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Chapter 1

Introduction

In this chapter, I am going to present the background and motivation for my work

and also give a description of the problem I solved in this thesis.

As global warming and climate change are becoming more and more ubiquitous, it

is more and more important in every walk of life to become more energy conscious.

This applies to software design and software development as well.

1.1 Motivation

In our TDK thesis [1], we presented a tool (GreenErl) for measuring the energy

consumption of Erlang programs. With the help of this tool, we conducted mea-

surements and investigated the energy consumption of Erlang language elements.

We paid special attention to the energy consumption of different data structures

and functional language-specific elements, such as higher-order functions.

As a conclusion of these measurements, we identified some possible ways to refactor

Erlang programs in order to make them more energy efficient. Refactorings are

important since with the transformations legacy codes can be restructured to be

more energy efficient. The goal is to help the semi-automatic transformation of

Erlang code bases.
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In this thesis, I am going to present an implementation of the refactorings based on

energy consumption measurements.

1.2 Background

Erlang

Erlang [2] is a widely used functional programming language with built-in support

for concurrency and distributed systems. It has a dynamic type system, and the

language is fault tolerant by design [3]. It was designed to be used for large scale,

distributed telecommunication systems.

In my work, I rely on the data structures provided by Erlang, and I also use higher-

order functions heavily, so I would like to present these language elements.

Data structures. The most basic and widely used data structure are lists. Lists

can be used to store binary tuples representing key-value pairs. These constructs

are called proplists. For the same purpose, there are some special associative data

structures available in the language. These are maps and dictionaries. Erlang/OTP

provides some modules (lists, proplist, maps, dict) for accessing and manip-

ulating these data structures.

Higher-order functions. Higher-order functions are an important element in

most functional programming languages. In Erlang, the most common higher-order

functions, such as map and filter are available for use with lists in the lists

module.
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RefactorErl

RefactorErl [4, 5] is a static code analysis tool developed since 2006 at the De-

partment of Programming Languages and Compilers at Eötvös Loránd University,

Faculty of Informatics [6]. The tool can be used to analyze and refactor existing

Erlang code bases.

RefactorErl represents an Erlang program with a directed, rooted graph, with typed

nodes and edges, called the Semantic Program Graph (SPG). This representation

is based on the abstract syntax tree of the program, but also contains lexical and

semantic information in order to help refactoring [7] and code comprehension.

RefactorErl provides a way for developers to implement their own refactorings by

traversing and modifying the relevant subtrees of the program graph.

1.3 GreenErl

The GreenErl framework is a tool for measuring the energy consumption of Erlang

programs. The tool is based on RAPL [8], a power consumption management tool

created by Intel. The tool provides an interface to measure the energy consumed by

Erlang functions and a way to visualize and analyze the results.

1.4 Problem description

In our TDK thesis [1] we used the GreenErl tool to measure the energy consump-

tion of Erlang software. The results of these measurements were used to propose

transformations on Erlang source codes that possibly decrease energy consumption.

My task was to analyze each refactoring, identify the pre- and postconditions and

create the algorithm for the transformations. I also had to implement these refactor-

ings using the RefactorErl tool. The main objective of each refactoring is described
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below.

Eliminating proplists:get_value calls

Using the proplists:get_value/2 or proplists:get_value/3 was found to be

less energy efficient than using lists:keyfind/3. These functions provide slightly

different interfaces for the same basic operation of looking up an element in a pro-

plist.

The task of this refactoring is to make it possible to get rid of a call to the

proplists:get_value function without any large scale transformation of how the

surrounding code behaves.

Transforming list to map

Another possible refactoring to reduce energy consumption is to use maps instead

of proplists, where possible. Previously, we proposed a refactoring to transform a

recursive function definition that takes a proplist as its parameter to use a map

instead.

The task of this refactoring is to make it possible for a developer to transform a

recursive function, without having to rewrite the entire function definition. With

this refactoring we must preserve the semantics of the function, only the underlying

data structure can be transformed.

Eliminating higher-order function calls

Higher-order functions are an essential part of functional programming languages,

and as such also of Erlang. Despite this, it was found that they provide some

overhead in energy consumption.
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The goal of this refactoring is to create a way for developers to eliminate calls to

the most common (lists:map, lists:filter) higher-order functions. This elimi-

nation can happen in different ways, such as using list comprehensions or creating a

recursive function. I let the users decide which method is the most suitable in their

use case.
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Chapter 2

User documentation

This chapter contains the user documentation of the refactorings and a guide on

how to install the RefactorErl tool and its dependencies.

2.1 System requirements

The following requirements contain the setup on which the program has been tested

and is guaranteed to work correctly.

Hardware requirements for installing and running the software:

◦ At least 512 MB of RAM

◦ At least 300 MB of free disk space for RefactorErl and its dependencies

◦ At least 200 MB of free disk space for Emacs

◦ There are no special requirements for the CPU and GPU

Software requirements:

◦ GNU/Linux operating system (the software has been tested using Ubuntu

16.04 LTS)
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◦ Erlang/OTP 21.0 or newer

◦ GCC 4.7.2 or newer compiler for building RefactorErl

◦ Emacs 24.5 or newer for using the refactorings

◦ Optional: GraphViz 2.30.1 or newer for visualizing the SPG with RefactorErl

2.2 Installation guide

This guide contains a detailed description on how to install the dependencies of my

software and how to setup Emacs to use the refactorings. To install all dependencies

root access is needed.

2.2.1 Installing GCC

The GCC compiler for C and C++ is needed for some components of Erlang and

for building the RefactorErl tool. It is recommended to use the package manager of

the used operating system. On Ubuntu 16.04 LTS the following command installs

the latest version of GCC:

sudo apt install g++

If you do not have access to a package manager, G++ can also be installed from

the official GCC website [9]. This website also gives detailed instructions on how to

install the software after downloading it.

After a successful installation the version of GCC can be verified using the following

command:

gcc –version
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2.2.2 Installing Erlang

Erlang is needed to build RefactorErl and also to compile refactored Erlang pro-

grams.

It can be installed in two ways. The recommended way is to use the package manager

of your operating system. The following command installs the latest available version

of Erlang:

sudo apt-get install erlang

It is also possible to install Erlang by downloading it from the official Erlang web-

site [10] and following the instructions on that page.

After a successful installation Erlang can be run using the erl command in the

terminal. On startup Erlang should display the version of the installed software in

the following form:

Erlang/OTP 21 [erts-10.2.4]

2.2.3 Installing GraphViz

This step is optional and is only required for RefactorErl to create the SVG files

that show a visual representation of the semantic program graph.

The latest GraphViz software can be downloaded from the GraphViz website [11] and

installed using the instructions on that website. Another way to install GraphViz

is to use the package manager software. The following command installs the latest

version of the software:

sudo apt-get install graphviz

After a successful installation the dot -V command displays the version of the in-

stalled software.
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2.2.4 Building RefactorErl

The official release of RefactorErl can be downloaded from the RefactorErl web-

site [6], but this version does not yet contain the refactorings described in this

thesis.

To get the version of RefactorErl containing the refactorings defined in this work, one

should unzip the source.zip file from the attached CD. After unzipping, a directory

called trunk and a file named .emacs should appear. For building RefactorErl only

the trunk directory is needed.

Copy the trunk folder to the directory in which RefactorErl needs to be placed.

Open a terminal from the trunk/tool directory. To build the RefactorErl tool,

execute the following command from the tool directory:

bin/referl -build tool

This command builds the tool, it should take a few minutes to complete. This step

requires the Erlang and GCC dependencies to be installed already.

2.2.5 Installing Emacs

To install Emacs, the text editor which can be used to execute the refactorings,

follow the instructions on the Emacs website [12].

Emacs can also be installed using the package manager software, the following the

command installs the latest available version of Emacs:

sudo apt-get install emacs

After a successful installation, the Emacs GUI can be started by executing the emacs

command in the terminal.
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2.2.6 Setting up Emacs and RefactorErl

RefactorErl provides great support and integration with Emacs. It is possible to

set Emacs up to execute refactorings by selecting the code to refactor and the drop

down menu or keyboard shortcuts to perform the refactorings.

To make this integration possible, Emacs needs to be set up to use RefactorErl.

This is achieved by the .emacs file. This file can be found when unzipping the

source.zip file from the attached CD. Make sure that hidden files are shown as

well, otherwise the .emacs file might not show up.

This .emacs file needs to be copied to the home directory of the user. An example

of a correctly setup .emacs file is shown on Figure 2.1. Some editing of this file

is required in order to work on the specific computer. In lines 5 and 14, the text

"PATH_TO_TRUNK" should be replaced with the actual path to where RefactorErl

is installed. If it is installed in the home directory, it should be replaced with

/home/username, where username is the username of the actual user performing

the installation.

In line 1 "/usr/local/lib/erlang/bin" should be replaced with the actual path

to the Erlang binary file. For most standard Erlang installation this value should

be correct, but make sure to check if it is actually the path to the Erlang binary.

In line 2 "/usr/local/lib/erlang/lib/tools-3.0.2/emacs" should be replaced

with the path to the emacs folder of the Erlang lib. This is the folder that contains

the erlang.el Lisp file. For most installations of Erlang this should also be correct,

however the exact version number of tools-x.y.z may differ. Make sure that the

correct path is specified in this line.
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Figure 2.1: The .emacs used with RefactorErl placed in my home directory

2.3 Using the environment

This section contains a description on how to use RefactorErl with Emacs and how

to make an existing Erlang source file ready for refactoring.

2.3.1 Using Emacs with RefactorErl

Start Emacs using from a terminal using the emacs command. To use Refactor-

Erl with Emacs, it also needs to be started. From a separate terminal, move to

the trunk/tool directory of RefactorErl. To start RefactorErl, use the following

command:

bin/referl -db kcmini

The -db kcmini option specifies which database manager to use. The default

database used is mnesia [13]. All refactorings work with Mnesia as well, but using
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kcmini (Kyoto Cabinet) [14] provides faster execution of refactorings. For further

information about this option and any other options available, please refer to the

documentation of RefactorErl [15].

Emacs shortcut notation. Emacs provides lots of keyboard shortcuts. These

shortcuts use the Ctrl and Alt keys. To denote these notations, instead of, for

example, Ctrl + x it is common to use the C-x notation. Similarly instead of Alt +

x, the notation M-x is used.

Enabling RefactorErl mode. After opening an Erlang source file with Emacs,

RefactorErl mode needs to be enables. This can be activated using the keyboard

shortcut M-x and typing the refactorerl-mode command. After this command a

Refactor option will appear on the menu bar. This menu item is shown on Figure 2.2.

Figure 2.2: The menu item appearing in Emacs after RefactorErl mode is enabled.
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Making a file ready for refactoring. When RefactorErl mode is enabled, a file

does not automatically become ready for refactoring. The following steps need to

be performed to make a file ready for refactoring. All steps can be done through

the Refactor menu:

◦ Optionally use "Refactor > Files > Reset database" to clear all existing files

from the database. This step ensures that the refactoring will not conflict with

files already added to the database.

◦ "Refactor > Update status" to make sure the file is not yet added to the

database

◦ "Refactor > Add file" to add the file to the database

◦ In some cases Emacs may not recognize that the file was added to the database.

In this case use "Refactor > Update status" to make the file refactorable.

Figure 2.3 shows how to check if this last step needs to be taken.

Figure 2.3: This figure shows the information Emacs presents in different scenarios

at the bottom of the window. The last part of the text, in parenthesis, is the

difference between the cases. In the first case the file is not added to the database,

in the second case the file is added to the database and in the last case Emacs does

not know if the file has been added to the database or not. In the last case, the

final, optional step of making a file ready for refactoring needs to be performed.

After these steps all applicable refactorings can be performed on the file.

16



2.4 Applying refactorings

This section contains a description for each proposed refactoring, that may help de-

crease energy consumption. For each refactoring the applicability and preconditions

assumed by the refactoring are also listed. For the usage of all refactorings Emacs

needs to be set up with RefactorErl.

This section only aims to help users of these refactorings to use the refactorings in the

correct manner and understand how each refactoring can be invoked. For a detailed

view of how code transformations work, and which constructs get transformed to

which constructs, see the Developer Documentation in Chapter 3.

2.4.1 Eliminating proplists:get_value calls

This refactoring can be used to transform calls to the proplitst:get_value/2

and proplitst:get_value/3 functions to the more energy efficient lists:keyfind/3

function. This transformation can be applied to any call to get_value function.

Preconditions. There are no preconditions to this refactoring. If the refactored

call to proplists:get_value is not semantically correct the resulting refactored

code will also be incorrect, but all semantically correct calls are transformed so that

the resulting code emulates the behaviour of get_value.

Usage. To use this refactoring the following steps need to be executed:

◦ Position the cursor over the name of the get_value function call that needs

to be refactored (Figure 2.4).

◦ Either use the Refactor menu to select "Refactor > Introduce/Eliminate >

Eliminate proplists:get_value" or use the keyboard shortcut "C-e C-r e g"

(Figure 2.5).

17



The end result of using this refactoring can be seen on Figure 2.6. Successful refac-

toring is denoted by the "RefactorErl: transformation done." message at the bottom

of the screen. If any error happens during refactoring the error message will be shown

at the same place as the message of success.

Figure 2.4: Step 1 of using the "Eliminate proplists:get_value" refactoring

2.4.2 Transforming list to map

The goal of this refactoring is to transform a recursive function, whose parameter is

a proplist to instead take a map as a parameter.

The body of the function is limited to use the list in only certain function calls.

