(z

l+1
ij (t), gl(sl(t)))

(
gl
)′

(sl(t))

...

⎤
⎥⎥⎥⎥⎦

(A.80)

=

⎡
⎢⎢⎢⎢⎣

...
N l+1

i
(t)∑

j=1

αl+1
ij (t)[kl+1]′y(z

l+1
ij (t),xl+1(t))

...

⎤
⎥⎥⎥⎥⎦
(
gl
)′

(sl(t))

(A.81)

(l = 1, . . . , L − 1; i = 1, . . . , N l+1
S ).

Here, the second equation is based on identity (A.56). Matrix term
(
gl
)′ (

sl(t)
)

was pulled out according to the matrix multiplication rules.

A.3.2 Derivative of the Regularization Term

The derivative of the regularization term r(t) is simple:

∂[r(t)]

∂[wl
i(t)]

=

∂

[
L∑

l=1

N l
S∑

i=1

λl
i

∥∥wl
i(t)
∥∥2

Hl

]

∂[wl
i(t)]

= 2λl
iw

l
i(t) (l = 1, . . . , L; i = 1, . . . , N l

S).

(A.82)
Note that the respective terms of the derivative are scaled version of the actual
weights, wl

i(t). This form makes possible implicit tuning in the dual space.
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A.3.3 Derivative of the Cost

Using identity

∂[c(t)]

∂[wl
i(t)]

=
∂[ε2(t)]

∂[wl
i(t)]

+
∂[r(t)]

∂[wl
i(t)]

(l = 1, . . . , L; i = 1, . . . , N l
S) (A.83)

as well as our results on the approximation and the regularization terms [i.e., Eqs. (A.60),
and (A.82)], for the

wl
i(t + 1) = wl

i(t) − μl
i(t)

∂[c(t)]

∂[wl
i(t)]

(l = 1, . . . , L; i = 1, . . . , N l
S). (A.84)

steepest descent form we have

wl
i(t + 1) = wl

i(t) − μl
i(t)
(
δl
i(t)ϕ

l(xl(t)) + 2λl
iw

l
i(t)
)

(A.85)

= (1 − 2μl
i(t)λ

l
i)w

l
i(t) − μl

i(t)δ
l
i(t)ϕ

l(xl(t)) (A.86)

(l = 1, . . . , L; i = 1, . . . , N l
S).

The same in dual form is as follows

αl
i(t + 1) = [

(
1 − 2μl

i(t)λ
l
i

)
αl

i(t);−μl
i(t)δ

l
i(t)] (l = 1, . . . , L; i = 1, . . . , N l

S).

(A.87)
In turn, according to (A.86) the expansion property of the weight vectors of the
network [i.e., Eq. (2.58)] is inherited from time (t) to time (t + 1). In particular, the
expansion is valid for parameter set wl

i received at the end of the computation. To
sum up, the backpropagation procedure holds for MLK. The derived explicit and
implicit procedures are summarized in Table 2.5 and Table 2.6, respectively.
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Appendix B

Abbreviations

Abbreviations used in the paper are listed in Table B.1.

Table B.1: Acronyms.

Abbreviation Meaning

ANN approximate nearest neighbor
AR autoregressive

ARMA autoregressive moving average
ARMAX ARMA with exogenous input
ARX AR with exogenous input
BCD block coordinate descent
BCDA approximate block coordinate descent
BSD blind source deconvolution
BSSD blind subspace deconvolution
CE cross-entropy
CF collaborative filtering
ECG electro-cardiography
EEG electro-encephalography
EM expectation maximization
fAR functional AR
fMRI functional magnetic resonance imaging

ICA/ISA/IPA independent component/subspace/process analysis
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i.i.d. independent identically distributed
JFD joint f-decorrelation
KCCA kernel canonical correlation analysis
Lasso least absolute shrinkage and selection operator
LDS linear dynamical system
LPA linear prediction approximation
MA moving average
mAR AR with missing values
MEG magneto-encephalography
ML maximum likelihood
MLK multilayer kerceptron
MLP multilayer perceptron
MSE mean square error
NIW normal-inverted Wishart
NN nearest neighbor
NMF non-negative matrix factorization
OSDL online group-structured dictionary learning
PCA principal component analysis
PNL post nonlinear
PSNR peak signal-to-noise ratio
QP quadratic programming

RADICAL robust, accurate, direct ICA algorithm
RBF radial basis function
RIP restrictive isometry property

RMSE root mean square error
RKHS reproducing kernel Hilbert space
RP random projection
RS recommender system
SDL structured dictionary learning
SVM support vector machine
TSP traveling salesman problem
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Short Summary in English

In my thesis I focus on (i) sparse and group-sparse coding, kernel based approximation, and (ii) independent
subspace analysis (ISA) based dictionary learning.

1. I constructed a general dictionary optimization scheme for group-sparse codes; I derived novel kernel –
sparsity equivalences and kernel based function approximation techniques:

(a) I developed a general dictionary learning technique which is (i) online, (ii) enables overlapping
group structures with (iii) non-convex sparsity-inducing regularization and (iv) handles the partially
observable case—previous approaches in the literature could handle two of these four desirable
properties at most. I demonstrated the efficiency of the approach in 3 different applications: (i)
inpainting of natural images, (ii) non-negative hierarchical matrix factorization of large scale face
images, and (iii) collaborative filtering.

(b) I defined an extended, component-wise acting, ε-sparsity inducing approximation scheme in re-
producing kernel Hilbert spaces (RKHS), and proved that the obtained problem is equivalent to a
generalization of SVMs (support vector machine).