These function calls are:

◦ lists:keyfind/3

◦ lists:keydelete/3

◦ lists:keymember/3

◦ lists:keystore/4

◦ lists:keytake/3

In addition to these function calls, the list can also stand by its own at the end of

a clause, meaning it is the value returned from the function.
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Figure 2.5: Step 2 of using the "Eliminate proplists:get_value" refactoring

Figure 2.6: Result of using the "Eliminate proplists:get_value" refactoring
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If the list is used in any other context, it will result in an error during refactoring.

All clauses of the recursive function must contain either a single variable name at the

position of the list variable, or the empty list pattern matching expression ([]). Any

other kind of pattern matching to the list will result in an error during refactoring.

Preconditions. This refactoring assumes several preconditions, some of which

can be checked by the refactoring tool, but others cannot be checked because of the

dynamic type system of Erlang.

The checked preconditions are:

◦ The function must be recursive. The tool can only check if a recursive call

happens on any branch of the function definition, but for maximal gains in

energy efficiency the function should contain the recursive call so that in most

cases it gets called.

◦ The selected variable must be a parameter of the function.

◦ The list variable should only be used in the functions and contexts mentioned

above.

◦ The functions mentioned above all need a parameter specifying which part of

the tuple in the list denotes the key. This parameter can only be the integer

literal ’1’.

◦ The result of lists:keystore/4 and lists:keydelete/3 can only be bound

to a variable, no pattern matching is allowed, so that all occurrences of the

modified list can also be transformed.

◦ The result of lists:keytake/3 can only be bound to a ternary tuple, so that

the modified list can be transformed as well.

The refactoring relies on the user to make sure that all unchecked preconditions

are met before refactoring. If some of the unchecked preconditions are not true,
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the refactoring cannot guarantee that the resulting program will behave correctly.

These unchecked preconditions are:

◦ The selected variable must be a list of binary tuples, whose first element is the

key, while the second element of the tuples is the value belonging to that key.

◦ All keys in the proplist must be unique at all times, even at arbitrary points

during the execution of the recursive function. This is needed because maps

only support unique keys.

◦ The ordering of the elements in the list has no significance. The reason for this

is that maps are unordered and any meaning in the ordering of the elements

would get lost in the process of transformation.

Usage. The usage of this refactoring is mostly similar to how the previous refac-

toring can be used. It consists of the following steps:

◦ Position the cursor over the name of the variable that contains the list and

needs to be transformed to a map. Any occurrence in any clause of the function

is sufficient, even the parameter of the recursive function can be selected.

Figure 2.7 shows all the possible instances of the variable that can be selected.

◦ Either use the Refactor menu to select "Refactor > Introduce/Eliminate >

Transform list to map" or use the keyboard shortcut "C-e C-r t m" (Fig-

ure 2.8).

The correct result for refactoring the code shown on Figure 2.7 is shown on Fig-

ure 2.9.

Any error during the refactoring is a result of a checked precondition failing. In case

of an error read the error message and make sure the referenced precondition is met.
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Figure 2.7: All possible instances of the List variable that can be selected for the

transformation to map to work correctly.

2.4.3 Eliminating higher-order functions

This refactoring provides a possibility to eliminate calls to the higher-order functions

lists:map/2 and lists:filter/2. With each execution of the refactoring a single

call to either the map or the filter higher-order function gets eliminated. The

call of the higher-order function can be replaced either with a list comprehensions

or a call of a recursive function. The used method is the choice of the user. The

refactoring supports eliminating higher-order function calls that use an implicit fun

or a lambda passed as an argument to the function.

Preconditions. The only precondition for this refactoring is that the selected

function should be a call to one of the higher-order functions lists:map/2 or

lists:filter/2. This is checked during the refactoring and an error is shown

if anything else is selected.
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Figure 2.8: The menu option to perform the transformation from list to map.
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Figure 2.9: The result of the "Transform list to map" refactoring.

Usage. The usage of this refactoring is similar to both of the refactorings shown

before. The followings steps are needed:

◦ Position the cursor over the name of the higher-order function call that needs

to be refactored, similarly to previous refactorings.

◦ From the menu bar, select "Refactor > Introduce/eliminate > Eliminate higher

order function" or use the "C-e C-r e h" keyboard shortcut. (Figure 2.10)

◦ If everything is correct, a dialog should appear, prompting the user to decide

the mode of transformation. Three choices are available, one for using list

comprehension, one for using recursion and one for letting the refactoring

decide. This automatic decision by the refactoring is described in detail below.

(Figure 2.11)

◦ After clicking "Submit" the refactoring should complete, while after clicking

"Cancel" the refactoring will be canceled and no change will be done to the

source code.
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Figure 2.10: The menu item corresponding to the "Eliminate higher order function"

refactoring
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Figure 2.11: Dialog to decide the mode of eliminating higher-order function calls

The result of choosing to use a list comprehension is shown in Figure 2.12, while the

result of using a new, recursive function definition for the elimination is shown on

Figure 2.13.

Figure 2.12: Result of using a list comprehension to eliminate a call to the higher-

order function lists:map/2

Deciding the method of transformation. If the user does not want to decide

which method to use for transformation, the algorithm offers some basic deductions

to choose the more suitable form of transformation. Since using list comprehensions

is sensible and maintainable if the amount of code written in them is minimal,
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Figure 2.13: Result of using recursion to eliminate a call to the higher-order function

lists:map/2

the refactoring decides to use list comprehensions when an implicit fun is used, or

when the body of the lambda only contains a single expression. All other cases

would result in a complex list comprehension so a new, recursive function is defined

instead.

2.4.4 Undo

RefactorErl provides a way to undo the most recent refactoring performed. This can

be accessed from the menu under "Refactor > Undo (one step only)". This results

in a popup question to confirm the undo1.

1In some cases performing an undo may result in the file not being ready for refactoring. In

this case the current file either needs to be removed and added again, or the entire database needs

to be reset for refactorings to work correctly again.
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Chapter 3

Developer documentation

This chapter contains the developer documentation of the refactorings I imple-

mented. The structure of this documentation is as follows:

◦ First, the problem description and design considerations are presented for each

implemented refactoring.

◦ Next, the algorithmic solution to the problem is presented.

◦ After that, the implementation is shown in detail.

◦ Finally, the method of testing and used test cases are described.

3.1 Problem description and design considerations

The problem that this thesis presents a solution to is to refactor Erlang code bases so

that the energy consumption of the software decreases. Previously there were three

refactorings identified based on measurements, that can improve energy efficiency [1].

This section provides an overview of the scope of the additions to RefactorErl and

also how and in what way my work is integrated to the tool. I also present the

basic idea behind these refactorings, as well as the most important considerations

and design decisions for implementing the transformations.
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3.1.1 Integration to RefactorErl

The structure of RefactorErl is shown on Figure 3.1. To implement a refactoring, it

must be embedded in the "Refactoring" layer. This layer builds on the existing graph

queries to extract information from the Semantic Program Graph (SPG). Creating

the new syntax tree elements and performing the transformations are handled by

the respective components of RefactorErl. It is also possible to perform data flow

analysis with the tool to help refactoring.

To make the refactorings available to users, the UI layer has to be modified to

contain the newly defined transformations. In my work I used the UI capabilities of

Emacs, which makes it possible for the refactorings to appear in the Refactor menu.

The design of each refactoring follows the capabilities and requirements of the tool. A

more detailed description of how refactorings can be implemented using RefactorErl

is presented in Section 3.3.

Figure 3.1: Structure of the RefactorErl tool with the used and modified components

highlighted
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3.1.2 Eliminating proplists:get_value

The goal of this refactoring is to replace calls to the proplists:get_value functions

with calls to the more energy efficient lists:keyfind/3 function.

Since the interface provided by the two functions is slightly different, the most

important design decision in the case of this refactoring was to either transform the

bindings of the result of get_value calls and make sure any subsequent code that

uses the result is also transformed correctly, or at the place of the function call use

a slightly more complex expression to emulate the value returned by get_value

using keyfind. I chose the latter version, since the scope of changes would have

been enormous using the former method, and it would have required heavy dataflow

analysis. The second method limits the scope of the transformation to only the

place of the function call and even though in some cases it results in more lines of

code, it can better guarantee the correctness of the refactoring.

3.1.3 Transforming list to map

This refactoring aims to improve the energy efficiency of recursive functions that

use a proplist (list of binary tuples) to store and manipulate key-value pairs. The

transformation includes changing the underlying data structure from list to map

and transforming all expressions that use a list to use maps instead.

Because of energy efficiency reasons it is important that the recursive function re-

ceives the proplist as a parameter, since then the conversion from list to map can

be done on the calling side.

The design considerations in the case of this refactoring include selecting the expres-

sions the list is allowed to appear in. For this selection I used the results presented

in our TDK thesis [1]. The list is only allowed to be used in expressions where it

makes sense to use a map (meaning that the expression does not rely on the ordering

of the elements and has to do with using key-value pairs).
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Of the functions that the lists library module provides the following can be trans-

formed to use maps energy efficiently:

◦ lists:keyfind/3

◦ lists:keydelete/3

◦ lists:keymember/3

◦ lists:keystore/4

◦ lists:keytake/3

In the refactoring of these functions one possible solution was to use the functions in

the maps module to simply emulate the behaviour of said functions, but this would

have resulted in unmaintainable code. Instead, I chose to perform some context

analysis and choose the most suitable alternative using maps. This means that

depending on context, each call can be transformed in multiple ways.

The functions I considered for refactoring but decided not to transform them:

◦ lists:keymap/3

◦ lists:keymerge/3

◦ lists:keysort/2

◦ lists:keysearch/3

◦ lists:keyreplace/4

The reason for not refactoring these function calls is that some cannot be replaced

with equivalent calls to functions on maps, because they rely on the ordering of

the elements (lists:keysort/2 and lists:keymerge/3), others are deprecated

(lists:keysearch/3) while even others do not have a real, efficient alternative when

using maps (lists:keyreplace/4). It would be possible to emulate the behaviour

of lists:keyreplace/4 by using maps, but the resulting code would be complex

and inefficient.
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3.1.4 Eliminating higher-order functions

The final refactoring I implemented has the goal to eliminate calls to some commonly

used higher-order functions, specifically, the lists:map/2 and lists:filter/2

higher-order functions, because based on energy consumption measurements the

energy efficiency can be increased by eliminating calls to these functions.

There are two methods by which these higher-order function calls can be eliminated.

It is possible to create a list comprehension that behaves the same way the higher-

order function would, or to introduce a new, specialized recursive function definition.

When designing this refactoring, I considered that the refactoring itself should choose

the most suitable method of the two, but the final decision is that the user should

decide, because they might have a better understanding of their code than a refac-

toring could have. However, the refactoring also provides an option for when the

user cannot or does not want to decide on the method. In this case the refactoring

uses some heuristics to decide which transformation to use.

Another consideration was that, concerning the use of implicit functions, if the

definition of that function is available for the refactoring, should it be inlined where

possible. The decision on this matter was that inlining would result in long, not

readable, and most importantly, unmaintainable code, so the function definition

should be kept separately when it is already given as a separate function.

3.2 Algorithmic solution

This section contains a description of the algorithms used to perform the desired

transformations.
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3.2.1 Eliminating proplists:get_value calls

To rewrite calls to proplists:get_value to calls to lists:keyfind/3 I chose to

emulate the behaviour of get_value by using keyfind. This means that even

in cases when an error happens during the function call, the behaviour should be

preserved.

The function proplists:get_value/2 returns only the value corresponding to a

key if the key exists, and returns the atom undefined otherwise [16]. On the other

hand, lists:keyfind/3 returns the tuple {Key, Value} if the key exists and the

atom false otherwise [17].

The way to emulate the behaviour of proplists:get_value/2 using the more effi-

cient lists:keyfind/3 is shown on Figure 3.2.

1 p r o p l i s t s : get_value (Key , L i s t )

(a) Before

1 case l i s t s : key f ind (Key , 1 , L i s t ) of
2 fa l se −> undefined ;
3 {_, Var} −> Var
4 end

(b) After

Figure 3.2: Refactoring for eliminating proplists:get_value/2 calls.

There is also the proplists:get_value/3 function, which takes one extra argu-

ment, which specifies the default value returned if the key does not exist in the list.

This function can be refactored to be replaced by lists:keyfind/3 in the same

way, as shown in Figure 3.2, we only need to replace undefined with the specified

default value.
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3.2.2 Transforming a list to map

This refactoring is able to identify a recursive function, determine if the selected

variable is in fact a parameter of that function, and if the variable is only used in a

way that makes sense for us to use a map instead.

There are also some additional constraints, which cannot be checked because of the

dynamic type system of Erlang. These are the following:

◦ The list has to be a proplist

◦ The first element of the binary tuples must be the key

◦ The order of the elements in the list must not matter

◦ Keys must be unique in the proplist

In the following paragraphs the algorithms for the transformation of calls to the

functions mentioned in Section 3.1.3 are shown.

lists:keyfind/3. lists:keyfind/3 returns the {Key, Value} tuple if the key is

in the list, otherwise returns the atom false. Since the #{Key := Value} = Map

pattern matching expression throws an exception if the key is not present in the map,

this pattern matching can only be used in a limited number of cases, depending on

context.

These contexts are when the result of the keyfind call is bound to a binary tuple,

since if the key is not present, this would also result in a badmatch exception. In all

other contexts, the maps:find/2 function must be used to emulate the behaviour

of lists:keyfind/3.

Besides, whether the statement is the last statement in the function clause also

needs to be checked, since in that case the tuple, that lists:keyfind/3 would have

returned needs to be returned, thus maps:find/2 must be used in all of these cases.
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Figure 3.3: Flowchart of the decisions we need to make in order to transform a

lists:keyfind/3 call
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1 % 1. ) Transformed to pa t t e rn matching
2 {_, Value} = l i s t s : key f ind (Key , 1 , L i s t )
3
4 % 2. ) Transformed to maps : f i n d /2
5 l i s t s : key f ind (Key + 1 , 1 , L i s t )

(a) Before

1 % 1. ) Transformed to pa t t e rn matching
2 #{Key := Value} = Li s t
3
4 % 2. ) Transformed to maps : f i n d /2
5 begin
6 Key1 = Key + 1 ,
7 case maps : f i nd (Key1 , L i s t ) of
8 error −> false ;
9 {ok , Value} −> {Key1 , Value}

10 end
11 end

(b) After

Figure 3.4: Refactoring for eliminating lists:keyfind/3 calls.

Finally, it needs to be determined if the key is a simple key. A simple key is a key

that it is a variable, integer literal or an atom. The goal of identifying simple keys is

that the evaluation of simple keys is guaranteed to be a quick, lightweight operation

without any side effects. There are other types which could be used as simple keys,

but it would be complex to check the corresponding subtree. If the key is simple,

it can simply be repeated whenever it is needed in the refactored version. However,

if the key is complex, it needs to be extracted to a new variable, since the key can

be a computationally intensive function call, or it can even have side effects when

evaluated more than once.

In the case of multiple instructions, such as extracting the key to a new variable,

the expressions need to wrapped in a begin-end block, so that it can be treated as

a single expression in all contexts. There are some contexts where this could be

omitted, but it would require heavily context dependent transformations.

All of these decisions needed for the refactoring are presented with a flowchart on

Figure 3.3. Some refactoring examples are also shown on Figure 3.4.
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lists:keydelete/3. lists:keydelete/3 returns a new proplist with the element

corresponding to a given key removed. This is exactly the same functionality as

with maps:remove/2, which returns a new map with the element belonging to the

given key removed.

If the result of this expression is bound to a variable, all further occurrences of that

variable have to be checked and transformed as well, since the bound variable is a

map in the refactored version instead of a list. Because of the need for transformation

in all expressions that use the result of this function call, the refactoring only allows

the result of keydelete calls to be bound to a single variable, no pattern matching

is allowed.

If this expression stands as the last statement in a clause, the result has to be

transformed back to a list, in order to keep the return value of the function the

same. This conversion is done using the maps:to_list/1 function.

In the case of keydelete there is no need to extract the key to a new variable, even

if it is not a simple key. The reason for this is that in every case, the key part of

keydelete is only used once in the refactored version, so the behaviour stays the

same, even for non-simple keys.

lists:keymember/3. Out of all the functions, lists:keymember/3 is the easiest

to transform, since it simply returns a boolean value denoting if the given key is

present in the list or not. The maps:is_key/2 function provides the exact same

functionality, only with maps, so keymember calls simply need to be replaced with

is_key calls.

There is no need to transform the return value in this case, since both functions re-

turn a boolean value with the same meaning. Also, similarly to lists:keydelete/3,

the key does not need to be extracted to a variable.

lists:keystore/4. The lists:keystore/4 function is used to update an already

existing key-value pair, or to insert a new key-value pair to the list, if the key does
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Figure 3.5: Flowchart of the decisions we need to make in order to transform a

lists:keystore/4 call
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1 % 1. ) Same key used
2 l i s t s : k ey s to r e (Key , 1 , L i s t , {Key , Value} )
3
4 % 2. ) Var iab l e g i ven as f ou r t h parameter
5 l i s t s : k ey s to r e (Key , 1 , L i s t , Tuple )
6
7 % 3. ) Complex f ou r t h parameter given ,
8 % i s a l s o a re turn va lue
9 l i s t s : k ey s to r e (Key , 1 , L i s t , get_tuple (P1 , P2 ) )

(a) Before

1 % 1. ) Same key used
2 L i s t#{Key => Value}
3
4 % 2. ) Var iab l e g i ven as f ou r t h parameter
5 (maps : remove (Key , L i s t ))#{element (1 , Tuple ) => element (2 , Tuple )}
6
7 % 3. ) Complex f ou r t h parameter given ,
8 % i s a l s o a re turn va lue
9 begin

10 Tuple = get_tuple (P1 , P2 ) ,
11 maps : t o_ l i s t ( (maps : remove (Key , L i s t ))#{element (1 , Tuple ) =>
12 element (2 , Tuple )} )
13 end

(b) After

Figure 3.6: Refactoring for eliminating lists:keystore/4 calls.
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not already exist. The fourth argument of this function is the actual key-value

pair, that will replace the element with the key equal to the first argument of this

function. This means the key can also be changed by this call.

Ideally, the Map#{Key => Value} syntax should be used, which updates or inserts a

value belonging to a key. The keystore call can only be transformed to this pattern

matching directly, when the two keys in the call are equal. Checking the equality

of keys in general is difficult, so a constraint introduces in this step is the equality

will only be checked in the case of simple keys. Here, again, a simple key is either

a variable, an atom or an integer literal.

If at least one of the keys is not a simple key, they are treated as not equal. The value

belonging to the first key must be first removed from the map using maps:remove/2.

Only after this can the new element be inserted using the pattern matching syntax.

Since the refactoring requires the precondition that keys are always unique in the

list, it is not possible that the insertion after removal would overwrite an existing

value. However, there is no way for this to be checked and the refactoring must rely

on the user making sure the preconditions are true.

If the fourth parameter of keystore is not a tuple, but some other expression, the

element/2 function can be used to extract the key and value part of that expression.

If it is not just a simple variable, it also needs to be extracted to a new variable to

keep the same behaviour and avoid evaluating a complex computation twice, with

possible side effects.

Finally, if the call to keystore is the last expression in the current function clause,

the transformed function needs to be warpped in a call to maps:to_list/1 in order

to keep the return value of the function a list.

All these necessary decisions that need to be made are shown on Figure 3.5. There

are also some code examples shown on Figure 3.6.

Also, similarly to lists:keydelete/3 if the result of this call is bound to a variable,

all occurrences of which need to be transformed as well. Because of this no other
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type of binding is supported by the refactoring.

1 l i s t s : keytake (Key , 1 , L i s t )

(a) Before

1 case maps : take (Key , L i s t ) of
2 error −> false
3 {Value , NewList} −> {value , {Key , Value} , NewList}
4 end

(b) After

Figure 3.7: Refactoring for eliminating lists:keytake/3 calls.

lists:keytake/3. The lists:keytake/3 is used to remove an element from the

list, while also getting the value belonging to the removed key. The function returns

the {value, {Key, Value}, List} tuple if the key is present in the list and returns

the atom false otherwise.

The behaviour of the maps:take/2 is similar, but it returns only the {Value, Map}

tuple if the key exists and the atom error otherwise.

A case expression can be used to emulate the behaviour of keytake with the

maps:take/2 function. Since the key has to be used more than once, it needs

to be extracted to a new variable, if it is not a simple key.

A basic case for using maps:take/2 instead of lists:keytake/3 is shown on Fig-

ure 3.7.

Since the value of this expression contains the new map, all occurrences of any

variable bound to this new map also has to be transformed. Because of this reason,

if a binding happens using the result of the keytake function call, the refactoring

only allows it to be a binding to a ternary tuple, whose third element is a variable.

If the return value of the whole recursive function is the value of this call to keytake,

then the third element of the result tuple has to be transformed back to a list by

wrapping it in a maps:to_list/1 call.
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Transforming pattern matching in parameter list. Since the transformed

function is recursive, a common use case would be if there are multiple clauses, one

of which contains a pattern matching to an empty list.

To transform this empty list pattern matching, a new variable needs to be introduced

instead of the pattern. This will be the variable containing the map. The size of the

map can be checked in the guard of the function clause by the map_size/1 function.

The guard has to check for maps with size 0.

An example of transforming a function clause containing an empty list pattern is

shown on Figure 3.8.

1 r e c u r s i v e (_, [ ] ) −> ok ;
2 r e c u r s i v e (Key , L i s t ) −>
3 NewList = l i s t s : k eyde l e t e (Key , 1 , L i s t ) ,
4 r e c u r s i v e (Key + 1 , NewList ) .

(a) Before

1 r e c u r s i v e (_, Map) when map_size (Map) =:= 0 −> ok ;
2 r e c u r s i v e (Key , L i s t ) −>
3 NewList = maps : remove (Key , L i s t ) ,
4 r e c u r s i v e (Key + 1 , NewList ) .

(b) After

Figure 3.8: Transforming an empty list pattern matching expression to use maps

instead.

Transforming outside calls to the recursive function. The final thing that

needs to be done is to make sure that calls to the refactored recursive function are

transformed so that the recursive function now gets a map as its actual parameter

instead of a list. This can be achieved by wrapping the correct argument into a call

to maps:from_list/1.

Finally, an example of transforming a whole recursive function, together with trans-

forming the calls to that function, is show on Figure 3.9.
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1 −module( t e s t ) .
2
3 main ( L i s t ) −>
4 r e c u r s i v e (0 , L i s t ) .
5
6 r e c u r s i v e (100 , L i s t ) −> L i s t ;
7 r e c u r s i v e (Key , L i s t ) −>
8 {_, Value} = l i s t s : key f ind (Key , 1 , L i s t ) ,
9 NewList = l i s t s : k eyde l e t e (Key , 1 , L i s t ) ,

10 l i s t s : keymember (Key , 1 , NewList ) ,
11 r e c u r s i v e (Key + 1 , NewList ) .

(a) Before

1 −module( t e s t ) .
2
3 main ( L i s t ) −>
4 r e c u r s i v e (0 , maps : f rom_l i s t ( L i s t ) ) .
5
6 r e c u r s i v e (100 , L i s t ) −> maps : t o_ l i s t ( L i s t ) ;
7 r e c u r s i v e (Key , L i s t ) −>
8 #{Key:=Value} = List ,
9 NewList = maps : remove (Key , L i s t ) ,

10 maps : is_key (Key , NewList ) ,
11 r e c u r s i v e (Key + 1 , NewList ) .

(b) After

Figure 3.9: Refactoring an entire recursive function to use maps instead of lists.
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3.2.3 Eliminating higher-order function calls

For eliminating higher-order functions eight similar algorithms are used, based on

which higher-order function is eliminated (lists:map/2 or lists:filter/2), if a

list comprehension or recursion is used and whether the higher-order function call

uses a lambda or an implicit fun.

Map to list comprehension

To create a list comprehension from a map function call, the mapping function call

needs to be placed in the expression part of the list comprehension, the generator

should traverse the whole list and there should be no filters.

Implicit fun-expressions When using implicit fun-expressions in a map func-

tion call, the function call can simply be moved to the list comprehension. This

transformation is shown on Figure 3.10.

1 l i s t s :map( fun i n c r e a s e /1 , L i s t )

(a) Before

1 [ i n c r e a s e (X) | | X <− L i s t ]

(b) After

Figure 3.10: Refactoring a map function call which uses an implicit fun, to a list

comprehension.

Lambdas. When using lambdas, based on measurements of energy consumption,

the fun expression must not be included in the body of the list comprehension as

a fun expression, since that would increase energy consumption significantly.What

needs to be done is to inline the definition of the lambda in the list comprehension.

First, investigate the inlining of lambdas with a single clause. These fun expressions

can also be split in two groups. One where there is only a single expression in
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the body of the fun (such as fun(X) -> X + 1 end), and the other where there

may be many expressions (such as fun(X) -> Y = 1, X + Y end). Since only a

single expression can be in the body of a list comprehension, if there are multiple

expressions in the body of the lambda, they need to be wrapped in a begin-end block,

so that they behave as if they were a single expression. With a single expression in

the body, it can simply be inlined without wrapping it in a begin-end block.

It is also possible for lambdas to have multiple clauses and for the clauses to have

guards, similarly to function definitions. For example the following fun expres-

sion has two clauses, one with a guard and one without: fun(X) when X > 0 ->

positive; (_) -> non_negative end. If the fun expression has multiple clauses

or uses guards, the previous inlining techniques do not work. What needs to be

done instead is to create a case expression, where each clause will correspond to a

branch in the lambda, the branches have the same patterns and same guards as the

clauses and the bodies of each clause is copied to the corresponding branch.

Examples for all inlining techniques described above are shown on Figure 3.11.

Filter to list comprehension

Transforming a filter higher-order function call to a list comprehension is similar

to how map higher-order function calls can be transformed. The main difference is

that with filter the function call or the lambda has to be moved to the filter part of

the list comprehension, while the body part should contain only the variable that is

bound by the generator.

Implicit fun-expressions When using implicit fun-expressions in a filter function

call, the function call can simply be placed in the filter part of the list comprehension.

This transformation is shown on Figure 3.12.

Lambdas. Transforming the use of fun expressions to be used in a list compre-

hension is similar to how these lambdas could be transformed when eliminating a
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1 % 1. ) S in g l e c lause , s i n g l e e xp re s s i on
2 l i s t s :map( fun (X) −> X + 1 end , L i s t )
3
4 % 2. ) S in g l e c lause , mu l t i p l e e xp r e s s i on s
5 l i s t s :map( fun (X) −> Y = 1 , X + Y end , L i s t )
6
7 % 3. ) Mu l t i p l e c l ause s , some with guards
8 l i s t s :map( fun (X) when X > 0 −> p o s i t i v e ;
9 (_) −> non_negative end , L i s t )

(a) Before

1 % 1. ) S in g l e c lause , s i n g l e e xp re s s i on
2 [X + 1 | | X <− L i s t ]
3
4 % 2. ) S in g l e c lause , mu l t i p l e e xp r e s s i on s
5 [ begin Y = 1 , X + Y end | | X <− L i s t ]
6
7 % 3. ) Mu l t i p l e c l ause s , some with guards
8 [ case Elem of
9 X when X > 0 −> p o s i t i v e ;

10 _ −> non_negative
11 end | | Elem <− L i s t ]

(b) After

Figure 3.11: Refactoring a map function call which uses a lambda, to a list compre-

hension.