(c) I embedded SVMs to multilayer perceptrons (MLP). I proved that the well-known backpropagation
method of MLPs can be generalized to the formulated multilayer SVM network.

2. I derived novel independent subspace assumption based dictionary learning problems and solution tech-
niques:

(a) I coupled the active learning and the AR-IPA (autoregressive independent process analysis) tasks,
and reduced the solution of the estimation problem to D-optimal ARX (‘X’: exogenous input) iden-
tification and ISA.

(b) I generalized the results of (a) to (i) the composition of linear and coordinate-wise acting nonlinear
case, the so-called post nonlinear mixtures, and (ii) temporal (convolutive) mixing.

(c) I extended the problem of independent component analysis in case of missing observations from
the former one-dimensional, i.i.d. sources to (i) multidimensional sources of (ii) not equal/-known
dimensions, and (iii) relaxed the i.i.d. assumption to AR. I reduced the estimation to incompletely
observed AR identification and ISA.

(d) I generalized the ISA problem to complex variables, and proved that under certain non-Gaussian
assumption the solution can be reduced to real valued ISA.

(e) I extended the ISA task to the case of (i) nonparametric, asymptotically stationary source dynamics,
(ii) treating the case of unknown and not necessarily equal source component dimensions. I reduced
the solution of the problem to kernel regression and ISA.

(f) I generalized the ISA problem to convolutive mixtures, and reduced the solution of the problem to
AR identification and ISA.

(g) Making use of the approximate distance preserving property of random projections, I presented a
parallel estimation method for high dimensional information theoretical quantities. I demonstrated
the efficiency of the approach in ISA.
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Short Summary in Hungarian

Disszertációm a (i) ritka és csoport-ritka kódolás, kernel alapú közelítés, illetve (ii) a független altér (in-
dependent subspace analysis, ISA) feltevés és kiterjesztései melletti generátorrendszer tanulási problémával
foglalkozik.

1. Általános csoport-ritka kódokhoz tartozó generátorrendszerek optimalizációjára módszert adtam; újtí-
pusú ritkaság – kernel alapú ekvivalenciát, illetve kernel alapú függvényapproximációs módokat szár-
maztattam:
(a) A ritka kódokhoz tartozó generátorrendszer tanulási problémát kiterjesztettem (i) átfedő csoport-

struktúrát, (ii) nem-konvex regularizációt, (iii) hiányos megfigyeléseket, és (iv) online érkező meg-
figyeléseket megengedő esetre–korábbi irodalombeli megközelítések ezen kívánalmak közül legfel-
jebb kettőt tudtak egyidejűleg kezelni. Módszerem hatékonyságát (i) természetes képek kitöltési
problémáján, (ii) nagyfelbontású arcok online, hierarchikus nem-negatív mátrix faktorizációján, és
(iii) kollaboratív szűrési területeken demonstráltam.

(b) RKHS (reproducing kernel Hilbert space)-ekben definiált ritka reprezentációs problémát kiterjesztet-
tem az egyes koordináták mentén ható, ε-ritkaságokat indukáló formára. Igazoltam, hogy az így
definiált alak SVM-ek (support vector machine, SVM) egy általánosított családjával ekvivalens.

(c) Többrétegű perceptronokba (multilayer perceptron, MLP) támasztóvektor gépeket ágyazva töb-
brétegű SVM hálókat konstruáltam. Az összekapcsolt többrétegű kerceptron hálózatra beláttam,
hogy az MLP-k hibavisszaterjesztésen alapuló hangolási eljárása kiterjeszthető.

2. Független altér feltevés mellett új generátorrendszer tanulási feladatokat és megoldási technikákat szár-
maztattam:
(a) Az aktív tanulás és az AR-IPA (autoregressive independent process analysis) feladatot összekapc-

soltam, és a megoldást D-optimális ARX (’X’: exogén input) becslésre és ISA feladatra redukáltam.
(b) Az (a) munka eredményeit (i) koordinátánként ható nemlinearitás, ún. poszt nemlineáris irányban,

illetve (ii) időbeli keverést (konvolúció) megengedő irányban általánosítottam.
(c) A hiányosan megfigyelt független komponens keresést az eddigi 1-dimenziós, i.i.d. források esetéről

kiterjesztettem (i) többdimenziós, (ii) nem feltétlenül azonos/adott dimenziós forrásokra, (iii) az
i.i.d. kényszert is egyúttal AR irányban enyhítve. A megoldást hiányosan megfigyelt AR becslésre
és ISA problémára vezettem.

(d) Az ISA problémát általánosítottam komplex változós esetre, és a megoldást alkalmas nem-Gauss-
sági feltevések esetén valós változós problémára visszavezettem.

(e) Az ISA feladatot kiterjesztettem (i) nemparametrikus, asszimptotikusan stacionárius forrásdinamikákra,
(ii) az ismeretlen forrásdimenziók esetét is kezelve. A feladat megoldását kernel regresszióra és ISA
feladatra redukáltam.

(f) Az ISA problémát konvolutív irányban általánosítottam, a megoldást AR becslésre és ISA feladatra
redukáltam.

(g) A véletlen projekciók közelítő páronkénti távolságőrző tulajdonságára építve, nagy dimenziós in-
formációelméleti mennyiségek gyors, párhuzamosítható becslésére mutattam technikát és azt ISA
probléma megoldására adaptáltam.
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