1 l i s t s : f i l t e r ( fun even /1 , L i s t )

(a) Before

1 [X | | X <− List , even (X) ]

(b) After

Figure 3.12: Refactoring a filter function call which uses an implicit fun, to a list

comprehension.
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map higher-order function. Distinction can be made based on whether the lambda

has a single clause or multiple clauses, and also in the case of a single clause if it

has a single expression in its body or not.

Based on this classification, similarly to map, the possibilities are to inline the single

expression of the body, wrap the multiple expressions in a begin-end block or create

a case expression in the case of multiple clauses.

One significant difference between eliminating filter and eliminating map is that with

maps, the joker (_) pattern can appear as the variable bound by the generator, since

only the patterns used in the lambda would be referred to by the inlined function

definition. This is different with filter, since in the body of the list comprehension

the actual element of the list has to be referred to, so the use of a joker pattern in

the generator is not allowed. If a joker was used in the fun expression a new variable

must be introduced, through which the element of the list can be accessed.

Some examples for eliminating the filter higher order function are shown on Fig-

ure 3.13.

Map to recursion

When transforming a map call to recursion, a new recursive function has to be

defined, which is specialized for the exact case we are trying to transform. The

higher-order function call should be replaced with a call to this recursive function.

The newly defined recursive function must contain at least two clauses. The first

clause should be the default clause, which only accepts an empty list as its parameter

and the result should also be an empty list. This clause describes the base case of

the recursion. All subsequent clauses should implement the specialized functionality

described by either an implicit fun-expression or a lambda. These clauses should

perform a recursive call, such that the last expression in all of these clauses is of the

form [SomeValue | recursive(Tail)].
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1 % 1. ) S in g l e c lause , s i n g l e e xp re s s i on
2 l i s t s : f i l t e r ( fun (X) −> X rem 2 =:= 0 end , L i s t )
3
4 % 2. ) Using a j o k e r in the pa t t e rn o f the fun
5 l i s t s : f i l t e r ( fun (_) −> Y > 2 end , L i s t )
6
7 % 3. ) S in g l e c lause , mu l t i p l e e xp r e s s i on s
8 l i s t s : f i l t e r ( fun (X) −> Y = 2 , X rem Y =:= 0 end , L i s t )
9

10 % 4. ) Mu l t i p l e c l ause s , some with guards
11 l i s t s : f i l t e r ( fun (X) when X > 0 −> true ;
12 (_) −> false end , L i s t )

(a) Before

1 % 1. ) S in g l e c lause , s i n g l e e xp re s s i on
2 [X | | X <− List , X rem 2 =:= 0 ]
3
4 % 2. ) Using a j o k e r in the pa t t e rn o f the fun
5 [Elem | | Elem <− List , Y > 2 ]
6
7 % 3. ) S in g l e c lause , mu l t i p l e e xp r e s s i on s
8 [X | | X <− List , begin Y = 2 , X rem Y =:= 0 end ]
9

10 % 4. ) Mu l t i p l e c l ause s , some with guards
11 [Elem | | Elem <− List , case Elem of
12 X when X > 0 −> true ;
13 _ −> false
14 end ]

(b) After

Figure 3.13: Refactoring a filter function call which uses a lambda, to a list com-

prehension.
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Implicit fun-expressions. Similarly to list comprehensions, a map call which

uses an implicit fun is the simplest case to create a recursive function for. Apart

from the base case clause in the recursion only one other clause is needed, which

will contain a single expression. This expression calls the implicit function with the

head of the list as its actual parameter, and prepend it to the result of the recursive

call using the tail of the list. This transformation is shown on Figure 3.14.

1 l i s t s :map( fun i n c r e a s e /1 , L i s t )

(a) Before

1 % Function c a l l r ep l a ced
2 map_recursion ( L i s t )
3
4 % New func t i on de f ined
5 map_recursion ( [ ] ) −> [ ] ;
6 map_recursion ( [Head | Tai l ] ) −>
7 [ i n c r e a s e (Head) | map_recursion ( Ta i l ) ] .

(b) After

Figure 3.14: Refactoring a map function call which uses an implicit fun, to a new

recursive function.

Lambdas. To transform a map call using a fun expression, the recursive function

should have a separate clause for each clause of the lambda. The expressions inside

the clauses do not need to be transformed in any way, except for the very last

expression in each clause. In this case the result of the last expression has to be

prepended to the list returned by the recursive call.

In each clause, pattern matching is used to extract the head element of the list. The

exact pattern the head is matched to is the same as the single parameter of the

corresponding clause in the fun expression. All clauses in the fun expression have a

single parameter, since the map higher-order function requires the functions passed

to it as a parameter to be unary functions.

A fun expression created inside of the map call can use variables that have been

bound outside of the scope of the lambda, but in the scope of the map call. This use
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of external variables means that to move the clauses of the lambda to a recursive

definition, all used external variables have to be added to the recursive function as

parameters, so that when an expression uses those variables they will be in scope.

The next problem is that one clause of the lambda may use the external variable X,

while another clause uses X as a pattern, and as such shadows the external variable.

In the transformation these cases of shadowing have to be identified, and in the

clauses where shadowing is happening, a new variable name must be assigned to the

shadowed variable so that it can be forwarded in the recursive call at the end of the

clause.

Examples ranging from simple fun expressions to more complex ones used inside a

call to map are shown on Figures 3.15 and 3.16.

1 % 1. ) S in g l e c lause , mu l t i p l e e xp r e s s i on s
2 l i s t s :map( fun (X) −> Y = 1 , X + Y end , L i s t )
3 % 2. ) Mu l t i p l e c l ause s , some with guards
4 l i s t s :map( fun (X) when X > 0 −> p o s i t i v e ;
5 (_) −> non_negative end , L i s t )
6 % 3. ) Using e x t e r na l v a r i a b l e s in on c lause ,
7 % shadowing i t in another .
8 % Y i s an e x t e r na l v a r i a b l e
9 l i s t s :map( fun ({X1 , X2} ) −> X = X1 ∗ X2 , X + Y;

10 (Y) −> Y + 1 end , L i s t )

Figure 3.15: Before - Refactoring a map function call which uses a lambda, to a new

recursive function.

Filter to recursion

Transforming a call to the filter function to use recursion instead is almost identical

to how calls to the map higher-order function can be eliminated. The only significant

difference being that the last expression in each non-base case clause should now be

a case expression in the following form:

1 case SomeValue of
2 true −> [Head | r e c u r s i v e ( Ta i l ) ] ;
3 fa l se −> r e c u r s i v e ( Ta i l )
4 end
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1 % 1. ) S in g l e c lause , mu l t i p l e e xp r e s s i on s
2 % Function c a l l r ep l a ced
3 map_recursion ( L i s t )
4 % New func t i on de f ined
5 map_recursion ( [ ] ) −> [ ] ;
6 map_recursion ( [X | Tai l ] ) −>
7 Y = 1 ,
8 [X + Y | map_recursion ( Ta i l ) ] .
9 % 2. ) Mu l t i p l e c l ause s , some with guards

10 % Function c a l l r ep l a ced
11 map_recursion ( L i s t )
12 % New func t i on de f ined
13 map_recursion ( [ ] ) −> [ ] ;
14 map_recursion ( [X | Tai l ] ) when X > 0 −>
15 [ p o s i t i v e | map_recursion ( Ta i l ) ] ;
16 map_recursion ( [_ | Tai l ] ) −>
17 [ non_negative | map_recursion ( Ta i l ) ] .
18 % 3. ) Using e x t e r na l v a r i a b l e s in on c lause ,
19 % shadowing i t in another .
20 % Y i s an e x t e r na l v a r i a b l e
21 % Function c a l l r ep l a ced
22 map_recursion ( Lis t , Y)
23 % New func t i on de f ined
24 map_recursion ( [ ] , _) −> [ ] ;
25 map_recursion ( [ {X1 , X2} | Tai l ] , Y) −>
26 X = X1 ∗ X2 ,
27 [X + Y | map_recursion ( Tai l , Y) ] ;
28 map_recursion ( [Y | Tai l ] , Y1) −>
29 [Y | map_recursion ( Tai l , Y1) ] .

Figure 3.16: After - Refactoring a map function call which uses a lambda, to a new

recursive function.
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This ensures that only the desired elements get filtered.

Implicit fun-expressions Similarly to how the use of implicit fun-expression in

the case of maps could be transformed, only one additional clause of the recursive

function needs to be created (besides the base case), which calls the implicit function

and decides whether the current element needs to be prepended to the result of

further recursive calls. One such refactoring is shown on Figure 3.17.

1 l i s t s : f i l t e r ( fun even /1 , L i s t )

(a) Before

1 % Function c a l l r ep l a ced
2 f i l t e r_ r e c u r s i o n ( L i s t )
3
4 % New func t i on de f ined
5 f i l t e r_ r e c u r s i o n ( [ ] ) −> [ ] ;
6 f i l t e r_ r e c u r s i o n ( [Head | Tai l ] ) −>
7 case even (Head) of
8 true −> [Head | f i l t e r_ r e c u r s i o n ( Ta i l ) ] ;
9 fa l se −> f i l t e r_ r e c u r s u i n ( Ta i l )

10 end .

(b) After

Figure 3.17: Refactoring a filter function call which uses an implicit fun, to a new

recursive function.

Lambdas. Again, transforming filter higher-order function calls that use lambdas

is quite similar to how it can be done with the map function. Only the last expression

in each clause has to be modified to use the case expression shown above.

One additional thing that needs special attention, is that when creating the pattern

matching to extract the head of the list, the head cannot be allowed to be matched

to a joker pattern, since it needs to be referred to later on in the function definition.

Thus if the pattern in the clause of the fun expression was either a joker or a more

complex pattern matching expression containing a joker (such as {A, _}), a new

variable has to be created so that in the body of the function the head of the list

can be referred to.
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Some examples showing how to eliminate the filter higher-order function are pre-

sented on Figures 3.18 and 3.19.

1 % 1. ) Mu l t i p l e c l ause s , some with guards and a j o k e r
2 l i s t s : f i l t e r ( fun (X) when X > 0 −> X rem 2 =:= 0 ;
3 (_) −> false end , L i s t )
4 % 2. ) Using e x t e r na l v a r i a b l e s in on c lause ,
5 % shadowing i t in another .
6 % Joker appears i n s i d e a t u p l e . Y i s an e x t e r na l v a r i a b l e
7 l i s t s : f i l t e r ( fun ({X1 , X2} ) −> X1 =:= X2 ;
8 ({Y, _} ) −> Y > 0 end , L i s t )

Figure 3.18: Before - Refactoring a filter function call which uses a lambda, to a

new recursive function.

3.3 Implementation

To implement the previously presented algorithms for the refactorings, a single

module has to be created in RefactorErl. This module has to be placed in the

trunk/tool/lib/referl_user/src directory of the tool.

The name of the newly defined module must contain the reftr_ prefix, followed by

the name of the refactoring. The three presented refactorings can be found in the

following files:

◦ Eliminating proplists:get_value calls: reftr_elim_get_value.erl

◦ Transforming list to map: reftr_transform_list.erl

◦ Eliminating higher-order functions: reftr_elim_hof.erl

The exported functions in the module of a refactoring are specified by RefactorErl

to be the following functions:

prepare/1. This function is the one performing the necessary steps for refactoring.

It must gather all necessary information by executing queries, it must check all
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1 % 1. ) Mu l t i p l e c l ause s , some with guards and a j o k e r
2 f i l t e r_ r e c u r s i o n ( L i s t ) % Function c a l l r ep l a ced
3 % New func t i on de f ined
4 f i l t e r_ r e c u r s i o n ( [ ] ) −> [ ] ;
5 f i l t e r_ r e c u r s i o n ( [X | Tai l ] ) when X > 0 −>
6 case X rem 2 =:= 0 of
7 true −> [X | f i l t e r_ r e c u r s i o n ( Ta i l ) ] ;
8 fa l se −> f i l t e r_ r e c u r s i o n ( Ta i l ) end ;
9 f i l t e r_ r e c u r s i o n ( [Head | Tai l ] ) −>

10 case true of
11 true −> [Head | f i l t e r_ r e c u r s i o n ( Ta i l ) ] ;
12 fa l se −> f i l t e r_ r e c u r s i o n ( Ta i l ) end .
13 % 2. ) Using e x t e r na l v a r i a b l e s in on c lause ,
14 % shadowing i t in another .
15 % Joker appears i n s i d e a t u p l e . Y i s an e x t e r na l v a r i a b l e
16 f i l t e r_ r e c u r s i o n ( Lis t , Y) % Function c a l l r ep l a ced
17 % New func t i on de f ined
18 f i l t e r_ r e c u r s i o n ( [ ] ) −> [ ] ;
19 f i l t e r_ r e c u r s i o n ( [ {X1 , X2} | Tai l ] , Y) −>
20 case X1 + X2 =:= Y of
21 true −> [{X1 , X2} | f i l t e r_ r e c u r s i o n ( Tai l , Y) ] ;
22 fa l se −> f i l t e r_ r e c u r s i o n ( Tai l , Y) end ;
23 f i l t e r_ r e c u r s i o n ( [Head = {Y, _} | Tai l ] , Y1) −>
24 case Y > 0 of
25 true −> [Head | f i l t e r_ r e c u r s i o n ( Tai l , Y1) ] ;
26 fa l se −> f i l t e r_ r e c u r s i o n ( Tai l , Y1) end .

Figure 3.19: After - Refactoring a filter function call which uses a lambda, to a new

recursive function.
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possible constraints and it may interact with the user. The transformation of the

program graph must be done by the functions returned by prepare/1.

- Parameters:

Args :: proplist() - The arguments of the refactoring, in the form of a list

of key-value tuples. This contains all possible parameters of the refactoring,

such as the name of the refactored file and the position at which the refactoring

has to be performed.

- Return value:

A list of functions that need to be executed by RefactorErl. These functions

perform the transformation on the semantic program graph, including creating

the new syntactic nodes and edges and replacing subtrees of the graph.

The first function in the list takes no parameter, but all subsequent functions

are unary, and the actual parameter will be the value returned by the previous

function.

Each function is responsible for performing a step of the whole refactoring,

after the execution of each function the program graph must be in a syntacti-

cally correct state, semantic correctness is only required at the end of the final

function execution.

These returned functions should not throw any exceptions, but they can ex-

ecute queries if needed. All checks should be performed before returning the

functions, not inside of the returned functions.

error_text/2. The responsibility of this function is to create a user friendly de-

scription that gets displayed in the case that a check fails or any error gets thrown.

This function handles LocalErrors.

- Parameters:

ErrorKey :: atom() - The key describing the type of the error. This key is

used to give specialized error messages for every possible error.

55



ErrorInfo - Any additional info of why and where the error was thrown. This

information is used to create more user friendly error messages. The type of

ErrorInfo can be anything, but most commonly it is a list.

- Return value:

A list of strings that are concatenated to produce the error message.

These two functions are common and required for all refactorings. The following

sections present the implementation details specific to each refactoring. These im-

plementation details include a more specific view of what prepare/1 does for each

refactoring.

3.3.1 Eliminate get_value

This refactoring is implemented in the reftr_elim_get_value module.

prepare/1. The execution of this function consists of the following steps:

◦ Query for the ’application’ node selected.

◦ Identify the function call and check if it is proplists:get_value with an arity

of either 2 or 3.

◦ Extract the actual parameters of the function call.

◦ Create a new, unused variable name with the prefix "Var".

◦ Create a lambda that is returned in the list. This lambda constructs the

syntactic nodes of the lists:keyfind/3 call and uses copies of the extracted

arguments. Finally, replace the subtree belonging to get_value with the newly

constructed nodes.

- Parameters:
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Args :: proplist() - The arguments for this refactoring must contain the

file and position keys.

- Return value:

A list containing a single function that performs the transformation of the

SPG.

get_closest_parent_of_type/2. Get the closest ancestor of a node in the

SPG that is of a given type.

Check if the current Node is of the given type, if yes return it, otherwise perform a

query to get the parent of that node and recursively calls itself.

- Parameters:

Node :: node() - The node whose parent has to be extracted.

Type :: atom() - The type of the desired parent node

- Return value:

The first node that is of the given type and is an ancestor of the initial pa-

rameter node in the SPG.

error_text/2. The possible LocalErrors thrown during this refactoring are the

following:

- bad_application: The selected expression by the user has no ancestor of type

’application’.

- bad_function: The selected application is not a call to proplists:get_value

with an arity of 2 or 3.

- ambiguous: This error key is used, if queries that should only return a single

node fail and either return multiple nodes or none at all. If the SPG is in a

correct state, this error should never be thrown.

57



3.3.2 Transforming a list to map

This refactoring is implemented in the reftr_transform_list module.

prepare/1. The execution of this function consists of the following steps:

◦ Query for the binding of the selected variable and check if it is a parameter of

the function.

◦ Query for the selected function and check if it is a recursive function.

◦ Identify all clauses of the function and create a list of functions that transform

the parameters of each clause if needed, using transform_pattern/1.

◦ Identify all occurrences of the selected variable in the bodies of every function

clause and create a list of functions to transform these references to the variable

using transform_variable/2.

◦ Identify all calls to the recursive function and filter for the ones appear-

ing outside of any clause of the function. These calls need to be trans-

formed. Again, a list of functions is created for these transformations using

transform_outside_call/3.

◦ Finally, all the lists of functions are concatenated in the order they were cre-

ated. A lambda with zero parameters is prepended to the list, so that all

functions created for transformation can be unary functions. This is needed,

because only the first function of the list can have zero parameters, and the

transformations have no information which function will become the first ele-

ment of the list.

- Parameters:

Args :: proplist() - The arguments for this refactoring must contain the

file and position keys.

- Return value:

A list containing all functions that perform the transformation of the SPG.
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transform_pattern/1. Checks if the pattern node given as a parameter is either

of type ’variable’ or ’cons’, throws invalid_pattern if it is anything else. If the

’cons’ pattern does not belong to an empty list pattern a cons_error is thrown.

If the pattern is of type ’cons’ a call to transform_empty_list_cons/1 is made to

create the transformation functions.

Otherwise, patterns of type ’variable’ are not transformed, so an empty list is re-

turned.

- Parameters:

Pattern :: node() - The node of the SPG containing the pattern corre-

sponding to the formal parameter of a clause of the recursive function.

- Return value:

A list containing the functions needed for the transformation of the pattern

node. This can be an empty list or a list containing two functions.

transform_empty_list_cons/1. Queries for the function clause node and cre-

ates two functions to execute the transformation of the empty list pattern.

The first function generates a new, unused variable name with the prefix "Map" and

constructs the variable node, which replaces the empty list pattern. The variable

name is passed on to the second function.

The other function adds the guard expression to the function clause, which performs

the check for empty map. For this a function call is created to map_size using

create_fun_call/2. This function call is inserted in an infix equality comparison

expression, which is then added as a guard to the function clause.

- Parameters:

Pattern :: node() - The node of the SPG containing the pattern corre-

sponding to the formal parameter of a clause of the recursive function.
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- Return value:

A list containing the functions needed for the transformation of the empty list

pattern.

transform_variable/2. Executes a query to get all referenced to the variables

in its parameter. Then calls transform_varref/2 to transform each individual

reference.

- Parameters:

Vars :: [node()] - A list of nodes representing all the variables that need

to be transformed in the recursive function. This needs to be a list, because

different function clauses can bind different variables to the same positional

argument.

Func :: node() - The node in the SPG representing the recursive function

that is being refactored.

- Return value:

A list of transformations performing the changes in the SPG for all occurrences

of the Vars given as a parameter.

transform_varref/2. Query the immediate parent of the Varref node. If this

parent is a clause, than the list is present in the clause as a standalone expression,

meaning it is not part of any function call or operation. In this case the function

transform_standalone_list/2 is used to create the functions for the transforma-

tion. Otherwise transform_varref_par/3 is called to create the transformation.

- Parameters:

Varref :: node() - A node in the SPG representing an occurrence of the

variable that is being refactored.

OriginalFun :: node() - The node in the SPG representing the recursive

function that is being refactored.
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- Return value:

A list of functions transforming the single occurrence given as the first argu-

ment.

transform_standalone_list/2. Using the is_return_expr/2 function decides

if the variable is the last expression in its clause. If not, no transformation is done,

otherwise transform_return_list/1 is called.

- Parameters:

Varref :: node() - A node in the SPG representing an occurrence of the

standalone list that is being refactored.

OriginalFun :: node() - The node in the SPG representing the recursive

function that is being refactored.

- Return value:

A list of functions transforming the standalone list. If the list is not a return

expression an empty list is returned.

transform_return_list/1. Creates a function, that wraps the list in a call to

maps:to_list/1

- Parameters:

Varref :: node() - A node in the SPG representing a standalone list, which

is a return value of its clause.

- Return value:

A list containing the single function that performs the wrapping of the list in

the to_list function call.
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transform_varref_par/3. Checks whether the variable in its parameter ap-

pears in an ’arglist’. If not, a bad_parent error is thrown, otherwise the function

transform_varref_arglist/3 is used to transform the function call in which the

variable appears.

- Parameters:

Varref :: node() - A node in the SPG belonging to a reference of the

variable that is transformed.

Parent :: node() - The parent node of Varref.

OriginalFun :: node() - The node in the SPG representing the recursive

function that is being refactored.

- Return value:

A list containing functions to transform a function call containing the variable.

transform_varref_arglist/3. Query the function node that is being called. If

it is the same as the recursive function, no transformation is needed. Otherwise

check if the function call is an allowed call. Allowed calls are:

◦ lists:keyfind/3

◦ lists:keydelete/3

◦ lists:keymember/3

◦ lists:keystore/4

◦ lists:keytake/3

If the call is not allowed a bad_fun_call error is thrown, otherwise

transform_varref_function_call/5 is used to transform the specific function call.

- Parameters:
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Varref :: node() - A node in the SPG belonging to a reference of the

variable that is transformed.

ArgList :: node() - The parent node of Varref, which is representing the

argument list of the function call, that the variable appears in.

OriginalFun :: node() - The node in the SPG representing the recursive

function that is being refactored.

- Return value:

A list containing functions to transform a function call containing the variable.

transform_varref_function_call/5. Using pattern matching to the module

name, function name and arity of the function, creates the specific functions for

transforming a call to each allowed function.

Also performs some checks using validate_n_arg/2 and validate_list_arg/3.

- Parameters:

MFA :: {atom(), atom(), integer()} - The module name, function name

and arity of the function call being transformed.

Varref :: node() - A node in the SPG belonging to a reference of the

variable that is transformed.

Args :: [node()] - A list of nodes representing the actual parameters of

the function call.

FunApp :: node() - The node containing the function application.

OriginalFun :: node() - The node representing the recursive function that

is currently being refactored.

- Return value:

A list containing functions to transform a function call containing the variable.
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For all allowed function, the resulting list of functions created by the functions

{FUNCTION_NAME}_transform, where {FUNCTION_NAME} is the name of the function

call being transformed, such as keyfind or keydelete.

The following additional steps are performed for the allowed functions, before the

respective transform function calls.

◦ lists:keyfind/3

Determine the context in which keyfind is used by calling the

determine_keyfind_branch/3 function.

◦ lists:keydelete/3

Transform all occurrences of the variable that is bound by the result of the

function call, using the transform_newly_bound_list/3 function.

Also check if the function call expression is a return value of its function clause,

using the is_expr_or_parent_return_expr/2 function.

◦ lists:keymember/3

This function requires no additional steps.

◦ lists:keystore/4

Transform all variables that get bound to the modified list, using the

transform_newly_bound_list/3 function.

Determine the context in which keystore is used by the function

determine_keystore_branch/2.

Also check if the function call is a return expression in the clause

(is_expr_or_parent_return_expr/2).

◦ lists:keytake/3

Transform all occurrences of the variable that gets bound to the resulting

modified list using transform_newly_bound_list/3.

Also check if the function call is a return value, using the

is_expr_or_parent_return_expr/2 function.
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transform_newly_bound_list/3. Checks if the result of a function call is

bound to a variable, if yes calls spec_transform_newly_bound_list/3

- Parameters:

Branch :: atom() - The name of the function, whose result is transformed.

FunApp :: node() - The node containing the function application.

OriginalFun :: node() - The node representing the recursive function that

is currently being refactored.

- Return value:

A list containing functions to transform all occurrences of any newly bound

variable resulting from the FunApp function call.

spec_transform_newly_bound_list/3. Extracts the bound variable. If the

result of keytake is being transformed checks if the bound expression is a ternary

tuple, whose last element is a variable.

If the result of either keydelete or keystore is being transformed, only checks if

the bound expression is a variable.

If the checks fail, an unsupported_match exception is thrown.

If the bound variable is successfully extracted, transform_new_list_part/2 is used

in all cases to create the transformation functions for all occurrences of the newly

bound variable.

- Parameters:

Branch :: atom() - The name of the function, whose result is transformed.

Parent :: node() - The node containing the parent of the function appli-

cation.

OriginalFun :: node() - The node representing the recursive function that

is currently being refactored.
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- Return value:

A list containing functions to all occurrences of any newly bound variable

resulting from the function call.

transform_new_list_part/2. Extract the variable from the binding informa-

tion of the newly bound variable and using transform_variable/2 transforms all

occurrences of it.

- Parameters:

NewListPart :: node() - The node where the binding of the new variable

happens.

OriginalFun :: node() - The node representing the recursive function that

is currently being refactored.

- Return value:

A list containing functions to transform all occurrences of the newly bound

variable.

determine_keyfind_branch/2. Determines which algorithm should be used

to transform a call to keyfind. This is achieved by analysing the type of the

key argument and the context of the function call. For looking at the context

the classify_keyfind_tuple/2 function is used, while the ’type’ of the key is

determined by the keytype/1 function.

- Parameters:

FunApp :: node() - The node containing the keyfind function application.

Args :: [node()] - A list of nodes representing the actual parameters of

the keyfind function call.

OriginalFun :: node() - The node representing the recursive function that

is currently being refactored.
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- Return value:

An atom, based on the information extracted in the function the following

results are possible:

– match_joker: if the result is bound to a tuple whose first element is the

joker pattern.

– match_same_key: if the result is bound to a tuple whose first element

can be shown to be the same key as the key in the argument list.

– match_different_key: if the result is bound to a tuple whose first ele-

ment cannot be shown to be the same key as in the argument list.

– simple_key: no binding to tuple is happening and the key is ’simple’.

– complex_key: no binding to tuple is happening and the key is ’complex’

– simple_key_ret: no matter if there is any binding, if the function call

is part of the last expression in the clause, and the key is ’simple’ this

branch is selected.

– complex_key_ret: no matter if there is any binding, if the function call

is part of the last expression in the clause, and the key is ’complex’ this

branch is selected.

classify_keyfind_tuple/2. Classifies the type of matching that is happening to

the result of the keyfind call.

- Parameters:

LHS :: node() - The node that contains the expression that gets bound to

the result of the keyfind call. This must be a tuple.

KeyArg :: node() - The argument node of the argument list of keyfind,

which corresponds to the key.

- Return value:

An atom depending on the structure of the tuple.
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– match_joker: the first element of the tuple is a joker pattern

– match_same_key: KeyArg and the first element of the tuple can be shown

to be the same

– match_different_key: KeyArg and the first element of the tuple cannot

be shown to be the same

keyfind_transform/3. Based on the branch that is given in the first argument,

chooses which algorithm to use. Constructs the needed syntactic elements and

replaces the original keyfind call with the newly created nodes.

- Parameters:

Branch :: atom() - The branch determining which transformation algo-

rithm will be used.

FunApp :: node() - The node containing the keyfind function application

that needs to be replaced.

Args :: [node()] - A list of nodes representing the actual parameters of

the keyfind function call.

- Return value:

A list containing a single function that performs the transformation of the

keyfind call.

keydelete_transform/3. Based on if the function call is a return value in its

clause, creates the transformation function, which constructs the needed syntactic

elements and replaces the original keydelete call with the newly created nodes.

- Parameters:

IsReturn :: boolean() - Specifies if the call to keydelete is returned from

its clause.
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FunApp :: node() - The node containing the keydelete function applica-

tion that needs to be replaced.

Args :: [node()] - A list of nodes representing the actual parameters of

the keydelete function call.

- Return value:

A list containing a single function that performs the transformation of the

keydelete call.

keymember_transform/2. Creates the transformation function, which creates

the needed syntactic elements and replaces the original keymember call with the

newly created nodes.

- Parameters:

FunApp :: node() - The node containing the keymember function applica-

tion that needs to be replaced.

Args :: [node()] - A list of nodes representing the actual parameters of

the keymember function call.

- Return value:

A list containing a single function that performs the transformation of the

keymember call.

determine_keystore_branch/2. Determines which algorithm should be used

to transform a call to keystore. This is achieved by checking the actual parameters

of the function.

- Parameters:

FirstKey :: node() - The node for the first argument of the function, which

is the key part.
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Tuple :: node() - The node for the fourth argument of the function, which

is the new key-value tuple.

- Return value:

An atom, showing the relations between the first and fourth argument of the

keystore function call:

– same_keys: it can be shown that the first and the fourth arguments

contain the same key.

– different_keys: it cannot be shown that the first and the fourth argu-

ments contain the same key, but the fourth argument is a tuple pattern.

– no_tuple_simple: the fourth argument is not a tuple pattern, but the

first argument is a simple key.

– no_tuple_complex: the fourth argument is not a tuple pattern, and the

first argument is a complex key.

keystore_transform/4. Chooses the algorithm based on the branch determined

by determine_keystore_branch/2 and whether the function call is a return value,

creates a function that transforms the call to keystore by creating the new syntactic

elements and replaces the original keystore call.

- Parameters:

Branch :: atom() - Specifies the relations between the first and fourth ar-

gument, as determined by determine_keystore_branch/2

IsReturn :: boolean() - Specifies if the function call is a return expression.

FunApp :: node() - The node containing the keytake function application

that needs to be replaced.

Args :: [node()] - A list of nodes representing the actual parameters of

the keytake function call.

- Return value:
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A list containing a single function that performs the transformation of the

keystore call.

keytake_transform/4. Chooses the transformation algorithm based on the type

of key and whether the function call is a return value, creates a function that trans-

forms the call to keytake by creating the new syntactic elements and replaces the

original keytake call.

- Parameters:

KeyType :: atom() - Specifies if the key argument in the function call is a

simple or complex key. The allowed values for this parameter are simple_key

and complex_key.

IsReturn :: boolean() - Specifies if the function call is a return expression.

FunApp :: node() - The node containing the keytake function application

that needs to be replaced.

Args :: [node()] - A list of nodes representing the actual parameters of

the keytake function call.

- Return value:

A list containing a single function that performs the transformation of the

keytake call.

transform_outside_call/3. Creates the function for transforming a single call

to the refactored recursive function by wrapping the correct argument in a call to

the maps:from_list function.

- Parameters:

Parameter :: node() - The node in the SPG belonging to the formal pa-

rameter of the function.

Expr :: node() - The node for the call to the recursive function.

FunName :: atom() - The name of the recursive function.
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- Return value:

A list containing a single function that performs the transformation to a func-

tion call to the refactored recursive function.

is_match_expr/1. Determines if an expression is of type ’match_expression’

- Parameters:

Expr :: node() - The expression that needs to be checked.

- Return value:

A boolean value based on whether the expression is a ’match_expression’.

is_return_expr/2. Determines if an expression is a return value in a given func-

tion or not.

- Parameters:

Expr :: node() - The expression that needs to be checked if it is a return

value.

Func :: node() - The node referring to the function that needs to be used

for the checking.

- Return value:

A boolean value denoting if the expression is a return value in the function.

is_expr_or_parent_return_expr/2. Determines if an expression or its par-

ent is a return value in a given function or not.

- Parameters:

Expr :: node() - The expression that needs to be checked if it or its parent

is a return value.
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Func :: node() - The node referring to the function that needs to be used

for the checking.

- Return value:

A boolean value denoting if the expression or its parent is a return value in

the function.

create_fun_call/2. Constructs the necessary syntactic elements for a function

call.

- Parameters:

Function :: {atom()} | {atom(), atom()} - The function name or the

module and function name that needs to be called.

Args :: [node()] - The nodes that represent the arguments of the function

call.

- Return value:

The constructed function application node.

validate_n_arg/2. Validates the type and value of the argument that specifies

which part of the tuple is the key. This can only be an integer 1. If validation fails

a bad_n_arg error is thrown.

- Parameters:

NArg :: node() - The node belonging to the argument that determines

which element of the tuple in a proplist denotes the key.

MFA :: {atom(), atom(), integer()} - The module name, function name

and arity of the function call being validated.

- Return value:

No usable return value, if the function throws an error validation has failed, if

no error is thrown validation has passed.
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validate_list_arg/3. Validates the parameter of the function calls that contains

the list. This parameter should refer to the same variable that is being transformed.

- Parameters:

ListArg :: node() - The node belonging to the variable referred to by the

argument of the function call.

Varref :: node() - The node belonging to the variable being transformed.

MFA :: {atom(), atom(), integer()} - The module name, function name

and arity of the function call being validated.

- Return value:

No usable return value, if the function throws an error validation has failed, if

no error is thrown validation has passed.

keytype/1. Determines if an expression is a simple type or not. The following

types are considered to be simple:

◦ atom

◦ integer

◦ variable

- Parameters:

KeyArg :: node() - The node representing the key argument of the function

calls.

- Return value:

An the simple_key atom if the type of the node is any of the ones mentioned

above, otherwise the complex_key atom is returned.
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error_text/2. The possible LocalErrors thrown during this refactoring are the

following:

- non_recursive: The function in which the variable is selected is not recursive.

- non_parameter: The selected variable is not a parameter of the function clause

containing it.

- parameter_type: The selected variable is bound somewhere else, not in the

parameter list.

- bindings: The selected variable is bound by multiple expressions.

- ambiguous: A query, that should only return a single value, instead returns

either multiple values or none at all. Normally, if the SPG is in a correct state

this error should never happen.

- bad_parent: The selected variable does not appear in an ’arglist’, but instead

some other kind of expression.

- bad_fun_call: The selected variable appears in the ’arglist’ of a function that

cannot be transformed.

- bad_n_arg: A call to the functions that can be transformed does not use the

integer literal 1 as its second parameter.

- bad_list_arg: The argument, that contains the list is not the same as the

selected variable.

- unsupported_match: In the case of keystore, keydelete and keytake only

a limited type of matching is allowed.

- cons_error: Some clause of the recursive function uses list pattern matching

other than the empty list pattern.

- invalid_pattern: Some clause of the function uses pattern matching, that is

not the empty list pattern or a single variable.
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3.3.3 Eliminating higher-order functions

This refactoring is implemented in the reftr_elim_hof module.

prepare/1. The execution of this function consists of the following steps:

◦ Query for the closest ancestor of the selected expression, which has type ’ap-

plication’, using the get_closest_parent_of_type/2 function.

◦ Extract the information from the function application and validate that it is a

higher-order function call that can be refactored, using the validate_hof/1

function.

◦ Get the mode of transformation (list comprehension or recursion) from Args,

or if it is not present ask the user to select the mode, using the get_mode/1

function.

◦ Use the heuristic algorithm to select the correct mode if ’default’ is provided.

◦ Finally, create the functions for transforming the higher-order function call

using transform_hof_call/6.

- Parameters:

Args :: proplist() - The arguments for this refactoring must contain the

file and position keys. An additional parameter can be added in Args to

specify if a list comprehension or recursion should be used. This parame-

ter should belong to the key hof_mode and can have a value of recursive,

list_comp or default.

- Return value:

A list containing all functions that perform the transformation of the SPG.

get_closest_parent_of_type/2. Get the closest ancestor of a node in the

SPG that is of a given type.
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Check if the current Node is of the given type, if yes return it, otherwise perform a

query to get the parent of that node and recursively calls itself.

- Parameters:

Node :: node() - The node whose parent has to be extracted.

Type :: atom() - The type of the desired parent node

- Return value:

The first node that is of the given type and is an ancestor of the initial pa-

rameter node in the SPG.

validate_hof/1. Checks whether the selected function application uses either

lists:map/2 or lists:filter/2. If it is anything else, a bad_hof error is thrown.

- Parameters:

MFA :: {atom(), atom(), integer()} - The module name, function name

and arity of the selected function.

- Return value:

This function has no usable return value, if the validation fails it throws an

error, otherwise, if nothing is thrown, the validation has passed.

get_mode/1. Extracts the selected mode of transformation from Args, or if it is

not present uses ask_hof_question/1 to interact with the user and get the necessary

input.

- Parameters:

Args :: proplist() - The same arguments that get passed to prepare/1.

- Return value:

Returns an atom denoting the selected mode of transformation. It can be the

following three values:
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– list_comp

– recursive

– default

ask_hof_question/1. Asks the user to select an option of the three possible

modes of transformation.

- Parameters:

Text :: string() - The text of the question that has to be asked from the

user.

- Return value:

Returns an atom denoting the selected mode of transformation. It can be the

following three values:

– list_comp

– recursive

– default

get_fun_type/1. Extracts the function parameter from a higher-order function

call and determines whether a lambda or an implicit fun is used.

- Parameters:

Expr :: node() - The function application node of a higher-order function.

- Return value:

Either the atom fun_expr if a lambda is used or the atom implicit_fun if

an implicit fun is used.
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transform_hof_call/6. Creates the list of transformation functions using the

relevant algorithm. The used algorithm is selected based on the function being

refactored, the mode of transformation and whether a fun expression or an implicit

fun is used.

- Parameters:

MFA :: {atom(), atom(), integer()} - The module name, function name

and arity of the selected function call.

Mode :: atom() - The mode of transformation, which is either list_comp

or recursive.

FunType :: atom() - The type of the function argument used in the higher-

order function call. Either fun_expr or implicit_fun.

Expr :: node() - The function application node of a higher-order function.

Args :: [node()] - The nodes representing the arguments of the higher-

order function.

File :: string() - The name and path to the file that is being refactored.

- Return value:

A list of functions that perform the transformation of the higher-order function

call.

This function contains different clauses for every possible combination of function,

transformation mode and function type used. The description of how each clause

works and what they do is shown below.

◦ list comprehension, implicit fun

This clause extracts the implicit function argument and then creates the func-

tion to perform the transformation. The transformation function constructs

the syntactic nodes for the list comprehension and a call to the implicit func-

tion. These nodes are used to replace the higher-order function call in the

SPG.
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The difference between the map and filter higher-order functions is that the

implicit function call is placed at different locations when creating the nodes

for the list comprehension.

◦ list comprehension, fun expression

The fun expression (lambda) gets extracted from the argument list and all the

patterns, guards and bodies of the lambda get extracted using the

get_patterns_guards_bodies/1 function.

After that the type of the lambda is determined with regards to its clauses,

bodies and patterns. For this the determine_clause_type/1 function is used.

Finally, the transformation function is created by the function

map_list_comp_from_fun_expr/4 in the case of map and

filter_list_comp_from_fun_expr/4 in the case of filter.

◦ recursion, implicit fun

In this case the resulting list contains two functions. The first one is creating

the nodes for the new recursive function definition and adding it to the file.

The second function replaces the higher-order function with a call to the newly

defined recursive function. The name of the new function is passed between

the two functions.

◦ recursion, fun expression

In this clause, the transformation functions are created by a call to the higher-

order function transform_recursion_fun_expr/6. The difference between

the implementation for map and filter is the functions passed to the HOF. In

the case of maps the following functions are used:

– map_transform_pattern/2

– map_transform_last_body/5

In the case of filter the following functions are used:

– filter_transform_pattern/2

– filter_transform_last_body/5
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get_patterns_guards_bodies/1. Extracts the patterns, guards and bodies

belonging to a fun expression.

- Parameters:

FunExpr :: node() - The node representing the fun expression.

- Return value:

A list of type [{[node()], [node()], [node()]}], where each tuple cor-

responds to a clause of the fun expression and the first element of the tuple

contains the patterns, the second the guards and the third the bodies belonging

to the clause.

determine_clause_type/1. Determines the type of clauses belonging to a fun

expression based on the number of clauses, number of bodies and the number and

type of patterns.

- Parameters:

PatternsGuardsBodies :: [{[node()], [node()], [node()]}] -

The patterns, guards and bodies belonging to the clauses of a fun expression.

- Return value:

An atom denoting the determined type.

– single_body_var: a single clause with a single body and a single pattern

of type ’variable’

– single_body_joker: a single clause with a single body and a single

pattern of type ’joker’

– multiple_bodies_var: a single clause with multiple bodies and a single

pattern of type ’variable’

– multiple_bodies_joker: a single clause with multiple bodies and a sin-

gle pattern of type ’joker’

– default: all other cases
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map_list_comp_from_fun_expr/4. Based on the type of the fun expres-

sion, as determined by determine_clause_type/1 creates a transformation function

that constructs a list comprehension either containing a single expression or multiple

expressions grouped together by a block expression, and replaces the higher-order

function call with the newly created list comprehension nodes.

Whether the fun expression uses the ’joker’ pattern or not is not taken into account

in the transformation.

- Parameters:

Branch :: atom() - The type of the fun expression.

Expr :: node() - The node corresponding to the higher-order function call.

PatternsGuardsBodies :: [{[node()], [node()], [node()]}] -

The patterns, guards and bodies belonging to the clauses of the fun expression.

List :: node() - The second parameter node of the higher-order function

call.

- Return value:

A list containing a single transformation function.

filter_list_comp_from_fun_expr/4. Based on the type of the fun expres-

sion, as determined by determine_clause_type/1 creates a transformation function

that constructs a list comprehension either containing a single expression or multiple

expressions grouped together by a block expression, and replaces the higher-order

function call with the newly created list comprehension nodes.

Whether the fun expression uses the ’joker’ pattern or not is taken into account and

results in a different transformation function, since a ’joker’ pattern cannot be used

when creating a list comprehension to filter.

- Parameters:

Branch :: atom() - The type of the fun expression.
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Expr :: node() - The node corresponding to the higher-order function call.

PatternsGuardsBodies :: [{[node()], [node()], [node()]}] -

The patterns, guards and bodies belonging to the clauses of the fun expression.

List :: node() - The second parameter node of the higher-order function

call.

- Return value:

A list containing a single transformation function.

transform_recursion_fun_expr/6. Gathers all variable references to outside

variables from the fun expression using outside_varrefs/1.

After that creates a list containing two transformation functions. The first one

creates the recursive function and inserts it in the module, the second one replaces

the higher-order function call with the call to the recursive function.

When creating the recursive function definition, transform_clause/5 is used to

transform each clause of the fun expression.

- Parameters:

Expr :: node() - The node referring to the higher-order function call.

Args :: [node()] - The argument list of the higher-order function, as rep-

resented in the SPG.

File :: string() - The name and path of the file which is being refactored.

TransformPatternFun :: fun((node(), [string()]) -> node()) -

A function that can be used to transform a pattern node based on all used

variable names in the scope, to a new pattern node.

TransformLastBodyFun ::

fun((node(),string(),node(),string(),[string()]) -> node()) -

A function that can be used to transform the last expression in the body

of a clause. The parameters of this function are the node that needs to be
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transformed, the name of the new recursive function, the pattern that binds

the head of the list, the variable name referring to the tail of the list, and a

list of all the used names in the scope.

Prefix :: string() - The prefix of the name of the function that needs to

be defined.

- Return value:

A list containing two transformation functions that replace the higher-order

function call with a call to the newly defined recursive function.

outside_varrefs/1. Gathers all variables referenced, but not bound by a fun

expression.

- Parameters:

FunExpr :: node() - A node referring to a fun expression.

- Return value:

A list of nodes, that are the nodes referring to the variables which are used in

the fun expression, but are bound in the scope outside the fun expression.

transform_clause/5. This higher-order function performs the transformation of

a single clause of a fun expression. The variable names in the recursive function are

transformed so that shadowed outside variables are renamed and can be passed on in

the recursive call. This is done using the get_shadow_adjusted_name/3 function.

Transformation of the pattern matching which binds the head of the list is done

using the function received in the parameters. The last expression in the body of

the clause is also transformed using a function received in the arguments.

- Parameters:

Clause :: node() - The clause of the fun expression, which is currently

being transformed.
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FunName :: string() - The name of the newly defined recursive function.

OutsideVarNames :: [string()] - The names of the variables that are used

in the clauses of the fun expression, but are bound outside of it.

TransformPatternFun :: fun((node(), [string()]) -> node()) -

A function that can be used to transform a pattern node based on all used

variable names in the scope, to a new pattern node.

TransformLastBodyFun ::

fun((node(),string(),node(),string(),[string()]) -> node()) -

A function that can be used to transform the last expression in the body

of a clause. The parameters of this function are the node that needs to be

transformed, the name of the new recursive function, the pattern that binds

the head of the list, the variable name referring to the tail of the list, and a

list of all the used names in the scope.

- Return value:

The node of the newly transformed clause, that needs to be inserted in the

module.

map_transform_pattern/2. Returns a copy of the pattern.

- Parameters:

Pattern :: node() - The pattern node that has to be transformed.

ShadowAdjustedNames :: [string()] - The names of the variables used in

the fun expression, that are not bound by the lambda. This variable is unused

in this function and is only present so that the same higher-order function can

be used for both map and filter.

- Return value:

A copy of the Pattern node
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map_transform_last_body/5. Performs the transformation of the last ex-

pression in the body of a clause. Creates the necessary nodes for constructing the

result list and performing the recursive call.

- Parameters:

LastBody :: node() - The node representing the last expression in the body

of a clause.

FunName :: string() - The node representing the last expression in the

body of a clause.

Pattern :: node() - The node of the pattern binding the head of the list.

This variable is unused in this function and is only present so that the same

higher-order function can be used for both map and filter.

TailName :: string() - The name of the variable containing the tail of the

list.

FunName :: string() - The node representing the last expression in the

body of a clause.

ShadowAdjustedNames :: [string()] - The names of the variables used in

the fun expression, that are not bound by the lambda.

- Return value:

The node of the transformed expression.

filter_transform_pattern/2. Transforms a pattern so that if it contains a joker

anywhere, it will be also bound to a new, unused variable name.

- Parameters:

Pattern :: node() - The pattern node that has to be transformed.

ShadowAdjustedNames :: [string()] - The names of the variables used in

the fun expression, that are not bound by the lambda.

- Return value:

The transformed version of the Pattern node
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filter_transform_last_body/5. Performs the transformation of the last ex-

pression in the body of a clause. Creates the necessary nodes for constructing the

result list and performing the recursive call.

- Parameters:

LastBody :: node() - The node representing the last expression in the body

of a clause.

FunName :: string() - The node representing the last expression in the

body of a clause.

Pattern :: node() - The node of the pattern binding the head of the list.

TailName :: string() - The name of the variable containing the tail of the

list.

FunName :: string() - The node representing the last expression in the

body of a clause.

ShadowAdjustedNames :: [string()] - The names of the variables used in

the fun expression, that are not bound by the lambda.

- Return value:

The node of the transformed expression.

get_shadow_adjusted_name/3. Checks if a variable is shadowed in a clause,

and if it is creates a new, unique name for it.

- Parameters:

Expr :: node() - The node of the expression that determines the scope

which needs to be checked for used variable names.

OutsideVars :: [string()] - The names of the variables that get bound

outside the fun expression and may be shadowed by the patterns in the current

clause.

PatternVars :: [string()] - The names of the variables bound by the

pattern in the current clause.
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- Return value:

A list created from OutsideVars, where the name of each shadowed variable

has been changed to a new, unique name.

error_text/2. The possible LocalErrors thrown during this refactoring are the

following:

- bad_application: The selected expression is not a function application.

- bad_hof: The selected function application is not a call to either lists:map/2

or lists:filter/2.

- invalid_fun_arg: The first argument of the higher-order function is neither

a lambda nor an implicit fun.

- pattern_num: The arity of the fun expression is incorrect.

- implicit_arity: The arity of the implicit fun is incorrect.

- ambiguous: A query, that should only return a single value, instead returns

either multiple values or none at all. Normally, if the SPG is in a correct state

this error should never happen.

3.4 Testing

There are two ways the refactorings can be tested. The first is to create unit tests to

make sure all refactorings work correctly and perform the desired transformation.

The second way is to check if the refactorings have achieved the goal they were

designed to reach. The final goal of all the refactorings shown in this thesis was

to improve the energy efficiency of Erlang software. This can be tested using the

GreenErl energy measurement framework.
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3.4.1 Unit testing

RefactorErl provides a way to easily implement and run unit tests. Besides showing

the results of running a test in the shell, it also generates a report in the form of an

HTML document after running the unit tests. This result.html file can be found

in the trunk/tool/testresult/ directory.

These tests are placed in the trunk/test/refact directory. For every refactoring

a new folder has to be created, which contains all the unit tests for that particular

transformation. The name of this new folder is the same as the name of the module

containing the refactotring, without the reftr_ prefix, for example in the case of my

refactorings the directories are: elim_get_value, transform_list and elim_hof.

To run the unit tests belonging to a refactoring, open a terminal, start the Refac-

torErl shell and use the following command, where REFACTOR_NAME is the name of

the module containing the refactoring, without the reftr_ prefix.

reftest_refact:run([{test,REFACTOR_NAME}]).

The structure of a unit test

Each unit test is contained in its own directory. This directory contains the Erlang

source file that has to be refactored by the test case. It also contains a file called

TEST, which describes the test case and gives the arguments for the refactoring,

such as the filename and position. These are the arguments that the refactoring is

going to receive in its Args parameter. An example of this TEST file is shown on

Figure 3.20. Finally, the directory of a test case also contains a folder named ’out’.

This folder contains an Erlang source file with the expected result of the refactoring.

Eliminate proplists:get_value

Test for this refactoring can be run from the RefactorErl shell using the following

command:
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Figure 3.20: An example showing the unit test description used in RefactorErl

reftest_refact:run([{test,elim_get_value}]).

One test case is shown as an example on Figure 3.21. In this example the binary

proplists:get_value is called, and it is the function call that is being selected for

refactoring.

1 −module( ge tva lue ) .
2
3 f ( ) −>
4 p r o p l i s t s : get_value (2 , [ {1 ,2} ,{2 ,3} ] ) .

(a) Input

1 −module( ge tva lue ) .
2
3 f ( ) −>
4 case l i s t s : key f ind (2 , 1 , [ {1 , 2} , {2 , 3} ] ) of
5 fa l se −> undefined ;
6 {_, Var1} −> Var1
7 end .

(b) Expected output

Figure 3.21: Input and expected output of a test case for the ’eliminate get_value’

refactoring.

There are a total of 9 test cases created for this refactoring. The types of these test

cases are the following:

◦ Refactor proplists:get_value/2, the binary version
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◦ Refactor proplists:get_value/3, the ternary version

◦ The function name is the selected part

◦ The module name is the selected part

◦ The proplist module is imported

◦ Another function with the same name is created and it is called.

Running the unit tests results in a log in the RefactorErl shell (see Figure 3.22),

which specifies how many test cases have passed and how many have failed and for

what reason. An HTML summary of the testing is also created, which describes

each test case, and gives the reason in case of a failure. Part of this HTML log is

shown on Figure 3.23.

Figure 3.22: The output of running a test case, and the summary of all

elim_get_value tests in the RefactorErl shell.

Note on failing test cases. There are in this test suite 3 cases, in which Refac-

torErl does not accept the result of the test case as correct. The reason for this

is that when checking the output of a refactoring, RefactorErl not only checks the
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Figure 3.23: The beginning of the result.html file after running all

elim_get_value test cases.
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syntax tree of the program, but also checks the correctness and consistency of the

semantical nodes and edges in the SPG. In my refactorings I only manipulate the

syntax tree of the programs, and it is the responsibility of RefactorErl to insert the

correct semantical information in the graph. In the case of the failing test cases, the

output of the testing is the following:

Accepted. No difference between source files!

BUT, the result graph or CFG graph is not consistent!

This means that the test case is failing not because the transformation is not working

correctly on the level of the syntax tree, but because the insertion of semantical

information to the graph is not correct.

Transforming list to map

To run the unit tests for this refactoring the following command can be used from

the RefactorErl shell:

reftest_refact:run([{test,transform_list}]).

There are a total of 38 test cases for this refactoring. On of the more complex test

cases is shown on Figure 3.24 as an example. This example shows a test case where

the transformed variable is used in multiple function calls, an empty list pattern is

used in one of the clauses and the return value of one of the clauses is the list itself.

There are test cases created for all of the following scenarios:

◦ The recursive function contains a single call to a function that is supported

by the refactoring. These function calls are the following:

– lists:keyfind/3

– lists:keydelete/3

– lists:keymember/3
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1 −module( t e s t ) .
2
3 r e c u r s i v e (_Key, [ ] ) −> ok ;
4 r e c u r s i v e (Key , L i s t ) −>
5 {K, V} = l i s t s : key f ind (Key , 1 , L i s t ) ,
6 NewList = l i s t s : k eyde l e t e (K, 1 , L i s t ) ,
7 NewList2 = l i s t s : key s to r e (K, 1 , NewList , {K, V} ) ,
8 {value , _, NewList3} = l i s t s : keytake (Key , 1 , NewList2 ) ,
9 r e c u r s i v e (Key + 1 , NewList3 ) ,

10 L i s t .

(a) Input

1 −module( t e s t ) .
2
3 r e c u r s i v e (_Key, Map1) when map_size (Map1) =:= 0 −> ok ;
4 r e c u r s i v e (Key , L i s t ) −>
5 begin
6 K = Key , #{K:=V} = Li s t
7 end ,
8 NewList = maps : remove (K, L i s t ) ,
9 NewList2 = NewList#{K=>V} ,

10 {value , _, NewList3} = case maps : take (Key , NewList2 ) of
11 error −> false ;
12 {Value1 , L i s t 1} −> {value , {Key , Value1} , L i s t 1}
13 end ,
14 r e c u r s i v e (Key + 1 , NewList3 ) ,
15 maps : t o_ l i s t ( L i s t ) .

(b) Expected output

Figure 3.24: Input and expected output of a test case for the ’transform list to map’

refactoring.
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– lists:keystore/4

– lists:keytake/3

For each possibility there are multiple test cases so that every branch of the

refactoring algorithm is tested by at least one test case. This includes, for

example, bining the result of lists:keyfind/3 to different constructions or

not even using the return value of it.

Each function call is also tested when it is placed as the return value of the

function.

◦ Transforming the calls to the recursive function.

◦ Using an empty list pattern in one of the clauses.

◦ More complex test cases containing multiple expressions that need to be refac-

tored, to test the different transformations working together.

The summary given by the RefactoErl shell when running these test cases is shown

on Figure 3.25. Similarly to the previous refactoring, this test suite also has some

failing test cases because of the reasons explained previously.

Figure 3.25: The summary of all transform_list tests in the RefactorErl shell.
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Eliminating higher-order functions

The unit tests for this refactoring can be run from the RefactorErl shell using the

following command:

reftest_refact:run([{test,elim_hof}]).

There are a total of 42 test cases in this test suite. One test case is shown on

Figure 3.26 as an example. The example shows a map function call using a lambda

with multiple clauses and using external variables, some of which are shadowed in

certain clauses.

There are test cases to check the correct behaviour of every possible branch in the

algorithm, specifically, the following scenarios are tested:

◦ Testing the transformations for both the lists:map/2 and lists:filter/2

higher-order functions.

◦ Testing the use of list comprehensions and recursion.

◦ Testing the use of lambdas and implicit fun expressions.

◦ In the case of lambdas:

– Joker pattern used

– Single clause or multiple clauses

– Single or multiple expressions in the body of a clause

– External variables used, sometimes shadowed.

◦ Checking the uniqueness of newly introduced variables.

◦ The new recursive function has a unique name.

The summary created by the RefactorErl shell after running all the test cases for

this refactoring is shown on Figure 3.27.
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1 −module( t e s t ) .
2 −export ( [ f /2 ] ) .
3
4 f ( L i s t , Y) −>
5 X = 2 , Z = 3 , A = 4 ,
6 l i s t s :map( fun (Elem) when Elem =:= 42 −>
7 Z = X + Y,
8 Elem + Z ,
9 Q = 2 ;

10 (X) −> X1 = X + Y;
11 ({X,Y} ) −> oh end , L i s t ) .

(a) Input

1 −module( t e s t ) .
2 −export ( [ f /2 ] ) .
3
4 f ( L i s t , Y) −>
5 X = 2 , Z = 3 , A = 4 ,
6 map_recursion1 ( Lis t , X, Y, Z ) .
7
8 map_recursion1 ( [ ] , _, _, _) −> [ ] ;
9 map_recursion1 ( [Elem | Tai l1 ] , X, Y, Z) when Elem =:= 42 −>

10 Z = X + Y,
11 Elem + Z ,
12 [Q = 2 | map_recursion1 ( Tai l1 , X, Y, Z) ] ;
13 map_recursion1 ( [X | Tai l1 ] , X2 , Y, Z) −>
14 [X1 = X + Y | map_recursion1 ( Tai l1 , X2 , Y, Z) ] ;
15 map_recursion1 ( [ {X, Y} | Tai l1 ] , X1 , Y1 , Z) −>
16 [ oh | map_recursion1 ( Tai l1 , X1 , Y1 , Z) ] .

(b) Expected output

Figure 3.26: Input and expected output of a test case for the ’eliminate higher-order

function’ refactoring.
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Figure 3.27: The summary of all elim_hof tests in the RefactorErl shell.

3.4.2 Testing energy consumption

To test the effect of the refactorings on energy consumption, the GreenErl framework

for energy measurement was used. For each refactotring, I created a use case, in

which the refactoring can be applied. The energy consumption of the program was

measured before and after refactoring.

Eliminating proplists:get_value calls

The program used to measure the effect of the ’eliminate proplists:get_value’

refactoring is shown on Figure 3.28. This test program consists of a single recursive

function which takes three parameters: a key, a proplist and an integer specifying

how many times to perform the recursive call. All the function does is look up

a value in a proplist belonging to a given key. The energy consumption of this

function was measured with lists of length ranging from 10 000 to 10 000 000 and

repeat count (N) 100. The key the program was looking for in the list was always

at the exact middle of the data structure.

The after version of the test program was created using the refactoring I implemented

in RefactorErl.

Figure 3.29 shows the energy consumed by the test program both before and after
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1 f (_, _, 0) −> ok ;
2 f (Key , L i s t , N) −>
3 p r o p l i s t s : get_value (Key , L i s t ) ,
4 f (Key , L i s t , N − 1 ) .

(a) Before

1 f (_, _, 0) −> ok ;
2 f (Key , L i s t , N) −>
3 case l i s t s : key f ind (Key , 1 , L i s t ) of
4 fa l se −> undefined ;
5 {_, Var1} −> Var1
6 end ,
7 f (Key , L i s t , N − 1 ) .

(b) After

Figure 3.28: Before and after versions of the test program using

proplists:get_value.
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Figure 3.29: Energy consumption values of the before and after versions of the test

program using proplists:get_value.
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applying the refactoring. The after version consumes significantly less energy com-

pared to before refactoring. This shows that applying this refactoring to a program

can improve energy consumption values, as intended.

Transforming a list to map

1 main ( L i s t ) −> r e c u r s i v e ( Lis t , 0 ) .
2
3 r e c u r s i v e ( [ ] , _) −> ok ;
4 r e c u r s i v e ( [ ] , _) −> ok ;
5 r e c u r s i v e ( L is t , Key) −>
6 {_, Value} = l i s t s : key f ind (Key , 1 , L i s t ) ,
7 NewList = l i s t s : k eys to r e (Key , 1 , L i s t , {Key , Value + 1} ) ,
8 {value , _, NewList2} = l i s t s : keytake (Key , 1 , NewList ) ,
9 r e c u r s i v e ( NewList2 , Key + 1 ) .

(a) Before

1 main ( L i s t ) −> r e c u r s i v e (maps : f rom_l i s t ( L i s t ) , 0 ) .
2
3 r e c u r s i v e (#{} , _) −> ok ;
4 r e c u r s i v e ( L is t , Key) −>
5 #{Key:=Value} = List ,
6 NewList = L i s t#{Key=>Value + 1} ,
7 {value , _, NewList2} = case maps : take (Key , NewList ) of
8 error −> false ;
9 {Value1 , L i s t 1} −> {value , {Key , Value1} , L i s t 1}

10 end ,
11 r e c u r s i v e ( NewList2 , Key + 1 ) .

(b) After

Figure 3.30: Before and after versions of the test program for transforming lists to

maps.

The program shown on Figure 3.30 was created to measure the effect of transforming

a list to a map in a recursive function call. The after version of the test program

was created using the ’transform list to map’ refactoring.

The energy consumption of calls to the main/1 function was measured using lists

that contained from 100 to 20 000 key-value pairs. These proplists contained the

tuples with keys ranging from 1 to the length of the list. The elements of the list

were shuffled using the same seed every time to get comparable results for the before
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and after versions.

The recursive/2 function for a given key looks up the value for that key, modifies

the list so that the value is incremented by one, then actually deletes the value

belonging to the key, thus decreasing the size of the list. We repeat this until all

elements of the list have been deleted. This will happen for sure, because the keys

are ranging from 1 to the length of the list, first the key given to the recursive

function is 0 and it gets incremented by one after each iteration.

All function calls inside the recursive function use the list parameter in a way that

the refactoring is able to transform to an equivalent expression using maps. Note

that in the after version the main/1 function still gets a list as its parameter and

only when the call to recursive/2 happens does it convert the list to a map.
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Figure 3.31: Energy consumption values of the before and after versions of our test

program for transforming lists to maps.

The energy consumption values for the test program before and after refactoring

are shown on Figure 3.31. This graph shows that using a map consumes a really

small amount of energy compared to the energy consumption of the before version,

using lists. This shows that transforming a list to a map is worth it with regards to
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energy consumption and that are refactoring is working as intended.

Eliminating higher-order function calls

The test programs for measuring the effect of the ’eliminate higher-order functions’

refactoring is shown on Figure 3.32. In this case there are two refactored versions.

In one of the refactored versions only list comprehensions are used to eliminate the

higher-order function calls. In the other one only recursion is used to eliminate

higher-order functions.

The test program consists of three higher-order function calls, that operate on the

lists created by the previous HOF call.Both map and filter are used, as well as

implicit fun expressions and lambdas.

The energy consumption values of the before and both after versions are shown

on Figure 3.33. This graph shows that the energy consumption improved in both

cases. There is no significant difference in this case between refactoring using list

comprehensions or using recursive functions. This decrease in energy consumption

shows that both methods for eliminating higher-order functions are working as in-

tended, and that these refactorings are beneficial for the energy consumption of

Erlang programs.

102



1 do_stuf f (X) −>
2 A = X, B = X∗X, C = X∗X∗X, A + B + C.
3 even (X) −> X rem 2 =:= 0 .
4 f ( L i s t ) −> Y = 42 ,
5 NewList = l i s t s :map( fun (X) −> case even (X) of
6 true −> Y;
7 fa l se −> X end end , L i s t ) ,
8 NewList2 = l i s t s : f i l t e r ( fun (X) −> X =/= Y end , NewList ) ,
9 l i s t s :map( fun do_stuf f /1 , NewList2 ) .

(a) Before

1 f ( L i s t ) −> Y = 42 ,
2 NewList = [ case even (X) of
3 true −> Y;
4 fa l se −> X
5 end | | X<−L i s t ] ,
6 NewList2 = [X | | X <− NewList , X =/= Y] ,
7 [ do_stuf f (Elem1 ) | | Elem1 <− NewList2 ] .

(b) After - list comprehensions

1 f ( L i s t ) −> Y = 42 ,
2 NewList = map_recursion1 ( Lis t , Y) ,
3 NewList2 = f i l t e r_ r e c u r s i o n 1 ( NewList , Y) ,
4 map_recursion2 ( NewList2 ) .
5 map_recursion1 ( [ ] , _) −> [ ] ;
6 map_recursion1 ( [X | Tai l1 ] , Y) −>
7 [ case even (X) of
8 true −> Y;
9 fa l se −> X

10 end | map_recursion1 ( Tai l1 , Y) ] .
11 f i l t e r_ r e c u r s i o n 1 ( [ ] , _) −> [ ] ;
12 f i l t e r_ r e c u r s i o n 1 ( [X | Tai l1 ] , Y) −>
13 case X =/= Y of
14 true −> [X | f i l t e r_ r e c u r s i o n 1 ( Tai l1 , Y) ] ;
15 fa l se −> f i l t e r_ r e c u r s i o n 1 ( Tai l1 , Y)
16 end .
17 map_recursion2 ( [ ] ) −> [ ] ;
18 map_recursion2 ( [Head | Tai l ] ) −>
19 [ do_stuf f (Head) | map_recursion2 ( Ta i l ) ] .

(c) After - recursion

Figure 3.32: Before and after versions of our test program for eliminating higher-

order functions. Helper functions are only shown in the before part, but are defined

in both of the after versions.
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Figure 3.33: Energy consumption values of the before and after versions of our test

program for transforming lists to maps.
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Chapter 4

Summary and Conclusions

The problem I solved in this thesis is to refactor Erlang programs so that the en-

ergy consumption of the program may decrease. The motivation for these energy

conscious refactorings was our previous TDK thesis [1] in which we conducted mea-

surements regarding the energy consumption of Erlang programs, and based on the

measurements identified some areas that could be worth refactoring.

The topics of the refactorings are the following:

◦ Eliminate calls to the proplists:get_value functions, and use the function

lists:keyfind/3 instead.

◦ Transform a list to a map data structure, when used in a recursive function.

◦ Eliminate calls to higher-order functions.

My task was to analyze the problem and create an algorithm for performing these

transformations. For each refactoring I have created a detailed algorithm, describing

how each transformation can be done and how the context in which a language con-

struct is used influences the refactoring. I also identified the necessary preconditions

for each refactoring.

Finally, I implemented the three refactorings using the static code analysis tool
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RefactorErl [4]. These implementations have been tested, so that they work cor-

rectly. Also, the effect of each refactoring on energy consumption was measured,

and I found that these refactorings can decrease the energy consumption of Erlang

programs, so the initial goal has been achieved.

4.1 Further development possibilities

Further development possibilities include also creating a refactoring so that not only

lists can be transformed to maps, but dictionaries as well. The reason for this is that

measurements of energy consumption show that using a dictionary is more energy

efficient than using a map.

Another area for possible future development is the elimination of higher-order func-

tions. There are more higher-order functions included in the lists module, such as

lists:foldr/3 and lists:all/2. These could also be made part of my refactor-

ings, so that calls to these higher-order functions can also be eliminated.
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